
RABINOWITSCH TIMES SIX

PETE L. CLARK

Abstract. We give an analogue of the Rabinowitsch Criterion with Z replaced

by the polynomial ring k[t] over a field of characteristic different from 2. In

fact we expose three different proofs of the Rabinowitsch Criterion – using
Dedekind-Hasse norms, binary quadratic forms and the Minkowski bound on

ideal classes – and adapt each to prove our Polynomial Rabinowitsch Criterion.

Whereas there are precisely seven cases in which the classical Rabinowitsch
Criterion holds, working over an arbitrary ground field gives us much more

latitude: e.g. recent results about genus one curves yield infinitely many
instances in which the Rabinowitsch Criterion is satisfied over k = Q. Finally

we take a geometric perspective and relate the Rabinowitsch Criterion to the

Mordell-Weil group of the Jacobian of the associated hyperelliptic curve.
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1. Introduction

1.1. Terminology. Let R be a domain. An element p ∈ R is prime if (p) is a
nonzero prime ideal; an element x is irreducible if x = yz implies that exactly one
of y and z is a unit. Prime elements are irreducible, and in a unique factorization
domain (henceforth UFD) the converse holds. In a UFD an element is composite
if it is neither zero, a unit, nor a prime element.

1.2. The Rabinowitsch Criteria. Consider – as Euler did – the polynomial x2 +
x+ 41. For x = 0, 1, . . . , 39, x2 + x+ 41 is a prime number. That is a lot of prime
values for such a simple polynomial! What do we make of this? G.Y. Rainich (né
Rabinowitsch) gave an answer [Ra13] by establishing the equivalence of (i) and (ii)
in the following result.

Theorem 1.1. (Rabinowitsch Criterion)

Let C ∈ Z+, let ∆ = 1− 4C, let τ = 1+
√

∆
2 , and let

O∆ = Z[τ ] = Z[t]/(t2 + t+ C).

The following are equivalent:
(i) The ring O∆ is a PID.
(ii) For all 0 ≤ x ≤ C − 2, the integer x2 + x+ C is not composite.

(ii′) For all x ∈ [0, b
»
|∆|
12 c], the integer x2 + x+ C is not composite.

(iii) For all primes p ≤ C − 1, ∆ is not a square modulo p.

(iii′) For all primes p ≤
»
|∆|
3 , ∆ is not a square modulo p.

Remark 1.2. Let C > 1. Then (C − 1)2 + (C − 1) + C = C2 is composite, so in
(i) =⇒ (ii), the bound x ≤ C − 2 is best possible in all cases.

In February 2016 my colleague Paul Pollack asked for an analogue of Theorem 1.1
over a polynomial ring k[t]. Here is my answer.

Theorem 1.3. (Polynomial Rabinowitsch Criterion)
Let k be a field of characteristic not 2. Let ∆ ∈ k[t] be definite: either deg ∆ is odd
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or the leading coefficient of ∆ is not a square in k. The following are equivalent:
(i) The ring O∆ = k[t][

√
∆] = k[t, x]/(x2 −∆) is a PID.

(ii) For all x ∈ k[t] with deg x < deg ∆, the polynomial x2 −∆ is not composite.

(ii′) For all x ∈ k[t] with deg x < ddeg ∆
2 e, the polynomial x2 −∆ is not composite.

(iii) For all primes p with deg p < deg ∆, ∆ is not a square modulo p.

(iii′) For all primes p with deg p ≤ ddeg ∆
2 e, ∆ is not a square modulo p.

Remark 1.4. When k is finite, (i) ⇐⇒ (ii) in Theorem 1.3 is a result of W. Hu
[Hu98, Cor. 1]. His proof is different from (all of) ours: cf. Remark 7.5.

The main thrust of Theorems 1.1 and 1.3 is the equivalence (i) ⇐⇒ (ii). Of these,
(i) =⇒ (ii) is more straightforward: it is a familiar theme that many number
theoretic problems become easily solvable under the assumption that a certain
ring of integers has unique factorization. The implication (ii) =⇒ (i) is more
interesting: by checking that some elements do not factor, we deduce that a ring is
a PID. There is however one famous instance in which the knowing the class group
of a ring of integers is equivalent to knowing the solution to a more elementary
Diophantine problem: Gauss composition in quadratic fields. And indeed Gauss
composition is part of the picture here, as we shall see.

Although the Rabinowitsch Criterion is not obscure, neither is it standard: I
know of no “canonical” proof. To answer Pollack’s question I began by searching
the literature for different proofs of (ii) =⇒ (i) in Theorem 1.1. I found three
different arguments. The first, of [Fe85], uses Dedekind-Hasse norms. This is
perhaps the most elementary, the only ingredient being a standard Diophantine
approximation result due to Dirichlet which follows from the Pigeonhole Principle.
The second, of [Gr], and uses the interpretation of the class group of a quadratic
order in terms of binary forms. Later I found that a proof of this kind was given
(much) earlier by H.H. Mitchell [Mi26, §3]. The last uses the Minkowski bound on
ideal classes and has been exposed by many authors, e.g. by Ribenboim [Ri88].

In this paper we will give three proofs of (ii) =⇒ (i) in the Rabinowitsch
Criterion, using Dedekind-Hasse norms, binary quadratic forms and the Minkowski
bound. Then we carry over all three to proofs of (ii) =⇒ (i) in the Polynomial
Rabinowitsch. (Thus “six Rabinowitsches.”) This is a lot of iterated proving, but
it seems enlightening to pursue all three function field analogues. In the first case
we use Dedekind-Hasse norms: the Diophantine approximation is replaced by a
(known, elementary) result about approximating elements of k(( 1

t )) by rational
functions. In the second case it is interesting to see when we can work with binary
quadratic forms over an arbitrary PID and when we need features particular to Z
and k[t]. In the third case we establish a function field Minkowski bound. When k
is finite this was done by Hu using methods which are very faithful to Minkowski’s
geometry of numbers, but for the general case we use the Riemann-Roch Theorem.
In this way we make contact with arithmetic geometry: we are able to make use
of yet another equivalent criterion for O∆ to be a PID in terms of the index of the
hyperelliptic curve C∆ : y2 = ∆(x) and the Mordell-Weil group of its Jacobian.

The implication (ii′) =⇒ (ii) is also striking: if x2−∆ cannot be factored for x
in a certain range of values, then it cannot be factored for x in a much larger range
of values. The method of proof is (ii′) =⇒ (i) =⇒ (ii). In fact all of our proofs
of (ii) =⇒ (i) are nearly proofs of (ii′) =⇒ (i), but over Z the constant in the
first proof is a bit better than the ones obtained from the second and third proofs.
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1.3. Acknowledgments. I am grateful to my colleague Paul Pollack for suggesting
the problem to me. (It was the evening of the first Sunday of February, 2016, when
many others were watching a Nietzschean sporting event.) He also introduced me
to Ono numbers, and the proofs of the theorems of Möller and Sasaki in §9.2 follow
sketches from a problem set in his Spring 2016 algebraic number theory course. His
arguments seem simpler and shorter than the original proofs.

2. Rabinowitsch I and II: Following Fendel

The plan of the section is as follows. First we will give a complete exposition of
Fendel’s proof [Fe85] of the implications (i) =⇒ (ii) and (ii′) =⇒ (i) in Theorem
1.1. The implication (i) =⇒ (ii′) requires very little in the way of setup and is
done in §2.1. The proof of (ii′) =⇒ (i) needs two preliminaries: the first is a
discussion of Dedekind-Hasse norms and their relation to PIDs, which is done in
§2.2. The second is a basic result on Diophantine approximation, given in §2.3.
The proof of (ii′) =⇒ (i) is then given in §2.4.

For the remainder of the section our task is to adapt the above arguments to
give the corresponding implications (i) =⇒ (ii) and (ii′) =⇒ (i) in Theorem 1.3.
The proof of (i) =⇒ (ii′) is given in §2.5, a basic result on polynomial Diophantine
approximation is given in §2.6 and the proof of (ii′) =⇒ (i) is given in §2.7.

2.1. Proof of (i) =⇒ (ii) in Rabinowitsch’s Criterion. We put C ∈ Z+,

∆ = 1−4C, τ = 1+
√

∆
2 , O∆ = Z[τ ]. We may view Z[τ ] as a subring of C; for z ∈ C,

we denote by |z| the square of the usual Euclidean absolute value: that is,

|x+ yi| = x2 + y2.

If for x, y ∈ Z we put q∆(x, y) = x2 + xy + Cy2 then we have

q∆(x, y) := x2 + xy + Cy2 == (x+ yτ)(x+ yτ) = |x+ yτ |.

In fact every element of O∆ is of the form x+ yτ for unique x, y ∈ Z, so x+ yτ 7→
q∆(x, y) gives a norm map

| · | : O∆ → N.
The norm enjoys the following properties:
• For all α, β ∈ O∆, we have |αβ| = |α||β|.
• Forall α ∈ O∆, we have |α| = 0 ⇐⇒ α = 0.
• For all α ∈ O∆, we have |α| = 1 iff α ∈ O×∆.

Lemma 2.1. For a prime number p, the following are equivalent:
(i) There are x, y ∈ Z such that q∆(x, y) = p.
(ii) As an element of the domain O∆, p is not irreducible.

Proof. (i) =⇒ (ii): By assumption p = q∆(x, y) = (x + yτ)(x + yτ). We have
|x+ yτ | = |x+ yτ | = p, so x+ yτ and x+ yτ are not units.
(ii) =⇒ (i): If p = αβ with α, β nonunits, then p2 = |p| = |αβ| = |α||β|. and
|α|, |β| > 1. This implies p = |α| = |β|. If α = x+ yτ , then p = |α| = q∆(x, y). �

Lemma 2.2. If α ∈ O∆ \ Z, we have |α| ≥ C.

Proof. We may write α = x+ yτ with y 6= 0, and then we have

|α| = x2 + xy + Cy2 = (x+
y

2
)2 +

−∆

4
y2.
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Since y 6= 0, y2 ≥ 1. If y2 = 1, then y is odd, x+ y
2 ∈

1
2Z \ Z so

|α| ≥ (1/2)2 +
4C − 1

4
= C.

Otherwise y2 ≥ 4 and

|α| ≥ −∆

4
t2 ≥ −∆ = 4C − 1 > C. �

Proposition 2.3. a) If p < C is a prime number, then p is irreducible in O∆.
b) If O∆ is a UFD, then for all x ∈ Z, the integer q∆(x, 1) = |x+ τ | = x2 + x+ C
has no prime factor smaller than C.

Proof. a) By contraposition: if a prime number p is reducible in O∆, then by
Lemma 2.1 there is α = x + yτ ∈ O∆ such that |α| = q∆(x, y) = p. If α ∈ Z then
y = 0 and q∆(x, y) = x2 6= p. So α ∈ O∆ \ Z, and Lemma 2.2 gives p = |α| ≥ C.
b) By contradiction: suppose there is a prime number p < C such that

p | x2 + x+ C = (x+ τ)(x+ τ).

By part a), p is irreducible in O∆, but by assumption O∆ is a UFD so it follows
that p | x+ τ or p | x+ τ , which is absurd. �

Theorem 2.4. If O∆ is a UFD, then x2 + x+ 2 is prime for all 0 ≤ x ≤ C − 2.

Proof. Let 0 ≤ x ≤ C − 2. Then x2 + x + C < (C − 1)2 + (C − 1) + C = C2.
If x2 + x + C were composite, it would have a prime factor p < C, contradicting
Proposition 2.3b). �

Since PIDs are UFDs, Theorem 2.4 shows (i) =⇒ (ii) in Rabinowitsch’s Criterion.

2.2. Dedekind-Hasse Norms. Let R be a domain. A map | · | : R → N is a
multiplicative norm if
(MN0) For all x, y ∈ R, we have |xy| = |x||y|.
(MN1) For all x ∈ R, we have |x| = 0 ⇐⇒ x = 0.
(MN2) For all x ∈ R, we have |x| = 1 ⇐⇒ x ∈ R×.

Henceforth by “norm” we will mean a multiplicative norm. If | · | is a norm on
R and K is the fraction field of R, then we extend | · | to a map from K to Q≥0 by∣∣∣∣xy

∣∣∣∣ =
|x|
|y|
.

One sees easily that this is well-defined and is the unique extension such that
|xy| = |x||y| for all x, y ∈ K. (Note that |x| ∈ Z need not imply that x ∈ R.)

Example 2.5. a) The standard absolute value is a norm on Z.
b) As above, for C ∈ Z+ and ∆ = 1 − 4C, the map | · | : O∆ → N given by
|x+ yτ | = x2 + xy + C is a norm. We call it the complex norm.
c) Let k be any field, and let R = k[t]. For f(t) ∈ R[t], let deg f denote the degree,
with the convention deg 0 = −∞. Then |f | = 2deg f is a norm.
d) Let R be any UFD. A norm | · | sends each prime element π to an integer nπ ≥ 2
such that nπ = nπ′ if π and π′ are associates (i.e., generate the same principal
ideal). Thus if {πi}i∈I is a set of prime elements such that each prime element is
associate to exactly one πi, knowing the numbers nπi

for all i ∈ I determines the
norm. Conversely, any function {πi}i∈I → Z≥2 extends to a unique norm.
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Let R be a domain with fraction field K. A norm | · | on R is Euclidean if for all
x ∈ K, there is y ∈ R such that |x − y| < 1. Writing x = a

b with a, b ∈ R, this is
equivalent to: there exist q, r ∈ R with a = qb + r and |r| < |b|. This recovers the
standard definition of a Euclidean function restricted to the class of multiplicative
norms. Recall that a domain admitting a Euclidean functions is a PID: if I is a
nonzero ideal of R and x is any element of I of minimal nonzero norm then I = 〈x〉.

Example 2.6. a) The standard norm on Z is Euclidean. So Z is a PID.
b) For C ∈ {1, 2, 3}, the complex norm on O1−4C is Euclidean: see e.g. [CJ14, Cor.
5.2]. So O−3, O−7 and O−11 are PIDs. For C ≥ 4 the complex norm on O1−4C is
not Euclidean, but the Rabinowitsch Criterion shows that O−19, O−43, O−163 are
PIDs. Motzkin showed that none of them admit a Euclidean function [Mo49].
c) For any field k, the norm |f | = 2deg f on k[t] is Euclidean. So k[t] is a PID.

d) Let R = Z[ 1+
√

69
2 ] = Z[τ ]. The most natural norm on R is the absolute value of

the field norm. It is not Euclidean. Nevertheless, R admits a Euclidean function
[Cl94]. I believe it is not known whether R admits a Euclidean norm.

So we cannot establish the Rabinowitsch Criterion using Euclidean norms. But
consider the following modification. Let R be a domain with fraction field K. A
Dedekind-Hasse norm is a norm | · | on a domain R with fraction field K is a
norm such that: for all x ∈ K \R, there are a, b ∈ R such that 0 < |ax− b| < 1. A
Euclidean norm is a Dedekind-Hasse norm: take a = 1.

Proposition 2.7. Let R be a domain, and let | · | be a norm on R.
a) The following are equivalent:
(i) R is a PID.
(ii) The norm | · | is a Dedekind-Hasse norm.
b) A domain admits a Dedekind Hasse norm iff it is a PID.

Proof. a) (i) =⇒ (ii): If R is a PID any x ∈ K \ R we may write x = p
q with

gcd(p, q) = 1 and thus there are a, b ∈ R such that ap− bq = 1. Dividing by q gives

|ax− b| = |ap
q
− b| = |1

b
| ∈ (0, 1).

(ii) =⇒ (i): Let I be a nonzero ideal of R, let d be a nonzero element of I of
minimal norm. We claim I = 〈d〉: if not, there is x ∈ I such that x

d ∈ K \ R, and
then there are a, b ∈ R such that 0 < |axd − b| < 1. Thus 0 < |ax − bd| < |d| and
ax− bd ∈ I has a smaller nonzero norm than d: contradiction.
b) That a domain which admits a Dedekind-Hasse norm is a PID follows immedi-
ately from part a). Conversely, every PID is a UFD and every UFD admits a norm
function, so by part a) every PID admits a Dedekind-Hasse function. �

2.3. Diophantine Approximation. Following Fendel [Fe85], we will show (ii)
=⇒ (i) in Rabinowitsch’s Criterion by showing that the complex norm is a Dedekind-
Hasse norm on O∆. For this we need a standard result on Diophantine Approxi-
mation.

Proposition 2.8. (Dirichlet’s Diophantine Approximation) Let y ∈ R and let
Q ∈ Z with Q ≥ 2. Then there are p, q ∈ Z such that 1 ≤ q ≤ Q− 1 and

|qy − p| ≤ 1

Q
.



RABINOWITSCH TIMES SIX 7

Proof. For x ∈ R, there is a unique real number x′ ∈ [0, 1) such that x − x′ ∈ Z.
Consider the finite sequence y′, (2y′, . . . , ((Q − 1)y)′. We divide the interval [0, 1]

up into Q subintervals [0, 1
Q ], [ 1

Q ,
2
Q ], . . . , [Q−1

Q , 1]. If for some 1 ≤ q ≤ Q− we have

(qα)′ ∈ [0, 1
Q ]∪ [Q−1

Q , 1], then there is an integer p such that |qy−p| ≤ 1
Q and we’re

done. Otherwise we have a sequence of length Q− 1 and Q− 2 subintervals, so by
the Pigeonhole Principle there are 1 ≤ i < j ≤ Q− 1 such that |(iy)′ − (jy)′| ≤ 1

Q ,

so there is an integer p with |(j − i)y − p| ≤ 1
Q . Taking q = j − i, we’re done. �

Corollary 2.9. Let τ = 1+
√

∆
2 , let R = Z[τ ] = O∆ and K = Q[τ ]. For α ∈ K

there is q ∈ Z with 1 ≤ q ≤
»
|∆|
3 and β ∈ R such that |qα− β| < 1.

Proof. Let α = x+yτ with x, y ∈ Q and put Q = b
»
|∆|
3 c+1. Applying Proposition

2.8 with these values of y and Q, we get p, q ∈ Z such that 1 ≤ q ≤ Q − 1 and
|qy−p| ≤ 1

Q . Let c = qy−p, and let r ∈ Z be such that |qx+ c/2− r| ≤ 1
2 . Finally,

put β = r + pτ . Then:

|qα− β| = |q(x+ yτ)− (r + pτ)| = |(qx− r) + (qy − p)τ | = |(qx− r) + cτ |

=
(
qx− r +

c

2

)2

+
|∆|
4
c2 ≤ 1

4
+
|∆|
4

1

Q2
<

1

4
+
|∆|
4

3

|∆|
= 1. �

We immediately deduce the following known (cf. Example 2.5a)) result.

Corollary 2.10. The complex norm is a Euclidean norm on O−3 = Z[ 1+
√
−3

2 ].

2.4. Proof of (ii′) =⇒ (i) in the Rabinowitsch Criterion. We return to the
setup of §2.1. Let K = Q[τ ] be the fraction field of Z[τ ] = O∆. For α ∈ K we
define the denominator dα of α to be the least d ∈ Z+ such that dα ∈ O∆.

Lemma 2.11. Let C > 1. Let K = Q[τ ]. For γ ∈ K \O∆, let t be the denominator

of γ, and suppose t ≤
»
|∆|
3 . If tγ ∈ O∆ and t | |tγ|, then |x + τ | is composite for

some x ∈ Z with 0 ≤ x < t
2 .

Proof. Write tγ = a+ bτ with a, b ∈ Z. Suppose a prime ` divides b and t. Then

` | t | |tγ| = a2 + ab+ Cb2,

so ` | a. But this means that t
`γ ∈ O∆, contradicting the definition of the denomi-

nator. so gcd(b, t) = 1. Thus there are y ∈ Z with by ≡ 1 (mod t) and x ∈ Z with
xy ≡ a (mod t); we may moreover choose x such that −t2 ≤ x <

t
2 . Then

|tyγ| = |ay + byτ | ≡ |x+ τ | (mod t).

Since t | |tγ| | |tyγ|, it follows that t | |x + τ | = x2 + x + C. Since t ≤
»
|∆|
3 < C,

we have t 6= |x+ τ |. Since t is the denominator of an element γ which is not in R,
we have t > 1: thus |x + τ | is composite. If x ∈ [−t2 , 0), then x∗ = 1 − x ∈ [0, t2 ].
Moreover we calculate |x+ α| = |x∗ + α|, so |x∗ + α| is also composite. �

Theorem 2.12. Let C ≥ 2, and suppose that x2 + x + C is prime for all x ∈
[0, b
»
|∆|
12 c]. Then O∆ is a PID.
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Proof. We will show the complex norm is a Dedekind-Hasse norm: let α ∈ K \O∆.
We must find γ, β ∈ O∆ such that 0 < |γα − β| < 1. By Lemma 2.11 there is an

integer t ∈ [1,
»
|∆|
3 ] and β ∈ O∆ with |tα − β| < 1, and as above we are done

unless tα ∈ O∆, so assume this. Consider η = tα ∈ O∆. We have

ηα =
|tα|
t
∈ Q,

so we may choose β ∈ Z such that |ηα − β| < 1. (The complex norm restricted to
Q is the square of the usual absolute value on Q, but the condition of being less
than one is preserved.) So again we are done unless ηα ∈ O∆ ∩ Q = Z, in other
words, unless t | |tα|. The preceding Lemma now finishes the proof! �

Corollary 2.10 and Theorem 2.12 give (ii′) =⇒ (i) in the Rabinowitsch Criterion.

2.5. Proof of (i) =⇒ (ii) in the Polynomial Rabinowitsch Criterion. Let
k be a field of characteristic different from 2. Let R = k[t]. As in Example 2.6
above, for f ∈ R we write deg f for the degree of f and |f | = 2deg f (again note
deg 0 = −∞, |0| = 0): this is a Euclidean norm.

Let ∆ ∈ k[t]•, and put D = deg ∆. We say ∆ is indefinite if deg ∆ is even and the
leading (i.e., highest degree) term of ∆ is a square; otherwise ∆ is definite. From
now on we assume that ∆ is definite and of positive degree.

Proposition 2.13. Let ∆ ∈ k[t] be definite, and put q∆(x, y) = x2 −∆y2.
a) For all x, y ∈ k[t], we have

deg q∆(x, y) = max(2 deg x, 2 deg y + deg ∆).

b) If y 6= 0, then deg q∆(x, y) ≥ D.

Proof. a) We consider cases.
Case 1: Suppose deg ∆ is odd. Then deg x2 is even and deg ∆y2 is odd, so the
highest degree term does not cancel and

deg x2 −∆t2 = max(deg x2,deg ∆y2) = max(2 deg x, 2 deg y + deg ∆).

Case 2: Suppose the leading coefficient of ∆ is not a square. Then the leading
coefficient of x2 is a square whereas the leading coefficient of ∆y2 is not, so again
the highest degree term does not cancel.
b) Since deg y 6= −∞, we have deg q∆(x, y) ≥ 2 deg y + deg ∆ ≥ deg ∆ = D. �

Henceforth we fix a definite ∆ ∈ k[t]. Let O∆ = R[∆] = {x + y∆ | x, y ∈ R}
and let K = {x + y∆ | x, y ∈ k(t)} be the fraction field of O∆. Then K/k(t) is a
quadratic field extension which – since the characteristic of k is not 2 – is Galois,

with nontrivial automorphism x + y
√

∆ 7→ x+ y
√

∆ = x − y
√

∆. Thus the norm
map in the sense of field theory is

N : K → k(t), α = x+ y
√

∆ 7→ αα = x2 −∆y2 = q∆(x, y).

Moreover N(O∆) ⊂ k[t] and for α ∈ O∆ we have α ∈ O×∆ ⇐⇒ N(α) ∈ k[t]× = k×.
We define the “complex norm”

| · | : O∆ → Q≥0, α = x+ y∆ 7→ 2degN(α) = 2deg(x2−∆y2).

This is indeed a norm function on O∆ in the sense of §2.2. As in the general case,
we extend it multiplicatively to a norm function on K.
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Lemma 2.14. For an irreducible polynomial p ∈ k[t], the following are equivalent:
(i) There are x, y ∈ k[t] and u ∈ k× such that q∆(x, y) = up.
(ii) As an element of the domain O∆, p is reducible (i.e., not irreducible).

Proof. (i) =⇒ (ii): We have

up = q∆(x, y) = (x+ y
√

∆)(x− y
√

∆) = N(x+ y∆) = N(x− y∆).

The elements x± y∆ do not lie in O×∆ because then up (hence also p) would lie in
k[t]×, contrary to our assumption. Thus up (hence also p) is reducible in O∆.

(ii) =⇒ (i): if p = (x+ y
√

∆)(z + w
√

∆) with x+ y∆, z + w∆ ∈ O∆ \ O×∆, then

p2 = N(p) = N(x+ y
√

∆)N(z + w
√

∆).

The elements N(x+ y
√

∆),N(z+w
√

∆) are not units of the UFD k[t], so the only

other possibility is that each of N(x + y
√

∆) and N(z + w
√

∆) is associate to p,
i.e., N(x+ ∆) = up with u ∈ k[t]× = k×. �

Proposition 2.15.
a) If p ∈ k[t] is irreducible and deg p < deg ∆, then p is irreducible in O∆.
b) If O∆ is a UFD, then for all x ∈ k[t], the polynomial q∆(x, 1) has no irreducible
factor of degree less than D.

Proof. a) By contraposition: if p is irreducible, then by Lemma 2.14 there is α = x+
y∆ ∈ O∆ such that q∆(x, y) = up for some u ∈ k×. Since up is not a square in k[t],
y 6= 0, and thus by Proposition 2.13b) we have deg p = deg up = deg q∆(x, y) ≥ D.
b) By contradiction: suppose there is an irreducible polynomial p of degree less

than D such that p | q∆(x, 1) = x2 − ∆ = (x +
√

∆)(x −
√

∆). By part a), p is
irreducible in O∆; since O∆ is a UFD, it follows that p | ±∆, which is absurd. �

Theorem 2.16.
If O∆ is a UFD, then x2 −∆ is irreducible for all x ∈ k[t] with deg x < deg ∆.

Proof. If deg x < deg ∆, then deg x2−∆ < 2 deg ∆. If x2−∆ is reducible, then some
irreducible factor has degree less than deg ∆, contradicting Proposition 2.15b). �

2.6. Polynomial Diophantine Approximation.

Proposition 2.17. (Polynomial Diophantine Approximation) Let a ∈ k(t) and let
Q ∈ N. There are p, q ∈ k[t] such that 0 ≤ deg q ≤ Q and deg(qa− p) < −Q.

Proof. first proof: Apply Theorems 2.9 and 4.3 of [Cl16].
second proof: Let k(( 1

t )) be the field of “formal finite-headed Laurent series.”

An element a ∈ k(( 1
t ))
× can be written in the form a =

∑
n≥N ant

−n with an ∈ k
and aN 6= 0, and we set δ(a) = N and δ(0) = ∞. We have k(t) ⊂ k( 1

t )), and
if x ∈ k(t)× then δ(x) = −deg x. Thus we may establish the result by showing
that for all a ∈ k(( 1

t )) there are p ∈ k[t], q ∈ k[t]• with deg(q) ≤ Q such that
δ(qa − p) ≥ Q + 1. Let P≤Q ⊂ k[t] be the polynomials of degree at most Q, and
consider the map L : P≤Q → kQ defined as follows: for q ∈ P≤Q, write

qa =
∑
n≥N

ant
−n

and put

L(q) = (a1, . . . , aQ).
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The map L is k-linear. Since dimP≤Q = Q + 1 > Q = dim kQ, there is q ∈ P•≤Q
such that L(q) = 0. The principal part

p =
−1∑
n=N

ant
−n

of qa is a polynomial, and

qa− p =
∞∑

n=Q+1

ant
−n

and thus

δ(qa− p) ≥ Q+ 1. �

Remark 2.18. Proposition 2.17 stands in close analogy to Dirichlet’s Diophantine
Approximation. In the former case, although our present application concerned the
approximation of rational numbers, it was more natural to approximate all real
numbers. Of course R is the completion of Q with respect to the standard absolute
value, which is extended from a multiplicative norm on Z. In our case the norm
2deg = 2−δ is the norm associated to the discrete valuation δ on k(t), and k(( 1

t )) is
nothing else than the completion of k(t) under this norm. And again, though here
we will only need to approximate elements of k(t), it is more natural to work with the
complete field k(( 1

t )). Finally, the proof of Dirichlet’s Diophantine Approximation
used the pigeonhole principle, here we use the fact that n+1 vectors in kn are linearly
dependent. When k is finite this follows from the usual pigeonhole principle.

2.7. Proof of (ii′) =⇒ (i) in the Polynomial Rabinowitsch Criterion.

Lemma 2.19. Let K be the fraction field of O∆. For α ∈ K there is q ∈ k[t] such

that deg q ≤ ddeg ∆
2 e and β ∈ O∆ such that degN(qα− β) < 0.

Proof. Let α = x+y
√

∆ with x, y ∈ k(t). Apply Proposition 2.17 with Q = ddeg ∆
2 e

and a = y: we get p, q ∈ k[t] with 0 ≤ deg q ≤ Q and deg(qy − p) < −Q. Choose

z ∈ k[t] such that deg(qx− z) < 0 and put β = z + p
√

∆. Then

N(qα− β) = N((qx− z) + (qy − p)
√

∆) = (qx− z)2 −∆(qy − p)2

has negative degree since (qx− z) does and

deg ∆(qy − p)2 < −2Q+ deg ∆ = −2ddeg ∆

2
e+ deg ∆ ≤ 0. �

Theorem 2.20. Suppose that for all x ∈ k[t], if deg x < ddeg ∆
2 e then x2 − ∆ is

not composite. Then O∆ is a PID.

Proof. We will show the complex norm is a Dedekind-Hasse norm. Let α ∈ K \O∆.
We must find γ, β ∈ O∆ such that ) < |γα−β| < 1, or equivalently that N(γα−β)

has negative degree. By Lemma 2.19 there is t ∈ k[t] of degree at most ddeg ∆
2 e and

β ∈ O∆ such that N(tα− β) has negative degree, and as above we are done unless
tα ∈ O∆, so assume this. Without loss of generality we may assume that t is the
denominator of γ (and thus that t > 1). Consider η = tα ∈ O∆. We have

ηα =
N(tα)

t
∈ k(t),
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so we may choose β ∈ k[t] such that N(ηα − β) has negative degree. So again we
are done unless ηα ∈ O∆ ∩ k(t) = k[t]: in other words, unless t | N(tα). We may
assume without loss of generality that t is minimal in the sense that there is no
proper divisor t′ of t such that tα ∈ O∆ (otherwise replace t with a proper divisor).

Write tγ = a+ b
√

∆ with a, b ∈ k[t]. We claim b and t are relatively prime in k[t]:
indeed, if ` is an irreducible polynomial dividing both b and t then

` | t | N(tγ) = a2 −∆b2,

so ` | a and thus
(
t
`

)
γ ∈ O∆, contradicting the minimality of t. Thus there are

y ∈ k[t] with by ≡ 1 (mod t) and x ∈ k[t] with xy ≡ a (mod t); we may moreover
choose x such that deg x < deg t. Then

N(tyγ) = N(ay + by
√

∆) ≡ N(x+
√

∆) (mod t).

Since t | |tγ| | |tyγ|, it follows that t|N(x+
√

∆) = x2−∆. Since deg x2−∆ ≥ deg ∆

and deg x < deg t ≤ ddeg ∆
2 e, we have t 6= N(x+

√
∆). Since γ ∈ K \O∆, t /∈ k[t]×.

Thus we have found x ∈ k[t] with deg x < ddeg ∆
2 e such that N(x+ t) is composite,

contradicting our hypothesis. �

3. Interlude: Some quadratic number theory

3.1. Quadratic Orders Over a PID. Let R be a PID of characteristic not 2,
with fraction field K. Let L/K be a quadratic field extension. For any α ∈ L \K
we have L = K[α]; after scaling α by an element of R•, we may assume that α is
integral over R, i.e., the minimal polynomial f(t) = t2 + bt + c of α over K has
coefficients in R. We define the discriminant of α as

∆(α) = b2 − 4c ∈ R,

so (because 2 ∈ K×) we have L = K(
√

∆(α)). Since

R[α] ∼= R[t]/(t2 + bt+ c)

as an R-module R[α] is free of rank 2. Conversely, any R-subalgebra Oof L which
is free of rank 2 as an R-module is of the form R[x] for some x ∈ L which is integral
over R. Such a ring O is called an R-order in L, and a quadratic R-order is an
R-order in a quadratic field extension of K. Let OL be the integral closure of R in
L, which is a Dedekind domain. Because char(R) 6= 2, L/K is separable and OL is
an R-order in L. It is moreover the unique maximal R-order in L.

The discriminant ∆(α) is the discriminant of the discriminant of the trace form
of R[α] with respect to the R-basis 1, α. It follows that if for β ∈ OL we have
R[α] = R[β] then there is a unit u ∈ R× such that ∆(β) = u2∆(α). Conversely, for
u ∈ R× we have ∆(uα) = u2∆(α). So the discriminant of a quadratic order ought
really to be viewed as an element of the quotient monoid R•/R×2. Here we will
take the approach of speaking of “a discriminant” of a quadratic order, keeping the
above discussion in mind.

Proposition 3.1. Let R be a PID, let O = R[α] a quadratic R-order, let f =
t2 +bt+c ∈ R[t] be the minimal polynomial of α, and let p ∈ R• be a prime element.
We suppose that char(R/pR) 6= 2. The following conditions are equivalent:
(i) p is a prime element of O.
(ii) The polynomial f is irreducible in (R/pR)[t].
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(iii) ∆(α) = b2 − 4ac is not a square in R/pR.
When they hold, we say p is inert in O. If O = OL we say p is inert in L.

Proof. Observe that R/pR is a field and that O/pO ∼= (R/pR)[t]/(f).
(i) ⇐⇒ (ii): The ring R/pR[t] is a UFD, and thus p is a prime element of O iff
O/pO is a domain iff f is irreducible in (R/pR)[t].
(ii) ⇐⇒ (iii): Since char(R/pR) 6= 2, the quadratic polynomial f ∈ R/pR[t] is
irreducible iff it has no root in R/pR[t] iff ∆(α) is not a square in R/pR. �

3.2. Reduction to the Maximal Order. Theorem 1.1 is often stated only when
C ∈ Z+ is such that 1 − 4C is squarefree, in which case O1−4C is the full ring
of integers of the Q(

√
1− 4C). This is not necessary – if we follow Fendel the

issue does not even arise. However, for the subsequent proofs, non-maximal orders
engender technical complications that we prefer to evade rather than surmount.

Proposition 3.2. a) Let C ∈ Z+. Each of conditions (i) and (ii) in the Rabinow-
itsch Criterion implies that 1− 4C is squarefree.
b) Let ∆ ∈ k[t] be definite and of positive degree. Each of conditions (i) and (ii′)
in the Rabinowitsch Criterion implies that ∆ is squarefree.

Proof. a) Let O be the quadratic Z-order of discriminant ∆ = 1−4C. We may write
∆ = f2∆K , where f ∈ Z+ is odd and ∆K is squarefree. Our task is to show that
if f > 1 then neither condition (i) nor condition (ii) of the Rabinowitsch Criterion
holds. First, if f > 1 then as above O∆ is not integrally closed in its fraction field,
so it cannot be a PID: condition (i) does not hold. Moreover, since the odd number
f divides ∆, the quadratic polynomial x2 + 2 + 1−∆

4 has a root modulo f, so there

is x ∈ [0, f− 1] such that f | x2 + x+ 1−∆
4 . A calculation shows that f− 1 ≤ C − 2

and f < x2 + x+ 1−∆
4 , so there is x ∈ [0, C − 2] such that x2 + x+C is composite:

condition (ii) does not hold.
b) Let O∆ be the quadratic k[t]-order of discriminant ∆, and suppose ∆ = f2∆K

with deg f ≥ 1. Then as aboveO∆ is not integrally closed hence not a PID: condition
(i) does not hold. Moreover, evaluating at 0 gives the composite polynomial f2∆K ,
so condition (ii′) does not hold. �

3.3. Inertness Lemmas. Let R be a PID, let x ∈ R, and let p ∈ R• be a prime

element. We will write
Ä
x
p

ä
= −1 if x is not a square in the field R/(p). This

condition depends only on the ideal (p), and thus when R = Z it agrees with the
usual Legendre symbol.1

Lemma 3.3. (Inertness Lemma)
Let C ∈ Z≥2, and put ∆ = 1− 4C.
a) Let 1 ≤ c < C, and suppose that for all x ∈ [0, c − 1] the integer x2 + x + C is

prime. Then for all prime numbers p ≤ c we have
Ä

∆
p

ä
= −1.

b) Supose that for all prime numbers p < C we have
Ä

∆
p

ä
= −1. Then for all

x ∈ [0, C − 2], the integer x2 + x+ C is prime.

Proof. a) By contraposition: suppose there is a prime number p ≤ c such that ∆
is a square modulo p. Then there is x ∈ [0, p− 1] such that p | x2 + x+ C and

x2 + x+ C ≥ C > c ≥ p,

1We could also define
(
x
p

)
= 0 if p | x and

(
x
p

)
= 1 if x is a nonzero square in R/(p), but

beware:
(
xy
p

)
=
(
x
p

) (
y
p

)
holds for all x, y ∈ R iff R/(p) has at most 2 square classes.
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so x2 + x+ C is not prime.
b) By contraposition: suppose there is x ∈ [0, C − 2] such that x2 + x + C is not

prime; since C > 1, there is a prime number p ≤
√

(C − 2)2 + (C − 2) + C <√
(C − 1)2 + (C − 1) + C = C such that p | x2 + x+ C and thus

Ä
∆
p

ä
6= −1. �

Lemma 3.4. (Polynomial Inertness Lemma) Let ∆ ∈ k[t] be definite, deg ∆ ≥ 2.
a) Let c < deg ∆ and suppose that for all x ∈ k[t] with deg x < c, the polynomial

x2 −∆ is prime. Then for all primes p ∈ k[t] with deg p ≤ c we have
Ä

∆
p

ä
= −1.

b) Suppose that for all x ∈ k[t] with deg x < ddeg ∆
2 e the polynomial x2−∆ is prime.

Then for all primes p ∈ k[t] with deg p ≤ ddeg ∆
2 e we have

Ä
∆
p

ä
= −1.

Proof. a) By contraposition: suppose there is a prime p ∈ k[t] with deg p ≤ c
such that ∆ is a square modulo p. By polynomial division, there is x ∈ k[t] with
deg x < deg p such that p | x2 − ∆. Since deg x2 − ∆ ≥ deg ∆ > c ≥ deg p, the
polynomial x2 −∆ is not prime.
b) By contraposition: suppose there is a prime p ∈ k[t] with deg p ≤ ddeg ∆

2 e such

that
Ä

∆
p

ä
6= −1, i.e., ∆ is a square modulo p. By polynomial division there is

x ∈ k[t] with deg x < deg p ≤ ddeg ∆
2 e such that p | x2 −∆, and

deg(x2 −∆) ≥ deg ∆ > d∆
2
e,

so x2 −∆ is not prime. �

4. Rabinowitsch III and IV: Following Granville

4.1. Binary quadratic forms over a PID. Let R be a PID, of characteristic not
2, with fraction field K. By a binary quadratic form over R we mean a polynomial
f(x, y) = ax2 + bxy+ cy2 ∈ R[x, y]. The discriminant of a binary quadratic form
f is ∆(f) = b2 − 4ac. Put

Af =

ï
a b

2
b
2 c

ò
∈M2(K)

and viewing (x, y) as a column vector, we have

q(x, y) = (x, y)TAf (x, y)

and
disc f = −4 detAf .

Two binary quadratic forms q, q′ ∈ R[x, y] are widely equivalent (resp. nar-

rowly equivalent) if there is M =

ï
a b
c d

ò
∈ GL2(R) (resp. SL2(R)) such that

q′(x, y) = q(ax+ by, cx+ dy). If q and q′ are widely equivalent, then ∆(q′) ≡ ∆(q)
(mod R×2) (resp. ∆(q′) = ∆(q)). We say q represents z ∈ R if there are
(x, y) ∈ R2 such that q(x, y) = z. We say q primitively represents z ∈ R if
there are (x, y) ∈ R2 with 〈x, y〉 = R such that q(x, y) = z. If z is squarefree then
all representations of z are primitive.

Proposition 4.1.
a) For a,∆ ∈ R, the following are equivalent:
(i) There are b, c ∈ R such that ax2 + bxy + cy2 has discriminant ∆.
(ii) Some binary quadratic form of discriminant ∆ primitively represents a.
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(iii) The image of ∆ in R/4aR is a square.
b) If a quadaratic form q(x, y) ∈ R[x, y] primitively represents a, then q is narrowly
equivalent to ax2 + bxy + cy2 for some b, c ∈ R.

Proof. a) (i) =⇒ (ii): q(x, y) = ax2 +bxy+cy2 has discriminant ∆ and q(1, 0) = a.
(ii) =⇒ (iii): Suppose there is q(x, y) = Ax2 + Bxy + Cy2 with B2 − 4AC = ∆
and α, γ ∈ R such that 〈α, γ〉 = R and

a = Aα2 +Bαγ + Cγ2.

Since R is a PID there are β, δ ∈ R such that αδ − βγ = 1. Put

x = αX + βY, y = γX + δY.

Then

f(x, y) = f(αX + βY, γX + δY ) = aX2 + bXY + cY 2

for some b, c ∈ R. Then ∆ = b2 − 4ac ≡ b2 (mod a).
(iii) =⇒ (i): There are b, c ∈ R such that b2 −∆ = 4ac.
b) This follows from the proof of (ii) =⇒ (iii). �

We say that ∆ ∈ R is a quadratic discriminant if ∆ is a square modulo
4R. We justify the terminology as follows: if there is a binary quadratic form
f = ax2 + bxy + cy2 ∈ R[x, y] of discriminant ∆, then b2 − 4ac = ∆, so ∆ is a
square in R/4R. The converse is also true: indeed, if ∆ is a square modulo 4R then
there are b, c ∈ R such that b2 − 4c = ∆, so x2 + bxy + cy2 has discriminant ∆.

Henceforth we suppose that ∆ is a quadratic discriminant which is not a square in R
(hence also is not a square in K, since R is integrally closed). Let L = K(

√
∆). As

above, there is an element τ ∈ L satisfying a monic polynomial relation τ2+bτ+c =
0 with b, c ∈ R and b2 − 4c = ∆. We put O∆ = R[τ ] = R · 1 ⊕ R · τ , so O∆ is
a quadratic R-order in L whose discriminant in the more general algebraic sense
(i.e., the discriminant of the trace form) is the class of ∆ in R/R×2.

There is a standard right action of GL2(R) on binary quadratic forms: if

M =

ï
α β
γ δ

ò
∈ GL2(R) and f(x, y) = ax2 + bxy + cy2,

(f ◦M)(x, y) = f(αx+ βy, γx+ δy).

(f ◦M)(x, y) = (x, y)TMTAfM(x, y) = (M(x, y))TAf (M(x, y)),

so

disc(f ◦M) = det(M)2 disc(f).

If R = Z then the natural (right) GL2(R)-action preserves discriminants, but in
general it only preserves the class of the discriminant in R/R×2. The classical way
to get an action which preserves the discriminant is to restrict to SL2(R). Here we
will use the twisted action: for f ∈ GL2(R), we put

(f •M)(x, y) =
1

detM
(f ◦M)(x, y),

and thus

disc(f •M) = disc f.
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We say that two binary quadratic forms are twisted equivalent if they lie in the
same twisted GL2(R)-orbit and write f ≡ g. Let C(∆) denote the set of twisted
equivalence classes of binary quadratic forms of discriminant ∆.

Example 4.2. Using the matrix M =

ï
1 0
0 −1

ò
, we find that f(x, y) = ax2 +

bxy+cy2 is twisted equivalent to f ′ = −ax2+bxy−cy2, although these two forms are
in general not widely equivalent: e.g. over Z, f is positive-definite iff f ′ is negative-
definite. From the classical perspective this is a bit strange, but in a context in which
we do not have notions of “positive” and “negative,” this behavior is desirable.

Thus twisted equivalent quadratic forms need not represent the same elements of
R, which motivates the following definition of González-Avilés: a ∈ R is quasi-
represented (resp. primitively quasi-represented) by the binary quadratic
form f(x, y) ∈ R[x, y] if there are u ∈ R× and (x, y) ∈ R2 (resp. there are u ∈ R×
and (x, y) ∈ R2 with 〈x, y〉 = R) such that

f(x, y) = ua.

The following simple result may be left to the reader.

Lemma 4.3.
a) For a binary quadratic form f ∈ R[x, y] and a ∈ R, the following are equivalent:
(i) f quasi-represents a.
(ii) Every g which is twisted equivalent to f quasi-represents a.
(iii) Some g which is twisted equivalent to f represents a.
b) The results of part a) continue to hold when each instance of “represented” is
replaced by “primitively represented.”

A binary quadratic form f ∈ R[x, y] is principal if it quasi-represents 1.F

Let L/K be a quadratic field extension. Denote by x 7→ x the nontrivial field
automorphism. Let OL be the integral closure of R in L. There is a norm function
from ideals of OL to ideals of R, N(I) = II ∩ R. This function is multiplicative,
so it is characterized by its restriction to prime ideals, which is as follows: let p be
a nonzero prime ideal of OL, and let (p) = p ∩ R. If pOL = pp then N(p) = (p),
whereas if pR = p is a prime ideal, then N(p) = (p2).

Theorem 4.4. Let R be a PID of characteristic not 2 with fraction field K, let
L/K be a quadratic field extension, let OL be the integral closure of R in L, and
let ∆ be a discriminant of OL. To a nonzero ideal I = 〈α, β〉 of OL, we associate
the quadratic form

Φ(I)(x, y) =
ααx2 + (αβ + αβ)xy + ββy2

N(I)
.

The above notation is slightly abusive: N(I) is an ideal of the PID R, and our claim
is that it has a (unique) generator such that disc Φ(I) = ∆.2 To a quadratic form
f(x, y) = ax2 + bxy + cy2 ∈ R[x, y] of discriminant ∆, we associate the OL-ideal

Ψ(f) =

≠
a,
−b+

√
∆

2

∑
.

2The ambiguity in the choice of ∆ corresponds precisely to the ambiguity in the choice of a
generator for N(I).
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a) For all ideals I of OL, Φ(I) ∈ R[x, y] has discriminant ∆.
b) If f1 ≡ f2, then [Ψ(f1)] = [Ψ(f2)] in PicOL.
c) If [I1] = [I2] ∈ PicOL, then Φ(I1) ≡ Φ(I2).
d) The induced maps Φ : C(∆) → PicOL and Ψ : PicOL → C(∆) are mutually
inverse bijections.

Proof. This is morally a special case of much more general results of Kaplansky
[Ka68], Kneser [Kn82] and Wood [Wo11], although some translation is required.
But the result is plainly implied by Example 4.4 in [O’D15], which treats arbitrary
quadratic orders over a PID (here we have restricted to maximal orders). The
special case R = Fq[t] is due to González-Avilés [Go92]. �

Corollary 4.5. Maintain the notation of the previous result.
a) For a form f of discriminant ∆, f is principal iff Ψ(f) is a principal OL-ideal.
b) Two principal forms of discriminant ∆ are twisted equivalent.
c) Every binary quadratic form of discriminant ∆ is principal iff OL is a PID.

Proof. a) Suppose f is principal. According to the theorem we may adjust f
within its twisted equivalence class, and thus we may assume a ∈ R×. Then

Ψ(f) = 〈a, −b+
√

∆
2 〉 = 〈−b+

√
∆

2 〉 = OL. Suppose Ψ(f) is principal. Again we may
adjust within the equivalence class and thus may assume Ψ(f) = OL, in which case
evaluating Φ(Ψ(f)) = Φ(OL) at (1, 0), we get 1.
b) This follows immediately from part a) and Theorem 4.4b).
c) This follows from part b): the principal forms form a full twisted equivalence
class which corresponds to the equivalence class of principal ideals. �

The following consequence is a key one for us.

Corollary 4.6. Let f ∈ R[x, y] be a binary quadratic form of discriminant ∆ ∈
R\R2. Suppose the quadratic R-order O of discriminant ∆ is a PID. If f primitively
quasi-represents a ∈ R, then f primitively represents each b | a.

Proof. Since f primitively quasi-represents a, it primitive represents ua for some
u ∈ R× and thus ∆ is a square modulo 〈4ua〉 = 〈4a〉. If b divides a, then ∆ is also
a square modulo 4b, so some binary quadratic form g of discriminant ∆ primitively
represents b. But since O is a PID, by Corollary 4.5 all binary quadratic forms
of discriminant ∆ lie in the same twisted equivalence class, so f ≡ g and thus f
primitively quasi-represents a. �

4.2. In the presence of a Euclidean norm. If (R, | · |) is a normed PID and
f(x, y) ∈ R[x, y] is a binary quadratic form, we define the minimum min(f) to be
the minimum value of |q(x, y)| as (x, y) ranges over elements of (R2)•. If ∆(f) is
not a square in R, then min(f) ≥ 1. All three notions of equivalence preserve the
minimum, and we have min(f) = 1 iff f is principal.

Proposition 4.7. Let R be a domain of chracteristic not 2, and let | · | be a
Euclidean norm on R. Let f ∈ R[x, y] be a quadratic form with ∆(f) ∈ R \R2.
a) The form q is properly equivalent to a form ax2 + bxy + cy2 with |a| = min(f),
|b| < |2a| and |a| ≤ |c|.
b) If R = Z, then f is properly equivalent to a form ax2+bxy+cy2 with |a| = min(f)
and |b| ≤ |a| ≤ |c|. Moreover, if a ≥ 1 then f is properly equivalent to a form
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ax2 + bxy + cy2 with a = min(f), 0 ≤ b ≤ 2a− 1 and |a| ≤ |c|.
c) If 2 ∈ R×, then f is properly equivalent to a form ax2 + bxy + cy2 with |a| =
min(f) and |b| < |a| ≤ |c|.

Proof. a) By definition of the minimum, f represents some a ∈ R with |a| = min(f),
and every representation of such an a by f is primitive. So by Proposition 4.1, f
is narrowly equivalent to a form f ′ = ax2 + b′xy+ c′y2 with |a| = min(f). Now for
any q ∈ R, consider the matrix

Tq =

ï
1 q
0 1

ò
∈ SL2(R).

Applying Tq to f we get a form ax2 + (2qa+ b′)xy+Cy2 for some C ∈ R. Because
the norm is Euclidean, there are q, r ∈ R such that b′ = q(−2a) + r with |r| < |2a|.
This gives us a properly equivalent form ax2 + bxy + cy2 with |a| = min(f) and
|b| < |2a|. Since c = f(0, 1) and |a| = min(q), we necessarily have |a| ≤ |c|.
b) In Z, when we divide by 2a we can take the remainder to lie in [−|a|, |a|], so to
have norm at most |a|. Moreover, if a ≥ 1 we can take the remainder in [0, 2a− 1].
c) If 2 ∈ R× then |2a′| = |2||a′| = |a′|. �

Let ∆ ∈ R \R2. If O∆ = R[ 1+
√

∆
2 ], we put

f∆ = x2 + xy +

Å
1−∆

4

ã
y2.

If O∆ = R[
√

∆], we put

f∆ = x2 −
Å

∆

4

ã
y2.

In either case, f∆ has discriminant ∆ and represents 1.

Corollary 4.8. Let R be Z or k[t], and let f(x, y) ∈ R[x, y] have nonsquare dis-
criminant ∆ and represent 1. Then f is narrowly equivalent to f∆.

Proof. First suppose R = Z. By Binary Reduction, f is narrowly equivalent to
g = x2 + bxy + cy2 with b ∈ {0, 1}. Moreover b ≡ ∆ (mod 2), so if ∆ ≡ 1 (mod 4)
then b = 1 and since ∆ = b2 − 4ac = 1 − 4c, we have c = 1−∆

4 and thus g = f∆.

Similarly, if ∆ ≡ 0 (mod 4) then b = 0 so c = −∆
4 and g = f∆.

Now suppose R = k[t]. By Binary Reduction, f is narrowly equivalent to G =
x2 + cy2, and again equating discriminants gives c = −∆

4 . �

4.3. Granville’s Proof of the Rabinowitsch Criterion. Let C ∈ Z+ and
∆ = 1− 4C, and let f(x, y) = x2 + xy + Cy2.

(i) =⇒ (ii): Suppose O∆ is a PID. Seeking a contradiction, let x ∈ [0, C − 2]
be such that m = x2 +x+C is composite, and let p be a prime divisor of m. Then

p ≤
√
m <

»
(C − 1)2 + (C − 1) + C =

√
C2 = C.

Since m = f(x, 1), the form f primitively represents m. By Corollary 4.6 f prim-
itively quasi-represents p: here, that means f primitively represents ±p, and since
f is positive definite, the plus sign plays: there are x, y ∈ Z such that

p = x2 + xy + Cy2 = (x+
y

2
)2 +

−∆

4
y2.
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As in the proof of Lemma 2.2, this implies p ≥ C: contradiction.
(ii) =⇒ (i) Suppose there is a nonprincipal form of discriminant ∆. By binary
reduction, there is then a form f = ax2 + bxy + cy2 of discriminant ∆ with |a| ≥ 2
and |b| ≤ |a| ≤ |c|. Then

|∆| = −∆ = 4ac− b2 = 4|a||c| − |b|2 ≥ 4|a| · |a| − |a|2 = 3|a|2,

so

|a| ≤

 
|∆|
3
.

Let p be the smallest prime factor of |a|. Since f primitively represents a, ∆ is a
square modulo 4a, hence is also a square modulo p.

Because there are only finitely many reduced forms of a given discriminant, we
may easily check that every form of discriminant −3 is principal, and thus we may
assume C ≥ 2 and thus ∆ ≤ −7. If p = 2 then since ∆ is an odd square modulo
8 we have ∆ ≡ 1 (mod 8) and C = 1−∆

4 is even and f(0) = 02 + 0 + C = C is

composite. Otherwise p is odd, hence there is an odd x such that x2 ≡ ∆ (mod p).
We may take n1 ∈ [0, p− 1] such that (2n1 + 1)2 ≡ ∆ (mod p), hence

p | 4n2
1 + 4n1 + 1−∆ = 4(n2

1 + n1 + C),

so p | n2
1 + n1 + C. If n2

1 + n1 + C were prime then we’d have 
|∆|
3
≥ |a| ≥ p = n2

1 + n1 + C ≥ C =
1−∆

4
,

an equality which does not hold since ∆ < −3. So there is n1 ≤ p− 1 < p ≤ |a| ≤»
|∆|
3 with f(n1) = n2

1 + n1 + C composite.

4.4. Proof of the Polynomial Rabinowitsch Criterion. Let ∆ ∈ k[t] be of
positive degree and definite. Suppose, by way of contradiction, that every binary
quadratic form f(x, y) ∈ k[t, x, y] of discriminant ∆ is principal and that there is
x ∈ k[t] with deg x < deg ∆ such that m = x2 −∆ is composite. Then m has an
irreducible factor p satisfying

deg p ≤ 1

2
degm =

1

2
deg(x2 −∆) < deg ∆.

Since m = f∆(x, 1), it is primitively represented by a form of discriminant ∆, we
have that ∆ is a square modulo m (since 2 ∈ R×, we have mR = 4mR) and thus is
also a square modulo p, so p is represented by some quadratic form f of discriminant
∆. Since every form of discriminant ∆ is principal, there is u ∈ k× = k[t]× such
that uf∆ = x2 − ∆

4 represents p, hence so does x2 −∆. But because ∆ is definite,

deg(x2 −∆) ≥ deg ∆ > deg p = deg(u−1p): contradiction.
Now suppose that there is a nonprincipal form of discriminant ∆. By binary

reduction there is then a form f = ax2 +bxy+cy2 of dsicriminant ∆ with deg a ≥ 1
and deg b < deg a ≤ deg c. Then

deg ∆ = deg(ac− b2) = deg(ac) = deg a+ deg c ≥ 2 deg a,

i.e.,

deg a ≤ 1

2
(deg ∆).
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Let p be an irreducible factor of a. Since f primitively represents a, ∆ is a square
modulo a and thus also a square modulo p. By Euclidean division, there is x ∈ k[t]
with deg x < deg p such that

p | x2 −∆.

By Proposition 2.14 we have

deg(x2 −∆) ≥ deg ∆ ≥ 2 deg a ≥ 2 deg p > deg p,

so x2 −∆ is composite and

deg x < deg p ≤ 1

2
deg ∆.

5. Rabinowitsch V and VI: Following Minkowski

5.1. Minkowski Bounds and Applications.

Theorem 5.1. Let K/Q be an imaginary quadratic field with discriminant ∆.
Then every class in PicOK has an integral representative I with

|I| := #OK/I ≤

 
|∆|
3
.

Proof. For a number field F with [F : Q] = n, discriminant ∆F and precisely s
distinct embeddings ι : F ↪→ C with ι 6= ι, Minkowski showed that every class in
PicOF has an integral representative I with

|I| ≤
Å

4

π

ãs n!

nn

»
|∆F |.

For our imaginary quadratic field K this gives

|I| ≤ 2

π

»
|∆|.

In the imaginary quadratic case, this bound comes from using the Minkowski Con-
vex Body Theorem to get a lower bound on the lattice constant of a 2-dimensional
disk. But the exact value of the lattice constant of a 2-dimensional disk is known;
this amounts to the theory of reduction of positive definite binary forms. Using
this exact value gives the stated upper bound: see e.g. [Ma, Cor. 4.2]. Since

0.57735 ≈ 1√
3
<

2

π
≈ 0.6366,

this is a (modest) improvement over the Minkowski bound. �

Theorem 5.2. Let ∆ ∈ k[t] be definite and of positive degree, and let O∆ =

k[t,
√

∆] be the imaginary quadratic order of discriminant ∆. We assume that ∆
is squarefree, so O∆ is a Dedekind domain. Then every class in PicO∆ has an
integral representative I with

dimkOK/I ≤
°

deg ∆

2

§
.

Proof. A more precise result, Theorem 7.4, will be proven later on. �

We can now give a third proof that (ii) =⇒ (i) in the Rabinowitsch Criterion.

Theorem 5.3. Let C ∈ Z+, and suppose that for all x ∈ [0,
»
|∆|
3 − 1] the integer

x2 + x+ C is not composite. Then the ring O = Z[ 1+
√

1−4C
2 ] is a PID.
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Proof. Let ∆ = 1− 4C and K = Q(
√

∆).
Step 1: Suppose C = 1, so ∆ = −3. Then our hypothesis holds, vacuously.
Moreover, since ∆ is squarefree, O = OK is the ring of integers of K. So it suffices
to show that PicOK is trivial, which is immediate from Theorem 5.1.

Step 2: Suppose C ≥ 2. Then
»
|∆|
3 < C, so by our hypothesis Lemma 3.3 applies

with c =
»
|∆|
3 , and we get that

Ä
∆
p

ä
= −1 for all primes p ≤

»
|∆|
3 .

Proposition 3.2a) gives O = OK . So to show that O is a PID it is enough to show
that the class group PicOK is trivial. Let [I] ∈ PicOK , and choose a representative

I with |I| ≤
»
|∆|
3 . We may factor I = p1 · · · pr, and then for all i we have

|pi| ≤
r∏
i=1

|pi| = |I| ≤

 
|∆|
3
.

So let p be a prime ideal with |p| ≤
»
|∆|
3 . Then p∩Z = (p) for a prime number p.

We claim p = pOK ; indeed, if not then p is split or ramified, and p = |p| ≤
»
|∆|
3 ,

so
Ä

∆
p

ä
= −1, contradiction. Thus p = pOK is principal and OK is a PID. �

Theorem 5.4. Let deg ∆ ≥ 2. Then in the Polynomial Rabinowitsch Criterion,
condition (ii′) implies condition (i).

Proof. The proof is parallel to that of Theorem 5.3 and is left to the reader. �

5.2. End of the proof of the Rabinowitsch Criterion. Let R = Z. In Theo-
rem 1.1 we have proved (i) =⇒ (ii) twice: in §2.1 and §4.2. Clearly (ii) =⇒ (ii′).
Lemma 3.3a) gives (ii′) =⇒ (iii′). And our proof of Theorem 5.3 shows that (iii′)
=⇒ (i). Thus the proof of Theorem 1.1 is complete.

Let R = k[t]. In Theorem 1.3 we have proved (i) =⇒ (ii) twice: in §2.4 and
§4.3. Clearly (ii) =⇒ (ii′). Lemma 3.4a) gives (ii′ =⇒ (iii′). And our proof of
Theorem 5.4 shows that (iii′) =⇒ (i). Thus the proof of Theorem 1.3 is complete
– or rather it will be once we prove Theorem 7.4, which implies Theorem 5.2.

6. Satisfying the Rabinowitsch Criterion I: Elementary Examples

6.1. Satisfying the Classical Rabinowitsch Criterion. Over Z, checking the
Rabinowitsch Criterion for a given ∆ is straightforward. One readily sees that it
holds for ∆ = −3,−7,−11,−19,−43,−67,−163. As we saw in §4, this is equivalent
to showing that every binary quadratic form of discriminant ∆ is principal for these
values of ∆, and in this form these results were well known to Gauss. In fact, Gauss
famously conjectured that the above values of ∆ are the only (negative, congruent
to 1 (mod 4)) values of ∆ such that O∆ is a PID. This class number one problem
was resolved affirmatively by Heegner, Baker and Stark.

We turn now to the Polynomial Rabinowitsch Criterion. In contrast to the classical
case, there are certainly infinitely many pairs (k,∆) for which it holds. As we will
seee, the examples become more interesting as deg ∆ increases. In the remainder
of this section we examine the case of small degree by elementary methods. In the
next section we will incorporate arithmetic geometry, which will allow us to say
more and will also give rise to some open problems.



RABINOWITSCH TIMES SIX 21

6.2. Degree 0 and 1. Let ∆ ∈ k[t] be definite, and suppose the Rabinowitsch
Criterion holds for ∆. Then plugging in x = 0 we get that ∆ is not composite. If
deg ∆ = 0 then ∆ ∈ k = k[t]×; if deg ∆ ≥ 1 this implies that ∆ ∈ k[t] is irreducible.

• Suppose deg ∆ = 0. Then condition (ii) of Theorem 1.3 holds (clearly) and
condition (iii) holds (vacuously). So the Rabinowitsch Criterion holds and O∆ is a

PID. This is easily seen directly: here l = k[
√

∆] is a quadratic field extension of k

and O∆ = k[t,
√

∆] = l[t] is a polynomial ring over l, hence a PID.

• Suppose deg ∆ = 1. Then for all x ∈ k[t] with deg x < deg ∆, x is constant,
so deg(x2−∆) = 1, so x2−∆ is prime, so condition (ii) holds. Moreover condition
(iii) holds vacuously. So the Rabinowitsch Criterion holds and O∆ is a PID. Again,
this is easily seen directly: if ∆ = at+ b then

O∆ = k[t,
√
at+ b] ∼= k[

√
t] ∼= k[t],

so again O∆ is simply a univariate polynomial ring over a field.

• Suppose deg ∆ = 1 and k = C (or any algebraically closed field of characteristic
not 2). Then for all x ∈ k[t] with deg x = d ≥ 1, we have deg(x2 −∆) = 2d ≥ 2,
so x2−∆ is composite. Thus the degree bounds in conditions (ii) and (ii′) are sharp.

From now on we assume deg ∆ ≥ 2. This makes things more interesting:

Proposition 6.1. Let ∆ ∈ k[t] be definite, of degree at least 2. Then O∆ is not
isomorphic to k[t] or to l[t] for any quadratic field extension l/k.

Proof. The result is clear if O∆ is not a PID, so we may assume that the Rabinow-
itsch Crtierion holds for ∆. Condition (iii) of Theorem 1.3 implies that O∆ has no
degree one primes: i.e., there is no prime ideal p of O∆ such that O∆/p = k. Since
k[t]/(t) ∼= k, this shows that O∆ is not isomorphic to k[t]. If O∆ were isomorphic
to l[t] for some quadratic field extension l/k, then since l ⊗k l ∼= l × l is not a
domain, O∆ ⊗k l = l[x, y]/(y2 −∆(x)) is not a domain, which implies that ∆ is a
square in l[x]. But ∆ ∈ k[x] is irreducible of degree at least 2 and k does not have
characteristic 2, so this is impossible. �

6.3. Degree 2 and 3. For ∆ ∈ k[t], we put

C◦(k) = {(x, y) ∈ k2 | y2 = ∆(x)}.
Theorem 6.2. Let ∆ ∈ k[t] be definite and of degree at least 2.
a) If the Polynomial Rabinowitsch Criterion holds for ∆, then C◦(k) = ∅.
b) If deg ∆ ≤ 3, the Polynomial Rabinowitsch Criterion holds for ∆ iff C◦(k) = ∅.

Proof. a) By contrapositive: suppose (x, y) ∈ C◦(k). Viewing y as a degree zero
element of k[t] we have y2 − ∆(x) = 0. Thus y2 − ∆(t) ∈ k[t] is a polynomial of
degree at least 2 with a root in k, so it is reducible.
b) Since deg ∆ ≤ 3, condition (iii′) of Theorem 1.3 is that y(t)2−∆(t) is irreducible
for all y ∈ k[t] with deg y ≤ 1. Suppose not: then, since deg ∆ ≤ 3 there is x ∈ k is
such that y(x)2 −∆(x) = 0 and (x, y(x)) ∈ C◦(k), a contradiction. �

Example 6.3. Let k = R. For g ∈ N, let ∆g = −t2g+2 − 1, a definite polynomial.
Sign considerations show

{(x, y) ∈ R2 | y2 = −x2g+2 − 1} = ∅.



22 PETE L. CLARK

When g = 0 we have deg ∆g = 2 ≤ 3, so by Theorem 6.2 the Rabinowitsch Criterion
holds for ∆ = −t2 − 1. When g ≥ 1 we have deg ∆g ≥ 4 so the result does not
apply. In fact for k = R the Rabinowitsch Criterion never holds when deg ∆ ≥ 3:
taking x = tdeg ∆−1, we have deg x = 2 deg ∆ − 2 > deg ∆ > 2, so deg x2 − ∆ =
2 deg ∆− 2 > 2 and thus x2 −∆ is reducible for degree reasons alone.

Example 6.4. Let k = F3, ∆ = t3 − t− 1. For all x ∈ F3, x3 − x− 1 /∈ F×2
3 , so

{(x, y) ∈ F2
3 | y2 = x3 − x− 1} = ∅.

Thus the Rabinowitsch Criterion shows that

O∆ = F3[x, y]/(y2 − x3 + x+ 1)

is a PID.

Let us now look more concretely at the case deg ∆ = 2.3 Let ∆ = at2 + bt+ c with
a ∈ k \ k2. After the harmless change of variables t 7→ t−b

2a we may assume b = 0.
Then Condition (i) of Theorem 1.3 holds iff for all x ∈ k, the polynomial

x2 −∆ = −at2 + (x2 − c)
is irreducible. Away from characteristic 2, a quadratic polynomial is irreducible iff
its discriminant is not a square, so the criterion holds iff

∀x ∈ k, a(x2 − c) /∈ k2.

Example 6.5. Let (k,≤) be an ordered field, and let ∆ = at2 + c with a ∈ k \ k2.
a) If a, c < 0 are negative, then the Rabinowitsch Criterion holds for ∆.
b) If every positive element of k is a square (e.g. k = R), then ∆ definite forces
a < 0, and the Rabinowitsch Criterion holds for ∆ iff c < 0.

Example 6.6. Let q be an odd prime power, let k be a finite field of order q, and
let ∆ = at2 +c with a ∈ k \k2. Recall [k× : k×2] = 2. As x ranges over all elements
of k, x2 − c takes on q+1

2 values, so for some x, x2 − c is either 0 or a nonsquare

and thus a(x2 − c) ∈ k2. Thus the Rabinowitsch Criterion does not hold for ∆.

Proposition 6.7. Let ∆ = at2 + c with a ∈ k \ k2. The Rabinowitsch Criterion
holds for ∆ iff the quaternion algebra

(
a,c
k

)
is a division algebra.

We omit the proof: we will not rehearse the theory of quaternion algebras, and a
reader who knows this theory will have no difficulty proving this result.

Thus for a field k, the Rabinowitsch Criterion holds for some degree 2 polynomial
∆ ∈ k[t] iff k admits some division quaternion algebra. In particular this holds if
k is Q, Fp(t), Qp, Fp((t)) or any finite extension thereof. It does not hold over Fq.
This is our first sign that an infinite ground field makes things more interesting.

7. A Geometric Approach

7.1. Jacobians. We begin by recalling the following result of M. Rosen.

Theorem 7.1. (Rosen [Ro73]) Let C◦ = C \ S be a regular, geometrically integral
affine curve over a field k. Let D0(S) be the subgroup of Div(C) consisting of degree
0 divisors supported on S, and let P (S) be the principal divisors in D0(S). Let I∞
be the least positive degree of a divisor supported on S (note that I∞ = 1 if and

3The reader who knows the classification of plane conics may move on to the next section.
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only if S contains at least one k-rational point), and let I be the index of C: the
least positive degree of a divisor on C. Then there is an exact sequence

(1) 0→ D0(S)/P (S)→ Pic0(C)→ Pic(Co)→ Z/(I∞/I)Z→ 0.

The following result, though a mouthful, follows immediately from Theorem 7.1.

Theorem 7.2. Let k be a field of characteristic different from 2, let ∆ ∈ k[t] be
definite and squarefree of positive degree, which we write in the form 2g+1 or 2g+2
for g ∈ N. Let O∆ = k[x, y]/(y2−∆), and let C be the complete, regular curve with
affine model

C : y2 = ∆(x).

Let π : C → P1 be the degree 2 branched covering induced by (x, y) 7→ x. Let J(C)
be the Jacobian of C, an abelian variety of dimension g.
a) Suppose deg ∆ = 2g+ 1. Then the covering π is ramified over the point ∞ = [1 :
0] ∈ P1(k), so there is a unique k-rational point O such that π(O) =∞. Moreover
the ring O∆ is naturally identified with the coordinate ring k[C◦] of the regular
affine curve C◦ = C \ {O}. We have canonical isomorphisms

J(C)(k) = Pic0 C
∼→ Pic k[C◦] = PicO∆.

Thus the Rabinowitsch Criterion holds for ∆ iff J(C)(k) = {0}.
b) Suppose deg ∆ = 2g + 2. Then the covering π is unramified over the point
∞ ∈ P1(k), and the definiteness condition that the leading coefficient of ∆ is not a
square in k means precisely that∞ is inert in k(C): that is, there are two geometric
points O1 6= O2 for which π(O1) = π(O2) =∞, each with residue field a quadratic
extension l/k, and conjugate under the nontrivial element of Aut(l/k). The ring
O∆ is naturally identified with the coordinate ring k[C◦] of the regular affine curve
C◦ = C \ {O1, O2}. Let I(C) be the index of the hyperelliptic curve C/k, i.e., the
least positive degree of a K-rational divisor on K. Then I(C) ∈ {1, 2}. If C has
a k-rational point then I(C) = 1; the converse holds if g ≤ 1 but not (in general)
when g ≥ 2. We have a short exact sequence

(2) 0→ J(C)(k)→ PicO∆ → Z/I(C)Z→ 0.

c) Thus, when deg ∆ = 2g + 2, the following are equivalent:
(i) The Rabinowitsch Criterion holds for ∆.
(ii) We have I(C) = 2 and J(C)(k) = {0}.

Proposition 7.3. Let ∆1,∆2 ∈ k[t] be definite and satisfying the Rabinowitsch Cri-
terion. Suppose O∆1 and O∆2 are isomorphic k-algebras. Then deg ∆1 = deg ∆2.

Proof. Suppose deg ∆1 ≤ deg ∆2. We have seen that if deg ∆1 ∈ {0, 1} then
deg ∆1 = deg ∆2, so suppose deg ∆1 ≥ 2. Since O∆1 is isomorphic to O∆2 , the
hyperelliptic curves y2 = ∆1(x) and y2 = ∆2(x) have isomorphic affine coordinate
rings, so the corresponding complete regular models C1 and C2 are isomorphic
over k, and in particular have the same genus g. So either deg ∆1 = deg ∆2 or
deg ∆1 = 2g + 1 and deg ∆2 = 2g + 2. But then the complete curve C1 has a
k-rational point and the complete curve C2 does not: contradiction. �

7.2. Minkowski Constants For Hyperelliptic Curves. For a smooth, projec-
tive integral curve C/k we denote linear equivalence of divisors by ∼. For a smooth,
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affine integral curve C◦/k we denote linear equivalence of divisors by ∼◦. In the lat-

ter case, divisors correspond to fractional ideals in the affine coordinate ring k[C◦]
and the classes of ∼◦ are the ideal classes in the usual number theoretic sense.

Theorem 7.4. Let k be a field, let C/k be a smooth, projective integral curve of

genus g, and let π : C → P1 be a degree 2 morphism such that there is a unique
closed point O lying over ∞ ∈ P1 (“definite case”). Let C◦ be the affine curve
C \ {O}, and let O = k[C◦] be its affine coordinate ring, a Dedekind domain. Let

M(O) =


g, if degO = 1

g, if degO = 2, C has index 2 and g is even

g + 1, if degO = 2, C has index 2 and g is odd

g + 1, if degO = 2, and C has index 1.

Let D ∈ DivC◦ be a divisor. Then there is an effective divisor D′ such that
D ∼◦ D′ and degD′ ≤ M(O). Equivalently, every class in PicO has an integral
representative I with dimkO/I ≤M(O).

Proof. Let

η : Div0 C ↪→ DivC◦

be the injective group homomorphism
∑
P nP [P ] 7→

∑
P 6=O nP [P ], and let

η : Pic0 C ↪→ PicC◦

be the induced injective homomorphism.
Case 1: Suppose deg ∆ = 2g + 1. Then degO = 1, so we may define

ι1 : DivC◦ 7→ Div0 C,
∑
P 6=O

nP [P ] 7→
∑
P 6=O

nP [P ]−

(∑
P

nP

)
[O].

The homomorphism ι1 is the inverse of the isomorphism η, and it induces the inverse
isomorphism ι1 : PicC◦ → Pic0 C. Let D ∈ DivC◦. Then ι1(D) + g[O] has degree
g, so by Riemann-Roch, there is an effective D′ such that ι1(D)+g[O] ∼ D′. Write
D′ = k[O] +D′′ where the support of D′′ is disjoint from [O] and 0 ≤ k ≤ g, so

degD′′ = g − k ≤ g.
Then

ι1(D) ∼ D′ − g[O] = D′′ + (k − g)[O] = ι1(D′′).

Thus ι1(D −D′′) = 0, so D ∼ D′′.
Case 2: Suppose deg ∆ = 2g + 2, C has index 2 and g is even. Then degO = 2.
Moreover, since C has index 2, if

∑
P 6=O nP [P ] ∈ DivC◦ then

∑
P nP is even, so

we may define a homomorphism

ι2 : DivC◦ 7→ Div0 C,
∑
P 6=O

nP [P ] 7→
∑
P 6=O

nP [P ]−
Å∑

P nP
2

ã
[O].

The maps η and ι2 are mutually inverse, and we have ι2 : PicC◦
∼→ Pic0 C. Let

D ∈ PicC◦. We may argue as in Case 1, using ι2(D)+ g
2 [O] in place of ι1(D)+g[O],

to get that D is linearly equivalent to an effective divisor of degree at most g.
Case 3: Suppose deg ∆ = 2g + 2, C has index 2 and g is odd. We may argue as
in Case 2, using ι2(D) + g+1

2 [O] in place of ι2(D) + g
2 [O], to get that D is linearly

equivalent to an effective divisor of degree at most g + 1.
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Case 4: Suppose deg ∆ = 2g + 2 and C has index 1. Then E = η(Div0 C) is the
index 2 subgroup of divisors of even degree.
Step 1: We can define ι2 : E → Div0 C as in Case 2 above, and now η : Div0 C → E
and ι2 : E → Div0 C are mutually inverse isomorphisms and ι2 : E → Pic0 C is an
isomorphism. The argument of Case 2 now shows that every divisor D on C◦ of
even degree is linearly equivalent to an effective divisor of degree at most g + 1.
Step 2: Since every element of PicC◦ is represented by an effective divisor, we may
suppose that D is a divisor with d = degD odd and greater than g + 1, and we
must show that D is linearly equivalent to an effective divisor on C◦ of degree at
most g + 1. Let O◦ = π∗([0]) be the pullback of 0 ∈ P1, so [O] ∼ [O◦]. Let D1 be
a divisor on C◦ of degree 1. Then deg(D − D1) is even, so by Step 1 there is an
effective divisor D′ on C◦ of even degree d′ ≤ g such that D −D1 ∼◦ D′. Put

δg =

®
1 g is odd

0 g is even
.

Thus we have

D −D1 ∼ D′ +
d− 1− d′

2
[O◦] ∼◦ D′ +

g − δg − d′

2
[O◦],

because the last two divisor classes differ by a multiple of [O]. Thus

D ∼◦ D1 +D′ +
g − δg − d′

2
[O◦].

The right hand side has degree g + 1 − δg ∈ {g, g + 1}. By Riemann-Roch, it is
linearly equivalent to an effective divisor D′′ of degree g + 1− δg, which may have
[O] in its support, but as above we may replace [O] with [O′] without changing the
effectivity or the linear equivalence class, finally arriving at an effective divisor of
degree g + 1− δg ≤ g + 1 on C◦. �

Thus in all cases we have

M(O) ≤ g + 1 =

°
deg ∆

2

§
,

establishing Theorem 5.2.

Remark 7.5. When k is finite of odd order, Theorem 7.4 is due to W. Hu [Hu99].
Because every curve over a finite field has index 1, our Cases 2 and 3 do not arise.
His approach is very much in the spirit of the classical geometry of numbers: in fact
he works with any curve C endowed with a map π : C → P1 such that the closed
points lying over ∞ have degrees 1 or 2 and uses a Minkowski-style embedding of
k[C◦] as a lattice in the locally compact group Fq(( 1

t ))
r × Fq2(( 1

t ))
s.

Example 7.6. Suppose deg ∆ = 2. Above we saw that the Rabinowitsch Criterion
holds iff C◦(k) = ∅. In geometric terms, C is a genus zero curve, so J(C) = (0).
By Theorem 7.2, the Rabinowitsch Criterion holds iff C has index 2. By Riemann-
Roch, a genus zero curve of index 1 has a rational point, so C has index 2 iff
C(k) = ∅ iff C◦(k) = ∅. When C(k) = ∅ we have equality in Case 2 of Theorem
7.4 and when C(k) 6= ∅ we have equality in Case 4 of Theorem 7.4.

Example 7.7. Suppose deg ∆ = 3. Above we saw that the Rabinowitsch Criterion
holds iff C◦(k) = ∅. In geometric terms C is a genus one curve with a k-rational
point O so C is its own Jacobian and C(k) = Pic0 C ∼= PicC◦. By Riemann-Roch,
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a genus one curve of index 1 has a rational point, so C has index 2 iff C◦(k) = ∅.
When C◦(k) 6= ∅ we have equality in Case 1 of Theorem 7.4.

Example 7.8. Suppose deg ∆ = 4. Above we saw that C◦(k) = ∅ is necessary
but not sufficient for the Rabinowitsch Criterion to hold. In geometric terms, C is
a genus one curve without a k-rational point, so its Jacobian J(C) is an elliptic
curve, which may still have nonzero Mordell-Weil group: indeed, when k = R, the
group of rational points on an elliptic curve is isomorphic to either S1 or S1×Z/2Z
and we have equality in Case 3 of Theorem 7.4.

8. Satisfying the Rabinowitch Criterion II: Using Geometry

8.1. Some Cases of Failure of the Polynomial Rabinowitsch Criterion.

Theorem 8.1. Let q be an odd prime power, and let ∆ ∈ Fq[t] be definite of degree
at least 2. If the Rabinowitsch Criterion holds for ∆, then (q,deg ∆) = (3, 3).

Proof. Step 1: Suppose deg ∆ = 2, so g = 0. The Weil bounds give #C◦(Fq) =
#C(Fq) = q + 1, so C has index 1 and the Rabinowitsch fails.

Step 2: Now assume g ≥ 1. The Weil bounds give # Pic0 C = #J(C)(Fq) ≥
(
√
q−1)2g, so if q 6= 3 then4 Pic0 C is nonzero and the Rabinowitsch Criterion fails.

Step 3: Suppose q = 3. If deg ∆ = 4 then C has genus one. The Weil bounds give

#C(Fq) ≥ (
√

3− 1)2 > 0,

so #C◦(Fq) = C(Fq) 6= ∅ and the Rabinowitsch Criterion fails. If deg ∆ ≥ 5 then
g ≥ 2 and if the Rabinowitsch Criterion holds there would be a curve C/F3

of genus
g ≥ 2 with J(C)(Fq) = (0). This was ruled out in [LMQ75]. �

The case of deg ∆ = 3 over F3 cannot be eliminated: as we saw in Example 6.4,
the Rabinowitsch Criterion holds for ∆ = t3 − t − 1 over F3. A straightforward
calculation shows that y2 = x3 − x− 1 is up to isomorphism the only elliptic curve
over F3 with trivial Mordell-Weil group. This implies that if ∆1,∆2 ∈ F3[t] are
degree 3 polynomials for which the Rabinowitsch Criterion holds, then O∆1

∼= O∆2
.

A field k is ample if for every smooth, geometrically integral variety V/k with

V (k) 6= ∅, we have that V (k) Zariski-dense in V (k). Ample fields include:
(i) C, R, Qp, Fp((t)).
(ii) Algebraically closed fields and real-closed fields.
(iii) Pseudo-algebraically closed (PAC) fields and pseudo-real closed (PRC) fields.
(iv) Fields which are complete (or Henselian) for a nontrivial valuation.
(v) Algebraic extensions of ample fields.

The following fields are not ample:
(i) Finite fields.
(ii) Fields which are finitely generated over their prime subfield.
(iii) Fields K which admit a subfield k such that K/k is finitely generated and of
positive transcendence degree.

Theorem 8.2. Let k be an ample field, and let ∆ ∈ k[t] be definite, squarefree and
of degree at least 3. Then the Rabinowitsch Criterion does not hold for ∆.

4Because we have assumed q is odd, q = 2 and q = 4 are excluded.
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Proof. Since deg ∆ ≥ 3, we have g ≥ 1 and thus the Jacobian of the curve

C : y2 = ∆(x)

is a nontrivial abelian variety, so J(C)(k) is infinite. In fact, Moret-Bailly has
shown [MB-MO] that for a nontrivial abelian variety A defined over an ample field
k, the Mordell-Weil group A(k) is not finitely generated. By Theorem 7.2, the ring
O∆ is not a PID: in fact, its class group is not finitely generated. �

8.2. More Satisfaction of the Polynomial Rabinowitsch Criterion.

Theorem 8.3. Let k be a number field.
a) The conditions of Theorem 1.3 hold for some degree three ∆ ∈ k[t].
b) The conditions of Theorem 1.3 hold for some degree four, definite ∆ ∈ k[t].

Proof. a) By a result of Mazur and Rubin [MR10, Cor. 1.11], there is an elliptic
curve E/k with E(k) = (0), given by a Weierstrass equation y2 = ∆(x). By
Theorem 6.2, the domain O∆ is a PID.
b) Again, there is an elliptic curve E/k with E(k) = (0). By a result of Sharif
[Sh12] there is a genus one curve C of index 2 with Jacobian elliptic curve E. By
Riemann-Roch, C has an effective divisor of degree 2 which yields a degree 2 map
π : C → P1. By Riemann-Hurwitz, C is given by an equation y2 = ∆(x) with
∆ ∈ k[t] squarefree of degree 4, and ∆ is definite because C(k) = ∅. �

8.3. Two Conjectures.

Conjecture 8.4. Let k be a field which is infinite and finitely generated over its
prime subfield. Then for each d ≥ 2, there is an infinite sequence {∆n}∞n=1 such
that each ∆n ∈ k[t] is definite, of degree d, satisfies the Rabinowitsch Criterion,
and such that the k-algebras {O∆n

}∞n=1 are pairwise nonisomorphic.

Conjecture 8.5. Let κ be a field of characteristic different from 2, and let k =
κ(a0, . . . , a2g+2) be a rational function field in 2g + 3 independent indeterminates.
a) The polynomial

∆2g+1 = t2g+1 + a2gt
2g + . . .+ a1t+ a0 ∈ k[t]

satisfies the Rabinowitsch Criterion.
b) The polynomial

∆2g+2 = a2g+2t
2g+2 + a2g+1t

2g+1 + . . .+ a1t+ a0 ∈ k[t]

satisfies the Rabinowitsch Criterion.

9. Final Remarks

9.1. (No) History. We do not purport to give a survey, historical or otherwise,
of Theorem 1.1. But I feel compelled to mention that this result, published by Ra-
binowitsch in 1913, already appears in a 1912 paper of Frobenius [Fr12]. Perhaps
I should have spoken throughout of the Frobenius-Rabinowitsch Criterion; I
admit to being partially motivated by considerations of equidistribution.

Parts of Theorem 1.1 have also appeared in papers of Mitchell [Mi26], Lehmer
[Le36], Szekeres [Sz74] and Ayoub-Chowla [AC81].
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9.2. Variants and Refinements of the Rabinowitch Criteria. Theorem 1.1
is the first of many results relating prime values of quadratic polynomials over Z
to the arithmetic of quadratic fields. The literature contains many variants and
refinements, and it seems to me that most (or all) of these ought to have analogues
over k[t]. Such a systematic pursuit would be a length undertaking, and we do not
attempt it here. Rather we single out two such classes of results.

First, there is an analogue of Theorem 1.1 for real quadratic fields due to Mollin
and Williams [MW88]. Analogues of the Mollin-Williams Criterion over real qua-
dratic function fields over an odd order finite field Fq have been given by Feng-Hu
[FH99] and Bae [Ba12]. The real quadratic case involves continued fractions and
their function field analogues (which appear in the thesis of Emil Artin). Can the
results of Feng-Hu and Bae be extended to an arbitrary ground field k?

Now we consider a refinement of Theorem 1.1, following T. Ono.

For a PID R, we define a function ΩR : R• → N, as follows: if x = p1 · · · pr is
a product of prime elements p1, . . . , pr, we put ΩR(x) = r.

Let C ∈ Z≥2 and ∆ = 1− 4C. We define the Ono number

Ono∆ = max
x∈[0,C−2]

ΩZ(x2 + x+ C) ∈ Z+.

Observe that condition (i) in the Rabinowitsch Criterion is: Ono∆ ≤ 1. Thus one
can seek refinements of Theorem 1.1 which relate the Ono number to the structure
of the class group PicO∆.

Meanwhile, let k be a field of characteristic not 2, and let ∆ ∈ k[t] be definite of
positive degree. We define the polynomial Ono number

Ono∆ = sup
deg x<deg ∆

Ωk[t](x
2 −∆) ∈ Z+.

If deg ∆ = 0 then Ono∆ = 0. Observe that condition (i) in Theorem 1.3 is:
Ono∆ = 1. When deg ∆ = 1 the conditions of Theorem 1.3 always hold and
Ono∆ = 1. From now on we assume deg ∆ ≥ 2, in which case we have

1 ≤ Ono∆ ≤ 2 deg ∆− 2.

For a commutative group (G,+) the Davenport constant D(G) is the least n ∈
Z+ such that for any x1, . . . , xn ∈ G there is a nonempty subset J ⊂ {1, . . . , n}
such that

∑
i∈J xi = 0, or ∞ if there is no such n. If G is finite, then D(G) ≤ #G

with equality if G is cyclic, while D(G) =∞ for all infinite G [CA, Prop. 23.14].

Theorem 9.1.
a) (Möller [Mö76]) Let C ∈ Z+ be such that ∆ = 1− 4C is squarefree. Then

Ono∆ ≤ D(PicO∆).

b) Let ∆ ∈ k[t] be definite and squarefree. Then

Ono∆ ≤ D(PicO∆).

Proof. a) Let τ = 1+
√

∆
2 . For x ∈ [0, C − 2], we have

|x+ τ | = x2 + x+ C < C2.
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Then x + τ is irreducible in O∆: indeed, if not, there is α ∈ Oτ with α | x + τ
and |α| ∈ (1, C); evidently α /∈ Z, so Lemma 2.2 gives |α| ≥ C, contradiction.
Let 〈x + τ〉 = p1 · · · pd be the factorization of 〈x + τ〉 into prime ideals. We have
d ≤ D(PicO∆) [CA, Prop. 23.13]. On the other hand,

|x+ τ |O∆ = (x+ τ)(x+ τ)O∆ = p1p1 · · · pdpd.

Let (pi) = pi ∩Z. If pi were inert in O∆ then pi = 〈pi〉, contradicting the fact that
x+ τ is not divisible by any nonunit elements of Z. So we have pipi = piO∆ for all
1 ≤ i ≤ d. It follows that there is u ∈ Z× with

x2 + x+ C = |x+ τ | = up1 · · · pd
and thus

ΩZ(x2 + x+ C) = d ≤ D(PicO∆).

b) The above proof carries over with Proposition 2.10 in place of Lemma 2.2. �

Corollary 9.2. Let ∆ ∈ k[t] be definite and squarefree, of degree 2d ≥ 2. Suppose
the regular projective model C/k of the hyperelliptic curve y2 = ∆(x) has index 2
and J(C)(k) = 0. Then Ono∆ = 2.

Proof. By Theorem 7.2 we have PicO∆
∼= Z/2Z. Thus O∆ is not a PID, so the

Rabinowitsch Criterion fails and Ono∆ > 1. On the other hand, D(PicO∆) =
D(Z/2Z) = 2, so by Theorem 9.1 we have Ono∆ ≤ 2. �

Theorem 9.3.
a) (Sasaki [Sa86]) Let C ∈ Z+ be such that ∆ = 1− 4C is squarefree. Then

Ono∆ = 2 ⇐⇒ # PicO∆ = 2.

b) Let ∆ ∈ k[t] be definite and squarefree. Then

Ono∆ = 2 ⇐⇒ # PicO∆ = 2.

Proof. a) By Theorems 1.1 and 9.1a), # PicO∆ = 2 implies Ono∆ = 2, so suppose
Ono∆ = 2. This implies ∆ ≤ −15. By Theorem 1.1, O∆ is not a PID so there are
nonprincipal prime ideals. By Theorem 5.1, PicO∆ is generated by prime ideals p

with norm at most
»
|∆|
3 and which are nonprincipal, and thus if p lies over p ∈ Z

then (p) is not inert in O∆. It is enough to show that for any two such nonprincipal
p and q lying over primes (p) and (q) of Z, we have that pq is principal.

Suppose first that p ∩ Z = q ∩ Z = (p). If (p) ramifies in K then p = q is
the unique prime of norm (p) and pq = p2O∆ is principal. If pOK = p1p2 with
p1 6= p2 and p 6= q, then {p, q} = {p1, p2} so pq = p1p2 = p2O∆ is principal. Finally
suppose p = q. Since p splits in O∆ the polynomial x2 + x + C has distinct roots
modulo (p), hence by Hensel’s Lemma it has a root modulo (p2). So there is x

with |x| < |p| ≤
»
|∆|
3 ≤ C − 2 such that p2 | x2 + x + C. The inequalities imply

|x| ≤ C − 2, so our assumption Ono∆ = 2 gives

p2 = x2 + x+ C = |x+ τ |.
Since p - x+ τ , the ideal (x+ τ)O∆ has norm (p2) and is not pO∆, so we must have

(x+ τ)O∆ = p1p2.
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Now suppose p∩Z = (p) and q∩Z = (q) with p 6= q. The polynomial x2 +x+C
has roots modulo (p) and modulo (q) hence (by the Chinese Remainder Theorem)
also modulo (pq); using Ono∆ = 2 as above we get x with |x| ≤ C − 2 such that

pq = x2 + x+ C = |x+ τ |.

The only ideals of O∆ of norm (pq) are pq, pq, pq and pq. Since pp = pO∆ and
qq = qO∆, this shows that pq is principal.
b) The above proof carries over with Theorem 1.3 in place of Theorem 1.1, Theorem
9.1b) in place of Theorem 9.1a) and Theorem 5.2 in place of Theorem 5.1. �

Example 9.4. Suppose R = Z or k[t] and ∆ is a definite discriminant such
that PicO∆

∼= Z/2Z × Z/2Z. (When R = k[t], this occurs if deg ∆ is odd and
(JC∆)(k) ∼= Z/2Z × Z/2Z. If deg ∆ is even and (JC∆)(k) = Z/2Z, it occurs iff
the sequence (2) splits.) Then D(PicO∆) = 3 = Ono∆.

When R = Z, Guo and Qin show, conditionally on the Extended Riemann Hy-
pothesis, that if Ono∆ = 3 then PicO∆

∼= Z/2Z × Z/2Z iff precisely three prime
ideals of Z ramify in O∆ [GQ10]. It may be interesting to investigate the k[t] case.

9.3. Euclidean Rings and Dedekind-Hasse Norms. Let R be a domain. A
Euclidean function ϕ : R• → N is a function such that for all a ∈ R and b ∈ R•,
there are q, r ∈ R such that a = qb+r and either r = 0 or ϕ(r) < ϕ(b). (This is the
same as the definition of a Euclidean norm given in §2.2 except that multiplicativity
is not required.) A domain is Euclidean if it admits a Euclidean function.

An interesting aspect of the approach to Theorem 1.1 via Dedekind-Hasse norms
is that the quadratic order O∆ can be a PID even when (i) the complex norm is not
Euclidean and (ii) there is no Euclidean function onO∆, multiplicative or otherwise.
In the R = Z case, the PID O∆ is Euclidean for the complex norm when ∆ ∈
{−3,−7,−11} and admits no Euclidean function when ∆ ∈ {−19,−43,−67,−163}.

A similar phenomenon holds in the polynomial ring case. The following result is
due to M.L. Brown and makes crucial use of work of Leitzel-Madan-Queen [LMQ75]
that we encountered in §8.1 above.

Theorem 9.5. (Brown [Br91]) Let C◦ = C \ S be a regular, geometrically integral
affine curve over a field k, and let k[C◦] be its affine coordinate ring. Then k[C◦]
is Euclidean iff it is a PID satisfying one of the following conditions:
(i) k is infinite and C is isomorphic over k to the projective line P1.
(ii) k is finite and k[C◦] is not isomorphic to one of the following PIDs:
a) F2[x, y]/(y2 + y + x3 + x+ 1).
b) F3[x, y]/(y2 − x3 + x+ 1).
c) F4[x, y]/(y2 + y + x3 + η), where η generates the multiplicative group F×4 .
d) F2[x, y]/(y2 + y + x5 + x3 + 1).

Corollary 9.6. Let k be a field of characteristic not 2, and let ∆ ∈ k[t] be definite
of degree at least 2. Suppose that the Rabinowitsch Criterion holds for ∆. Then the
ring O∆ = k[x, y]/(y2 −∆) is a non-Euclidean PID.

Proof. Let C be the associated complete, smooth hyperelliptic curve.
Suppose k is infinite. If deg ∆ is even, then by Theorem 7.2, the curve C has

index 2 and thus is not isomorphic to P1, so O∆ = k[C◦] is not Euclidean by
Theorem 9.5. If deg ∆ is odd, then C has genus at least one, so again is not
isomorphic to P1 and O∆ is not Euclidean.
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Suppose k is finite. Then I(C) = 1, so deg ∆ is odd by Theorem 7.2. Since O∆

is a PID, by Theorem 7.2 we have J(C)(k) = 0. Then [LMQ75, Thm. 2] gives
O∆
∼= F3[x, y]/(y2 − x3 + x+ 1), so O∆ is not Euclidean by Theorem 9.5. �

In particular the results of §8.2 give examples of non-Euclidean PIDs, and many
more examples of non-Euclidean PIDs are implied by Conjectures 8.4 and 8.5.

The statement that a domain is a PID iff it admits a Dedekind-Hasse norm ap-
pears in the literature (e.g. [Gr97]), but the refined statement that in a PID every
multiplicative norm is a Dedekind-Hasse norm apparently does not. (To be sure, no
new ideas are required for the proof.) This seems to be an advantage of Dedekind-
Hasse norms over Euclidean norms: they need not be cleverly chosen.

Though Dedekind-Hasse norms show up in the literature, they have rarely been
put to substantial use. Fendel’s proof of Theorem 1.1 is a major exception; another
is an unpublished preprint of Lemmermeyer [Le12], which bears some relation both
to Fendel and to the considerations of the present work.

Several recent papers implicitly or explicitly claim that the best way to show

that, say, Z[ 1+
√
−163
2 ] is a PID is to construct a Dedekind-Hasse norm. In fact

Gauss knew a better way at the end of the 18th century (binary quadratic forms)
and Minkowski knew a better way at the end of the 19th century (bounds on ideal
classes). This provided impetus for the latter approaches to Theorems 1.1 and 1.3.

That the “base PIDs” Z and k[t] are Euclidean plays a key role in all the proofs
of Theorems 1.1 and 1.3. It should be possible to develop analogous results over
certain other norm-Euclidean domains, e.g. over R = Z[

√
2].

9.4. Characteristic 2. There is no fundamental need to exclude the case in which
k has characteristic 2. In Theorem 7.4 it is permitted for k to have characteristic 2,
and thus the argument in §5 gives a version of (iii′) =⇒ (i) in Theorem 1.3 that is
valid without such a restriction. However, the rest of our treatment is built around
discriminants of quadratic field extension and quadratic forms, and in characteristic
2 one should replace these with analogous invariants of Artin-Schreier and Dickson.

9.5. Work of Bevelacqua. Just before this paper was submitted for publication,
A.J. Bevelacqua published a note containing the following result.

Theorem 9.7. (Bevelacqua [Be16]) Let k be a field, and let ∆ ∈ k[x] be definite of
degree 2 or 3. Let δ ∈ k, and let

P (x, y) = y2 − δy −∆(x) ∈ k[x, y].

Let R be the domain k[x, y]/(P ). Then:
a) The domain R is not Euclidean.
b) The domain R is a PID iff there is no (x, y) ∈ k2 such that P (x, y) = 0.

Theorem 9.7b) recovers Theorem 6.2b) and extends it to characteristic 2. Theorem
9.7a) is a consequence of the work of Leitzel-Madan-Queen [LMQ75] and Brown
[Br91] – indeed, when the characteristic of k is not 2 it is a special case of Corollary
9.6, and here at least it is straightforward to extend the argument to characteristic
2. However, whereas the proof of Theorem 9.5 uses some sophisticated arithmetic
geometry, the proof of Theorem 9.7 is entirely elementary.
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