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PETE L. CLARK

Abstract. Euclidean functions with values in an arbitrary well-ordered set
were first considered by Motzkin in 1949 and studied in more detail by Samuel

and Nagata in the 1970’s and 1980’s. Here these results are revisited, sim-

plified, and extended. The main themes are (i) consideration of Ord-valued
functions on an Artinian poset and (ii) use of ordinal arithmetic, including

the Hessenberg-Brookfield ordinal sum. To any Euclidean ring we associate
an ordinal invariant, its Euclidean order type, and we initiate a study of

this invariant, especially for Euclidean rings which are not domains.

Throughout, “a ring” means a commutative ring with identity. We denote by R•

the set R \ {0} and by R× the group of units of R. We denote by N the natural
numbers, including 0. When we are thinking of N as the least infinite ordinal, we
denote it by ω. For a class S equipped with a “zero element” – here, the least ele-
ment of an ordered class or the identity element of a monoid – we put S• = S \{0}.

By an ordered class X we mean a pair (X,≤) with X a class and ≤ a re-
flexive, anti-symmetric, transitive relation on X (i.e., what is often called a partial
ordering). For x ∈ (X,≤) we define the principal downsets1

D◦(x) = {y ∈ X | y < x}, D(x) = {y ∈ X | y ≤ x}.
We will encounter some ordinal arithmetic, and it is important to remember that
the “ordinary” sum and product of transfinite ordinal numbers need not be com-
mutative. The literature seems to agree that for α, β ∈ Ord, α + β should be the
order type of a copy of β placed above a copy of α, so that ω + 1 > ω, 1 + ω = ω.
However, both conventions on αβ seem to be in use. We take the one in which
2ω = ω + ω, not the one in which 2ω = 2 + 2 + . . . = ω.

Introduction

What is a Euclidean ring? In the classical literature, a Euclidean ring is a com-
mutative domain R admitting a Euclidean function ϕ : R• → N, i.e., such that
for all a ∈ R and b ∈ R•, there are q, r ∈ R with a = qb + r and either r = 0
or ϕ(r) < ϕ(b). It was observed by T. Motzkin [Mo49] that one can instead take
the codomain of the Euclidean function to be any well-ordered set. In [Sa71] P.
Samuel observed that much of the theory goes through for commutative rings with
zero divisors.2 In all of these contexts a Euclidean ring remains a principal ring:
every ideal is singly generated.

Let us give a simple example of the usefulness of admitting Euclidean rings which

Thanks to John Doyle, David Krumm and Robert Varley for inspiring this work.
1Perhaps we should say “downclass”, but though we will consider some proper classes, in cases

of interest to us, each D(x) will be a set.
2Non-commutative Euclidean rings have also been pursued, but will not be here.
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are not domains.3 One would like to know (e.g. when studying the action of SL2(Z)
on the Riemann sphere by linear fractional transformations) that for all m,n ∈ Z+,
the reduction map r : SLm(Z) → SLm(Z/nZ) is surjective. A natural proof uses
the following idea: if I is an ideal in a ring R, then r : SLm(R) → SLm(R/I)
is surjective when SLm(R/I) is generated by transvections – a transvection is a
matrix Eij(α) for 1 ≤ i 6= j ≤ m, α ∈ R obtained from the identity matrix by
changing the (i, j) entry from 0 to α – since r is visibly surjective on transvections.

Theorem. If r is Euclidean, SLm(r) is generated by transvections for all m ∈ Z+.

This result is part of the classical literature – see e.g. [vdW] – when R is a domain
with N-valued Euclidean function, and the argument goes over verbatim to the
more general definition given here: one uses the Euclidean algorithm and elemen-
tary row and column operations to reduce any matrix M ∈ GLn(r) to a diagonal
matrix D with Dii = 1 for all i > 1.

To complete the argument we must verify that Z/mZ is Euclidean. It is easy
to build a Euclidean function on Z/mZ from a Euclidean function on Z: this is an
embryonic form of Theorem 2.35. However, this answer requires us to use that Z
is Euclidean, whereas in fact such surjectivity results hold much more generally.

Theorem. Let R be a Dedekind domain, I a nonzero ideal of R and m ∈ Z+.
Then the reduction map r : SLm(R)→ SLm(R/I) is surjective.

Proof. Since R is Dedekind we may write I = pa11 · · · parr as a product of powers of
distinct prime ideals. Let S = R\

⋃r
i=1 pi. The localization S−1R is Dedekind with

finitely many nonzero primes p1, . . . , pr, hence a PID. Thus R/I ∼= S−1R/IS−1R
is an Artinian principal ring, hence Euclidean (Theorem 3.1), so SLm(R/I) is gen-
erated by transvections. As above, this implies the surjectivity of r. �

In any Euclidean ring there is a bottom Euclidean function, which corresponds to
the most efficient Euclidean algorithm in a sense made precise in Lemmas 2.22 and
2.23. The set of values taken by the bottom Euclidean function on nonzero elements
of R is an ordinal number e(R), and thus we have associated to any Euclidean ring
an ordinal invariant, the Euclidean order type.

All the prerequisites for such a definition appear in the work of Motzkin and
Samuel, but because such a definition was not given, until now almost all work has
focsed on the dichotomy e(R) = ω versus e(R) > ω. By a result of C.R. Fletcher,
a Euclidean ring which is neither a domain nor Artinian must have e(R) > ω, thus
for such rings the dichotomy is decided...but it is still interesting to ask about the
Euclidean order type! The Euclidean order type of a Euclidean ring which is neither
a domain nor an Artinian ring is studied here for the first time.

By a result of Zariski and Samuel, every principal ring is the product of finitely many
PIDs and a principal Artinian ring. Thus much of our work turns on understanding
the bottom Euclidean function and the Euclidean order type of a product in terms
of the bottom Euclidean function and the order type of its factors. Samuel and Na-
gata each showed that a finite product of Euclidean rings is Euclidean. When one

3This example came up in the problem session of a course taught by R. Varley and the author

in 2012. John Doyle and David Krumm, (then) graduate students, presented solutions in which
these ideas appeared.
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analyzes these constructions quantitatively, it turns out that for Euclidean rings
R1 and R2 the natural upper bound on e(R1 × R2) is not the usual ordinal sum
e(R1)+e(R2) but the Hessenberg sum e(R1)⊕e(R2) (defined in § 1.2). Although
our initial goal was to compute e(R1×R2) in terms of e(R1) and e(R2), one of the
main results of this paper (Theorem 2.40) is the pair of inequalities

max e(R1) + e(R2), e(R2) + e(R1) ≤ e(R1 ×R2) ≤ e(R1)⊕ e(R2).

We can show that equality holds in many cases, and we do not know of any cases
of inequality: see Question 4.4 and the following discussion.

Identifying the Samuel-Nagata product construction with the Hessenberg sum
uses work of G. Brookfield [Br02]. More generally [Br02] develops the notion of the
transfinite length function λX on a downward-small Artinian class X. The more
we examined the Motzkin-Samuel-Nagata theory of transfinite Euclidean rings, the
more we found connections to transfinite length functions. Especially, any Eu-
clidean function on a Noetherian ring R must be at least as large as the transfinite
length function `R on its dual ideal lattice and thus e(R) must be at least as large as
the tranfinite length lenR. It is interesting to consider the case of equality ϕR = `R
– we call these `-Euclidean rings and study them in § 3.1 – as well as the case of
equality e(R) = lenR – we call these small Euclidean rings and study them in § 3.2.

This paper is partially expository: we have reproduced much of the foundational
theory of Motzkin, Samuel and Nagata, in a version which emphasizes connections
to transfinite length functions. (An earlier version of this paper was more stream-
lined – concentrating only on novel results – but was found difficult to read.)

We believe that we have included attributions of all previously known results. In
several cases the result that we present is technically novel but is a modest general-
ization of a previously known result: we indicate this by prefacing the attribution
with “c.f.”. Nevertheless this paper contains a number of new results, including
Theorems 2.17, 2.31, 2.35, 2.40, 2.41, 3.2, 3.4, 3.6 and 3.7.

1. Ordered Classes, Isotone Maps, and Length Functions

1.1. Isotone Maps and Artinian Ordered Classes.

For a set X, let OrdX denote the class of all maps f : X → Ord, ordered by
f ≤ g ⇐⇒ ∀x ∈ X, f(x) ≤ g(x).4 Note that every nonempty subclass C = {fc}
has an infimum in OrdX : that is, there is a largest element f ∈ OrdX with the
property that f ≤ fc for all fc ∈ C. Indeed, we may take f(x) = minc fc(x).

An ordered class C is downward small if for all x ∈ C, {y ∈ X | y ≤ x} is a

set. For any set X, OrdX is downward small.

For ordered classes X and Y , let X × Y be the Cartesian product, with (x1, y1) ≤
(x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2. A map f : X → Y is weakly isotone (resp.
isotone) if x1 ≤ x2 ∈ X =⇒ f(x1) ≤ f(x2) (resp. x1 < x2 =⇒ f(x1) < f(x2)).
A map f : X → Y is exact if for all x ∈ X, D(f(x)) ⊆ f(D(x)).

4We hasten to reassure the reader that this is the limit of our set-theoretic ambitiousness: we
will never consider the collection of all maps between two proper classes!
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The composite of weakly isotone (resp. isotone, resp. exact) maps is weakly isotone
(resp. isotone, resp. exact).

An ordered class X is Noetherian (resp. Artinian) if there is no isotone map
f : Z+ → X (resp. f : Z− → X).

For an ordered set X, we define Iso(X) ⊂ OrdX to be the subclass of isotone
maps, with the induced partial ordering.

Lemma 1.1. Let X be an ordered set. Then every nonempty subclass of Iso(X)
has an infimum in Iso(X).

Proof. Let I = {fi} be a nonempty subclass of Iso(X), and let f be the infimum

in OrdX ; it suffices to show that f is isotone. If x < y in X, then fi(x) < fi(y) for
all i ∈ I, so f(x) = mini∈I fi(x) < mini∈I(fi(x) + 1) ≤ mini∈I fi(y) = f(y). �

Theorem 1.2. For a downward small ordered class X, the following are equivalent:
(i) There is an isotone map f : X → Ord.
(ii) There is an Artinian ordered set Y and an isotone map f : X → Y .
(iii) X is Artinian.

Proof. (i) =⇒ (ii): If f : X → Ord is an isotone map, then f : X → f(X) is an
isotone map with codomain an Artinian ordered set.
(ii) =⇒ (iii): Suppose not: then there is an isotone map ι : Z− → X. But then
f ◦ ι : Z− → Y is isotone, so Y is not Artinian.
(iii) =⇒ (i) [Na85, Prop. 4], [Br02, Thm. 2.5]: We will construct λX ∈ Iso(X)
by a transfinite process. For α ∈ Ord, at the αth stage we assign some subset
Xα ⊂ X the value α. Namely, take X0 to be the set of minimal elements of X,
and having defined Xβ for all β < α, assign the value α to all minimal elements
of X \

⋃
β<αXβ . Thus λX(x) = α iff α is the least number greater than λX(y)

for all y < x. Let X ′ =
⋃
α∈OrdXα. We claim that since X is Artinian and

downward small, X ′ = X: if not, let x be a minimal element of X \X ′. Then λX
is defined on D◦(x) = {y ∈ X | y < x}, so if α = supλX(D◦(x)), then λX(x) = α
(if α /∈ λX(D◦(x)) or λX(x) = α+ 1 (if α ∈ λX(D◦(x))). �

1.2. Length Functions.

By Theorem 1.2 and Lemma 1.1, for any Artinian ordered set X, Iso(X) has a
bottom element. In fact, the map λX : X → Ord constructed in the proof of
Theorem 1.2 is the bottom element of Iso(X): let λ : X → Ord be any isotone
map. If it is not the case that λX ≤ λ, then {x ∈ X | λ(x) < λX(x)} is nonempty
so has a minimal element x0. Then for all x < x0, λX(x) ≤ λ(x). Since λX(x0)
is the least ordinal strictly greater than λX(x) for all x < x0 and λ(x0) < λ(x0),
there is x < x0 with λ(x0) ≤ λX(x) ≤ λ(x), so λ is not isotone: contradiction.

Following [Br02], we call λX the length function.

Remark 1.3. The length function λX is also characterized among all elements of
Iso(X) by being exact [Br02, Thm. 2.3].

If X has a top element T , we define the length of X to be len(X) = λX(T ).

Example 1.4. For α ∈ Ord and x ≤ α, λα+1(x) = x, so len(α+ 1) = α.
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Example 1.5. For m,n ∈ Z+, let X1 = {0, . . . ,m} and X2 = {0, . . . , n}, and let
X = X1 ×X2. Then for all (i, j) ∈ X, λX(i, j) = i+ j and len(X) = m+ n.

The partially ordered class Ord×Ord is Artinian and downward small, so it has
a length function λOrd×Ord. For α, β ∈ Ord, we define the Brookfield sum

α⊕B β = λOrd×Ord(α, β) = len((α+ 1)× (β + 1)).

We recall the following, a version of the Cantor normal form: for any α, β ∈ Ord•

there are γ1, . . . , γr ∈ Ord, r ∈ Z+ and m1, . . . ,mr, n1, . . . , nr ∈ N with

α = m1ω
γ1 + . . .+mrω

γr , β = n1ω
γ1 + . . .+ nrω

γr .

This representation of the pair (α, β) is unique if we require max(mi, ni) > 0 for
all i. We may then define the Hessenberg sum

α⊕H β = (m1 + n1)ωγ1 + . . .+ (mr + nr)ω
γr .

(For all α ∈ Ord, we define α⊕H 0 = 0⊕H α = α.)

Theorem 1.6. For all α, β ∈ Ord, α⊕B β = α⊕H β.

Proof. See [Br02, Thm. 2.12]. �

In view of Theorem 1.6 we write α ⊕ β for α ⊕B β = α ⊕H β and speak of the
Hessenberg-Brookfield sum. This operation is well-known to the initiates of
ordinal arithmetic, who call it the “natural sum”. The next result collects facts
about α⊕ β for our later use.

Proposition 1.7. Let α, β, γ ∈ Ord.
a) We have α⊕ β = β ⊕ α and (α⊕ β)⊕ γ = α⊕ (β ⊕ γ).
b) If β < ω, then α+ β = α⊕ β.
c) If α, β > 0, then we have

(1) max(α+ β, β + α) ≤ α⊕ β ≤ αβ + βα.

Proof. Left to the reader. �

The following result of Brookfield is a generalization of Example 1.5.

Theorem 1.8. ([Br02, Thm. 2.9]) Let X and Y be Artinian ordered sets. Then

λX×Y = λX ⊕ λY .

In particular, if X and Y have top elements, then

len(X × Y ) = len(X)⊕ len(Y ).

Proof. Define λ : X × Y → Ord by λ(x, y) = λX(x)⊕ λY (y). Then

λ = λOrd×Ord ◦ (λX × λY ).

As a composite of exact, isotone maps, λ is exact and isotone. By Remark 1.3,

λ = λX×Y .

�
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1.3. The length function on a Noetherian ring.

In this section we closely follow work of Gulliksen [Gu73] and Brookfield [Br02].

Let R be a ring, and let I(R) be the lattice of ideals of R. Then I(R) is Noe-
therian (resp. Artinian) iff R is Noetherian (resp. Artinian). Thus the dual lattice
I∨(R) is Artinian (resp. Noetherian) iff R is Noetherian (resp. Artinian).

Henceforth we suppose R is Noetherian, so I∨(R) is Artinian with top element
(0). By the results of §1 there is a least isotone map `R : I∨(R)→ Ord, the length
function `R of R, and we define the length of R as len(R) = `R((0)).

For any ideal I of R, R/I is Noetherian, so `R/I and len(R/I) are well-defined.
If we denote the quotient map R→ R/I by q, then the usual pullback of ideals q∗

identifies I(R/I) with an ordered subset of I(R) and hence also I∨(R/I) with an
ordered subset of I∨(R), and it is easy to see that under this identification we have

`R|I∨(R/I) = `R/I ,

and thus also

len(R/I) = `R/I((0))) = `R(q∗((0))) = `R(I).

(To ease notation, for x ∈ R we will write `R(x) for `R((x)).)

Lemma 1.9. a) If R is a Noetherian ring, then len(R) < ω ⇐⇒ R is Artinian.
b) Suppose R is a PID. For any x = uπ1 · · ·πr ∈ R× – here u ∈ R× and each πi is
a prime element – we have `R(x) = r. Moreover lenR = `R(0) = ω.

Proof. Left to the reader. �

Theorem 1.10. Let R1, . . . , Rn be rings. Put R =
∏n
i=1Ri, and let

ei = (0, . . . , 1 in the ith place , 0, . . . , 0).
a) The map I∨(R)→

∏n
i=1 I∨(R), I 7→ (e1I, . . . , enI) is an order isomorphism.

b) R is Noetherian iff Ri is Noetherian for all i.
c) If R is Noetherian, then under the isomorphism of part a),

(2) `R =

n⊕
i=1

`Ri
.

d) If R is Noetherian, then lenR =
⊕n

i=1 lenRi.

Proof. Part a) is left to the reader. Part b) follows: a finite product
∏n
i=1Xi of

nonempty ordered sets is Noetherian iff each Xi is Noetherian. Part c) follows
immediately from Theorem 1.8. For part d), evaluate (2) at the zero ideal. �

2. Euclidean Functions

2.1. Preliminaries on Principal Rings.

Theorem 2.1. a) If R =
∏r
i=1Ri, then R is principal iff Ri is principal for all i.

b) For every principal ring R there is n ∈ N, a finite set of principal ideal domains
R1, . . . , Rn and a principal Artinian ring A such that

(3) R ∼=
n∏
i=1

Ri ×A.
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The isomorphism classes of the Ri’s (up to reordering) and A are uniquely deter-
mined by R. We call A the Artinian part of R.
c) A ring is Artinian principal iff it is isomorphic to a finite product of local Ar-
tinian principal rings.

Proof. See [ZS, p. 245]. �

For a property P of rings, we will say that a ring R is residually P if for every
nonzero ideal I of R, R/I has property P.

Proposition 2.2. For a principal ring R the following are equivalent:
(i) R is residually Artinian.
(ii) R is either a PID or an Artinian ring.
(iii) lenR ≤ ω.

Proof. Left to the reader. �

2.2. Basic Definitions.

Let R be a ring (commutative, and with multiplicative identity as always).
A Euclidean function is a function ϕ : R• → Ord such that for all a ∈ R,

b ∈ R•, there are q, r ∈ R with a = qb + r and (r = 0 or ϕ(r) < ϕ(b)). A ring is
Euclidean if it admits a Euclidean function.

Let EucR ⊂ OrdR
•

be the subclass of Euclidean functions ϕ : R• → Ord, with
the induced partial ordering. Thus R is Euclidean iff EucR 6= ∅.

Example 2.3. Let R = Z. Then n ∈ Z• 7→ |n| is a Euclidean function.

Example 2.4. Let k be a field and let R = k[t]. Then f ∈ k[t]• 7→ deg f is a
Euclidean function.

Example 2.5. Let R be a local Artinian principal ring with maximal ideal (π).
Then every element x ∈ R• may be written in the form uπn for u ∈ R× and
0 ≤ n < ω. We claim that ϕ : x 7→ n is a Euclidean function. Indeed, let a ∈ R
and b = ubπ

n
b ∈ R•. We may assume b - a and thus a = uaπ

na with na < nb. Then
a = 0 · b+ a with ϕ(a) < ϕ(b).

Example 2.6. [Sa71, Prop. 5] Let R be a PID with at least one and finitely many
nonassociate maximal elements π1, . . . , πr. Then every x ∈ R• may be uniquely
expressed as uπx1

1 · · ·πxr
r with u ∈ R× and xi ∈ N. We claim that ϕ : x 7→

x1 + . . .+ xr is a Euclidean function on R. Indeed:
Let a ∈ R and b = ubπ

b1
1 · · ·πbrr ∈ R•. We may assume b - a. Then a =

uaπ
a1
1 · · ·πarr ∈ R• and the set

I = {1 ≤ i ≤ r | ai < bi}
is nonempty. By the Chinese Remainder Theorem, there is r ∈ R with

r ≡
{
a (mod πbi) i ∈ I
b (mod πbi+1) i ∈ {1, . . . , r} \ I.

Then

ϕ(r) =
∑
i∈I

ai +
∑
i/∈I

bi <

r∑
i=1

bi = ϕ(b).

Moreover r − a is divisible by πbi for all 1 ≤ i ≤ r and hence of the form qb: this
is clear if i ∈ I, while if i /∈ I then since ai ≥ bi we have a ≡ 0 ≡ b ≡ r (mod πbii ).
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Proposition 2.7. ([Sa71, Prop. 3])
a) Let ϕ : R• → Ord be a Euclidean function. For every nonzero ideal I of R, let
x ∈ I• be such that ϕ(x) ≤ ϕ(y) for all y ∈ I•. Then I = 〈x〉.
b) In particular, a Euclidean ring is principal.

Proof. Left to the reader. �

2.3. Extension at Zero.

It will be convenient to define our Euclidean functions at the zero element of R.
There are several reasonable ways to do this. Although the initially appealing one is
to take ϕ(0) = 0 and require ϕ to take nonzero values on R•, for us it will turn out
to be useful (even critical, at times) to do exactly the opposite: we allow Euclidean
functions to take the value zero at nonzero arguments, and we define ϕ(0) to be
the bottom element of Ord \ ϕ(R•). This is actually not so strange: after all, 0 is
the top element of R with respect to the divisibility quasi-ordering.

Remark 2.8. With the above convention, if ϕ : R→ Ord is a Euclidean function,
then for all a, b ∈ R, there are q, r ∈ R with a = qb+ r and (r = 0 or ϕ(r) < ϕ(b),
i.e., this is true even when b = 0: if a 6= 0, take r = a so ϕ(r) = ϕ(a) < ϕ(0); if
a = 0, take r = 0. (Having verified this, henceforth we may assume that b ∈ R•
when verifying a function is Euclidean.)

Remark 2.9. In [Sa71] a Euclidean function is defined to be a function ϕ : R →
Ord such that for all a ∈ R and b ∈ R•, there are q, r ∈ R such that a = qb + r
and ϕ(r) < ϕ(b). This definition yields ϕ(0) < ϕ(x) for all x ∈ R• [Sa71, Prop. 1].

We make the corresponding adjustment in our definition of EucR: it is now the
ordered subclass of OrdR consisting of Euclidean functions.

2.4. Generalized Euclidean Functions.

A generalized Euclidean function is a function ϕ from R• to an Artinian or-
dered class X such that for all a, b ∈ R, there are q, r ∈ R with a = qb + r such
that either r = 0 or ϕ(r) < ϕ(b).

Lemma 2.10. (c.f. [Na85]) Let X,Y be Artinian ordered classes, ϕ : R → X a
generalized Euclidean function and f : X → Y an isotone map. Then f ◦ϕ : R→ Y
is a generalized Euclidean function.

Proof. Left to the reader. �

Corollary 2.11. ([Sa71, Prop. 11], [Na85, Prop. 4]) A ring which admits a
generalized Euclidean function is Euclidean.

Proof. If ϕ : R→ X is generalized Euclidean, λX ◦ ϕ : R→ Ord is Euclidean. �

Corollary 2.11 may suggest that there is nothing to gain in considering Euclidean
functions with values in a non-well-ordered sets. But this is not the case!

Theorem 2.12. ([Na85, Thm. 2]) Let R1, R2 be commutative rings, X1, X2 be
Artinian ordered classes, and ϕ1 : R1 → X1, ϕ2 : R2 → X2 be generalized Euclidean
functions. Then ϕ1×ϕ2 : R1×R2 → X1×X2 is a generalized Euclidean function.
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Proof. Put R = R1 × R2, and let x = (x1, x2) ∈ R, y = (y1, y2) ∈ R•. We may
assume y - x, so x ∈ R•. Since ϕ1 and ϕ2 are Euclidean, for i = 1, 2 there are
qi, ri ∈ Ri such that xi = qiyi + ri and (ri = 0 or ϕi(ri) < ϕi(yi)). Since y - x,
r1 6= 0 or r2 6= 0. Now:
Case 1: Suppose that any one of the following occurs:
(i) r1 6= 0 and r2 6= 0.
(ii) r1 = y1 = 0, and thus r2, y2 6= 0.
(iii) r2 = y2 = 0, and thus r1, y1 6= 0.
Put q = (q1, q2) and r = (r1, r2), so x = qy + r and

ϕ(r) = (ϕ(r1), ϕ(r2)) < (ϕ(y1), ϕ(y2)) = ϕ(y).

Case 2: Suppose r1 = 0, y1 6= 0, and thus r2 6= 0. Then take q = (q1 − 1, q2) and
r = (y1, r2), so x = qy + r and

ϕ(r) = (ϕ(y1), ϕ(r2)) < (ϕ(y1), ϕ(y2)) = ϕ(y).

Similarly, if r2 = 0, then y2 6= 0.
Case 3: Suppose r2 = 0, y2 6= 0, and thus r1 6= 0. Put q = (q1, q2 − 1) and
r = (r1, y2), so x = qy + r and

ϕ(r) = (ϕ(r1), ϕ(y2)) < (ϕ(y1), ϕ(y2)) = ϕ(y). �

Theorem 2.13. Let R1, . . . , Rn be rings, and put R =
∏n
i=1Ri.

a) (c.f. [Na85]) If ϕi ∈ EucRi for all i, then
⊕n

i=1 ϕi ∈ EucR.
b) (c.f. [Fl71]) The ring R =

∏n
i=1Ri is Euclidean iff each Ri is Euclidean.

Proof. a) An easy induction reduces us to the n = 2 case. We have ϕ1 ⊕ ϕ2 =
λOrd×Ord ◦ (ϕ1 × ϕ2). Apply Theorem 2.12 and Lemma 2.10.
b) If eachRi is Euclidean, then by part a)R is Euclidean. Conversely, let ϕ ∈ EucR.
Then ϕi : xi 7→ ϕ(0, . . . , 0, xi, 0, . . . , 0) lies in EucRi. As we will later prove a more
general result (Theorem 2.35), we leave the verification of this to the reader. �

2.5. Isotone Euclidean Functions.

For a ring R, the divisibility relation is a quasi-ordering – i.e., reflexive and tran-
sitive but not necessarily anti-symmetric. If X and Y are quasi-ordered sets, we
can define an isotone map f : X → Y just as above: if x1 < x2 =⇒ f(x1) < f(x2).

Lemma 2.14. Let X be a quasi-ordered set and Y be an ordered set. Suppose that
f : X → Y is an isotone map. Then X is ordered.

Proof. By contraposition: suppose there are x1, x2 ∈ X such that x1 < x2, x2 < x1.
Since f is isotone, this implies f(x1) < f(x2), f(x2) < f(x1). �

If X is a quasi-ordered set, it has an ordered completion: i.e., an ordered set X and
a weakly isotone map X → X which is universal for weakly isotone maps from X
into an ordered set: take the quotient of X under the equivalence relation x1 ∼ x2
if x1 ≤ x2 and x2 ≤ x1. If we do this for the divisibility relation on R, we get the
ordered set PrinR of principal ideals of R. This motivates the following definition:
a Euclidean function ϕ : R→ Ord is weakly isotone (resp. isotone) if whenever
x divides y, ϕ(x) ≤ ϕ(y) (resp. whenever x strictly divides y, ϕ(x) < ϕ(y)).

Much of the literature includes weak isotonicity as part of the definition of a Eu-
clidean function. Doing so would not change the class of Euclidean rings. Indeed:
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Theorem 2.15. (c.f. [Sa71, Prop. 4]) Let ϕ : R→ Ord be a Euclidean function.
Then the set of isotone Euclidean functions ψ ≤ ϕ has a maximal element

ϕ : x ∈ R 7→ min
y∈(x)

ϕ(y).

Proof. Step 1: We show ϕ is Euclidean. Let a, b ∈ R. Then there exists c ∈ R such
that ϕ(b) = ϕ(bc). Since ϕ is Euclidean, there are q, r ∈ R with a = qbc + r and
either r = 0 – so b |a– or ϕ(r) ≤ ϕ(r) < ϕ(bc) = ϕ(b).
Step 2: We show ϕ is isotone. For all c ∈ R,

ϕ(a) = min
y∈R

ϕ(ay) ≤ min
cy, y∈R

ϕ(acy) = min
y∈R

ϕ(acy) = ϕ(ac).

Step 3: By construction ϕ ≤ ϕ. Moreover, if ψ ≤ ϕ is an isotone Euclidean function,
then for all a, c ∈ R, ψ(a) ≤ ψ(ac) ≤ ϕ(ac), so ψ(a) ≤ ϕ(a). �

Corollary 2.16. A Euclidean function is weakly isotone iff it is isotone.

Proof. Of course any isotone function is weakly isotone. Conversely, let ϕ : R →
Ord be a weakly isotone Euclidean function, let a, c ∈ R, and suppose ϕ(ac) =
ϕ(c). Write a = qac + r with r = 0 or ϕ(r) < ϕ(ac) = ϕ(a). If r 6= 0, then
ϕ(r) = ϕ(a(1− qc)) ≥ ϕ(a), contradiction. So r = 0 and (a) = (ac). �

The following result is a transfinite generalization of [Sa71, Cor. 2].

Theorem 2.17. Let ϕ ∈ EucR. Then `R ≤ ϕ.

Proof. By Theorem 2.15 we may assume ϕ is isotone. Since R is Euclidean it is
principal and thus I∨(R) = R/R×. So both ` and ϕ induce well-defined isotone
functions on R/R×. But `R is the least isotone function on I∨(R), so `R ≤ ϕ. �

2.6. The Bottom Euclidean Function and the Euclidean Order Type.

Lemma 2.18. Let R be a commutative ring. Then every nonempty subclass of
EucR has an infimum in Euc(R).

Proof. Let C = {ϕc} be a nonempty subclass of Euc(R), and let ϕ be the infimum

in OrdR; it suffices to show that ϕ is Euclidean. Let a, b ∈ R with b - a. Choose
i ∈ I such that ϕ(b) = ϕi(b). Since ϕi is Euclidean, there are q, r ∈ R such that
ϕi(r) < ϕi(b), and then ϕ(r) ≤ ϕi(r) < ϕi(b) = ϕ(b). �

Theorem 2.19. (Motzkin-Samuel) Let R be a Euclidean ring.
a) The class Euc(R) of all Euclidean functions on R has a bottom element ϕR.
b) The bottom Euclidean function ϕR is isotone.
c) The set ϕR(R) is an ordinal.

Proof. a) This is immediate from Lemma 2.18.
b) Since ϕR is the bottom Euclidean function, we must have ϕR = ϕR.
c) It’s enough to show ϕR(R) is downward closed: we need to rule out the existence
of α < β ∈ Ord such that ϕR(R) contains β but not α. Let α′ be the least element
of ϕR(R) exceeding α. If we redefine ϕR to take the value α whenever ϕR takes
the value α′, we get a smaller Euclidean function than ϕR: contradiction. �

For a Euclidean ring R we define the Euclidean order type e(R) = ϕR(0) ∈ Ord.

Theorem 2.20. (Fletcher [Fl71]) Let R be a Euclidean ring.
a) R is Artinian iff e(R) < ω.
b) If e(R) = ω, then R is a PID.
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Proof. a) Since ϕR is isotone, its value on x ∈ R depends only on the ideal (x).
But an Artinian principal ring has only finitely many ideals! So e(R) < ω. If R is
not Artinian, then there is an infinite descending chain {(xi)}∞i=1 of ideals, and by
isotonicity we have ϕ(x1) < ϕ(x2) < . . . ϕ(xn) < . . ., so e(R) ≥ ω.
b) We will show the contrapositive: suppose R is not a PID. If R is Artinian then
e(R) 6= ω by part a); otherwise, by Proposition 2.2, R is not residually Artinian:
there is b ∈ R• and an infinite descending chain of ideals {(xi)}∞i=1 with (xi) ⊃ (b)
for all i. Isotonicity gives ϕR(b) ≥ ω and thus e(R) = ϕR(0) > ω. �

The following result shows that the converse of Theorem 2.20b) does not hold.

Theorem 2.21. (Hiblot [Hi75], [Hi77], Nagata [Na78]) There is a Euclidean do-
main R with e(R) > ω.

2.7. The Motzkin-Samuel Process.

Our proof that a Euclidean ring admits a minimal Euclidean function is maxi-
mally inexplicit: it yields no information on what the minimal Euclidean function
may be, nor does it give any information on whether a given ring admits a Eu-
clidean function. In the breakthrough paper [Mo49], T. Motzkin gave an explicit
transfinite construction of ϕR. Motzkin’s construction was refined by Samuel in
[Sa71], so we speak of the Motzkin-Samuel Process. As we will need to make
use of this process in our treatment of the quotient Euclidean function we give it
here in full detail. Our treatment is close to Samuel’s except for minor differences
stemming from our convention on ϕ(0): c.f. Remark 2.9.

For any set R and map ϕ : R→ Ord, we define the open segments

Φ◦α = {x ∈ R | ϕ(x) < α}
and the closed segments

Φα = {x ∈ R | ϕ(x) ≤ α}.
These satisfy the following properties:

∀α ∈ Ord,Φ◦α =
⋃
β<α

Φβ , ∀α ∈ Ord,Φα = Φ◦α+1,

∀β ≤ α ∈ Ord, Φ◦β ⊂ Φ◦α, Φβ ⊂ Φα.

The following lemma, whose proof is immediate, gives a sense in which the smaller
Euclidean function is “more efficient”: its segments fill up R more rapidly.

Lemma 2.22. For ϕ,ψ : R→ Ord, we have:
ϕ ≤ ψ ⇐⇒ ∀α ∈ Ord,Ψ◦α ⊂ Φ◦α ⇐⇒ ∀α ∈ Ord,Ψα ⊂ Φα.

Let R be any commutative ring. We define subsets R◦[α] and R[α] of R for all

α ∈ Ord by transfinite induction, as follows:
• For α ∈ Ord, R◦[α] =

⋃
β<αR[β].

• For all α,

R[α] = {b ∈ R | the composite map R◦[α] ∪ {0} ↪→ R→ R/(b) is surjective }

= {b ∈ R | ∀a ∈ R, ∃q ∈ R, r ∈ R◦[α] ∪ {0} such that a = qb+ r}.
Some immediate consequences:
• R◦[0] = ∅,
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• R[0] = R×, and
• For every x ∈ R[1] \R[0], (x) is a maximal ideal of R.

Lemma 2.23. Let R be a commutative ring.
a) For all β < α ∈ Ord, R[β] ⊂ R[α].
b) For all α ∈ Ord, R◦[α] ⊂ R[α].

c) There is a least α0 ∈ Ord such that R[α0] = Rα0+1. For all α ≥ α0, R[α] = R[α0].
d) For all ϕ ∈ EucR and α ∈ Ord, Φα ⊂ R[α].

Proof. a) If β < α, then R◦[β] ⊂ R
◦
[α], and it follows that for all β < α, R[β] ⊂ R[α].

b) Using part a), R◦[α] =
⋃
β<αR[β] ⊂ R[α].

c) For a set S, a weakly isotone function Ord → 2S takes at most 2#S distinct
values so is eventually stable: thus there is a least α0 such that R[α0] = R[α0+1]. If
it is not the case that R[α] = R[α0] for all α ≥ α0, then let α be minimal such that
R[α0] ( R[α]. Then R◦[α] =

⋃
β<αR[β] = R[α0] and thus R[α] = R[α0+1] = R[α0].

d) By transfinite induction: fix α ∈ Ord and suppose that Φβ ⊂ R[β] for all β < α.
Then Φ◦α =

⋃
β<α Φβ ⊂

⋃
β<αR[β] = R◦[α]. Let b ∈ Φα. Then for all a ∈ R, there is

q ∈ R and r ∈ Φ◦α ∪ {0} ⊂ R◦[α] ∪ {0} with a = qb+ r. So b ∈ R[α]. �

Theorem 2.24. (Motzkin-Samuel Process [Mo49], [Sa71])
a) For a commutative ring, the following are equivalent:
(i) R is Euclidean.
(ii) R[α0] = R.
(iii) 0 ∈ R[α0].
b) When the equivalent conditions of part a) are satisfied, define ψ : R → Ord as
follows: for x ∈ R, let α be the least ordinal number such that x ∈ R[α], and put
ψ(x) = α. Then ψ = ϕR is the bottom Euclidean function on R.

Proof. a) (i) =⇒ (ii): If ϕ ∈ EucR then by Lemma 2.23d), R = Φϕ(0) ⊂ Rϕ(0).
It follows that the eventual value of R[α] is R.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (ii): If 0 ∈ R[α0], then for all a ∈ R• there is q ∈ R and r ∈ R◦[α0]

∪ {0}
such that a = qb+ r = r: i.e., R• ⊂ R◦[α0]

. Thus R[α0] = R.

(ii) =⇒ (i): Suppose R[α0] = R. For each x ∈ R•, there is a least α such that
x ∈ R[α], and thus x ∈ R[α] \ R◦[α]. We put ψ(x) = α. Then ψ is a Euclidean

function on R: let a ∈ R, b ∈ R•, and put α = ψ(b). There is r ∈ R◦[α] =
⋃
β<αR[β]

such that r ≡ a (mod b), i.e., there is q ∈ R such that a = qb + r with r = 0 or
ψ(r) < ψ(b).
b) Suppose the conditions of part a) hold, and let ϕ be the Euclidean function
constructed in the proof of (ii) =⇒ (i). The closed segments of ϕ are the subsets
R[α]. Let ϕ ∈ EucR be any Euclidean function. By Lemma 2.23d), Φα ⊂ R[α] =
Ψα, so by Lemma 2.22, ψ ≤ ϕ. Thus ψ = ϕR is the bottom Euclidean function. �

The following results illustrate the Motzkin-Samuel process: especially, how it can
be used both to explicitly determine the bottom Euclidean function of a known
Euclidean ring and to show that certain principal rings are not Euclidean.
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Example 2.25. [Sa71, p. 289] Let R = Z. It is easy to see by induction that for
all n < ω, R[n] = {k ∈ Z• | |k| < 2n+1}, so the bottom Euclidean function is

ϕZ(n) =

{
blog2(n)c n 6= 0
ω n = 0

Example 2.26. [Sa71, p. 290] Let k be a field and R = k[t]. It is easy to see
by induction that for all n < ω, R[n] = {f ∈ k[t]• | deg f ≤ n}, so the bottom
Euclidean function is

ϕk[t](n) =

{
deg f f 6= 0
ω f = 0

Proposition 2.27. [Sa71] Let R be a ring with finite unit group, of cardinality u.
a) If x ∈ R[1] \R[0], then #R/(x) ≤ u+ 1.
b) If R is Noetherian (e.g. if it is principal), then for all n < ω, R[n] is finite.
c) If R[ω] = R, then R is residually finite.

Proof. a) This is immediate. b) The key is a result of Samuel [Sa71, Prop. 13]: in
any Noetherian ring R, for all n ∈ Z+, there are only finitely many ideals I with
#R/I ≤ n. The result follows easily from this by induction. c): If x ∈ R•, then by
hypothesis ϕR(x) = n < ω. Then #R/(x) ≤ #R◦[n] + 1 ≤ #R[n] + 1 < ℵ0. �

Example 2.28. [Sa71, pp. 286-287] Let R = Z × Z. By Theorem 2.12, R is
Euclidean. However it has a finite unit group and is not residually finite, so by
Proposition 2.27c) its Euclidean order type exceeds ω.

Proposition 2.29. (c.f. [Sa71, Prop. 15]) Let R be Euclidean and residually finite.
a) e(R) ≤ ω.
b) R is either a PID or an Artinian principal ring.

Proof. a) If e(R) > ω, there is b ∈ R• with ϕR(b) = ω. Then R/(b) is finite and
ϕR(b) is the least ordinal greater than the minimum value taken on each nonzero
coset of R/(b). In other words, ω is the least ordinal which is larger than a finite
set of finite ordinals: contradiction.
b) Combine part a) with Theorem 2.20. �

Example 2.30. For S ⊂ Z+, let us say a ring R is S-free if there are no b ∈ R with
#R/(b) ∈ S. Suppose R has finite unit group of cardinality u and R is {2, . . . , u+1}-
free. Then by Proposition 2.27, R[1] = R[0] = R×, so R is Euclidean iff it is a field.

Let d be a squarefree negative integer, let K = Q(
√
d) and let R be the ring of

integers of K. If d ∈ {−3,−1}, then the norm x 7→ NK/Q(x), 0 7→ ω is a Euclidean

function on R. Suppose now that d < −3: then R× = {±1}, so if R is {2, 3}-free
then it is not Euclidean.

Basic algebraic number theory shows that Rd is {2, 3}-free if d ≡ 5 (mod 24).
By the Heegner-Baker-Stark Theorem, there are seven values of d < −3 such that R
is a PID: −2,−7,−11,−19,−43,−67,−163. Thus for d ∈ {−19,−43,−67,−163},
R is a non-Euclidean PID. This argument of Motzkin [Mo49] provided the first
examples of non-Euclidean PIDs. For d ∈ {−2,−7,−11}, the norm is Euclidean.

Theorem 2.31. Let R1 and R2 be Euclidean rings. Put R = R1 × R2, and write
ϕ,ϕ1, ϕ2 for the bottom Euclidean functions on R, R1 and R2.
a) For all x ∈ R1 and u ∈ R×2 , ϕ((x, u)) = ϕ1(x).
b) For all α, β, γ ∈ Ord with α⊕ β ≤ γ, we have (R1)[α] × (R2)[β] ⊂ R[γ].
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c) Let x ∈ R1 and y ∈ R2 with ϕ2(y) < ω. Then ϕ(x, y) = ϕ1(x) + ϕ2(y).
d) If e(R1) = e(R2) = ω, then ϕ = ϕ1 ⊕ ϕ2 and thus e(R) = 2ω.

Proof. a) If u ∈ R×2 , then the cosets of (x, u)R in R correspond naturally to the
cosets of xR1 in R1. The result follows easily from this.
b) For all γ ∈ Ord, the closed segment Ωγ corresponding to the Euclidean function
ϕ1 ⊕ ϕ2 is precisely

⋃
α,β | α⊕β≤γ(R1)[α] × (R2)[β]. Now apply Lemma 2.23d).

c) Seeking a contradiction, we suppose there are (x, y) ∈ R such that ϕ2(y) =
α2 < ω and ϕ((x, y)) < ϕ1(x) + ϕ2(y); among all such, choose (x, y) with ϕ((x, y))
minimal. If ϕ2(y) = 0 then y ∈ R×2 and the result is part a), so we may assume
that 0 < α2 < ω. Then there is y′ ∈ R2 such that ϕ2(y′) = α2 − 1 and for all
qy ∈ R2, ϕ2(y′ − qyy) ≥ α2 − 1. Apply the Euclidean property with a = (x, y),
b = (x, y′): there are qx, rx ∈ R1 and qy, ry ∈ R2 such that

(x, y) = (qxx+ rx, qyy
′ + ry)

and ϕ((x− qxx, y − qyy′)) < ϕ(x, y). By minimality of ϕ(x, y), we have

ϕ(x− qxx, y − qyy′)) = ϕ1(x− qxx) + ϕ2(y − qyy′)) ≥ ϕ1(x) + α2 − 1.

Thus
ϕ1(x) + ϕ2(x)− 1 < ϕ((x, y)),

so
ϕ1(x) + ϕ2(x) ≤ ϕ((x, y)),

contradiction.
d) Applying part c) we get ϕ((x, y)) = ϕ1(x)+ϕ2(y) = ϕ1(x)⊕ϕ2(y) for all x ∈ R1

and y ∈ R•2. Applying part c) with R1 and R2 reversed we get ϕ((x, y)) = ϕ2(y) +
ϕ1(x) = ϕ1(x)⊕ϕ2(y) for all x ∈ R•1 and y ∈ R2. It follows that ϕ((0, 0)) = 2ω. �

Example 2.32. By Theorem 2.31d), the bottom Euclidean function on Z× Z is:

ϕZ×Z((x, y)) =


blog2 xc+ blog2 yc x, y 6= 0
ω + blog2 yc x = 0, y 6= 0
ω + blog2 xc x 6= 0, y = 0
2ω x = y = 0

2.8. The Localized Euclidean Function.

Theorem 2.33. (Motzkin-Samuel) Let R be a Euclidean domain, and let S ⊂ R
be multiplicatively closed. Then S−1R is Euclidean and e(S−1R) ≤ e(R).

Proof. Without changing S−1R we may assume that the multiplicatively closed set
S is saturated : if x ∈ S and y | x then y ∈ S. Then every element x ∈ S−1R may
be written as x = s

tx
′ with s, t ∈ S and x′ prime to all elements of S, and in such a

representation x′ is well-determined up to a unit. Let ϕ : R• → Ord be an isotone
Euclidean function. Then ϕS : S−1R → Ord by ϕS(x) = ϕ(x′) is well-defined;
to complete the proof it suffices to show that ϕS is Euclidean: let a, b ∈ (S−1R)•

and write b = s
t b
′ as above. Since the canonical map R/(b′) → S−1R/(b) is an

isomorphism, there is a′ ∈ R such that t
sa ≡ a′ (mod bS−1R) and thus a ≡ s

ta
′

(mod bS−1R). Since ϕ is Euclidean, we may write a′ = qb′ + r with q, r ∈ R and
ϕ(r) < ϕ(b′). Multiplying through by s

t we get a = qb+ s
t r and thus

ϕS

(s
t

)
= ϕS(r) = ϕS(s′r′) = ϕS(r′) = ϕ(r′) ≤ ϕ(r) < ϕ(b′) = ϕ(b).

�
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Remark 2.34. If in the proof of Theorem 2.33 we take ϕ to be the bottom Euclidean
function on R, then ϕS need not be the bottom Euclidean function on S−1R. For
instance let R = Z, let p ≥ 5 be a prime number, and let S = Z \ pZ. Then S−1R
is a local PID, so by Example 2.6 the bottom Euclidean function takes the value 1
at p, while ϕS(p) = ϕZ(p) = blog2 pc ≥ 2.

2.9. The Quotient Euclidean Function.

Theorem 2.35. Let ϕ : R → Ord be a Euclidean function. Let b ∈ R•, and let
f : R→ R/(b) be the quotient map. For x ∈ R/(b), let x̃ ∈ f−1(x) be any element
such that ϕ(x̃) ≤ ϕ(y) for all y ∈ f−1(x).
a) Then ϕ′ : x ∈ (R/(b))• 7→ ϕ(x̃) is a Euclidean function.
b) For the bottom Euclidean function ϕR, we have

(4) ϕ′R(0) = sup
x∈(R/(b))•

(ϕ′R(x) + 1) = ϕR(b).

Proof. a) For x ∈ R/(b), y ∈ (R/(b))•, x̃ ∈ R, ỹ ∈ R•, so there are q, r ∈ R with
x̃ = qỹ + r and ϕ(r) < ϕ(ỹ). Then x = f(q)y + f(r) and hence

ϕ′(f(r)) ≤ ϕ(r) < ϕ(ỹ) = ϕ′(y).

b) The first equality in (4) is the definition of the extension to 0 of any Euclidean
function. The second equality follows from the description of the bottom Euclidean
function given in the Motzkin-Samuel process: its value at b is the least ordinal
which is larger than the minimum value taken on each nonzero coset of (b). �

Remark 2.36. The function ϕ′R need not be the bottom Euclidean function on
R/(b). If it were, then for every domain R and b ∈ R•, ϕR(b) = ϕ′R(0) =
e(R/(b)) < ω, so e(R) ≤ ω, contradicting Theorem 2.21.

Corollary 2.37. If R is Euclidean, so is every quotient ring R′, and e(R′) ≤ e(R).

2.10. The Product Theorem.

The following is a standard piece of ordinal arithmetic. Because of its importance
in the proof of Theorem 2.40, we will give a complete proof.

Lemma 2.38. (Ordinal Subtraction)
a) For α ≤ β ∈ Ord, there is a unique γ ∈ Ord such that α + γ = β. We may
therefore define

−α+ β = γ.

b) Suppose we have ordinals α, β, γ such that γ ≤ α < β. Then −γ + α < −γ + β.

Proof. a) Existence of γ: If α = β, then we take γ = 0. Otherwise, α ( β; let x0
be the least element of β \ α and let γ be the order type of {x ∈ β | x ≥ x0}.
Uniqueness of γ: suppose we have two well-ordered setsW1 andW2 such that α+W1

is order-isomorphic to α+W2. Then the unique order-isomorphism between them
induces an order-isomorphism from W1 to W2.
b) For if not, −γ+β ≤ −γ+α, and then β = γ+(−γ+β) ≤ γ+(−γ+α) = α. �

Remark 2.39. Ordinal subtraction does not work for the Hessenberg-Brookfield
sum: e.g. there is no ordinal γ with 1⊕ γ = ω or ω ⊕ γ = ω2.
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Theorem 2.40. (Product Theorem) Let R1, . . . , Rn be Euclidean rings. Then

(5) e(R1) + . . .+ e(Rn) ≤ e(
n∏
i=1

Ri) ≤ e(R1)⊕ . . .⊕ e(Rn).

Proof. We may assume n = 2. By Theorem 2.13b), R = R1 ×R2 is Euclidean.
Step 1: Let b = (0, 1), so R/(b) = R1. By Theorem 2.35b), ϕR(b) ≥ e(R1). For
y ∈ R2, b = (0, 1) | (0, y), so by Theorem 2.15b), ϕR((0, 1)) ≤ ϕR((0, y)). By
Lemma 2.38 we may put

ψ(y) = −ϕR((0, 1)) + ϕR((0, y)).

We claim ψ : R2 → Ord is a Euclidean function. Granting this for the moment,
it then follows that ψ ≥ ϕR2

, so

e(R) = ϕR((0, 0)) = ϕR((0, 1)) + ψ(0) ≥ e(R1) + e(R2).

proof of claim: Let x ∈ R2, y ∈ R•2; as usual, we may assume y - x. Since ϕR is
Euclidean, there are q = (q1, q2), r = (r1, r2) ∈ R such that (0, x) = q(0, y) + r =
(r1, q2y+r2) and either r = 0 or ϕR(r) < ϕR((0, y)). Thus r1 = 0 and x = q2y+r2.
Since y - x we have r2 6= 0, so r 6= 0 and thus ϕR((0, r2)) < ϕR((0, y)). By Lemma
2.38b) we may subtract ϕR(0, 1) – on the left! – from both sides to get

ψ(r2) = −ϕR((0, l))− ϕR((0, r2)) < −ϕR((0, 1))− ϕR((0, y)) = ψ(y).

Step 2: By Theorem 2.13a), ϕR1 ⊕ ϕR2 is a Euclidean function on R, so e(R) =
ϕR(0) ≤ ϕR1(0)⊕ ϕR2(0) = e(R1)⊕ e(R2). �

We deduce the following structural result on Euclidean order types.

Theorem 2.41. Let R be a Euclidean ring. As in (3) we write R =
∏n
i=1Ri ×A,

with each Ri a PID and A an Artinian principal ring. Put R′ =
∏n
i=1Ri.

a) We have e(R) = e(R′) + e(A).
b) e(R′) is a limit ordinal (possibly zero).
c) e(R′) ≥ nω.

Proof. a) By Theorem 2.20a), e(A) < ω, so by Theorem 2.40,

e(R′) + e(A) ≤ e(R′ ×A) ≤ e(R′)⊕ e(A) = e(R′) + e(A).

The remaining assertions hold trivially if n = 0, so we assume n ≥ 1.
b) Since R′ is a product of domains, the set of nonzero ideals of R has no minimal
element, so e(R′) is a nonzero limit ordinal.
c) By part b) and Theorem 2.40, nω ≤ e(R1) + . . .+ e(Rn) ≤ e(R′). �

3. `-Euclidean Rings and Small Euclidean Rings

3.1. `-Euclidean Rings.

In Examples 2.5 and 2.6, the given Euclidean function was the length function
`R. By Theorem 2.17 we must have `R = ϕR in both cases.

Let us say that a Noetherian ring is `-Euclidean when its transfinite length func-
tion `R is a Euclidean function: as above, we must then have ϕR = `R and thus
e(R) = lenR. Such rings have other pleasant properties.

Theorem 3.1. An Artinian principal ring is `-Euclidean.
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Proof. This was shown directly for local Artinian principal rings in Example 2.5.
By Theorem 2.1c), an Artinian principal ring R is a finite direct product

∏r
i=1Ri

of local Artinian principal rings. By Theorem 1.10c), `R =
⊕r

i=1 `Ri . Since each
`Ri

is a Euclidean function on Ri, by Theorem 2.13, `R ∈ EucR. �

Much of Theorem 3.1 seems implicit in [Fl71]. For instance, he writes down the
bottom Euclidean function on Z/12Z. The following result goes beyond this by
using the formalism of transfinite length functions.

Theorem 3.2. Let R be a semilocal principal ring. Then:
a) R is `-Euclidean.
b) If R ∼=

∏n
i=1Ri ×A as in (3), then e(R) = nω + lenA < ω2.

c) For every α < ω2, there is a semilocal Euclidean ring R with e(R) = lenR = α.

Proof. a) Since R is semilocal and principal, by Theorem 2.1 we may write R =∏n
i=1Ri ×

∏r
j=1Aj with each Ri a semilocal PID and each Aj a local Artinian

principal ring. In Examples 2.5 and 2.6 we showed that each Aj and Ri is `-
Euclidean. The rest of the argument is the same as the proof of Theorem 3.1.
b) Since for every PID R we have lenR = ω, this follows immediately.
c) The ordinals less than ω2 are of the form aω + b for a, b < ω. We may take e.g.
R =

⊕a
i=1 C[[t]]⊕ C[t]/(tb). �

If R is `-Euclidean, then R1 must be the set of all maximal elements of R. Thus:

Example 3.3. Z is not `-Euclidean. For a field k, the polynomial ring k[t] is
`-Euclidean iff every irreducible polynomial has degree 1 iff k is algebraically closed.

Theorem 3.4. For a principal ring R with finite unit group, the following are
equivalent:
(i) R is finite.
(ii) R is semilocal.
(iii) R is `-Euclidean.

Proof. (i) =⇒ (ii) is immediate, and (ii) =⇒ (iii) by Theorem 3.2.
(iii) =⇒ (ii): By Proposition 2.27, R[1] is finite, hence R is semilocal.
(ii) =⇒ (i): A variant of the Euclidean(!) proof of the infinitude of the primes
shows: an infinite ring with finite unit group has infinitely many maximal ideals. �

Proposition 3.5. A finite product, localization or quotient of `-Euclidean rings is
`-Euclidean.

Proof. Left to the reader. �

3.2. Small Euclidean Rings.

Let R be a Euclidean ring with decomposition R =
∏n
i=1Ri × A as in (3). We

say R is small if e(Ri) = ω for all i; otherwise R is large. In this terminology,
Theorem 2.21 precisely asserts the existence of large Euclidean rings.

Observe that an `-Euclidean ring is small. The following result shows a closer
relationship between the two properties.

Theorem 3.6. Let R =
∏n
i=1Ri ×A be Euclidean. The following are equivalent:

(i) R is small.
(ii) e(R) = lenR.
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Proof. (i) =⇒ (ii): We have

nω + `(A) = lenR = `R(0) ≤ ϕR(0) ≤
n⊕
i=1

ϕRi
(0)⊕ ϕA(0) = nω + `(A).

(ii) =⇒ (i): By contraposition: suppose R is large. We may assume e(R1) ≥ . . . ≥
e(Rn) and e(R1) > ω. By Theorem 2.41b), e(R1) ≥ 2ω. By Theorem 2.40,

e(R) ≥ e(R1) + . . .+ e(Rn) + e(A) ≥ 2ω + (n− 1)ω + `(A) > nω + `(A) = `R. �

Theorem 3.7. Let R =
∏n
i=1Ri ×A be a small Euclidean ring. Then

ϕR = ϕR1
⊕ . . .⊕ ϕRn

⊕ ϕA.

Proof. For notational simplicity we will assume A = 0. The reader will have no
trouble recovering the general case.

Let x = (x1, . . . , xn) ∈ R. Again to simplify the notation, we will assume that
x1 = . . . = xI = 0 and xI+1 = . . . = xn 6= 0: permuting the factors to achieve this
is harmless because of the commutativity of the Hessenberg-Brookfield sum. Write

S1 =
∏I
i=1Ri and S2 =

∏n
i=I+1Ri, so R = S1×S2. Also write s1 = (x1, . . . , xI) =

0 ∈ S1 and s2 = (xI+1, . . . , xn) ∈ S2. We have ϕS2
(s2) ≤

⊕n
i=I+1 ϕRi

(xi) < ω, so
applying Theorem 2.31c) and Theorem 3.6 we get

ϕR(x) = ϕS1(s1) + ϕS2(s2) = e(S1) + ϕS2(s2) = Iω + ϕS2(s2).

Since for all I + 1 ≥ i ≥ n, ϕi(xi) < ω, we may apply Theorem 2.31c) n − I − 1
more times to get ϕS2

(s2) =
∑n
i=I+1 ϕRi

(xi) and thus

ϕR(x) = Iω +

n∑
i=I+1

ϕRi
(xi) =

n⊕
i=1

ϕRi
(xi). �

Proposition 3.8. Any finite product, localization or quotient of small Euclidean
rings is small Euclidean.

Proof. Left to the reader. �

4. Some Questions

Question 4.1. Let R be a Euclidean ring with bottom Euclidean function ϕR.
a) Let S be a multiplicative subset of R. Can we give an explicit description of
ϕS−1R in terms of S and the bottom Euclidean function ϕR of R?
b) Let b ∈ R•. Can we give an explicit description of ϕR/(b) in terms of ϕR and b?

Question 4.2. Let R be a principal ring such that in the Motzkin-Samuel process,
R1 consists of all maximal elements of R.
a) Must R be Euclidean?
b) If R is Euclidean, must it be `-Euclidean?

Let R be an S-integer ring in a global field. C. Queen [Qu74] and H.W. Lenstra
[Le77] showed that – assuming a Generalized Riemann Hypothesis in the number
field case – if #S ≥ 2, then R is Euclidean iff it is principal. Moreover, when these
conditions hold the bottom Euclidean function evaluated at x is

ϕ(x) =
∑
p

np ordp(x)
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where the sum ranges over all nonzero primes p = (πp) of R, ordp is the corre-
sponding discrete valuation, and np is equal to 1 if πp ∈ R1 and 2 otherwise [Le77,
Thm. 9.1]. This certainly addresses Question 4.1a) and shows that both parts of
Question 4.2 have an affirmative answer in this case.

Question 4.3. Let R1 and R2 be Euclidean rings, and put R = R1 ×R2.
a) We know that ϕR ≤ ϕR1 ⊕ ϕR2 . Must we have equality?
b) Must we have e(R) = e(R1)⊕ e(R2)?

Question 4.4. Are there Euclidean domains R1 and R2 with e(R1) ≥ e(R2) such
that e(R1) + e(R2) < e(R1)⊕ e(R2)?

Of course an affirmative answer to Question 4.3a) implies an affirmative answer to
Question 4.3b). Though we were not able to give such an affirmative answer in
general, nevertheless we feel that this is a promising line of attack on Question 4.4.

On the other hand, a negative answer to Question 4.4 gives, via the Product Theo-
rem, an affirmative answer to Question 4.3b). Let us explore the underlying ordinal
arithmetic in more detail:

If α1 ≥ . . . ≥ αn are ordinal numbers, then α1 + . . . + αn = α1 ⊕ . . . αn iff the
αi’s are “unlaced” in the sense that for all 1 ≤ i ≤ n − 1, the least exponent γ
of a term ωγ appearing in the Cantor normal form of αi is at least as large as
the greatest exponent γ′ of a term appearing in the Cantor normal form of αi+1.
In particular this relation holds whenever each αi is “homogeneous”, i.e., of the
form mωγ for some m < ω and γ ∈ Ord. Thus Question 4.3b) would have an af-
firmative answer if every Euclidean domain has homogeneous Euclidean order type.

In this regard Theorem 2.41 gives a (very) partial result: the order type of a
Euclidean domain can have no finite part. Thus the smallest conceivable “inho-
mogeneous” Euclidean order type of a domain is ω2 + ω. For such a domain, the
Product Theorem leaves ambiguous whether e(R×R) is e(R) + e(R) = 2ω2 +ω or
e(R)⊕e(R) = 2ω2 +2ω. These types of questions seem difficult to address directly.

Question 4.5. What are the Euclidean order types of the large Euclidean domains
of Theorem 2.21?

Question 4.6. In Lemma 2.23 we associated an ordinal invariant α0 to any com-
mutative ring R, namely the least ordinal such that R[α0] = R[α0+1]? What values
can this invariant take on the class of all commutative rings?
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