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Chapter 1

Sequences

Added by PLC. We define the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},

the natural numbers
N = {0, 1, 2, 3, . . .}

and the positive integers

Z+ = {1, 2, 3, . . .}.

All else is the work of man.

1.1 The general concept of a sequence

We begin by discussing the concept of a sequence. Intuitively, a sequence
is an ordered list of objects or events. For instance, the sequence of events
at a crime scene is important for understanding the nature of the crime. In
this course we will be interested in sequences of a more mathematical nature;
mostly we will be interested in sequences of numbers, but occasionally we
will find it interesting to consider sequences of points in a plane or in space,
or even sequences of sets.

Let’s look at some examples of sequences.

Example 1.1.1. Emily flips a quarter five times, the sequence of coin
tosses is HTTHT where H stands for “heads” and T stands for “tails”.
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2 CHAPTER 1. SEQUENCES

As a side remark, we might notice that there are 25 = 32 different possible
sequences of five coin tosses. Of these, 10 have two heads and three tails.
Thus the probability that in a sequence of five coin tosses, two of them are
heads and three are tails is 10/32, or 5/16. Many probabilistic questions
involve studying sets of sequences such as these.

Example 1.1.2. John picks colored marbles from a bag, first he picks a
red marble, then a blue one, another blue one, a yellow one, a red one and
finally a blue one. The sequence of marbles he has chosen could be represented
by the symbols RBBYRB.

Example 1.1.3. Harry the Hare set out to walk to the neighborhood
grocery. In the first ten minutes he walked half way to the grocery. In the
next ten minutes he walked half of the remaining distance, so now he was
3/4 of the way to the grocery. In the following ten minutes he walked half of
the remaining distance again, so now he has managed to get 7/8 of the way
to the grocery. This sequence of events continues for some time, so that his
progress follows the pattern 1/2, 3/4, 7/8, 15/16, 31/32, and so on. After an
hour he is 63/64 of the way to the grocery. After two hours he is 4095/4096
of the way to the grocery. If he was originally one mile from the grocery, he
is now about 13 inches away from the grocery. If he keeps on at this rate will
he ever get there? This brings up some pretty silly questions; For instance, if
Harry is 1 inch from the grocery has he reached it yet? Of course if anybody
manages to get within one inch of their goal we would usually say that they
have reached it. On the other hand, in a race, if Harry is 1 inch behind Terry
the Tortoise he has lost the race. In fact, at Harry’s rate of deceleration, it
seems that it will take him forever to cross the finish line.

Example 1.1.4. Harry’s friend Terry the Tortoise is more consistent
than Harry. He starts out at a slower pace than Harry and covers the first
half of the mile in twenty minutes. But he covers the next quarter of a mile
in 10 minutes and the next eighth of a mile in 5 minutes. By the time he
reaches 63/64 of the mile it has taken less than 40 minutes while it took
Harry one hour. Will the tortoise beat the hare to the finish line? Will either
of them ever reach the finish line? Where is Terry one hour after the race
begins?

Example 1.1.5. Build a sequence of numbers in the following fashion.
Let the first two numbers of the sequence be 1 and let the third number be
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1 + 1 = 2. The fourth number in the sequence will be 1 + 2 = 3 and the fifth
number is 2 + 3 = 5. To continue the sequence, we look for the previous two
terms and add them together. So the first ten terms of the sequence are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

This sequence continues forever. It is called the Fibonnaci sequence. This
sequence is said to appear ubiquitously in nature. The volume of the chambers
of the nautilus shell, the number of seeds in consecutive rows of a sunflower,
and many natural ratios in art and architecture are purported to progress by
this natural sequence. In many cases the natural or biological reasons for this
progression are not at all straightforward.

The sequence of positive integers,

1, 2, 3, 4, 5, ...

and the sequence of odd positive integers,

1, 3, 5, 7, 9, ...

are other simple examples of sequences that continue forever. The symbol ...
(called an “ellipsis”) represents this infinite continuation. Such a sequence
is called an infinite sequence. In this book most of our sequences will be
infinite and so from now on when we speak of sequences we will mean infinite
sequences. If we want to discuss some particular finite sequence we will
specify that it is finite.

Since we will want to discuss general sequences in this course it is neces-
sary to develop some notation to represent sequences without writing down
each term explicitly. The fairly concrete notation for representing a general
infinite sequence is the following:

a1, a2, a3, ...

where a1 represents the first number in the sequence, a2 the second number,
and a3 the third number, etc. If we wish to discuss an entry in this sequence
without specifying exactly which entry, we write ai or aj or some similar
term.

To represent a finite sequence that ends at, say, the 29th entry we would
write

a1, a2, ..., a29.
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Here the ellipsis indicates that there are several intermediate entries in the
sequence which we don’t care to write out explicitly. We may also at times
need to represent a series that is finite but of some undetermined length; in
this case we will write

a1, a2, ..., aN

where N represents the fixed, but not explicitly specified length.
A slightly more sophisticated way of representing the abstract sequence

a1, a2, ... is with the notation:
{ai}∞i=1.

The finite sequence a1, a2, ..., aN is similarly represented by:

{ai}Ni=1.

Since in this text we study mostly infinite sequences, we will often ab-
breviate {ai}∞i=1 with simply {ai}. Although this looks like set notation you
should be careful not to confuse a sequence with the set whose elements are
the entries of the sequence. A set has no particular ordering of its elements
but a sequence certainly does. For instance, the sequence 1, 1, 1, 1, ... has
infinitely many terms, yet the set made of these terms has only one element.

When specifying any particular sequence, it is necessary to give some
description of each of its terms. This can be done in various ways. For a
(short) finite sequence, one can simply list the terms in order. For example,
the sequence 3, 1, 4, 1, 5, 9 has six terms which are easily listed. On the other
hand, these are the first six terms of the decimal expansion of π, so this
sequence can be extended to an infinite sequence, 3, 1, 4, 1, 5, 9, ..., where it
is understood from the context that we continue this sequence by computing
further terms in the decimal expansion of π. Here are a few other examples
of infinite sequences which can be inferred by listing the first few terms:

1, 2, 3, 4, ...

2, 4, 6, 8, ...

5, 10, 15, 20, ...

1, 1, 2, 3, 5, 8, 13, ...

Well maybe it is not so obvious how to extend this last sequence unless
you are familiar with the Fibonacci sequence discussed in Example 1.1.5.
This last example demonstrates the drawback of determining a sequence by
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inference, it leaves it to the reader to discover what method you used to
determine the next term.

A better method of describing a sequence is to state how to determine the
nth term with an explicit formula . For example, the sequence 1, 2, 3, 4, ... is
easily specified by saying an = n. Formulas for the second and third sequence
above can be specified with the formulas an = 2n and an = 5n respectively.
An explicit formula for the nth term of the Fibonacci sequence, or the nth

term in the decimal expansion of π is not so easy to find. In exercise 1.2.20
we will find an explicit formula for the Fibonacci sequence, but there is no
such explicit formula for the nth term in the decimal expansion of π.

Example 1.1.6. The nth term in a sequence is given by an = (n2 +n)/2.
The first five terms are 1, 3, 6, 10, 15.

Example 1.1.7. The nth term in the sequence {bn} is given by bn =
1− 1

n2 . The first six terms of this sequence are

0, 3/4, 8/9, 15/16, 24/25, 35/36.

A third way of describing a sequence is through a recursive formula. A
recursive formula describes the nth term of the sequence in terms of previous
terms in the sequence. The easiest form of a recursive formula is a description
of an in terms of an−1. Many of our earlier examples of numerical sequences
were described in this way.

Example 1.1.8. Let’s return to Example 1.1.3 above. Each 10 minutes,
Harry walks half of the remaining distance to the neighborhood. Let’s denote
the fraction of the total distance that Harry has travelled after n chunks of
ten minutes by an. So a1 = 1/2, a2 = 3/4, a3 = 7/8, etc. Then the fraction of
the total distance that remains to be travelled after n chunks of ten minutes
is 1− an. Since the distance travelled in the next ten minutes is half of this
remaining distance, we see that

an+1 = an +
1

2
(1− an) =

1

2
(1 + an).

Notice that this formula is not enough by itself to determine the sequence
{an}. We must also say how to start the sequence by supplying the informa-
tion that

a1 = 1/2.
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Now, with this additional information, we can use the formula to determine
further terms in the sequence:

a2 =
1

2
(1 + a1) =

1

2
(1 + 1/2) = 3/4

a3 =
1

2
(1 + a2) =

1

2
(1 + 3/4) = 7/8

a4 =
1

2
(1 + a3) =

1

2
(1 + 7/8) = 15/16,

etc.

Example 1.1.9. Let’s have another look at the Fibonacci sequence from
Example 1.1.5 above. Here the nth term is determined by two previous terms,
indeed

an+1 = an + an−1.

Now we can’t get started unless we know the first two steps in the sequence,
namely a1 and a2. Since we are told that a1 = 1 and a2 = 1 also, we can use
the recursion formula to determine

a3 = a2 + a1 = 1 + 1 = 2.

And now since we have both a2 and a3 we can determine

a4 = a3 + a2 = 2 + 1 = 3,

and similarly

a5 = a4 + a3 = 3 + 2 = 5,

a6 = a5 + a4 = 5 + 3 = 8,

a7 = a6 + a5 = 8 + 5 = 13,

and so on.

To conclude this section we mention two more families of examples of
sequences which often arise in mathematics, the arithmetic (the accent is on
the third syllable!) sequences and the geometric sequences.

An arithmetic sequence has the form a, a+b, a+2b, a+3b, ... where a and
b are some fixed numbers. An explicit formula for this arithmetic sequence
is given by an = a+ (n− 1)b, n ∈ Z+, a recursive formula is given by a1 = a
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and an = an−1+b for n > 1. Here are some examples of arithmetic sequences,
see if you can determine a and b in each case:

1, 2, 3, 4, 5, ...

2, 4, 6, 8, 10, ...

1, 4, 7, 10, 13, ...

The distinguishing feature of an arithmetic sequence is that each term is
the arithmetic mean of its neighbors, i.e., an = (an−1 +an+1)/2, (see exercise
13).

A geometric sequence has the form a, ar, ar2, ar3, ... for some fixed num-
bers a and r. An explicit formula for this geometric sequence is given by
an = arn−1, n ∈ N. A recursive formula is given by a1 = a and an = ran−1
for n > 1. Here are some examples of geometric sequences, see if you can
determine a and r in each case:

2, 2, 2, 2, 2...

2, 4, 8, 16, 32, ...

3, 3/2, 3/4, 3/8, 3/16, ...

3, 1, 1/3, 1/9, 1/27, ...

Geometric sequences (with positive terms) are distinguished by the fact
that the nth term is the geometric mean of its neighbors, i.e., an =

√
an+1an−1,

(see exercise 14).

Example 1.1.10. If a batch of homebrew beer is inoculated with yeast it
can be observed that the yeast population grows for the first several hours at
a rate which is proportional to the population at any given time. Thus, if we
let pn denote the yeast population measured after n hours have passed from
the inoculation, we see that there is some number α > 1 so that

pn+1 = αpn.

That is, pn forms a geometric sequence.
Actually, after a couple of days, the growth of the yeast population slows

dramatically so that the population tends to a steady state. A better model
for the dynamics of the population that reflects this behavior is

pn+1 = αpn − βp2n,
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where α and β are constants determined by the characteristics of the yeast.
This equation is known as the discrete logistic equation . Depending on the
values of α and β it can display surprisingly varied behavior for the population
sequence, pn. As an example, if we choose α = 1.2, β = .02 and p0 = 5, we
get

p1 = 5.5

p2 = 5.995

p3 = 6.475199500

p4 = 6.931675229

p5 = 7.357047845

p6 = 7.745934354

p7 = 8.095131245

p8 = 8.403534497

p9 = 8.671853559

p10 = 8.902203387.

Further down the road we get p20 = 9.865991756, p30 = 9.985393020, p40 =
9.998743171, and p100 = 9.999999993. Apparently the population is leveling
out at about 10. It is interesting to study the behavior of the sequence of pn’s
for other values of α and β (see exercise 15).

EXERCISES 1.1

1. a) How many sequences of six coin tosses have three heads and three
tails?

b) How many different sequences of six coin tosses are there altogether?

c) In a sequence of six coin tosses, what is the probability that the result
will consist of three heads and three tails?

2. (For students with some knowledge of combinatorics.) In a sequence of
2n coin tosses, what is the probability that the result will be exactly n
heads and n tails?

3. Let {an} be the sequence given explicitly by an = 2n− 1 for all n ∈ Z+.
Write out a1, a2, a3, a4, and a5. Describe this sequence in words.
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4. a) Let the sequence {an} be given recursively by

a1 = 1, an+1 =
3 + an

2
for all n ∈ Z+.

Write down the first five terms of the sequence.

b) Let the sequence {an} be given recursively by

a1 = 0, an+1 =
3 + an

2
for all n ∈ Z+.

Write down the first five terms of the sequence.

5. a) Let {an} be the sequence given explicitly by an = 1
2
(n2 − n) for all

n ∈ Z+. Find explicitly a1, a2, a5 and a10.

b) Show that an+1 = 1
2
(n2 + n) for all n ∈ N, and find a formula for

an+1 − an.

c) Conclude that

a1 = 0, an+1 = an + n for all n ∈ Z+

gives a recursive formula for an+1 in terms of an.

6. Let {an} be the sequence given explicitly by an = n2 for all n ∈ Z+. Use
the method developed in exercise 5 to find a recursive formula for an+1

in terms of an.

7. Let {an} be the sequence given explicitly by an = n(n+1)(2n+1)
6

for all
n ∈ Z+. Use the method developed in exercise 5 to find a recursive
formula for an+1 in terms of an.

8. a) Let {an} be the sequence of positive integers: an = n for all n ∈ Z+.
Define a new sequence {bn} by

bn = a2n−1 for all n ∈ Z+.

Write down explicitly b1, b2, b3, and b10. Give an explicit formula for bn.

b) Let {an} be the sequence of positive integers: an = n for all n ∈ Z+.
Define a new sequence {cn} by

cn = an2 ∀n ∈ Z+.

Write down explicitly c1, c2, c3, and c10. Give an explicit formula for cn.
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9. Let {an} be the sequence given explicitly by an = n2 for all n ∈ Z+.
Define a new sequence {bn} by

bn = a2n for all n ∈ Z+.

Write down explicitly b1, b2, b3, and b10. Give an explicit formula for bn.

10. Let {an} be the sequence given recursively by

a1 = 1, an+1 =
a2n + 2

2an
for all n ≥ 1.

Write out the first five terms of this sequence. First find them as fractions
and then, using a calculator, give five place decimal approximations to
them. Compare these numbers to the decimal expansion for

√
2.

11. (Thanks to Mo Hendon.) Joe is trying to sell his old car for $1000 and
Mo offers him $500. Joe says, “Ok, let’s split the difference, I’ll sell it to
you for $750.” But Mo says, “That is still too much, but I’ll offer to split
the difference now and pay you $625.” Joe and Mo continue to dicker
in this manner for a long time. Write down a recursive formula for the
nth offer in terms of the previous two offers. Do you think they can ever
settle on a price?

12. Little Jhonen1 is at home and decides he wants to go hang out at the
local pool hall. So he sets off toward the pool hall, but when he is
halfway there, he remembers that his mother told him not to go there
anymore and turns back towards home. When he is halfway from the
midpoint back to his home, he changes his mind once more and heads to
the pool hall. Continuing in this way, Jhonen changes his mind whenever
he has traversed half of the distance from his turning point to the new
destination. If D is the distance from Jhonen’s house to the pool hall,
what fractions of D are the distance from his house to the first four
turning points? What happens to Jhonen eventually?

13. a) Let an arithmetic sequence be given by the recursive formula

a1 = a, an = an−1 + b for all n ≥ 2.

1Changed from “Johnny” in the Pete L. Clark version. Cf. https://en.wikipedia.

org/wiki/Jhonen_Vasquez
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Show that an = (an+1 + an−1)/2 for all n ≥ 2.

b) Suppose that the arithmetic sequence is given by the explicit formula.
an = a+ (n− 1)b for all n ∈ Z+. Again, show that an = (an+1 + an−1)/2
for all n ≥ 2.

Comment on Proving Equalities:
When proving two quantities are equal, as in the above exercise, it is

usually best to begin with the expression on one side of the equality and
manipulate that expression with algebra until you arrive at the other
side of the original equality. Logically, it doesn’t matter which side you
start on, as long as you progress directly to the other side. The choice
is yours, but often you will find that one direction seems to be easier to
follow than the other. In fact, usually when you are figuring out how
to prove an equality you will start off playing with both sides until you
see what is going on, but in the end, the proof should not be written up

in that fashion. For example, in part a of the above exercise, you may
wish to start with the expression (an+1 + an−1)/2 and substitute for
the term an+1 the fact that an+1 = an + b. Then use the fact that
b+ an−1 = an to see that the original expression is equal to (an + an)/2.
To write this up formally, one might say:
Replacing n with n + 1 in the expression an = an−1 + b we see that
an+1 = an + b. Thus we see that (an+1 + an−1)/2 = (an + b + an−1)/2.
Furthermore, since an−1 + b = an, we can conclude that (an + b +
an−1)/2 = (an + an)/2 = an. Combining the first and last equalities
yields

(an+1 + an−1)/2 = (an + b+ an−1)/2 = (an + an)/2 = an.

14. a) Let a and r be positive real numbers and define a geometric sequence
by the recursive formula

a1 = a, an = ran−1 for all n ≥ 2.

Show that an =
√
an+1an−1 for all n ≥ 2.

b) Let a and r be positive real numbers define (again) a geometric se-
quence by the explicit formula an = arn−1 for all n ∈ Z+. Show that
(again) an =

√
an+1an−1 for all n ≥ 2.



12 CHAPTER 1. SEQUENCES

15. (Calculator needed) Find the first 20 terms of the sequences given by
pn+1 = αpn− βp2n where α, β, and p0 are given below. In each case write
a sentence or two describing what you think the long term behavior of
the population will be.

a) α = 2, β = 0.1, p0 = 5.

b) α = 2.8, β = 0.18, p0 = 5.

c) α = 3.2, β = 0.22, p0 = 5.

d) α = 3.8, β = 0.28, p0 = 5.

If you have MAPLE available you can explore this exercise by changing
the values of a and b in the following program:

[> restart:

[> a:=1.2; b:= 0.02;

[> f:=x->a*x - b*x^2;

[> p[0]:=5;

[> for j from 1 to 20 do p[j]:=f(p[j-1]); end do;

1.2 The sequence of positive integers

Added by PLC For my own take on mathematical induction, see
http://www.math.uga.edu/~pete/3200induction.pdf.

A very familiar and fundamental sequence is that of the positive integers,

a1 = 1, a2 = 2, . . . , an = n for all n ∈ Z+.

The nature of the existence of the natural numbers is a fairly tricky issue in
the foundations of mathematics which we won’t delve into here, but we do
want to discuss a defining property of the natural numbers that is extremely
useful in the study of sequences and series:

The Principle of Mathematical Induction
Let S be a subset of Z+ satisfying
(PMI1) 1 ∈ S, and
(PMI2) ∀n ∈ Z+, if n ∈ S, then n+ 1 ∈ S.
Then S = Z+.
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Example 1.2.1. a) Let S = {1, 2, 3, 4, 5}. Then S satisfies (PMI1)
but not (PMI2): 5 ∈ S but 6 /∈ S. b) Let S = {2, 3, 4, 5, ...}. Then S

satisfies (PM2) but not (PM1). c) Let S = {1, 3, 5, 7, ...}, the set of odd
natural numbers. Then S satisfies property (PMI1) but not (PMI2).

The Principle of Mathematical Induction (which we shall henceforth ab-
breviate by PMI) is not only an important defining property of the natural
numbers, it also gives a beautiful method of proving an infinite sequence of
statements. In the present context, we will see that we can use PMI to verify
explicit formulae for sequences which are given recursively.

Example 1.2.2. Consider the sequence given recursively by

a1 = 1, an+1 = an + (2n+ 1) for all n ∈ Z+.

The nth term, an, is the sum of the first n odd natural numbers. Writing out
the first 5 terms we see

a1 = 1,

a2 = a1 + 3 = 4,

a3 = a2 + 5 = 9,

a4 = a3 + 7 = 16,

a5 = a4 + 9 = 25.

Noticing a pattern here we might conjecture that, in general, an = n2. Here
is how we can use PMI to prove this conjecture:

Let S be the subset of natural numbers for which it is true that an = n2,
i.e.,

S = {n ∈ Z+ | an = n2}.

We know that a1 = 1, which is equal to 12, so 1 ∈ S. Thus S satisfies the
first requirement in PMI. Now, let k be some arbitrary element of S. Then,
by the description of S we know that k is some particular natural number
such that ak = k2. According to the definition of the sequence,

ak+1 = ak + (2k + 1),

so, since ak = k2, we can conclude that

ak+1 = k2 + (2k + 1).
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However, since k2 + (2k + 1) = (k + 1)2, we conclude that

ak+1 = (k + 1)2,

i.e., k+ 1 is an element of S as well. We have just shown that if k ∈ S then
k + 1 ∈ S, i.e., S satisfies the second requirement of PMI. Therefore we can
conclude that S = Z+, i.e., the explicit formula an = n2 is true for every
natural number n.

Remark: It is common to get confused at the last step and say ak+1 ∈ S
instead of k + 1 ∈ S. Remember: S is the set of subscripts for which the
statement is true.

Comments on the Subscript k:
In general, letters like i, j, k, l,m, and n are used to denote arbitrary or

unspecified natural numbers. In different contexts these letters can repre-
sent either an arbitrary natural number or a fixed but unspecified natural
number. These two concepts may seem almost the same, but their differ-
ence is an important issue when studying PMI. To illustrate this here we
are using two different letters to represent the different concepts. Where
the subscript n is used we are talking about an arbitrary natural number,
i.e., we are claiming that for this sequence, an = n2 for any natural number
you choose to select. On the other hand, the subscript k is used above to
denote a fixed but unspecified natural number, so we assume ak = k2 for
that particular k and use what we know about the sequence to prove that
the general formula holds for the next natural number, i.e., ak+1 = (k+ 1)2.

Example 1.2.3. Let {an} be the sequence defined recursively by an+1 =
an + (n+ 1), and a1 = 1. Thus an is the sum of the first n natural numbers.
Computing the first few terms, we see a1 = 1, a2 = 3, a3 = 6, a4 = 10, and
a5 = 15. Let’s now use PMI to prove that in general, an = n(n+1)

2
. (You

might want to check that this formula works in the above five cases.)

Let S be the set of natural numbers n so that it is true that an = n(n+1)
2

,
i.e.,

S = {n ∈ Z+ | an =
n(n+ 1)

2
}.

We wish to show that S = Z+ by means of PMI. First notice that 1 ∈ S since
a1 = 1 and 1(1+1)

2
= 1 also. That is, the formula is true when n = 1. Now

assume that we know that some particular natural number k is an element of
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S. Then, by the definition of S, we know that ak = k(k+1)
2

. From the recursive
definition of the sequence, we know that ak+1 = ak + (k + 1). Substituting in

ak = k(k+1)
2

, we get

ak+1 =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2k + 2

2

=
k2 + 3k + 2

2

=
(k + 1)((k + 1) + 1)

2
.

But this is the explicit formula we are trying to verify in the case that n =
k + 1. Thus we have proven that whenever k is a member of S then so is
k+ 1 a member of S. Therefore S satisfies the two requirements in PMI and
we conclude that S = Z+.

Comments on Set Notation:
Although the issue of defining the notion of a set is a fairly tricky subject,

in this text we will be concerned mostly with describing subsets of some
given set (such as the natural numbers Z+, or the real numbers R) which
we will accept as being given. Generally such subsets are described by
a condition, or a collection of conditions. For example, the even natural
numbers, let’s call them E, are described as the subset of natural numbers
which are divisible by 2. The notation used to describe this subset is as
follows:

E = {n ∈ Z+ | 2 divides n}.

There are four separate components to this notation. The brackets {, }
contain the set, the first entry (in this example n ∈ Z+) describes the set
from which we are taking a subset, the vertical line | separates the first
entry from the conditions (and is often read as “such that”), and the final
entry gives the conditions that describe the subset (if there is more than one
condition then they are simply all listed, with commas separating them). Of
course sometimes a set can be described by two different sets of conditions,
for instance an even natural number can also be described as twice another
natural number. Hence we have

E = {n ∈ Z+ | n = 2k for some k ∈ Z+}.
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There are times when one has to be a bit tricky in re-labeling indices to
apply PMI exactly as stated. Here is an example of this.

Example 1.2.4. Here we use induction to prove2 that n2 + 5 < n3 for
all n ≥ 3. If we start off as usual by letting

S = {n ∈ Z+ | n2 + 5 < n3}

we will be in big trouble since it is easy enough to see that 1 is not an element
of S. So it can’t possibly be true that S = Z+. A formal way of getting around
this problem is to shift the index in the inequality so that the statement to
prove begins at 1 instead of 3. To do this, let n = m + 2, so that m = 1
corresponds to n = 3 and then substitute this into the expression we want
to prove. That is, if we want to prove that n2 + 5 < n3 for all n ≥ 3, it is
equivalent to prove that (m + 2)2 + 5 < (m + 2)3 for all m ∈ Z+. Thus we
can now proceed with PMI by setting

S̃ = {m ∈ Z+ | (m+ 2)2 + 5 < (m+ 2)3},

and showing that properties 1.) and 2.) hold for S̃. Actually, this formality is
generally a pain in the neck. Instead of being so pedantic, we usually proceed
as follows with the original set S:
1′.) Show that 3 ∈ S.
2′.) Show that if k ∈ S then so is k + 1 ∈ S.
Then we can conclude that S = {n ∈ Z+ | n ≥ 3}. Of course, to do this we
are actually applying some variation of PMI but we won’t bother to state all
such variations formally.

To end this example, let’s see that 1′.) and 2′.) are actually true in this
case. First, it is easy to see that 3 ∈ S since 32 +5 = 14 while 33 = 27. Next,
let us assume that some particular k is in S. Then we know that k2 +5 < k3.
But

(k + 1)2 + 5 = (k2 + 2k + 1) + 5

= (k2 + 5) + (2k + 1)

< k3 + (2k + 1)

< k3 + (2k + 1) + (3k2 + k)

= k3 + 3k2 + 3k + 1

= (k + 1)3,

2See the end of section 1.3 for a review of the properties of inequalities.
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where the first inequality follows from the assumption that k2 + 5 < k3, and
the second inequality follows from the fact that 3k2 + k > 0 for k ∈ N.

For the next example we will need a more substantial variation on the
Principle of Mathematical Induction called the Principle of Complete Math-
ematical Induction (which we will abbreviate PCMI).

The Principle of Complete Mathematical Induction
Let S be a subset of Z+, satisfying
(PCI1) 1 ∈ S, and
(PCI2) if 1, 2, 3, ..., n are all elements of S, then n+ 1 is an element of S.
Then S = Z+.

Example 1.2.5. Let {an} be the sequence given by the two-term recursion
formula an+1 = 2an − an−1 + 2 for n > 1 and a1 = 3 and a2 = 6. Listing the
first seven terms of this sequence, we get 3, 6, 11, 18, 27, 38, 51, ... Perhaps a
pattern is becoming evident at this point. It seems that the nth term in the
sequence is given by the explicit formula an = n2 + 2. Let’s use PCMI to
prove that this is the case. Let S be the subset of natural numbers n such
that it is true that an = n2 + 2, i.e.,

S = {n ∈ Z+| an = n2 + 2}.

We know that 1 ∈ S since we are given a1 = 3 and it is easy to check that
3 = 12+2. Now assume that we know 1, 2, 3, ..., k are all elements of S. Now,
as long as k > 1 we know that ak+1 = 2ak− ak−1 + 2. Since we are assuming
that k and k− 1 are in S, we can write ak = k2 + 2 and ak−1 = (k− 1)2 + 2.
Substituting these into the expression for ak+1 we get

ak+1 = 2(k2 + 2)− [(k − 1)2 + 2] + 2

= 2k2 + 4− (k2 − 2k + 3) + 2

= k2 + 2k + 3 (1.1)

= (k + 1)2 + 2.

Thus k + 1 ∈ S as well. We aren’t quite done yet! The last argument only
works when k > 1. What about the case that k = 1? If we know that 1 ∈ S
can we conclude that 2 ∈ S? Well, not directly, but we can check that 2 ∈ S
anyway. After all, we are given that a2 = 6 and it is easy to check that
6 = 22 + 2. Notice that if we had given a different value for a2, then the
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entire sequence changes from there on out so the explicit formula would no
longer be correct. However, if you aren’t careful about the subtlety at k = 1,
you might think that you could prove the formula by induction no matter what
is the value of a2!

Remark:
Although hypotheses 2.) of PMI and PCMI are quite different, it turns

out that these two principles are logically equivalent: Assuming that the
natural numbers satisfy PMI one can prove that they also must satisfy PCMI,
and vice versa, if we assume PCMI we can prove PMI. We’ll outline a proof
of this equivalence in exercise 23.

Example 1.2.6. Let {an}∞n=1 be a sequence, and define a sequence {Sn}∞n=1

recursively by

S1 = a1, Sn+1 = Sn + an+1 for all n ∈ Z+.

Then we have
Sn = a1 + . . .+ an for all n ∈ Z+.

This is an easy induction proof: indeed S1 = a1. For n ∈ Z+, suppose that
Sn = a1 + . . .+ an. Then

Sn+1 = Sn + an+1 = (a1 + . . .+ an) + an+1 = a1 + . . .+ an+1.

Now we push our luck a bit: we can view the process of passing from a
sequence {an} to the sequence {Sn = a1 + . . . + an} as an operation on
real sequences, the summation operator Σ. Now consider the (backward)
difference operator ∆: for a sequence {an}, we associate the sequence

∆{an} = (a1, a2 − a1, a3 − a2, . . . , an − an−1, . . .).

The point is that Σ and ∆ are inverses of each other. Namely, for any
sequence {an}, we have

Σ∆{an} = Σ(a1, a2 − a1, a3 − a2, . . .)

= (a1, a1+(a2−a1), a1+(a2−a1)+(a3−a2), . . . , a1+(a2−a1)+(a3−a2)+. . .+(an−an−1), . . .)
= (a1, a2, a3, . . .) = {an},

and
∆Σ{an} = ∆(a1, a1 + a2, a1 + a2 + a3, . . .) =
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(a1, (a1 + a2)− a1, (a1 + a2 + a3)− (a1 + a2), . . .) = (a1, a2, a3, . . .) = {an}.
Okay, but what’s the point? It’s this: often we use induction to show

formulas of the type

a1 + . . .+ an = bn for all n ∈ Z+.

In our notation, we want to show

Σ{an} = {bn}. (1.2)

Because of what we just said, the summation identity (1.2) is equivalent to
the differencing identity

{an} = ∆{bn}. (1.3)

Indeed, applying ∆ to both sides of (1.2) gives

{an} = ∆Σ{an} = ∆{bn},

and applying Σ to both sides of (1.3) gives

Σ{an} = Σ∆{bn} = {bn}.

In plainer terms, in order to prove that a1 + . . .+ an = bn for all n ∈ Z+, it
suffices to check that

b1 = a1 and ∀n ≥ 2, bn − bn−1 = an.

This is the actual algebraic calculation that underlies an induction proof.
For instance, to show

1 + 3 + . . .+ (2n− 1) = n2,

what we really need to check is that

12 = 1 and ∀n ≥ 2, n2 − (n− 1)2 = n2 − (n2 − 2n+ 1) = 2n− 1.

Thus in the problem of finding a closed form expression for Σ{an}, the hard
part is actually finding the sequence {bn}. Just checking that a claimed {bn}
works is a completely mechanical “differencing” calculation. This is the dis-
crete analogue of a situation familiar from calculus: finding an antiderivative
of a function f : R → R is usually hard, but checking that a claimed F (x)
works is a completely mechanical differentiation calculation.
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EXERCISES 1.2

1. Let {an} be the sequence given recursively by

a1 = 1, an+1 = an + (n+ 1)2 for all n ≥ 1.

(So by Example 1.2.6, we have an = 12 + . . .+ n2.) Use PMI to show

∀n ∈ Z+, an =
n(n+ 1)(2n+ 1)

6
.

2. a) Let {an} be the sequence given recursively by

a1 = 1, an+1 = an + (n+ 1)3 for all n ≥ 1.

(So by Example 1.2.6, we have an = 13 + . . .+ n3.) Use PMI to show

∀n ∈ Z+, an =

(
n(n+ 1)

2

)2

.

b) Combine the result from part a) with the result in Example 1.2.3 to
prove the remarkable fact that

∀n ∈ Z+, (1 + 2 + 3 + ...+ n)2 = 13 + 23 + 33 + ...+ n3.

3. Let {an} be the sequence given recursively by

a1 = 2, an+1 = an + 2n+ 2 for all n ≥ 1.

Find a formula for an and use induction to prove it.

4. Let {an} be the sequence given recursively by

a1 = 5, an+1 = an + 2n+ 3 for all n ≥ 1.

Find a formula for an and use induction to prove it.

5. Let {an} be the sequence given recursively by

a1 = 1, an+1 = an + 2n for all n ≥ 1.

Use induction to show that an = 2n − 1 for all n ∈ Z+.

In mathematics the word “show” is used synonymously with “prove”.
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6. Let {an} be the sequence given recursively by

a1 = 1, an+1 = an + 3n for all n ≥ 1.

Use induction to show that an = 3n−1
2

for all n ∈ Z+.

7. a) Let r ∈ R \ {1}, and let {an} be the sequence given recursively by

a1 = 1, an+1 = an + rn for all n ≥ 1.

Use induction to show that an = rn−1
r−1 for all n ∈ Z+.

b) What happens when r = 1?

8. Let c, r, a0 ∈ R. Define the sequence {an} recursively by

an+1 = c+ ran for all n ∈ N.

Use induction to show that

an =

(
rn − 1

r − 1

)
c+ rna0 for all n ∈ N.

9. Let r be a real number with 0 < r < 1. Prove by induction that 0 <
rn < 1 for every n ∈ Z+.
(You may use: if 0 < a < 1 and 0 < b < 1, then 0 < ab < 1. See §1.3.)

10. Let {an} be the sequence given recursively by

a1 =
1

2
, an+1 = an +

1

(n+ 1)(n+ 2)
for all n ≥ 1.

Show by induction that

an =
n

n+ 1
for all n ≥ 1.

11. Prove by induction that 2n+ 1 ≤ 3n2 for all n ∈ Z+.

12. Prove by induction that 2n2 − 1 ≤ n3 for all n ∈ Z+.
(Hint: You may need the result in problem 11.)
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13. a) Prove by induction that 2n < n! for all n ≥ 4.

b) Use induction to prove that
2n

n!
<

1

n
for n ≥ 5.

14. Let {an} be the sequence defined recursively by

a1 = 2, an+1 =
2an + 1

an + 2
for all n ≥ 1.

Prove by induction that an ≥ 1 for all n ∈ Z+. (Hint: Look at an+1−1.)

15. Let {an} be the sequence defined recursively by a1 = 3, and an+1 =
3an + 4

an + 3
, for n ≥ 1. Prove by induction that an ≥ 2 for all n ∈ Z+.

16. Prove by induction: for all n ∈ N, a set with n elements has 2n subsets.

17. Let {an} be the sequence given recursively by a1 = 1, a2 = 8, and an+1 =
2an − an−1 + 6n for n ≥ 2. Using complete induction show that an = n3

for all n ≥ 1.

18. Let {an} be the sequence given recursively by a1 = 1, a2 = 4, a3 = 9, and
an+1 = 3an− 3an−1 + an−2 for all n ≥ 3. Using complete induction show
that an = n2 for all n ≥ 1.

19. What is wrong with the following argument?

Old MacDonald claims that all cows have the same color. First of all,
if you have just one cow, it certainly has the same color as itself. Now,
using PMI, assume that all the cows in any collection of k cows have the
same color and look at a collection of k + 1 cows. Removing one cow
from that collection leaves a collection of k cows, which must therefore
all have the same color. Putting back the removed cow, and removing a
different cow leaves another collection of k cows which all have the same
color. Certainly then, the original collection of k + 1 cows must all have
the same color. By PMI, all of the cows in any finite collection of cows
have the same color.

20. Let {an} be the Fibonacci sequence given recursively by a1 = 1, a2 = 1,
and an+1 = an+an−1 for all n ≥ 2. (See Example 1.1.5.) Using complete
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induction show that

an =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
for all n ∈ Z+.

21. (On arithmetic sequences.)

a) Suppose that a sequence is given recursively by a1 = a and an =
an−1 + b for n > 1, where a and b are fixed real numbers. Prove that
an = a+ (n− 1)b for all n ≥ 1.

b) Suppose that the sequence {an} satisfies an = (an+1 + an−1)/2 for
all n ≥ 2. Prove that there is a b ∈ R so that an = an−1 + b for
all n ≥ 2. (Hint: Use the expression an = (an+1 + an−1)/2 to show
that an+1 − an = an − an−1 for n > 1 then use induction to show that
an − an−1 = a2 − a1 for all n ≥ 2.)

22. (On geometric sequences.)

a) Suppose that a sequence is given recursively by a1 = a and an = ran−1
for all n ≥ 2. Prove that an = arn−1 for all n ∈ Z+.

b) Suppose that the sequence {an} satisfies an =
√
an+1an−1 for all n ≥

2. Prove that there is an r ∈ R so that an = ran−1 for all n ≥ 2.
(Hint: Start with the case that an 6= 0 for all n, and use the expression
an =

√
an+1an−1 to show that an+1/an = an/an−1 for all n ≥ 2 then use

induction to show that an/an−1 = a2/a1 for all n ≥ 2. Don’t forget to
separately deal with the case that some an is zero.)

23. In this exercise we outline the proof of the equivalence of PMI and PCMI.

a) First we assume that the natural numbers satisfy PCMI and we take
a subset T ⊂ Z+ which satisfies hypotheses 1.) and 2.) of PMI, i.e., we
know:

1.) 1 ∈ T
and that

2.) if n ∈ T then n+ 1 ∈ T .

Show directly that T also satisfies the hypotheses of PCMI, hence by our
assumption we conclude that T = Z+.
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b) This direction is a little trickier. Assume that the natural numbers
satisfy PMI and take T ⊂ Z+ which satisfies hypotheses 1.) and 2.)
of PCMI. Now define S to be the subset of Z+ given by S = {n ∈
T | 1, 2, ..., n ∈ T}. Prove by PMI that S = Z+.

1.3 Sequences as functions

Let X be a set. Earlier we discussed the notion of an infinite sequence {an}
informally as an infinite ordered list a1, a2, . . . of elements of X. We can now
give a formal definition: a sequence is precisely a function

a( ) : Z+ → X.

Namely, we map the positive integer n to the element an of X.

Remark: If a sequence is given by an explicit formula, then that formula
gives an explicit formula for the corresponding function. But just as se-
quences may be defined in non-explicit ways, so too can functions. For
instance, the consecutive digits in the decimal expansion of π define a se-
quence and therefore a corresponding function, f : Z+ → R, yet we know of
no simple explicit formula for f(n).

Thinking of sequences in terms of their corresponding functions gives us
an important method of visualizing sequences, namely by their graphs. Since
the natural numbers Z+ are a subset of the real numbers R we can graph
a function f : Z+ → R in the plane R2 but the graph will consist of only
isolated points whose x-coordinates are natural numbers.

The interpretation of sequences as functions leads to some of the following
nomenclature.

Definition 1.3.1. The real sequence {an} is said to be:
i.) increasing if an+1 ≥ an for all n ∈ Z+

ii.) strictly increasing if an+1 > an for all n ∈ Z+,
iii.) decreasing if an+1 ≤ an for all n ∈ Z+

iv.) strictly decreasing if an+1 < an for all n ∈ Z+.
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Proposition 1.3.2. Let {an} be a real sequence.
a) If there is C ∈ R such that an = C for all n ∈ Z+, then {an} is both
increasing and decreasing.
b) If a real sequence {an} is both increasing and decreasing, then we have
an = a1 for all n ∈ Z+.

Proof. a) Let n ∈ Z+. Then an+1 = C = an. Thus an ≤ an+1 and also
an ≥ an+1.
b) We proceed by contradiction using the Well-Ordering Principle: if it is
not true that an = a1 for all n ∈ Z+, then the set {n ≥ 2 | an 6= a1} has
a least element, say N . Thus a1 = a2 = . . . = aN−1 and aN−1 6= aN . So
either aN−1 < aN – in which case the sequence {an} fails to be decreasing –
or aN−1 > aN – in which case the sequence {an} fails to be increasing.

Remark:

1.) It is important to notice that in these definitions the condition must
hold for all n ∈ Z+. So if a sequence sometimes strictly increases and some-
times strictly decreases, then it is neither increasing nor decreasing.

2.) For the rest of this text we will be making extensive use of inequalities
and absolute values. For this reason we have included the basic properties of
these at the end of this section. Now might be a good time to review those
properties.

Example 1.3.3. a) The sequence given by an = n2 is strictly increasing
since (n+ 1)2 = n2 + 2n+ 1 > n2 for all n > 0.

b) The sequence given by an = 0 for all n is both increasing and decreasing
but it is not strictly increasing nor strictly decreasing.

c) A strictly increasing sequence is, of course, increasing, but it is not
decreasing.

d) The sequence given by an = 3 + (−1)n/n is neither increasing nor
decreasing.

Example 1.3.4. Consider the sequence given recursively by

an+1 =
4an + 3

an + 2

with a1 = 4. We claim that this sequence is decreasing. To check this we will
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show that an+1 − an is negative. Now

an+1 − an =
4an + 3

an + 2
− an

=
4an + 3

an + 2
− a2n + 2an

an + 2

=
2an + 3− a2n

an + 2

=
−(an − 3)(an + 1)

an + 2

so an+1−an is negative as long as an is greater than 3. But an easy induction
argument shows that an > 3 for all n since

ak+1 − 3 =
4ak + 3

ak + 2
− 3

=
4ak + 3

ak + 2
− 3ak + 6

ak + 2

=
ak − 3

ak + 2

which is positive as long as ak > 3.

Comment on Inequalities
In the above proof we have twice used the fact that when trying to prove

that a > b it is often easier to prove that a− b > 0.

Definition 1.3.5. A real sequence {an} is monotone if it is either in-
creasing or decreasing.

The following equivalent condition for an increasing sequence is often
useful when studying properties of such sequences. Of course there are sim-
ilar equivalent conditions for decreasing sequences and strictly increasing or
decreasing sequences.

Proposition 1.3.6. A real sequence, {an}, is increasing if and only if
am ≤ an for all natural numbers m and n with m ≤ n.

Proof: There are two implications to prove here. First we prove that if the
sequence {an} satisfies the condition that am ≥ an whenever m ≥ n then
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that sequence must be increasing. But this is easy, since if am ≤ an whenever
m ≤ n, then in particular we know that an+1 ≤ an for all n ∈ Z+, i.e., the
sequence is increasing.

Next we must prove that if the sequence {an} is known to be increasing
then it must satisfy the condition am ≥ an whenever m ≥ n. Certainly if
m = n then am = an, so we may assume m < n. One idea which works is to
view the passage from m to n as a “step of length n−m” and break it down
into “n−m steps of length 1”. Doing so, we get

an − am = (an − an−1) + (an−1 − an−2) + . . .+ (am+1 − am).

Since {an} is increasing, each of the n −m terms on the right hand side is
non-negative, so their sum is non-negative: an − am ≥ 0, and thus am ≤ an.

�

The next property of sequences we wish to discuss is boundedness. In fact
boundedness is an attribute of a subset, not a sequence, so we begin with a
slight digression about this. For a function f : X → Y , we define the image

f(X) = {f(x) | x ∈ X}.

This is precisely the subset of Y consisting of points which are actually
mapped to by some element of X. (Alternate terminology: the range.)

Since a real sequence {an} is really a function a( ) : Z+ → R, it too has
an image, namely {an | n ∈ Z+}. We must admit that the terminology here
is highly nonstandardized: for what we call the image of a sequence, some
call the range, the trace, or the term set. (And many people do not call it
anything.) It is important to understand that some information is lost in the
passage from a sequence to its image. In the case where the function n 7→ an
is injective – i.e., we have am 6= anfor all m 6= n – then what is missing is
precisely the ordering of the terms: e.g. the sequences

1, 2, 3, 4, 5, 6, 7, . . .

and
4, 3, 2, 1, 5, 6, 7, . . .

are not the same, but each has Z+ as its image. For sequences with repeated
terms, the difference between the sequence and the image can be more drastic:
e.g. the image of the sequence

1,−1, 1,−1, 1, . . .
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is the finite set {1,−1}.

Some properties of a sequence depend only on its image. Here is one:

A subset X ⊂ R is bounded above if there is M ∈ R such that x ≤ M
for all x ∈ X. We say that M is an upper bound for X. Similarly, X ⊂ R
is bounded below if there is an m ∈ R such that m ≤ x for all x ∈ X. We
say that m is a lower bound for X. We say that X ⊂ R is bounded if it
is bounded above and below. Equivalently, there are real numbers m ≤ M
such that X is contained in the interval [m,M ].

Proposition 1.3.7. Let X ⊂ R be a finite subset. Then X is bounded.

Proof. We begin by addressing the question “What is a finite set?” We
endorse the Kroneckerian approach that the integers Z are given to us, and
it is our job to define everything else in terms of them. So we define

[0] = ∅

and for n ∈ Z+,
[n] = {1, . . . , n}.

Then a finite set is a set X which can be placed in bijection with [n] for some
n ∈ N. When n = 0, this is a fancy way of saying X = ∅. Otherwise, we
mean that there is a function ι : [n] → X such that every x ∈ X is of the
form ι(i) for exactly one i ∈ [n]. In perhaps plainer terms, we mean that we
can list all the elements of X as x1, . . . , xn, without repetitions.

In light of all this, we see that what we want to show can be restated
as: for all n ∈ N, a subset X ⊂ R is bounded. The empty set is bounded
above and below by, say, 0, so no worries there. If X = {x1, . . . , xn}, then
the evident bound is M = max1≤i≤n |xi|.

However, if you reflect on the above for a while, you may feel that we
have just kicked the can a litle down the road: how do we know that any
finite, nonempty set of real numbers has a maximum? We can prove this by
induction on n, starting at n = 1. The base case is clear: the largest element
of {x} is x. Now we do the induction step: let n ∈ Z+, suppose that every
n element subset of R has a maximum, and let X = {x1, . . . , xn, xn+1} be
an n+ 1-element subset. By induction, the set {x1, . . . , xn} has a maximum,
call it Mn. This means precisely that Mn ≥ xi for all i and that Mn = xi for
some i. If Mn ≥ xn+1 then Mn is the maximum for X. If Mn < xn+1, then
xi < xn+1 for all 1 ≤ i ≤ n and thus the maximum for X is xn+1.
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Comments on maxima: An element M of a subset S ⊂ R is called a
maximal element of S (or a maximum of S) if s ≤ M for all s ∈ S. Thus,
in the above proof, with S = {|a1|, |a2|, ..., |aN1 |, |L| + 1}, we can conclude
that each of the elements, |a1|, |a2|, ..., |aN1|, |L| + 1 is less than or equal to
the maximum, M . The subtlety is that not every set has a maximal element.
Indeed, any set that is not bounded above (for example Z+) will have no
maximal element. But even sets which are bounded above may not have a
maximal element. For example, the set {1−1/n | n ∈ Z+} is bounded above
by 1, but has no maximal element.

Let X be any set, and let f : X → R be a function. We say that f is
bounded above / bounded below / bounded if its image f(X) is bounded
above / bounded below / bounded. Explicitly, f is bounded if there are real
numbers m ≤ M such that m ≤ f(x) ≤ M for all x ∈ X. Since a real
sequence is a function a( ) : Z+ → R, this definition applies in particular to
sequences. Since it is so important, we again spell it out: a real sequence {an}
is bounded above if there exists M ∈ R such that an ≤ M for all n ∈ Z+; a
real sequence is bounded below if there exists m ∈ R such that m ≤ an for
all n ∈ Z+; and a real sequence is bounded if it is bounded above and below:
equivalently, there are real numbers m ≤ M such that an ∈ [m,M ] for all
n ∈ Z+.

Example 1.3.8. The set Z+ is not bounded above. This is not at all
surprising: it means precisely that there is no M ∈ R such that n ≤ M for
all n ∈ Z+. Though our understanding of R may be a bit vague and primitive,
it is not so vague that this is not clear: indeed, if we represent a real number
M by a decimal expansion

M = a0.a1a2 . . . an . . .

then M is no larger than the next integer a0 + 1 and thus M < a0 + 2.
Here is something that you may find much more surprising: the assertion

that Z+ is not bounded above in R is a very famous and important one, called
the Archimedean3 Property of the real numbers. The Archimedean Property
is certainly useful: we will use it starting in §1.4. But why are we making
such a big deal about it? We have to become a bit more interested in what
the real numbers actually are in order to appreciate this, so: more later!

3After Archimedes of Syracuse, c. 287BC - c. 212BC, the greatest mathematician of
the ancient world
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Example 1.3.9. a) The sequence given by an = n2, n ∈ Z+, is bounded
below by 0 but it is not bounded above. Thus {an} is not bounded.

b) The sequence given by an = −n, n ∈ Z+, is bounded above by 0 but it
is not bounded below. Thus {an} is not bounded.

c) The sequence given by an = 1
n
, n ∈ Z+, is bounded below by 0 and

bounded above by 1. Thus {an} is bounded.
d) The sequence given by an = cos(n), n ∈ Z+, is bounded below by −1

and bounded above by 1. Thus {an} is bounded.

Proposition 1.3.10. If the sequence {an} is bounded, then there is a real
number B > 0 such that −B ≤ an ≤ B for all n ∈ Z+.

Proof. Let M be an upper bound and m a lower bound for the bounded
sequence {an}. Let B be the maximum of the two numbers |m| and |M |.
Then since −|m| ≤ m and M ≤ |M |, for all n ∈ Z+ we have

−B ≤ −|m| ≤ m ≤ an ≤M ≤ |M | ≤ B.

Given two real valued functions we can add or multiply them by adding
or multiplying their values. In particular, if we have f : Z+ → R and
g : Z+ → R, we define two new functions, (f + g) and fg by

(f + g)(n) = f(n) + g(n)

and
fg(n) = f(n)g(n).

If we use f and g to define sequences {an} and {bn}, i.e., an = f(n) and
bn = g(n), then the sequence given by (f +g) has terms given by an+ bn and
the sequence given by fg has terms given by anbn. These two new sequences
are called the sum and product of the original sequences.

In general, one can also compose two functions as long as the set of
values of the first function is contained in the domain of the second function.
Namely, if g : A → B and f : B → C, then we can define f ◦ g : A → C by
f ◦ g(a) = f(g(a)) for each a ∈ A. Notice that g(a) ∈ B so f(g(a)) makes
sense. To apply the notion of composition to sequences we need to remark
that the corresponding functions always have the domain given by Z+. Thus,
if we wish to compose these functions then the first one must take its values
in Z+, i.e., the first sequence must be a sequence of natural numbers. In the
next few sections we will be particularly interested in the case that the first
sequence is a strictly increasing sequence of natural numbers, in this case we
call the composition a subsequence of the second sequence.
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Definition 1.3.11. Let {an} be the sequence defined by the function f :
Z+ → R and let g : Z+ → Z+ be a strictly increasing function (with values
in Z+). Then the sequence {bn} defined by the function f ◦ g : Z+ → R, i.e.,
bn = f(g(n)), is called a subsequence of the sequence {an}.

Example 1.3.12. The sequence given by bn = (2n+ 1)2 is a subsequence
of the sequence given by an = n2. If we let f : Z+ → R be given by f(n) = n2

and g : Z+ → Z+ be given by g(n) = 2n+ 1, then the function corresponding
to bn is given by f ◦ g since f ◦ g(n) = (2n+ 1)2.

A good way to think about subsequences is the following. First list the
elements of your original sequence in order:

a1, a2, a3, a4, a5, ....

The first element, b1, of a subsequence can by any ane of the above list, but
the next element, b2, must lie to the right of b1 in this list. Similarly, b3 must
lie to right of b2 in the list, b4 must lie to the right of b3, and so on. Of course,
each of the bj’s must be taken from the original list of an’s. Thus we can line
up the bj’s under the corresponding an’s:

a1, a2, a3, a4, a5, a6, a7, a8, a9, ....

b1 b2 b3

A useful result which helps us review some of the above definitions is the
following.

Proposition 1.3.13. Any subsequence of an increasing real sequence is
increasing.

Proof. Let {an}∞n=1 be an increasing real sequence, let nk : Z+ → Z+ be an
increasing function, and consider the subsequence

{ank} : k 7→ ank .

Let k1 ≤ k2. Since {nk} is increasing we have nk1 ≤ nk2 . Since {an} is
increasing, we have ank1 ≤ ank2 .

Remark 1.3.14. There is a more general moral here, for those who are so
inclined. If (X,≤) and (Y,≤) are sets equipped with a total ordering ≤, we
can define a function f : X → Y to be increasing if applying f preserves
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the order relation: that is, for all x1 ≤ x2 in X, we have f(x1) ≤ f(x2) in
Y . Then it is absolutely immediate that if we have three totally ordered sets
(X,≤), (Y,≤), (Z,≤) and functions f : X → Y and g : Y → Z, then if f and
g are increasing, so is the composite function g ◦ f . Indeed, if x1 ≤ x2 ∈ X,
then since f is increasing, we have f(x1) ≤ f(x2), and since g is increasing,
we have (g ◦ f)(x1) = g(f(x1)) ≤ g(f(x2)) = (g ◦ f)(x2). Proposition 1.3.13
is a special case of this.

Lemma 1.3.15. (Rising Sun [NP88]) Each infinite sequence has a monotone
subsequence.

Proof. Let us say that m ∈ Z+ is a peak of the sequence {an} if for all
n > m, we have an < am. Suppose first that there are infinitely many peaks.
Then the sequence of peaks forms a strictly decreasing subsequence, hence
we have found a monotone subsequence. So suppose on the contrary that
there are only finitely many peaks, and let N ∈ N be such that there are
no peaks n ≥ N . Since n1 = N is not a peak, there exists n2 > n1 with
an2 ≥ an1 . Similarly, since n2 is not a peak, there exists n3 > n2 with
an3 ≥ an2 . Continuing in this way we construct an infinite (not necessarily
strictly) increasing subsequence an1 , an2 , . . . , ank , . . .. Done!

Before ending this section, we mention that there is another way of vi-
sualizing a sequence. Essentially this amounts to depicting the set of values
of the corresponding function. However, if we merely show the set of values,
then we have suppressed a great deal of the information in the sequence,
namely, the ordering of the points. As a compromise, to retain this informa-
tion one often indicates the ordering of the points by labeling a few of them.
Of course, just as with a graph, any such picture will only show finitely many
of the points from the sequence, but still it may give some understanding of
the long term behavior of the sequence.

Example 1.3.16. Consider the sequence given by an = 1/n for all n ∈
Z+. A graph of the first five terms of this sequence was given in figure 1.3.1.
The first five values of this sequence are given by the projection of this graph
to the y-axis as in figure 1.3.2.
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  figure 1.3.2

Actually, it is customary to rotate this picture to the horizontal as in
figure 1.3.3.

0 0.2 0.4 0.6 0.8 1.0

figure 1.3.3

To give an even better indication of the full sequence, we label these first
five points and then indicate the location of a few more points as in figure
1.3.4.

0 0.4 0.8 1.00.60.2

aaaa a 12345

     figure 1.3.4
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Review of the Properties of Inequalities and Absolute Values

In the next section we will be working extensively with inequalities and
absolute values so here recall some of the basic properties of these.

Properties of Inequalities
Let x, y, and z be real numbers. Then the following are true:

i.) if x < y and y < z, then x < z
ii.) if x < y, then x+ z < y + z
iii.) if x < y and z > 0, then xz < yz
iv.) if x < y and z < 0, then xz > yz
v.) if 0 < x < y then 0 < 1

y
< 1

x
.

It is also useful to recall that if x is a real number then exactly one of
the following is true: either x > 0, or x < 0, or x = 0. This is called the
property of trichotomy.

If x is a real number, we define the absolute value of x, |x| by

|x| =


x, if x > 0

−x, if x < 0

0, if x = 0

Properties of Absolute Values
Let x, y ∈ R, then

a) |xy| = |x||y|
b) −|x| ≤ x ≤ |x|
c) |x| ≤ y if and only if −y ≤ x ≤ y
d) |x+ y| ≤ |x|+ |y|.

Property d) is called the triangle inequality .
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EXERCISES 1.3

1. From the properties of inequalities prove that4 if a > b > 0, then a2 > b2.

2. From the properties of inequalities prove that if a > 0, b > 0 and a2 > b2,
then a > b.

3. For the following statements, either prove using the properties of inequal-
ities, or provide a counterexample:

a) If a < b and c < d, then ac < bd.

b) If a < b and 0 < c < d, then ac < bd.

c) If 0 < a < b and 0 < c < d, then ac < bd.

d) If 0 < a < b and c < d < 0, then ac < bd.

4. For the following statements, either prove using the properties of inequal-
ities, or provide a counterexample:

a) If a < b and c < d, then a/c < b/d.

b) If a < b and c > d, then a/c < b/d.

c) If a < b and c > d > 0, then a/c < b/d.

d) If 0 < a < b and c > d > 0, then a/c < b/d.

5. From the properties of inequalities prove that if a < b < 0, then 1/b <
1/a.

6. a) Using the definition of the absolute value, show that if ε > 0 and
|a| < ε, then −ε < a and a < ε.
(This is written more compactly as −ε < a < ε.)

b) Using the definition of the absolute value, show that if ε > 0 and
|a − b| < ε, then b − ε < a and a < b + ε. (Or more compactly, b − ε <
a < b+ ε.)

7. From the properties of absolute values prove that ||a| − |b|| ≤ |a− b| for
all a, b ∈ R.

4In this exercise set, unless otherwise specified a, b, c, d denote arbitrary real numbers.
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8. Which of the following sequences are increasing, strictly increasing, de-
creasing, strictly decreasing, or none of the above? Justify your answers.

a) an = n2 − n, n ∈ Z+

b) cn = 1
n+1

, n ∈ Z+

c) bn = (−1)n
n2 , n ∈ Z+

d) an+1 = an + 1
n
, for n > 1, and a1 = 1

e.) bn = 1, for all n ∈ Z+.

9. Which of the above sequences are bounded above, or bounded below;
which are bounded? Give an upper bound and/or a lower bound when
applicable.

10. For n ∈ Z+, let an = 1
n

and bn = 1
n+1

. Give explicit formulae for the
sequences cn = an − bn for all n ∈ Z+ and dn = (an)(bn) for all n ∈ Z+.
Write the first four terms in each sequence.

11. Let f, g : Z+ → Z+ be functions given by

f : n 7→ (n+ 1)(n+ 2), g : n 7→ 2n− 1.

Give an explicit formula for the sequence defined by f ◦ g. Write out the
first 6 terms of the sequence defined by f and that defined by f ◦ g.

12. Let an = 2n for all n ∈ Z+ and let bn = 2n for all n ∈ Z+. Show that bn is
a subsequence of an by writing it explicitly as a composition of functions.

13. a) Let Y ⊂ X ⊂ R. Show: if X is bounded, then so is Y .
b) Show: every subsequence of a bounded sequence is bounded.

14. Exhibit two unbounded real sequences {an} and {bn} such that {an+bn}
is bounded.

15. Prove that the sequence {|an|} is bounded if and only if the sequence
{an} is bounded.

16. Let g : Z+ → Z+ be strictly increasing. Prove that g(n) ≥ n for all
n ∈ Z+.
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17. a) Write a statement similar to Proposition 1.3.6 about decreasing se-
quences. (Be careful, only one inequality changes.)

b) Prove your statement from part a)

18. a) Write a statement similar to Proposition 1.3.13 about decreasing se-
quences.

b) Prove your statement from part a)

19. Let an be the sequence given recursively by an+1 = 3an+2
an+2

, with a1 = 3.

a) Prove by induction that an > 2 for all n ∈ Z+.

b) Prove that the sequence is decreasing.

c) What happens to the sequence if we start with a1 = 1?

20. Let an be the sequence given recursively by an+1 = an
2

+ 1
an

with a1 = 2.

a) Prove by induction that an > 0 for all n ∈ Z+.

b) Prove that a2n − 2 ≥ 0 for all n ∈ Z+.

c) Prove that {an} is a decreasing sequence.

21. a) Show that the sequence given by an = n2 − 7n + 11 for all n ∈ Z+ is
eventually increasing.
b) Show that the sequence given by an = n3−5n2−17n+21 is eventually
increasing.
c) Let P (x) be a polynomial, and define a sequence by an = P (n) for all
n. Find necessary and sufficient conditions on the coefficients of P (x)
for {an} to be eventually increasing.

22. Let P = {P (n)} be a sequence of statements: that is, for each n ∈ Z+,
P (n) is a statement. We say P holds eventually if there is N ∈ Z+ such
that P (n) holds for all n > N . Show: if P and Q are two sequences
of statements such that P holds eventually and Q holds eventually then
(P and Q) holds eventually.

23. a) Write out carefully what it means for a real sequence {an} to be
eventually positive.
b) If {an} and {bn} are two eventually positive real sequences, show that
{an + bn} and {anbn} are eventually positive.
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c) Find real sequences {an} and {bn}, neither of which are eventually
positive, such that {an + bn} is eventually positive.

24. Show that an eventually bounded real sequence is bounded.

25. a) (Erdős-Szekeres [ES35]) Let r, s ∈ Z+. Let x1, . . . , x(r−1)(s−1)+1 be
a finite sequence of real numbers of length (r − 1)(s − 1) + 1. Show
that there is either an increasing subsequence of length r or a decreasing
subsequence of length s.
b) Show that there is a real sequence of length (r − 1)(s − 1) which
admits neither an increasing subsequence of length r or a decreasing
subsequence of length s.

26. For a real sequence {an}, show that the following are equivalent:
(i) There is n ∈ Z+ such that either an < an+1 > an+2 (a Λ-configuration)
or an > an+1 < an+2 (a V-configuration).
(ii) The sequence {an} is not monotone.

27. a) Show that every real sequence admits a subsequence which is strictly
increasing, a subsequence which is strictly decreasing, or a subsequence
which is constant. (Suggestion: consider separately the cases in which
the sequence has finite image and infinite image.)
b) We can divide real sequences into 8 classes altogether, according to
whether they do or not do admit a strictly increasing subsequence, do or
not admit a strictly decreasing subsequence, and do or do not admit a
constant subsequence. Part a) asserts that one of these classes is empty,
namely the sequences which do not admit any of these three things. Show
that the seven other classes are nonempty.
c) Show that a sequence which is not bounded above admits an increasing
subsequence and that a sequence which is not bounded below admits a
decreasing subsequence.
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1.4 Sequences of Approximations: Conver-

gence

In calculus we learn Newton’s method for approximating zeros of a differen-
tiable function, f : R → R. The method recursively defines a sequence of
numbers, {xn}, which (hopefully) eventually give an arbitrarily good approx-
imation to a point where the graph of the function touches the x-axis.

x

y

,f(xn))

xn xn+1

y=f(x)

figure 1.4.1

(xn

Here is how the method works: First, since this will be a recursive
formula, we have to pick an initial value x1. Our choice here will often make
use of some knowledge of the function and the region of its graph in which
we expect it to touch the x-axis. Next, we derive the recursive formula for
finding xn+1 in terms of xn. We begin by writing out the equation for the
tangent line to our function at the point (xn, f(xn)) on its graph. Since the
slope of the tangent line at this point is given by f ′(xn) and the line passes
through the point (xn, f(xn)), we see that this equation is given by:

y = f(xn) + f ′(xn)(x− xn).

Finally, the next point in the sequence is determined by where this line crosses
the x-axis (see figure 1.4.1). Thus,

0 = f(xn) + f ′(xn)(xn+1 − xn).

Solving for xn+1 yields:

xn+1 = xn − f(xn)/f ′(xn).
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(The sequence stops if at some point f ′(xn) = 0, in which case the tangent
line is horizontal.)

Example 1.4.1. Let’s take f(x) = x2 − 2. Since this function vanishes
at
√

2 and −
√

2 we hope that by choosing the correct x1 we will be able to
produce a sequence that gives better and better approximations to

√
2. Since

f ′(x) = 2x, the above recursion formula yields

xn+1 = xn −
x2n − 2

2xn
= 1/2(xn +

2

xn
).

The choice x1 = 2 gives the sequence explored in exercise 1.3.20.

The rest of this section will be devoted to making precise the notion that
this sequence of numbers “eventually gives an arbitrarily good approxima-
tion” to the zero of the function. The basic geometric idea is what we will
call an “ε-neighborhood” where ε (the Greek letter epsilon) simply denotes a
positive real number, but will be most interesting when it represents a small
positive real number. With this in mind, the ε-neighborhood around a real
number L is just the interval of real numbers given by

{x ∈ R | L− ε < x < L+ ε} = (L− ε, L+ ε).

Another important way of describing this same set is given by

{x ∈ R | |x− L| < ε}.

The ε-neighborhood around L = 2 with ε = .1 is shown in figure 1.4.2

( )
1.9 2.0 2.1

figure 1.4.2
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Comments on interval notation:
An interval of real numbers is the set of all real numbers between two

specified real numbers, say a and b. The two specified numbers, a and b, are
called the endpoints of the interval. One, both, or neither of the endpoints
may be contained in the interval. Since intervals are commonly used in
many areas of mathematics, it gets cumbersome to write out the full set
notation each time we refer to an interval, so intervals have been given their
own special shorthand notation. The following equations should be thought
of as defining the notation on the left side of the equality:

(a, b) = {x ∈ R | a < x < b}
[a, b) = {x ∈ R | a ≤ x < b}
(a, b] = {x ∈ R | a < x ≤ b}
[a, b] = {x ∈ R | a ≤ x ≤ b}.

Now, the size of the ε-neighborhood around L is determined by ε. The
neighborhood gets smaller if the number ε gets smaller. Our idea of some
number a giving a good approximation to the number L is that a should be
in some ε-neighborhood around L for some small ε. Our idea that a sequence
“eventually gives an arbitrarily good approximation” to L should be that no
matter how small we choose ε we have that “eventually” all of the elements
of the sequence are in that ε-neighborhood. This is made mathematically
precise in the following definition:

Definition 1.4.2. The sequence {an} is said to converge to the real num-
ber L if the following property holds: For every ε > 0 there exists an N ∈ N
so that |an − L| < ε for every n > N .

If the sequence {an} converges to L, we write

lim
n→∞

an = L.

Remark: We will often simply write lim an = L since it is understood that
n→∞.

Definition 1.4.3. A sequence {an} is said to be convergent if there is
some real number L, so that limn→∞ an = L. If a sequence is not convergent
it is called divergent.
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Proposition 1.4.4. a) The constant sequence {an}, given by an = c for all
n ∈ Z+ converges to c.
b) The sequence {an} given by an = 1

n
for all n ∈ Z+ converges to 0.

Proof. a) Since for this sequence we have |an−c| = 0 for all n, it follows that
no matter what ε is chosen, we can take N to be 1.
b) Let ε > 0. By the Archimedean Property (see Example 1.3.8), there is a
positive integer N > 1

ε
. Then for every n > N we have n > 1/ε also. But

this is equivalent to 1/n < ε, i.e., |an − 0| < ε.

Since the sequence {an = 1/n} converges to zero, we know that eventually all
of the terms in the sequence are within some small neighborhood of 0. Since
any other real number L 6= 0 is a finite distance from 0, it seems impossible
that the an’s could also eventually be close to L. We show this for L = .01
in the next example.

Example 1.4.5. The sequence an = 1
n
∀n ∈ Z+ does not converge to 0.01.

Proof:

To prove that a sequence {an} does not converge to L we must show that
the condition in the definition fails. Thus we must find just one ε > 0 so that
for every N ∈ Z+ there is an n > N with |an − L| ≥ ε.

In this case we have L = .01, let’s take ε = .001 (actually any positive
number less than .01 would work). Now, if n > 200 we have 1/n < .005 and
so |an− .01| > .01− .005 = .005 > .001. Thus, no matter what N is chosen,
we can find n which is larger than both N and 200 and get that |an− .01| ≥ ε.
(Notice that there is lots of flexibility in the choice of ε and in the choice of
n.) �
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Comments on Negations:
Given some mathematical (or logical) statement, P, the negation of P

is the new statement that P fails. In the above example the statement P
is “the sequence {an} converges to L”, the negation of this statement is
“the sequence {an} does not converge to L”. Now, in this case, P is defined
by a fairly complicated collection of conditions on {an} and L, and so to
get a useful interpretation of the negation of P, we had to determine what
it means for that collection of conditions to fail. Negating a definition can
often be a tricky exercise in logic, but it also leads to a better understanding
of the definition. After all, understanding how the conditions can fail gives
a deeper understanding of when the conditions are satisfied. Thus, it is
generally recommended that when reading mathematics, one should stop
after each definition and consider the negation of that definition. There
are some useful guidelines that can help when writing out a negation of a
definition. Here are a two such basic rules:

1.) If a definition requires that two conditions hold, then the negation of the
definition will require that at least one of the two conditions fail.

2.) If a definition asks that either condition A or condition B should hold,
then then the negation of the definition will require that both of the two
conditions must fail.

Actually, these two rules can be made much more general:

1 ′.) If a definition asks that some condition holds for every element of some
set S, then the negation of the definition will require that the condition must
fail for at least one element of S.
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2 ′.) If a definition asks that some condition holds for at least one element of
some set S, then the negation of the definition will require that the condition
must fail for every element of S. Now the definition that the sequence

{an} converges to L says, “for every ε > 0” some condition, let’s call it A,
holds, thus to negate this definition, we ask that condition A should fail for
“at least one ε > 0”. Now condition A asks that “there exist some N ∈ Z+”
so that some other condition, let’s call it B, should hold. Thus for A to fail
we need to show that B fails “for every N ∈ Z+”. Finally condition B is the
statement that “|an − L| < ε for every n > N”, so B fails if “there exists
just one n > N so that |an − L| ≥ ε.” Putting this string of logic together,
we come up with the statement,

The sequence {an} does not converge to L if there exists an ε > 0 such that
for every N ∈ Z+ there exists an n > N so that |an−L| ≥ ε, just as stated
at the beginning of the proof in example 1.4.5. One should note that, in
practice, showing that this condition is satisfied is usually accomplished by
finding a subsequence {bn} of {an} so that there is an ε > 0 with |bn−L| ≥ ε
for all n ∈ Z+.

Another important aspect of example 1.4.5 is that it raises the question
of uniqueness of the limit, i.e., is it possible that a given sequence has two or
more distinct limits?

Proposition 1.4.6. Let {an} be a sequence and L and M real numbers
with limn→∞ an = L and limn→∞ an = M . Then L = M .

Proof. Let us first explain the idea of the proof and then give a detailed
implementation of it. Seeking a contradiction, we suppose that L 6= M . If
so, we can choose an open interval IL containing L and an open interval IM
containing M and such that IL and IM are disjoint (i.e., have no points in
common). Then since an → L and an → M , eventually the terms of IL and
IM lie in both IL and IM (cf. Exercise 22): contradiction.

Now to the implentation. Let ε = |L−M |
2

, i.e., half the distance between
L and M . Then we have

(L− ε, L+ ε) ∩ (M − ε,M + ε) = ∅ :

indeed, if x lies in both (L− ε, L+ ε) and (M − ε,M + ε), then

|x− L| < ε =
|L−M |

2
, |x−M | < ε =

|L−M |
2

,
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so by the triangle inequality

|L−M | = |(x− L)− (x−M)| ≤ |x− L|+ |x−M | < ε+ ε = |L−M |.

Thus |L−M | < |L−M |: no way.5 Now, since an → L, there is NL ∈ N such
that for all n > NL we have an ∈ (L − ε, L + ε); and since an → M , there
is NM ∈ N such that for all n > NM we have am ∈ (M − ε,M + ε). Take
N = max(NL, NM). Then for all n > N , both conditions hold:

an ∈ (L− ε, L+ ε) ∩ (M − ε,M + ε) = ∅,

contradiction. Thus L = M .

In the next section we will discuss some properties of limits that will
enable us to evaluate some limits without having to revert to the definition.
However, before going there, it will strengthen our understanding of definition
1.4.2 if we prove convergence of another example directly from the definition.

Example 1.4.7. In this example we will examine a proof that

lim
n→∞

2n+ 1

3n− 1
= 2/3.

Before getting involved in the proof, using an arbitrary ε > 0, let’s practice
with a particular ε, say ε = .01. So, letting an = (2n+ 1)/(3n− 1), we want
to find (explicitly) a natural number N so that whenever n > N we have
|an − 2/3| < .01. Now I might impress you with my acute foresight if I tell
you right now that I am going to choose N = 55 and then prove to you that
this N works. Instead, I will be a bit more honest with you and show you
how I come up with this value for N .

We want a condition on n that will guarantee that∣∣∣∣(2n+ 1)

(3n− 1)
− 2

3

∣∣∣∣ < .01.

Let’s try to find an equivalent inequality from which it is easier to read off a
condition on n. First, we simplify the expression inside the absolute values
by noting

5There are many ways to justify this disjointness claim. In fact, if you think about the
situation geometrically for a little while, it becomes self-evident. But I (PLC) wanted to
show how one can work with inequalities using the triangle inequality, since that comes
up all over the place in more advanced mathematics.
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∣∣∣∣2n+ 1

3n− 1
− 2

3

∣∣∣∣ =

∣∣∣∣3(2n+ 1)

3(3n− 1)
− 2(3n− 1)

3(3n− 1)

∣∣∣∣
=

∣∣∣∣ 5

3(3n− 1)

∣∣∣∣ .
Next we rewrite the inequality without the absolute values, namely we use

the fact that the inequality ∣∣∣∣ 5

3(3n− 1)

∣∣∣∣ < .01

is equivalent to the two inequalities

−.01 <
5

3(3n− 1)
< .01. (∗)

Now we notice that since n is a natural number, it is always true that 3n−1 >
0, hence 5

3(3n−1) > 0 as well. Thus, the first inequality is true for all natural
numbers n. Multiplying the second inequality by the positive number 3n− 1,
and then by 100, yields, 500

3
< 3n − 1. Further simplification leads to the

condition

n >
503

9
≈ 55.9.

This shows that if we take n to be any natural number greater than 55 we will
get our desired inequality, thus we can take N = 55 (or any natural number
bigger than 55).

Now in general we can go through the above argument for any given par-
ticular value of ε, or we can go through the algebra leaving the ε in. Of course,
the N that we get will depend on the choice of ε. To see how this works in
general, lets go back to equation (*) and replace the .01’s with ε, thus we
have

−ε < 5

3(3n− 1)
< ε.

Again, the fraction in the middle is positive so the left inequality is trivial,
and we begin simplifying the right inequality by multiplying by 3(3n − 1) to
get 5 < 3(3n − 1)ε. Now we divide by ε (this corresponds to multiplying by
100 when we took ε = .01) to get 5/ε < 9n− 3. Simplifying this, we see that
we want

n >
5

9ε
+

1

3
.
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That is, we can take N to be any natural number greater than 5
9ε

+ 1
3
.

Finally, before leaving this example, let’s write out the formal proof that
lim 2n+1

3n−1 = 2
3
.

Proof: Let ε > 0 be given and choose N ∈ N in such a way that N > 5
9ε

+ 1
3
.

then if n > N we have

n >
5

9ε
+

1

3
,

which is equivalent to

3n− 1 >
5

3ε
.

Since n is a natural number, we know that 3n−1 > 0, so the above inequality
is equivalent to

5

3(3n− 1)
< ε.

Also, since the left hand side is positive, we have trivially that

−ε < 5

3(3n− 1)
< ε.

Now a short computation shows that

5

3(3n− 1)
=

3(2n+ 1)− 2(3n− 1)

3(3n− 1)
=

2n+ 1

3n− 1
− 2

3
,

so our inequalities give

−ε < 2n+ 1

3n− 1
− 2

3
< ε,

i.e., ∣∣∣∣2n+ 1

3n− 1
− 2

3

∣∣∣∣ < ε.

Thus we have shown that if ε > 0 is given, and we choose a natural number
N > 5

6ε
, then whenever n > N we have |an − 2/3| < ε, i.e.,, lim an = 2/3.

�

That wasn’t so bad. Let’s try a slightly more complicated example:
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Example 1.4.8. Let us prove that

lim
n→∞

2n2 + 3n− 5

5n2 + 2n+ 1
=

2

5
.

To figure out what N should be, we start off like we did in the last example.
First, let ε > 0 be given. We want to find N ∈ Z+ so that

−ε < 2n2 + 3n− 5

5n2 + 2n+ 1
− 2

5
< ε

for all n > N . A little algebra shows that this is equivalent to

−ε < 11n− 27

5(5n2 + 2n+ 1)
< ε.

Now the fraction in the middle of the above set of inequalities is always
positive as long as n > 2, so as long as we make sure in the end that N > 2,
we don’t have to worry about the first inequality. On the other hand, solving
for n in the second inequality is much more complicated than it was in the
previous example. Fortunately, we don’t need to find n in terms of ε exactly,
we just need an approximation that will guarantee the inequality we need.
Here is how to proceed: First, notice

11n− 27

5(5n2 + 2n+ 1)
=

n(11− 27
n

)

5n2(5 + 2
n

+ 1
n2 )

=
1

n

(
11− 27

n

5(5 + 2
n

+ 1
n2 )

)
.

Now, since n > 0, it is easy to see that 11− 27
n
< 11 and that 5+ 2

n
+ 1
n2 > 5.

This second inequality implies that
1

5 + 2
n

+ 1
n2

<
1

5
(both terms are positive),

and so we have that

(11− 27
n

)

5(5 + 2
n

+ 1
n2 )

<
11

5 · 5
=

11

25
.

Therefore we see that

1

n

(
11− 27

n

5(5 + 2
n

+ 1
n2 )

)
<

11

25n
,
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and so, if we choose N large enough to guarantee that 11
25n

< ε we will certainly

have that
1

n

(
11− 27

n

5(5 + 2
n

+ 1
n2 )

)
< ε as well. But this is easy enough, just

choose N to be greater than 11
25ε

. Don’t forget that we also need to make
sure N > 2. This is done by just saying that we choose N ∈ Z+ so that
N > max(2, 11

25ε
). Ok, now let’s put this all together in a formal proof:

Proof: Let ε > 0 be given. Choose N ∈ Z+ so that N > max(2, 11
25ε

). If
n > N , it follows that

11

25n
< ε.

However, since n > 0, we know that 11 > 11 − 27
n

and 5 < 5 + 2
n

+ 1
n2 .

Hence, we can conclude that

1

n

(
11− 27

n

5(5 + 2
n

+ 1
n2 )

)
<

11

25n
< ε.

Multiply the left hand side of the above inequality by n
n

to get

11n− 27

5(5n2 + 2n+ 1)
< ε.

Algebra shows that

2n2 + 3n− 5

5n2 + 2n+ 1
− 2

5
=

11n− 27

5(5n2 + 2n+ 1)
,

so we have that if n > N , then

2n2 + 3n− 5

5n2 + 2n+ 1
− 2

5
< ε.

Also, since n > N > 2, it is clear that

2n2 + 3n− 5

5n2 + 2n+ 1
− 2

5
=

11n− 27

5(5n2 + 2n+ 1)
> 0 > −ε.

Thus, for n > N , we have shown∣∣∣∣2n2 + 3n− 5

5n2 + 2n+ 1
− 2

5

∣∣∣∣ < ε.
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To conclude this section we will discuss a few general properties of con-
vergence that can help to determine convergence or divergence of a sequence.
First, it is useful to notice that if we change the first K terms of a sequence
it won’t affect the convergence of the sequence. We leave the proof of this to
the exercises.

Proposition 1.4.9. Suppose that {an} and {bn} are sequences and that
there is a K ∈ Z+ so that an = bn for all n > K. Assume also that {an}
converges to the real number L, then the sequence {bn} also converges to L.

The next proposition gives an easy first check for convergence since its
negation says that if a sequence is not bounded, then it must diverge.

Proposition 1.4.10. Every convergent sequence is bounded.

Proof. Let {an} be a convergent sequence and let L be its limit. Then we
know that for any ε > 0 we can find an N ∈ Z+ so that |an − L| < ε for all
n > N . In particular, we can take ε to be equal to 1, then we know that there
is some natural number N1 so that |an − L| < 1 for all n > N1. We can now
turn this into a bound for |an| by noting that |an| = |an−L+L| ≤ |an−L|+|L|
by the triangle inequality, hence we conclude

|an| < |L|+ 1

for all n > N1.
Now, to get a bound on |an| for all n ∈ Z+, we let M be the maximal

element of the set
{|a1|, |a2|, ..., |aN1|, |L|+ 1}.

Then certainly |an| ≤M when 1 ≤ n ≤ N1, and also |an| < |L|+ 1 ≤M for
n > N1. Thus we have that |an| ≤M for all n.

Example 1.4.11. The sequence {an = n} is unbounded (Archimedean
Property), hence divergent.

The next proposition and its corollary give us another good method for
showing that a sequence diverges.

Proposition 1.4.12. Let {an} be real sequence converging to L ∈ R.
Then every subsequence {ank} of {an} also converges to L.
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Proof. Let ε > 0. Since an → L, there is N ∈ Z+ such that |an − L| < ε for
all n > N . If k > N then nk ≥ k > N , so |ank − L| < ε.

Corollary 1.4.13. Suppose that {an} is a real sequence with two con-
vergent subsequences, {bn} and {cn}. If limn→∞ cn 6= limn→∞ bn, then {an}
must be divergent.

Example 1.4.14. The sequence given by an = (−1)n has even terms all
equal to 1 and odd terms all equal to −1. Thus the subsequence of even terms
converges to 1 and the subsequence of odd terms converges to −1. From the
corollary, we conclude that the sequence {an} diverges.

Infinite Limits: Some sequences diverge. The implication so far is that
we should simply not have commerce with a divergent sequence, but this is
not really accurate or desirable. On the contrary, in many cases it is de-
sirable or necessary to understand the “limiting behavior” of a divergence
sequence in some sense. Whereas any two convergent sequences “look the
same” in some sense, divergent sequences may look different.6 Well, if that
is our metaphor let us now meet two unhappy families.

A real sequence {an} diverges to infinity if for all M ≥ 0 there is N ∈ N
such that for all n > N we have an ≥ M . Otherwise put, for any fixed M ,
the terms of the sequence are eventually as large as M . Symbolically we
write an → ∞, though we hasten to add that ∞ is not a real number and
this indicates not convergence but a certain kind of divergence.

Similarly, a real sequence {an} diverges to negative infinity if for all
m ≤ 0 there is N ∈ N such that for all n > N we have an ≤ M . Otherwise
put, for any fixed m, the terms are eventually no larger than m. Symbolically
we write an → −∞ (and give the same warning as above).

Example 1.4.15. a) If an = n for all n ∈ Z+, then an → ∞. This may
sound like a tautology (“as n approaches infinity, n approaches infinity”) but
it isn’t. It is a restatement of the Archimedean Property: for any M ≥ 0,
there is N ∈ Z+ such that N ≥M . So for all n > N we have n ≥M .
b) Suppose {an} and {bn} are two sequences such that an ≤ bn for all n ∈ Z+.
If an → ∞, then also bn → ∞. Indeed, for all M ≥ 0 there is N ∈ N such

6“Happy families are all alike; every unhappy family is unhappy in its own way.”
Tolstoy, Anna Karenina



52 CHAPTER 1. SEQUENCES

that an ≥M for all n > N . So for all n > N we have M ≤ an ≤ bn.
c) Combining part a) and b) we see that for all α > 1, the sequence an = nα

diverges to infinity.

Proposition 1.4.16. Let r ∈ R and consider the geometric sequence
{an} given by an = rn for all n ∈ N. Then:
a) If r = 1, then rn → 1.
b) If r = −1 then {rn} is bounded but divergent.
c) If r > 1, then rn →∞.
d) If r < −1, then {rn} is unbounded both above and below, hence divergent.
e) If |r| < 1, then rn → 0.

Proof. Parts a) and b) have been established above.
For part c), we first establish Bernoulli’s Inequality: for all x ≥ −1 and
all n ∈ N, we have

(1 + x)n ≥ 1 + nx. (1.4)

This is a straightforward induction proof: when n = 1 (base case) both sides
of (1.4) are 1 + x. Now let n ∈ Z+, x ≥ −1 and suppose that (1 + x)n ≥
1 + nx. Since x ≥ −1 we have 1 + x ≥ 0, so multiplying by (1 + x) preserves
inequalities. Thus, using our induction hypothesis we get

(1+x)n+1 = (1+x)(1+x)n ≥ (1+x)(1+nx) = 1+(n+1)x+nx2 ≥ 1+(n+1)x,

completing the induction step.
Now let r > 1, so c = r− 1 > 0. For n ∈ Z+, Bernoulli’s Inequality gives

rn = (1 + (r − 1))n = (1 + c)n ≥ 1 + nc.

Let M ≥ 0 and take N = M−1
c

; then if n > N , we have

rn ≥ 1 + nc ≥M.

So rn →∞.
d) If r < −1, then rn = (−1)n|r|n. From this it follows that the subse-
quence of odd-numbered terms diverges to −∞ while the subsequence of
even-numbered terms diverges to ∞.
e) Suppose |r| < 1. Since an → 0 iff |an| → 0, we may replace r with |r| and
thus assume 0 < r < 1. Then R = 1

r
> 1. Fix ε > 0. Part c), Rn → ∞, so

there is N ∈ N such that for all n > N we have Rn > 1
ε
. Taking reciprocals,

we get |rn| = rn < ε for all n > N .
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In proposition 1.4.10 we proved that every convergent sequence is bounded.
We will need a few further results along these lines for section 1.6. We state
them here and leave the proofs for you to do as exercises.

Proposition 1.4.17. Let {an} be a convergent sequence with lim an = α
and assume that M is an upper bound for {an}, i.e., an ≤M for all n ∈ Z+.
Then α ≤M .

Proof Hint: Suppose on the contrary that α > M and let ε = (α −M)/2.
Use the definition of the limit to show how to find a particular N ∈ Z+ with
aN > M . This contradicts the assumption. (See figure 1.4.3.)

( )
α−ε α α+εU

figure 1.4.3

aN

Remark: Of course there is a similar proposition for lower bounds.

The next proposition says that if {an} is an increasing convergent se-
quence, then the limit, lim an, gives an upper bound for {an}. Of course,
there is a similar proposition for decreasing sequences.

Proposition 1.4.18. Let {an} be an increasing sequence with limn→∞ an =
α, then an ≤ α for all n ∈ Z+.

Proof Hint: Suppose on the contrary that there is some particular ak with
ak > α. Let ε = (ak − α)/2 and use the definition of the limit to show that
there is some m > k with am < ak, contradicting the fact that the sequence
is increasing. (See figure 1.4.4.)

Remark: Combining these two propositions for the case of an increasing
convergent sequence {an} we see that limn→∞ an is an upper bound for this
sequence and that it is less than or equal to all upper bounds for this sequence,
i.e., it is the least of all of the upper bounds. Thus it is called the least upper
bound of the sequence {an}. Similarly, if {bn} is a decreasing convergent
sequence, then limn→∞ bn gives the greatest lower bound of {bn}.

EXERCISES 1.4
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( )
α−ε α α+ε

           figure 1.4.4

a m

a
k

1. Let an = 2n+4
3n−2 . Find N ∈ Z+ so that |an − 2/3| < .01 for all n > N .

Justify your work.

2. Let an = 3n+2
2n−15 . Find N ∈ Z+ so that |an − 3/2| < .05 for all n > N .

Justify your work.

3. Let an = n2+2
5n2+1

. Find N ∈ Z+ so that |an − 1/5| < .02 for all n > N .
Justify your work.

4. Let an = 3−1/n. Using the definition of the limit, prove that limn→∞ an =
3.

5. Let an = 2n+4
3n+1

. Using the definition of the limit, prove that limn→∞ an =
2/3.

6. Let an = 5−n
3n−7 . Using the definition of the limit, prove that limn→∞ an =

−1/3.

7. Let an = 5n2+4
3n2+4

. Using the definition of the limit, prove that limn→∞ an =
5/3.

8. Let an = 2n2+4n−3
3n2+2n+1

. Using the definition of the limit, prove that limn→∞ an =
2/3.

9. Let an = 1/n. Using the definition of the limit, prove that an does not
converge to 1/4.

10. Edward wrote on his midterm exam that the definition of the limit is
the following: The sequence {an} converges to the real number L if there
exists an N ∈ Z+ so that for every ε > 0 we have |an − L| < ε for all
n > N . Show Edward why he is wrong by demonstrating that if this were
the definition of the limit then it would not be true that limn→∞

1
n

= 0.
(Hint: What does it mean if |a− b| < ε for every ε > 0?)



1.4. CONVERGENCE 55

11. Jacob wrote on his midterm exam that the definition of the limit is the
following: The sequence {an} converges to the real number L if for every
ε > 0 we have |an−L| < ε for all n ∈ Z+. Show Jacob why he is wrong by
demonstrating that if this were the definition of the limit then it would
not be true that limn→∞

1
n

= 0.

12. Bella wrote on her midterm exam that the definition of the limit is the
following: The sequence {an} converges to the real number L if for every
ε > 0 there is N ∈ Z+ such that we have |an − L| < ε for all n ≥ N .
a) What Bella wrote is not the definition we gave above. Why not?
b) Show that nevertheless Bella is correct: the sequence {an} converges
to L according to our definition if and only if it converges to L according
to her definition.

13. Give the explicit conditions for a sequence to diverge, i.e.,, give a “posi-
tive” version of the negation of the definition of convergence (definition
1.4.2 and 1.4.3).

14. Explicitly write out the negation of the incorrect definition given by
Edward in exercise 10.

15. Explicitly write out the negation of the incorrect definition given by
Jacob in exercise 11.

16. Prove Proposition 1.4.9.

17. Prove that limn→∞ |an| = 0 if and only if limn→∞ an = 0.

18. Suppose that limn→∞ an = L.

a) Prove that if an ≥ 0 for all n ∈ Z+, then L ≥ 0.

b) Give an example to show that an > 0 for all n ∈ Z+ does not imply
that L > 0.

19. Suppose that limn→∞ an = L and that r is a real number. Prove that
limn→∞ ran = rL.

20. Prove from the definition of divergence that the sequence an = (−1)n is
divergent.
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21. Evaluate the following limits.

a) limn→∞(3/2)n.

b) limn→∞(1/2)n.

22. a) Fill in the details of the proof of Proposition 1.4.17.
b) Fill in the details of the proof of Proposition 1.4.18.

23. Let {an} be a real sequence.
a) Show: if an →∞, then {an} is unbounded above.
b) Show: if an → −∞, then {an} is unbounded below.
c) Exhibit a sequence which is unbounded above and below but does not
diverge to ∞ nor to −∞.
d) Show: if {an} is increasing, then an → ∞ if and only if {an} is
unbounded above.
e) Show: if {an} is decreasing, then an → −∞ if and only if {an} is
unbounded below.

24. Let {an} be a real sequence.
a) Show that the following are equivalent:
(i) {an} is unbounded above.
(ii) {an} admits a subsequence diverging to infinity.
b) Show that the following are equivalent:
(i) {an} is unbounded below.
(ii) {an} admits a subsequence diverging to negative infinity.

25. Show that there is a real sequence {an} that satisfies all of the following:7

(i) For all L ∈ R, there is a subsequence ank → L.
(ii) There is a subsequence diverging to infinity.
(iii) There is a subsequence diverging to negative infinity.

1.5 Tools for Computing Limits

In this section we will develop a number of tools that will allow us to compute
some limits of sequences without going back to the definition.

7Here it is important that the same sequence must do all of these things at once!
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Proposition 1.5.1. Let {an} and {bn} be real sequences such that an → 0
and {bn} is bounded. Then anbn → 0.

Proof. Since {bn} is bounded there is some number M > 0 with |bn| < M
for all n ∈ Z+. Also, since limn→∞ an = 0, when ε > 0 is given we can find
an N ∈ Z+ so that |an| < ε

M
for all n > N . But then

|anbn| = |an||bn| <
ε

M
M = ε

whenever n > N .

Example 1.5.2. The above proposition can be applied, using an = 1/n,
to show that the following limits are zero.

a) limn→∞
1
n2 = 0.

b) limn→∞
1
nk

= 0, for any k ∈ Z+.

c) limn→∞
cos(n)
n

= 0.

Remark:
From the definition of the limit we know that if limn→∞ an = L then when

ε > 0 is given, we can find an N ∈ Z+ so that |an − L| < ε for all n > N .
In the above proof we have made a slight variation on this sentence without
explanation. Here is what is going on: if some ε > 0 is given to us, and M
is some fixed, positive number, then we can think of the quotient ε/M as a
“new ε”, let’s call it ε̃ , that is, let ε̃ = ε/M . Then, since limn→∞ an = L,
there is some number Ñ ∈ Z+ so that |an − L| < ε̃ for all n > Ñ. We will
use this trick over and over again in the proof of the next proposition.

Lemma 1.5.3. If limn→∞ an = L and L 6= 0 then there is a natural
number N such that |an| > |L|

2
for all n > N .

We leave the proof of the lemma to the exercises, but here is a hint:
Choose ε = |L|

2
and look at figure 1.5.1 below.

The next theorem allows us to compute new limits by algebraically ma-
nipulating limits which we already understand.

Theorem 1.5.4. Suppose that limn→∞ an = L and limn→∞ bn = M .
Then we have:

a) For all α ∈ R, we have limn→∞ αan = αL.
b) limn→∞(an + bn) = L+M .



58 CHAPTER 1. SEQUENCES

( )
L/2  L 3L/2

figure 1.5.1

0

c) limn→∞(anbn) = LM .
d) If M 6= 0 then limn→∞

1
bn

= 1
M

.

e) If M 6= 0 then limn→∞
an
bn

= L
M

.

Proof. a) The basic idea is that since |an−L| can be made arbitrarily small,
so can |αan − αL| = |α||an − L|. More formally, let ε > 0 be given. If α = 0
then αan − αL = 0 for all n, so any N works for all ε > 0 (this holds for
any constant sequence, as we’ve seen before). So assume α 6= 0. Then, since
an → L, there is N ∈ N such that for all n > N we have |an − L| < ε

|α| .
Then, for all n > N we have

|αan − αL| = |α||an − L| < |α|
ε

|α|
= ε.

b) The basic idea is

|(an + bn)− (L+M)| = |(an − L) + (bn −M)| ≤ |an − L|+ |bn −M |.

Then, since |an − L| and |bn −M | can each be made arbitrarily small, so
can their sum, and we win. Now more formally: let ε > 0 be given. Since
an → L, there is N1 ∈ N such that for all n > N1 we have |an − L| < ε

2
.

Similarly, since bn → M , there is N2 ∈ N such that for all n > N2 we have
|bn − L| < ε

2
. Taking N = max(N1, N2), we have for all n > N that

|(an + bn)− (L+M)| ≤ |an − L|+ |bn −M | <
ε

2
+
ε

2
= ε.

So an + bn → L+M .
c) In order to use the assumptions that limn→∞ an = L and limn→∞ bn = M
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we must separate out terms like |an − L| and |bn − M | from the expres-
sion |anbn − LM |. To do this we use the old algebraic trick of adding and
subtracting the same thing, namely

|anbn − LM | = |anbn − Lbn + Lbn − LM |.

This yields

|anbn − LM | = |anbn − Lbn + Lbn − LM |
≤ |anbn − Lbn|+ |Lbn − LM |
≤ |an − L||bn|+ |L||bn −M |.

Now, if ε > 0 is given, we know we can pick N1 ∈ N so that |bn −M | <
ε/2|L| for n > N1, so the second term above is no problem. For the first
term, we have to recall that since the sequence {bn} is convergent, we know
it is bounded. Hence, there is a number B > 0 such that |bn| < B for all
n ∈ Z+, so the first term above (i.e., |an − L||bn|) is less than |an − L|B for
all n. Now we can pick N2 ∈ N so that |an − L| < ε/2B for all n > N2.
Hence, if we let N = max{N1, N2}, then whenever n > N we have both

|an − L||bn| <
ε

2B
B =

ε

2

and
|L||bn −M | <

ε

2|L|
|L| = ε

2
.

Putting these inequalities together we see that when n > N we have

|anbn − LM | ≤ |an − L||bn|+ |L||bn −M | <
ε

2
+
ε

2
= ε.

d) First we observe that the statement, strictly speaking, doesn’t make sense.
Namely, the expression an

bn
is undefined when bn = 0. We have assumed that

M 6= 0 and bn → M . By Lemma 1.5.3, there is N1 ∈ N such that |bn| > |M |
2

for all n > N1. Having established that, the meaning of part d) is that we
should only consider the sequence {an

bn
} for sufficiently large n, say n > N1,

in which case all of the terms are defined. Having established that, consider∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ =

∣∣∣∣M − bnbnM

∣∣∣∣ =
|bn −M |
|bn||M |

.
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And now we are in good shape because of the above estimate: namely, for
all n > N1, since |bn| > |M |

2
we have

1

|bn|
<

2

|M |

and thus
|bn −M |
|bn||M |

≤ |bn −M | ·
2

|M |2
.

Great: since bn → M , there is N2 ∈ N such that for all n ≥ N2 we have
|bn −M | < ε

2/|M |2 . Take N = max(n1, n2); then for all n > N , we have∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ ≤ |bn −M | · 2

|M |2
<

ε

2/|M |2
2

|M |2
= ε.

e) The same provisos as part d) apply, of course: we may have bn = 0
for finitely many n, and we agree to start the sequence after the last such
value. Having said that, since an

bn
= an · 1

bn
, the result follows immediately by

combining parts c) and d).

Example 1.5.5. An easy application of part b) of Proposition 1.5.4 yields
the following result:

If limn→∞ an = L and r is a real number, then limn→∞ ran = rL.

To see how this follows from part b) above, just let {bn} be the sequence given
by bn = r for all n.

Example 1.5.6. Proposition 1.5.4 also helps us to evaluate limits of se-
quences of rational expressions of n. For example if {an} is given by

an =
3n2 + 2n− 2

2n2 + 3n+ 5

we can rewrite this expression (by dividing top and bottom by n2) to get

an =
3 + 2

n
− 2

n2

2 + 3
n

+ 5
n2

.

Applying parts a) and b) of Proposition 1.5.4 repeatedly (and using example
1.5.5) we see that

lim
n→∞

(3 +
2

n
− 2

n2
) = 3
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and

lim
n→∞

(2 +
3

n
+

5

n2
) = 2,

and so, by applying part c) of Proposition 1.5.4, we have

lim
n→∞

an =
3

2
.

Proposition 1.5.7. (Three Sequence Principle) Let {an}, {bn}, {cn} be real
sequences, and let α, β, γ be nonzero real numbers. Suppose that for all n ∈
Z+ we have

αan + βbn + γcn = 0.

Then if any two of the sequences {an}, {bn}, {cn} converge, so does the third.

Proof. Because of the symmetry in the statement, we may suppose that
an → L and bn →M . Since cn = −α

γ
an − β

γ
bn for all n ∈ Z+, we have

cn →
−α
γ
L− β

γ
M.

The following result says roughly that if a sequence behaves in the limit
like a convergent geometric sequence, then it too must converge:

Proposition 1.5.8. Let {an} be a sequence satisfying limn→∞
|an+1|
|an|

= r,

with r < 1. Then limn→∞ an = 0.

Proof. Since r < 1, we can find a real number c with r < c < 1 (e.g.
c = (r + 1)/2). Now let ε = c− r (notice that ε > 0) and choose N ∈ Z+ so
that ∣∣∣∣ |an+1|

|an|
− r
∣∣∣∣ < ε

whenever n > N. Then, in particular, we have

|an+1|
|an|

< r + ε = r + (c− r) = c

whenever n > N . Rewriting this , we have |an+1| < c|an|, when n > N .
Now, since the existence (and value) of a limit does not depend on the first

N terms of the sequence, we can assume that |an+1| < c|an| for all n ∈ Z+. A
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simple induction argument then leads to the conclusion that |an+1| < cn|a1|
for all n ∈ Z+. The sequence {cn} is geometric with 0 < c < 1, so we
know that limn→∞ c

n|a1| = 0. Thus, given ε > 0, we can find N ∈ Z+ so
that |cna1| < ε for all n > N . But since |an+1| < |cna1|, we conclude that
|an+1| < ε for all n > N . Thus limn→∞ an = 0.

Example 1.5.9. Consider the sequence given by an = (−1)n
n

2n
for n ∈ Z+.

We have
|an+1|
|an|

=

(
n+ 1

2n+1

)(
2n

n

)
=
n+ 1

2n
.

Using Proposition 1.5.4 we can compute that lim n+1
2n

= 1
2
, and so we conclude

that lim an = 0.

For the remainder of this section we will discuss two results from calculus
which help us to evaluate even more complicated limits. The first of these is
a theorem about continuous functions.

Definition 1.5.10. A function f : R → R is called continuous at c ∈ R
if for every ε > 0 there is a δ > 0 so that

|f(x)− f(c)| < ε,

whenever |x− c| < δ.

The first result is then:

Proposition 1.5.11. Let L ∈ R. Suppose that an → L and f : R → R
is continuous at l. Then f(an)→ f(L).

Proof. Given some ε > 0, we need to find N ∈ Z+ so that |f(an)− f(L)| < ε
for all n > N . Since f is continuous at L we know that there is a δ > 0 so
that |f(x) − f(L)| < ε whenever x satisfies |x − L| < δ. This tells us that,
if we can find N so that |an − L| < δ for all n > N , then we will have the
desired result. But the fact that an → L tells us exactly this (using δ in place
of ε in the definition of lim an). We can write this out formally as follows:

Fix ε > 0. Since f is continuous at L, there is δ > 0 so that |f(x)−f(L)| <
ε whenever |x−L| < δ. Since an → L, we can find N ∈ Z+ so that for every
n > N , we have |an−L| < δ. Thus for n > N we have |f(an)−f(L)| < ε.
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Example 1.5.12. In Example 1.5.6 we saw that limn→∞ an = 3/2 when
an = 3n2+2n−2

2n2+3n+5
. Now if we consider the continuous functions f(x) =

√
|x|,

g(x) = x2, we get

lim
n→∞

3n2 + 2n− 2

2n2 + 3n+ 5
= lim

n→∞

√∣∣∣∣3n2 + 2n− 2

2n2 + 3n+ 5

∣∣∣∣ =
√

3/2,

lim
n→∞

(
3n2 + 2n− 2

2n2 + 3n+ 5

)2

= 9/4,

The first equality holds, because: since an → 3
2
, certainly an ≥ 0 eventually.

(It might also be worth noting that the original an is given by f( 1
n
) where

f(x) = 3+2x−2x2
2+3x+5x2

, which is continuous at x = 0.)

For our other application of calculus to sequences, we first remark that
often the sequences whose limits we are trying to evaluate can be written in
the form

an = f(n)

for some familiar function f(x) which is actually defined for all real numbers,
x ∈ R. In such a case it can be useful to study

lim
x→∞

f(x)

to get information about limn→∞ an.
Indeed, recall from calculus that we have

Definition 1.5.13. Let f(x) be a function defined for all real x ∈ R (or at
least for all x larger than some real number a). Then we say f(x) converges
to the real number L, as x goes to infinity, if the following condition is true:

For every ε > 0 there is an R ∈ R so that |f(x)−L| < ε whenever x > R.

In this case we write limx→∞ f(x) = L.

From this definition it is straightforward to prove (see exercise 9)

Proposition 1.5.14. Let f be defined on R and assume limx→∞ f(x) =
L. For n ∈ Z+, let an = f(n). Then limn→∞ an = L.
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Well, the above observation doesn’t really help much until we recall that
there is a theorem from calculus that helps us evaluate limits of the above
type. First we need to discuss a special kind of divergence.

Definition 1.5.15. Let f be a function defined for all real x ∈ R. Then
we say f(x) diverges to infinity, as x goes to infinity, if the following condition
is true:

For every M > 0 there is an R ∈ R so that f(x) > M whenever x > R.

In this case we write limx→∞ f(x) =∞.

Example 1.5.16. The function f(x) = x diverges to infinity as x goes
to infinity, but the function g(x) = x sin(x) does not.

We now recall a result which delights many calculus students and dismays
many calculus instructors.

Theorem 1.5.17. L’ Hôpital’s Rule: Suppose f, g : R → R are differen-
tiable functions satisfying

lim
x→∞

f(x) = lim
x→∞

g(x) =∞ or lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

Then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

as long as the limit on the right hand side exists (or diverges to infinity).

Proof. See e.g. [Cl-HC, Thm. 7.1].

Example 1.5.18. Let an = log(n)/n for all n. Then we can write
an = f(n)/g(n) where f(x) = log(x) and g(x) = x for all x > 0. Now
limx→∞ f(x) = ∞ and limx→∞ g(x) = ∞ so we can apply L’Hôpital’s Rule
to get.

lim
x→∞

log(x)

x
= lim

x→∞

1/x

1
= lim

x→∞

1

x
= 0.

Finally, applying Proposition 1.5.14 we conclude that

lim
n→∞

log(n)

n
= 0.
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Remark 1.5.19. L’Hôpital’s rule applies only to functions defined on R so
we must first convert our questions about sequences into questions about func-
tions on R before we apply this theorem. It makes no sense to differentiate
an expression like log(n), so L’Hôpital’s rule doesn’t even make sense here.

Nevertheless, like many results from calculus, L’Hôpital’s Rule has a dis-
crete analogue. See the (unfairly difficult, to be sure) Exercise 12.
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EXERCISES 1.5

1. For each of the following limits either evaluate or explain why it is di-
vergent.

a) limn→∞
log(n)
n

b) limn→∞
en

n

c) limn→∞
n
en

d) limn→∞
n2

en

e.) limn→∞
n
2n

f.) limn→∞
n

log(n)

g.) limn→∞
log(n)
n2 h.) limn→∞

n2+1
n log(n)

i.) limn→∞
cos(n)
n

j.) limn→∞
n

sin(n)

k.) limn→∞(n sin(1/n)) l.) limn→∞(1 + 1
n
)n

m.) limn→∞ (1 + n)
1
n n.) limn→∞

√
n+ 1−

√
n

o.) limn→∞
√
n2 + n−

√
n2 − n

2. Fill in the details of part a) of Proposition 1.5.4, i.e., assume that
limn→∞ an = L and limn→∞ bn = M and prove that limn→∞(an + bn) =
L + M . (Comment: This problem is now obsolete since the result is
proved in the text. It is left in to preserve the numbering.)

3. Prove that if the sequence {an} converges and the sequence {bn} diverges,
then the sequence {an + bn} diverges.

4. Use the properties of limits to explain why limn→∞
3n+1
2n+5

= 3/2. State
clearly where you are using each of the properties.

5. Evaluate the following limits.

a) limn→∞
3n2−2n+7
6n2+3n+1

b) limn→∞

(
3n2−2n+7
6n2+3n+1

)3
c) limn→∞

√
3n2−2n+7
6n2+3n+1

d) limn→∞

(
exp

(
3n2−2n+7
6n2+3n+1

))
6. a) Prove that if limn→∞ an =∞ then limn→∞ 1/an = 0.
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b) Assume that an 6= 0 for all n ∈ Z+ and that limn→∞ an = 0, then
prove that limn→∞ |1/an| =∞.

c) Provide an example of a sequence {an} of nonzero real numbers for
which limn→∞ an = 0 but limn→∞ 1/an =∞ is not true.

7. In this exercise we prove the Squeeze Lemma: Assume that {an}, {bn},
and {cn} are sequences with an ≤ bn ≤ cn for all n ∈ Z+. Assume also
that lim an = lim cn = L. Then lim bn = L.
We break the proof into two pieces:

a) Assume {rn} and {sn} are sequences with 0 ≤ rn ≤ sn and lim sn = 0.
Use the definition of the limit to show that lim rn = 0.

b) Now consider sequences {an}, {bn}, and {cn} with an ≤ bn ≤ cn and
lim an = lim cn = L. Let rn = bn − an and sn = cn − an and show that
part a) can be applied to prove that lim rn = 0. Now use Proposition
1.5.4 to prove that lim bn = L.

8. Provide the details of the proof of Lemma 1.5.3.

9. Provide a proof for Proposition 1.5.14.

10. Prove that if an = f(n) and limx→∞ f(x) =∞, then limn→∞ an =∞.

11. Give the details of the proof for part c) of Proposition 1.5.4 in the case
that M < 0 and an = 1 for all n. (Careful, you will need to state and
prove a new version of Lemma 1.5.3.)

12. Prove the following theorem of Stolz-Cesaro:
Let {an} and {bn} be real sequences. Suppose:
(i) The sequence {bn} is strictly increasing and bn →∞.
(ii) We have limn→∞

an−an−1

bn−bn−1
= L.

Then limn→∞
an
bn

= L.
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1.6 Abstract Theorems on Convergence of Se-

quences: What is Reality?

1.6.1 O’Connor’s Property of Completeness

So far, whenever we have shown that a sequence converges we have also
determined the limit. In fact, it is not possible to use the definition of
convergence without stating explicitly what the limiting value is. But it
would be useful to have criteria for convergence that don’t require knowledge
of the limiting value. A very intuitive example of this is the idea that if a
sequence is decreasing and bounded below then it should converge to some
number which is no less than the lower bound for the sequence.

Example 1.6.1. (See exercise 1.3.20 and example 1.4.1.) Let an be the
sequence given recursively by

a1 = 2; ∀n ≥ 1, an+1 =
an
2

+
1

an
.

From this definition, it is clear that each an is a positive rational number.
Almost nothing else is immediately clear! So lets compute the first few terms:

a1 = 2,

a2 = 3/2 = 1.5,

a3 = 17/12 ≈ 1.416666 . . . ,

a4 = 577/408 ≈ 1.41421568 . . .

a5 = 665857/470832 ≈ 1.41421356237468 . . .

a6 = 886731088897/627013566048 ≈ 1.41421356237309 . . .

These computations suggest that the sequence is decreasing and that it con-
verges to a limit L ≈ 1.4142135623 . . .. How do we prove that?

Let us show that the sequence is decreasing. First we observe that

a2n =
a2n−1

4
+

1

a2n−1
+ 1,

so

a2n − 2 =
a2n−1

4
+

1

a2n−1
− 1 =

(
an−1

2
− 1

an−1

)2

≥ 0
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for all n ≥ 2. Thus we have

∀n ∈ Z+, an − an+1 =
an
2
− 1

an
=
a2n − 2

2an
≥ 0,

so the sequence is decreasing.
Notice that we are in a new situation: we think our sequence converges

because we can see approximately what (we think) it converges to. In terms of
proving the sequence converges, this is of no help whatsoever: our definition
of convergence requires us to know the limit exactly. Or rather, to know it
exactly or correctly guess it exactly. Maybe that decimal expansion is familiar
to you. If not, here is another approach. Suppose an → L ∈ R. Then

L = lim
n→∞

an+1 = lim
n→∞

an
2

+
1

an
=
L

2
+

1

L
,

which leads to the equation L2 = 2. We know by now that the limit of a
sequence of positive numbers cannot be negative, so this argument shows that
if the sequence converges, it must converge to L =

√
2.

Can we show the sequence converges now? In fact we will be distracted
for a little while be an even more basic question: what is

√
2??

The rational numbers Q are fairly easy to comprehend. We begin with
the positive numbers and then tack on 0 and the negative integers.8 Next,
to get the rationals, either we think of dividing our natural numbers into
equal portions or we think of comparing whole numbers by their ratios. The
ancient Greeks were happy with this concept, but they also knew that there
are numbers that cannot be represented as a ratio of whole numbers. For
example, although a segment of length

√
2 is easily constructed as the hy-

potenuse of a right triangle with legs of length 1, the Greeks had proven the
following:

Proposition 1.6.2. There are no natural numbers a and b so that
√

2 =
a/b, i.e.,

√
2 is not rational.

Proof. Let’s suppose on the contrary that we have natural numbers a and b
with

√
2 = a/b. Of course, we can assume that a and b have no common

divisors, since if they did we could “cancel” those divisors to get an equivalent

8That 0 is a number was not “natural” in many parts of the world until relatively
recently.
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fraction. That is, we assume that the fraction a/b is in “lowest terms”. Now,
if a/b =

√
2, then we have a =

√
2b, and so a2 = 2b2. Since 2b2 is an even

number, we conclude that a2 is even. But, the square of an odd number
is odd, so if a2 is even it must be the case that a is even too. Thus a
can be written as a = 2l for some natural number l. Squaring this we see
that a2 = 4l2. Now we substitute back into the equation a2 = 2b2 to get
4l2 = 2b2. Cancelling a factor of 2 yields b2 = 2l2. Now we can repeat the
above argument to conclude that b is even too (since b2 is even). Thus we
have shown that both a and b are even, contradicting the assumption that
a/b is in “lowest terms”. Since this argument leads to a contradiction, we
must conclude that the original assumption that

√
2 = a/b is incorrect.

So, then, if
√

2 is not rational, what sort of number is it? If we punch
√

2
into our calculator we get a numerical readout like 1.414213562. But this is a
rational number (represented in fraction form by 1,414,213,562

1,000,000,000
) so it can’t really

be
√

2! In fact, any finite decimal represents a rational number, so irrational
numbers cannot have a finite decimal representation. Well then, as we have
been taught in high school, the decimal representation for irrationals like√

2 must “go on for ever”. What is the meaning of decimals that “go on
for ever”? One reasonable interpretation is that the decimal represents a
sequence of better and better approximations of the actual number

√
2. If

we define a sequence with

a1 = 1, a2 = 1.4, a3 = 1.41, a4 = 1.414, etc.

then we might say that
√

2 is defined to be the limit of this sequence. But
why does this sequence have a limit if the thing it converges to is defined by
the limit? This all seems pretty circular but, in fact, if one is careful one can
use these ideas to give a precise definition of the real numbers.

Rather than constructing the real numbers from scratch, our approach
for this course (and for most undergraduate courses; the alternative would
be very unpleasant to many students) is to come up with a list of properties
that we expect the real numbers to have, describe a set which has these
properties, and then prove that the properties uniquely define the set up to
a change of name. (It doesn’t matter what symbols we use for our numbers,
as long as we can provide a dictionary from one set of symbols to the other.)
The list of properties include the many properties of numbers which we are
familiar with from grade school. There are the algebraic properties such as
commutativity, associativity and distributivity as well as the order properties
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i.e., the properties of inequalities (some are mentioned in section 1.3). Of
course when you start listing properties of numbers you will notice that there
are infinitely many things that you could write down but that many of the
properties can actually be proven from some of the other properties – so the
game is to try to find a list of properties from which all of the other ones
follow.

However, after writing the list of algebraic and order properties of the
real numbers it becomes clear that there must be some further property that
distinguishes the real numbers from other sets of numbers, since, for instance,
the rational numbers have all of the same algebraic and order properties as the
real numbers. To put a finer point on it, in Example 1.6.1 we met a decreasing
sequence of positive rational numbers which looks like it is convergent. But
we showed that if it converges to a number L, then L2 = 2, so if we worked
within the rational numbers only, that sequence would not be convergent!
This means that we need some additional axiom that applies to the real
numbers and not to the rational numbers, from which we can deduce that
this sequence indeed converges in R to

√
2. The missing ingredient is some

kind of axiom of completeness. In fact there are several forms such a property
may take. We begin with O’Connor’s9 Property of Completeness, which is
most immediately adapted to our present sequential approach.

O’Connor’s Property of Completeness:
Every bounded increasing real sequence is convergent.

It is easy to see that O’Connor’s Property of Completeness also implies that
a bounded decreasing real sequence converges. Indeed, if {bn} is a decreas-
ing sequence bounded below by m, then {−bn} is an increasing sequence
bounded above by −m. It follows from O’Connor’s Property of Complete-
ness that {−bn} converges, say to L. Then {bn} converges to −L.

In particular, O’Connor’s Property of Completeness finally allows us to
complete our discussion of the sequence studied in Example 1.6.1: being a
decreasing sequence of positive real numbers, it is also bounded, and therefore
it converges by O’Connor’s Property of Completeness. We already showed
that if it converges to any real number, it converges to

√
2, so indeed it

9Mary Flannery O’Connor (1925–1964) was a key figure in the Southern Gothic literary
school. She is (according to Pete L. Clark) Georgia’s greatest writer. Her last short story
collection, published posthumously, takes its name from one of its stories, Everything that
rises must converge. Though she omitted “boundedness,” we have decided to name this
version of completeness after her.
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converges to
√

2. Before we go on with our grand general discussion, let us
complete the story of this particular sequence. This sequence corresponds
to an algorithm used by the ancient Babylonians to compute

√
2. Moreover,

it is precisely the sequence of approximations to the root of f(x) = x2 − 2
given by Newton’s method starting at x1 = 1: see Example 1.4.1. (Thus
recognizing the terms of the sequence as numerical approximations to

√
2

hits a little too close to home: you have to ask yourself how your calculator /
software package / iphone app is computing

√
2. There is a good chance that

it is using this sequence!) This places the sequence in a much more general
context but does not immediately give a proof of convergence: rather it
raises the much more general and interesting issue of when Newton’s method
converges. There are general results on this – see e.g. [Cl-HC, Thm. 7.11] –
but we will not discuss them here.

1.6.2 Bolzano-Weierstrass

We can now prove the single most important result of the first chapter.

Theorem 1.6.3 (Bolzano-Weierstrass). Every bounded real sequence has
a convergent subsequence.

Proof. Let {an} be a bounded real sequence. By the Rising Sun Lemma,
there is a monotone subsequence {ank}, which is of course still bounded. By
O’Connor’s Property of Completeness, the sequence {ank} converges.

Example 1.6.4. The sequence given by an = sin(n) is bounded between
-1 and 1 but is certainly not convergent. As a challenge try to find an explicit
subsequence which does converge.

1.6.3 Dedekind’s Property of Completeness

We come now to an all-important definition. Let S be a nonempty subset
of R. We know what it means for S to be bounded above: there must exist
M ∈ R such that x ≤ M for all M ∈ S. Notice that by starting with an
upper bound for S and making it larger, we still get an upper bound. In
particular, if M is an upper bound for S then so is M + n for all n ∈ Z+

and thus the set of upper bounds of S is not itself bounded above: there is
no largest upper bound.

What if we try to make the upper bound smaller? That is a much more
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interesting question! We may or may not still get an upper bound. For ex-
ample, if S = [0, 1] and M1 = 2, then M2 = 3

2
is smaller and still an upper

bound, but M3 = 1
2

is not: it is smaller than the element 1 of S. In this
case there is a clear choice of a “best upper bound” for S, namely M = 1.
This is a best choice because on the one hand it is an upper bound for S and
on the other hand it is an element of S. An upper bound for a set which is
also an element of the set is precisely a maximum, a concept we have seen
before. Certainly if a set S has a maximum M , then that maximum is the
least upper bound: if M ′ < M , then....M ′ < M (and M ∈ S!), so M ′ is not
an upper bound.

However, in general an infinite subset of R which is bounded above need
not have a maximum. For instance, consider S = [0, 1). Then for all x ∈ S,
x+1
2

still lies in S and is greater than x. On the other hand, 1 is still an
upper bound for S, and moreover it is the least upper bound : if we push any
farteher to the left than 1, then we have pushed past elements of S. (The
argument for this is very close to the one we just gave. Think about it.)

We pause for a point of terminology: a least upper bound for a subset S ⊂ R
is also called a supremum for S, and sometimes written sup(S). (Clearly the
supremum, when it exists, is unique: two different numbers cannot both be
least!) This leads to the question: does every nonempty subset S ⊂ R which
is bounded above have a least upper bound? The more you think about this
question, the more plausible it becomes that it should have an affirmative
answer. It basically means this: if you start out “entirely to the right” of
a nonempty subset S and start walking to the left, keeping yourself entirely
to the right of S, then there is a definite point at which your journey stops:
you have not walked past any element of S (though you may be standing
precisely on top of an element of S), and if you walk any farther, no matter
how small a distance, then you will walk past elements of S.

We assert that this is a true, and fundamental, property of R.

Dedekind’s Property of Completeness:
Every nonempty subset of the real numbers which is bounded above has

a least upper bound (or supremum).

Proposition 1.6.5. O’Connor’s Property of Completeness implies the Archimedean
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Property.

Proof. Seeking a contradiction, we suppose the Archimedean Property does
not hold. This means precisely that the sequence in which an = n for all
n ∈ Z+ is bounded, so according to O’Connor’s Property of Completeness,
it would therefore converge, say to L. This mean that there is some N ∈ Z+

such that for all n > N we have |an − L| < 1
2
. In particular then, taking

n = N + 1 and n = N + 2 we get

|n+ 1− L| < 1

2
, |n+ 2− L| < 1

2
,

so

1 = |(n+1)−(n+2) = |(n+1−L)−(n+2−L)| ≤ |n+1−L|+|n+2−L| < 1

2
+

1

2
= 1.

Contradiction!

Proposition 1.6.6. Dedekind’s Property of Completeness implies O’Connor’s
Property of Completeness.

Proof. Suppose {an} is an increasing real sequence which is bounded above.
Then the image of the sequence is a nonempty subset of R which is bounded
above, so by Dedekind’s Property of Completeness, it has a supremum, say
L. To spell it out, there is L ∈ R such that an ≤ L for all n ∈ Z+ and if
L′ < L then an > L′ for at least one n ∈ Z+. We claim an → L. To see this,
let ε > 0. Because the sequence is increasing, it’s enough to show that for
some N ∈ Z+ we have aN > L− ε; then for all n ≥ N we will have

L− ε < aN ≤ an ≤ L < L+ ε.

If this were not the case then we’d have an ≤ L− ε for all n...but then L− ε
would be an upper bound for the image of {an} which is smaller than the
least upper bound L: contradiction.

And conversely:

Proposition 1.6.7. O’Connor’s Property of Completeness implies Dedekind’s
Property of Completeness.
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Proof. (Based on [K04, Exc. 3.9, p.31].) Let S be a nonempty subset of R
which is bounded above. We may assume that S has no maximum, since a
supremum exists in that case. Let a0 ∈ S and let b0 be an upper bound for
S, so a0 ≤ b0. In fact, a0 < b0: if a0 = b0, then a0 is a maximum for S.

Now we subdivide the interval [a0, b0] into two intervals of equal length,
namely [a0,

a0+b0
2

] and [a0+b0
2
, b0]. If there are any elements of S in the right

subinterval [a0+b0
2
, b0] then we “choose” the right subinterval: formally, we

take a1 to be its left endpoint a0+b0
2

and b1 to be its right endpoint b0. Oth-
erwise, we “choose” the left subinterval: we take a1 to be its left endpoint a0
and b1 to be its right endpoint a0+b0

2
.

Now we subdivide the interval [a1, b1] into two subintervals of equal length,
according to exactly the same procedure: namely, we choose the right subin-
terval if any element of S lies in it, and otherwise choose the the left subin-
terval, either way getting an interval [a2, b2].

We proceed in this way for all n ∈ Z+, getting a sequence of nested closed
subintervals

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . . ⊃ [an, bn] ⊃ . . . ,

such that bn − an = b0−a0
2n

. The sequence {bn} is decreasing and bounded
below by a0, so by O’Connor’s Property of Completeness it converges to b
(say). We claim that b is the supremum of S. First we show that b is an upper
bound for S: if not, there is x ∈ S such that b < x. Since {bn} is decreasing
and converges to b, there is some n such that b < bn < x and thus bn is not
an upper bound for S: this contradicts our construction. Now suppose that
there is a c < b which is an upper bound for S. Because c is not a maximum,
we have b − x > b − c for all x ∈ S. Because O’Connor’s Property of
Completeness implies the Archimedean Property, we have bn−an = b0−a0

2n
→

0, and thus there is N ∈ Z+ such that bn−an < b− c. By construction there
is x ∈ S ∩ [an, bn], and thus

b− x ≤ bn − x ≤ bn − an < b− c,

contradiction. Thus we have b = sup(S).

1.6.4 Cauchy’s Property of Completeness

Definition 1.6.8. A real sequence {an} is a Cauchy sequence if it satisfies
the following: for every ε > 0 there is an N ∈ N such that |an − am| < ε for
all m,n ≥ N .
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Remark 1.6.9. By now I hope it’s clear that if we had written “for all
m,n > N” then this would be an equivalent definition.

Proposition 1.6.10. Every convergent sequence in R is a Cauchy se-
quence.

Proof. Suppose an → L, and fix ε > 0. Let N ∈ N be such that for all n > N
we have |an − L| < ε

2
. So, if m,n ≥ N , we have

|an − am| = |(an − L) + (L− am)| ≤ |an − L|+ |am − L| <
ε

2
+
ε

2
= ε.

This proof has a moral: two quantities which can each be made arbitrarily
close to a third quantity can be made arbitrarily close to each other.

Theorem 1.6.11. Every Cauchy sequence of real numbers converges to
some real number.

Proof. Let {an} be a Cauchy sequence in R. The strategy is to show that {an}
is bounded, then apply Bolzano-Weierstrass to get a subsequence converging
to some L ∈ R, then finally to show that {an} itself converges to L.
Step 1: Since {an} is Cauchy, there is N ∈ N such that for all m,n ≥ N ,
we have |am − an| < 1. Taking m = N , we get that for all n > N that
|aN −an| < 1, so by the Reverse Triangle Inequality we have ||an|− |aN || < 1
and thus |an| < |aN |+ 1. Therefore we have for all n ∈ Z+ that

|an| ≤ max(|a1|, . . . , |aN |, |aN |+ 1).

Step 2: By the Bolzano-Weierstrass Theorem, there is a subsequence {ank}
converging to some L ∈ R. (We spoiled this a bit, huh?)
Step 3: Let ε > 0. Choose N1 ∈ N such that |ank − L| < ε

2
for all k > N

and N2 ∈ N such that for all m,n > N2 we have |am − an| < ε
2
, and let

N = max(N1, N2). Let n > N , and choose k such that nk > N . Then

|an − L| = |(an − ank) + (ank − L)|

≤ |an − ank |+ |ank − L| <
ε

2
+
ε

2
= ε.

In view of Proposition 1.6.10 and Theorem 1.6.11, a real sequence is a
Cauchy sequence if and only if it is convergent. So one may ask: why intro-
duce Cauchy sequences at all, if they turn out to be precisely the convergent
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sequences? The answer is that this equivalence is very useful in proving that
a sequence converges. Our definition of convergence is “converges to L for
some L ∈ R.” In order to prove that a sequence converges, we need to know
(in some sense) the limit. O’Connor’s Property of Completeness gets around
this by asserting that a bounded monotone sequence convergence without
saying what its limit is: as we saw, this is extremely useful, but it applies
only to monotone sequences. Knowing that convergent real sequences are
precisely the Cauchy sequences gives us a general method of showing the
convergence of a real sequence without having any idea what the limit may
be: we just need to show that – in Cauchy’s precise sense – the terms of the
sequence eventually get sufficiently close together.

Lemma 1.6.12. Let {an} be an increasing real sequence. The following are
equivalent:
(i) The sequence {an} is Cauchy.
(ii) For all ε > 0 there is an upper bound B for the sequence and N ∈ Z+

such that B − aN ≤ ε.

Proof. (i) =⇒ (ii): Assume (i). Then for all ε > 0, there is N ∈ Z+ such
that for all m,n > N we have |am − an| < ε. So for all n > N we have
an < aN + ε and thus B = aN + ε works. Conversely, assume t

aN ≤ an < aN + ε.

(ii) =⇒ (i): Assume (ii), fix ε > 0, and let B be an upper bound for the
sequence and N ∈ Z+ such that B − aN ≤ ε

4
. Then for all n > N we have

aN ≤ an ≤ B ≤ aN +
ε

4
< aN +

ε

2
.

Thus |an − aN | < ε
2
. So if m,n > N , we have

|am − an| ≤ |am − aN |+ |an − aN | <
ε

2
+
ε

2
= ε.

Theorem 1.6.13. a) The Archimedean Property is equivalent to the asser-
tion that every bounded increasing sequence is a Cauchy sequence.
b) Cauchy’s Property of Completeness together with the Archimedean Prop-
erty implies O’Connor’s Property of Completeness.
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Proof. a) Suppose the Archimedean Property holds, and let {an} be an in-
creasing sequence bounded above by B0. By Lemma 1.6.12, to show that
{an} is Cauchy it is enough to find, for all ε > 0, an upper bound Bε for the
sequence and an N ∈ Z+ such that Bε−aN ≤ ε. Put d0 = B0−a1. Then B0 is
an upper bound which differs from some term of the sequence by at most d0.
We claim that it is enough to show that whenever we have an upper bound
Bn and Nn ∈ Z+ such that Bn − aNn ≤ D (for some D > 0), then there
is also an upper bound Bn+1 and Nn+1 ∈ Z+ such that Bn+1 − aNn+1 ≤ D

2
.

If so, then for all n we can get an upper bound and a term in the sequence
which differ by at most d0

2n
. By the Archimedean Property, d0

2n
→ 0, so for

sufficiently large n it is at most ε, giving what we want. The proof of this is
somewhat familiar: consider

mn =
aNn +Bn

2
,

the midpoint of the interval [aNn , Bn]. If mn is an upper bound for {an},
we take Bn+1 = mn and Nn+1 = Nn, and now we have an upper bound and
a term of the sequence differing by 1

2
as much as the previous ones. If mn

is not an upper bound, then there is some Nn+1 such that aN+1 > mn, and
taking Bn+1 = Bn, again we have decreased the difference between the upper
bound and a term in the sequence by a factor of 2.

Conversely, if the Archimedean Property failed, then an = n is a bounded
increasing sequence, and it is certainly not Cauchy: indeed for all n ∈ Z+ we
have |an+1 − an| = 1, so the Cauchy condition fails for ε = 1.
b) Assuming the Archimedean Property and Cauchy’s Property of Complete-
ness, part a) implies that every bounded increasing sequence converges.

After being subjected to a barrage of different completeness properties, the
reader is probably wondering what’s going on. The answer is that we are
gaining some access into the foundations of the real number system. If we
take it for granted that the real numbers satisfy Dedekind’s Property of
Completeness, then as we have seen the completeness properties of O’Connor
and Cauchy follow rather easily. There remains the question of giving a
rigorous definition/construction of the system of real numbers. One’s first
effort might be to define real numbers in terms of their decimal expansions.
This turns out to be possible, but unrewardingly difficult. Dedekind himself
gave the first satisfactory construction of the real numbers, using Dedekind
cuts. These too are rather difficult and tedious to work with, and (worse)
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a technical facility with Dedekind cuts is of little or no use to the majority
of students of mathematics.10 Arguably the quickest and most transparent
construction of the real numbers is in terms of a certain equivalence relation
on Cauchy sequences of rational numbers. This construction is given in
complete detail (and in fact, in a bit more generality) in [Cl-HC, Ch. 16].11

From this construction it comes out quite naturally that the real numbers
satisfy the Archimedean property and Cauchy’s Property of Completeness.
Thus we took some (relatively small!) pains here to show that these imply
the other completeness properties.

EXERCISES 1.6

1. a) Suppose that a is a natural number and that a2 is divisible by 3, show
that a is divisible by 3. (Hint: show that if a is not divisible by 3, then
neither is a2.)

b) Show that
√

3 is not rational.

2. Show that the sequence of Example 1.6.1 is strictly decreasing.
(Hint: use the irrationality of

√
2.)

3. Use Newton’s method to construct a sequence that converges to
√

3.
Prove that your sequence is convergent to

√
3.

4. Let {an} be the sequence defined by a1 = 1 and an+1 = an + 1
(n+1)2

.
Prove that this sequence converges.
(Hint: use induction to prove that an ≤ 2− 1/n for all n ∈ Z+.)

5. Show that any real sequence admits a subsequence which is either con-
vergent, divergent to ∞ or divergent to −∞.

10One must read this at least in part as a statement of the cultural status quo. There is
a branch of mathematics in which these ideas get an attractive development, namely the
theory of partially ordered sets. It just happens that the majority of working mathemati-
cians have no acquaintance with this theory.

11Honesty compels me to add that even this treatment is magnificently unpalatable for
consumption by most real life undergraduates. There are things in mathematics that one
is comforted to see that someone else has worked out but does not wish to explore on one’s
own.
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(Hint: any real sequence is either bounded, unbounded above or un-
bounded below. Use previous results and exercises!)

6. Recall that a sequence {An}∞n=1 of sets is nested if we have

A1 ⊇ A2 ⊇ . . . An ⊇ An+1 ⊇ . . . .

a) (Nested Interval Theorem) Let {An}∞n=1 be a nested sequence of
closed bounded intervals in R: i.e., for all n ∈ Z+ we have An = [an, bn]
with an ≤ bn such that An+1 ⊆ An. Show that

⋂∞
n=1An 6= ∅: that is,

there is an x which lies in An for all n ∈ Z+.
(Suggestion: consider the sequences {an} and {bn}.)
b) Under the hypotheses of part a), suppose that the intervals approach
0 in length: limn→∞ bn − an = 0. Show that

⋂∞
n=1An consists of exactly

one point.

7. a) For each n ∈ Z+ let An be the interval An = [n,∞). Show that
An+1 ⊂ An for all n ∈ Z+ and yet there is no number α ∈ R with α ∈ An
for all n. Why does this not contradict the Nested Interval Theorem?
b) For each n ∈ Z+ let An be the interval An = (0, 1/n]. Show that
An+1 ⊂ An for all n ∈ Z+ and yet there is no number α ∈ R with α ∈ An
for all n. Why does this not contradict the Nested Interval Theorem?

8. Let {an} be a sequence which is bounded above. We define a new se-
quence {bn} by bn = max{a1, a2, . . . , an}.
a) Show that the sequence {bn} is increasing. (Hint: Notice that if if A
and B are finite sets of real numbers with A ⊆ B, then maxA ≤ maxB.)

b) Assume that U is an upper bound for {an}, show that U is an upper
bound for {bn}.
c) From O’Connor’s Property of Completeness we know that {bn} must
have a limit, call it L. Prove that an ≤ L for all n ∈ Z+, i.e., L is an
upper bound for {an}. Also prove that if U is any upper bound for {an}
then L ≤ U . Thus L is the least upper bound of the sequence {an}.
Similarly, if the sequence {an} is bounded below, we can use O’Connor’s
Property of Completeness to prove that it has a greatest lower bound .

9. Let {an}∞n=1 be a bounded sequence. For each k ∈ Z+ consider the subse-
quence which begins with ak and continues on from there, i.e., {an}∞n=k.
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Let Lk = supn≥k an denote the least upper bound of the kth such subse-
quence. (This least upper bound is shown to exist in exercise 6.)

a) Prove that the sequence {Lk} is decreasing.

b) Prove that if M is a lower bound for the sequence {an} then it is also
a lower bound for the sequence {Lk}.
From the O’Connor’s Property of Completeness, we conclude that the
sequence {Lk} has a limit, inf Lk. This limit is called the limsup of the
sequence {an}, and is denoted by lim sup an. Notice that

lim sup an = inf
k≥1

sup
n≥k

an.

10. Let {an} be a bounded sequence and let L = lim sup an.

a) Show that there is a convergent subsequence, {bn}, of {an} with
limn→∞ bn = L.
(This gives an alternate proof of the Bolzano-Weierstrass Theorem.)

b) Prove that if {cn} is a convergent subsequence of {an} then

lim
n→∞

cn ≤ L.

1.7 Applications to Calculus

Armed with a deeper knowledge of the real numbers, we are now able to
prove some of the most important results about continuous functions on R
that are usually stated without proof in introductory calculus courses.

1.7.1 Continuous Functions

We need to mildly extend our definition of a continuous function. Let X ⊂ R,
let f : X → R be a function, and let c ∈ X. We say f is continuous at c if
for all ε > 0, there exists a δ > 0 such that for all x ∈ X, if |x− c| < δ then
|f(x)− f(c)| < ε. A function f : X → R is continuous if it is continuous at
every c ∈ X.
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Notice that when X = R we recover our earlier definition of continuity.
The only change in general is that we only consider values of x lying in X,
i.e., values at which the function is defined. We emphasize that in this text
we will concentrate on the case in which X is an interval.

Example 1.7.1. A function f : X ⊂ R→ R is constant if for all x, y ∈ X
we have f(x) = f(y). In this case there is C ∈ R such that f(x) = C for
all x ∈ X. Constant functions are continuous at every c ∈ X. Indeed, for
any ε > 0, we may choose any δ > 0 – for the sake of definiteness, let’s take
δ = 1. Then for all x ∈ X we have |f(x) − f(c)| = |C − C| = 0 < ε (no
matter what δ was).

Proposition 1.7.2. Let X ⊂ R, let f, g : X → R, and let c ∈ X.
a) If f and g are both continuous at c, then the function

f + g : X → R, x 7→ f(x) + g(x)

is also continuous at c.
b) If f is continuous at c and A ∈ R then the function

Af : X → R, x 7→ Af(x))

is also continuous at c.
c) If f and g are both continuous at c, then the function

fg : X → R, x 7→ f(x)g(x)

is also continuous at c.
d) If f and g are both continuous at c and 0 /∈ g(X), then the function

f

g
: X → R, x 7→ f(x)/g(x)

is also continuous at c.

Proof. Throughout it will be implicit that we only consider x in the domain
X of f and g. Thus when we write “for all x with |x− c| < δ”, we mean “for
all x ∈ X with |x− c| < δ.” In each part we work out the idea of the proof
first and then translate it into a formal ε–δ argument.
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a) Fix ε > 0. We must show that there exists δ > 0 such that |x − c| < δ
implies |f(x) + g(x)− (f(c) + g(c))| < ε. Now

|f(x) + g(x)− (f(c) + g(c))| = |(f(x)− f(c)) + (g(x)− g(c))|

≤ |f(x)− f(c)|+ |g(x)− g(c)|.
This is good: since f and g are both continuous at c, we can make each of
|f(x) − g(x)| and |g(x) − g(c)| as small as we like by taking x sufficiently
close to c. The sum of two quantities which can each be made as small as
we like can be made as small as we like.

Now formally: choose δ1 > 0 such that |x−c| < δ1 implies |f(x)−f(c)| <
ε
2
. Choose δ2 > 0 such that |x − c| < δ2 implies |g(x) − g(c)| < ε

2
. Let

δ = min(δ1, δ2). Then |x− c| < δ implies |x− c| < δ1 and |x− c| < δ2, so

|f(x) + g(x)− (f(c) + g(c))| ≤ |f(x)− f(c)|+ |g(x)− g(c)| < ε

2
+
ε

2
= ε.

b) Fix ε > 0. We must show that there exists δ > 0 such that |x − c| <
δ implies |Af(x) − Af(c)| < ε. But |Af(x) − Af(c)| = |A||f(x) − f(c)|.
Moreover, precisely because f is continuous at c we may make the quantity
|f(x)− f(c)| as small as we like by taking x sufficiently close to c. A quanity
which we can make as small as we like times a constant can still be made as
small as we like.

Now formally: we may assume A 6= 0 because otherwise f is the constant
function 0, which we saw above is continuous. For any ε > 0, since f is
continuous at c there exists δ > 0such that |x−c| < δ implies |f(x)−f(c)| <
ε
|A| . (Note what is being done here: by continuity, we can make |f(x)− f(c)|
less than any positive number we choose. It is convenient for us to make
it smaller than ε

|A| , where ε is a previously given positive number.) Then

|x− c| < δ implies

|Af(x)− Af(c)| = |A||f(x)− f(c)| < |A| · ε

|A|
= ε.

c) Fix ε > 0. We must show that there exists δ > 0 such that |x − c| < δ
implies |f(x)g(x)− f(c)g(c)| < ε. The situation here is a bit perplexing: we
need to use the continuity of f and g at c, and to do this it stands to reason
that we should be estimating |f(x)g(x)− f(c)g(c)| in terms of |f(x)− f(c)|
and |g(x)−g(c)|, but unfortuantely we don’t see these latter two expressions.
So we force them to appear by adding and subtracting f(x)g(c):

|f(x)g(x)− f(c)g(c)| = |f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)|
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≤ |f(x)||g(x)− g(c)|+ |g(c)||f(x)− f(c)|.

This is much better: |g(c)||f(x)− f(c)| is a constant times something which
can be made arbitrarily small, so it can be made arbitrarily small. Moreover,
in the term |f(x)|g(x) − g(c)| we can make |g(x) − g(c)| aribtrarily small
by taking x sufficiently close to c and then, by continuity of f , |f(x)| gets
arbitrarily close to f(c). So |f(x)| is nonconstant but bounded, and something
which is bounded times something which can be made arbitrarily small can
be made arbitarily small. N Now formally: there is δ1 > 0 such that if
|x− c| < δ1 we have |f(x)− f(c)| < 1. By the Reverse Triangle Inequality,

|f(x)| − |f(c)| ≤ |f(x)− f(c)| < 1,

so
|f(x)| ≤ |f(c)|+ 1.

There exists δ2 > 0 such that |x − c| < δ2 implies |g(x) − g(c)| < ε
2(|f(c)|+1)

.

Finally, there exists δ3 such that |x− c| < δ3 implies |f(x)− f(c)|| < ε
2|g(c)| .

(Here we are assuming that g(c) 6= 0. If g(c) = 0 then we don’t have the
|g(c)||f(x)− f(c)| term and the argument is easier.) Put δ = min(δ1, δ2, δ3).
Then if |x− c| < δ, we have that |x− c| is less than δ1, δ2 and δ3, so

|f(x)g(x)− f(c)g(c)| ≤ |f(x)|g(x)− g(c)|+ |g(c)||f(x)− f(c)|

< (|f(c)|+ 1) · ε

2(|f(c)|+ 1)
+ |g(c)| ε

2|g(c)|
=
ε

2
+
ε

2
= ε.

d) Since f
g

= f · 1
g
, in light of part c) it suffices to show that if g is continuous

at c and g(x) 6= 0 for all x ∈ X, then 1
g

is continuous at c. Fix ε > 0. We

must show that there exists δ > 0 such that |x− c| < δ implies

| 1

g(x)
− 1

g(c)
| < ε.

Now

| 1

g(x)
− 1

g(c)
| = |g(x)− g(c)|

|g(x)||g(c)|
=
|g(x)− g(c)|
|g(x)||g(c)|

.

Since g is continuous at c, we can make the numerator |g(x)− g(c)| as small
as we like by taking x sufficiently close to c. This will make the entire
fraction as small as like provided the denominator is not getting arbitrarily
small as x approaches c. But indeed, since g is continuous at g(c) 6= 0, the



1.7. APPLICATIONS TO CALCULUS 85

denominator approaches |g(c)|2 6= 0. Thus again we have an arbitrarily small
quantity times a bounded quantity, so it can be made arbitrarily small. Now
formally: taking ε = |g(c)|

2
, there exists δ1 > 0 such that if |x − c| < δ1 then

|g(x)− g(c)| < |g(c)|
2

. The Reverse Triangle Inequality implies

|g(c)| − |g(x)| ≤ |g(x)− g(c)| < |g(c)|
2

,

or

|g(x)| > |g(c)| − |g(c)|
2

=
|g(c)|

2
.

Thus
1

|g(x)||g(c)|
≤ 2

|g(c)|2
.

Also there exists δ2 > 0 such that |x− c| < δ2 implies

|g(x)− g(c)| <
(
|g(c)|2

2

)
ε.

Put δ = min(δ1, δ2). Then |x− c| < δ implies

| 1

g(x)
− 1

g(c)
| =

(
1

|g(x)||g(c)|

)
|g(x)− g(c)| < 2

|g(c)|2

(
|g(c)|2

2

)
ε = ε.

Proposition 1.7.3. Let X and Y be subsets of R, let f : X → R and
g : Y → R and suppose that f(X) ⊆ Y (so that the composition g ◦ f is
defined). Let c ∈ X. If f is continuous at c and g is continuous at f(c) then
g ◦ f is continuous at c.

Proof. Fix ε > 0. Because g is continuous at f(c), there exists γ > 0 such if
|y− f(c)| < γ, then |g(y)− g(f(c))| < ε. Because f is continuous at c, there
exists δ > 0 such that if |x− c| < δ, then |f(x)−f(c)| < γ. So, if |x− c| < γ,
then |f(x)− f(c)| < γ, so |g(f(x))− g(f(c))| < ε.

Proposition 1.7.4. Let X ⊂ R, and let f : X → R be a function. Suppose
that f is continuous at a point c ∈ X. Let L ∈ R.
a) If f(c) < L, then there is δ > 0 such that for all x ∈ X such that
|x− c| < δ, then f(x) < L.
b) If f(c) > L, then there is δ > 0 such that for all x ∈ X such that |x−c| < δ,
then f(x) > L.
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Proof. We will prove part a). Routine modifications of this argument yield a
proof of part b); we will leave this to the reader as an opportunity to check
her understanding of the argument.

Take ε = L − f(c) > 0. Because f is continuous at c, there exists δ > 0
such that for all x ∈ X such that |x− c| < δ we have

f(x)− f(c) ≤ |f(x)− f(c)| < L− f(c),

which implies that f(x) < L.

Theorem 1.7.5. Let X ⊂ R, and let f : X → R be a function. Let c ∈ X.
The following are equivalent (i.e., each implies the other):
(i) The function f is continuous at c.
(ii) For all real sequences {an} such that an ∈ X for all n ∈ Z+ and an → c,
we have f(an)→ f(c).

Proof. (i) =⇒ (ii): Fix ε > 0. Because f is continuous at c, there is δ > 0
such that for all x ∈ X with |x− c| < δ, we have |f(x)− f(c)| < ε. Because
an → c, there is N ∈ N such that for all n > N we have |an − c| < δ. Thus
for all n > N we have |f(an)− f(c)| < ε.
(ii) =⇒ (i): We will prove the contrapositive, so assume that f is not
continuous at c. This means that there exists ε > 0 such that for all δ > 0
there is x ∈ X such that |x− c| < δ and |f(x)− f(c)| ≥ ε. For any n ∈ Z+,
taking δ = 1

n
gives us an xn ∈ X such that |xn−c| < 1

n
and |f(xn)−f(c)| ≥ ε.

It then follows that xn → c and f(xn) 6→ f(c).

Theorem 1.7.5 is an exciting result for students of the theory of infinite
sequences: it means that the concept of continuity of a function can be
entirely understood in terms of convergence of infinite sequences. This opens
up the door to proving some famous theorems about continuous functions
using what we’ve established about infinite sequences. That is what we will
go on to do in the rest of this section.

1.7.2 The Intermediate Value Theorem

A function f : I → R has the intermediate value property if for all a, b ∈ I
with a < b and all L in between f(a) and f(b) – i.e., with f(a) < L < f(b)
or f(b) < L < f(a) – there exists some c ∈ (a, b) with f(c) = L. (You should
think of this as saying that a function does not “skip” values.)
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Theorem 1.7.6. (Intermediate Value Theorem) Let I be an interval, and
let f : I → R be a continuous function. Then f satisfies the Intermediate
Value Property.

Proof. Let a < b be two points of I. For the most of the proof we will
assume that f(a) < f(b). At the end we will explain how the other case can
be reduced to this one. Let L ∈ R be such that f(a) < L < f(b). We must
find c ∈ (a, b) such that f(c) = L. To do this, we consider the following set:

S = {x ∈ [a, b] | f(x) ≤ L}.

Observe that a ∈ S, and that S ⊂ [a, b]. Thus S is a nonempty subset of
R which is bounded above. By the Dedekind Completeness of R, S has a
supremum, say c. We claim that f(c) = L, and we will show this by ruling
out the other two possibilities.
Case 1: Suppose f(c) < L. By Proposition 1.7.4a) there is δ > 0 such that
for all x ∈ (c − δ, c + δ) we have f(x) < L. But this means that S contains
elements greater than c, e.g. c+ δ

2
, contradicting the fact that c is an upper

bound for S.
Case 2: Suppose f(c) > L. By Proposition 1.7.4b) there is δ > 0 such that
for all x in(c− δ, c+ δ) we have f(x) > L. Thus no point of [c− δ

2
, c] lies in

S; since c is an upper bound for S, this means that c− δ
2

is an upper bound
for S, contradicting the fact that c is the supreumum of S.

Finally, suppose f(a) > f(b), and let L ∈ R be such that f(a) > L > f(b).
We can modify the above argument to deal with this case; the reader may
wish to do so as a check on her understanding. Alternately, we may replace f
by −f : this is still continuous, and then −f(a) < −L < −f(b), so the above
argument applies to give c ∈ (a, b) such that −f(c) = −L...so f(c) = L.

1.7.3 The Extreme Value Theorem

Let X be a set, and let f : X → R be a function. We say that f is bounded
if its image f(X) is a bounded subset of R: explicitly, if there are a ≤ b ∈ R
such that a ≤ f(x) ≤ b for all x ∈ X. (Notice that this generalizes our
definition of a bounded sequence, in which the domain is Z+.)

Our next theorem states that every continuous function f on a closed
interval must be bounded above. (Of course, by applying the theorem to
−f , one can conclude that it is also bounded below as well.)
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Theorem 1.7.7. Let f : [a, b] → R be a continuous function defined on a
closed, bounded interval. Then f is bounded.

Proof. Step 1: Seeking a contradiction, we suppose that f is not bounded
above: then, for all n ∈ Z+, there is an ∈ [a, b] such that f(an) > n.
This defines a bounded sequence {an}, so by Bolzano-Weierstrass there is
a convergent subsequence, say ank → c ∈ [a, b]. By Proposition 1.7.5, since
f is continuous at c we have f(ank) → f(c). However, f(ank) > nk for
all k ∈ Z+, so the sequence {f(ank)} is unbounded and thus divergent:
contradiction. This shows that f is bounded above.
Step 2: Since f is continuous, so is −f . So Step 1 gives that −f is bounded
above, say by M . This means that f is bounded below by −M .

The final theorem of this section gives the theoretical foundation of the
optimization problems from freshman calculus. In those problems you were
given a function on a closed interval, f : [a, b] → R, and asked to find
c ∈ [a, b] so that f(c) is the maximum value of f on [a, b], i.e., f(c) ≥ f(x)
for all x ∈ [a, b]. This theorem says that such a c must exist.

Theorem 1.7.8. (Extreme Value Theorem) Let f : [a, b]→ R be a continu-
ous function on the closed interval [a, b]. Then the image f([a, b]) has a min-
imum and a maximum. Explicitly, there is cm ∈ [a, b] such that f(cm) ≤ f(x)
for all x ∈ [a, b] and cM ∈ [a, b] such that f(cM) ≥ f(x) for all x ∈ [a, b].

Proof. Step 1: By Theorem 1.7.7, we know that f is bounded above: there
is M ∈ R such that f(x) ≤ M for all x ∈ [a, b]. By Dedekind’s Property of
Completeness, the set f([a, b]) therefore has a supremum s. Our goal is to
show that s ∈ f([a, b]), for then it is a maximum.

Seeking a contradiction, we suppose that s /∈ f([a, b]). Then we may
define g : [a, b] → R by g(x) = 1

s−f(x) . The function g is the reciprocal of a
continuous function which is nowhere zero, so it too is a continuous function.
Moreover, since s is the supremum of f([a, b]) and not a maximum, for all
n ∈ Z+ there is xn ∈ [a, b] such that f(xn) > s− 1

n
. Thus s− f(xn) < 1

n
so

g(xn) =
1

f(xn)− s
> n.

This means that the continuous function g : [a, b]→ R is not bounded above,
contradicting Theorem 1.7.7.
Step 2: Applying Step 1 to −f we find that −f has a minimum, say m, and
thus −m is the maximum of f .
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1.7.4 The Uniform Continuity Theorem

Let X ⊂ R. A function f : X → R is uniformly continuous if for all
ε > 0, there exists δ > 0 such that for all x1, x2 ∈ X, if |x1 − x2| < δ, then
|f(x1)− f(x2)| < ε.

The difference between the definition of uniform continuity and the defi-
nition of continuity lies entirely in the order of the quantifiers. A function
f : X → R is continuous if it is continuous at each c ∈ X, and this means
that for a given ε > 0, the choice of δ is allowed to depend not just on ε but
also on c. Uniform continuity means that having chosen ε > 0, there must
exist a δ > 0 which works for all c ∈ X simultaneously (or “uniformly”).
Thus uniform continuity implies continuity. In general, it is much stronger.

Example 1.7.9. The function f : R → R given by x 7→ x2 is continuous.
However, it is not uniformly continuous. To see this, take ε = 1. Uniform
continuity would imply that there is some δ > 0 such that for all x1, x2 ∈ R,
if |x1 − x2| < δ, then |x21 − x22| < 1. But consider:

(x+ δ/2)2 − x2 = xδ +
δ2

4
> xδ.

Thus if x > 1
δ

then (x+δ/2)2−x2 > 1. This shows that there is no δ > 0 such
that any two real numbers with distance less than δ part have the property
that their squares are less than one unit apart.

In the above example, the domain was not a closed, bounded interval
[a, b]. This brings us to the following important result.

Theorem 1.7.10. (Uniform Continuity Theorem) Every continuous func-
tion f : [a, b]→ R is uniformly continuous.

Proof. Suppose not: then there exists ε > 0 such that for all n ∈ Z+, there
are xn, yn ∈ [a, b] with |xn−yn| < 1

n
but |f(xn)−f(yn)| ≥ ε. By the Bolzano-

Weierstrass Theorem, {xn} has a subseuqence {xnk} which is convergent, say
to L. Since xnk − ynk → 0 and ynk = xnk − (xnk − ynk) for all k ∈ Z+, also
ynk → L (a case of the Three Sequence Principle). Since f is continuous, we
have f(xnk)→ f(L) and f(ynk)→ f(L). Since

|f(xnk)− f(ynk)| ≤ |f(xnk)− f(L)|+ |f(ynk)− f(L)|,

so for sufficiently large k we have |f(xnk)− f(ynk)| < ε: contradiction.
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We will not make further use of the Uniform Continuity Theorem in this
course, but it plays a basic role in the theoretical underpinnings of calculus.
Most of all, it appears in the (most standard) proof that every continuous
function f : [a, b]→ R is Riemann integrable.
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EXERCISES 1.7

1. Let f(x) be a continuous function on the closed interval [a, b] and let
α be a real number between f(a) and f(b), i.e., f(a) < α < f(b) or
f(b) < α < f(a). Show that there is some value, c ∈ (a, b) such that
f(c) = α. (Hint: if f(a) < f(b) apply Theorem 1.7.6 to f(x)− α - make
sure you check all of the hypotheses.)

2. Prove that there is a real number x so that sin(x) = x− 1.

3. Use Theorem 1.7.6 to prove that every positive real number, r > 0, has
a square root. (Hint: Consider f(x) = x2 − r on a suitable interval.)

4. Assume that f is a continuous function on [0, 1] and that f(x) ∈ [0, 1]
for each x. Show that there is a c ∈ [0, 1] so that f(c) = c.

5. Suppose that f and g are continuous on [a, b] and that f(a) > g(a)
and g(b) > f(b). Prove that there is some number c ∈ (a, b) so that
f(c) = g(c).

6. a) Give an example of a continuous function, f, which is defined on the
open interval (0, 1) which is not bounded above.

b) Give an example of a continuous function, f, which defined on the open
interval (0, 1) and is bounded above, but does not achieve its maximum
on (0, 1). i.e., there is no number c ∈ (0, 1) satisfying f(c) ≥ f(x) for all
x ∈ (0, 1).

7. a) Give an example of a function, f, which is defined on the closed interval
[0, 1] but is not bounded above.

b) Give an example of a function, f , which is defined on the closed
interval [0, 1] and is bounded above, but does not achieve its maximum
on [0, 1].
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Chapter 2

Series

2.1 Introduction to Series

In common parlance the words series and sequence are essentially synonomous.
However, in mathematics the distinction between the two is that a series is
the sum of the terms of a sequence.

Definition 2.1.1. Let {an} be a real sequence and define a new sequence
{Sn} by the recursion relation

S1, = a1, ∀n ∈ Z+, Sn+1 = Sn + an+1.

The sequence {Sn} is called the sequence of partial sums of {an}.

Another way to think about Sn is that it the sum of the first n terms of
the sequence {an}, namely

Sn = a1 + a2 + ...+ an.

A shorthand form of writing this sum is by using the sigma notation:

Sn =
n∑
j=1

aj.

This is read as Sn equals the sum from j equals one to n of a sub j. We use
the subscript j on the terms aj (instead of n) because this is denoting an
arbitrary term in the sequence while n is being used to denote how far we
sum the sequence.

93
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Example 2.1.2. Using sigma notation, the sum 1 + 2 + 3 + 4 + 5 can be

written as
5∑
j=1

j. It can also be denoted
5∑

n=1

n, or
4∑

n=0

(n + 1). Similarly, the

sum
1

2
+

1

3
+

1

4
+

1

5
+

1

6

can be written as
6∑
j=2

1

j
, or

6∑
n=2

1

n
, or

5∑
n=1

1

n+ 1
. On the other hand, the sum

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n

can be written as
n∑
j=1

1

j
or

n∑
k=1

1

k
but can not be written as

n∑
n=1

1

n
.

Definition 2.1.3. Let {an} be a sequence and let {Sn} be the sequence
of partial sums of {an}. If {Sn} converges we say that {an} is summable. In
this case, we denote the limn→∞ Sn by

∞∑
j=1

aj.

.

Definition 2.1.4. The expression
∑∞

j=1 aj is called an infinite series
(whether or not the sequence {an} is summable). When we are given an
infinite series

∑∞
j=1 aj the sequence {an} is called the sequence of terms. If

the sequence of terms is summable, the infinite series is said to be convergent.
If it is not convergent it is said to diverge.

Remark 2.1.5. There is an ambiguity built into this terminology. In prac-
tice, when we write “the infinite series

∑∞
n=1 an” we could mean either the

sequence of partial sums {Sn} obtained from the sequence {an} or limn→∞ Sn.
Although from a strictly logical perspective this is unacceptable, in practice
it causes little to no confusion, and it is certainly not worth trying to adjust
this extremely widely used notation in order to fix it.

Example 2.1.6. Consider the sequence of terms given by

an =
1

n(n+ 1)
=

1

n
− 1

n+ 1
.
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Then

S1 = a1 = 1− 1

2
=

1

2
,

S2 = a1 + a2 = (1− 1

2
) + (

1

2
− 1

3
)

= 1 + (
1

2
− 1

2
)− 1

3

=
2

3
,

S3 = a1 + a2 + a3 = (1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
)

= 1 + (
1

2
− 1

2
) + (

1

3
− 1

3
)− 1

4

=
3

4
,

and so forth. Continuing this regrouping, we see that

Sn = a1 + a2 + · · ·+ an = (1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n
− 1

n+ 1
)

= 1 + (
1

2
− 1

2
) + (

1

3
− 1

3
) + · · ·+ (

1

n
− 1

n
)− 1

n+ 1

=
n

n+ 1
.

Therefore lim
n→∞

Sn = 1 and so
∞∑
n=1

1

n(n+ 1)
= 1.

Example 2.1.7. Let an = 1
2n
. Then

S1 = a1 =
1

2

S2 = a1 + a2 =
1

2
+

1

4
=

3

4

S3 = a1 + a2 + a3 =
3

4
+

1

8
=

7

8
,

and so forth. A straightforward induction argument shows that, in general,

Sn = 1− 1

2n
.
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Thus limSn = 1, and so
∞∑
n=1

1

2n
= 1.

Example 2.1.8. Let {bn} be a given sequence. We can build a sequence
{an} whose sequence of partial sums is given by {bn} in the following way:
Let a1 = b1 and for n > 1 let an = bn − bn−1. Then we have a1 + a2 =
b1 + (b2 − b1) = b2, a1 + a2 + a3 = b1 + (b2 − b1) + (b3 − b2) = b3, etc. Thus
the sequence {bn} converges if and only if the sequence {an} is summable.

The above example shows that a sequence is convergent if and only if a
related sequence is summable. Similarly, a sequence is summable if and only
if the sequence of partial sums converges. However it should be kept in mind
that the sequence given by an = 1/n converges but is not summable. On the
other hand we have

Proposition 2.1.9. (Nth Term Test)

If the sequence {an} is summable then an → 0.

Proof. Let {Sn} be the sequence of partial sums. We will give two proofs.
First Proof : By assumption there is S ∈ R such that Sn → S. Since
an = Sn − Sn−1, the algebra of limits gives

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

Second Proof: Since {Sn} is convergent, it is Cauchy: for all ε > 0, there
exists N ∈ N such that for all m,n ≥ N we have |Sm−Sn| < ε. In particular,
let n ≥ N and take m = n+ 1: thus

|an+1| = |Sn+1 − Sn| < ε.

Thus we have |an| < ε for all n > N , so an → 0.

Remark 2.1.10. The first proof seems easier, but the second proof is more
penetrating: we know that the Cauchy criterion is necessary and sufficient
for the sequence {Sn} to converge, but in passing from “for all m,n ≥ N we
have...” to “for n ≥ N and m = n + 1 we have...” we have discarded a lot,
so it is not terribly surprising that this weaker condition is necessary but no
longer sufficient for the sequence of partial sums to converge.



2.1. INTRODUCTION TO SERIES 97

As with sequences, convergent series behave well with respect to sums
and multiplication by a fixed real number (scalar multiplication). Of course
multiplication of two series is more complicated, since even for finite sums,
the product of two sums is not simply the sum of the products. We will
return to a discussion of products of series in section 2.3. For now we state
the result for sums and scalar multiplication of series, leaving the proofs to
Exercises 2.1.12 and 2.1.13.

Proposition 2.1.11. Let {an} and {bn} be summable sequences, and let
r ∈ R. Define two new sequences by cn = an + bn and dn = ran. Then {cn}
and {dn} are both summable and

∞∑
n=1

cn =
∞∑
n=1

an +
∞∑
n=1

bn

∞∑
n=1

dn = r
∞∑
n=1

an.

We conclude this section with an uber-example: namely, an example which
we will use to build large parts of the general theory.

A sequence {an} of nonzero real numbers is geometric if:

∀n ∈ Z+,
an+2

an+1

=
an+1

an
.

Although we should (as ever) be flexible about it, it is convenient to start
geometric sequences at n = 0. In Exercise 17 you are asked to show that for
a geometric sequence there are unique real numbers C and r such that

∀n ∈ N, an = Crn.

Indeed, we will let slip now that r is the ratio of any two consecutive terms of
the sequence; we will call it the geometric ratio. The convergence of geometric
sequences was discussed in Proposition 1.4.16. We are now interested in the
convergence of geometric series

∑∞
n=0Cr

n. This is a different question, but
in fact Propositiopn 1.4.16 is highly relevant.

Proposition 2.1.12. The geometric series
∑∞

n=0 r
n converges if and only

if |r| < 1. In the case that |r| < 1 we have

∞∑
n=0

rn =
1

1− r
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Proof. Step 1: By the Nth Term Test (Proposition 2.1.9), if the series
∑∞

n=0 r
n

converges then rn → 0 By Proposition 1.4.16 we have rn → 0 if and only if
|r| < 1. So if |r| ≥ 1 then the series diverges.
Step 2: Let r ∈ R \ {1}; we will give an explicit formula for

Sn = 1 + r + . . .+ rn.

Indeed, we have
rSn = r + r2 + . . .+ rn + rn+1,

and when we subtract most of the terms cancel, leaving

(r − 1)Sn = rn+1 − 1.

Since r 6= 1, r − 1 6= 0, and we may divide by it to get

Sn =
rn+1 − 1

r − 1
.

(By the way, no problem about r = 1: 1 + 11 + . . .+ 1n = n+ 1.)
Step 3: Now suppose |r| < 1. Again, Proposition 1.4.16 gives rn → 0. Thus

lim
n→∞

Sn = lim
n→∞

rn+1 − 1

r − 1
=

0− 1

r − 1
=

1

1− r
.

Example 2.1.13.

a) The sum
∞∑
n=1

1

5n
equals

1/5

1− 1/5
=

1/5

4/5
= 1/4.

b) The sum
∞∑
n=1

3

5n
equals 3

∞∑
n=1

1

5n
=

3

4
.

c) The sum
∞∑
n=3

1

5n
equals

(
∞∑
n=1

1

5n

)
− (

1

5
+

1

52
) = 1/4− 1/5− 1/25 = 1/100.

Exercise 18 gives a formula for the sum of a more general geometric series∑∞
n=mCr

n. (The method of the above example may be helpful there...)

EXERCISES 2.1
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1. Consider the sequence given by an = 1
2n

. Compute the first five partial
sums of this sequence.

2. Rewrite the following sums using sigma notation:

a) (1 + 4 + 9 + 16 + 25 + 36 + 49)

b) (5 + 6 + 7 + 8 + 9 + 10)

c) (1
2

+ 1
4

+ 1
6

+ 1
8

+ ...+ 1
28

)

d) (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2)

3. Evaluate the following finite sums:

a)
n∑
k=1

1 b)
n∑
k=1

1/n c)
n∑
k=1

k

d)
2n∑
k=1

k e.)
n∑
k=1

k2

4. Consider the sequence whose nth term is an = 1
(n+1)2

− 1
(n+2)2

, n ∈ Z+.
Compute the first five partial sums of this sequence. What is the general
formula for the nth partial sum? Prove this formula by induction and
prove that the sequence is summable.

5. Consider the sequence whose nth term is an = 1
(n+2)

− 1
(n+3)

, n ∈ Z+.
Compute the first five partial sums of this sequence. What is the general
formula for the nth partial sum? Prove this formula by induction and
prove that the sequence is summable.

6. Consider the sequence whose nth term is an = 1√
n+1
− 1√

n+2
, n ∈ Z+.

Prove that this sequence is summable.

7. Let Sn =
n∑
j=1

1

j2
. Prove by induction that Sn ≤ 2− 1

n
. (Hint: Prove that

− 1
k

+ 1
(k+1)2

= − 1
k+1
− 1

k(k+1)2
.)

8. Let Sn =
n∑
j=1

1

j3
. Prove by induction that Sn ≤ 2 − 1

n2 . Conclude that
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∞∑
j=1

1

j3
converges.

9. Prove that the sequence given by an = n
n+1

is not summable.

10. Find a sequence {an} whose nth partial sum is n−1
n+1

.

11. Find a sequence {an} whose nth partial sum is the nth term in the Fi-
bonacci sequence.

12. Let {an} be a summable sequence and r a real number. Define a new
sequence {bn} by bn = ran. Prove that {bn} is summable and that

∞∑
n=1

bn = r
∞∑
n=1

an.

13. Let {an} and {bn} be summable sequences. Define a new sequence by
cn = an + bn. Prove that the sequence {cn} is summable and that

∞∑
n=1

cn =
∞∑
n=1

an +
∞∑
n=1

bn.

(See exercise 1.5.2.)

14. Assume that the sequence {an} is summable and that the sequence {bn}
is not summable. Prove that the sequence given by cn = an + bn is not
summable. (See exercise 1.5.3.)

15. Evaluate the following sums:

a)
∑∞

n=1
1
3n

b)
∑∞

n=3
1
3n

c)
∑∞

n=1
1

3n+2

d)
∑∞

n=1
2
3n

e.)
∑∞

n=1
9

10n

f.)
∑∞

n=1

(
1
3n

+ 3
5n

)
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16. A rubber ball bounces 1/3 of the height from which it falls. If it is
dropped from 10 feet and allowed to continue bouncing, how far does it
travel?

17. Let {an}∞n=0 be a geometric sequence: recall this means that for all n ∈ N
we have an 6= 0 and an+2

an+1
= an+1

an
. Show that for every geometric sequence

there are unique real numbers r and C such that for all n ∈ N we have

an = Crn.

18. Let C ∈ R and r ∈ R \ {1}.
a) For 0 ≤ m ≤ n, show that

n∑
k=m

Crk =
C(rm − rn+1)

1− r
.

b) Suppose |r| < 1 and m ∈ N. Show:
∞∑
n=m

Crn =
Crm

1− r
.

c) In part b), would it make sense to take m to be a negative integer?

19. For n ∈ Z+, let Hn = 1
1

+ 1
2

+ . . .+ 1
n
, the nth harmonic number.

a) Observe that H1 = 1 ∈ Z, and compute that for all 2 ≤ n ≤ 10 we
have Hn ∈ Q \ Z.
b) Show that for all n ≥ 2, we have Hn ∈ Q \ Z.

20. S. Abbott calls a real sequence {an}∞n=1 pseudo-Cauchy if

lim
n→∞

an+1 − an = 0.

a) Show: every Cauchy sequence is pseudo-Cauchy.
b) Show: the sequence an = log n is pseudo-Cauchy, increasing and not
Cauchy.
c) Prove or disprove: a bounded pseudo-Cauchy sequence is a Cauchy
sequence.

21. Let P (x)
Q(x)

be a rational function. The polynomial Q(x) has only finitely

many roots, so we may choose N ∈ Z+ such that Q(n) 6= 0 for all n ≥ N .
Show: if the degree of P is greater than or equal to the degree of Q, then∑∞

n=N
P (n)
Q(n)

diverges.
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2.2 Series with Nonnegative Terms

In this section we will discuss tests for convergence of series with nonnegative
terms. Similar results are true for sequences with nonpositive terms, but we
won’t dwell on that here. In the next section we will study series which may
have some negative and some positive terms.

2.2.1 O’Connor on Series

When all the terms an are non-negative, there is no oscillation in the sequence
of partial sums. As we saw in Chapter 1, this simplifies things considerably.

Proposition 2.2.1. Let {an} be a sequence of non-negative real numbers.
a) If the sequence of partial sums Sn = a1 + . . . + an is bounded, then the
series

∑∞
n=1 an converges.

b) If the sequence of partial sums Sn = a1 + . . . + an is unbounded, then the
series

∑∞
n=1 an diverges to ∞.

Proof. Indeed, since an ≥ 0 for all n the sequence Sn = a1 + . . . a + n is
increasing. As we saw in Chapter 1 (using Cauchy’s Property of Complete-
ness), a bounded increasing sequence converges, and an unbounded increasing
sequence diverges to infinity.

2.2.2 Comparison and Limit Comparison

Proposition 2.2.2. (Comparison Test) Let {an} and {bn} be sequences such
that 0 ≤ an ≤ bn for all n ∈ Z+.
a) We have

∞∑
n=1

an ≤
∞∑
n=1

bn.

In particular:
b) If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

c) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Proof. First we observe that in writing
∑∞

n=1 an ≤
∑∞

n=1 bn for series that
may not converge, we are being slightly abusive with notation...however in
a way which is very convenient. Namely, we introduce the convention that
x ≤ ∞ for all x ∈ R and also ∞ ≤∞.
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a) For n ∈ Z+, let Sn = a1 + . . .+an and Tn = b1 + . . .+bn. Since an ≤ bn
for all n, we have Sn ≤ Tn for all n. Suppose that limn→∞ Tn = T <∞, then
T is an upper bound for each Sn, so limn→∞ Sn ≤ T <∞. If limn→∞ Tn =∞,
then

∑∞
n=1 an ≤

∑∞
n=1 bn is the content-free assertion that

∑∞
n=1 an ≤ ∞.

b) This follows immediately from part a).
c) This is the contrapositive of part a), so is logically equivalent to it.

Example 2.2.3. Consider the series
∑∞

n=1
1
n2 . A bit of experimentation

suggests (correctly!) that there is no simple formula for the nth partial sum

Sn =
1

12
+

1

22
+ . . .+

1

n2
.

However, we can replace each an = 1
n2 with a slightly larger bn such that

there is a simple formula for

Tn = b1 + . . .+ bn

and limn→∞ Tn <∞. Then we’ll get
∑∞

n=1
1
n2 <∞. Here goes: take

b1 = 1, ∀n ≥ 2, bn =
1

(n− 1)n
.

Then a1 = 1, while for all n ≥ 2, since (n− 1)n < n2, we have

bn =
1

(n− 1)n
<

1

n2
= an.

Moreover, for all n ≥ 2 we have

Tn = 1 +
1

1 · 2
+

1

2 · 3
+ . . .+

1

(n− 1)(n)

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . .+

(
1

n− 1
− 1

n

)
= 1 + 1− 1

n
= 2− 1

n
.

Therefore we have
∞∑
n=1

bn = lim
n→∞

2− 1

n
= 2,

so by the Comparison Test we have

∞∑
n=1

1

n2
≤

∞∑
n=1

bn = 2.
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Remark 2.2.4. Note well that this argument shows the convergence of
∑∞

n=1
1
n2

without computing the sum. However, it does give us some estimates on the
sum: it lies between 0 and 2. In fact it is possible to adapt the method to
compute the sum of the series to arbitrary accuracy: e.g. we have

S100 =
100∑
n=1

1

n2
≤

∞∑
n=1

1

n2
≤ S100 +

∞∑
n=101

bn

= S100+
1

100 · 101
+

1

101 · 102
+. . . = S100+

(
1

100
− 1

101

)
+

(
1

101
− 1

102

)
+. . .

= S100 +
1

100
.

We may compute that

S100 = 1.63498 . . .

so

1.63498 <
∞∑
n=1

1

n2
< 1.64498 . . .

and we have computed the infinite series to (roughly) two decimal places. We
could continue in this manner if we wanted.

However, these sort of approximations will not tell us the exact sum of
the series. The 18th century mathematician L. Euler figured this out:

∞∑
n=1

1

n2
=
π2

6
= 1.644934 . . .

Over the centuries many proofs have been given, most using somewhat more
advanced mathematics (e.g. complex variables or Fourier series). An un-
usually simple, elementary derivation was given rather recently by D. Daners
[Da12]. An exposition of Daners’s proof may also be found in [Cl-HC, §14.1].

Remark 2.2.5. Altering a finite number of terms of a series does not affect
whether or not the series converges, thus the above tests for convergence or
divergence are valid as long as the inequalities hold eventually. Thus, to apply
the above theorem, it is enough to check that there is an N ∈ Z+ so that the
inequality 0 ≤ an ≤ bn holds for all n > N .



2.2. SERIES WITH NONNEGATIVE TERMS 105

Theorem 2.2.6. (Limit Comparison Test) Let
∑∞

n=1 an and
∑∞

n=1 bn two
series. Suppose that there exists N ∈ Z+ and M ∈ R≥0 such that for all
n ≥ N , 0 ≤ an ≤Mbn. Then if

∑∞
n=1 bn converges, so does

∑∞
n=1 an.

Proof. Since we may add, remove or change finitely many terms without
disturbing the convergence of an infinite series, we may as well assume that
0 ≤ an ≤Mbn holds for all n ∈ Z+. Now apply the Comparison Test:

∞∑
n=1

an ≤
∞∑
n=1

Mbn = M
∞∑
n=1

bn <∞.

Corollary 2.2.7. (Calculus Student’s Limit Comparison Test)
Let

∑
n an and

∑
n bn be two series. Suppose that for all sufficiently large n

both an and bn are positive and limn→∞
an
bn

= L ∈ [0,∞].
a) If 0 < L < ∞, the series

∑
n an and

∑
n bn converge or diverge together

(i.e., either both convege or both diverge).
b) If L =∞ and

∑
n an converges, then

∑
n bn converges.

c) If L = 0 and
∑

n bn converges, then
∑

n an converges.

Proof. a) If 0 < L < ∞, then there exists N ∈ Z+ such that 0 < L
2
bn ≤

an ≤ (2L)bn. Applying Theorem 2.2.6 to the second inequality, we get that if∑
n bn converges, then

∑
n an converges. The first inequality is equivalent to

0 < bn ≤ 2
L
an for all n ≥ N , and applying Theorem 2.2.6 to this we get that

if
∑

n an converges, then
∑

n bn converges. So the two series
∑

n an,
∑

n bn
converge or diverge together.
b) If L =∞, then there exists N ∈ Z+ such that for all n ≥ N , an ≥ bn ≥ 0.
Applying Theorem 2.2.6 to this we get that if

∑
n an converges, then

∑
n bn

converges.
c) This case is left to the reader as an exercise.

The reason behind the nomenclature here is that calculus students are (some-
how) conversant with limits without being conversant with the inequalities
that underlie them. This gives the Limit Comparison Test a certain allure
in calculus class: in very basic situations, it is easier to apply. For instance,
it allows us to see that all three series1

∞∑
n=2

1

n2 + 1
,

∞∑
n=2

1

n2
,
∞∑
n=2

1

n2 − 1

1We start the summation at n = 2 this time because 1
n2−1 is not defined when n = 1.
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converge or diverge together. Since

n2 − 1 < n2 < n2 + 1,

we have
1

n2 + 1
<

1

n2
<

1

n2 − 1
,

and the Comparison Test tells us

∞∑
n=2

1

n2 + 1
≤

∞∑
n=2

1

n2
≤

∞∑
n=2

1

n2 − 1
.

By Example 2.2.3 we know that the middle series,
∑∞

n=2
1
n2 , converges, so

straight out of the box the Comparison Test tells us that
∑∞

n=2
1

n2+1
converges

but it doesn’t tell us that
∑∞

n=2
1

n2−1 converges because the inequality goes
the wrong way. Since

lim
n→∞

1
n2

1
n2−1

= 1,

the calculus student is very happy to apply the Limit Comparison test to
deduce the convergence of

∑∞
n=2

1
n2−n from the convergence of

∑∞
n=2

1
n2 .

However, the above proofs make clear that if you look inside the shiny box of
the Limit Comparison Test, you find the dusty, but trusty, Comparison Test.
Indeed, to someone who has worked with inequalities enough to show conver-
gence of sequences from the definition, it is almost obvious that n2 − 1 > n2

2

eventually, so 1
n2−1 <

2
n2 eventually, so the Comparison Test really does work

here provided you introduce the “slack” of a constant multiple. As we saw
above, this is what’s happening in general: when we know that a series with
non-negative terms grows no faster than a constant times a convergent series
with non-negative terms, it too converges.

2.2.3 P -series, Condensation and Integration

Example 2.2.8. We will now consider an important family of series involv-
ing a parameter. Namely, for p ∈ R, we consider the p-series

∑∞
n=1

1
np

. To
be sure, for each value of p we get a different series, and we are interested in
how the convergence/divergence of the series depends on p.
a) Notice that if p1 < p2, then for all n ∈ Z+ we have np1 ≤ np2. (For n = 1,
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we have 1p = 1 for all p, so equality holds. We use the fact that for all
a > 1, the exponential function x 7→ ax is increasing: indeed, its derivative
is (log a)ax is positive for all x ∈ R.) It follows that for all n ∈ Z+ we have

p1 < p2 =⇒ 0 ≤ 1

np2
≤ 1

np1

and thus
∞∑
n=1

1

np2
≤

∞∑
n=1

1

np1
.

It follows that if the p-series converges for a given value of p, it also converges
for all greater values. Contrapositively (thus equivalently), if the p-series
diverges for a given value of p, it also diverges for all smaller values.
b) If p = 0 then 1

np
= 1 for all n, so the p-series is just

∑∞
n=1 1 =∞. Along

with part a), we see that the p-series diverges for all p ≤ 0. In this range we
have 1

np
6→ 0, so divergence also follows from the N th Term Test.

c) Example 2.2.3 treats the case p = 2 and shows that
∑∞

n=1
1
n2 ≤ 2 < ∞.

By part a), it follows that for all p > 2 we have

∞∑
n=1

1

np
≤ 2 <∞.

This leaves us in doubt of the behavior of the p-series for p ∈ (0, 2).

The most famous p-series is when p = 1. We call the series
∑∞

n=1
1
n

the
harmonic series.2

Proposition 2.2.9. The harmonic series diverges:

∞∑
n=1

1

n
=∞.

Proof. The following brilliant and elementary argument due to Cauchy.
Consider the terms arranged as follows:(

1

1

)
+

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ . . . ,

2Some people call a p-series a hyper-harmonic series. But if that means anything
in particular, I am not aware of it.
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i.e., we group the terms in blocks of length 2k. Now observe that the power
of 1

2
which beings each block is larger than every term in the preceding block,

so if we replaced every term in the current block the the first term in the
next block, we would only decrease the sum of the series. But this latter sum
is much easier to deal with:
∞∑
n=1

1

n
≥
(

1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . . =

1

2
+

1

2
+

1

2
+ . . . =∞.

Therefore the harmonic series
∑∞

n=1 diverges.

Example 2.2.10. Combining Proposition 2.2.9 with our comparison of p-
series, we now know that

∑∞
n=1

1
np

=∞ for all p ≤ 1. Thus we have whittled
down the range of p for which we do not yet know the convergence of the
p-series to p ∈ (1, 2).

The apparently ad hoc argument used to prove the divergence of the harmonic
series can be adapted to give the following useful test.

Theorem 2.2.11. (Cauchy Condensation Test) Let
∑∞

n=1 an be an infinite
series such that an ≥ an+1 ≥ 0 for all n ∈ N. Then:
a) We have

∑∞
n=1 an ≤

∑∞
n=0 2na2n ≤ 2

∑∞
n=1 an.

b) Thus the series
∑

n an converges iff the condensed series
∑

n 2na2n
converges.

Proof. We have

∞∑
n=1

an = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + . . .

≤ a1 + a2 + a2 + a4 + a4 + a4 + a4 + 8a8 + . . . =
∞∑
n=0

2na2n

= (a1+a2)+(a2+a4+a4+a4)+(a4+a8+a8+a8+a8+a8+a8+a8)+(a8+. . .)

≤ (a1+a1)+(a2+a2+a3+a3)+(a4+a4+a5+a5+a6+a6+a7+a7)+(a8+. . .)

= 2
∞∑
n=1

an.

This establishes part a), and part b) follows immediately.
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The Cauchy Condensation Test is perhaps my favorite convergence test.
First, it is an interesting result in its own right: it shows that under the
given hypotheses, in order to determine whether a series converges we need
to know only a very sparse subsequence of the sequence of terms – whatever
is happening in between a2n and a2n+1 is immatieral, so long as the sequence
remains decreasing. Of course without the monotonicity hpyothesis, nothing
like this could hold.

On the other hand, it may be less clear that the Condensation Test is
of any practical use: isn’t the condensed series

∑
n 2na2n more complicated

than the original series
∑

n an? Strangely, though the notation looks that
way, in fact quite often the opposite is the case: passing from the given series
to the condensed series preserves the convergence/divergence but tends to
exchange subtly convergent/divergent series for more obviously (and more
rapidly) converging/diverging series.

As a first example of this, we will finish off the p-series.

Theorem 2.2.12. The p-series
∑∞

n=1
1
np

converges if and only if p > 1.

Proof. Step 1: First we recall that if p < 0, then 1
np
→ ∞. Infinity is not

zero, so
∑∞

n=1
1
np

diverges by the Nth term test.
Step 2: Now suppose that p ≥ 0, so the sequence of terms 1

np
is positive and

decreasing. By the Cauchy Condensation Test, the p-series converges iff the
following series converges:

∞∑
n=1

2n(2n)−p =
∞∑
n=1

(21−p)n.

Thus condensation has replaced the p-series by our best friend: a geometric
series with r = 21−p. We have convergence if 21−p = |21−p| < 1; this happens
if and only if 1− p < 0, so if and only if p > 1. Done!

Example 2.2.13. Consider the series
∑∞

n=2
1

n logn
. Since an = 1

n logn
is

positive and decreasing, the Condensation Test applies, and the convergence
of the series is equivalent to the convergence of∑

n

2n

2n log 2n
=

1

log 2

∑
n

1

n
=∞.

Thus
∑∞

n=2
1

n logn
=∞. A few comments:

(i) Since our proof the divergence of the harmonic series itself used the Con-
densation Test, really we applied the Condensation Test twice, simplifying
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the series each time.
(ii) This example shows that the issue of convergence/divergence can be quite
subtle: for any ε > 0, we know that

∑
n

1
nnε

< ∞, since it is a p-series with
p = 1+ε > 1. But log n grows more slowly than nε, and indeed slowly enough
so that replacing nε with log n converts a convergent series to a divergent one.

For the next test we need to recall the concept of improper integrals from
calculus. Let f : [1,∞) → R+. be continuous. Recall that we say that the

improper integral
∫∞
1
f(x) dx converges if limb→∞

∫ b
1
f(x) dx converges. You

should think of an improper integral as being a continuous analogue of an
infinite series. More precisely, for an infinite series we start with a function
a : Z+ → R, and then

∑∞
n=1 an “adds up the values of the function”, whereas

for an improper integral we start with a function f : [1,∞) → R and then
the improper integral

∫∞
1
f(x)dx “adds up the values of the function” (in a

way which is somewhat more complicated to define).
“Pushing an analogy” is one of the things that mathematicians really like

to do. When you know a result for improper integrals, you can ask whether
it is true for infinite series. When you know a result for infinite series, you
can ask whether it is true for improper integrals. The answer will not always
be yes, but it will be interesting either way.

As one instance of this, we observe that if f : [1,∞)→ [0,∞) then∫ ∞
1

f(t)d(t) = lim
x→∞

F (x), where F (x) =

∫ x

1

f(t)dt.

As is familiar from calculus, the function F (x) is increasing – since the func-
tion never dips below the x-axis, the integral represents area rather than
signed area, and so as we push the upper limit of integration x from left to
right we accumulate more area. In the setting of infinite series, when an ≥ 0
for all n ∈ Z+ we have that

∑∞
n=1 an is either convergent or divergent to

infinity, and this followed from O’Connor’s Property of Completeness. So
this raises the question: if F : [1,∞)→ R is an increasing function, is it true
that limx→∞ F (x) exists or limx→∞F (x) =∞? Yes, and the natural proof
uses Dedekind’s Property of Completeness. We leave this as an exercise.

The following result is more than an analogy between infinite series and
improper integrals: it gives a situation in which one can directly deduce
convergence of series from integrals and conversely.

Theorem 2.2.14. (Integral Test) Let f : [1,∞) → (0,∞) be a decreasing



2.2. SERIES WITH NONNEGATIVE TERMS 111

function, and for n ∈ Z+ put an = f(n). Then

∞∑
n=2

an ≤
∫ ∞
1

f(x)dx ≤
∞∑
n=1

an.

Thus we have
∑

n an <∞ if and only if
∫∞
1
f(x)dx <∞.

Proof. They say (don’t they?) that in mathematics, a picture is never a
proof. I agree...but sometimes the picture immediately generates a proof,
and this is one of those times. So please draw a picture of a function y = f(x)
over the interval [1, N+1] and then subdivide [1, N+1] into unit subintervals
[n, n + 1]. Now compare the integral ∈N1 f(x)dx with the upper and lower
Riemann sums associated to the partition {1, 2, . . . , N,N + 1}. Since f is
decreasing, we see immediately that the lower sum is

∑N+1
n=2 an and the upper

sum is
∑N

n=1 an, so that

N+1∑
n=2

an ≤
∫ N

1

f(x)dx ≤
N∑
n=1

an.

Taking limits as N →∞, the result follows.

Remark 2.2.15. a) The Integral Test is due to Maclaurin3 [Ma42] and later
in more modern form to A.L. Cauchy [Ca89]. I don’t know why it is tradi-
tional to attach Cauchy’s name to the Condensation Test and not the Integral
Test, but I have preserved the tradition nevetheless.
b) In calculus one mostly considers integrals of continuous functions. In The-
orem 2.2.14 we assumed only that f was positive and decreasing. In practice
we will apply the Integral Test when we can use the Fundamental Theorem of
Calculus to evaluate the integral, and for this we will need f to be continuous.
Moreover, in fact it is the case that every monotone function f : [a, b] → R
is integrable [Cl-HC, Thm. 8.13]. So Theorem 2.2.14 is correctly stated.
c) It happens that, at least among the series which arise naturally in calculus
and undergraduate analysis, it is usually the case that the Condensation Test
can be successfully applied to determine convergence / divergence of a series
iff the Integral Test can be successfully applied. At some point I decided to
look for a direct explanation, i.e., a general link between condensation and
improper integrals. I haven’t found one!

3Colin Maclaurin, 1698-1746
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Example 2.2.16. Let us use the Integral Test to determine the set of p >
0 such that

∑
n

1
np

converges. Indeed the series converges iff the improper
integral

∫∞
1

dx
xp

is finite. If p 6= 1, then we have∫ ∞
1

dx

xp
=

x1−p

1− p

∣∣∣∣x=∞
x=1

.

The upper limit is 0 if p− 1 < 0 ⇐⇒ p > 1 and is ∞ if p < 1. Finally,∫ ∞
1

dx

x
= log x

∣∣∣∣∞
x=1

=∞.

So, once again, the p-series diverges iff p > 1.

Example 2.2.17. We revisit the series
∑∞

n=2
1

n logn
. We have∫ b

2

1

x log x
dx = log log x)|b2 = log log b− log log 2,

we have∫ ∞
2

dx

x log x
= lim

b→∞

∫ b

2

dx

x log x
= lim

b→∞
log log b− log log 2 =∞.

Thus by the Integral Test we deduce once again that

∞∑
n=2

1

n log n
=∞.

2.2.4 Euler Constants

Theorem 2.2.18. (Maclaurin-Cauchy) Let f : [1,∞)→ R be positive, con-
tinuous and decreasing, with limx→∞ f(x) = 0. Then we may define the
Euler constant

γf := lim
N→∞

(
N∑
n=1

f(n)−
∫ N

1

f(x)dx

)
.

In other words, the above limit exists.
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Proof. Put

aN =
N∑
n=1

f(n)−
∫ N

1

f(x)dx,

so our task is to show that the sequence {aN} converges. As in the integral
test we have that for all n ∈ Z+

f(n+ 1) ≤
∫ n+1

n

f(x)dx ≤ f(n). (2.1)

Using the second inequality in (2.1) we get

aN = f(N) +
N−1∑
n=1

f(n)−
∫ N

1

f(x)dx ≥
N∑
n=1

(f(n)−
∫ n+1

n

f(x)dx) ≥ 0,

and the first inequality in (2.1) we get

aN+1 − aN = f(N + 1)−
∫ N+1

N

f(x)dx ≤ 0.

Thus {aN} is decreasing and bounded below by 0, so it converges.

Example 2.2.19. Let f(x) = 1
x
. Then

γ = lim
n→∞

γN = lim
N→∞

N∑
n=1

f(n)−
∫ N

1

f(x)dx

is the Euler-Mascheroni constant. In the notation of the proof one has
a1 = 1 > a2 = 1 + 1/2− log 2 ≈ 0.806 > a3 = 1 + 1/2 + 1/3− log 3 ≈ 0.734,
and so forth. My laptop computer took a couple of minutes to calculate (by
sheer brute force) that

a5×104 = 0.5772256648681995272745120903 . . .

This shows well the limits of brute force calculation even with modern com-
puting power since this is correct only to the first nine decimal places: in
fact the tenth decimal digit of γ is 9. In fact in 1736 Euler correctly calcu-
lated the first 15 decimal digits of γ, whereas in 1790 Lorenzo Mascheroni
correctly calculated the first 19 decimal digits (while incorrectly calculating
several more). As of 2009, 29,844,489,545 digits of γ have been computed,
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by Alexander J. Yee and Raymond Chan.
The constant γ in fact plays a prominent role in classical analysis and

number theory: it tends to show in asymptotic formulas in the darndest
places. For instance, for a positive integer n, let ϕ(n) be the number of
integers k with 1 ≤ k ≤ n such that no prime number p simultaneously di-
vides both k and n. (The classical name for ϕ is the totient function, but
nowadays most people seem to call it the “Euler phi function”.) It is not so
hard to see that limn→∞ ϕ(n), but function is somewhat irregular (i.e., far
from being monotone) and it is of great interest to give precise lower bounds.
The best lower bound I know is that for all n > 2,

ϕ(n) >
n

eγ log log n+ 3
log logn

. (2.2)

Note that directly from the definition we have ϕ(n) ≤ n. On the other hand,
taking n to be a product of increasingly many distinct primes, one sees that
lim infn→∞

ϕ(n)
n

= 0, i.e., ϕ cannot be bounded below by Cn for any positive
constant n. Given these two facts, (2.2) shows that the discrepancy between
ϕ(n) and n is very subtle indeed.

Remark 2.2.20. Whether γ is rational or irrational is unknown. It might
be interesting to explore ir/rationality results of other Euler constants γf .
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EXERCISES 2.2

1. Determine whether the series converges or diverges. Give reasons.

a)
∑∞

n=1
1

n2+1
b)
∑∞

n=1
1

n3+1

c)
∑∞

n=1
n+1
n2+1

d)
∑∞

n=1
n+1
n3+1

e.)
∑∞

n=1

(
1

n2+1

)n
f.)
∑∞

n=1

(
5
3

)n
g.)
∑∞

n=1

(
5
3

)−n
h.)

∑∞
n=1

1√
n2+1

i.)
∑∞

n=1
logn
n2+1

j.)
∑∞

n=1

(
1
n

)1/2
k.)

∑∞
n=1 n2−n  l.)

∑∞
n=1(n+ 1)−1/5

2. Let
∑
n

an be a series of nonnegative terms. Show that if
∑
n

an converges

then
∑
n

a2n converges also.

3. Give an example of a divergent series whose sequence of partial sums is
bounded.

4. a) Show that any series of the form
∑∞

n=1
dn
10n
, with

dn ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, is convergent. (Hint: dn
10n
≤ 9

10n
.)

b) Given x ∈ [0, 1) define dn recursively as follows: First, notice that
0 ≤ 10x < 10 so we can choose an integer d1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
with

d1 ≤ 10x < d1 + 1.

Notice that this is equivalent to

0 ≤ 10(x− d1
10

) < 1.

Now, as in the first step, since 10(x− d1
10

) is in the interval [0, 1), we can
choose d2 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} so that

d2 ≤ 10(10(x− d1
10

)) < d2 + 1.

This can be rewritten as

0 ≤ 100(x− d1
10
− d2

100
) < 1.
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Continuing this process, show by induction that we can find
dn ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} so that

0 ≤ 10n(x− d1
10
− d2

100
− · · · − dn

10n
) < 1.

c) With the dn’s defined as in part b) show that the series
∑∞

n=1
dn
10n

converges to x.

Remark: This exercise shows that all real numbers have a decimal
expansion.

5. This exercise presents a method to use the Condensation Test to approx-
imate p-series to arbitrary accuracy.
a) Let N ∈ N. Show that under the hypotheses of the Condensation
Test we have

∞∑
n=2N+1

an ≤
∞∑
n=0

2na2n+N .

b) Use part a) to show that for all p > 1 we have

2N∑
n=1

1

np
≤

∞∑
n=1

1

np
≤

2N∑
n=1

1

np
+

1

2Np(1− 21−p)
.

6. Let F : [1,∞) → R be increasing. Show: either limx→∞ F (x) = L ∈ R
or limx→∞ F (x) =∞.
(Hint: use Dedekind’s Property of Completeness.)

7. Let P (x) be a polynomial of degree A and Q(x) be a polynomial of degree
B. Let N ∈ Z+ be such that for all n ≥ N we have Q(n) 6= 0. Show:

the series
∑∞

n=N
P (n)
Q(n)

converges iff B − A ≥ 2.

8. Determine whether each of the following series converges or diverges.
a)
∑∞

n=1 sin( 1
n2 ).

b)
∑∞

n=1 cos( 1
n2 ).
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2.3 Series with Terms of Both Signs

The methods that we developed for studying series with non-negative terms
– especially, the use of O’Conor’s Property of Completeness that reduce the
question to a simple dichotomy: is the sequence of partial sums bounded
or not? – carry over immediately to series

∑
n an with an ≤ 0 for all n.

Moreover, if we have only finitely many positive terms or only finitely many
negative terms, then we may reduce the question of convergence to that of a
series with non-negative terms or a series with non-positive terms.

So the essentially new case is that in which we have infinitely many postive
terms and infinitely many negative terms. In the most important application
– to power series – this will in fact occur very frequently. As a simple example,
later we will show that

∞∑
n=0

(−1)n

n!
= 1− 1

1
+

1

2
− 1

6
+

1

24
− . . . =

1

e
. (2.3)

2.3.1 Absolute Convergence

Certainly the most simple-minded way to deal with terms of varying signs is
to make all the terms non-negative by applying the absolute value. Namely,
instead of considering the given series∑

n

an

we may consider the absolute series∑
n

|an|.

In (2.3) above, this would have us replace
∑∞

n=0
(−1)n
n!

by
∑∞

n=0
1
n!

. It’s no
problem to see that the absolute series converges: we have

∀n ≥ 2, n! = n(n− 1) · · · 3 · 2 · 1 ≥ 2 · 2 · · · 2 · 1 = 2n−1

and
0! = 1 ≥ 20−1, 1! = 1 = 21−1,

so 1
n!
≤ 1

2n−1 = 2
2n

for all n ∈ N and thus

∞∑
n=0

1

n!
≤

∞∑
n=0

2

2n
= 3.
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The question of course is: what does the convergence of the absolute series∑∞
n=0

1
n!

have to do with the convergence of the original series
∑∞

n=0
(−1)n
n!

?!?
The triangle inequality shows that the partial sums of the original series are
bounded in magnitude by the partial sums of the absolute series...but since
we need to have non-negative terms in order to apply the Comparison Test,
this is certainly not convincing. The following result comes to the rescue.

Proposition 2.3.1. Let
∑

n an be a real series. If the absolute series
∑

n |an|
converges, then so does

∑
n an.

Proof. We shall give two proofs of this important result.
First Proof : Consider the three series

∑
n an,

∑
n |an| and

∑
n an+ |an|. By

hypothesis,
∑

n |an| converges. But we claim that this implies that
∑

n an +
|an| converges as well. Indeed, consider the expression an + |an|: it is equal
to 2an = 2|an| when an is non-negative and 0 when an is negative. So the
series

∑
n an + |an| has non-negative terms and∑

n

an + |an| ≤
∑
n

2|an| <∞,

so
∑

n an + |an| converges by the Comparison Test. By the Three Series
Principle,

∑
n an converges.

Second Proof : The above argument is clever – maybe too clever! Let’s try
something more fundamental. By Cauchy’s Property of Completeness, the
sequence of partial sums of the absolute series is a Cauchy sequence. Just by
applying the triangle inequality, we’ll see that the sequence of partial sums of
the original series is also Cauchy, hence convergent. Here goes: since

∑
n |an|

converges, for every ε > 0 there exists N ∈ Z+ such that for all n ≥ m ≥ N ,
we have

∑n
k=m |ak| < ε. Therefore∣∣∣∣ n∑

k=m

ak

∣∣∣∣ ≤ n∑
k=m

|ak| < ε,

and
∑

n an converges by the Cauchy criterion.

Proposition 2.3.1 justifies the following new terminology: we say that a series∑
n an is absolutely convergent if the absolute series

∑
n |an| converges.

Thus Proposition 2.3.1 gets rephrased as “An absolutely convergent series is
convergent.” (Thank goodness – otherwise things would be very confusing!)
By the way, do you hear the terminology pushing absolute convergence as
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a platinum-eagle-membership-has-its-privileges kind of convergence? In fact
this is true, and when presented with a series of terms of varying sign, one
very much hopes it is not just convergent but absolutely convergent.

We say that a series is nonabsolutely convergent if it is convergent but
not absolutely convergent.4 Thus our simple dichotomy of convergence / di-
vergence has been expanded to a trichotomy: for every infinite series

∑
n an,

exactly one of the following holds:

•
∑

n an is absolutely convergent.
•
∑

n an is nonabsolutely convergent.
•
∑

n an is divergent.

In the remainder of this section we consider absolute convergence only. In
the next section we treat the one aspect of nonabsolute convergence that is
really necessary for our purposes: the Alternating Series Test.

Example 2.3.2. For p ∈ R, consider the alternating p-series

∞∑
n=1

(−1)n+1

np
= 1− 1

2p
+

1

3p
− 1

4p
+ . . . .

The associated absolute series is just the usual p-series
∑∞

n=1
1
np

, which we
know converges iff p > 1. Therefore the alternating p-series is absolutely
convergent iff p > 1. In particular, the series converges for these values.

When p ≤ 0, (−1)n+1

np
6→ 0, so the alternating p-series diverges by the

N th Term Test. (We may generalize this observation as follows: since for
any real sequence {an} we have an → 0 iff |an| → 0, the N th term test
applies to show the divergence of the absolute series

∑
n |an| exactly when it

applies to show the divergence of the given series
∑

n an.) When p ∈ (0, 1),
the alternating p-series is not absolutely convergent, but it may conceivably
still be convergent. Notice that we have not yet seen an example of a series
which is convergent but not absolutely convergent, and we will defer the issue
until later, but for now you might want to use a software package to compute

4The more common terminology here is conditionally convergent, but I don’t like
it for various reasons.
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various partial sums of the alternating harmonic series, e.g.

10∑
n=1

(−1)n+1

n
,

100∑
n=1

(−1)n+1

n
,

1000∑
n=1

(−1)n+1

n
. . .

You cannot prove that a series converges or diverges by looking at finitely
many partial sums, but you might acquire some intuition as to what the an-
swer should be.

The following convergence test will be used more than all the others from
now until the end of the course.

Theorem 2.3.3. (Ratio and Root Tests) Let
∑

n an be a real series.
a) Ratio Test Part I:
Suppose that an 6= 0 for all n. If there is N ∈ Z+ and r ∈ (0, 1) such that

∀n ≥ N,

∣∣∣∣an+1

an

∣∣∣∣ ≤ r,

then the series
∑

n an is absolutely convergent.
b) Ratio Test Part II:
Suppose that an 6= 0 for all n. If there is N ∈ Z+ and r ≥ 1 such that

∀n ≥ N,

∣∣∣∣an+1

an

∣∣∣∣ ≥ r,

the series
∑

n an diverges.
c) Root Test Part I:
If there is N ∈ Z+ and r ∈ [0, 1) such that

∀n ≥ N,

∣∣∣∣an∣∣∣∣ 1n ≤ r,

then the series
∑

n an is absolutely convergent.
d) Root Test Part II:

If |an|
1
n ≥ 1 for infinitely many n, then the series

∑
n an diverges.

Proof. Though to prove any four part theorem takes some space and time,
the basic idea in all cases is to compare our series with a geometric series.
a) Starting at n = N , each ratio of absolute values of successive terms is at
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most r: thus |aN+1| ≤ r|aN |, |aN+2| ≤ r|aN+1| ≤ r(r|aN |) = r2|aN |, and so
forth: an easy inductive argument shows that for all n ≥ N we have

|an| ≤ rn−N |aN |.

Therefore by comparison we get∑
n≥N

|an| ≤
∑
n≥N

rn−N |aN | =
|aN |
rN

∑
n

rn <∞,

since r ∈ (0, 1). It follows that
∑

n |an| <∞: absolute convergence.
b) For all n ≥ N we have

|an+1|
|an|

≥ r ≥ 1,

so |an+1| ≥ |an| for all n ≥ N , and thus

0 ≤ |aN | ≤ |aN+1| ≤ |aN+2| ≤ . . . .

It follows that |an| 6→ 0, hence also an 6→ 0, so the series
∑

n an diverges by
the Nth Term Test.
c) This is similar, but easier: for all n ≥ N , we have |an| ≤ rn, and since
r ∈ [0, 1) we have ∑

n≥N

|an| ≤
∑
n≥N

rn <∞.

d) If |an|
1
n ≥ 1, then |an| ≥ 1. If this holds for infinitely many n, then

|an| 6→ 0 and thus an 6→ 0 and the series diverges by the Nth Term Test.

The above Ratio and Root Tests are not quite the ones you meet in calculus:
by working with inequalities instead of limits, we get somewhat simpler,
stronger statements. In fact, it is easy to deduce the more familiar version:

Corollary 2.3.4. (Calculus Student’s Ratio and Root Test)
a) Let

∑
n an be a series with an 6= 0 for all n. Suppose the ratio test limit

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists. Then: if ρ < 1, the series

∑
n an converges absolutely, while if ρ > 1

the series
∑

n an diverges.
b) Let

∑
n an be a series. Suppose the root test limit

θ = lim
n→∞

|an|
1
n
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exists. Then: if θ < 1, the series
∑

n an converges absolutely, while if θ > 1
the series

∑
n an diverges.

Proof. We will prove the first assertion of part a) and leave the others as
exercises. Suppose

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1.

Choose r such that ρ < r < 1. Taking ε = r − ρ, there is N ∈ Z+ such that
for all n ≥ N we have ∣∣∣∣|an+1

an
| − ρ

∣∣∣∣ < r − ρ

and thus ∣∣∣∣an+1

an

∣∣∣∣ < r.

So the series
∑

n an is absolutely convergent by the Ratio Test.

Remark 2.3.5. The Ratio and Root Tests are closely related.
(i) In theory the Root Test is more powerful than the Ratio Test: it can be
shown that if the Ratio Test limit ρ = limn→∞ |an+1

an
| exists, then also the Root

Test limit θ = limn→∞|an|
1
n exists and ρ = θ. However, it is possible for the

Root Test limit to exist when the Ratio Test limit does not. For proofs of
these assertions see [Cl-HC, §11.5.3].
(ii) However, at least for the types of series one generally meets in under-
graduate courses, it is usually the case that both limits exist and the Ratio
Test limit is easier to evaluate. Thus in practice one should usually reach for
the Ratio Test rather than the Root Test. The exception is when the terms
are given in the form |an| = bnn, in which case |an|

1
n = bn.

(iii) It may well be the case that neither the Ratio Test nor Root Test limits
exist. There are aspects of the theory in which this becomes annoying. The
remedy is to use lim sup and lim inf instead (concepts which are only briefly
touched on in several exercises in this text). For versions of the tests which
use these upper and lower limits, again see [Cl-HC, §11.5.3].

Example 2.3.6. a) Applying the Ratio Test to the series
∑∞

n=1
n2

2n
we find

|an+1|
|an|

=
(n+ 1)2/2n+1

n2/2n
=

2n(n+ 1)2

2n+1n2
=

(n+ 1)2

2n2
.
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And so limn→∞
|an+1|
|an| = 1/2. Since this is less than 1, we conclude that the

series converges.
b) Applying the Ratio Test to the series

∑∞
n=1

n2an

3n
we see that

|an+1|
|an|

=
|(n+ 1)2an+1/3n+1|

|n2an/3n|

=
|a|(n+ 1)2

3n2
.

And so limn→∞
|an+1|
|an| = |a|/3. Thus we see that this series converges if

−3 < a < 3, and it diverges if |a| > 3. the ratio test tells us nothing about
the cases that a = 3 or a = −3, but we can easily see that the series

∑
n2

and
∑

(−1)nn2 are divergent since the terms do not converge to zero.
c) Consider the series

∑∞
n=1

1
nn

. Since

|an|1/n = (
1

nn
)1/n =

1

n
,

this is a case where the Root Test will be easier to apply: we have

θ = lim
n→∞

|an|
1
n = lim

n→∞

1

n
= 0,

so the series converges.
What happens if we try to apply the Ratio Test here? We get

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

nn

(n+ 1)n+1
= lim

n→∞

(
n

n+ 1

)n
1

n+ 1
.

Let us separately evaluate

L = lim
n→∞

(
n

n+ 1

)n
.

First we apply the logarithm, getting

logL = lim
n→∞

log

(
n

n+ 1

)n
= n log

n

n+ 1
= lim

n→∞
− log(1 + 1/n)

1/n
.

We may apply L’Hôpital’s Rule, getting

logL = − lim
n→∞

−1/n2 · 1
1+1/n

−1/n2
= − lim

n→∞

1

1 + 1/n
= −1.
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Therefore L = 1
e
, and

ρ =
1

e
· lim
n→∞

1

n+ 1
=

1

e
· 0 = 0.

So, yes: the Root Test was easier!

Example 2.3.7. Consider the p-series
∑∞

n=1
1
np

. The Ratio Test limit is

ρ = lim
n→∞

np

(n+ 1)p
= lim

n→∞

(
n

n+ 1

)p
= 1p = 1.

The Root Test limit is

θ = lim
n→∞

1

np/n
= lim

n→∞

(
n−1/n

)p
= 1p = 1.

(It takes a little work to see that n−1/n → 1: take the logarithm and ap-
ply L’Hôpital’s Rule, as above.) This shows that no conclusion on conver-
gence/divergence can be drawn when the Ratio Test or Root Test limit is 1:
indeed, we know that for some values of p we have convergence and others
we have divergence.

The more precise Theorem 2.3.3 does slightly better than the calculus ver-
sion: it allows us to show that the p-series diverges when p ≤ 0. This is still
not very impressive, since if p ≤ 0 then 1

np
6→ 0.

There is a clear moral here: the Ratio and Root Tests give a very useful
general tool for determining convergence. In particular, in our later study
of power series these will be the most important test by far. However, the
Ratio and Root Tests are not capturing subtle behavior of convergence or di-
vergence: when the either test works to show convergence, it works becaua
gse the terms of the absolute series are eventually smaller than that of a
convergent geometric series, and when either test works to show divergence,
it works because the terms of the absolute series are eventually larger than
those of a divergent geometric series...so in particular the sequence of terms
does not converge to 0. (In fact when ρ > 1 or θ > 1, not only does the
general term not tend to 0, it tends to infinity in absolute value with at least
exponential speed!) When subtlety is needed, we should turn to things like the
Comparison, Condensation and Integral Tests.



2.3. SERIES WITH TERMS OF BOTH SIGNS 125

2.3.2 The Alternating Series Test

Consider the alternating harmonic series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− . . . .

Upon taking the absolute value of every term we get the usual harmonic
series, which diverges, so the alternating harmonic series is not absolutely
convergent. However, some computations with partial sums suggests that
the alternating harmonic series is convergent, with sum log 2. By looking
more carefully at the partial sums, we can find a pattern that allows us to
show that the series does indeed converge. (Whether it converges to log 2 is
a different matter, of course, which we will revisit much later on.)

It will be convenient to write an = 1
n
, so that the alternating harmonic

series is
∑

n
(−1)n+1

n+1
. We draw the reader’s attention to three properties of

this series:

(AST1) The terms alternate in sign.
(AST2) The nth term approaches 0.
(AST3) The sequence of absolute values of the terms is decreasing:

a1 ≥ a2 ≥ . . . ≥ an ≥ . . . .

These are the clues from which we will make our case for convergence. Here
it is: consider the process of passing from the first partial sum S1 = 1 to
S3 = 1− 1

2
+ 1

3
= 5

6
. We have S3 ≤ 1, and this is no accident: since a2 ≥ a3,

subtracting a2 and then adding a3 leaves us no larger than where we started.
But indeed this argument is valid in passing from any S2n−1 to S2n+1:

S2n+1 = S2n−1 − a2n + a2n+1 ≤ S2n−1.

It follows that the sequence of odd-numbered partial sums {S2n−1} is de-
creasing. Moreover,

S2n+1 = (a1 − a2) + (a3 − a4) + . . .+ (a2n−1 − a2n) + a2n−1 ≥ 0.
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Therefore all the odd-numbered terms are bounded below by 0. By the
Monotone Sequence Lemma, the sequence {S2n+1} converges to its greatest
lower bound, say Sodd. On the other hand, just the opposite sort of thing
happens for the even-numbered partial sums:

S2n+2 = S2n + a2n+1 − a2n+2 ≥ S2n

and

S2n+2 = a1 − (a2 − a3)− (a4 − a5)− . . .− (a2n − a2n+1)− a2n+2 ≤ a1.

Therfore the sequence of even-numbered partial sums {S2n} is increasing
and bounded above by a1, so it converges to its least upper bound, say Seven.
Thus we have split up our sequence of partial sums into two complementary
subsequences and found that each of these series converges. The full sequence
{Sn} converges iff Sodd = Seven. (You are asked to prove this in Exercise 1.)
Now the inequalities

S2 ≤ S4 ≤ . . . ≤ S2n ≤ S2n+1 ≤ S2n−1 ≤ . . . ≤ S3 ≤ S1

show that Seven ≤ Sodd. Moreover, for any n ∈ Z+ we have

Sodd − Seven ≤ S2n+1 − S2n = a2n+1.

Since a2n+1 → 0, we conclude Sodd = Seven = S, i.e., the series converges.

In fact these inequalities give something else: since for all n we have S2n ≤
S2n+2 ≤ S ≤ S2n+1, it follows that

|S − S2n| = S − S2n ≤ S2n+1 − S2n = a2n+1

and similarly

|S − S2n+1| = S2n+1 − S ≤ S2n+1 − S2n+2 = a2n+2.

Thus the error in cutting off the infinite sum
∑∞

n=1(−1)n+1|an| after N terms
is in absolute value at most the absolute value of the next term: aN+1.

Of course in all this we never used that an = 1
n

but only that we had a
series satisfying (AST1) (i.e., an alternating series), (AST2) and (AST3).
Therefore the preceding arguments have in fact proved the following more
general result, due originally due to Leibniz.5

5Gottfried Wilhelm von Leibniz, 1646-1716
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Theorem 2.3.8. (Lebniz’s Alternating Series Test)
Let {an}∞n=1 be a sequence of non-negative real numbers which is decreasing

and such that limn→∞ an = 0. Then:
a) The associated alternating series

∑
n(−1)n+1an converges.

b) For N ∈ Z+, put

EN =

∣∣∣∣( ∞∑
n=1

(−1)n+1an)− (
N∑
n=1

(−1)n+1an)

∣∣∣∣, (2.4)

the error obtained by cutting off the infinite sum after N terms. Then we
have the error estimate

EN ≤ aN+1.

Example 2.3.9. Let p ∈ R. The alternating p-series
∑∞

n=1
(−1)n+1

np
is:

(i) divergent if p ≤ 0,
(ii) nonabsolutely convergent if 0 < p ≤ 1, and
(iii) absolutely convergent if p > 1.

For any convergent series
∑∞

n=1 an = S, we may define EN as in (2.4) above:

EN = |S −
N∑
n=1

an|.

Then because the series converges to S, limN→∞EN = 0, and conversely: in
other words, to say that the error goes to 0 is a rephrasing of the fact that
the partial sums of the series converge to S. Each of these statements is (in
the local jargon) soft: we assert that a quantity approaches 0 and N →∞,
so that in theory, given any ε > 0, we have EN < ε for all suffuciently large
N . But as we have by now seen many times, it is often possible to show
that EN → 0 without coming up with an explicit expression for N in terms
of ε. But this stronger statement is exactly what we have given in Theorem
2.3.8b): we have given an explicit upper bound on EN as a function of N .
This type of statement is called a hard statement or an explicit error
estimate: such statements tend to be more difficult to come by than soft
statements, but also more useful to have. Here, as long as we can similarly
make explicit how large N has to be in order for aN to be less than a given
ε > 0, we get a completely explicit error estimate and can use this to actually
compute the sum S to arbitrary accuracy.
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Example 2.3.10. We compute
∑∞

n=1
(−1)n+1

n
to three decimal place accuracy.

(Let us agree that to “compute a number α to k decimal place accuracy means
to compute it with error less than 10−k. A little thought shows that this is not
quite enough to guarantee that the first k decimal places of the approximation
are equal to the first k decimal places of α, but we do not want to occupy
ourselves with such issues here.) By Theorem 2.3.8b), it is enough to find an
N ∈ Z+ such that aN+1 = 1

N+1
< 1

1000
. We may take N = 1000. Therefore

|
∞∑
n=1

(−1)n+1

n
−

1000∑
n=1

(−1)n+1

n
| ≤ 1

1001
.

Using a software package, we find that

1000∑
n=1

(−1)n+1

n
= 0.6926474305598203096672310589 . . . .

Exercise 7 shows that the exact value of the sum is log 2, which my software
package tells me is

log 2 = 0.6931471805599453094172321214.

Thus the actual error in cutting off the sum after 1000 terms is

E1000 = 0.0004997500001249997500010625033.

It is important to remember that this (and other) error estimates only give
upper bounds on the error: the true error could be much smaller.6 In this
case we were guaranteed to have an error at most 1

1001
, and the true error is

about half of that. Thus the estimate for the error is reasonably accurate.
Note well that although the error estimate of Theorem 2.3.8b) is very

easy to apply, if an tends to zero rather slowly (as in this example), it is
not very efficient for computations. For instance, in order to compute the
true sum of the alternating harmonic series to six decimal place accuracy
using this method, we would need to add up the first million terms: that’s
a lot of calculation. (Thus please be assured that this is not the way that a
calculator or computer would compute log 2.)

6If you think about it for a little while, this is a fact of life: if we knew exactly what
the error was, we would know the exact quantity!
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Example 2.3.11. We compute
∑∞

n=0
(−1)n
n!

to six decimal place accuracy.
Thus we need to choose N such that aN+1 = 1

(N+1)!
< 10−6, or equivalently

such that (N + 1)! > 106. A little calculation shows 9! = 362, 880 and
10! = 3, 628, 800, so that we may take N = 9 (but not N = 8). Therefore∣∣∣∣ ∞∑

n=0

(−1)n

n!
−

9∑
n=0

(−1)n

n!

∣∣∣∣ < 1

10!
< 10−6.

Using a software package, we find

9∑
n=0

(−1)n

n!
= 0.3678791887125220458553791887.

In this case the exact value of the series is

1

e
== 0.3678794411714423215955237701

so the true error is

E9 = 0.0000002524589202757401445814516374,

which this time is only very slightly less than the guaranteed

1

10!
= 0.0000002755731922398589065255731922.

Notice that in the above example we used the error estimate of the Alternat-
ing Series Test in a case where the series is absolutely convergent. Thus the
one test we have given which can show nonabsolute convergence is arguably
more useful to us than nonabsolute convergence itself.

EXERCISES 2.3

1. Let {sn} be a sequence and let {cn} and {dn} be the subsequences given
by cn = s2n and dn = s2n+1. Assume that limn→∞ cn = L and that
limn→∞ dn = L. Prove that limn→∞ sn = L.

2. What does the Ratio Test tell you about the following series?



130 CHAPTER 2. SERIES

a)
∑

n
2n

n!

b)
∑

n
n!
2n

c)
∑

n
n
3n

d)
∑

n
logn
n2

3. Classify each of the following series is absolutely convergent, nonabso-
lutely convergent or divergent.

a)
∑

n
(−1)n
n2

b)
∑

n
(−1)n√

n

c)
∑

n
(−1)nn2

n!

d)
∑

n
(−1)n(n2+3)

3n2+1

e.)
∑

n
(−1)n
n logn

f.)
∑

n
(−1)nn√
2n+1

g.)
∑

n n(−2
5
)n

4. Corollary 2.3.4 contains four assertions, two for the Ratio Test and two
for the Root Test. We proved the convergence part of the Ratio Test.
a) Prove the divergence part of the Ratio Test.
b) Prove the convergence part of the Root Test.
c) Prove the divergence part of the Root Test.

5. For which values of a ∈ R do the following series converge?

a)
∑

n
an

2n

b)
∑

n
nan

2n

c)
∑

n( 4
a2

)n

d)
∑

n
(−a)n
n!

e.)
∑

n
(−a)n
n2

6. Assume that the series
∑∞

n=1 an converges absolutely. Prove that

|
∞∑
n=1

an| ≤
∞∑
n=1

|an|.
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7. One can use the convergence of the sequence {γn} given in Example

2.2.19 to evaluate the alternating harmonic series
∞∑
n=1

(−1)n+1 1

n
as fol-

lows:

a) Let sn =
n∑
k=1

1

k
denote the nth partial sum of the harmonic series and

show that

1− 1

2
+

1

3
− ...+ 1

2n− 1
− 1

2n
= s2n − sn.

b) Use the fact thatf sn = γn + log(n+ 1) to write

1− 1

2
+

1

3
− ...+ 1

2n− 1
− 1

2n
= (γ2n − γn) + log

(
2n+ 1

n+ 1

)
.

c) Taking the limit as n→∞, conclude that
∞∑
n=1

(−1)n+1 1

n
= log 2.

2.4 Cauchy Products

2.4.1 Cauchy products I: non-negative terms

Let
∑∞

n=0 an and
∑∞

n=0 bn be two infinite series. Is there some notion of
a product of these series?

In order to forestall possible confusion, let us point out that many students
are tempted to consider the following “product” operation on series:

(
∞∑
n=0

an) · (
∞∑
n=0

bn)
??
=
∞∑
n=0

anbn.

In other words, given two sequences of terms {an}, {bn}, we form a new
sequence of terms {anbn} and then we form the associated series. In fact this
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is not a very useful candidate for the product. What we surely want to hap-
pen is that if

∑
n an = A and

∑
n bn = B then our “product series” should

converge to AB. But for instance, take {an} = {bn} = 1
2n

. Then
∑∞

n=0 an =∑∞
n=0 bn = 1

1− 1
2

= 2, so AB = 4, whereas
∑∞

n=0 anbn =
∑∞

n=0
1
4n

= 1
1− 1

4

= 4
3
.

Of course 4
3
< 4. What went wrong?

Plenty! We have ignored the laws of algebra for finite sums: e.g.

(a0+a1+a2)(b0+b1+b2) = a0b0+a1b1+a2b2+a0b1+a1b0+a0b2+a1b1+a2b0.

The product is different and more complicated – and indeed, if all the terms
are positive, strictly lager – than just a0b0 + a1b1 + a2b2. We have forgotten
about the cross-terms which show up when we multiply one expression in-
volving several terms by another expression involving several terms.7

Let us try again at formally multiplying out a product of infinite series:

(a0 + a1 + . . .+ an + . . .)(b0 + b1 + . . .+ bn + . . .)

= a0b0 +a0b1 +a1b0 +a0b2 +a1b1 +a2b0 + . . .+a0bn+a1bn−1 + . . .+anb0 + . . . .

So it is getting a bit notationally complicated. In order to shoehorn the right
hand side into a single infinite series, we need to either (i) choose some par-
ticular ordering to take the terms akb` on the right hand side, or (ii) collect
some terms together into an nth term.

For the moment we choose the latter: we define for any n ∈ N

cn =
n∑
k=0

akbn−k = a0bn + a1bn−1 + . . .+ anbn

and we define the Cauchy product of
∑∞

n=0 an and
∑∞

n=0 bn to be the series

∞∑
n=0

cn =
∞∑
n=0

(
n∑
k=0

akbn−k

)
.

7To the readers who did not forget about the cross-terms: my apologies. But it is a
common enough misconception that it had to be addressed.
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Theorem 2.4.1. Let {an}∞n=0, {bn}∞n=0 be two series with non-negative terms.
Let

∑∞
n=0 an = A and

∑∞
n=0 bn = B. Putting cn =

∑n
k=0 akbn−k we have that∑∞

n=0 cn = AB. In particular, the Cauchy product series converges iff the
two “factor series”

∑
n an and

∑
n bn both converge.

Proof. It is instructive to define yet another sequence, the box product, as
follows: for all N ∈ N,

�N =
∑

0≤i,j≤N

aibj = (a0 + . . .+ aN)(b0 + . . .+ bN) = ANBN .

Thus by the usual product rule for sequences, we have

lim
N→∞

�N = lim
N→∞

ANBN = AB.

So the box product converges to the product of the sums of the two series.
This suggests that we compare the Cauchy product to the box product. The
entries of the box product can be arranged to form a square, viz:

�N = a0b0 + a0b1 + . . .+ a0bN

+a1b0 + a1b1 + . . .+ a1bN
...

+aNb0 + aNb1 + . . .+ aNbN .

On the other hand, the terms of the Nth partial sum of the Cauchy product
can naturally be arranged in a triangle:

CN = a0b0

+a0b1 + a1b0

+ a0b2 + a1b1 + a2b0

+a0b3 + a1b2 + a2b1 + a3b0
...

+a0bN + a1bN−1 + a2bN−2 + . . .+ aNb0.

Thus while �N is a sum of (N + 1)2 terms, CN is a sum of 1 + 2 + . . .+N +

1 = (N+1)(N+2)
2

terms: those lying on our below the diagonal of the square.
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Thus in considerations involving the Cauchy product, the question is to what
extent one can neglect the terms in the upper half of the square – i.e., those
with aibj with i+ j > N – as N gets large.

Here, since all the ai’s and bj’s are non-negative and �N contains all the
terms of CN and others as well, we certainly have

CN ≤ �N = ANBN ≤ AB.

Thus C = limN→∞CN ≤ AB. For the converse, the key observation is that if
we make the sides of the triangle twice as long, it will contain the box: that
is, every term of �N is of the form aibj with 0 ≤ i, j ≤ N ; thus i + j ≤ 2N
so aibj appears as a term in C2N . It follows that C2N ≥ �N and thus

C = lim
N→∞

CN = lim
N→∞

C2N ≥ lim
N→∞

�N = lim
N→∞

ANBN = AB.

Having shown both that C ≤ AB and C ≥ AB, we conclude

C =
∞∑
n=0

an = AB =

(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
.

2.4.2 Cauchy products II: when one series is absolutely
convergent

Theorem 2.4.2. Let
∑∞

n=0 an = A and
∑∞

n=0 bn = B be two absolutely
convergent series, and let cn =

∑n
k=0 akbn−k. Then the Cauchy product series∑∞

n=0 cn is absolutely convergent, with sum AB.

Proof. We have proved this result already when an, bn ≥ 0 for all n. We wish,
of course, to reduce to that case. As far as the convergence of the Cauchy
product, this is completely straightforward: we have

∞∑
n=0

|cn| =
∞∑
n=0

|
n∑
k=0

akbn−k| ≤
∞∑
n=0

n∑
k=0

|ak||bn−k| <∞,

the last inequality following from the fact that
∑∞

n=0

∑n
k=0 |ak||bn−k| is the

Cauchy product of the two non-negative series
∑∞

n=0 |an| and
∑∞

n=0 |bn|,
hence it converges. Therefore

∑
n |cn| converges by comparison, so the Cauchy
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product series
∑

n cn converges.
We wish to show that limN→∞CN =

∑∞
n=0 cn = AB. Recall the notation

�N =
∑

0≤i,j≤N

aibj = (a0 + . . .+ aN)(b0 + . . .+ bN) = ANBN .

We have
|CN − AB| ≤ |�N − AB|+ |�N − CN |

= |ANBN − AB|+ |a1bN |+ |a2bN−1|+ |a2bN |+ . . .+ |aNb1|+ . . .+ |aNbN |

≤ |ANBN − AB|+

(
∞∑
n=0

|an|

)(∑
n≥N

|bn|

)
+

(
∞∑
n=0

|bn|

)(∑
n≥N

|an|

)
.

Fix ε > 0; since ANBN → AB, for all sufficiently large N we have |ANBN −
AB| < ε

3
. Put

A =
∞∑
n=0

|an|, B =
∞∑
n=0

|bn|.

By the Cauchy criterion, for sufficiently large N we have
∑

n≥N |bn| <
ε
3A

and
∑

n≥N |an| <
ε
3B and thus |CN − AB| < ε.

While the proof of Theorem 2.4.2 may seem rather long, it is in fact a rather
straightforward argument: one shows that the difference between the box
product and the partial sums of the Cauchy product becomes negligible as
N tends to infinity. In less space but with a bit more finesse, one can prove
the following stronger result, a theorem of F. Mertens [Me72].8

Theorem 2.4.3. (Mertens’ Theorem) Let
∑∞

n=0 an = A be an absolutely
convegent series and

∑∞
n=0 bn = B be a convergent series. Then the Cauchy

product series
∑∞

n=0 cn converges to AB.

Proof. (Rudin [R, Thm. 3.50]): define (as usual)

AN =
N∑
n=0

an, BN =
N∑
n=0

bn, CN =
N∑
n=0

cn

and also (for the first time)

βn = Bn −B.
8Franz Carl Joseph Mertens, 1840-1927
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Then for all N ∈ N,

CN = a0b0 + (a0b1 + a1b0) + . . .+ (a0bN + . . .+ aNb0)

= a0BN + a1BN−1 + . . .+ aNB0

= a0(B + βN) + a1(B + βN−1) + . . .+ aN(B + β0)

= ANB + a0βN + a1βN−1 + . . .+ aNβ0 = ANB + γN ,

say, where γN = a0βN + a1βN−1 + . . .+ anβ0. Since our goal is to show that
CN → AB and we know that ANB → AB, it suffices to show that γN → 0.
Now, put α =

∑∞
n=0 |an|. Since BN → B, βN → 0, and thus for any ε > 0

we may choose N0 ∈ N such that for all n ≥ N0 we have |βn| ≤ ε
2α

. Put

M = max
0≤n≤N0

|βn|.

By the Cauchy criterion, for all sufficiently large N , we have

M
∑

n≥N−N0

|an| ≤ ε/2.

Then

|γN | ≤ |β0aN + . . .+ βN0aN−N0|+ |βN0+1aN−N0−1 + . . .+ βNa0|

≤ |β0aN + . . .+ βN0aN−N0|+
ε

2

≤M

( ∑
n≥N−N0

|an|

)
+
ε

2
≤ ε

2
+
ε

2
= ε.

2.4.3 Cauchy products III: a divergent Cauchy prod-
uct

We end with an example – due to Cauchy! – of a Cauchy product of two
nonabsolutely convergent series which fails to converge.
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We will take
∑∞

n=0 an =
∑∞

n=0 bn =
∑∞

n=0
(−1)n√
n+1

. (The series is convergent by

the Alternating Series Test.) The nth term in the Cauchy product is

cn =
∑
i+j=n

(−1)i(−1)j
1√
i+ 1

1√
j + 1

.

The first thing to notice is (−1)i(−1)j = (−1)i+j = (−1)n, so cn is equal to
(−1)n times a sum of positive terms. We have i, j ≤ n so 1√

i+1
, 1√

j+1
≥ 1√

n+1
,

and thus each term in cn has absolute value at least ( 1√
n+1

)2 = 1
n+1

. Since
we are summing from i = 0 to n there are n + 1 terms, all of the same size,
we find |cn| ≥ 1 for all n. Thus the general term of

∑
n cn does not converge

to 0, so the series diverges.
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2.5 Rearrangements

We now consider some results on rearrangements of infinite series. We can
view this as an investigation into the validity of the “commutative law” for
infinite sums. The definition we gave for convergence of an infinite series

a1 + a2 + . . .+ an + . . .

in terms of the limit of the sequence of partial sums A1 = a1 + . . . + an
appears to make use of the ordering of the terms of the series. By way of
comparison, we observe that this is not an issue in the convergence of infinite
sequences. Indeed, the statement an → L can be expressed as: for all ε > 0,
there are only finitely many terms of the sequence lying outside the interval
(L − ε, L + ε), a description which makes clear that convergence to L is
unaffected by any reordering of the terms of the sequence.

Notice however that if we reorder the terms {an} of an infinite series∑
n an, the corresponding change in the sequence {An} of partial sums is not

simply a reordering, as one sees by looking at very simple examples. For
instance, if we reorder

1

2
+

1

4
+

1

8
+ . . .+

1

2n
+ . . .

as
1

4
+

1

2
+

1

8
+ . . .+

1

2n
+ . . . ,

then the first partial sum of the new series is 1
4
, whereas every nonzero partial

sum of the original series is at least 1
2
.

Thus we find at least some fuel for our suspicion that reordering the terms
of an infinite series may not be so innocuous an operation as for that of an
infinite sequence. All of this discusion is mainly justification for our setting
up the “rearrangement problem” carefully, with a precision that might oth-
erwise apper pedantic.

The formal notion of rearrangement of a series
∑∞

n=1 an begins with a per-
mutation σ of Z+, i.e., a bijective function σ : Z+ → Z+. We define the
rearrangement of

∑∞
n=1 an by σ to be the series

∞∑
n=1

aσ(n) = aσ(1) + aσ(2) + . . .
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Our discussion of this issue will recapitulate in miniature our discussion of
series as a whole, in that we will first consider the case of non-negative terms,
then the case of absolute convergence and finally the case of nonabsolute con-
vergence.

Non-negative Terms: Suppose an ≥ 0 for all n ∈ Z+. For n ∈ Z+,
let An =

∑n
k=1 ak. As we have already seen, in this case we have

∞∑
n=1

an = sup
n
An,

where we use the (overdue?) convention that supS = ∞ when S ⊂ R is
nonempty and unbounded above. For a finite subset S ⊂ Z+, put

AS =
∑
n∈S

an.

Proposition 2.5.1. If an ≥ 0 for all n ∈ Z+, we have

∞∑
n=1

an = sup{AS | S is a finite subset of Z+}.

Proof. Let A′ = sup{AS | S is a finite subset of Z+}. Above we recalled
that

∑∞
n=1 an = supnAn. Since An = A{1,...,n}, this shows

∑∞
n=1 an ≤ A′.

Conversely, every finite subset S of Z+ is contained in {1, . . . , n} for some n,
and thus AS ≤ An ≤

∑∞
n=1 an, so A′ ≤

∑∞
n=1 an.

The point of this simple result is that, as in the case of sequences above,
it gives a description of the sum of a series of non-negative terms which is
manifestly unchanged by rearrangement: if σ : Z+ → Z+ is a bijection, then
as S = {n1, . . . , nk} ranges over all finite subsets of Z+, so does σ(S) =
{σ(n1), . . . , σ(nk)}. It follows that

∞∑
n=0

an =
∞∑
n=0

aσ(n) ∈ [0,∞].

Absolute Convergence: We have the following satisfying result.

Theorem 2.5.2. (Weierstrass) Let
∑∞

n=1 an be an absolutely convergent se-
ries with sum A. Then for every permutation σ of Z+, the rearranged series∑∞

n=1 aσ(n) converges to A.
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Proof. Fix ε > 0, and let N1 ∈ Z+ be such that
∑∞

n=N1+1 |an| < ε. Let N2 ≥
N1 be such that the terms aσ(1), . . . , aσ(N2) include all the terms a1, . . . , aN1

and possibly others. Then for all n ≥ N2 we have∣∣∣∣ n∑
k=1

aσ(k) − A
∣∣∣∣ =

∣∣∣∣ n∑
k=1

aσ(k) −
∞∑
k=1

ak

∣∣∣∣ ≤ ∑
k=N1+1

|ak| < ε.

Indeed: by our choice of N2 we know that all the terms a1, . . . , aN1 appear
in both

∑n
k=1 aσ(k) and

∑∞
k=1 ak and thus they get cancelled. Every term in∑n

k=1 aσ(k) is cancelled by some term of
∑∞

k=1 ak, so what is left is a sum over
some subset of {k ∈ Z+ | k ≥ N1 + 1}; applying the triangle inequality, that
is bounded above by

∑
k≥N1+1 |ak|. It follows that

∑∞
n=1 aσ(k) = A.

Nonabsolute Convergence: We need some preliminary considerations be-
fore treating this case. For a real number r, we define its positive part

r+ = max(r, 0)

and its negative part
r− = −min(r, 0).

Lemma 2.5.3. For all r ∈ R, we have:

r = r+ − r−, |r| = r+ + r−.

You are asked to prove this result in Exercise 1.

For any real series
∑

n an, we get a decomposition∑
n

an =
∑
n

a+n −
∑
n

a−n ,

at least if all three series converge. Let us call
∑

n a
+
n the positive part of∑

n an and
∑

n a
−
n the negative part of

∑
n an.

Suppose that
∑

n an converges. There are two possibilities:

Case 1: Both
∑

n a
+
n and

∑
n a
−
n converge. Hence

∑
n |an| =

∑
n a

+
n +

∑
n a
−
n

converges: that is,
∑

n an is absolutely convergent.
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Case 2: Both
∑

n a
+
n and

∑
n a
−
n diverge. Hence

∑
n |an| =

∑
n a

+
n + a−n

diverges: indeed, if it converged, then adding and subtracting
∑

n an gives
that 2

∑
n a

+
n and 2

∑
n a
−
n converge, contradiction.

What cannot happen is that exactly one of
∑

n a
+
n and

∑
n a
−
n converges.

Since an = a+n − a−n and
∑

n an converges, that would violate the Three
Series Principle. So:

Proposition 2.5.4. a) If a series is absolutely convergent, both its positive
and negative parts converge.
b) If a series is nonabsolutely convergent, then both its positive and negative
parts diverge.

Theorem 2.5.5. (Riemann Rearrangement Theorem) Let
∑∞

n=1 an be a non-
absolutely convergent series. For any B ∈ [−∞,∞], there exists a permuta-
tion σ of Z+ such that

∑∞
n=1 aσ(n) = B.

Proof.
Step 1: Since

∑
n an is convergent, we have an → 0 and thus that {an} is

bounded, so we may choose M such that |an| ≤M for all n.
We are not going to give an explicit “formula” for σ; rather, we are going

to describe σ by a certain process. For this it is convenient to imagine that
the sequence {an} has been sifted into a disjoint union of two subsequences,
one consisting of the positive terms and one consisting of the negative terms
(we may assume without loss of generality that an 6= 0 for all n). If we like,
we may even imagine both of these subsequence ordered so that they are
decreasing in absolute value. Thus we have two sequences

p1 ≥ p2 ≥ . . . ≥ pn ≥ . . . > 0,

n1 ≤ n2 ≤ . . . ≤ nn ≤ . . . < 0

so that together {pn, nn} comprise the terms of the series. The key point here
is Proposition 2.5.4 which tells us that since the convergence is nonabsolute,∑

n pn =∞,
∑

n nn = −∞. So we may specify a rearangement as follows: we
specify a choice of a certain number of positive terms – taken in decreasing
order – and then a choice of a certain number of negative terms – taken in
order of decreasing absolute value – and then a certain number of positive
terms, and so on. As long as we include a finite, positive number of terms
at each step, then in the end we will have included every term pn and nn
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eventually, hence we will get a rearrangement.
Step 2 (diverging to∞): to get a rearrangement diverging to∞, we proceed
as follows: we take positive terms p1, p2, . . . in order until we arrive at a
partial sum which is at least M + 1; then we take the first negative term n1.
Since |n1| ≤M , the partial sum p1 + . . .+pN1 +n1 is still at least 1. Then we
take at least one more positive term pN1+1 and possibly further terms until
we arrive at a partial sum which is at least M + 2. Then we take one more
negative term n2, and note that the partial sum is still at least 2. And we
continue in this manner: after the kth step we have used at least k positive
terms, at least k negative terms, and all the partial sums from that point
on will be at least k. Therefore every term gets included eventually and the
sequence of partial sums diverges to +∞.
Step 3 (diverging to −∞): An easy adaptation of the argument of Step 2
leads to a permutation σ such that

∑∞
n=0 aσ(n) = −∞. Left to you!

Step 4 (converging to B ∈ R): We first take positive terms p1, . . . , pN1 ,
stopping when the partial sum p1 + . . . + pN1 is greater than B. (We take
at least one positive term, even if 0 > B.) Then we take negative terms
n1, . . . , nN2 , stopping when the partial sum p1 + . . . + pN1 + n1 + . . . + nN2

is less than B. Then we repeat the process, taking enough positive terms to
get a sum strictly larger than B then enough negative terms to get a sum
strictly less than B, and so forth. Because both the positive and negative
parts diverge, this construction can be completed. Because the general term
an → 0, a little thought shows that the absolute value of the difference
between the partial sums of the series and B approaches zero.

Debriefing: Theorem 2.5.5 exposes the dark side of nonabsolutely conver-
gent series: just by changing the order of the terms, we can make the series
diverge to ±∞ or converge to any given real number! Thus nonabsolute con-
vergence is necessarily of a more delicate and less satisfactory nature than
absolute convergence. With these issues in mind, we define a series

∑
n an to

be unconditionally convergent if it is convergent and every rearrangement
converges to the same sum, and a series to be conditionally convergent if
it is convergent but not unconditionally convergent. Then we can (mostly)
summarize the results of Weierstrass and Riemann as follows.

Theorem 2.5.6. (Main Rearrangement Theorem) A convergent real series
is unconditionally convergent if and only if it is absolutely convergent.

Many texts do not use the term “nonabsolutely convergent” and instead
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define a series to be conditionally convergent if it is convergent but not
absolutely convergent. Aside from the fact that this terminology can be con-
fusing to students to whom this rather intricate story of rearrangements has
not been told, it seems correct to make a distinction between the following
two a priori different phenomena:

•
∑

n an converges but
∑

n |an| does not, versus
•
∑

n an converges to A but some rearrangement
∑

n aσ(n) does not.

These two phenomena are equivalent for real series. However the notion
of an infinite series

∑
n an, absolute and unconditional convergence makes

sense in other contexts, for instance9 for series with values in an infinite-
dimensional Banach space or with values in a p-adic field. In the former
case it is a celebrated theorem of Dvoretzky-Rogers [DR50] that there exists
a series which is unconditionally convergent but not absolutely convergent,
whereas in the latter case one can show that every convergent series is un-
conditionally convergent whereas there exist nonabsolutely convergent series.

EXERCISES 2.5

1. Prove Lemma 2.5.3.

2. Let
∑

n an be a real series such that an → 0,
∑

n a
+
n =∞ and

∑
n a
−
n =

−∞. Show that the conclusion of Theorem 2.5.5 holds: for any A ∈
[−∞,∞], there exists a permutation σ of N such that

∑∞
n=0 aσ(n) = A.

3. Let
∑

n an be a real series such that
∑

n a
+
n =∞.

a) Suppose that the sequence {an} is bounded. Show that there exists a
permutation σ of Z+ such that

∑
n aσ(n) =∞.

b) Does the conclusion of part a) hold without the assumption that the
sequence of terms is bounded?

4. Consider the series
∑∞

n=1 an, where for n ∈ Z+ we put

a2n =
−1

(2n)2

9Both of these are well beyond the scope of these notes, i.e., you are certainly not
expected to know what I am talking about here.
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a2n−1 =
1

2n− 1
.

Thus
∞∑
n=1

an = 1− 1

22
+

1

3
− 1

42
+

1

5
− . . .

a) Show:
∑∞

n=1 an = −∞.

b) Let bn = 2(−1)n+1

n
for all n. Observe that

∑∞
n=1 bn converges and for all

n ∈ Z+ we have |an| < |bn|. Moral: it is possible to take a nonabsolutely
convergent series, replace each term with a term which is smaller in
absolute value, and get a divergent series.
c) Show that the above “moral” holds for every nonabsolutely convergent
series in which each term is nonzero.

2.6 Power Series

A power series is an expression of the form

∞∑
n=0

anx
n

where x is a real variable. We can think of this as defining a function whose
natural domain of definition is the set of real numbers, x, such that the sum
converges. This set is called the domain of convergence.

Definition 2.6.1. The domain of convergence of the power series
∑∞

n=0 anx
n

is {x ∈ R |
∑
anx

n converges}.

Example 2.6.2. a) The domain of convergence of the power series
∑∞

n=0
xn

n!

is all of R. Indeed, for any x ∈ R, the Ratio Test limit is

ρ = lim
n→∞

|x
n+1/(n+ 1)!

xn/n!
| = |x| lim

n→∞

1

n+ 1
= |x| · 0 = 0.

b) The domain of convergence of the geometric series
∑∞

n=0 x
n is (−1, 1).

This is nothing but a restatement of Proposition 2.1.12 with r changed to x.
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c) The domain of convergence of the power series
∑∞

n=0
xn

n
is [−1, 1). To see

this, we first apply the Ratio Test:

ρ = lim
n→∞

∣∣∣∣ xn+1

n+1
xn

n

∣∣∣∣ = |x| lim
n→∞

n

n+ 1
= |x|.

So the series converges if |x| < 1 and diverges if |x| > 1. Of course the test
tells us nothing if |x| = 1 so we check those two cases separately. If x = 1,
the series becomes the harmonic series which diverges, and if x = −1 the
series becomes the alternating harmonic series, which converges.
d) The domain of convergence of the power series

∑∞
n=0

(−1)nxn
n

is (−1, 1].
To see this we could go through an analysis just like the one in part c), and
the reader who does not find such calculations routine should probably do so.
However, we can also observe that the series is obtained from the series in
part c) by replacing x with −x, and therefore the domain of convergence must
be {−x | x ∈ [−1, 1)} = (−1, 1].
e) The domain of convergence of the power series

∑∞
n=0

xn

n2 is [−1, 1]. To see
this, we first apply the Ratio Test:

ρ = lim
n→∞

∣∣∣∣xn+1/(n+ 1)2

xn/n2

∣∣∣∣ = |x| lim
n→∞

n2

(n+ 1)2
= |x|.

So the series converges when |x| < 1 and diverges when |x| > 1. When x = 1
we get the series

∑∞
n=1

1
n2 , which is a convergent p-series. When x = −1

we get the alternating p-series
∑∞

n=1
(−1)n
n2 whose absolute series is the series∑∞

n=1
1
n2 that we just said is convergent.

f) The domain of convergence of the power series
∑∞

n=0 n
nxn is {0}. Cer-

tainly we have convergence at x = 0: every power series converges at 0”

∞∑
n=0

an0n = a0 + a1 · 0 + a2 · 02 + . . . = a0 + 0 + 0 + . . . = a0.

For x 6= 0, the Root Test gives

θ = lim
n→∞

|nnxn|
1
n = lim

n→∞
|n|x =∞,

so the series diverges.

We notice that in every case above the domain of convergence was an interval.
This holds in general, as we now show.
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Proposition 2.6.3. Suppose that the power series
∑∞

n=0 anx
n converges

for x = c. Then it converges absolutely for all x such that |x| < |c|.

Proof. Since
∑∞

n=0 anc
n converges, the sequences of terms converges to 0 and

thus is bounded: there is K ≥ 0 such that |ancn| ≤ K for all n ∈ N. Let

x ∈ R be such that |x| < |c|, and put d = |x|
|c| , so d ∈ (0, 1). Then

|anxn| = |an||c|ndn ≤ Kdn,

so
∞∑
n=0

|anxn| ≤ K
∞∑
n=0

dn <∞.

Corollary 2.6.4. Let
∑∞

n=0 anx
n be a power series, and let

D =

{
x ∈ R

∣∣∣∣ ∞∑
n=0

anx
n converges

}
.

a) If D is unbounded, then D = R.
b) If D is bounded, let R = supD. Then

(−R,R) ⊆ D ⊆ [R,R].

Proof. a) Suppose D is unbounded, so for all n ∈ Z+ there is c ∈ D such
that |c| > n. By Proposition 2.6.3 it follows that [−n, n] ⊆ D. Since this
holds for all n ∈ Z+, we have D = R.
b) Suppose D is bounded and R = supD. Since 0 ∈ D, we have R ≥ 0.
First suppose x ∈ R is such that |x| > R. Then we claim that x /∈ D; indeed,

if x ∈ D, then by Proposition 2.6.3 we have |x|+R
2
∈ D, and since |x|+R

2
> R,

this is a contradiction. Now suppose |x| < R. Since R = supD, there is
y ∈ D such that |x| < y ≤ R, and by Proposition 2.6.3 we have x ∈ D.

When the domain D of convergence of
∑∞

n=0 anx
n is bounded, we call R =

supD the radius of convergence of the power series. When D = R we
define the radius of convergence to be R =∞.

Let us spell out Corollary 2.6.4 a bit more explicitly: it says that if R = ∞
then the domain of convergence is R; if R = 0 then the domain of convergence
is {0}, and if R ∈ (0,∞) then the radius of convergence is one of the follow-
ing: (−R,R), [−R,R), (−R,R] or [−R,R]. Example 2.6.2 shows that R = 0
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and R =∞ can both occur, and that when R = 1 all four kinds of intervals
can occur. In Exercise 10 you are asked to find, for each R ∈ (0,∞), power
series with domains of convergence (−R,R), [−R,R), (−R,R] and [−R,R].

The radius of convergence of a power series
∑∞

n=0 anx
n has a simple rela-

tion to the Ratio and Root Test limits of the numerical series
∑∞

n=0 an. In
the following result we use the conventions

1/0 =∞, 1/∞ = 0.

(Note that 1/0 = ∞ is only a sensible convention when we restrict to non-
negative numbers. That is the case here.)

Proposition 2.6.5. Let
∑∞

n=0 anx
n be a power series.

a) Suppose that the Ratio Test limit

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists. Then the radius of convergence of the power series

∑∞
n=0 anx

n is 1
ρ
.

b) Suppose that the Root Test limit

θ = lim
n→∞

|an|
1
n

exists. Then the radius of convergence of the power series
∑∞

n=0 anx
n is 1

θ
.

You are asked to prove this in Exercise 9. (If you don’t see how to proceed,
try first tracking the relationship between the Ratio Test limit and the radius
of convergence in any particular example.)

We now pursue a slightly more general notion of a power series: instead
of powers of x, we look at powers of x − a for some fixed a ∈ R. Of course
whenever we replace a variable x by x − a this has the effect of translating
everything a units to the right. There really is no more to it than that.

A power series centered at a is a series of the form

∞∑
n=0

an(x− a)n
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where a is a fixed real number.

If the domain of convergence of
∑∞

n=0 anx
n is D, then the domain of conver-

gence of
∑∞

n=0 an(x− a)n is

D + a = {x+ a | x ∈ D}.

So the radius of convergence of
∑∞

n=0 an(x− a)n is the same as the radius of
convergence of

∑∞
n=0 anx

n, but the center moves from 0 to a. For instance, if
the domain of convergence of the original power series is (−R,R), then the
domain of convergence of the shifted power series is (a−R, a+R).

Example 2.6.6. Since we know that the power series
∑∞

n=0
xn

n
has do-

main of convergence [−1, 1) we can conclude that the power series
∑∞

n=0
(x+2)n

n

has domain of convergence [−3,−1).

The above shifting technique can be thought of as the composition of the func-
tion defined by the power series f(x) =

∑
anx

n with the function g(x) =
x− a. Composition with other simple functions can lead to similar general-
izations.

Example 2.6.7. The power series h(x) =
∑∞

n=0 x
2n/2n can be thought

of as the composition of the power series f(x) =
∑∞

n=0 x
n with the function

g(x) = x2/2. Since we know that the domain of convergence for f(x) is
(−1, 1) we can conclude that h(x) converges exactly when −1 < x2/2 < 1.
Thus, the domain of convergence for h(x) must be (−

√
2,
√

2).

Although power series define functions on their domains of convergence, we
generally cannot find closed form expressions for these functions. In the next
chapter we will extend the list of power series for which we can determine
closed form expressions, but for now we can do so only for geometric series.

EXERCISES 2.6

1. Compute the domains of convergence for the following power series.

a)
∞∑
n=0

nxn b)
∞∑
n=0

xn

3n

c)
∞∑
n=0

nnxn

n!
d)

∞∑
n=0

3n(x− 1)n
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e.)
∞∑
n=0

n!xn

2n
f.)

∞∑
n=0

3xn

n2

g.)
∞∑
n=0

(3x)n

n2
h.)

∞∑
n=0

(x− 5)n

n4

i.)
∞∑
n=0

x3n

2n
j.)

∞∑
n=0

(x− 2)2n

3n

k.)
∞∑
n=0

(−3)nxn√
n+ 1

l.)
∞∑
n=0

n(x+ 2)n

3n+1

2. Find closed forms for the following power series.

a)
∞∑
n=3

xn

b)
∞∑
n=0

2xn

c)
∞∑
n=0

(2x)n

d)
∞∑
n=1

(2x− 1)n

e.)
∞∑
n=1

x2n

3. Find a power series representation for the following functions. Be sure
to indicate the domain of convergence and radius of convergence in each
case:

(a) f(x) =
1

2 + x2
(b) g(x) =

4

x+ 4

4. a) Find a power series which converges to f(x) = 1
5−x on the interval

(−5, 5). (Hint: 5− x = 5(1− x/5).)

b) Find a power series which converges to g(x) = 1
5+x

on the interval
(−5, 5).
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5. Find a power series which converges to f(x) = 1
5−x on the interval (3, 5).

(Hint: 5− x = 1− (x− 4).)

6. Find a power series which converges to f(x) = 1
(x−1)(x−2) on the interval

(−1, 1). (Hint: partial fractions.)

7. Let {Fn} be the Fibonacci sequence, so F0 = 1, F1 = 1, and Fn =
Fn−1 + Fn−2 for n ≥ 2. Let F(x) be the function given by

F (x) =
∞∑
n=0

Fnx
n

= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + . . .

F (x) is called the generating function for {Fn}.
a) By writing out F (x) = 1 + x +

∑∞
n=2(Fn−1 + Fn−2)x

n show that
(1− x− x2)F (x) = 1.

b) Expand 1
1−x−x2 by partial fractions to write F (x) in the form

F (x) =
A

α− x
+

B

β − x

for some numbers A and B, where α = (−1+
√

5)/2 and β = (−1−
√

5)/2
are the roots of 1− x− x2 = 0.

c) By combining the power series for A
α−x and B

β−x , (and using that 1/α =

−β) show that

Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 .

d) Check that this formula really works for n = 0, 1, and 2.

8. (From the William Lowell Putnam Mathematical Competition, 1999)

Consider the power series expansion

1

1− 2x− x2
=
∞∑
n=0

anx
n.

Prove that, for each integer n ≥ 0, there is an integer m such that

a2n + a2n+1 = am.
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9. Prove Proposition 2.6.5.

10. Let R ∈ (0,∞).
a) Exhibit a power series with domain of convergence (−R,R).
b) Exhibit a power series with domain of convergence [−R,R).
c) Exhibit a power series with domain of convergence (−R,R].
d) Exhibit a power series with domain of convergence [−R,R].

11. Let
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n be two power series with radii of conver-
gence Ra > 0 and Rb > 0. Let R = min(Ra, Rb). Put cn =

∑n
k=0 akbn−k.

Show that the “formal identity”(
∞∑
n=0

anx
n

)(
∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n

is valid for all x ∈ (−R,R).

12. This exercise explains why it often turns out that the radius of conver-
gence of a power series is 1. Let {an} be a real sequence.
a) Suppose {an} is bounded. Show that the radius of convergence of∑∞

n=0 anx
n is at least 1.

b) Suppose an 6→ 0. Show that the radius of convergence of
∑∞

n=0 anx
n

is at most 1.
c) Deduce: if {an} is bounded and not convergent to 0, then the radius
of convergence of

∑∞
n=0 anx

n is 1.
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Chapter 3

Sequences and Series of
Functions

Consider a power series
∑∞

n=0 anx
n. The perspective of Chapter 2 was that

this is a “parameterized family of series,” i.e., for each x ∈ R we get a dif-
ferent series, and we investigated the set of parameter values for which the
series converges.

In this chapter we will discuss such “parameterized families of sequences
and series” in general terms. We will establish results of the following char-
acter: given a sequence {fn} of functions such that each fn has a certain
good property, then the limit function f also has that good property. Then
we will apply these results to establish good properties of a function defined
by a convergent power series. Finally we will develop the theory of Taylor
series and thereby represent large classes of functions as convergent power
series.

3.1 Pointwise Convergence

We fix a subset D ⊂ R. In practice D is usually an interval – keep in mind
especially the cases D = R and D = [a, b] – but many of the results hold
without any assumptions on D. Then a sequence of functions is a sequence
{fn : D → R}∞n=1, i.e., for each n ∈ Z+ we have a function fn : D → R.1 The
key point of this setup is the following (familiar) one: for each x ∈ D, by
“plugging in x” we get a sequence of real numbers {fn(x)}∞n=1, and we may

1The sequence may also start at 0 or in fact at any integer.
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ask whether the sequence converges.

Our first notion of convergence of a sequence of functions is no more and
no less than requiring an affirmative answer for every x ∈ D. Namely:

Let D ⊂ R, and for each n ∈ Z+ let fn : D → R be a function. Let
f : D → R be a function. We say that fn converges pointwise to f if for
all x ∈ D we have

lim
n→∞

fn(x) = f(x).

To unpack this definition completely, this says: for all x ∈ D and for all
ε > 0, there is N ∈ N such that for all n > N we have

|fn(x)− f(x)| < ε.

A key point (and as we will soon see, the fundamental shortcoming!) of this
definition is that we are allowed to choose N in terms of both ε and x.

If {fn : D → R}∞n=1 is a sequence of functions, we may form the corre-
sponding series of functions

∑∞
n=1 fn. Again, for each x ∈ D after plugging

in x we get a real series
∑∞

n=1 fn(x). If S : D → R is a function, we say that
the series

∑∞
n=1 fn converges pointwise to S if for all x ∈ R, the series∑∞

n=1 fn(x) converges and has value S(x). Again we unpack this completely:
for all x ∈ D and all ε > 0, there is N ∈ N such that for all n > N we have∣∣∣∣ n∑

k=1

fk(x)− S(x)

∣∣∣∣ < ε.

We may refer to the function S as the sum of the series
∑∞

n=1 fn or, extending
our earlier slight abuse of notation, we may simply write S =

∑∞
n=1 fn.

Example 3.1.1. a) Let
∑∞

n=0 anx
n be a power series, and let

D =

{
x ∈ R |

∞∑
n=0

anx
n converges

}
.

By definition, the series converges pointwise on D: that is, if SN(x) =∑N
n=0 anx

n, then SN is pointwise convergent on D, and the pointwise limit
is the function

∑∞
n=0 anx

n.
b) Let us be more specific. If an = 1 for all n, then we get the geometric series
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∑∞
n=0 x

n. We know that the domain of convergence is (−1, 1). Moreover, in
this case we know what the sum of the series is, namely 1

1−x . Thus the series∑∞
n=0 x

n converges pointwise to 1
1−x on (−1, 1).

c) We saw in Chapter 2 that the power series
∑∞

n=0
xn

n!
converges for all

x ∈ R. I claim that in fact for all x ∈ R, the series converges to ex. This is
the type of result that we have been gunning for in the entire course; we will
prove it later in this chapter. Assuming this, the series

∑∞
n=0

xn

n!
converges

pointwise to ex on R.

Hey: why are we studying sequences and series of functions? The answer is
that from the earliest days of calculus (in the 17th century), mathematicians
sought to do calculus on complicated functions by writing them as limits
of sequences and series of simpler functions. Power series give one of the
simplest and most important examples of this: on the domain of convergence
D, the power series

∑∞
n=0 anx

n is the pointwise limit of the sequence SN =∑N
n=0 anx

n. Each SN is a polynomial, and calculus on polynomials is easy:
the derivative of SN is

S ′N =
N∑
n=1

nanx
n−1

and an antiderivative of Sn is∫
SN =

N∑
n=0

anx
n+1

n+ 1
.

If we dare to admit it, we are certainly hoping that “the same thing” holds
for power series on their domain of convergence. In particular, we hope that
the derivative of a power series is(

∞∑
n−0

anx
n

)′
=
∞∑
n=1

nanx
n−1.

The mathematicians of the 17th, 18th and early 19th centuries were often
happy to do calculus on the limit of a sequence or series of functions by doing
calculus on the nth term and then taking the limit. They would sometimes
make assertions that, in our modern notation, would read as follows:

•: Suppose fn → f pointwise on D. Then

∀c ∈ D, lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x). (3.1)



156 CHAPTER 3. SEQUENCES AND SERIES OF FUNCTIONS

• Suppose fn → f pointwise on [a, b]. Then∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx. (3.2)

• Suppose fn → f pointwise on D. Then

f ′ = lim
n→∞

f ′n. (3.3)

Such relations between fn and f are both natural and useful. Unfortunately,
none of them are true! More precisely, they are often true but assuming that
fn → f pointwise is not enough to ensure that they are true.

Example 3.1.2. Let

fn(x) =


−1, −1 ≤ x < −1

n

nx, −1
n
≤ x < 1

n

1, 1
n
≤ x ≤ 1

-1

0.5

1

-0.75 -0.5 0.25 0.5 0.75 1

x

-1

figure 3.1.1a

-0.25

f
4

and let

f(x) =


−1, −1 ≤ x < 0

0, x = 0

1, 0 < x ≤ 1

.

Then fn → f pointwise on R. Moreover, each fn is continuous, but the
pointwise limit f is not.
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-1
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0.5

1

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

x

figure 3.1.1b

y f

Example 3.1.3. For n ∈ Z+, let fn : [0, 1]→ R by fn(x) = xn. If we plug in
any x ∈ [0, 1], then the sequence {fn(x)} = {xn} is geometric with geometric
ratio x. Thus:
• If x ∈ [0, 1), then fn(x) = xn → 0.
• If x = 1, then fn(x) = 1n = 1→ 1.
Thus if

f(x) =

{
0 0 ≤ x < 1

1 x = 1

then fn → f pointwise on [0, 1]. As in part a) we have a sequence of con-
tinuous functions converging pointwise to a discontinuous function. Unlike
part a), each fn is much better than continuous: it is smooth (or infinitely
differentiable, or C∞: derivatives of all orders exist). One could not ask for
a better behaved function on the interval [0, 1] then fn = xn. However, all
this good behavior does not ensure that the pointwise limit is continuous.

To see how these examples fit in with the above “lies”: pointwise convergence
tells us precisely that for all x ∈ D, we have limn→∞ fn(x) = f(x). If each
fn : D → R is continuous, then for all c ∈ D we have then limx→c fn(x) =
f(c), and thus (3.1) reduces to

∀c ∈ D, lim
x→c

f(x) = lim
n→∞

fn(c). (3.4)

Since, once again, pointwise convergence gives that for all c ∈ D we have
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limn→∞ fn(c) = f(c), we see that in this case (3.4) is equivalent to

∀c ∈ D, lim
x→c

f(x) = f(c),

i.e., that f is continuous.

Example 3.1.4. Let

fn(x) =


2n2x, 0 ≤ x < 1

2n

2n− 2n2x, 1
2n
≤ x < 1

n

0, 1
n
≤ x ≤ 1

and let
f(x) = 0, 0 ≤ x ≤ 1.

1

2

3

0.25 0.5 0.75 1
x

f

f

f

1

2

3

figure 3.1.2

y

Since the graph of fn is a triangle with height n and base 1
n

we have

∀n ∈ Z+,

∫ 1

0

fn(x)dx =
1

2
,

while ∫ 1

0

f(x)dx =

∫ 1

0

0 = 0.

Thus

lim
n→∞

∫ 1

0

f(x)dx = lim
n→∞

1

2
=

1

2
6= 0 =

∫ 1

0

f(x)dx.
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Example 3.1.5. Let g : R → R be a bounded, differentiable function such
that limn→∞ g

′(n) does not exist. (For instance, we may take g(x) = sin
(
πx
2

)
.)

For n ∈ Z+, let

fn : R→ R, fn(x) =
g(nx)

n
.

Let M be such that |g(x)| ≤ M for all x ∈ R. (With our specific choice of
g above, we may take M = 1.) Then for all x ∈ R we have |fn(x)| ≤ M

n
, so

limn→∞ fn(x) = 0. Thus if f is the identically zero function, then fn → f
pointwise on R. The derivative of the zero function is again the zero function,
and in particualr f ′(1) = 0. On the other hand, the Chain Rule gives

f ′n(x) =
ng′(nx)

n
= g′(nx),

and thus, taking x = 1, we get

lim
n→∞

f ′n(1) = lim
n→∞

g′(n) does not exist,

and thus

lim
n→∞

f ′n(1) 6=
(

lim
n→∞

fn

)′
(1).

3.2 Uniform Convergence

All we have to do now is take these lies and make them true somehow. – G.
Michael2

So unfortunately all three “identities” (3.1), (3.2) and (3.3) used rather
blithely by many mathematicians for about 200 years turn out to be false.
Well, don’t give up. In fact the best of these mathematicians did not assert
these identities in general but only in certain situations. What was actually
missing for two hundred years was a clear understanding of exactly what is
needed in order to make the lies true. (The situation is complicated by the
fact that the precise (ε,N)-definition of convergence of a sequence of real
numbers was not introduced until well into the 19th century. So for instance
our great hero A.L. Cauchy, in his 1821 text Cours d’analyse, included a re-
sult that another (brilliant, leading) mathematician, N.H. Abel, regarded as
“admitting exceptions.” However, when 21st century mathematicians look

2George Michael, 1963–
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back at Cauchy’s work and interpret it using the lens of 20th century in-
novations in analysis, they can interpret his statements in a foundational
context in which they become correct. A good way to appreciate the power
and simplicity of the epsilontic approach to analysis to read a little of the
controversies and confusions that preceded it!)

The key idea that makes the lies (most of them: please read on!) true
was first given by Gudermann3 in an 1838 paper on elliptic functions. In
1839-1840 he gave a course on elliptic functions. Weierstrass was a student
in Gudermann’s course. He took Gudermann’s idea, ran with it, and the
rest, as they say, is history.

3.2.1 Introducing Uniform Convergence

What Gudermann and Weierstrass realized is that most of our problems dis-
appear if we replace pointwise convergence by a subtly stronger definition,
uniform convergence.

We say that a sequence {fn : D → R}∞n=1 of functions converges uni-
formly to a function f : D → R if for all ε > 0, there is N ∈ N such that
for all x ∈ D and all n ≥ N we have

|fn(x)− f(x)| < ε.

We will abbreviate “fn converges uniformly to f” by fn
u→ f .4

The definitions of pointwise and uniform convergence look very similar at
first. Let us unpack them both completely, side by side:

fn converges to f pointwise on D means:

∀x ∈ D, ∀ε > 0, ∃N ∈ N | ∀n ≥ N, |fn(x)− f(x)| < ε,

while fn converges to f uniformly on D means:

∀ε > 0,∃N ∈ N | ∀x ∈ D, ∀n ≥ N, |fn(x)− f(x)| < ε.

3Christoph Gudermann, 1798–1852
4This is not standard notation, but we think that making a notational distinction is

pedagogically useful.
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In fact all the words are the same; the only difference lies in the order of quan-
tifiers. For pointwise convergence, because ∀x ∈ D appears before ∃N ∈ N,
the N is allowed to depend on x as well as ε. For uniform convergence,
because ∃N ∈ N appears before ∀x ∈ D, the N is allowed to depend on ε
alone: it must work for all x ∈ D at the same time (or “uniformly”; thus
the name). Thus the second definition is stronger than the first: fn

u→ f on
D certainly implies that fn → f pointwise on D, but (as we shall see), the
converse is not true.

A student early in her study of theoretical mathematics may have difficulty
appreciating the significance of the order of quantifiers. But in fact switching
a ∀ and an ∃ often makes an enormous difference. It may help to hone
your intuition on a simpler example: consider the two statements:

∀x ∈ R ∃y ∈ R y > x.

∃y ∈ R ∀x ∈ R, y > x.

They differ only in swapping the order of an ∃ and a ∀. The first statement
asserts that for every real number x, there is some larger real number y.
True: given x, take y = x + 1. The second statement asserts that there is
a real number larger than every real number. False, and even false if there
were a largest real number: given y, take x = y: it is not the case that y > y.

As usual, we apply this definition to a series of functions via the sequence of
partial sums: thus

∑∞
n=1 fn

u→ S on D if for all ε > 0, there is N ∈ N such
that for all x ∈ D and all n > N , we have

|
n∑
k=0

fk(x)− S(x)| < ε.

Lemma 3.2.1. (Cauchy Criterion for Uniform Convergence)
Let {fn : D → R} be a sequence of functions, and let f : D → R.
a) The following are equivalent:
(i) We have fn

u→ f .
(ii) For all ε > 0, there is N ∈ Z+ such that for all x ∈ D and all m,n ≥ N
we have

|fm(x)− fn(x)| < ε.



162 CHAPTER 3. SEQUENCES AND SERIES OF FUNCTIONS

b) The following are equivalent:
(i) The series

∑∞
n=1 fn converges uniformly to f on D.

(ii) For all ε > 0, there is N ∈ Z+ such that for all x ∈ D and all n ≥ m ≥ N
we have ∣∣∣∣ n∑

k=m

fk(x)− f(x)

∣∣∣∣ < ε.

Proof. a) (i) =⇒ (ii) The proof that convergent sequences are Cauchy carries
over without essential change. For completeness, we give the argument. Let
ε > 0, and choose N ∈ Z+ such that for all n ≥ N and all x ∈ D we have
|fn(x)− f(x)| < ε

2
. Then for all m,n ≥ N we have

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |fn(x)− f(x)| < ε

2
+
ε

2
= ε.

(ii) =⇒ (i): For each x ∈ D, the sequence {fn(x)} is Cauchy, so convergent
by Cauchy’s Property of Completeness. Calling the limit f(x), we get fn → f
pointwise on D. It remains to show the convergence is uniform. For this fix
ε > 0, and let x0 ∈ D. Choose N ∈ Z+ such that |fm(x)− fn(x)| < ε

2
for all

x ∈ D, choose M ∈ Z+ such that |fm(x0) − f(x0)| < ε
2

for all m ≥ M , and
put m0 = max(M,N). Then for all n ≥ N , we have

|fn(x0)− f(x0)| ≤ |fn(x0)− fm0(x0)|+ |fm0(x0)− f(x0)| <
ε

2
+
ε

2
< ε.

This shows that fn
u→ f on D.

b) We apply part a) to the sequence of partial sums Sn =
∑m

k=1 fk.

We introduce a notation which is convenient for dealing with uniform con-
vergence and also provides a nice way of thinking about the concept. For
f : D → R, we define the norm of f

||f || = sup
x∈D
|f(x)| ∈ [0,∞].

Note here that we are using the convention that the supremum of a nonempty
subset of real numbers which is unbounded above is∞. Thus, ||f || =∞ pre-
cisely when f is unbounded on D.

Now consider the following key inequality:

||f || < ε.
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What it means is that the graph of f : D → R lies strictly between the
horizontal lines y = −ε and y = ε. And now observe that if {fn : D → R}
is a sequence of functions and f : D → R is a function, then the assertion
fn

u→ f on D holds iff

||fn − f || → 0.

(Here we have a sequence {an} in the extended real numbers [0,∞]. Our
convention is that for such a sequence to converge to a real number, we must
have an <∞ for all sufficiently large n.) Thus we have reduced the question
of uniform convergence of a sequence of functions to the convergence of a
single numerical sequence.

3.2.2 Consequences of Uniform Convergence

And now we will see that the lies become true if fn → f is replaced by
fn

u→ f . (Well, most of them...)

Theorem 3.2.2. Let {fn} be a sequence of functions with common domain
D, and let c be a point of I. Suppose that for all n ∈ Z+ we have

lim
x→c

fn(x) = Ln.

Suppose moreover that fn
u→ f . Then the sequence {Ln} is convergent,

limx→c f(x) exists and we have equality:

lim
n→∞

Ln = lim
n→∞

lim
x→c

fn(x) = lim
x→c

f(x) = lim
x→c

lim
n→∞

fn(x).

Proof. Step 1: We show that the sequence {Ln} is convergent. Since we
don’t yet have a real number to show that it converges to, it is natural to try
to use the Cauchy criterion, hence to try to bound |Lm − Ln|. Now comes
the trick: for all x ∈ I we have

|Lm − Ln| ≤ |Lm − fm(x)|+ |fm(x)− fn(x)|+ |fn(x)− Ln|.

By the Cauchy criterion for uniform convergence, for any ε > 0 there exists
N ∈ Z+ such that for all m,n ≥ N and all x ∈ I we have |fm(x)−fn(x)| < ε

3
.

Moreover, the fact that fm(x)→ Lm and fn(x)→ Ln give us bounds on the
first and last terms: there exists δ > 0 such that if 0 < |x − c| < δ then
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|Ln − fn(x)| < ε
3

and |Lm − fm(x)| < ε
3
. Combining these three estimates,

we find that by taking x ∈ (c− δ, c+ δ), x 6= c and m,n ≥ N , we have

|Lm − Ln| ≤
ε

3
+
ε

3
+
ε

3
= ε.

So the sequence {Ln} is Cauchy and hence convergent, say to L ∈ R.
Step 2: We show that limx→c f(x) = L (so in particular the limit exists!).
Actually the argument for this is very similar to that of Step 1:

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L|.

Since Ln → L and fn(x) → f(x), the first and last term will each be less
than ε

3
for sufficiently large n. Since fn(x) → Ln, the middle term will be

less than ε
3

for x sufficiently close to c. Overall we find that by taking x
sufficiently close to (but not equal to) c, we get |f(x) − L| < ε and thus
limx→c f(x) = L.

Corollary 3.2.3. Let fn be a sequence of continuous functions with common
domain D and suppose that fn

u→ f on D. Then f is continuous on I.

For the convenience of readers who would rather focus on Corollary 3.2.3
than Theorem 3.2.2, we give a separate (easier) proof.

Proof. Let x ∈ I. We need to show that limx→c f(x) = f(c), thus we need to
show that for any ε > 0 there exists δ > 0 such that for all x with |x− c| < δ
we have |f(x)− f(c)| < ε. The idea – again! – is to trade this one quantity
for three quantities that we have an immediate handle on by writing

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|.

By uniform convergence, there exists n ∈ Z+ such that |f(x) − fn(x)| < ε
3

for all x ∈ I: in particular |fn(c)− f(c)| = |f(c)− fn(c)| < ε
3
. Further, since

fn(x) is continuous, there exists δ > 0 such that for all x with |x− c| < δ we
have |fn(x)− fn(c)| < ε

3
. Consolidating these estimates, we get

|f(x)− f(c)| < ε

3
+
ε

3
+
ε

3
= ε.

Theorem 3.2.4. Let {fn} be a sequence of Riemann integrable functions
with common domain [a, b]. Suppose that fn

u→ f . Then f is Riemann
integrable and

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn =

∫ b

a

f. (3.5)
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Proof. We find ourselves at an awkward position here: we have not given any
discussion of Riemann integrability of functions in this course – not even the
definition. Moreover, it is not a matter of inserting a few paragraphs: the
theory of the Riemann integral is one of the more technically complicated
parts of undergraduate analysis. So we are not in a position to formally
prove either part of the theorem here. A proof of this result can be found
e.g. in [Cl-HC, §13.2] (though you will also have to read parts of Chapter 8,
on integration, in order to understand it).

We have already proved that a uniform limit of continuous functions is
continuous, and every continuous function is Riemann integrable [Cl-HC,
Thm. 8.8], so the integrability of the limit function is not a key point for us.
However, we do want to give some account of (3.5). In fact the basic idea
here is so simple that one does not need a careful definition of the integral
to appreciate it. All we need to know is the following facts about the integral:

(F1) If f, g : [a, b]→ R are Riemann integrable, then
∫ b
a
f − g =

∫ b
a
f −

∫ b
a
g.

(F2) If f, g : [a, b] → R are Riemann integrable and f(x) ≤ g(x) for all

x ∈ [a, b], then
∫ b
a
f ≤

∫ b
a
g.

(F3) For all C ∈ R we have
∫ b
a
C = C(b− a).

Notice that (F2) and (F3) are especially easy to swallow: they have simple

interpretations in terms of
∫ b
a
f as the signed area under the curve y = f(x)

from x = a to x = b. Now, since fn
u→ f , for all ε > 0, there is N ∈ Z+ such

that for all n ≥ N we have ||fn − f || < ε
b−a . Unpacking this, we have that

for all x ∈ [a, b],
−ε
b− a

≤ fn(x)− f(x) ≤ ε

b− a
.

Using (F2) and (F3) we get

−ε =

∫ b

a

−ε
b− a

≤
∫ b

a

fn − f ≤
∫ b

a

ε

b− a
= ε.

So for all n ≥ N we have ∣∣∣∣ ∫ b

a

fn − f
∣∣∣∣ ≤ ε

and thus (using (F1))∫ b

a

fn −
∫ b

a

f =

∫ b

a

fn − f → 0,
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so finally ∫ b

a

fn →
∫ b

a

f .

Corollary 3.2.5. Let {fn} be a sequence of continuous functions defined on
the interval [a, b] such that

∑∞
n=0 fn

u→ f . For each n, let Fn : [a, b] → R be
the unique function with F ′n = fn and Fn(a) = 0, and similarly let F : [a, b]→
R be the unique function with F ′ = f and F (a) = 0. Then

∑∞
n=0 Fn

u→ F .

Proof. By the Fundamental Theorem of Calculus, for all x ∈ [a, b] we have

Fn(x) =

∫ x

a

fn,

F (x) =

∫ x

a

f.

Thus if SN =
∑N

n=0 fn, we also have

∫ x

a

SN =

∫ x

a

N∑
n=0

fn =
N∑
n=0

Fn.

Applying Theorem 3.2.4 to the sequence of partial sums {Sn} on the interval
[a, x] gives the result.

Our next order of business is to discuss differentiation of sequences of func-
tions. For this we should reconsider Example 3.1.5: let g : R → R be a
bounded differentiable function such that limn→∞ g(n) does not exist, and

let fn(x) = g(nx)
n

. Then for all x ∈ R we have

|fn(x)| = |g(nx)

n
| ≤ ||g||

n
,

so fn
u→ 0 on R. But as we saw above, limn→∞ f

′
n(1) does not exist. We have

shown the following somewhat distressing fact: uniform convergence of fn to
f does not imply that f ′n converges. Our last lie is still a lie!

Well, don’t panic. As before, the result can be made true by inserting suitable
hypotheses. The following simple result is sufficient for our later applications.
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Theorem 3.2.6. Let {fn : [a, b]→ R}∞n=1 be a sequence. We suppose:
(i) Each fn is continuously differentiable on [a, b],
(ii) The functions fn converge pointwise on [a, b] to some function f , and
(iii) The functions f ′n converge uniformly on [a, b] to some function g.
Then f is differentiable and f ′ = g, or in other words

( lim
n→∞

fn)′ = lim
n→∞

f ′n.

Proof. Let x ∈ [a, b]. Since f ′n
u→ g on [a, b], certainly f ′n

u→ g on [a, x]. Since
each f ′n is continuous, by Corollary 3.2.3 g is continuous. Now applying
Theorem 3.2.4 and the Fundamental Theorem of Calculus we have∫ x

a

g =

∫ x

a

lim
n→∞

f ′n = lim
n→∞

∫ x

a

f ′n = lim
n→∞

fn(x)− fn(a) = f(x)− f(a).

Differentiating and applying the Fundamental Theorem of Calculus, we get

g = (f(x)− f(a))′ = f ′.

For future use we record the analogous result for infinite series. (It is, of
course, proved by applying Theorem 3.2.6 to the sequence of partial sums.)

Corollary 3.2.7. Let
∑∞

n=0 fn(x) be a series of functions converging point-

wise to f(x). Suppose that each f ′n is continuously differentiable and
∑∞

n=0 f
′
n(x)

u→
g. Then f is differentiable and f ′ = g:

(
∞∑
n=0

fn)′ =
∞∑
n=0

f ′n. (3.6)

When it holds that (
∑

n fn)′ =
∑

n f
′
n, we say that the series can be differen-

tiated termwise or term-by-term. Thus Corollary 3.2.7 gives a condition
under which a series of functions can be differentiated termwise.

Although Theorem 3.2.6 (or more precisely, Corollary 3.2.7) will be suffi-
cient for our needs, we cannot help but record the following stronger version.

Theorem 3.2.8. Let {fn} be differentiable functions on the interval [a, b]
such that {fn(x0)} is convergent for some x0 ∈ [a, b]. If there is g : [a, b]→ R
such that f ′n

u→ g on [a, b], then there is f : [a, b] → R such that fn
u→ f on

[a, b] and f ′ = g.
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Proof. [R, pp.152-153]
Step 1: Fix ε > 0, and choose N ∈ Z+ such that m,n ≥ N implies |fm(x0)−
fn(x0)| ε2 and |f ′m(t)− f ′n(t)| < ε

2(b−a) for all t ∈ [a, b]. The latter inequality is
telling us that the derivative of g := fm − fn is small on the entire interval
[a, b]. Applying the Mean Value Theorem to g, we get a c ∈ (a, b) such that
for all x, t ∈ [a, b] and all m,n ≥ N ,

|g(x)− g(t)| = |x− t||g′(c)| ≤ |x− t|
(

ε

2(b− a)

)
≤ ε

2
. (3.7)

It follows that for all x ∈ [a, b],

|fm(x)− fn(x)| = |g(x)| ≤ |g(x)− g(x0)|+ |g(x0)| <
ε

2
+
ε

2
= ε.

By the Cauchy Criterion, fn is uniformly convergent on [a, b] to some f .
Step 2: Now fix x ∈ [a, b] and define

ϕn(t) =
fn(t)− fn(x)

t− x

and

ϕ(t) =
f(t)− f(x)

t− x
,

so that for all n ∈ Z+, limx→t ϕn(t) = f ′n(x). Now by (3.7) we have

|ϕm(t)− ϕn(t)| ≤ ε

2(b− a)

for all m,n ≥ N , so once again by the Cauchy criterion ϕn converges uni-
formly for all t 6= x. Since fn

u→ f , we get ϕn
u→ ϕ for all t 6= x. Finally we

apply Theorem 3.2.2 on the interchange of limit operations:

f ′(x) = lim
t→x

ϕ(t) = lim
t→x

lim
n→∞

ϕn(t) = lim
n→∞

lim
t→x

ϕn(t) = lim
n→∞

f ′n(x).

3.2.3 Showing Uniform Convergence

Now that we believe that uniform convergence of a sequence or series is what
we really want, the next question becomes how often it occurs in nature.

In some sense it may be easier to show fn
u→ f on D than to show fn → f on
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D: whereas for the latter we need to show that fn(x)→ f(x) for all x ∈ D,
as we saw above, fn

u→ f on D is equivalent to

||fn − f || → 0,

i.e., we just have to show that one sequence converges to 0. When we unpack
the notation, we see that we must show that

sup
x∈D
|fn(x)− f(x)| → 0.

Notice that if D = [a, b] and fn and f are continuous then by the Extreme
Value Theorem the supremum can be replaced with a maximum. How do
we compute the maximum of the function |fn − f | on [a, b]? Well, there is
something called calculus that can help with this! In fact, even when the
domain is not a closed bounded interval, if the calculus works out right we
can still use it to the find the maximum value. Here is an example.

Example 3.2.9. For each n ∈ Z+, let fn : [0,∞) → R by fn(x) = xe−nx.
The graphs of the first three functions in this sequence are depicted in figure
3.1.3. We claim that again ||fn|| → 0 so that fn

u→ 0 on [0,∞). To show

0.1

0.2

2

0.3

3

0.4

y

1 4 5x

figure 3.1.3

f

f

f

1

2

3

this we use calculus: for all n ∈ Z+ and x ∈ [0,∞) we have

f ′n = e−nx − nxe−nx = (1− nx)e−nx,
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so f ′n is positive on [0, 1
n
), zero at 1

n
and negative on ( 1

n
,∞). It follows that

fn has a maximum at x = 1
n

. Since fn(x) ≥ 0 for all x, we find

||fn|| = fn

(
1

n

)
=

1

ne
→ 0.

Thus indeed fn
u→ 0 on [0,∞).

This kind of technique can often be used to show directly that fn
u→ f .

We will give one further criterion for showing uniform convergence.

Theorem 3.2.10. (Weierstrass M-test) Let D ⊂ R, and let {fn : D → R}
be a sequence of functions. If ∑

n

||fn|| <∞,

then the infinite series
∑

n fn is uniformly and absolutely convergent on D.

Proof. This follows from the Cauchy criteria for convergence and the triangle
inequality. Namely, since

∑
n ||fn|| < ∞, for all ε > 0 there is N ∈ Z+ such

that for all n ≥ m ≥ N we have
∑n

k=m ||fn|| < ε. Then for all n ≥ m ≥ N ,

||
n∑

k=m

fk|| = sup
x∈D
|

n∑
k=m

fk(x)|

≤ sup
x∈D

n∑
k=m

|fk(x)| ≤
n∑

k=m

sup
x∈D
|fk(x)| =

n∑
k=m

||fk|| < ε.

From this we deduce the following important result on convergence of power
series.

Theorem 3.2.11. Let
∑∞

n=0 anx
n be a power series with radius of conver-

gence R > 0. Then for all c ∈ (0, R), the series converges absolutely and
uniformly on the interval [−c, c].

Proof. First we observe that the series
∑∞

n=0 anc
n is absolutely convergent.

To see this, take r = |c|+R
2

. Since r < R, by definition of the interval of
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convergence,
∑∞

n=0 anr
n converges. Since |c| < r, it follows from Proposition

2.6.3 that
∑∞

n=0 |ancn| <∞. Now observe that for all x ∈ [−c, c], we have

|anxn| ≤ |ancn|,

so taking D = [−c, c] as our domain, we have

∞∑
n=0

||anxn|| ≤
∞∑
n=0

|ancn| <∞.

The absolute and uniform convergence of
∑∞

n=0 anx
n on [−c, c] now follows

from the Weierstrass M-Test.

3.2.4 Applications to Power Series

Lemma 3.2.12. Let
∑

n anx
n be a power series with radius of convergence

R ∈ [0,∞]. Then the radius of convergence of
∑

n nanx
n is also R.

Proof. The radius of convergence R of
∑

n anx
n is characterized by the fact

that for all x with |x| < R we have that
∑

n anx
n converges, while for all x

with |x| > R we have that
∑

n anx
n diverges. In fact, if |x| > R then the

sequence {anxn} is unbounded: indeed, in the proof of Proposition 2.6.3 we
used only the assumption that {anxn} is bounded to show absolute conver-
gence of

∑
n anc

n for all c with |c| < |x|, so if {anxn} were bounded, the

power series
∑

n an( |x|+R
2

)n would converge, which is a contradiction. Since
the sequence anx

n is unbounded, so is the sequence nanx
n, and thus the se-

ries
∑

n nanx
n also diverges for all x with |x| > R.

Suppose now that |x| < R. Let y = |x|+R
2

. Since |y| < R, we have∑
n |anyn| <∞. But for all sufficiently large n we have n|an||x|n ≤ |an||y|n.

Indeed, this clearly holds when an = 0; if not, the inequality is equivalent to

n ≤ |y
x
|n.

Since | y
x
| > 1, that this holds for all sufficiently large n follows from the fact

that for all C > 1 we have limx→∞
x
Cx

= 0 (e.g. by L’Hôpital). Therefore∑
n nanx

n is absolutely convergent by comparison to
∑

n |anyn|.

We are now ready to state and prove a big result on functions defined by
convergent power series.
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Theorem 3.2.13. (Wonderful Properties of Power Series) Let
∑∞

n=0 anx
n

be a power series with radius of convergence R > 0. Consider the function

f : (−R,R)→ R, f(x) =
∞∑
n=0

anx
n.

a) The function f is continuous.
b) The function f is differentiable. Moreover its derivative may be computed
termwise: for all x ∈ (−R,R) we have

f ′(x) =
∞∑
n=1

nanx
n−1. (3.8)

c) Since the power series in the right hand side of (3.8) has the same radius
of convergence R as f , the function f is in fact infinitely differentiable.
d) For all n ∈ N, we have f (n)(0) = n!an.
e) The power series F (x) =

∑∞
n=0

an
n+1

xn+1 also has radius of convergence R,
and for all x ∈ (−R,R) we have F ′(x) = f(x).

Proof. a) Let 0 < A < R and consider f as a function from [−A,A] to R. We
claim that the series

∑
n anx

n converges to f uniformly on [−A,A]. Indeed,
as a function on [−A,A] we have

||anxn|| = |an|An

and thus ∑
n

||anxn|| =
∑
n

|an|An <∞,

since by Proposition 2.6.3 power series converge absolutely on the interior of
their interval of convergence. So the Weierstrass M -Test gives that f is the
uniform limit of the sequence Sn(x) =

∑N
n=0 anx

n. Each Sn is a polynomial
function, hence continuous and indeed infinitely differentiable. By Theorem
3.2.3 we get that f is continuous on [−A,A]. Since any x ∈ (−R,R) lies in
[−A,A] for some 0 < A < R, in fact f is continuous on (−R,R).
b) According to Corollary 3.2.7, in order to show that f =

∑
n anx

n =
∑

n fn
is differentiable and the derivative may be computed termwise, it is enough
to check first that each fn is continuous differentiable and second that

∑
n f
′
n

is uniformly convergent. The first point is clear: fn = anx
n is a polynomial.

As for the second point, we find that∑
n

f ′n =
∑
n

(anx
n)′ =

∑
n

nanx
n−1.
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For x 6= 0, certainly
∑

n nanx
n−1 converges iff x

∑
n nanx

n−1 =
∑

n nanx
n

converges, which by Lemma 3.2.12 occurs for all |x| < R. We may now
apply the result of part a) to the power series

∑
n nanx

n−1 to get that it is
uniformly convergent on [−A,A] for all 0 < A < R. Thus Corollary 3.2.7
applies to show that f ′(x) =

∑∞
n=1 nanx

n−1.
c) We have just seen that for a power series f convergent on (−R,R), its
derivative f ′ is also given by a power series convergent on (−R,R). So we
may continue in this way: by induction, derivatives of all orders exist.
d) The formula f (n)(0) = n!an is what one obtains by repeated termwise
differentiation and evaluation at 0. We leave this as an exercise.
e) We leave this as an exercise.

Example 3.2.14. a) Since we know that
∑∞

n=0 x
n = 1

1−x when −1 < x <

1, we can use Theorem 3.2.13 to conclude that
∑∞

n=0 nx
n−1 = 1

(1−x)2 when
−1 < x < 1.
b) Applying Theorem 3.2.13 to the same series tells us that

∑∞
n=0

xn+1

n+1
con-

verges to
∫ x
0

ds
1−s = − log(1− x) when −1 < x < 1. By re-labeling the index,

we see that
∞∑
n=1

xn

n
= − log(1− x)

for −1 < x < 1. Notice that even though the series converges at x = −1,
the theorem does not tell us anything about what it converges to. On the
other hand, we know from exercise 2.3.7 that the alternating harmonic series
converges to log(1/2) so the above equality is indeed true on the interval
[−1, 1).

EXERCISES 3.2

1. Consider the sequence of functions fn : R→ R defined in Example 3.1.2,
which converges pointwise to f : R→ R.
a) Use one of the results of §3.2.2 to deduce that the convergence of fn
to f cannot be uniform.
b) Show directly from the definition that the convergence of fn to f is
not uniform.

2. Consider the sequence of functions fn : [0, 1] → R defined in Example
3.1.3, which converges pointwise to f : [0, 1]→ R.
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a) Use one of the results of §3.2.2 to deduce that the convergence of fn
to f cannot be uniform.
b) Show directly from the definition that the convergence of fn to f is
not uniform.

3. Consider the sequence of functions fn : [0, 1] → R defined in Example
3.1.4, which converges pointwise to f : [0, 1]→ R.
a) Use one of the results of §3.2.2 to deduce that the convergence of fn
to f cannot be uniform.
b) Show directly from the definition that the convergence of fn to f is
not uniform.

4. For each of the following sequences of functions {fn} defined on the
given interval J , determine if the sequence converges pointwise to a limit
function f . If the sequence does converge pointwise, determine whether
the convergence is uniform.

a) fn(x) = x
x+n

, J = [0,∞).

b) fn(x) = nx
1+n2x2

, J = (−∞,∞).

c) fn(x) = xn

1+xn
, J = [0,∞).

d) fn(x) = arctan(nx), J = (−∞,∞).

e.) fn(x) = e−nx, J = [0,∞).

f.) fn(x) = e−nx, J = [1,∞).

g.) fn(x) = xe−nx, J = (−∞,∞).

h.) fn(x) = x2e−nx, J = [0,∞).

5. a) Let fn : R → R be a sequence of functions converging uniformly to
f : R→ R. Show: if each fn is bounded, then so is f .
b) Let f : R → R be any continuous function. Define fn : R → R as
follows:

fn(x) =


f(−n) x ≤ −n
f(x) x ∈ [−n, n]

f(n) x ≥ n.

.

Show: each fn is bounded and continuous, and fn → f pointwise on R.
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6. Let D1 ⊂ D2 ⊂ R, and suppose that

D2 \D1 = {x ∈ D2 | x /∈ D1}

is finite. Let {fn : D2 :→ R} be a sequence of functions and let f : D2 →
R be a function. Suppose that fn

u→ f on D1 and fn → f pointwise on
D2. Show that fn

u→ f on D2.

7. Find “closed form” expressions for the following power series and deter-
mine their domains of convergence:

a)
∑∞

n=0 nx
n

b)
∑∞

n=0 n
2xn

c)
∑∞

n=0 nx
2n

d)
∑∞

n=1
(x+2)n

n

e.)
∑∞

n=2
xn

n2−n

8. Evaluate:

a)
∞∑
n=1

n

3n

b)
∞∑
n=1

n2

3n

c)
∞∑
n=1

1

n3n

9. (From the William Lowell Putnam Mathematical Competition, 1999)

Sum the series
∞∑
m=1

∞∑
n=1

m2n

3m(n3m +m3n)
.

10. a) Show that arctan x = x − x3

3
+ x5

5
− x7

7
+ ... for x ∈ (−1, 1). (Hint:

differentiate!)

b) Using the trigonometric identity π
4

= 4 arctan(1/5) − arctan(1/239)
show that π = 3.14159...
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11. Prove that the series
∑∞

n=1
cosnx
n2 converges uniformly on A = R.

12. Prove Theorem 3.2.13d).

13. Prove Theorem 3.2.13e).

14. a) Prove: for all α > 1, the series
∞∑
n=1

1

nx
converges uniformly on [α,∞).

The function defined by

ζ(x) =
∞∑
n=1

1

nx

is called the Riemann zeta function.
b) Deduce: ζ : (1,∞)→ R is a continuous function.

15. a) Suppose the power series
∑∞

n=0 anx
n converges absolutely at some

x ∈ R. Show that the series converges absolutely and uniformly on
[−|x|, |x|].
b) Without the hypothesis of absolute convergence at x, the power series
need not converge at −x. Give an example of this.
c) One may still ask: suppose a power series converges on [−R,R] but
that the convergence is not assumed to be absolute at x = ±R. Must
the convergence then be uniform on [−R,R]? The answer is yes, but this
is a theorem, not an exercise. (See [Cl-HC, Thm. 14.15].)

16. Let
∑∞

n=0 anx
n be a power series with radius of convergence R =∞: i.e.,

it converges for all real numbers.
a) Show that if an = 0 for all sufficiently large n, the convergence is
uniform on R.
(Hint: this is almost trivial.)
b) Show that if the convergence if uniform on R, then an = 0 for all
sufficiently large n.
(Hint: if

∑
n fn converges uniformly on D, then by the Cauchy Criterion

we have ||fn|| ≤ 1 for all sufficiently large n.)
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3.3 Taylor Series

3.3.1 Introducing Taylor Series

In Theorem 3.2.13d) we saw that if f(x) =
∑∞

n=1 anx
n then the coefficient,

an, is intimately related to the value of the nth derivative of f at zero, namely

f (n)(0) = n!an.

(Here we should mention the convention that 0! = 1.) The above observation
leads to a method of constructing a power series which might converge to a
given function f . In particular, if the series

∑∞
n=1 anx

n has any chance of
converging to f(x), then the coefficients must be given by

an =
f (n)(0)

n!
.

This leads to the following:

Definition 3.3.1. Let a ∈ R, and let f be an infinitely differentiable function
defined on an interval containing a, then the Taylor series for f , centered at
a is given by

Tf,a(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

For N ∈ N, we also define the Nth order Taylor polynomial centered at a as

TN,f,a(x) =
N∑
n=0

f (n)(a)

n!
(x− a)n.

Thus TN,f,a is the N th partial sum of the infinite series Tf,a.

Remark 3.3.2. When a = 0 one often calls the Taylor series

∞∑
n=0

f (n)(0)

n!
xn

the “Maclaurin series.” We will for the most part not use this terminology.

Example 3.3.3. Consider f(x) = ex. Since f (n)(x) = ex for all n, we
see that f (n)(0) = 1 for all n and so the Taylor series for f at 0 is given by

T (x) =
∞∑
n=0

xn

n!
.
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Example 3.3.4. a) Let f(x) = cos(x). Then

f ′(x) = − sin(x)

f ′′(x) = − cos(x)

f (3)(x) = sin(x)

f (4)(x) = cos(x)

This pattern repeats with period 4. Thus f(0) = 1, f ′(0) = 0, f ′′(0) =
−1, f (3)(0) = 0, f (4)(0) = 1 and this pattern repeats. A good way to write
down the general form of the nth derivative at 0 is f (2n+1)(0) = 0 and
f (2n)(0) = (−1)n. Thus the Taylor series expansion of f(x) = cosx cen-
tered at 0 is

T (x) =
∞∑
n=0

(−1)n
x2n

(2n!)
.

b) A very similar computation, which we leave to the reader as an exercise,
shows that if f(x) = sinx, the Taylor series expansion centered at 0 is

T (x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

3.3.2 The Local Taylor Theorem

The question of whether or not the Taylor series for f converges to f is the
same as the question of whether or not the sequence of Taylor polynomials
converges to f . It seems wise to start by considering why we might believe
that this is true.

For a smooth function f defined on an open interval around c ∈ R, we
have defined the Nth order Taylor polynomial

TN,f,a(x) =
N∑
n=0

f (n)(a)

n!
(x− a)n.

The first key idea is that we are performing a certain kind of polynomial
interpolation, as captured by the following result.

Theorem 3.3.5. The Taylor polynomial TN,f,a(x) is the unique polynomial
P (x) of degree at most N such that

∀0 ≤ n ≤ N,P (n)(a) = f (n)(a).
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Proof.
Step 1: Let P be a polynomial of degree at most N . Then we may write

P (x) =
N∑
n=0

an(x− a)n

for some real numbers a0, . . . , aN . We prove this by induction on N . The
base case is N = 0, and this is trivial: a degree 0 polynomial is a constant,
thus of the form a0. Now let N ∈ Z+ , suppose that all polynomials of degree
N − 1 can be expressed in the desired form, and let P (x) =

∑N
n=0 bnx

n be a
polynomial of degree at most N . Let aN = bN , and put

Q(x) = P (x)− bN(x− a)N =
N∑
n=0

bnx
n − aN(x− a)N .

The key observation here is that when we expand aN(x−a)N out in powers of
x, the coefficient of xN is simply aN = bN , which is the same as the coefficient
of xN in P (x) =

∑∞
n=0 bnx

n. Thus Q(x) is a polynomial of degree at most

N − 1. By our induction hypothesis, we may write it as
∑N−1

n=0 an(x − a)n,
and thus

P (x) = Q(x) + aN(x− a)N =
N∑
n=0

an(x− a)N ,

completing the induction step.
Step 2: Now consider the polynomial

P (x) =
N∑
n=0

an(x− a)n.

Evaluating at x = a, we get

P (a) = a0 + a1(a− a) + a2(a− a)2 + . . .+ aN(a− a)N = a0.

Differentiating, we get

P ′(x) = a1 + 2a2(x− a) + 3a3(x− a)2 + . . .+NaN(x− a)N−1.

Evaluating the derivative at x = a, we get

P ′(a) = a1 + 2a2(a− a) + 3a3(a− a)2 + . . .+NaN(a− a)N−1 = a1.
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Continuing in this manner – i.e., alternately differentiating and evaluating
at x = a – we we will successively obtain formulas for all the coefficients an
in terms of the higher derivatives at a. If we differentiate once more we get

P ′′(x) = 2a2 + 3 · 2(x− a) + 4 · 3(x− a)2 + . . .+N(N − 1)aN(x− a)N−2

and evaluating at x = a gives

P ′′(a) = 2a2,

or

a2 =
P ′′(a)

2
.

In general, if we differentiate n times and evaluate at x = a, then in
∑N

k=0 ak(x−
a)k, then if k < n the nth derivative of ak(x − a)k will be zero, whereas if
k > n then the nth derivative of ak(x− a)k will still involve a positive power
of (x − a) so will be zero when evaluated at x = a. So the kth derivative
of P (x) evaluated at a is equal to the kth derivative of akx

k evaluated at a,
which a little thought shows to be k!ak. Thus

P (k)(a) = k!ak

or

ak =
P (k)(a)

k!
.

Step 3: We notice that the formula just obtained immediately implies not
just the existence but the uniqueness of the expression of a polynomial P (x)
of degree at most N in the form

∑n
n=0 an(x− a)n: indeed we have

P (x) =
N∑
n=0

P (k)(a)

k!
(x− a)k.

Applying this to the Taylor polynomial

TN(x) =
n∑
n=0

f (k)(a)

k!
(x− a)k,

we get that for all 0 ≤ n ≤ N ,

T
(n)
N (a) = k!

f (k)(a)

k!
= f (k)(a).
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So indeed the Taylor polynomial interpolates the value of f and the deriva-
tives up through the Nth derivative of f at x = a, and it is the only polyno-
mial of degree at most N with this property.

The 0th order Taylor polynomial is

T0(x) = f(a),

a constant function. This is the crudest possible approximation to f near a.
The 1st order Taylor polynomial is

T1(x) = f(a) + f ′(a)(x− a).

Thus T1(x) is a linear function which passes through the point (a, f(a)) and
has slope f ′(a). By definition then T1(x) is the tangent line to y = f(x)
at x = a. In freshman calculus one hears that the tangent line is the “best
linear approximation” to y = f(x) at x = a...but other than the idea that
approximating f by its tangent line is a better idea the closer x is to a, one
does not really get a clear quantitative explanation of what that means.

The 2nd order Taylor polynomial is

T2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2.

This is a parabola (unless f ′′(a) = 0, in which case it is the tangent line
again). I encourage the reader to use software to actually graph the second
order Taylor polynomial along with y = f(x) for various smooth functions f
and various choices of a. After a while you will start to suspect that T2(x) is
somehow the “best parabolic approximation” to y = f(x) near x = a. But
what does that mean?

In the rest of the section we work towards an answer to the general claim
that TN(x) is the “best order N approximation to y = f(x) near a.

For f : D → R and a ∈ D, we will use the shorthand a ∈ D◦ to mean
that there is some δ > 0 such that (a− δ, a+ δ) ⊂ D.

For n ∈ N and a ∈ D◦, we say two functions f, g : D → R agree to
order n at a if

lim
x→a

f(x)− g(x)

(x− a)n
= 0.
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Lemma 3.3.6. Suppose 0 ≤ m ≤ n and f and g agree to order n at a. Then
also f and g agree to order m at a.

You are asked to prove Lemma 3.3.6 in Exercise ??.

Example 3.3.7. We claim that two continuous functions f and g agree to
order 0 at a if and only if f(a) = g(a). Indeed, suppose that f and g agree
to order 0 at a. Since f and g are continuous, we have

0 = lim
x→a

f(x)− g(x)

(x− a)0
= lim

x→a
f(x)− g(x) = f(a)− g(a).

The converse – if f(a) = g(a) then limx→a f(x)− g(x) = 0 – is equally clear.

Example 3.3.8. We claim that two differentiable functions f and g agree
to order 1 at a if and only if f(a) = g(a) and f ′(a) = g′(a). Both hypotheses
imply f(a) = g(a) so we may assume that, and then we find

lim
x→a

f(x)− g(x)

x− a
= lim

x→a

f(x)− f(a)

x− a
− g(x)− g(a)

x− a
= f ′(a)− g′(a).

Thus assuming f(a) = g(a), f and g agree to order 1 at a if and only if
f ′(a) = g′(a).

The following result gives the expected generalization of these two examples.
It is generally attributed to Taylor,5 probably correctly, although special
cases were known to earlier mathematicians.

Theorem 3.3.9. (Local Taylor Theorem) Let N ∈ N and f, g : I → R be
two N times differentiable functions, and let a be an interior point of I. The
following are equivalent:
(i) We have f(a) = g(a), f ′(a) = g′(a) . . . , f (N)(a) = g(N)(a).
(ii) f and g agree to order N at a.

Proof. Let h = f − g. Then (i) holds iff h(a) = h′(a) = . . . = h(n)(a) = 0

and (ii) holds iff limx→a
h(x)

(x−a)n = 0. So we may work with h instead of f and
g. Since we dealt with N = 0 and N = 1 above, we may assume N ≥ 2.
(i) =⇒ (ii): L = limx→a

h(x)
(x−a)N is of the form 0

0
, so L’Hôpital’s Rule gives

L = lim
x→a

h′(x)

N(x− a)N−1
,

5Brook Taylor, 1685 - 1731
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provided the latter limit exists. By our assumptions, this latter limit is still
of the form 0

0
, so we may apply L’Hôpital’s Rule again. We do so iff N > 2.

In general, we apply L’Hôpital’s Rule N − 1 times, getting

L = lim
x→a

h(N−1)(x)

N !(x− a)
=

1

N !

(
lim
x→a

h(N−1)(x)− h(N−1)(a)

x− a

)
,

provided the latter limit exists. But the expression in parentheses is nothing
else than the derivative of the function h(N−1)(x) at x = a – i.e., it is h(N)(a) =
0 (and, in particular the limit exists; only now have the N−1 applications of
L’Hôpital’s Rule been unconditionally justified), so L = 0. Thus (ii) holds.
(ii) =⇒ (i): Let TN(x) be the degree N Taylor polynomial to h at a. By
Theorem 3.3.5 we have

∀0 ≤ n ≤ N, f (n)(a) = T
(n)
N (a),

so by the just proved implication (i) =⇒ (ii), h(x) and TN(x) agree to order
N at x = a:

lim
x→a

h(x)− TN(x)

(x− a)N
= 0.

Moreover, by assumption h(x) agrees to order N with the zero function:

lim
x→a

h(x)

(x− a)N
= 0.

Subtracting these limits gives

lim
x→a

TN(x)

(x− a)N
= lim

x→a

h(a) + h′(a)(x− a) + h′′(a)
2

(x− a)2 + . . .+ h(N)(a)
N !

(x− a)N

(x− a)N
= 0.

(3.9)

Clearly limx→a TN(x) = TN(a), so if TN(a) 6= 0, then limx→a
TN (x)
(x−a)N would

not exist, so we must have TN(a) = h(a) = 0. Therefore

lim
x→a

TN(x)

(x− a)N
= lim

x→a

h′(a) + h′′(a)
2

(x− a) + . . .+ h(N)(a)
N !

(x− a)N−1

(x− a)N−1
= 0.

As above, we have the limit of a quotient of continuous functions which we
know exists such that the denominator approaches 0, so the numerator must
also approach zero (otherwise the limit would be infinite): evaluating the
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numerator at a gives h′(a) = 0. And so forth: continuing in this way we find
that the existence of the limit in (3.9) implies that

h(a) = h′(a) = . . . = h(N−1)(a) = 0,

so (3.9) simplifies to

0 = lim
x→a

h(N)(a)
N !

(x− a)N

(x− a)N
=
h(N)(a)

N !
,

so h(N)(a) = 0.

Remark 3.3.10. Professor Krystal Taylor (!!) of Ohio State University has
a nice handout on the use and misuse of l’Hôpital’s Rule [Ta]. It ends with the
following remark (quoted verbatim, except for the orthography of “l’Hôpital’s
Rule”): It is not much of an exaggeration to say that the version of Taylor’s
formula just discussed is the only application of l’Hôpital’s Rule that is not
silly. Anytime you find yourself using l’Hôpital’s Rule to evaluate a concrete
limit, you should stop and ask yourself whether there is any good reason for
you to appeal to l’Hôpital’s Rule.

3.3.3 Taylor’s Theorem With Remainder

Let I be an interval, let f : I → R be a smooth function, and let a be an
interior point of I. The Local Taylor Theorem gives a sense in which the
Nth Taylor polynomial TN(x) is a good approximation to f as x approaches
a. But since this sense involves taking a limit as x approaches a, it does not
in fact tell us anything about the difference between f(x) and TN(x) for a
fixed x 6= a. To analyze this, it is natural to analyze the remainder function

RN(x) = f(x)− TN(x).

And now a simple but crucial observation: for x ∈ I, we have limN→∞RN(x) =
0 if and only if f(x) = limN→∞ TN(x) = T (x). Thus, in order to show that
the Taylor series is both convergent at x and convergent to f(x), it is neces-
sary and sufficient to show that RN(x) approaches 0 as N →∞.

Unfortunately even when T (x) converges for all x ∈ R, it need not converge
to f(x) for any x 6= a, as the following example shows.
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Example 3.3.11. Consider the following function f : R→ R:

f(x) =

{
0, x ≤ 0

e−1/x
2
, x > 0

.

Then one can show – with some work; this is Exercise 13 – that f is infinitely
differentiable at 0 and for all n ≥ 0 we have f (n)(0) = 0. Therefore the Taylor
series expansion of f at 0 is

T (x) = 0 + 0x+
0

2!
x2 + . . .+

0

n!
xn + . . . = 0,

i.e., the zero function. Evidently then f(x) 6= T (x) for all x 6= 0.

So we cannot give a general theorem saying that f is equal to its Taylor series.
Instead what we can do is to give information about the remainder function
which can be used in favorable cases to show that RN(x) → 0 for a certain
range of x. The following result has a complicated statement, so let us lead
with the basic idea: if one wants to analyze the difference between f and its
Nth order approximation at a, the key fact is how large the N+1st derivative
is on the interval between a and x. Indeed, if the (N + 1)st derivaive were
identically zero then f would be a polynomial of degree at most N and thus
f = TN . Certainly we can produce examples in which f differs by TN by a
lot: e.g. take f = TN + aN+1(x − a)N+1: then if we fix x and a and make
|aN+1| very large, then f − TN becomes very large at x.

One piece of notation: for real numbers a, b, we denote by |[a, b]| the closed,
bounded interval with endpoints a and b. Specifically, if a ≤ b then |[a, b]| =
[a, b], while if b ≤ a then |[a, b]| = [b, a].

Theorem 3.3.12. (Taylor’s Theorem With Remainder) Let n ∈ N, let I be
an interval, and let f : I → R be defined and infinitely differentiable on I.
Let a be an interior point of I, and let x ∈ I. Let

TN(x) =
N∑
n=0

f (n)(a)(x− a)n

n!

be the degree N Taylor polynomial of f at c, and let

RN(x) = f(x)− Tn(x)
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be the remainder function. We give three expressions for RN(x).
a) (Cauchy Form of the Remainder) There is z ∈ |[a, x]| such that

RN(x) =
fN+1(z)

(N + 1)!
(x− z)N(x− a).

b) (Lagrange Form of the Remainder) There is z ∈ |[a, x]| such that

RN(x) =
f (N+1)(z)

(N + 1)!
(x− a)N+1.

c) (Integral Form of the Remainder) We have

RN(x) =

∫ x

a

f (N+1)(t)(x− t)Ndt
N !

.

Proof. The proof of this theorem is somewhat technical, and parts of it use
results from differential calculus that are not covered in this text. So we refer
the interested reader to, e.g., [Cl-HC, Thm. 12.4].

Theorem 3.3.12 gives several different descriptions of the remainder RN(x).
Indeed it is the case that in certain circumstances one is preferable to the
other, and in truth the study of RN(x) for all but the simplest functions f
becomes rather intricate. One example – already treated by Newton (who did
many intricate, difficult things!) – is the Taylor series expansion of f(x) =
(1 + x)α at x = 0.6 (The function f is a polynomial if and only if α ∈ N,
so the interesting case is when α ∈ R \ N.) Clearly f(0) = 1, and it is not
difficult to compute that for all n ∈ Z+ we have

f (n)(0)

n!
=
α(α− 1) · · · (α− (n− 1))

n!
.

Because of this calculation, we put

∀n ∈ Z+,

(
α

n

)
:=

α(α− 1) · · · (α− (n− 1))

n!
,

(
α

0

)
:= 1.

6As usual, the actual history is much more complicated than side remarks in contem-
porary textbooks lead you to believe: see e.g. [Co49] for a more extensive discussion of
early work on the binomial theorem.
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Thus the Taylor series of f(x) = (1 + x)α is the binomial series

T (x) =
∞∑
n=0

(
α

n

)
xn.

It is not hard to see that the radius of convergence of the binomial series
is R = 1. (Recall that we have assumed α /∈ N. If α ∈ N then f(x) is a
polynomial and only finitely many terms of the binomial series are nonzero.)
The convergence at the boundary points x = ±1 is a bit delicate and depends
on α. One can use Theorem 3.3.12c) to show that

∀x ∈ (−1, 1), (1 + x)α =
∞∑
n=0

(
α

n

)
xn

and you are asked to do so in Exercise 14...but the argument for this is really
not a routine one. See e.g. [Cl-HC, §12.3] for complete details.

In the present text we will be less ambitious: most of all we want to show
that ex, cos x and sin x are equal to their Taylor series. For this we can use
a corollary of Theorem 3.3.12c): rather than giving an exact expression for
RN(x), we will content ourselves with a relatively crude upper bound. This
upper bound is much easier to prove and nevertheless carries the essential
idea behind the theorem: the Nth Taylor polynomial of f centered at a is a
good approximation to the function f at a point x provided the (N + 1)st
derivative f (N+1) does not get too large on the interval |[a, x]|.

Every version of Taylor’s Theorem With Remainder makes use of some
form of the Mean Value Theorem from differential calculus. Whereas the
proof of Theorem 3.3.12 requires an extension of the Mean Value Theorem
due to Cauchy, the less ambitious corollary requires only the following result.

Proposition 3.3.13. (Racetrack Principle) Let f, g : [a, b]→ R be differen-
tiable functions. We suppose:
• g(a) ≥ f(a) and
• for all x ∈ [a, b], we have g′(x) ≥ f ′(x).
Then g(b) ≥ f(b).7

7In other words, if at the start of a race you are not behind your competitor and at no
point is your instantaneous velocity less than your competitor’s, you cannot lose the race!
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Proof. We use a standard trick: let h = g − f . Then it is enough to assume
that h(a) ≥ 0 and h′(x) ≥ 0 for all x ∈ [a, b] and prove that h(b) ≥ 0. Assume
not: if h(b) < 0, then applying the Mean Value Theorem to h on [a, b] we

get that there is c ∈ (a, b) such that h′(c) = h(b)−h(a)
b−a < 0, contradiction.

And now for the result on the remainder that we will actually prove and use.

Corollary 3.3.14. (Taylor’s Corollary With Remainder) Let a ∈ R, and
let R > 0. Let f : [a − R, a + R] → R be N + 1 times differentiable. Let
x ∈ [a−R, a+R]. Then for all N ∈ Z+, we have

|RN(x)| ≤ ||f
(N+1)||

(N + 1)!
|x− a|N+1,

where
||f (N+1)|| = sup

y∈|[a,x]|
|f (N+1)(y)|.

Proof. Our setup allows the possibility that f (N+1) is unbounded on the
interval between x and a. In this case (and only in this case) we have
||f (N+1)|| = ∞, so the result asserts that |RN(x)| ≤ ∞: true but vacu-
ous. Henceforth we assume that ||f (N+1)|| <∞.

We will give the proof under the assumption a < x. The other case is
merely notationally different, and we leave it for the reader.
Let RN = f − TN . Then for all 0 ≤ n ≤ N , we have

R
(n)
N (a) = f (n)(a)− T (n)

N (a) = 0. (3.10)

We also have – by definition! – that

∀y ∈ [a, x], |R(N+1)
N (y)| ≤ ||R(N+1)

N ||. (3.11)

Now we want to use the bounds on the derivatives of (3.11) and the ini-
tial conditions (3.10) to get an upper bound on |RN(x)|. In fact this is
quite straightforward, albeit somewhat notationally complicated. At the
first stage, we compare the function R

(N)
N to the function

UN : [a, x]→ R, UN(y) = ||R(N+1)(a)||(y − a).

The point here is that we have

−UN(a) = UN(a) = 0 = R
(N)
N (a)
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and for all y ∈ [a, x],

−U ′N(y) = −||R(N+1)
N || ≤ R

(N+1)
N (y) ≤ ||R(N+1)

N || = U ′N(y),

so applying the Racetrack Principle (twice) we get

∀y ∈ [a, x], −UN(y) ≤ R
(N)
N (y) ≤ UN(y).

Observe that UN is the function with derivative the constant function ||R(N+1)
N ||

and having value 0 at x = a: in other words,

UN =

∫ y

a

||R(N+1)
N ||dt.

We continue in the same manner: for 0 ≤ n ≤ N−1, having defined Un+1, let
Un : [a, x]→ R be the function with derivative Un+1 and satisfying Un(a) = 0:

Un =

∫ y

a

Un+1(t)dt.

Repeated application of the Racetrack Principle gives: for all 0 ≤ n ≤ N ,

∀y ∈ [a, x], |R(n)
N (y)| ≤ Un(y). (3.12)

We find that

UN−1(y) = ||R(N+1)
N ||(y − a)2

2
,

UN−2(y) = ||R(N+1)
N ||(y − a)3

3!
,

and so forth: finally we get

U0(y) = ||R(N+1)
N ||(y − a)(N+1)

(N + 1)!
. (3.13)

Taking n = 0 and combining (3.12) and (3.13) we get

∀y ∈ [a, x], |RN(y)| = |R(0)
N (y)| ≤ U0(y) = ||R(N+1)

N ||(y − a)N+1

(N + 1)!
.

Finally, take y = x to get

|RN(x)| ≤ ||R(N+1)
N ||(x− a)(N+1)

(N + 1)!
.
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Remark 3.3.15. The (more difficult and more important) implication (i)
=⇒ (ii) in the Local Taylor Theorem (Theorem 3.3.9) is almost a conse-
quence of Taylor’s Corollary With Remainder (Corollary 3.3.14). Namely,
if we assume that ||f (N+1)|| <∞, then the fact that

|RN(x)| ≤ ||f
(N+1)||

(N + 1)!
|x− a|N+1,

immediately implies that f agrees with TN(x) to order N at a: indeed,

|f(x)− TN(x)|
|x− a|N

=
|RN(x)|
|x− a|N

≤ ||f
(N+1)||

(N + 1)!
|x− a|.

Since the right hand side approaches 0 as x→ a, so does the left hand side.
The only reason that Taylor’s Corollary With Remainder does not render

the Local Taylor Theorem obsolete is that the latter result holds without the
assumption of boundedness of the (N + 1)st derivative. We emphasize that if
we are interested in Taylor series then we need our functions to be smooth,
i.e., to have infinitely many derivatives. So for a smooth function all deriva-
tives are themselves differentiable, hence continuous, hence bounded.

It is however in the nature of mathematics that truly basic and impor-
tant results (and theorems on Taylor polynomials are about as basic and im-
portant as it gets) continually get revisted, refined and improved by various
mathematicians over the years. A mathematician is happiest with her theo-
rem when every time a hypothesis is removed or even weakened she knows a
counterexample. A mathematician is generally unhappy with a theorem that
contains hypotheses that are not really used in the proof. We admit however
that sometimes including “extraneous hypotheses” makes for theorems that
are easier for a beginning student to understand and appreciate.

Example 3.3.16. We claim that for all x ∈ R, the function f(x) = ex is
equal to its Taylor series expansion at x = 0:

ex =
∞∑
n=0

xn

n!
.

First we compute the Taylor series expansion: f (0)(0) = f(0) = e0 = 1, and
f ′(x) = ex, hence every derivative of ex is just ex again. We conclude that
f (n)(0) = 1 for all n and thus the Taylor series is

∑∞
n=0

xn

n!
, as claimed. Next
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note that this power series converges for all real x, as we have already seen:
just apply the Ratio Test. Finally, we apply Corollary 3.3.14: note that no
matter what N is, f (N+1)(x) = ex. If we fix A > 0, then since ex is positive
and increasing, the maximum value of |ex| on [−A,A] occurs at the right
endpoint x = A, so ||fN+1|| = eA. Thus

|RN(x)| ≤ eA
|x|N+1

(N + 1)!
.

By the N th Term Test ,we know that

lim
N→∞

eA
|x|N+1

(N + 1)!
= eA lim

N→∞

|x|N+1

(N + 1)!
= eA · 0 = 0.

Therefore RN(x)→ 0 for all x ∈ [−A,A]. Since A was arbitrary, RN(x)→ 0
for all x ∈ R, i.e.,

ex = T (x) =
∞∑
n=0

xn

n!
.

In fact, since

|RN(x)| ≤ eA
AN+1

(N + 1)!
→ 0,

this argument shows that RN(x) converges uniformly to 0 on [−A,A]: this
is something that we proved earlier for power series with infinite radius of
convergence using the Weierstrass M-Test, but in this case it follows directly
from Taylor’s Theorem.

The above argument can be generalized, as follows.

Theorem 3.3.17. Let f : R→ R be smooth, and let a ∈ R. We suppose:
a) The Taylor series T (x) of x centered at a converges for all x ∈ R.
b) For each A > 0, the sequence ||f (N)|| = maxx∈[a−A,a+A] |f (N)(x)| is bounded.

Then RN(x)
u→ 0 on [a− A, a+ A], and thus for all x ∈ R we have

f(x) = T (x).

Proof. This is almost the same as above: since AN+1

(N+1)!
→ 0 and ||f (N)|| is

bounded, we have for all x ∈ [a− A, a+ A] that

|RN(x)| ≤ ||f (N)|| A
N+1

(N + 1)!
→ 0.
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The sequence ||f (N)|| being bounded on [−A,A] for all A > 0 is quite a
strong one. We showed that it holds for f(x) = ex because f = f (N) for all
N . Similarly, it holds if as we range over all N ∈ N, we get only finitely many
different functions as f (N). This is more specialized still, but it applies to
two more all-important functions: namely, for f(x) = sin x and f(x) = cos x
– in these cases we have f (4) = f so the sequence of derivatives is periodic.
Let us record the result.

Theorem 3.3.18. For all x ∈ R we have

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
,

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Taylor’s Theorem With Remainder can also be applied to give estimates on
how well a Taylor polynomial approximates the original function.

Example 3.3.19. As above, the nth Taylor polynomial for f(x) = ex is
given by P f

n (x) =
∑n

j=0 x
j/j! and Taylor’s Theorem gives us an estimate for

the error term |f(x)−P f
n (x)|. Let’s use this to find a decimal approximation

for f(1) = e which is correct to 4 decimal places. To do this, we must figure
out which n will give us a small enough error. By Taylor’s Theorem, we have

|e− P f
n (1)| ≤

∣∣∣∣f (n+1)(t)

(n+ 1)!
(1)n

∣∣∣∣ =

∣∣∣∣f (n+1)(t)

(n+ 1)!

∣∣∣∣
for some t with 0 < t < 1. Now, as above, f (n)(x) = ex so, if 0 < t < 1, then
f (n+1)(t) < e. Thus we can estimate that∣∣∣∣f (n+1)(t)

(n+ 1)!

∣∣∣∣ ≤ e

(n+ 1)!
.

We find ourselves in an apparently circular situation: the error in our approx-
imation for e includes e itself ! But we can resolve this: a very crude upper
bound on e obtained by other means will convert the above into a procedure
for giving arbitrarily good approximations to e. So:

e = e1 = 1 + 1 +
∞∑
n=2

1

n!
< 1 + 1 +

∞∑
n=2

1

2n−1
= 2 +

∞∑
n=1

1

2n
= 2 + 1 = 3.
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Using this fact, we see that we can make the error estimate less than 10−5 as
long as 3/(n+ 1)! < 10−5, i.e., we need (n+ 1)! > 3× 105. Making a list of
values of n! we have

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5, 040

8! = 40, 320

9! = 362, 880

10! = 3, 628, 800.

Since 9! > 3 × 105 we can take P f
8 (1) to approximate e = f(1) and be sure

that it is correct to four decimal places. i.e.,

e− (1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040
+

1

40320
) < 10−5.

Evaluating this sum on a calculator yields e ≈ 2.71827.

EXERCISES 3.3

1. Find the Taylor series at 0 for the following functions.

(a) f(x) =
1

1− x
(b) g(x) =

1

1 + x2

(c) F (x) = sinx (d) G(x) = ex
2

2. Find the Taylor series centered at a for f(x) = 1 + x+ x2 + x3 when

(a) a = 0 (b) a = 1 (c) a = 2

3. Find the sum of these series

(a)
∞∑
n=0

(−1)n
x4n

n!
(b)

∞∑
n=0

(−1)n
π2n

62n(2n)!
(c)

∞∑
n=0

xn

2n(n+ 1)!



194 CHAPTER 3. SEQUENCES AND SERIES OF FUNCTIONS

4. Use the 5th degree Taylor polynomial for f(x) = ex and Taylor’s theorem
to obtain the estimate

1957

720
≤ e ≤ 1956

719

5. For what values of x do the following polynomials approximate sin x to
within 0.01

(a) P1(x) = x (b) P3(x) = x− x3/6 (c) P5(x) = x− x3/6 + x5/120

6. How accurately does 1+x+x2/2 approximate ex for x ∈ [−1, 1]? Can you
findf a polynomial that approximates ex to within 0.001 on this interval?

7. Use Taylor’s Theorem to approximate cos(π/4) to 5 decimal places.

8. Find the Taylor series for x2 sin(x2).

9. Find the 10th degree Taylor polynomial for the following functions:

a) cos(x2)

b) sin(2x)

c) ex+1

d) ex
2

cos(x3)

e.) sin(x2)
1+x2

10. a) Find the Taylor series for f(x) = 1−cos(x6)
x12

.

b) Use part a) to determine f (n)(0) for n = 0, 1, 2, 3, ..., 12.

11. Evaluate ∫ 1

0

e−x
2

dx

to within 0.001.

12. Approximate
∫ 1

0
sin(x)
x

dx to 3 decimal places.

13. Consider the function

f(x) =

{
0, x ≤ 0

e−1/x
2
, x > 0

.
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a) Show that f is continuous at 0.

b) Show that f is differentiable at 0 and that f ′(0) = 0. (Hint: you must
use the definition of the derivative to prove this.)

c) Show that f ′(x) is differentiable at 0 and that f ′′(0) = 0.

d) Show by induction that f (n)(x) is differentiable at 0 and that
f (n+1)(0) = 0, for all n ∈ Z+.

e.) To what function does the Taylor series for f converge?

14. Let r be a nonzero real number and define the generalized binomial
coefficient

(
r
k

)
by
(
r
0

)
= 1, and(

r

k

)
=
r · (r − 1) · (r − 2) · · · · · (r − k + 1)

k!
, for k ≥ 1.

a) Prove the formula

(1 + x)r =
∞∑
k=0

(
r

k

)
xk

for −1 < x < 1.

b) Write out the first 5 terms in this series for r = −1, r = 1/2, and
r = 3.

15. Prove Lemma 3.3.6.

3.4 Complex Numbers

To introduce complex numbers we define a new “number”, usually denoted
by i which satisfies i2 = −1. That is, i is a “square root of −1”. Notice that
−i is also a square root of −1, so be careful not to mistake i for the square
root of −1.

Once we accept the use of this new number, we can define the set of
complex numbers as

C = {a+ ib | a, b ∈ R}.
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If z = a + ib is a complex number, we call a the real part of z and b the
imaginary part of z. These are denoted respectively by Re(z) and Im(z)
Two complex numbers z1 and z2 are equal when their real and imaginary
parts are equal, i.e., z1 = z2 if and only if Re(z1) = Re(z2) and Im(z1)
=Im(z2).

Complex numbers can be added and multiplied using the following defi-
nition.

Definition 3.4.1. Let z, w ∈ C with z = a+ib, and w = c+id, a, b, c, d ∈
R. Then
a) z + w = (a+ c) + i(b+ d)
b) zw = (ac− bd) + i(ad+ bc).

One thing to be careful about is that imaginary numbers can’t be made
into an “ordered field” (see Appendix A), so it makes no sense to use in-
equalities with complex numbers. On the other hand, there is a real quan-
tity attached to a complex number called the modulus that behaves like the
absolute value for real numbers, in particular the triangle inequality holds.

Definition 3.4.2. Let z = a+ ib with a, b ∈ R. The modulus of z is given
by
√
a2 + b2. The modulus of z is denoted by |z|.

Proposition 3.4.3. Let z, w ∈ C. Then
a) |Re(z)| ≤ |z|
b) |Im(z)| ≤ |z|
c) |z + w| ≤ |z|+ |w|.

It is useful to think of the complex numbers geometrically in terms of
the complex plane. Any complex number z = a + ib can be identified to
the ordered pair of real numbers (a, b), which is understood geometrically as
a point in the Cartesian plane. The modulus of z then has the geometric
interpretation as the distance between the point (a, b) and the origin (0, 0).
A little thought reveals then that if z and w are complex numbers then
|z − w| is the distance between the points in the plane related to z and w.
In particular, if ε > 0 and c ∈ C the set {z ∈ C | |z− c| < ε} is the open disc
of points centered at c with radius ε.

Much of the work on sequences and series of real numbers carries over
directly to sequences and series of complex numbers if we just use the complex
modulus in place of the absolute values. In particular if we let {cn} be a
sequence of complex numbers, we have the following
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Definition 3.4.4. The sequence {cn} of complex numbers converges to
the complex number c if for every ε > 0 there is an N ∈ Z+ such that

|cn − c| < ε

for every n > N . As usual, this is written as limn→∞ cn = c.

In general terms, we have limn→∞ cn = c if “eventually” all of the terms
of the sequence are situated in the open disc of radius ε centered at c.

Proposition 3.4.5. Let {cn} be a sequence of complex numbers with
cn = an + ibn, (an, bn ∈ R). Let c = a + ib be a complex number. Then we
have limn→∞ cn = c if and only if limn→∞ an = a and limn→∞ bn = b.

Proof: This follows from the inequalities

|an − a| ≤ |cn − c|, |bn − b| ≤ |cn − c|, and |cn − c| ≤ |an − a|+ |bn − b|,

which all follow from Proposition 3.3.3.
�

Most of the results of chapter 2 (especially those in section 2.3) can be
generalized to complex sequences. However, at the moment we are more
interested in complex series. Let {cn} be a sequence of complex numbers.
We can form a sequence of partial sums

sn =
n∑
j=0

cj.

We say that the series
∑
cn converges if the sequence {sn} converges. Other-

wise, it diverges. A direct consequence of Proposition 3.3.5 is the following:

Proposition 3.4.6. Let {cn} be a sequence of complex numbers with
cn = an + ibn (an, bn ∈ R). Then

∑
cn converges if and only if both

∑
an

and
∑
bn converge. Furthermore, if

∑∞
n=0 an = a and

∑∞
n=0 bn = b then∑∞

n=0 cn = a+ ib.

Proof: This follows from applying Proposition 3.3.5 to the partial sums of
the series.

�
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The above Proposition is not much help in determining the convergence
of geometric series like

∞∑
n=0

(
1 + i

2

)n
since it is not that easy to find the real and imaginary parts of

(
1+i
2

)n
. On

the other hand, this Proposition does help to prove for complex series many
of the results we know about real series, for example, we have

Proposition 3.4.7. Suppose that {cn} is a sequence of complex numbers
and that

∑
cn converges. Then limn→∞ cn = 0.

Proof: Let cn = an+ibn where an and bn are real. Then since
∑
cn converges,

we know that both
∑
an and

∑
bn converge. These are real series, so we

know from Proposition 2.1.7 that lim an = 0 and lim bn = 0. Finally, from
Proposition 3.3.5 we conclude that lim cn = 0.

�
To help address the question of convergence of the above series we intro-

duce

Definition 3.4.8. We say that the series
∑
cn converges absolutely if the

series
∑
|cn| converges.

Notice that the series
∑
|cn| has real, nonnegative terms so we can check

its convergence using the tests from section 2.2.

Proposition 3.4.9. If a series converges absolutely, then it converges.

Proof: Let cn = an + ibn where an and bn are real. Then since |an| ≤ |cn|,
the convergence of

∑
|cn| implies the convergence of

∑
|an| (by comparison).

Likewise, since |bn| ≤ |cn|, the convergence of
∑
|cn| also implies the con-

vergence of
∑
|bn|. Now, since

∑
an and

∑
bn are real series, we can apply

proposition 2.3.1 to conclude that they both converge. Then, by Proposition
3.3.6, we see that

∑
cn converges.

�

Example 3.4.10. The terms of the series
∑∞

n=0

(
1+i
2

)n
have modulus∣∣∣∣(1 + i

2

)n∣∣∣∣ =

(√
2

2

)n

.

Since that sequence is summable, the series is absolutely convergent.
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Finally, for power series, we have the following:

Proposition 3.4.11. Let
∑
anz

n be a complex power series and assume
that for some fixed c ∈ C we know that

∑
anc

n converges. Then
∑
anz

n

converges for any z with |z| < |c|.

Proof: The proof is similar to that of Proposition 2.4.3. We begin by noting
that since

∑
anc

n converges, we know that lim anc
n = 0 and thus we can

conclude that the sequence {ancn} is bounded in the sense that there is some
real number M > 0 so that |ancn| < M for all n ∈ Z+. (This follows from
3.3.5 and the analogous fact for real sequences.) Now choose z with |z| < |c|
and let d = |z|/|c|. Then∑

|anzn| =
∑
|an||z|n

=
∑
|an||c|ndn

=
∑
|ancn|dn

≤
∑

Mdn. (3.14)

But the last of these sums is finite since d < 1 so we conclude by the compar-
ison test that the first sum is also finite, i.e.,

∑
anz

n converges absolutely.
�

Corollary 3.4.12. Let
∑
anz

n be a complex power series. Then either
1.)

∑
anz

n converges for all z ∈ C, or
2.) there is a nonnegative real number R so that

∑
anz

n converges if |z| < R
and diverges if |z| > R.

In case 2.), R is called the radius of convergence, in case 1.) the radius of
convergence is said to be infinite. In the second case, there is no information
about convergence on the circle |z| = R. Convergence at such points must be
dealt with in more detail in order to describe the full domain of convergence.

Example 3.4.13. Thinking of power series in the complex domain gives
some intuition about “why” the Taylor series,

∑∞
n=0(−1)nx2n, for f(x) =

1/(1 + x2), converges only for |x| < 1 even though f makes perfectly good
sense for all real values of x. The point is that if we think of x as a complex
variable, then f has a “singularity” at x = i and x = −i, so the radius of
convergence for

∑∞
n=0(−1)nx2n cannot possibly be bigger than 1.
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Example 3.4.14. The power series
∑∞

n=0 x
n/n! converges to f(x) = ex

for all real x. Hence its radius of convergence is infinite. Therefore the
complex power series

∑∞
n=0 z

n/n! converges for all complex z. It makes sense
to think of the function defined by this complex power series to be an extension
of f(x) = ex. That is, we use the power series

∑∞
n=0 z

n/n! to define ez for
complex numbers z. Of course, just naming this ez does not mean that it
necessarily behaves like an exponential. For instance, it is not at all clear
from this definition that the usual exponent rule, ez+w = ezew is still valid.
It turns out that this rule does remain valid for complex exponents, but we
won’t go into the general proof of that now. Instead, let’s just look at the
special case where z and w are purely imaginary, i.e., z = ix and w = iy,
x and y real. Before looking at the rules of exponents, we need to look a
little more closely at the power series for ez when z = ix. Noticing that
z2 = −x2, z3 = −ix3, z4 = x4 and this pattern repeats with period four, we
get that

eix =
∞∑
n=0

(ix)n

n!

= 1 + ix+
(ix)2

2
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+ . . .

= 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
− x6

6!
+ . . .

= (1− x2

2!
+
x4

4!
− x6

6!
+ . . . ) + i(x− x3

3!
+
x5

5!
+ . . . ).

Recalling, however, that

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

and that

sin(x) = x− x3

3!
+
x5

5!
+ . . .

we see that

eix = cos(x) + i sin(x).

Now it is just a matter of using some addition of angle formulas to see that
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eix+iy = eixeiy. Indeed

eix+iy = cos(x+ y) + i sin(x+ y)

= (cos(x) cos(y)− sin(x) sin(y)) + i(cos(x) sin(y) + cos(y) sin(x))

= (cos(x) + i sin(x))(cos(y) + i sin(y))

= eixeiy.

(Actually, this author admits to having a hard time remembering the addition
of angle formulas, but since he knows that eix = cos(x) + i sin(x), and the
exponent laws, he can always “rederive” the angle addition formulas.) By the
way, the formula eix = cos(x) + i sin(x) also gives some interesting identities
by plugging in particular values of x, for example

eiπ = −1.
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EXERCISES 3.4

1. Find the domains of convergence of the following complex power series

a)
∑

zn

n2

b)
∑

zn

2nn2

c)
∑

zn

n!

d)
∑

(−1)n zn

n!2n

e.)
∑
zn.

2. Show that if |z| < 1 then
∑∞

n=0 z
n = 1

1−z .

3. Using exercise 2, evaluate
∑∞

n=0

(
1+i
2

)n
.

4. Evaluate
∑∞

n=0 n
(
1+i
2

)n
.

5. a) Show that any complex number z = a+ib can be written in the polar
form, z = r(cos(θ) + i sin(θ)), where r = |z| and θ is the angle between
the real axis and the line segment passing from the origin to the point
(a, b).

b) Notice that the polar form of z can be rewritten using the complex
exponential, z = r(cos(θ)+i sin(θ)) = reiθ. Use this to prove de Moivre’s
theorem:

zn = rn(cos(nθ) + i sin(nθ)).

c) Interpret de Moivre’s theorem geometrically in the complex plane.
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