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GROUPS COVERED BY PERMUTABLE SUBSETS
B. H. NEUMANN®*,

§1. Introduction.

In this paper we shall be mainly concerned with groups which can be
covered by (in other words, are unions of) permutable boundedly finite
subsets. Obvious examples of such groups are the finite groups, where a
single finite set suffices, namely the group itself; and abelian groups,
where all one-element subsets will serve. The main result (Theorem 7.1)
characterizes these groups completely as those groups which possess a
subgroup of finite index with finite derived group.

Another, closely related, class of groups, which also includes all finite
groups and all abelian groups, is that of the groups with only finite classes
of conjugate elements. Such groups are called FC-groupst; they have
been studied in an earlier paper], and their investigation is carried a little
further in the present paper. It will be shown (Theorem 3.1) that if the
classes of conjugate elements in a group H are boundedly finite, then the
derived group of H is finite. The converse is also true, and nearly trivial.

The present investigation arose from the question whether a simple
and direct proof of the following theorem of Mautner§ could be devised:

Let the group @ possess a finite subgroup K whose double cosets in G are
permutable. If H denotes the union of all finite classes of conjugate elements
of G, then H (easily seen to be & subgroup of @) has finite index in G.

This is in fact a corollary of our more general results; we give, however,
an independent proof in a sharpened form, namely (Theorem 5.1)

G=KH.

* Received 11 November, 1933; read 19 November, 1953.

t Following Baer (2).

1 Neumann (5).

§ Unpublished; it is a corollary of deeper results on unitary representations in (4).
I am indebted to F. I. Mautner for a derivation of this theorem from his, op. cit., p. 438,
and also to Kurt A. Hirsch for having drawn my attention to the above question.
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The proof is completely elementary in the sense that it uses only fundamental
notions and facts of group theory.

We also investigate (in §8) the problem how far the boundedness or
even the finiteness of the permutable subsets covering the group can be
relaxed. We show, for instance, that every finitely generated free group
but no non-denumerable free group can be covered by permutable finite
subsets; but our results are very far from a complete solution.

§2. Notation and preliminaries.

We use the following notation. Groups are written multiplicatively,
the unit element is 1, and the trivial subgroupis £ = {1}. Ifgisanelement
of a group @, then g9 is the class of its conjugates, C(g) its centralizer. If
8 is a set, | §| denotes its cardinal. If S is a subgroup of @ then | G: 8| is
its index ; thus in particular if S is a normal subgroup of &, then

|@:8]|=]a/S|.
The centralizer of a set S of elements of G is
C(8) = N,es C(s).
We note the (well-known) relation

19| =16:C(g)|.

1t we denote by H the union of all finite classes of conjugates in @,
then an element ge @ belongs to H if, and only if, |¢¢| is finite. It is not
difficult to see that H is a subgroup of @, and in fact a characteristic sub-
group. Every element of H has only a finite number of conjugates in H,
for gH is a subset of g¢; a group with this property is called an FC-group.
The following facts* about FC-groups will be used.

(2.1) TeeorEM. If H is an FC-group, then the periodic elements of H
form a (periodic) subgroup P of H ; this contains the derived group H' of H.
If H 1is finitely generated, then P is finite.

I am indebted to Philip Hall for the following argument which is much
shorter than my proof 0p. ¢it. Let a, b be two elements of the FC-group H ;
denote by 4 the group they generate. Then the centre of 4 is the inter-
section of the centralizers of @ and b in 4, and hence of finite index in 4. It
follows from a result implicit in Schur (6)t that the derived group 4’ of A
is finite. If a, b are periodic, then A4/A4’ is also finite, thus A itself is then

* Neumann (5, Theorem 5 . 1).
t This is (5, Theorem &.3); my proof used Schur’s basic idea. Cf. also Baer
(1, §6, Theorem 4).
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finite. It follows at once that the periodic elements of H form a subgroup,
and the rest of Theorem 2.1 is an easy consequence*.

§3. Groups with boundedly finite classes of conjugate elements.

We begin by considering FC-groups in which the classes of conjugate
element: are not only finite, but boundedly finite. These include sll
groups whose centre has finite index ; and thus in particular they include all
finitely generated FC-groups.

The examyle of the (restricted) direct product of infinitely many
quaternion groups with amalgamated centre shows, however, that in such
a group the centre can also have infinite index, and can indeed be finite
though the group be infinite. In this example the centre and the derived
group coincide with the only minimal normal subgroup, of order 2. Every
element outside this subgroup has precisely two ‘conjugates, including
itselft.

These groups are capable of a very simple characterization :

(3.1) TurorEM. The classes of conjugate elements of a group H are
boundedly finite if, and only if, the derived group H' of H is finite.

Proof. If H' is finite then |H'| is & finite bound for the cardinal of
every class of conjugate elements; for if &,, h,, ..., b, are different con-
jugates, then 1, hilhy, hlh,, ..., h7lh, are different commutatorsy.

Assume now conversely that the classes of conjugates in H are boundedly
finite, and let n be the least upper bound of their cardinals. Let @ be an
element of H with exactly n conjugates, and let 1 =05y, b,, ..., b, form a
set of right coset representatives of H modulo C(a). Thus

ay=a, a,=bzlab, ..., a,=0blaeb,
are the n distinct conjugates of . Next let
U=C({b, by, ..., b,})

be the centralizer of by, b,, ..., b, in H. This is the intersection of a finite
~ number of groups each of finite index in H:

U = C(b) nC(by)...AC(b,).

* Another elegant simplification of my proof has been found by J. Erdés (3). I owe
this information to Tibor Szele.

t Other such examples, made independently by J. Erdds (3), have been kindly com-
municated to me by Tibor Szele.

1 This reasoning has already been applied to prove (5, Theorem 5 . 4).
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Hence its index | H: U| = m, say, is again finite. Let ¢, ¢,, ..., c,, be & set
of right coset. representatives of H modulo U, and let ¥ be the least normal
subgroup of H containing a, ¢,, ¢,, ..., ¢, Then V is finitely generated,
namely by the finitely many conjugates of a, ¢,, ¢y, ..., ¢,. Also

H=TUV.

Let b = uv and b’ = 4’ v’ be two arbitrary elements of H. We form their

commutator
b, B'] = [wv, v’ v']=[u, »'] (modV),

and show that this lies in V. In fact we show that [u, u'] lies in {a}¥, the
normal closure of @ in H. Consider the element w =ua. As u permutes
with by, by, ..., b,, the conjugates

w=ua, bztwby=ua, .., b;'wb,=ua,

of w are all different. They must be all the conjugates of w, as » was the
greatest number of conjugates any element of H could possess. Thus

Wl wy' = ua;
for some ¢; and as also
wlau =a
for some j, then
[v, w']1=a;a;lc{a}ICV.

Thus H/V is abelian, and H'CV. But H'is a periodic group by Theorem
2.1, and the subgroup of periodic elements of ¥ is finite, also by Theorem
2.1, because V is finitely generated. Thus H’ is finite, and the theorem
follows.

I do not know whether one can refine this argument to give a bound
for the order |H'| of the derived group in terms of the bound » for the
cardinals of classes of conjugate elements.

§4. Groups covered by finitely many cosets.

In this section we derive a lemma which will be required later. It is
quite possibly known, but I know of no reference in the literature.

(4.1) LEmMA. Let the group G be the union of finitely many, let us say n,
cosets of subgroups C,, Cy, ..., Cy:

@ = Ui, Cig;. (4.11)
Then the index of (at least) one of these subgroups in G does not exceed n.

It should be noted that we have sacrificed no generality in writing the
n cosets as right cosets ; for a left coset of a subgroup C is also a right coset
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of a conjugate of C:
gC =gCgt.g.

It may also be remarked that the lemma is obvious for finite groups G,
and that it becomes false if an infinite cardinel is substituted for n. Its
proof for arbitrary @ is carried out in several steps.

(4.2) Under the assumptions of the lemma at least one subgroup C; has
Jinite index in G.

Proof. We proceed by induction over the number of distinct groups
among C,, C,, ..., C,. Ifall the groups C; coincide, that is if G is the union
of n right cosets of a single group, then this clearly has finite index. Assume
now that the proposition is true when there are r—1 or fewer distinct groups
C;; and let there be r > 1 distinct groups among C, C, ..., C,. Consider
one of the groups, C,, say; and assume the groups in (4.11) so arranged
that C,, ..., C,, are different from C,, and C,,,; = Cpyg = ... = C,. Now

either
G =l ms1 Cutt (4.21)

in which case C,, clearly has finite index in G, or else there is an element

Bt U1 Cogie (4.22)
In this case then
Cn kh U?=m+1 Ongl' = ¢’,

and therefore C,heUiL, Cig;
Thus C.9C U?‘=1 0:'9;' b1 g,

that is to say, every right coset of C,, is contained in & finite union of right
cosets of the other r—1 groups C;. But then @ can also be covered by a
union of finitely many right cosets of these r—1 groups, and by the
induction hypothesis one of them has finite index in G. Thus (4.2)
follows.

(4.3) Let C,, ..., C,, have infinite index, and let Cpy = Cpp= ... = C,,.
Then
G =Ui_1 Cigi=Uiomni1 Cnis

that is to say, if only one of the groups has finite index in G, then the cosets of
groups of infinite index can be omitted from the covering of G.

This an immediate corollary of the proof of (4.2); for the alternative
(4.22) leads to one of Cj, ..., C,, having finite index, and hence it cannot
arise here. We now drop the assumption that there is only one group
(possibly repeated) of finite .index.
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(4.4) Let C,, ..., C,, have infinite index. Then
G =VUlon1 Cigi;

that is to say, the cosets of groups of infinite index can in any case be omilted
Sfrom the covering of G.

Proof. Weknow from (4.2) that some of C,, .,; ..., C, have finite index,
and we lose no generality if we assume that they all have finite index;
for any groups of infinite index can be lumped together with those we want
to show superfluous. We put

D =M1 Cs.

Then D, as the intersection of finitely many groups of finite index, also
has finite index in @. Now C,,,,, ..., C,, each contains D, and thus can be
written as a union of right cosets of D, finitely many in every case. Thus
G is a union of finitely many cosets of C,, ..., C,, and D. By (4.3) the
cosets of C,, ..., C,, can be omitted ; then the original cosets of C,,,,, ..., C,,
are restored from the cosets of D into which they had been decomposed,
and (4.4) follows.

(4.5) Define the “ density” 5(C) of a subgroup C of G to be the reciprocal
of its index | @: C| if this is finite, and zero if | G : C| is infinite. Then under
the assumptions of the lemma

% 8(C) = 1. (4.51)
1=1

Proof. We begin by omitting the cosets of groups of infinite index ;
and we again denote by D the intersection of the remaining groups C.
Next we decompose the cosets C;g; that remain into cosets of D. Each
such coset C;g;is the union of | C;: D| cosets of D. Thus G will be contained
in the union of 3| C;: D| cosets of D, the summation extending over the C; .
of finite index. It follows that

3|0:D| >|G:D|,
and this, together with the identity

|C;:D|=|G:D|.8(C)),
proves (4.5).
Lemma 4.1 is an immediate corollary of (4.5).

§56. Mautner’s Theorem.
We now consider Mautner’s Theorem, and prove it in the following

more precise form :

(6.1) TugorREM. Let the group G possess a finite subgroup K with the
Jour. 114, R
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property that the double cosets of K in @ permute. Denote by H the union of '
all finste classes of conjugates in Q. Then

G=KH.
Proof. By assumption
KyKzK = KxKyK

for all z, ye G. Thus in particular there is, to each pair z, y of elements of
G, a triplet k, k', k"’ of elements of K such that

yx = kxk'yk'. (6.2)

(There may be more than one such triplet for some pairs z, y.)
We now keep y fixed for the moment, and denote by X (%, k', k') the
set of all those z € G which satisfy (5. 2) with a given triplet k, &', k”’. Some
" of these sets may be empty, and others may overlap; but every element
z of G occurs in at least one of them. Moreover there are finitely many such
sets only, namely | K |>—one to each ordered triplet of elements of K.
Next we observe that these sets X(k, k', k’’) are certain cosets of sub-
groups of Q. Specifically, if ge X(k, ¥, &'’), then

X(k, ¥, k)= C(k1y)g.

For if z is any other element of the same set X (&, ¥’, k'), then

yg = kgk'yk"”
and yx = kak'yk’.
Hence gt ktyg =k'yk' =z kyz,
and 2gte O(k1y).

Conversely, if ze C(k~'y)g, then
e kTl yz =g k7 yg = K'yk”,
and ze X(k, k', k'').

Thus @ is seen to be the union of finitely many cosets of the form
C(k1y)g. It follows from Lemma 4.l—or even the weaker (4.2)—
that at least one C(k~'y) has finite index in Q. But this means that at
least one k~ly has only finitely many conjugates, and lies in H. Thus

yeKH,
and as y was an arbitrary element of @, the theorem follows.

(6.3) COROLLARY. |G:H|<| K|
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It is not difticult to refine this proof so as to obtain the further result
that the finite classes of conjugates of G—that is the classes contained
in H—are boundedly finite. However, this will also be true in the more
general situation studied in the next section, and we therefore defer the
proof.

§6. Groups covered by permutable boundedly finite subsets.

We now come to study groups which can be covered by permutable
boundedly finite subsets. Throughout this section, let G be such a group,
and let § be a family of subsets such that

@ = Upeg F, (6.11)
FF' = F'F forall F, F'c§, (6.12)
| P| <n for all Fe§. (6.13)

We again denote by H the union of all finite classes of conjugates of G;
and we denote by H™ the union of all classes of conjugates with at most

m elements. Thus
H® = Ugocme®

and H= U:-l Hm),

H® ig the centre of @, but H™ for m > 1 need not be a group. We now
prove that H), for suitably large m, has “ finite index ”’ in @, that is to
say, G is the union of a finite number of translates H™g of Hm),

(6.2) LEMma. Let m = ynd(n+-1), and let gy, gs, ... be a sequence of
elements of @ such that '

g, H™g, when ¢ <J. (6.21)

Then the sequence breaks off after at most n terms. In other words, there is
a number p < n such that

G =Uf. H™g,.

Proof. Assume the contrary. Then it is possible to find n--1
elements g,, gg, ..., gn41 Sotisfying (6.21). To each g, we select a set
F,e§ which contains g, Let z be an arbitrary element of ¢; we also
select a set Fe§ containing z. Using the permutability of the F; and F
we can find elements f;e F; and z;& F such that

gr=xf, $=12,...,n+1)
: B2
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As | F| < n, there must be two different suffixes s, ¢ such that z, = x,;
we may take s <t. We obtain

gt g =fF (6.3)

Let us denote by X (s, ¢, f,, f;) the set of those elements x e G which satisfy
(6.3), that is to say, which transform g;1g, into f;1f,. Some of these
sets may be empty, others may overlap ; but in any case every element of G
belongs to at least one of them. Moreover there are only a finite number
of such sets, in fact at most Ind(n+1)=m; for 1 <s<t<n+1, whence
there are 4n(n+-1) possible choices of s, ¢; and f, and f, belong to F, and F,
respectively, and are each capable of at most » values.

Next we observe that these sets X (s, ¢, f,, f;) are certain cosets of sub-

groups of G. Specifically, if ge X(s, ¢, f,, f), then
X(S, t, fu fl) = 0(9;1 gt) g;

for any other element ze X (s, ¢, f,, f,) transforms g;1 g, into f;1f, like g.

Thus @ is seen to be the union of at most m cosets of the form
C(g71g)g. It follows from Lemma 4.1 that one of the C(g;lg,) has
index at most m in @. This means that g;1g,, for some s, ¢ with

1<s<t<ntl,

has at most m conjugates. The same is then true of g,g;'—which is in
fact one of these conjugates. Thus

g9 H(m)
and g eHmg,,
contrary to (6.21); and the lemma follows.

(6.3) CoROLLARY. |G:H| < n.

This is now obvious. It should be remarked that Corollary 6.3 is
in general sharper than this; for some double cosets of K may contain
n=|K|? elements.

(6.4) Lemma. The finite classes of conjugate elements of G are
boundedly finite; equivalently, there is a number g such that H = H@,

Proof. We choose a sequence of elements hy, by, ..., of H such that
hyg H by for 1 < j.
This sequence breaks off after at most n terms. Then

H=UHmp,
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An arbitrary element he H is of the form h = ™ h,, with k™ g H™ and b,
out of our finite sequence. A conjugate of k is a product of a conjugate
of k™ and a conjugate of &;; thus the number of conjugates of k is at most
the product of m and the number of conjugates of ;:

[R¢I <m .| BE| <m.max|hS|.
1

The maximum is finite because each |k¢| is finite and there are only a
finite number of ;. Thus |A¢| is bounded, and the lemma follows.

§7. The main result.

We are now in a position to characterize the groups of the preceding
section completely.

(7.1) TaeoreM. A necessary and sufficient condition for the group G
to be the union of permutable boundedly finite subsels is that G possesses a
subgroup of finite index whose derived group is finite; or, equivalently, that G

has a normal series
G2HDH DE

with G/H and H' finite and H/H' abelian.

Proof. We first remark that the two stated forms of the condition.
are indeed equivalent: for if @ has a subgroup S, say, of finite index and
with finite derived group §’. then the intersection of the conjugates of S
in @ is a normal subgroup H of @, still of finite index in &, and with derived
group H' contained in 8’ and thus also finite.

Next we see that if G is the union of permutable boundedly finite
subsets, then the union of its finite classes H is a subgroup of finite index
by Corollary 6.3. Moreover the classes of conjugates hf in H are
boundedly finite because—by Lemma 6.4—even the finite classes A% in
@ are boundedly finite. By Theorem 3.1 then the derived group H' is
finite, and the necessity of the condition follows.

Conversely let & have a subgroup H, which we may assume normal,
of finite index », and with derived group H’ finite. Let g,, ¢, ..., g,, be a
set of representatives of G modulo H. If heH then

e =Ui. g7 kB g, -

Thisis a boundedly finite set because it is the union of » sets each of bounded
cardinal ; in fact

|RE| < n.|hE| < n . |H'|
We now define to each element ge @ a set F, containing ¢ as follows. If
g="hy, with heH and 1 <p <n, we put

F,=Up.. g,
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Then |F,| <n.|h%| <n?|H'|, that is F, is boundedly finite. Also if
g =h'g, with K’ e H, 1 <q <n, then

Fn Fo' = U?.i=l h9h'C glyj = U?,j-lh'ahagig! = .Fv' Fv'

Thus @ is the union of permutable boundedly finite subsets, the condition
is seen to be sufficient, and the theorem is proved.

§8. Further results.

What réle does the boundedness of the permutable finite subsets play?
Is it possible to characterize the groups which can be covered by permutable
finite subsets, if these subsets may be arbitrarily large?

I do not know the answer; the following partial results may indicate
some of the difficulties involved.

(8.1) LEMmA. Ewery finitely generated group 13 the union of permutable
finite subsets.

Proof. Let gy, g,, ..., g, form a finite set of generators of the group @.
We denote by F, the set of elements of @ which can be expressed as words
of length not exceeding A in gy, g, ..., 9,. Then F, is clearly finite, and

FF,=F, =F.F.

Also @ is evidently the union of the F,, and the lemma follows.

It may be remarked that a finitely generated free group can even be
covered by disjoint permutable finite subsets: one uses the sets of elements
of length exactly, instead of at most, A. ‘

(8.2) LEmma. Ewvery countable locally finite group i3 the union of
permutable finite subsets.

Proof. If @ is countable and locally finite, then it is the union of an
ascending sequence
¢, cq,cq,c..

of finite groups: d=U., 6.
These G; will themselves serve as the required subsets. If instead we put
Fi=@G, F,=G—G, F;=0,—@,

then the F; are also permutable and finite and they cover G; and they are,

moreover, disjoint. ’
These results indicate that the class of groups which can be covered

by permutable finite subsets is wide ; it may possibly include all countable
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groups. It does not, however, include all groups; to show this we extend
the argument of §6.

(8.3) THEOREM. Let the infinite group G be the union of a family §
of permutable subsets whose cardinals are (strictly) less than a cardinal n
(strictly) less than that of G :

Q= Upreg F; (8.31)
FF' =F'F for all F, F'e§; (8.32)
|Fl<n<|@| for all Fe§. (8.33)

Then @ has a subgroup C whose centre is not trivial and whose order exceeds n :
|C|>n.
Proof. In @ we choose a subset Y of cardinal
[Y|=n.

To every element ye ¥ we select—using Zermelo’s Axiom—a set F,e§
which contains y. Let z be an arbitrary element of G; we also select a set
Fe§ containing . Using the permutability of the F, and F, we can
find elements f, € F, and z, € F such that

yr=1,f, WeY).

As |F|<|Y ], there must be two different elements 8, ¢ in ¥ such that

z,=a, Then
-1l = f1f, (8.4)

Denote by X(s, t, f,, f,) the set of those elements z& G which satisfy (8.4),
that is to say, which transform s-1¢ into f;1f, Then @ is the union of

these sets:
G=UX(s,t, [, [f) (8.5)

Here s and ¢ range over Y and f,, f, over F,, F, respectively. Thus the
union (8. 5) has at most n* terms. At least one of these terms must have
cardinal greater than n; for otherwise the union would have cardinal
< nb, but | G| being infinite and (strictly) greater than n implies |G| > n®.
Next we observe that these sets X(s, ¢, f,, f,) are again, as in §6, cosets
of certain centralizers in @. Specifically, if ge X (s, t, f,, f;), then

X(S’ t>fnr ft) = C(s‘lt)g.

The cardinal of a coset is, of course, that of the subgroup. Hence there
is a centralizer C(s~'¢) whose cardinal exceeds n. Such a centralizer
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contains the element st 1 in its centre, and will, therefore, serve as
the subgroup C of the theorem. This completes the proof.

It may be remarked that if n is a finite cardinal, the theorem asserts
much less than we know to be true: for we know that G has subgroups
of finite index with non-trivial centre.

(8.6) CoroLLARY. Let n be an infinite cardinal and let G be a locally
free group of order greater than n. Then G cannot be covered by permutable
subsets of cardinal less than n. In particular no non-denumerable locally
free group is the union of permutable finite subsets.

This follows immediately from Theorem 8.3 when it is observed that
a locally free group with non-trivial centre is denumerable.
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A COUNTABLY GENERATED GROUP WHICH CANNOT BE
(OVERED BY FINITE PERMUTABLE SUBSETS

P. M. Conv*,

Let @ be a group and consider an expression of @ in the form

G= U 4, (1)

Ae
where U is a family of subsets of @ such that
(i) AB= BA for A, BeY,
and either (ii) |4]|is bounded for A e,

* Recoivedd 13 November, 1953; read 19 November, 1953.



