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Global notation: In this course “a ring” is not necessarily commutative, but it is
associative with a multiplicative identity. For a ring R, R• denotes R \ {0}, a
monoid under multiplication, and R× denotes the group of units of R, i.e., the set
of elements x ∈ R such that there is y ∈ R with xy = yx = 1. (R× is the group of
units of the monoid R•.)

In general my terminology follows Bourbaki. For instance compact and locally
compact imply Hausdorff. The condition that every open covering has a finite
subcovering is called quasi-compact.
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1. First Steps in Homological Algebra

Exercise 1.1) Let k be a field.
a) Let

0→ V ′ → V → V ′′ → 0

be a short exact sequence of k-vector spaces (not assumed to be finite-dimensional).
Show that dimk V = dimk V

′ + dimk V
′′.

b) Let
0→ Vn → Vn−1 → . . .→ V1 → V0 → 0

be an exact sequence of finite-dimensional k-vector spaces. Show that
∑n
i=0(−1)i dimk Vi =

0.1

c) Let
0→ A′ → A→ A′′ → 0

be a short exact sequence of finite Z-modules. Show #A = #A′ ·#A′′.
d) Let

0→ An → An−1 → . . . A1 → A0 → 0

be an exact sequence of finite Z-modules. Show
∏n
i=0(#Ai)

(−1)i = 1.
e) State and prove a result which simultaneously generalizes parts b) and d).

Exercise 1.2) Let us say that a chain complex M• of left R-modules is finitely
generated if

⊕
n∈ZMn is a finitely generated R-module. Show that this holds iff

each Mn is a finitely generated R-module and Mn = 0 for all but finitely many n.

Exercise 1.3) Let M• be a finite-dimensional complex of k-vector spaces. Define
its Euler characteristic

χ(M) =
∑
n

(−1)n dimkMn.

Show that
χ(M) =

∑
n

(−1)n dimkHn(M•).

We say that the Euler characteristic is a homological invariant of M•.

Exercise 1.4) Let R be an integral domain (that is, a commutative ring without
nonzero divisors of zero) with fraction field K. For a finitely generated complex
M• of R-modules, we define the Euler characteristic χ(M•) as χ(M• ⊗RK). Show
that

χ(M) =
∑
n

(−1)n dimK Hn(M•)⊗R K.

Remark: If necessary, feel free to use that K is a flat R-module.

Exercise 1.5) Let k be a field, V a fixed K-vector space, and consider the fol-
lowing functor from the category of k-vector spaces to itself: FM = M ⊗k V . a)
Show that F is an exact functor: that is, if

0→M1 →M2 →M3 → 0

1We need to assume finite-dimensionality even for the statement to make sense: subtraction is

not a well-defined operation on infinite cardinals. However, if we rewrote the alternating sum as
“the sum of the dimensions of the even-indexed vector spaces equals the sum of the dimensoins of
the odd-indexed vector spaces, then this is true without the hypothesis of finite dimensionality.
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is a short exact sequence of k-vector spaces, then so is

0→ F (M1)→ F (M2)→ F (M3)→ 0.

b) Show that if M• is a complex of K-vector spaces, for all n ∈ Z there is an
isomorphism

Hn(FM•) ∼= FHn(M•).

Exercise 1.6) Let

0→M1 →M2 →M3 → 0

be a short exact sequence of Z-modules. We tensor the sequence with Z/2013Z.
a) Show that

M1 ⊗ Z/2013Z→M2 ⊗ Z/2013Z→M3 ⊗ Z/2013Z→ 0

is exact.
b) Show by example that M1 ⊗ Z/2013Z→M2 ⊗ Z/2013Z need not be injective.

Exercise 1.7) Let X be the Cantor set (X is characterized up to homeomorphism by
being compact, second countable, totally disconnected and without isolated points).
a) Show that there is no CW-complex with underlying topological space X.
b) Show that X is not even homotopy equivalent to the underlying topological
space of a CW-complex.

Remark: Spaces homeomorphic to the Cantor set arise frequently in number the-
ory: e.g. the ring Zp of p-adic integers. (However, admittedly such spaces are not
interesting from the perspective of topological homology.)

Exercise 1.8) Let F be an exact functor from the category of R-modules to the
category of S-modules. Let M• be a chain complex of R-modules. Show: for all
n ∈ Z,

Hn(FM•) ∼= FHnM•.

2. R-Modules

2.1. Some Constructions.

In this section we discuss various basic module-theoretic constructions. Most of
them are special cases of vastly more general category-theoretic constructions, and
this more general perspective will be taken later: for now, we stay concrete.

There is a common theme running through all of these constructions: namely,
they all satisfy universal mapping properties. In general, universal mapping
properties make for good definitions because the uniqueness of the associated object
is assured, and they are often (though not always) useful for giving clean proofs
of various properties satisfied by these objects. One still has the task of proving
existence of the objects in question, which in all these cases can be done relatively
straightforwardly.

For our first two examples the constructions are so simple and familiar that
they are given first, followed by the universal mapping properties that they sat-
isfy. Thereafter the approach is inverted: we give the universal mapping property,
followed by the (messier) explicit construction.
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2.1.1. Direct Products.

Let {Mi}i∈I be an indexed family of modules (here I denotes an arbitrary set).
We define an R-module, the direct product

∏
i∈IMi, as follows: as a set, it is the

usual Cartesian product,2 i.e., the collection of all families of elements {xi | xi ∈ I}.
We endow it with the structure of an R-module by

{xi}+ {yi} = {xi + yi},
r{xi} = {rxi}.

For each i ∈ I there is a projection map πi :
∏
iMi →Mi, {xi} 7→ xi.

Proposition 2.1. (Universal Property of the Direct Product) Let {Mi}i∈I be a
family of R-modules, let A be an R-module, and suppose that for each i ∈ I we
are given an R-module map φi : A → Mi. Then there is a unique R-module map
Φ : A→

∏
i∈IMi such that for all i ∈ I, φi = πi ◦ Φ: namely

Φ : a ∈ A 7→ {φi(a)}.

Exercise: Prove it.

2.1.2. Direct Sums.

For a family {Mi}i∈I of R-modules, we define an R-module, the direct sum⊕
i∈IMi as follows: it is the R-submodule spanned by the elements ei, which

is 1 in the ith coordinate and otherwise 0. In other words,
⊕

i∈IMi consists of all
elements in the direct product which are 0 except in finitely many coordinates. For
each i ∈ I, there is an injection ιi : Mi →

⊕
i∈IMi given by mapping xi to the

element which has i coordinate xi and all other coordinates 0.

Proposition 2.2. (Universal Property of the Direct Sum) Let {Mi}i∈I be a family
of R-modules, let B be an R-module, and suppose that for each i ∈ I we are given an
R-module map φi :Mi → B. Then there is a unique R-module map Φ :

⊕
i∈I → B

such that or all i ∈ I, φi = Φ ◦ ιi: namely

Φ : {xi} 7→
∑
i∈I

φi(xi).

Exercise: Prove it.

Notice that when the index set I is finite,
⊕

i∈IMi =
∏
i∈IMi, which is very

nice: we may make use of both universal properties. However, when the index
set is infinite the direct sum and direct product are quite different objects, each
important in its own right and (in a sense that we will make precise later on in
the language of additive categories) mutually dual. Thus for instance the abelian
group

⊕
i≥1 Z is very different from the abelian group

∏
i≥1 Z: the former group is

countably infinite, whereas the latter is uncountably infinite. Moreover the former
is (by definition: coming up soon!) a free abelian group, whereas the latter turns
out not to be (a rather difficult exercise).

Exercise: We will show that
⊕

is an exact functor. Let I be a set.
a) Suppose given for all i ∈ I an R-module map φi :Mi → Ni. Show that there is

2Unless I is the empty set, in which case we define the direct product to be the zero module.
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a naturally defined R-module map
⊕

i φi :
⊕

iMi →
⊕

iNi.
b) Suppose given for each i ∈ I a short exact sequence

0→ Ai → Bi → Ci → 0

of R-modules. Show that

0→
⊕
i

Ai →
⊕
i

Bi →
⊕
i

Ci → 0

is exact.

2.1.3. Direct Limits.

A directed set is a partially ordered set (I,≤) with the additional property that
for all i, j ∈ I, there is k ∈ I with i ≤ k and j ≤ k.

Exercise: a) Show that any totally ordered set is directed.
b) Show that a totally disordered set with more than one element is not directed.
c) Show that any partially ordered set I with a top element – i.e., an element T
with x ≤ T for all x ∈ I – is directed. Thus for instance any power set 2S is directed
under inclusion.
d) Let G be a group. Show that the set of all subgroups of G is directed under
inclusion, as is the set of all finitely generated subgroups.
e) Let M be an R-module. Show that the set of all submodules of M is directed
under inclusion, as is the set of all finitely generated submodules of M .

A direct system of R-modules is a family of R-modules {Mi}i∈I indexed by a
directed set I together with, for all pairs i, j ∈ I with i ≤ j, transition maps:
R-module maps αi,j :Mi →Mj satisfying the following two properties:
(TM1) For all i ∈ I, αi,i = 1Mi .
(TM2) For all i ≤ j ≤ k, αi,k = αj,k ◦ αi,j .

Example: When I = Z+ with the usual ordering, to give a directed system of
R-modules it is sufficient to give a sequence {Mi}∞i=1 of R-modules together with
maps αi :Mi →Mi+1 for all i ≥ 1.

Let {Mi}i∈I be a directed system of R-modules. The direct limit M = lim−→Mi is
an R-module together with maps αi : Mi → M , satisfying the following universal
mapping property: for any R-module B and R-module maps φi : Mi → B for all
i in I satisfying: φi = φj ◦ αi,j for all i ≤ j, there is a unique R-module map
Φ :M → B such that Φ ◦ αi = φi for all i.

Notice that the universal mapping property of the direct limit is reminiscent of
the universal mapping property of the direct sum, but more complicated because of
the presence of the transition maps. This gives a clue to the construction of lim−→Mi.

Namely, we start with the direct sum
⊕

i∈I and mod out by the submodule gener-
ated by ιi(xi) − ιj(xj), where i, j ∈ I, xi ∈ Mi, xj ∈ Mj and there is k ∈ I with
i ≤ k, j ≤ k such that αik(xi) = αjk(xj).

In other words, lim−→Mi is the module generated by all the Mi’s and subject to
the relations that two elements which become equal under a pair of transition maps.
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Exercise: Check that the above construction satisfies the universal mapping prop-
erty of the direct limit. Be explicit about where the fact that I is directed is used.

Exercise: Let I be a directed set with a top element T . Show that for any I-
indexed directed system {Mi}i∈I , we have lim−→Mi =MT .

Exercise: Let M be an R-module. a) Show that family of all submodules of M
naturally forms a directed system, and show that the direct limit is M .
b) Actually, in view of the previous exercise, part a) is a triviality. Redo it with
the family of all finitely generated submodules of M .

Exercise: Suppose we have a directed system {Mi}i∈I in which all the transition
maps αij are injective. Show that lim−→Mi =

∪
i∈I αi(Mi). (Thus in this case the

direct limit can be viewed as a kind of “internally constructed union”.)

Exercise: Show that lim−→ is an exact functor.

2.1.4. Inverse Limits.

2.1.5. Localization.

Let R be a commutative ring. A subset S ⊂ R is multiplicative if SS ⊂ S,
1 ∈ S and 0 /∈ S.

We wish to construct a localized ring S−1R together with a ring homomorphism
ι : R → S−1R. The key property of S−1R is that for all s ∈ S, ι(s) is a unit in
S−1R, and that S−1R is universal for this property. More precisely, the defining
uniersal mapping property of (S−1R, ι : S−1R) is that for any ring T and ring
homomorphism ιT : R → T such that ιT (S) ⊂ T×, there is a unique ring homo-
morphism φ : S−1R→ T such that ιT = φ ◦ ι.

Exercise: Let R be an integral domain and K be its fraction field. Let S = R•.
Show that K together with the natural inclusion ι : R ↪→ K satisfies the universal
mapping property defining S−1R.

The construction of the fraction field K of a domain R is an entirely straight-
forward generalization of the construction of Q from Z via ordered pairs modulo
an equivalence relation. In fact, for a domain the general case follows from this.

Exercise: Let R be a domain and let S ⊂ R be multiplicative. Show that the
subring R[S−1] of K – i.e., we adjoin to R the elements 1

s for s ∈ S – satisfies the

universal mapping property of S−1R.

It is important to be able to perform the localization process for any multiplicative
subset of any commutative ring R. (For instance, it is basic to modern algebraic
geomety: localization allows us to glue together affine schemes to form more general
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schemes.) Happily, the general construction also follows the school-child construc-
tion of Q from Z...with just one additional twist.

Here is the explicit construction of S−1R: its elements are formal quotients x
s

with x ∈ R, s ∈ S – so really, ordered pairs (x, s) ∈ R×S – subject to the following

equivalence relation: x
s ∼

x′

s′ if there is t ∈ S with t(s′x− sx′) = 0.

Exercise: a) Check that ∼ is indeed an equivalence relation on the set R× S.
b) Suppose that we considered the more obvious relation of x

s ∼
x′

s′ iff s′x = sx′.
Give an example of a ring R and a multiplicative subset S for which this is not an
equivalence relation.

Exercise: a) Show that the usual rules of addition and multiplication of fractions
are well-defined on S−1R and endow it with the structure of a commutative ring.
b) Show that there is a ring homomorphism ι : R→ S−1R given by x 7→ x

1 .
c) Show that ker ι is the set of x ∈ R such that annx∩ S ̸= ∅. Deduce that if R is
a domain, ι is injective.

Exercise: Check that the ring S−1R does indeed satisfy the aforementioned univer-
sal mapping property.

One can also perform the localization process on R-modules. Namely, for an R-
module M , S−1M is an S−1R-module, and we have an R-module map ι : M →
S−1M . Here is the universal mapping property: let N be any R-module such that
multiplication by s is an isomorphism on N for all s ∈ S, and let ιN : M → N be
an R-module map. Then there is a unique R-module map φ : S−1M → N such
that ιN = φ ◦ ι.

Exercise: a) Show that one can construct an R-module S−1M by taking the quo-

tient of M × S under the equivalence relation x
s ∼

x′

s′ if there is t ∈ S with with
t(s′x− sx′) = 0.
b) Show that ι :M → S−1M given by x 7→ x

1 is an R-module map, with kernel the
set of x ∈M such that annx ∩ S ̸= ∅.
c) Show that ι :M → S−1M satisfies the above universal mapping property.

For more information localization in commutative rings, see [CA, § 7].

There is a theory of localization in non-commutative rings due to Oystein Ore,
but this is significantly more involved and will not be treated (or needed) in this
course. The following exercise does something much more modest.

Exercise: Let R be any ring, and let S be a central multiplicative subset, i.e.,
S ⊂ Z(R). Show that the constructions of this section go through without change
in this setting, i.e., we can still define S−1R and S−1M .

2.1.6. Pullbacks.

A pullback of f : X → Z, g : Y → Z is a module P and morphisms π1 : P → X,
π2 : P → Y satisfying the following universal mapping property: given π′

1 : P ′ → X
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and π′
2 : P ′ → Y with fπ′

1 = gπ′
2, there is a unique morphism π : P ′ → P such

that π1π = π′
1, π2π = π′

2.

Exercise: With notation above, let P = {(x, y) ∈ X × Y such that f(x) = g(y).
Let π1 and π2 be the two coordinate projection maps. Show that this constructs
the pullback.

2.1.7. Pushouts.

Let f : Z → X and g : Z → Y be module maps. A pushout of f and g is a
module P and morphisms ι1 : X → P , ι2 : Y → P satisfying the following univer-
sal mapping property: for any module Q and morphims: j1 : X → Q, j2 : Y → Q
such that j1f = j2g, there is a unique map ι : P → Q such that ιι1 = j1 and ιι2 = j2.

Exercise: With notation above, let T = {(f(z),−g(z)) | z ∈ Z} ⊂ X ⊕ Y , and
let P = X ⊕ Y/T . Let ι1 : X → P be X ↪→ X ⊕ Y → (X ⊕ Y )/T and ι2 : Y → P
be Y ↪→ X ⊕ Y → (X ⊕ Y )/T . Show that this constructs the pushout.

2.2. Tensor and Hom.

Exercise 2.1) Let M be a right R-module, and consider the functor F from left
R-modules to abelian groups: F (N) =M ⊗R N .
a) Show that F is an additive covariant functor.
b) Show that F is right exact: for any exact sequence

A→ B → C → 0

of left R-modules, the induced sequence

F (A)→ F (B)→ F (C)→ 0

is exact.

Comment: Exercise 1.6) shows that when R = Z and M = Z/2013Z, the func-
tor F is not exact. As we will see shortly, it is interesting and important to isolate
the class of R-modules M for which tensoring with M is exact.

Exercise 2.2) Let M and N be left R-modules. We denote by HomR(M,N) the set
of all R-module homomorphisms φ :M → N .
a) Show that HomR(M,N) has the natural structure of a commutative group.
b) Suppose R is commutative. Show that (r, φ) : m 7→ f(rm) gives HomR(M,N)
the structure of an R-module. What goes wrong here if R is not commutative?

Exercise 2.3) Let M be a left R-module, and consider the covariant Hom func-
tor from the category of left R-modules to the category of abelian groups (or to
R-modules if R is commutative): F : N 7→ HomR(M,N).
a) Show that F is an additive covariant functor.
b) Show that F is left exact: for any exact sequence

0→ A→ B → C

the induced sequence

0→ F (A)→ F (B)→ F (C)
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is exact.
c) Show that when R = Z and M = Z/nZ for n > 1, the functor F is not exact.
As we shall see shortly...

Exercise 2.4) Let N be a left R-module, and consider the contravariant Hom
functor from the category of left R-modules to the category of abelian groups (or
to R-modules if R is commutative): F :M 7→ HomR(M,N).
a) Show that F is an additive contravariant functor.
b) Show that if

A→ B → C → 0

is exact, then

0→ F (A)→ F (B)→ F (C)

is exact. The standard name for a contravariant functor with this property is left
exact, but one could also justify the name “right exact”. We will try out a new –
less confusing, we hope – name: epimonic.
c) Show that when R = N = Z the functor F is not exact. As we shall see shortly...

Exercise 2.5) We work with left R-modules. Find canonical isomorphisms:
a) HomR(A,

∏
i∈I Bi)

∼=
∏
i∈I HomR(A,Bi).

b) HomR(
⊕

i∈I Ai, B) ∼=
∏
i∈I HomR(Ai, B).

Exercise: Let R→ T be a ring homomorphism.
a) (Associating Tensor Identity) Let M ∈ ModT , N ∈T ModR and P ∈R Mod.
Find a canonical isomorphism

M ⊗T (N ⊗R P ) ∼= (M ⊗T N)⊗R P.

b) (Telescoping Tensor Identity) Deduce

M ⊗T (T ⊗R P ) ∼=M ⊗R P.

Exercise: Let R → T be a ring homomorphism. Let A ∈T Mod and B ∈R Mod.
Find a canonical isomorphism, the Telescoping Hom Identity:

HomT (A,HomR(T,B)) ∼= HomR(A,B).

Exercise 2.6) (Tensor-Hom Adjunction) Let R and T be rings, let X ∈R ModT ,
Y ∈ ModR and Z ∈T Mod. Find a canonical isomorphism

HomS(Y ⊗R X,Z) ∼= HomR(Y,HomS(X,Z)).

In other words, tensor and hom are adjoint functors.

Exercise: a) Let R be a commutative ring, S ⊂ R a multiplicative subset, and
M and R-module. Show that M ⊗R S−1R ∼= S−1M . (Suggestion: show that
M ⊗R S−1M also satisfies the appropriate universal mapping property.)
b) Let R be a domain with fraction field K, and let M be an R-module. Show that
the kernel of M → M ⊗R K is M [tors], i.e., the set of elements x ∈ M such that
rx = 0 for some r ∈ R•.
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2.3. Splitting.

Exercise 2.8) Let 0→ A
ι→ B

p→ C → 0 be a short exact sequence of left R-modules.
We say that the sequence is split if there exists an R-module map σ : C → B such
that p ◦ σ = 1C : such a σ is called a section of p.
a) Show that for all a, b ∈ Z+ there is a short exact sequence of Z-modules

0→ Z/aZ→ Z/abZ→ Z/bZ→ 0.

For which values of a and b is this sequence split?
b) Show: a section σ gives a canonical isomorphism B ∼= A⊕ C.
c) Show that the short exact sequence is split iff there is an R-module map r : B →
A such that ι ◦ r = 1B : such an r is called a retraction of ι.
d)* Suppose there is some isomorphism B ∼= A ⊕ C. Must the sequence be split?
(Suggestion: see [Rot, p. 54].)

Exercise 2.9) Let R be a ring.
a) Suppose R =

∏n
i=1Ki is a finite product of fields. Show that every short exact

sequence of R-modules splits.
b)* Suppose R is a commutative ring such that every short exact sequence of R-
modules splits. Show: R is isomorphic to a finite product of fields.
c) Give necessary and sufficient conditions on a not necessarily commutative ring for
every short exact sequence of left R-modules to split. (Hint: Wedderburn-Artin.)

2.4. Free Modules.

Proposition 2.3. For a left R-module M , the following are equivalent:
(i) M ∼=

⊕
i∈I R for some index set I.

(ii) There is a subset I of M with the following property: for any R-module N
and any function x : I → N , there is a unique R-module map Φ : M → N with
φ(i) = x(i) for all i ∈ I.
A module satisfying these equivalent conditions is called a free module, and a
subset E satisfying the conditions of (ii) is called a basis.

Proof. (i) =⇒ (ii): PutM =
⊕

i∈I R. Let ei ∈M be the element which is 1 in the
ith coordinate and otherwise 0. For i ∈ I, let φi : R→ N be the unique R-module
homomorphism with φi(1) = x(i). By the universal property of the direct sum
there is a unique homomorphism Φ :M → N with φi = Φ ◦ ιi for all i ∈ I.

(ii) =⇒ (i): Put F =
⊕

i∈I R, and once again let ei in F be the element
which is 1 in the ith coordinate and otherwise 0. By hypothesis, there is a unique
R-homomorphism Φ : M → F with Φ(i) = ei for all i. By (i) =⇒ (ii), there is
a unique R-homomorphism Ψ : F → M with Ψ(ei) = i for all i. It follows easily
from the assumed property of M and the universal property of the direct sum that
Ψ ◦ Φ = 1M and Ψ ◦ Φ = 1F , so Φ and Ψ are mutually inverse isomorphisms. �

Exercise: a) Let R be a commutative ring, and let M be an R-module. Show that
any two bases of R have the same cardinality. (Hint: let m be a maximal ideal of
R. Tensor from R to the field R/m to reduce this to a known fact in linear algebra.
b)∗ Find a noncommutative ring such that R ∼= R2 as left R-modules.

A ring R is said to have the invariant basis number property (or IBN) if any
two bases of an R-module have the same cardinality. As the above exercise shows,
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every commutative ring satisfies IBN but there are non-commutative rings which
do not. For more information on IBN see [NCA] and [Lam99]. In particular one
finds in these sources that a left Noetherian ring satisfies IBN.

If R is an IBN ring and F is a free R-module, we define the rank of F to be
the cardinality (well-determined by the IBN condition) of any basis of R. On the
other hand, if R is a domain with fraction field K, then for any R-module M , we
define the rank of M as dimKM ⊗R K.

Exercise: Show that this terminology is consistent: i.e., for free R-modules over
a domain, the two notions of rank coincide.

Exercise: Show that an R-module M is finitely generated iff there is a surjec-
tion Rn →M for some n ∈ Z+.

Exercise: a) Let I be an infinite set, and let {Mi}i∈I be a family of nonzero left
R-modules. Show that

⊕
i∈IMi is not finitely generated.

b) Deduce that it is not possible for an R-module to have both a finite basis and
an infinite basis.

Exercise 2.7) For a ring R, show the following are equivalent:
(i) Every left R-module is free.
(ii) R is a division ring.

Direct sums of free modules are free almost by definition. What about direct
products? The following classic example answers this question in the negative.

Theorem 2.4 (Baer [Bae37]). The group B =
∏∞
n=1 Z is not free abelian.

Proof. We follow [Sch08]. Suppose B is free, and let {bi}i∈I be a basis for B. Since
#B = c = 2ℵ0 , we must also have #I = c. For n ∈ Z+, let en be the element which
is 1 in the nth coordinate and 0 otherwise, so that en is a basis not for B but for
its subgroup b =

⊕∞
n=1 Z. For each n, write

en =
∑
i∈I

λn,ibi,

and let

J = {i ∈ I | λn,i ̸= 0 for some n}.
The set J is countable, and thus so is A = ⟨bi | i ∈ J⟩. We have

b ⊂ A ⊂ B.

Further, the images of the elements bi for i ∈ I \ J form a basis for B/A.
Consider elements y = {xn} ∈ B with x1 = 1 and for all n ≥ 1, xn+1 = 2anxn

for some an ≥ 1. The set of all such y is in bijection with B so has cardinality
c; thus there is such a y = (x1, x2, . . .) ∈ B \ A. Since A ⊃ b, for all k ∈ Z+,
y ≡ (0, . . . , 0, xk+1, xk+2, . . .) (mod A). So in the free abelian group B/A, 0 ̸= y is
divisible by 2k for all positive integers k, and this is a clear contradiction. �

Exercise (Goodwillie): Let R be a Noetherian domain which is not a field. Show
that

⊕∞
i=1R is not a free R-module. (Comment: if R is countably infinite, then the
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above proof goes through with 2 replaced by any element π of R which is nonzero
and not a unit.)

Remark: On the other hand, Specker showed that every countable subgroup of
B is free abelian [Sp50]. These two results have focused a lot of interest on the
group B, which is often called the Baer-Specker group.

Exercise: Let R be a domain with fraction field K. If R ̸= K, show that K is
not a free R-module.

Theorem 2.5. Let R be a PID.
a) Let M be a finitely generated module. Then M is free iff it is torsionfree.
b) If F is a free R-module and M ⊂R F , then F is free, and rankM ≤ rankF .

Proof. Part a) is an immediate consequence of the structure theory for modules over
a PID, with which we assume familiarity. Note that part b) follows immediately
when F is finitely generated. The general case is a bit harder. For one proof – which
is however embedded in a more general discussion which is unnecessarily intricate
if one is only interested in this particular result – see [CA, Thm. 3.57]. �
Exercise: a) Let R be a Notherian domain in which every finitely generated tor-
sionfree module is free. Show that R is a PID.
b) Let R be a commutative ring in which every submodule of a free module is free.
Show that R is a PID.

Proposition 2.6. For a domain R, the following are equivalent:
(i) Every finitely generated ideal of R is principal.
(ii) Every finitely generated torsionfree R-module is free.
A domain satisfying these equivalent conditions is called a Bézout domain.

Proof. See [CA, Thm. 3.62]. �
Let R be a domain. An element v ∈ Rn is primitive – or a primitive vector –
if it is not of the from αw for any α ∈ R \R×.

Exercise: Show: v ∈ (Rn)• is primitive iff Rn/⟨v⟩ is torsionfree.

he following result is useful – especially in the case R = Z – in classical algebraic
number theory and in “geometry of numbers”.

Theorem 2.7. (Hermite’s Lemma) Let R be a Bézout domain, and let ei =
(0, . . . , 1, . . . 0) ∈ Rn be the ith standard basis vector. For v ∈ Rn, TFAE:
(i) There is M ∈ GLn(R) with M(e1) = v, i.e., the first column of M is v.
(ii) There is a basis for Rn containing v.
(iii) v is a primitive vector.

Proof. (i) =⇒ (ii): If M(e1) = v, then {M(ei)}ni=1} is a basis for M containing v.
(ii) If v, v2, . . . , vn is a basis, the matrix with columns v, v2, . . . , vn lies in GLn(R).
¬ (iii) =⇒ ¬ (i): Let v = αw for α ∈ R \ R×, and let M ∈ Mn(R) be a matrix
with M(e1) = v. Let M ′ be the matrix obtained from M by replacing the first
column with w. Then detM = α(detM ′), so detM /∈ R×.
(iii) =⇒ (i): Put F = Rn/⟨v⟩ and consider the exact sequence

0→ ⟨v⟩ → Rn
q→M → 0.
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By Exercise X.X, M is torsionfree. It is also finitely generated, so by Theorem X.X
M is free. Tensoring to the fraction field shows rankM = n− 1; let w2, . . . , wn be
a basis. For 2 ≤ i ≤ n, choose vi ∈ Rn mapping to wi in M . By the universal
property of free modules there is an R-module map from ι : M → Rn mapping wi
to vi for all i, and since q ◦ ι = 1M , ι is an isomorphism onto its image. It follows
that v, v2, . . . , vn is R-linearly independent and spans Rn. �

2.5. Projective Modules.

A left R-module P is projective if every short exact sequence

0→M → N → P → 0

splits.
A left R-module E is injective if every short exact sequence

0→ E →M → N → 0

splits.

Exercise 2.10) Let P be a left R-module.
a) Show that P is projective iff: whenever we have an R-module surjection f :
M → N and an R-module map a : P → N , there is a lift A : P → N , i.e., an
R-module map such that f ◦A = a.
b) Show that P is projective iff: there is a left R-module Q such that P ⊕ Q is a
free R-module.
c) Show that P is projective iff the functor M 7→ HomR(P,M) is exact.

Exercise 2.11) Show that free R-modules are projective.

Remark: In general it is much easier to check whether an R-module is projec-
tive than whether it is free. For instance, in 1955 Serre asked whether every finitely
generated projective module over a polynomial ring k[t1, . . . , tn] (where k is any
field) is free. This was proven in 1976 by D. Quillen and A.A. Suslin (indepen-
dently). It is not a coincidence that Quillen won the Fields Medal in 1978!

Exercise 2.12) Show that every left R-module is a quotient of a projective module.
(This result is described as “The category of R-modules has enough projectives.”
Soon enough we will understand the significance of this: it implies that every mod-
ule admits a projective resolution.)

Exercise 2.13) Let {Mi}i∈I be a family of R-modules, and put M =
⊕

i∈IMi.
a) Show: M is projective iff each Mi is projective.
b) Show that M free does not imply that each Mi is free.
(Suggestion: this is in fact equivalent to the existence of nonfree projective mod-
ules. As alluded to above, this is often a delicate issue. For a cheap example, try a
ring like C× C.)

Exercise: Let R be a commutative ring, and let M,N be R-modules. Show that if
M and N are projective, so is M ⊗R N .
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Let R be an integral domain. Recall(?) that an ideal I of R is invertible if
there exists an ideal J and a ∈ R• such that IJ = aR. (Here IJ is the set of
all finite sums of elements ij for i ∈ I and j ∈ J .) It is a fact that a nonzero
ideal is invertible iff it is, as an R-module, projective. An integral domain in which
every nonzero finitely generated ideal is invertible is called a Prüfer domain. In
Noetherian rings all ideals are finitely generated, so a Noetherian Prüfer domain is
precisely a Dedekind domain.

Exercise 2.17) For a Dedekind domain R, show that the following are equivalent:
(i) Every projective R-module is free.
(ii) The ideal class group of R is trivial.
(iii) R is a PID.

In algebraic geometry, a finitely generated projective R-module P is viewed as
a vector bundle over the affine scheme SpecR. This perspective is due to Serre.
Well, maybe the above means little or nothing to you, but there is an easier ana-
logue in topology that I at least find particularly beautiful and motivational. Let
X be a topological space. For a real vector bundle η : E → X we attach the set
Γ(X,E) of global sections, namely the set of all continuous maps σ : X → E such
that η ◦ σ = 1X . Because each fiber η−1(x) of η has the structure of an R-vector
space, it makes sense to add two global sections and to scale any global section by
any real number. This endows Γ(X,E) with the structure of an R-vector space.
But actually it has much more structure than that: if f : X → R is any continuous
function and σ : X → E is any global section, then fx is again a global section.
Now the continuous functions from X to R form a commutative ring C(X,R) under
pointwise addition and multiplication, and by what we have just said, Γ(X) has
the natural structure of a C(X,R)-module.

Theorem 2.8. (Serre-Swan) Let X be a compact space. The functor E → X 7→
Γ(X,E) gives a categorical equivalence from the category of real vector bundles on
X to the category of finitely generated C(X,R)-modules.

Proof. See [CA, § 6.3]. �
2.6. Injective Modules.

Proposition 2.9. For a left module E over a ring R, TFAE:
(ii) If ι : M → N is an injective R-module homomorphism and φ : M → E is
any homomorphism, there exists at least one extension of φ to a homomorphism
Φ : N → E.
(iii) If ι : M → N is an injection, the natural map Hom(N,E) → Hom(M,E) is
surjective.
(iv) The (contravariant) functor Hom(·, E) is exact.
(v) Any short exact sequence of R-modules

0→ E
ι→M → N → 0

splits: there exists an R-module map π : M → E such that π ◦ ι = 1E and thus an
internal direct sum decomposition M = ι(E)⊕ ker(π) ∼= E ⊕N .
A module satisfying these equivalent conditions is called injective.

Exercise 3.1) Prove Proposition 2.9.
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Exercise 3.2) Show that every module over a field is injective.

Exercise 3.3) Show that Z is not an injective Z-module. (Thus injectivity is the
first important property of modules that is not satisfied by free modules.)

Exercise 3.4) Let {Mi}i∈I be any family of R-modules and put M =
∏
i∈IMi.

Show that M is injective iff Mi is injective for all i ∈ I.

One naturally asks whether the same result holds for direct sums. This is vaguely
dual to the issue of whether a product of projective modules must be projective.
Given that the Baer-Specker group gives a negative answer to this even over such
a nice ring as Z, the following result is rather surprising.

Theorem 2.10 (Bass-Papp [Bas59] [Pa59]). For a ring R, TFAE:
a) A direct sum of injective left R-modules is injective.
b) A countable direct sum of injective left R-modules is injective.
c) R is left Noetherian.

Proof. See [CA, Thm. 8.29]. (The result is stated there for commutative rings, but
the proof goes through in the general case.) �
Exercise 3.5) For a ring R, show TFAE:
(i) R is absolutely projective: every R-module is projective.
(ii) R is absolutely injective: every R-module is injective.
(iii) R is semisimple.

Theorem 2.11 (Baer Criterion [Bae40]). For an R-module E, TFAE:
(i) E is injective.
(ii) For every nonzero left ideal I of R, every R-module map φ : I → E extends to
an R-module map Φ : R→ E.

Proof. (i) =⇒ (ii): In condition (ii) of Proposition 2.9, take M = I, N = R.
(ii) =⇒ (i): Let M be an R-submodule of N and φ : M → E an R-module
map. We must show: φ can be extended to N . Now the set P of pairs (N ′, φ′)
with M ⊂ N ′ ⊂ N and φ : N ′ → E a map extending φ is nonempty and has an
evident partial ordering, with respect to which the union of any chain of elements
in P is again an element of P. So by Zorn’s Lemma, there is a maximal element
φ′ : N ′ → E. Our task is to show that N ′ =M .

Assume not, and choose x ∈ N \N ′. Put

I = (N ′ : x) = {r ∈ R | rx ⊂ N ′};
one checks immediately that I is an ideal of R. Consider the composite map

I
·x→ N ′ φ→ E;

by our hypothesis, this extends to a map ψ : R → E. Now put N ′′ = ⟨N ′, x⟩ and
define3 φ′′ : N ′′ → E by

φ′′(x′ + rx) = φ′(x′) + ψ(r).

Thus φ′′ is an extension of φ′ to a strictly larger submodule of N than N ′, contra-
dicting maximality. �

3Since N ′′ need not be the direct sum of N ′ and ⟨x⟩, one does need to check that φ′′ is
well-defined; we ask the reader to do so in an exercise following the proof.
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Exercise 3.6) Verify that the map φ′′ is well-defined.

A module M over a domain R is divisible if for all r ∈ R• the endomorphism
r• : M → M,x 7→ rx, is surjective. Further, we define M to be uniquely divisi-
ble if for all r ∈ R•, the endomorphism r• : M → M is a bijection. For example:
the Z-module Q is divisible; Q/Z is divisible but not uniquely.

Exercise 3.7) Show: a divisible module is uniquely divisible iff it is torsionfree.

Exercise 3.8) a) Show that a quotient of a divisible module is divisible.
b) Show that direct sums and direct products of divisible modules are divisible.

Exercise 3.9) Let R be a domain with fraction field K.
a) Show that K is a uniquely divisible R-module.
b) Let M be any R-module. Show that the natural map M →M ⊗RK is injective
iff M is torsionfree.
c) Show that for any R-module M , M ⊗R K is uniquely divisible.
d) Show that K/R is divisible but not uniquely divisible.

Exercise 3.10)
a) Show that a Z-module is uniquely divisible iff it can be endowed with the (com-
patible) structure of a Q-module, and if so this Q-module structure is unique.
b) Show that a Z-module M is a subgroup of a uniquely divisible Z-module iff it is
torsionfree.

Proposition 2.12. Let R be a domain and E an R-module.
a) If E is injective, it is divisible.
b) If E is torsionfree and divisible, it is injective.
c) If R is a PID and E is divisible, it is injective.

Proof. a) Let r ∈ R•. For x ∈ E, consider the R-module homomorphism φ :
rR → E given by r 7→ x. Since E is injective, this extends to an R-module map
φ : R→ E. Then rφ(1) = φ(r · 1) = φ(r) = x, so r• is surjective on E.
b) Let I be a nonzero ideal of R and φ : I → E be an R-module map. For each
a ∈ I•, there is a unique ea ∈ E such that φ(a) = aea. For b ∈ I•, we have

baea = bφ(a) = φ(ba) = aφ(b) = abeb;

since E is torsionfree we conclude ea = eb = e, say. Thus we may extend φ to a
map Φ : R→ E by Φ(r) = re. Thus E is injective by Baer’s Criterion.
c) As above it is enough to show that given a nonzero ideal I of R, every homo-
morphism φ : I → E extends to a homomorphism R → E. Since R is a PID, we
may write I = xR for x ∈ R•. Then, as in part a), one checks that φ extends to Φ
iff multiplication by x is surjective on M , which it is since M is divisible. �
We quote the following result from [CA, § 20.7].
Theorem 2.13. For an integral domain R, the following are equivalent:
(i) Every divisible R-module is injective.
(ii) R is a Dedekind domain.

By combining Proposition 2.12 with Exercise 3.42, we see that if M is a torsionfree
module over a domain R, then M is a submodule of the uniquely divisible – hence
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injective – module M ⊗RK. Later we will show that in fact every left R-module is
a submodule of an injective module: this is somewhat more involved.

Exercise 3.11) Let n ∈ Z+.
a) Show that as a Z-module Z/nZ is not divisible hence not injective.
b) Show that Z/nZ is injective as a Z/nZ-module. (One says that Z/nZ is a self-
injective ring.)

Exercise 3.12) Let R = Z[t] and let K be its fraction field. Show that the R-
module K/R is divisible but not injective.

Exercise 3.13) Let R be a domain with fraction field K.
a) If R = K, then all R-modules are both injective and projective.
b) If R ̸= K, the only R-module which is both projective and injective is 0.

Let M be a right R-module and A a left Z-module. We endow the abelian group
HomZ(M,A) with the structure of a left R-module by (rf)(x) = f(xr).4

As a special case, we denote HomZ(M,Q/Z) by M∗ and call it the Pontrjagin
dual of M . Because Q/Z is an injective Z-module, the (contravariant) functor
M 7→M∗ – or in other words HomZ( ,Q/Z) – is exact.5 In particular, if f :M → N
is an R-module map, then f injective implies f∗ surjective and f surjective implies
f∗ injective.

Exercise 3.14) a) Let M be a nonzero abelian group. Show that M∗ ̸= 0.
b) Show that for any left R-module M , there is a natural injection of R-modules
ΨM :M →M∗∗.

Lemma 2.14. Every Z-module M can be embedded into an injective Z-module.

Proof. Let I ⊂ M be a generating set and let
⊕

i∈I Z → M be the correspond-
ing surjection, with kernel K, so M ∼= (

⊕
i∈I Z)/K. The natural map

⊕
i∈I Z ↪→⊕

i∈I Q induces an injection M ↪→ (
⊕

i∈I Q)/K, and the latter Z-module is divisi-
ble, hence injective since Z is a PID. �

Lemma 2.15. (Injective Production Lemma) Let E be an injective Z-module and
F a flat R-module. Then HomZ(F,E) is an injective R-module.

Proof. We will show that the functor HomR( ,HomZ(F,E)) is exact. For any R-
module M , the adjointness of ⊗ and Hom gives

HomR(M,HomZ(F,E)) = HomZ(F ⊗RM,E)

so we may look at the functor M 7→ HomZ(F ⊗R M,E) instead. But this is the
composition of the exact functor M 7→ F ⊗R M with the exact functor N 7→
HomZ(N,E), so it is exact. �

Theorem 2.16. Every R-module can be embedded into an injective R-module.

4Thanks to John Doyle for noting that this construction inverts the “handedness” of the
module.

5Here we are using the (obvious) fact that a sequence of R-modules is exact iff it is exact when
viewed merely as a sequence of Z-modules.
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Proof. Let M be an R-module. Viewing M as a Z-module, by Lemma 2.14 there is
an injective Z-module E1 and a Z-module map φ1 :M ↪→ E1. Further, by Lemma
2.15, HomZ(R,E1) is an injective R-module. Now consider the R-module map

φ :M → HomZ(R,E1), x 7→ (r 7→ φ1(rx)).

We claim that φ is an injection. Indeed, if φ(x) = 0 then for all r ∈ R, φ1(rx) = 0.
In particular φ1(x) = 0, so since φ1 is a monomorphism, we conclude x = 0. �

Theorem 2.17. Every left R-module admits a right injective resolution: i.e., there
is an exact sequence

0→M → E0 → E1 → . . .→ En → En+1 → . . .

with each En injective.

Exercise 3.15) Prove Theorem 2.17.

2.7. Flat Modules.

A right R-module M is flat if for any short exact sequence of left R-modules

0→ A→ B → C → 0,

the complex of abelian groups

0→M ⊗R A→M ⊗R B →M ⊗R C → 0

remains exact. In other words, M is flat if M ⊗R · is an exact functor. Similarly
we say that a left R-module is flat if · ⊗RM is exact.

Around the 1950’s it was observed that flatness is one of the central notions of
commutative algebra, although it seems technical at first. On the homological al-
gebra side flatness is an easier sell: as we will see, it is closely related to the universal
coefficient theorems in co/homology.

Exercise: Let {Mi}i∈I be an indexed family of left R-modules. Show that
⊕

i∈I is
flat iff Mi is flat for all i.

Exercise 2.14) Show that projective modules are flat.
(Suggestion: Reduce to the case that free modules are flat.)

Let R be a domain. For an R-module M , we define the torsion submodule

M [tors] = {m ∈M | ∃r ∈ R• | rm = 0}.
In words, M [tors] consists of the elements of M which are killed by some nonzero
element of R. We sayM is torsion ifM =M [tors] and torsionfree ifM [tors] = 0.

Exercise 2.15) Let R be a commutative ring.
a) Suppose R is an integral doomain. Show that flat modules are torsionfree.
b) Suppose R is not an integral domain, and suppose that we took the same defini-
tion of a torsionfree module as given above. Show that in fact no nonzero R-module
is torsionfree (so this is not a good definition!).

To sum up, we have the following implications among classes of modules, in which
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the last holds for integral domains and the others hold on all rings:

free =⇒ projective =⇒ flat =⇒ torsionfree

Exercise: a) Show that the following conditions on a domain are equivalent:
(i) Every finitely generated torsionfree R-module is free.
(ii) Every finitely generated ideal of R is principal (R is a Bézout domain).
b) Deduce that if R is a Noetherian domain in which every finitely generated tor-
sionfree R-module is free, then R is a PID.

Exercise 2.16) Let R be a PID, and let M be an R-module.
a) Suppose M is finitely generated. Show: M is free iff it is torsionfree.
b)* Show that every projective R-module is free. (See e.g. [CA, Cor. 3.58].)
c)* Show that every torsionfree R-module is flat. (See e.g. [CA, Cor. 3.86].)
d) Show that the additive group (Q,+) is torsionfree but not free.

Proposition 2.18. For a multiplicative subset S of a commutative ring R, S−1R
is a flat R-module.

Proof. Since S−1M = S−1R⊗RM , we must show that if

0→M ′ →M →M ′′ → 0

is an exact sequence of R-modules, then so is

0→ S−1M ′ → S−1M → S−1M ′′ → 0.

Tensor products are always right exact, so we need only show S−1M ′ ↪→ S−1M .

Suppose not: then there exists m′ ∈ M ′ and s ∈ S such that m′

s = 0 ∈ M . Thus

there is g ∈ S such that gm′ = 0, but if so, then m′

s = 0 in M ′. �

A ring R is absolutely flat if every left R-module is flat.

Theorem 2.19 (Harada). A ring is absolutely flat iff it is von Neumann regular:
for all a ∈ R, there is x ∈ R with a = axa.

Proof. See [Rot, Thm. 4.9]. �

Theorem 2.20. For a commutative ring, the following are equivalent:
(i) R is absolutely flat.
(ii) For every principal ideal I of R, I2 = I.
(iii) Every finitely generated ideal of R is a direct summand.

Proof. See [CA, § 3.11]. �

Exercise: A ring R is Boolean if for every x ∈ R, x2 = x.
a) Show that a Boolean ring is commutative.
b) Show that a Boolean ring is absolutely flat.

Theorem 2.21. For an integral domain R, the following are equivalent:
(i) Every torsionfree R-module is flat.
(ii) Every finitely generated torsionfree R-module is projective.
(iii) R is a Prüfer domain.

Proof. See [CA, Thm. 21.9]. �
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Theorem 2.22. Let {Mi}i∈I be a family of R-modules indexed by a direct set I.
If each Mi is flat, then lim−→Mi is flat.

Proof. See [Rot, Prop. 5.34] for a proof using module-theoretic methods. Later we
will give a proof of a more general result using categorical ideas. �

Theorem 2.23 (Govorov-Lazard [Gov65] [Laz64]). For an R-module M , the fol-
lowing are equivalent:
(i) M is flat.
(ii) M is a direct limit of free modules.

Proof. See [Laz64, Thm. 5.40]. �

3. The Calculus of Chain Complexes

3.1. Additive Functors.

A functor F from the category of left R-modules to the category of left S-modules
is additive if for all f, g ∈ HomRMod(A,B), F (f + g) = Ff + Fg.

Exercise 4.1 ([Rot, Prop. 27]): If F is an additive functor, show that F takes the
0 object to the zero object and any zero homomorphism to the zero homomorphism.

Exercise 4.2 ([Rot, Cor. 2.21]) If F is an additive functor, F (A⊕B) ∼= F (A)⊕F (b).

3.2. Chain Complexes as a Category.

We claim that the chain complexes M• of left (or right-) R-modules form an addi-
tive category in their own right. By a morphism of chain complexes f : M• → N•
we mean the most obvious thing: namely, for all n ∈ Z we have an R-module map
fn :Mn → Nn and these maps commute with the differentials:

∀n ∈ Z, dn−1 ◦ fn = fn−1 ◦ dn.
Rather than expressing this symbolically as above, it is more perspicuous to draw
a commutative ladder...but I’m going to be lazy about inserting commutative dia-
grams into this document, unfortunately for you.

Exercise 4.3) Give definitions for:
a) An injective morphism of chain complexes.
b) A surjective morphism of chain complexes.
c) The kernel of a morphism of chain complexes.
d) The image of a morphism of chain complexes.
e) The cokernel of a morphism of chain complexes.

3.3. Chain Homotopies.

In algebraic topology one has the important notion of a homotopy between con-
tinuous maps f, g : X → Y : this is a continuous map H : X × [0, 1] → Y such
that H(x, 0) = f(x), H(x, 1) = g(x) for all x ∈ X, and we write f ∼ g. It is often
useful to regard homotopic maps as being equivalent. This leads for intance to the
notion of a homotopy equivalence of topological spaces: we say that X and Y
are homotopy equivalent if there are maps f : X → Y and g : Y → X such that
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g◦f ∼ 1X , f ◦g ∼ 1Y . Most of the standard invariants in algebraic topology do not
distinguish between homotopy equivalent spaces.6 In particular, a homotopy equiv-
alence between spaces induces an isomorphism on the singular co/homology groups.

In homological algebra we have an analogous notion, that of a chain homotopy
between chain complexes. As in the topological case, this leads to a notion of chain
homotopy equivalence of chain complexes, and a chain homotopy equivalence is
a quasi-isomorphism: that is, it induces an isomorphism on homology groups.
Many of the basic uniqueness results in homological algebra come from showing
that a certain complex is unique up to chain homotopy equivalence.

Two morphisms f, g : C• → D• are chain homotopic if there exists for all n ∈ Z+

a map sn : Cn → Dn+1 such that

fn − gn = dn+1sn + sn−1dn;

the sequence {sn} is called a chain homotopy. We write f ∼ g.

Exercise 4.4) a) Let f be an additive functor from the category of left R-modules
to the category of left S-modules. Show that there is an induced functor C(f) from
chain complexes of R-modules to chain complexes of S-modules.
b) Let f, g : A• → B• be morphisms of chain complexes of R-modules, and let F be
an additive functor from R-modules to S-modules. Show: f ∼ g =⇒ F (f) ∼ F (g).
(Hint: apply F to the chain homotopy between f and g!)

Proposition 3.1. Let f, g : C• → D• be chain homotopic maps. Then Hn(f) =
Hn(g) for all n ∈ Z.

Proof. Replacing f and g by f − g and 0, it suffices to assume that g = 0 and show
that Hn(f) = 0 for all n ∈ Z. We know that

fn = dn+1sn + sn−1dn.

Let x ∈ Hn(C•), so x is represented by an element x ∈ Ker dn : Cn → Cn−1. Then

f(x) = dn+1sn(x) + sn−1dn(x) = dn+1(sn(x)),

so x lies in the image of dn+1 : Cn+1 → Cn. �

Note well that chain homotopy is an equivalence relation between maps between
chain complexes, just as in topology homotopy is an equivalence relation between
maps between topological spaces. Just as in the topological case, we can use this
relation to define an equivalence relation between chain complexes: we say that
C• and D• are chain homotopy equivalent if there are maps f : C• → D•,
g : D• → C• such that

g ◦ f ∼ 1C• , f ◦ g ∼ 1D• .

Proposition 3.2. Let f : C• → D•. If f is a chain homotopy equivalence, it is
a quasi-isomorphism. In other words, chain homotopic complexes have isomorphic
homology.

6The natural first reaction is to regard this as a weakness, e.g. that the methods of algebraic

topology do not distinguish between Rm and Rn. My algebraic topology teacher J.P. May surprised
me by extolling it as a great advantage of the theory. In short, it turns out that he was right.
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Proof. Let g : D• → C• be such that g ◦ f ∼ 1C , f ◦ g ∼ 1D. Then for all n ∈ Z,
Hn(g) ◦Hn(f) = Hn(g ◦ f) = Hn(1C) = 1Hn(C),

Hn(f) ◦Hn(g) = Hn(f ◦ g) = Hn(1D) = 1Hn(D).

So Hn(f) and Hn(g) are inverse isomorphisms between Hn(C) and Hn(D). �
3.4. The Comparison Theorem.

Theorem 3.3 (Comparison theorem for resolutions).

a) Let P•
ϵ→M be a projective resolution of the R-module M . Let f−1 :M → N be

an R-module map, and let Q•
η→ M be any resolution. Then there is a chain map

f : P• → Q• such that ηf0 = f−1ϵ. Moreover f is unique up to chain homotopy.
b) Let E• be an injective resolution of the R-module N . LetM be another R-module
and f−1 : M → N be an R-module map. Then for every right resolution A• of M
there exists a homomorphism η from the chain complex 0→M → A• to the chain
complex 0→ N → E•. Moreover η is unique up to chain homotopy.

Proof. a) Existence of s: By induction, suppose: for all i ≤ n we have fi : Pi → Qi
such that fi−1d = dfi. We must define fn+1 : Pn+1 → Qn+1 such that fnd = dfn+1.
If n = −1, then using the projectivity of P0 we may lift the map f−1ϵ : P → N to
a map f0 : P → Q0: by construction this makes the rightmost square commute.
n ≥ 0: fn : Pn → Qn restricts to a map fn : Zn(P ) → Zn(Q) on the cycles. Since
Q• is exact, the map d : Qn+1 → Zn(Q) is a surjection. Since Pn+1 is projective,
we may lift the map fn|Zn(P ) ◦ (d : Pn+1 → Zn(P )) to a map fn+1 : Pn+1 → Qn+1.
Then dfn+1 = fn|Zn(P ) ◦ d = fn ◦ d.
Uniqueness of s: Let g : P• → Q• be another chain map satifying ηg0 = f−1ϵ, and
put h = f − g. We will construct a chain homotopy sn : Pn → Qn+1 from h to the
zero map by induction.
If n < 0, then Pn = 0, so put sn = 0.
If n = 0, then since

ηh0 = η(f0 − g0) = f−1ϵ− f−1ϵ = 0,

by exactness of Q• we have h0(P0) ⊂ d(Q1). Since P0 is projective, we can lift the
map P0 → d(Q) to a map s0 : P0 → Q1. This satisfies h0 = s0d+ ds−1.
Inductively, suppose that for all i < n we have maps si such thta

dsn−1 = hn−1 − sn−2d

and consider
hn − sn−1d : Pn → Qn.

Now we compute

d(hn − sn−1d) = dhn − (hn−1 − sn−2d)d = dhn − hn−1d+ sn−2dd = 0.

Therefore we get a map

hn − sn−1d : Pn → Zn(Q) = Qn+1/d(Qn+2).

By projectivity of Pn, we may lift this to a map

sn : Pn → Qn+1,

i.e., dsn = hn − sn−1d. We’re done.
b) This is the dual version of part a). We may safely leave it to the reader. �
Exercise 4.5) Prove part b) of the Comparison Theorem.
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3.5. The Horseshoe Lemma.

Proposition 3.4. (Horseshoe Lemma) Given a diagram . . . where the columns are
projective resolutions and the row is exact, there is a projective resolution P• of A
and chain maps so that the three columns form an exact sequence of complexes.

Proof. By projectivity, the map P ′′
0 → A′′ lifts to a map P ′′

0 → A. Taking the direct
sum of this with ϵ′ defines a map from P ′

0 ⊕ P ′′
0 making the diagram commute.

Applying the Snake Lemma to

0→ ker ϵ′ → ker ϵ→ ker ϵ′′

0→ P ′
0 → P0 → P ′′

0 → 0

0→ A′ → A→ A′′ → 0

shows that the first row is exact and ϵ is surjective. We proceed upwards filling in
the horseshoe by induction. �

3.6. Some Diagram Chases.

Proposition 3.5. (Snake Lemma) Given a commutative ladder of short exact se-
quences of left R-modules:

A
f→ B → C

g→ 0

0→ A′ f
′

→ B′ g
′

→ C ′

a) There is an exact sequence

kerα→ kerβ → ker γ
S→ cokerα→ cokerβ → coker γ.

b) If f is an injection, so is kerα→ kerβ.
c) If g is a surjection, so is cokerβ → coker γ.

Proof. (K. Gunzinger, c.f. http://www.youtube.com/watch?v=etbcKWEKnvg)
a) Let me just show you how to construct the map S, which is the fun of the

lemma anyhow, okay? So you assume you have an element in ker γ – that is an
element c ∈ C such that γ(c) = 0. You pull it back to b ∈ B – i.e., by surjectivity
of f , we choose b ∈ B such that f(b) = c – and note that b is unique up to addition
of an element in the image of f . Then you take β(b), which takes you to 0 in C ′

by the commutativity of the diagram. So β(b) lies in the kernel of g′ hence in the
image of f ′, by exactness: there is a′ ∈ A′ with f ′(a′) = β(b).7 It turns out that
the class of a′ ∈ A′/(αA) = cokerα is well-defined, and this defines the map S.
b) and c) These follow immediately: too much so to be left as exercises. �

Exercise 4.6) a) Check that indeed the image of a′ ∈ cokerα is well-defined: this is
short case around the left-most square in the diagram.
b) Check the rest of the lemma: that the maps fit together into an exact sequence.
c) In the movie clip there is a student, Mr. Cooperman, who interrupts throughout
the proof to make “objections”, each of which the instructor immediately recognizes
as a prompting for a justification she gives of the well-definedness of the map S.
As the class ends, Mr. Cooperman says “This stuff is just garbage. It’s another
diagram chase. When are we going to move on to something interesting?” Do
you find this comment insightful and/or appropriate? What about his interrupting

7The element a′ depended on the choice of b lifting c, so the ambiguity is parameterized by
elements of A.
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objections during the proof itself (which, as it turns out, do not cause Dr. Gunzinger
to break her stride)? After a further exchange suggesting that Dr. Gunzinger has
gone as far as she can with her group-theoretic research and that he’s exploring a
whole new angle on the problem, Mr. Cooperman walks out of the room and Dr.
Gunzinger mutters “fuckface.” Discuss.

Lemma 3.6. Let

0→ A•
f→ B•

g→ C• → 0

be a short exact sequence. If any two of the complexes are exact, so is the third.

Proof. (I acknowledge help from http://math.stackexchange.com/questions/32841.)
We will remove subscripts from maps and non-ambiguous parentheses – as the
reader will see, this helps to make reading the arguments bearable.
Step 1: Suppose A• and B• are exact. Let n ∈ Z and let c ∈ Cn be such that
dc = 0. We want to find an element of Cn−1 which maps to c. By the surjectivity
of g, there is b ∈ Bn with

g(b) = c.

Since 0 = d(c) = d(g(b)) = g(d(b)), by exactness there is a ∈ An−1 with

f(a) = db.

We have
f(d(a)) = d((a))) = d(d(b)) = 0,

and, since f is injective, this implies d(a) = 0. By exactness of A•, there is a
′ ∈ An

with d(a′) = a. Consider b− f(a′) ∈ Bn: we have

d(b− f(a′)) = d(b)− d(f(a′)) = d(b)− f(d(a′)) = d(b)− d(b) = 0,

so by exactness of B• there is b′ ∈ Bn+1 with

d(b′) = b− f(a′).
Now we have

d(g(b′)) = g(d(b′)) = g(b)− g(f(a)) = c− 0 = c.

Step 2: Suppose A• and C• are exact. Let n ∈ Z and let b ∈ Bn be such that
db = 0. Let

c = g(b).

Then
d(c) = d(g(b)) = g(d(b)) = g(0) = 0,

so by exactness of C• there is c̃ ∈ Cn−1 with

d(c̃) = c.

Since g• is surjective, there is b̃ ∈ B such that

gb̃ = c̃.

We might hope that d(b̃) = b, but this is not the case. Instead we analyze the
difference: let

b′ = db̃− b ∈ Bn.
Since

g(b′) = gdb̃− gb = dgb̃− c = dc̃− c = c− c = 0,

there is a ∈ An with
f(a) = b′.
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Further, we have

fda = dfa = db′ = ddb̃− db = 0.

Since f is injective, this means da = 0, and since A• is exact, this means there is
ã ∈ An−1 such that

dã = a.

Now we calculate

d(b̃− fã) = db̃− fdã = db̃− fa = db̃− b′ = b.

Step 3: Suppose B• and C• are exact, let n ∈ Z, and let a ∈ An be such that
da = 0. Then

dfa = fda = f0 = 0,

so by exactness of B• there is b ∈ Bn+1 with db = fa. Since

dgb = gdb = gfa = 0,

by exactness of C• there is c ∈ Cn+2 with dc = gb. By surjectivity of g there is is

b̃ ∈ Bn+2 with gb̃ = c. Since

g(b− db̃) = gb− dgb̃ = gb− gb = 0,

there is ã ∈ An+1 with

f(ã) = b− db̃.
Then

f(dã− a) = dfã− fa = db− ddb̃− f(a) = 0.

Since f is injective, dã = a. �

Proposition 3.7. (3 × 3 Lemma) Suppose we are given a commutative diagram
with exact columns of the form

0→ A′ → B′ → C ′ → 0

0→ A→ B → C → 0

0→ A′′ → B′′ → C ′′ → 0.

Then:
a) If the last two rows are exact, so is the first.
b) If the top and bottom row are exact and gf = 0, then the middle row is exact.
c) If the top two rows are exact, so is the bottom.

Proof. In all three cases the strategy is to show that the remaining row is a complex
and apply the preceding lemma.
a) Suppose the last two rows are exact. Let a′ ∈ A′. We must show g′f ′a′ = 0.
Since d : C ′ → C is injective, it’s enough to show that dg′f ′a′ = 0, but

dg′f ′a′ = g′f ′da′ = 0.

Case 2: In this case the additional hypothesis gf = 0 is supplied to us, so there is
nothing else to show.
Case 3: Suppose the first two rows are exact, and let a′′ ∈ A′′. Lift a′′ to a ∈ A.
Then gfa = 0, so by commutativity of the diagram g′′f ′′a′′ = 0. �
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Proposition 3.8. (Five Lemma) Consider a commutative ladder with exact rows:

A1
d1→ A2

d2→ A3
d3→ A4

d4→ A5

B1 → B2 → B3 → B4 → B5.

a) If h2 and h4 are surjective and h5 is injective, then h3 is surjective.
b) If h2 and h4 are injective and h1 is surjective, then h3 is injective.
c) If h1, h2, h4, h5 are isomorphisms, then h3 is an isomorphism.

Proof. a) Let b3 ∈ B3. Map it into B4 via d3. Since h4 is surjective, there is a4 ∈ A4

with h4(a4) = d3(b3). Furthermore, by exactness at B4 and commutativity of the
diagram we have

0 = d4(d3(b3)) = d4(h4(a4)) = h5(d4(a4)).

Since h5 is injective, d4(a4) = 0, so by exactness at A4 there is a3 ∈ A3 such that
d3(a3) = a4. Now one’s first thought is that h3(a3) = b3, but in fact this need not
be the case: what we have is that

d3(b3 − h3(a3)) = d3(b3)− h4(d3(a3)) = d3(b3)− h4(a4) = 0,

so b3 − h3(a3) = d2(b2) for some b2 ∈ B2. Since h2 is surjective, b2 = h2(a2) for
some a2 ∈ A2. Now we compute

h3(d2(a2)+a3)) = d2(h2(a2))+h3(a3) = d2(b2)+h3(a3) = b3−h3(a3)+h3(a3) = b3.

b) This is the dual statement to part a); we leave the proof as an exercise.
c) This follows immediately from parts a) and b). �

Exercise 4.7) Prove the Short Five Lemma.

Proposition 3.9. Given a commutative diagram with exact rows

A′ → A→ A′′ → 0

f g

B′ → B → B′′ → 0,

(here we have f : A′ → B′ and g : A′′ → B′′), there is a unique h : A′′ → B′′

making the diagram commute. Moreover, if both f and g are isomorphisms, so is
h.

Exercise: Prove Proposition 3.9.

3.7. The Fundamental Theorem on Chain Complexes.

Theorem 3.10. Let 0 → A• → B• → C• → 0 be a short exact sequence of chain
complexes of left R-modules.
a) There is a long exact homology sequence

. . .Hn(C)
δ→ Hn−1(A)→ Hn−1(B)→ Hn−1(A)

δ→ . . . .

b) Formation of the long exact homology sequence is natural in the sense that a
commutative ladder of chain complexes gives rise to a commutative ladder of long
exact homology sequences.
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Proof. a) The Snake Lemma gives us a commutative diagram with exact rows:

Hn(A)→ Hn(B)→ Hn(C)

An/d(An+1)→ B/d(Bn+1)→ Cn/d(Cn+1)→ 0

0→ Zn−1(A)→ Zn−1(B)→ Zn−1(C).

Then we take the connecting homomorphism δ to be S : Hn(C) → Hn−1(A).
These give the connecting homomorphisms and the exactness. For later use it is
convenient to record the explicit recipe for δ : Hn(C)→ Hn−1(A): take z ∈ Hn(C),
represent it by c ∈ Zn(C); lift c to b ∈ Bn and apply d. Then db lies in Zn−1(A)
and hence defines an element δz ∈ Hn−1(A).
b) The functoriality of homology shows that two out of every three squares commute
(the ones not involving a connecting homomorphism). For the commutativity of
the third square, we use the explicit recipe for δ mentioned above. �

4. Derived Functors

4.1. (Well)-definedness of the derived functors.

4.1.1. Derived functors.

Let F be a right exact additive covariant functor on the category of R-modules.
We will define a sequence {LnF}n∈N of functors, with L0F = F , called the left
derived functors of F . The idea here is that the left-derived functors quantify
the failure of F to be exact.

Let M be an R-module. We define all the functors LnM at once, as follows:
first we choose any projective resolution P• →M → 0 of M . Second we take away
the M , getting a complex P• which is exact except at P0, i.e.,

H0(P ) = P0/ Image(P1 → P0) = P0/Ker(P0 →M) =M,

∀n > 0,Hn(P ) = 0.

Third we apply the functor F getting a new complex FP•. And finally, we take
homology of this new complex, defining

(LnF )(M) := Hn(FP•).

Now there is (exactly?) one thing which is relatively clear at this point.

Proposition 4.1. We have (L0F )(M) = FM .

Proof. Since P1 → P0 → M → 0 is exact and F is right exact, FP1 → FP0 →
FM → 0 is exact, hence

Image(FP1 → FP0) = Ker(FP0 → FM).

Thus

(L0F )(M) = H0(FP•) = Ker(FP0 → 0)/ Image(FP1 → FP0)

= FP0/Ker(FP0 → FM) = FM.

�



MATH 8030 INTRODUCTION TO HOMOLOGICAL ALGEBRA 29

Before saying anything else about the left derived functors LnF , there is an obvious
point to be addressed: how do we know they are well-defined? On the face of it,
they seem to depend upon the chosen projective resolution P• of M , which is very
far from being unique. To address this point we need to bring in the Comparison
Theorem for Resolutions (Theorem 3.3). Namely, let P ′

• → M → 0 be any other
projective resolution ofM . By Theorem 3.3, there exists a homomorphism of chain
complexes η : P• → P ′

• which is unique up to chain homotopy. Interchanging the
roles of P ′

• and P•, we get a homomorphism η′ : P ′
• → P•. Moreover, the composi-

tion η′ ◦ η is a homomorphism from P• to itself, so by the uniqueness η′ ◦ η is chain
homotopic to the identity map on P•. Similarly η ◦ η′ is chain homotopic to the
identity map on P ′

•, so that η is a chain homotopy equivalence. By Exercise 3.71,
Fη : FP• → FP ′

• is a chain homotopy equivalence, and therefore the induced maps
on homology Hn(Fη) : Hn(FP•) → Hn(FP

′
•) are isomorphisms. Thus we have

shown that two different choices of projective resolutions for M lead to canonically
isomorphic modules (LnF )(M).

Exercise 5.1: a) Suppose M is projective. Show that for any right exact func-
tor F and all n > 0, (LnF )(M) = 0.
b) Suppose M is injective. Show that for any left exact functor F and all n > 0,
(RnF )(M) = 0.

4.2. The Long Exact Co/homology Sequence.

The next important result shows that a short exact sequence of R-modules induces
a long exact sequence involving the left-derived functors and certain connecting
homomorphisms (which we have not defined and will not define here).

Theorem 4.2. Let

(1) 0 −→M1 −→M2 −→M3 −→ 0

be a short exact sequence of R-modules, and let F be any left exact functor on the
category of R-modules. Then:
a) There is a long exact sequence
(2)

. . .→ (L2F )(M3)
∂→ (L1F )(M1)→ (L1F )(M2)→ (L1F )(M3)

∂→ FM1 → FM2 → FM3 → 0.

b) The above construction is functorial in the following sense: if 0 −→ N1 −→
N2 −→ N3 −→ 0 is another short exact sequence of R-modules and we have maps
Mi → Ni making a “short commutative ladder”, then there is an induced “long
commutative latter” with top row the long exact sequence associated to the first
short exact sequence and the bottom row the long exact sequence associated to the
second short exact sequence.

Proof. a) Let

0→ A′ → A→ A′′ → 0

be a short exact sequence of left R-modules. Choose projective resolutions P ′
• of

A′ and P ′′
• of A′′, and apply the Horseshoe Lemma to get a short exact sequence

of chain complexes

0→ P ′
• → P• → P ′′

• → 0.
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For all n, since P ′′
n is projective, the sequence

0→ P ′
n → Pn → P ′′

n → 0

splits. Additive functors preserve split exact sequences, so

0→ F (P ′
•)→ F (P•)→ F (P ′′

• )→ 0

is a short exact sequence of chain complexes. Applying the Fundamental Theorem
on Chain Complexes to this short exact sequence, we get a long exact homology
sequence.
b) See [W, pp. 46-47]. �

Now, dually, if F is a right exact functor on the category of R-modules, we may
define right derived functors RnF . Namely, for an R-module M , first choose an
injective resolution 0→M → E•, then take M away to get a cochain complex E•,
then apply F to get a cochain complex FE•, and then finally define (RnF )(M) =
Hn(FE•). In this case, a short exact sequence of modules (1) induces a long exact
cohomology sequence
(3)

0→ FM1 → FM2 → FM3
∂→ (R1F )(M1)→ (R1F )(M2)→ (R1F )(M3)

∂→ (R2F )(M1) . . .

Exercise 5.2: Let F be right exact from R-modules to S-modules. Show TFAE:
(i) F is exact.
(ii) For all n ≥ 1 and all R-modules M , LnF (M) = 0.
(iii) For all R-modules M , L1(F )(M) = 0.

Remark: Exercise 5.2 is our first indication that properties of L1F imply prop-
erties of LnF for n ≥ 1. This will later be studied in more detail, leading to a proof
technique called dimension shifting.

Exercise 5.3: Suppose F is an additive functor which need not be left or right exact.
Note that our recipe for deining the left-derived functors LnF (M) still makes sense:
choose a projective resolution P• →M → 0, and define LnF (M) = Hn(FP•).
a) Show that the LnF are well-defined indepedent of the projective resolution.
b) Show that we still have a long exact homology sequence.
c) Show that L0F is right exact.
d) Show that the following are equivalent:
(i) F is right exact.
(ii) F ∼= L0F .

Exercise 5.4: State and prove an analogue of Exercise 5.3 for right-derived functors
of arbitrary additive functors.

Remark: Exercises 5.3 and 5.4 are adapted from the exposition in [Rot], whichc
indeed defines left- and right-derived functors for any additive functor. This is nice
to know. It would be nicer to have an example in which derived functors of a neither
left nor right exact functor naturally arise. I do not know of such an example.

4.3. Delta Functors.
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A homological δ-functor between abelian categories A and B is a sequence of
additive functors Tn : A → B together with, for each short exact sequence

(4) 0→ A→ B → C → 0

in A, morphisms

δn : TnC → Tn−1A,

satisfying the following key properties: (DF1) Each short exact sequence(4) induces
a long exact homology sequence

Tn+1(C)
δ→ Tn(A)→ Tn(B)→ Tn(C)

δ→ Tn−1(A)→ . . . .

(DF2) Functoriality: a commutative ladder of short exact sequences induces a long
commutative ladder in homology.

Exercise: Write down a reasonable definition of a morphism of δ-functors and check
that it is correct.

Exercise: If T = {Tn} is a δ-functor, show that T0 is right exact.

Exercise: A cohomogical δ-functor {Tn : A → B} is a homological δ-functor
{Tn : Aop → B}. Unwind this to get the standard definition, including the long
exact cohomology sequence.

Exercise: Let A be an abelian category and let C(A) be the category of chain
complexes in A. By the Fundamental Theorem of Homological Algebra, the ho-
mology functors Hn : C(A)→ A form a homological δ-functor.

Key Example: For any right exact functor T0, the left derived functors extend
T0 to a homological δ-functor.

Example: Let R be a ring, and let r ∈ R giving a projective resolution for R/rR.
We claim that there is a homological δ-functor from R-modules to R-modules with
T0(M) =M [r], T1(M) =M/rM and Tn(M) = 0 for all n > 1. Indeed, to see this,
apply the Snake Lemma to the diagram

0→ A→ B → C → 0

0→ A→ B → C → 0,

where the vertical maps are multiplication by r.

On the other hand, since the function T0(M) = M/rM is right exact, we can
also extend it to a δ-functor by taking its derived functors. Is this the same δ-
functor? Note thatM/rM =M ⊗RR/rR, so Tn(M) = Torn(R/rR,M). Are these
homological δ-functors the same?

Exercise (Doyle): Suppose r is a left non-zerodivisor in R, i.e., we have a short
exact sequence

0→ R
r•→ R→ R/rR→ 0.

Use this to show that Tor1(R/rR,M) =M [r] and Torn(R/rR,M) = 0 for all n ≥ 2
and all m, so indeed the modules are the same.
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However, for a zero divisor r, Tor1(R/rR,M) is the quotient of M [r] by the sub-
module generated by {sm | rs = 0, r ∈ R,m ∈ M}, so they do not coincide. On
the other hand, at least we have a map from one δ-functor to the other. We hope
this motivates the following definition of Grothendieck.

A homological δ-functor T is universal if for any δ-functor S and natural trans-
formation f0 : S0 → T0, there is a unique morphism f = (fn : Sn → Tn) extending
f0.

Exercise*: Show that homology H• : C(A)→ A is a universal δ-functor.

Theorem 4.3 (Cartan-Eilenberg). Let A,B be abelian categories.
a) Assume that A has enough projective objects. For any right exact functor F :
A → B, the left derived functors LnF form a universal homological δ-functor.
b) Assume that A has enough injective objcets. For any left exact functor F : A →
B, the right derived functors RnF form a universal cohomological δ-functor.

Proof. [W, Thm. 2.4.7]. �
In fact we mention a strengthening of this theorem. An additive functor F : A → B
is effaceable8 if for any object A of A there is a monomorphism ι : A → I with
F (ι) = 0. Dually, an additive functor F : A → B is coeffaceable if for every A
there is a surjection u : P → A with F (u) = 0.

Exercise: If A has enough projectives and F is right exact, then its left derived
functors LnF for n ≥ 1 are coeffaceble. Dually...

Theorem 4.4 (Grothendieck). If T is a homological δ-functor with Tn coeffaceable
for all n ≥ 1, then T is universal. Dually...

4.4. Dimension Shifting and Acyclic Resolutions.

Let F be an additive functor from the category of R-modules to the category
of S-modules. An R-module M is F-acyclic (for homology) if LnF (M) = 0 for
all n > 0. (An R-module M is F-acyclic (for cohomology) if RnF (M) = 0 for
all n > 0. As usual, in practice we only take left-derived functors of right exact
functors and right-derived functors of left exact functors, so it will be clear from
the context whether we are considering acyclic objects for homology or cohomology.)

Example: Projective modules are F -acyclic for homology for any functor F . Injec-
tive modules are F -acyclic for cohomology for any functor F . is flat iff it is acyclic
for M ⊗ · for all right R-modules M .

A left resolution J• → M → 0 of M is F-acyclic if each Jn is F -acyclic for
homology. Thus in particular projective resolutions are F -acyclic and we can use
them to compute the derived functors Ln(F ). In fact we can use any F -acylic
resolution for this purpose.

8This terminology comes from Grothendieck’s Tohoku paper, written in French. Some an-

glophone authors have suggested “erasable” intead, but the majority stay with Grothendieck’s
terminology
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Exercise 5.5: Let M , X be left R-modules, N be a submodule of M , let q : M →
M/N be the quotient map, let f : M/N → X be an R-module map, and let
f = f ◦ q. Show:

(ker f)/N = ker f.

Theorem 4.5 (Acylic Resolutions Compute Derived Functors). Let F be a right
exact functor from the category of left R-modules to the category of left S-modules.
Let M be a left R-module, and let J• → M → 0 be an F -acylic resolution. Then
there are canonical isomorphisms

LnF (M) ∼= Hn(FJ•)

for all n ≥ 0.

Proof. We split the resolution J• →M → 0 into a short exact sequence

(5) 0→ K → J0 →M → 0

and a resolution . . .→ J2 → J1 → K → 0, which we denote by I• → K → 0. Now
we argue by induction on n.
n = 0: Looking back at the proof of Proposition 4.1 we see immediately that the
proof L0F = F did not use that the resolution was a projective resolution but only
the right exactness of F . So H0(FJ•) ∼= F (M) ∼= L0F (M).
n = 1: Applying the right exact functor F to (5) we get

L1F (J0)→ L1F (M)→ F (K)→ F (J0)→ F (M)→ 0.

Since J0 is F -acyclic, L1F (J0) = 0, so

L1F (M) = kerF (K)→ F (J0).

Since F is right exact, F (J0)→ F (J1)→ F (K)→ 0 is exact and thus

F (K) = F (J1)/(Image(F (J2)→ F (J1)).

Putting these together and using Exercise 5.5, we get

L1F (M) = (kerF (J1)→ F (J0))/(ImageF (J2)→ F (J1)) = H1(FJ•).

n ≥ 2: By induction we may assume the isomorphism of functors holds for all i ≤ n.
Since J0 is F -acyclic, the long exact homology sequence associated to (5) has every
third term vanishing and thus yields isomorphisms

Li+1F (M) ∼= LiF (K)

for all i ≥ 1. Then we get

LnF (M) ∼= Ln−1F (K) ∼= Hn−1(FI•) ∼= Hn(FJ•),

where the middle isomorphism is by induction. �

Remark: Once we balance the bifunctor tor, we will see that a left R-module N is
flat iff it is acyclic for all functors N 7→ M ⊗R N , and it will follow that the tor
functors can be computed using flat resolutions.
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5. Abelian Categories

A category C is pre-additive if for all objects A,B ∈ C, the set Hom(A,B) is en-
dowed with the structure of a commutative group so that composition distributes
over addition.

Exercise: For any object A in a pre-additive category, EndA := Hom(A,A) is
a ring.

An initial object in a category C is an object I such that for all objects X,
#Hom(I,X) = 1. A terminal object is an object T such that for all objects
X, #Hom(X,T ) = 1. That the passage from a category to its opposite category
converts initial objects to terminal objects and conversely.

Exercise: a) Let I, I ′ be initial objects in a category. Show that there is a unique
isomorphism between them.
b) Let T, T ′ be terminal objects in a category. Show that there is a unique isomor-
phism between them.

A zero object in a category is an object which is both initial and terminal.

Exercise: a) Find all initial and terminal objects in the category of sets.
b) Show that the category of sets does not have a zero object.
c) Show that the trivial group is a zero object in the category of groups.
d) Show that the zero module is a zero object in the category of left (or right)
R-modules.

An additive category is a pre-additive category with a zero object and poss-
esing finite direct products.

Exercise: In any additive category, finite products and finite coproducts coincide.
(This coincidence of products and coproducts sometimes goes by the name biprod-
uct.)

In a category C, a morphism f : B → C is monic (noun form: a monomorphism)
if for all objects C and all morphisms e1, e2 : A → B, fe1 = fe2 =⇒ e1 = e2. In
other words, a monic morphism is one which can be cancelled on the left.

Similarly, a morphism f : A→ B is epic (noun form: an epimorphism) if for all
objects C and all morphisms e1, e2 : B → C, e1f = e2f =⇒ e1 = e2. In other
words, an epic morphism is one which can be cancelled on the right.

Exercise: Show that in any concrete category, an injection is a monomorphism
and a surjection is an epimorphism.

Exercise: Show that in any of the following concrete categories – groups, abelian
groups, sets, posets, rings, R-modules – a morphism is monic iff it is injeective.
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Exercise: Show that the map Q → Q/Z is monic in the (sub)category of divisi-
ble abelian groups.

Example: The map Z → Q is epic in the category of commutative rings even
though it is not surjective. The same holds for any nontrivial localization map on
commutative rings.

Suppose our category has a zero object 0. This forces all Homsets to be nonempty:
indeed we have B → 0 → C. By the kernel of a morphism f : B → C we mean
a morphism ι : A → B satisfying f ◦ ι = 0 and being universal for this: any
ι′ : A′ → B such that f ◦ ι′ = 0 factors through ι. Any kernel is a monic and any
two kernels of the same map are canonically isomorphic.

A cokernel of f : B → C is a map p : C → A such that p ◦ f = 0 and p is
universal for this property. Cokernels are epic and unique up to canonical isomor-
phism.

For a morphism f : B → C, we define the image of f as ker coker f . Thus,
when kernels and cokernels exist, we can speak of exact sequences.

Let f, g : X → Y in a category C. An equalizer of f and g is a morphism
a : A→ X such that fa = ga and a is universal for this: for any a′ : A′ → X with
fa′ = ga′, there is a unique morphism ι : a→ a′ with a′ι = a.

A coequalizer of f and g is a morphism q : Y → Q such that qf = qg and
which is universal for this property: for any q′ : Y → Q′ with q′f = q′g, there is a
unique morphism ι : Q′ → Q with ιq′ = q.

Exercise: Let C be a category with a zero object.
a) Show that a kernel of f : X → Y is precisely an equalizer of f and 0 : X → Y .
b) Show that a cokernel of f : X → Y is precisely a coequalizer of f and 0 : X → Y .
c) Suppose C is additive, and let f, g : X → Y . Show that Ker f − g = E(f − g).
Deduce that an additive category with kernels has equalizers.
d) State and prove the analogue of part c) for coequalizers.

Exercise: For any family {fi : X → Y }i∈I of morphisms in a category C, one
can define the equalizer E({fi}) and the coequalizer ∃({fi}).
a) Do so.
b) Construct equalizers and coequalizers in the category of sets.

Let f : Z → X and g : Z → Y be morphisms in a category C. A pushout of
f and g is an object P and morphisms ι1 : X → P , ι2 : Y → P satisfying the fol-
lowing universal mapping property: for any object Q and morphims: j1 : X → Q,
j2 : Y → Q such that j1f = j2g, there is a unique map ι : P → Q such that ιι1 = j1
and ιι2 = j2.

Recall that in the category of groups the pushout is called the amalgamated prod-
uct. They come up in the Seifert-van Kampen Theorem: let X be a path-connected
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topological space and suppose X = U ∪V where U and V are path-connected open
subsets. Then π1(X) is the pushout of π1(U ∩V )→ π1(U) and π1(U ∩V )→ π1(V ).

Exercise: Show that the pushout in the category of commutative rings is the tensor
product of algebras.

Exercise: Let C be a category with an initial object I.
a) Show that the coproduct of X,Y ∈ C is the pushout of I → X, I → Y .
b) Show that the coequalizer of f, g : X → Y is the pushout of (f, g) : X → Y × Y
and (1, 1) : X → X ×X.
c) Let f : X → Y and g : X → Z. Denote by ι1 : X → X

⨿
Y and ι2 : Y → X

⨿
Y

the canonical maps into the coproduct. Show that the pushout of f and g is the
coequalizer of ι1f : Z → X

⨿
Y and ιg : Z → X

⨿
Y .

d) Deduce that pushouts exist iff coequalizers and binary coproducts exist.

Exercise: a) Pushouts can be defined for any set of maps fi : X → Yi. Do so.
b) Show that if an additive category has pushouts – i.e., pairwise pushouts – then
it has all finite pushouts.
c) Show that a category with an initial object has arbitrary pushouts iff it has
arbitrary coproducts and arbitrary coequalizers.

A pullback of f : X → Z, g : Y → Z is an object P and morphisms π1 : P → X,
π2 : P → Y satisfying the following universal mapping property: given π′

1 : P ′ → X
and π′

2 : P ′ → Y with fπ′
1 = gπ′

2, there is a unique morphism π : P ′ → P such
that π1π = π′

1, π2π = π′
2.

Example: In the category of sets, the pull back of f : X → Z and g : Y → Z
is (merely?) the collection of all (y, z) ∈ Y × Z such that f(y) = g(z).

Exercise:
a) Notice that pullbacks in C are pushouts in the opposite category Cop. Use this
observation to give immediate proofs of the following:
b) A category with a terminal object admits binary pullbacks iff it admits binary
equalizers and binary products.
c) Define the pullback of an arbitrary family of maps {fi : Xi → Y }i∈I .
d) A category with a terminal object admits arbitrary pullbacks iff it admits arbi-
trary equalizers and arbitrary products.

Exercise: We work in an additive category with kernels. Suppose that P is the
pullback of f : X → Z, g : Y → Z. Show that the kernel of π1 : P → X is
canonically isomorphic to ker f .

5.1. Definition and First Examples.

Definition: An abelian category is an additive category in which
(AB1) Every morphism in C has a kernel and a cokernel.
(AB2) Every monic in C is the kernel of its cokernel.
Every epic in C is the cokernel of its kernel.
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Example: For any ring R, the categories of left- and right- R-modules are abelian.

Exercise: Explain why this is really one example, not two. (Hint: Use the op-
posite ring Rop.

Example: The category of finite abelian groups is abelian. This is often useful
as an example of an abelian category which is “too small” to have certain desirable
properties.

Exercise: Let R be a left Noetherian ring. Show that the category of finitely
generated left R-modules is Noetherian.

Remark: In commutative algebra and algebraic geometry one does want to do
homological algebra on a category of modules with a suitable finiteness condition.
When the ring R is not left-Noetherian, the condition of finite generation is too
weak. A left R-module M is finitely presented if for some n ∈ N there is a sur-
jection Rn →M with finitely generated kernel. (It then turns out that every such
surjection has finitely generated kernel: [CA, Prop. 3.6].) Finally, a left R-module
is coherent if it is finitely generated and every finitely generated submodule is
finitely presented. Notice that when R is left-Noetherian the notions of finitely
generated, finitely presented and coherent coincide.9

Theorem 5.1. For any ring R, the category of coherent left R-modules is abelian.

Example: The category of sheaves of abelian groups on a topological space X is
abelian.

Example: For any locally ringed space (X,OX), the category of sheaves of OX -
modules on X is abelian. This is in fact a globalization of the commutative case of
Example X.X.

Proposition 5.2. For any abelian category C, the category C(C) of chain complexes
in C is an abelian category.

Exercise: Prove it.

5.2. The Duality Principle.

Proposition 5.3. (Duality Principle) If C is an abelian category, so is Cop.

Exercise: Prove it.

Exercise: True or false: left R-modules and right R-modules are dual categories.

The duality principle is highly useful, as it allows us to formalize the idea that
two theorems and/or proofs are “the same” but one comes from the other by re-
versing all the arrows. Here are some examples of this.

Short exact sequences are self dual, as are split short exact sequences.

9All this rather technical stuff may explain to readers of Hartshorne’s text why he only defines
coherent modules over a Noetherian scheme, to the consternation of the hardcore EGA set.
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The dual of a monic is an epic.

The dual of a kernel is a cokernel.

The dual of a projective object is an injective object. Indeed:

Proposition 5.4. a) For an object P in any abelian category, TFAE:
(ii) If π : M → N is an epimorphism and we have φ : P → N , then there is
Φ : P →M such that φ = π ◦ Φ.
(iii) If π :M → N is an epimorphism, Hom(P,M)→ Hom(P,N) is surjective.
(iv) The functor Hom(P, ·) is exact.
(v) Every short exact sequence 0→ A→ B → P → 0 splits.
An object satisfying these equivalent conditions is called projective.
b) For an object E in an abelian category, TFAE:
(ii’) If ι : M → N is a monomorphism and we have φ : M → E, then there is
Φ : N → E such that φ = Φ ◦ ι.
(iii’) If ι :M → N is a monomorphism, Hom(N,E)→ Hom(N,M) is surjective.
(iv’) The (contravariant) functor Hom(·, E) is exact.
(v’) Every short exact sequence 0→ E → B → C → 0 splits.

Proof. a) The proofs that we gave of (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) go through
verbatim in any abelian category. Hoewever, when working with modules we did
not prove (v) =⇒ (ii) directly but instead (v) =⇒ (i): every projective module is
a direct summand of a free module. The notion of free module does not have an
analogue in an arbitrary abelian category – it is well worth thinking about this – so
we need to replace this implication with a direct proof of (v) =⇒ (ii). In a perhaps
surprising development, we use (pairwise) pullbacks, which by Exercise X.X exist
in any additive category with kernels hence in the abelian category C. Let us write
K = kerM → N and P ×N M for the pullback of M → N and P → N . By
Exercise X.X, kerP ×N M → P = K, and we get a ladder of short exact sequences

0→ K → P ×N M
γ→ P → 0,

0→ K →M
π→ N → 0.

Let ι : P → P ×N M be a section of γ, and denote by π1 the map P ×N M →M .
Then Φ = π1γ : P →M is such that φ = π ◦ Φ.
b) This follows immediately from part a) by the Duality Principle.10 Note that if
we wanted to prove it directly the only less than straightforward part is again (v)′

=⇒ (ii)′. In the 8030 course Maren Turbow proved this using the fact that every
module embeds in an injective module, which is of course a nontrivial theorem. It
is not true that in an arbitrary abelian category every object can be embedded in
an injective object, so we need to give a different proof here. The proof that we
gave above dualizes to an argument involving pushouts. �
Exercise: Let C be the category of finite abelian groups – that is, the objects are
finite abelian groups and the morphisms are group homomorphisms between them
(“full subcategory”).
a) Show that for A ∈ C, the following are equivalent:
(i) A is projective.

10It is enlightening to check this carefully. Note in particular that the “surjective” in condition
(iii) stays “surjective” in condition (iii)′!
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(ii) A is injective.
(iii) #A = 1.
(Warning: It is immediate from what we already know that no nontrivial finite
abelian group is either projective or injective in the category of abelian groups. But
the desired result does not follow immediately from this!)
b) Deduce that C has neither enough projectives nor enough injectives.

5.3. Elements Regained.

Theorem 5.5 (Freyd-Heron-Lubkin-Mitchell, 1964). A small abelian category ad-
mits a fully faithful functor to the category of abelian groups.

Corollary 5.6. It is permissible to “diagram chase” in an abelian category. In
particular the results of §4.6 hold in any abelian category.

5.4. Limits in Abelian Categories.

We have seen that any abelian category A has finite products, coproducts, equal-
izers and coequalizers. From this it follows that all finite limits and colimits exist
in A. We now push things further by considering colimits and limits over arbitrary
(small!) diagrams.

Proposition 5.7. Let A be an abelian category.
a) The following are equivalent:
(i) Arbitrary coproducts exist in A.
(ii) A is cocomplete: every colimit exists.
b) The following are equivalent:
(i) Arbitrary products exst in A.
(ii) A is complete: every limit exists.

Proof. a) (i) =⇒ (ii): Given A : I → A, the cokernel C of the map
⨿
φ:i→j →

⨿
i∈I

defined by sending the element which is ai in the φ : i→ j component and 0 in all
other components to φ(ai)− ai solves the universal mapping problem defining the
colimit.
(ii) =⇒ (i): This is immediate, since coproducts are a special kind of colimit.
b) This is immediate from the Duality Principle. �
Corollary 5.8. For any ring R, the category of left (or of right) R-modules is
complete and cocomplete.

Exercise: Let A be a cocomplete abelian category. Show that the category C(A)
of chain complexes in A is cocomplete.

The following is an important theorem of pure category theory.

Theorem 5.9. Let (L : A → B, R : B → A) be an adjoint pair.11 Then:
a) L preserves all colimits: if A : I → A has a limit, so does LA : I → B and

L(colimi∈I Ai) = colimi∈I L(Ai).

b) R preserves all limits: if B : I → B has a limit, then so does RB : I → A and

R(lim
i∈I

Bi) = lim
i∈I

R(Bi).

11Here A and B may be arbitrary categories.
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Proof. See [CW]. �

Remark: One sometimes calls a functor which preserves all colimits cocontinuous.
(Dually, a functor which preserves all limits is continuous.)

Corollary 5.10. Let A be a cocomplete abelian category with enough projectives,
and let F : A → B be a functor which is a left adjoint. (Recall that F must then be
right exact.) Then all the derived functors preserve colimits: for all n ≥ 0,

LnF (
⊕
i∈I

Ai) ∼=
⊕
i∈I

LnF (Ai).

Exercise: Prove Corollary 5.10. (Hint: if {P•,i → Ai}i∈I are projective resolutions,
then

⊕
i P• →

⊕
iAi is a projective resolution.)

Corollary 5.11.

Tor∗(A,
⊕
i∈I

Bi) =
⊕
i∈I

Tor∗(A,Bi).

Proof. This is immediate from the two previous results: by the adjunction between
tensor and hom, the functor F (A) = A⊗RM is a left adjoint hence cocontinuous,
and Corollary 5.10 applies. �

We would like to go further and show that the Tor functors commute with direct
limits. On the other hand it is not true that the higher tor functors are cocontinu-
ous, so there is some subtlety here. A key notion is that of a filtered category.

A category I is filtered if it satisfies both of the following:
(FC1) For all objects x, y ∈ I, there is an object z ∈ I and maps x→ z, y → z.
(FC2) For all morphisms f, g : x→ y, there is a morphism h : y → z with hf = hg.

Every partially ordered set X defines a category in which for all x, y ∈ X, there is
a unique morphism from x to y if x ≤ y and no morphisms otherwise. Then the
condition (FC1) becomes that of a directed set and condition (FC2) is vacuous.

Key Example: Consider a category with two objects x and y and a pair of mor-
phisms between them. This satisfies (FC1) but not (FC2). It is this phenomenon
which allows a functor which preserves filtered colimits not to be cocontinuous!

Lemma 5.12. Let I be a small filtered category, and let A be a functor from I to
the category of left R-modules. Then:
a) Let A = colimi∈I Ai. Then every a ∈ A is the image of some ai ∈ Ai under the
natural map Ai → A.
b) For all i ∈ I, the kernel of Ai → A is the union of the kernels of the maps
φ : Ai → Aj, where φ ranges over all arrows in I from i to j.

Exercise: Prove it.

Theorem 5.13. Filtered colimits of R-modules are eaxct, considered as functors
from (R−Mod)I to R−Mod.

Proof. Step 1: The colimit functor is left adjoint to the diagonal functor ∆ : R −
Mod → (R −Mod)I given by ∆(A)i = A for all i ∈ I. Therefore it is right exact.
In fact this works in any cocomplete category.



MATH 8030 INTRODUCTION TO HOMOLOGICAL ALGEBRA 41

Step 2: Let {ti : Ai → Bi}i∈I be a monomorphism in (R −Mod)I . We need to
show that the colimit of t is a monomorphism in R−Mod. Put A = colimAi, B =
colimBi. We need to show that the induced map t : A → B is a monomorphism,
so let a ∈ A be such that t(a) = 0. By the preceding lemma, a is the image of ai in
some Ai. Since ti(ai) ∈ Bi maps to zero in the colimit B, again by the preceding
lemma there is some φ : i→ j with

0 = φ(ti(ai)) = tj(φ(ai)) ∈ Bj ,
and since tj is a monomorphism this means φ(ai) = 0 ∈ Aj hence a = 0 in A. �
Remark: Note that in the last two results we worked in the category of R-modules.
In fact the exactness of filtered colimits does not hold in every cocomplete abelian
category. (Weibel gives as an exercise to show that it does not hold in the opposite
category to the category of abelian groups.) In [T] Grothendieck explicitly consid-
ers the property of an abelian category that it is cocomplete and filtered colimits
are exact: he calls in (AB5).

Exercise: LetA be a cocomplete abelian category. Show that the homology functors
Hn : C(A)→ A commute with filtered colimits.

Corollary 5.14. Let A and B be (AB5) abelian categories, and suppose that A has
enough projectives.
a) For any left adjoint functor F : A → B and diagram A : I → A with I filtered,
for all n ≥ 0, we have

LnF (colimAi)) ∼= colimLnF (Ai).

b) In particular, for every filtered B : I → ModR and A ∈R Mod, for all n ≥ 0,

Torn(A, colimBi) ∼= colimTorn(A,Bi).

6. Tor and Ext

6.1. Balancing Tor.

We come now to a case where assuming our arbitrary ring R is commutative sim-
plifies the proof of an important theorem which is valid more generally.

Theorem 6.1. Let R be commutative. Then for all A,B ∈R Mod and all n ≥ 0,

TorRn (A,B) ∼= TorRn (B,A).

Proof. Since R is commutative, we have an isomorphism A ⊗R B ∼= B ⊗R A. So
both TorR∗ (A,B) and TorR∗ (B,A) are universal δ-functors for F : A 7→ A⊗RB. �
Theorem 6.2 (Balancing Tor).

6.2. More on Tor.

We begin by revisiting a previous result.

Proposition 6.3. Let n ∈ Z+. For any abelian group B, we have

TorZ0 (Z/nZ, B) = B/nB,

TorZ1 (Z/nZ, B) = B[n],

TorZn(Z/nZ, B) = 0∀n ≥ 2.
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Proof. Since 0 → Z ·n→ Z → Z/nZ → 0 is a projective resolution of Z/nZ as a

Z-module, TorZ∗(Z/nZ, B) is the homology of the complex 0→ B
·n→ B → 0. �

Exercise: For finite abelian groups A,B, show TorZ1 (A,B) ∼= A⊗Z B.

Proposition 6.4. For all abelian groups A and B,
a) TorZ1 (A,B) is a torsion group.

b) TorZn(A,B) = 0 for all n ≥ 2.

Exercise: Prove Proposition 6.4.

Exercise: State and prove an analogue of Proposition XX for any PID R with
fraction field K.

Proposition 6.5. Let R be a domain with fraction field K. For any R-module B,

TorR1 (K/R,B) = B[tors].

Exercise: Prove Proposition 6.5.

Proposition 6.6. For finitely generated modules A,B over a Noetherian commu-
tative ring R, Torn(A,B) is finitely generated for all n ≥ 0.

Exercise: Prove Proposition 6.6. (Hint: a finitely generated module over a Noe-
therian ring admits a resolution by finitely generated projective modules.)

Theorem 6.7 (Homological Criterion for Flatness). For a ring R and a left R-
module B, the following are equivalent:
(i) A is flat.

(ii) TorRn (A,B) = 0 for all B and all n > 0.

(iii) TorR1 (A,B) = 0 for all B.

Proof. (i) =⇒ (ii): Let P• → A → 0 be a projective resolution. Since B is flat,
P• ⊗R A remains exact except at P0 ⊗ A, and thus for all n > 0, Hn(P• ⊗ A) =

TorRn (A,B) = 0.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (i): Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of R-
modules. The long exact homology sequence associated to the functor tensoring
with A ends in

Tor1(A,M
′′)→M ′ ⊗A→M ⊗A→M ′′ ⊗A→ 0,

and the result follows. �

Corollary 6.8. Direct limits of flat modules are flat.

Exercise: Prove Corollary 6.8.

Corollary 6.9. The Tor functors can be computed using flat resolutions.

Exercise: Prove Corollary 6.9.

Theorem 6.10. Let R be a PID. For an R-module A, the following are equivalent:
(i) A is flat.
(ii) A is torsionfree.

(iii) For all R-modules B, TorR1 (A,B) = 0.
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Proof. (i) =⇒ (ii): We have already seen that this holds for modules over any
integral domain.
(ii) =⇒ (iii): Like any R-module, A is a colimit of its finitely generated submod-
ules. Since R is a PID and A is torsionfree, A is a colimit of free modules. By
swapping the arguments in Tor and applying Corollary 5.14, we deduce the result.
(iii) =⇒ (i): We have already proved this in more generality. �

Exercise: a) Let R be an integral domain with the following property: every sub-
module of a finitely generated free R-module is projective. Show that any torsion-
free R-module is flat.
b) Show that a Dedekind domain satisfies the condition of part a) and thus tor-
sionfree modules over a Dedekind domain are flat.
c) Show that the only integral domains satisfying the conditions of part a) are
Dedekind domains.

Lemma 6.11. Let R be a commutative ring, and let M,N be R-modules. For
r ∈ R, let µ : M → M be x 7→ rx. Then for all n, the induced homomorphism µ∗

on Torn(M,N) is multiplication by r.

Exercise: a) Prove Lemma 6.11. (Suggestion: track multiplication by r through a
projective resolution of M .
b) Suppose R is commutative and r ∈ R is such that rM = 0, so that M is
canonically an R/rR-module. Show that Torn(M,N) is an R/rR-module for all
N .

Theorem 6.12 (Base Change for Tor).
a) Let R→ T be a ring homomorphism such that T is flat a left R-module. Then

for all right R-modules M , all left T -modules N and all n ≥ 0,

(6) TorTn (M ⊗R T,N) ∼= TorRn (M,N) ∼= TorTn (M,T ⊗R N).

b) If R is commutative and T is a flat R-algebra, then for all R-modules M and
N , the natural map

TorR∗ (M,N)⊗R T → TorT∗ (M ⊗R T,N ⊗R T )

is an isomorphism.
c) For any multiplicative subset S ⊂ R and all R-modules M,N , the natural map

Φ : S−1 TorR∗ (M,N)→ TorS
−1R

∗ (S−1M,S−1N)

is an isomorphism.

Proof.
a) Let P• →M be a projective resolution over R. Since T is flat over R, P•⊗RT →
M ⊗R T is a projective resolution over T . Using the Telescoping Tensor Identity,

TorT∗ (M ⊗R T,N) ∼= H∗((P• ⊗R T )⊗T N) = H∗(P• ⊗R N) = TorR∗ (M,N).

The second isomorphism is established in exactly the same way.
b) Applying part a) with the R-module T ⊗R N in place of N we get

TorRn (M,T ⊗R N)
∼→ TorTn (M ⊗R T, T ⊗R N) ∼= TorTn (M ⊗R T,N ⊗R T ).

Let P• be a projective resolution for M over R. Since T is a flat R-module, F =
·⊗RT is an exact functor and commutes with homology. Using Tensor Associativity,
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we get an isomorphism

TorRn (M,N)⊗R T = F (TorRn (M,N)) ∼= F (Hn(P• ⊗R N))

= Hn(F (P• ⊗R N)) = Hn(P• ⊗R (N ⊗R T )) ∼= TorRn (M,N ⊗R T ).

c) We need only apply Proposition X.X: S−1R is flat over R. �

Theorem 6.13. Let R be a domain. Then for all R-modules M,N and all n > 0,
TorRn (M,N) is a torsion R-module.

Proof. Step 1: We make use of the fact that Tor commutes with localization (The-
orem 6.12): for any multiplicatively closed subset S ⊂ R,

S−1 TorRn (M,N) = TorS
−1R

n (S−1M,S−1N).

Step 2: Taking S = R \ {0}, we have S−1R = K. Then for all n > 0,

TorRn (M,N)⊗R K = TorKn (M ⊗R K,N ⊗R K) = 0.

Thus Tor(nM,N) lies in the kernel of ⊗RK, which as we have already seen is
precisely the torsion subgroup. �

Exercise: Let R be a ring, I a right ideal of R and J a left ideal of R. Show that

TorR1 (R/I,R/J)
∼=
I ∩ J
IJ

.

Hint: apply the Snake Lemma to

0→ IJ → I → I ⊗R/J → 0

0→ J → R→ R⊗R/J → 0.

Example: Let k be a field and R = k[x, y]. Let I = ⟨x, y⟩ and view k as the
R-module R/I. Then

0→ R→ R2 → R→ k → 0,

where α : f 7→ (−yf, xf) and β : (f, g) 7→ xf + yg gives a projective resolution of
k as an R-module. Using it we compute

TorR1 (I, k)
∼= TorR2 (I, k)

∼= k.

Thus I is a torsionfree but not flat, and we have a nonvanishing Tor2.

6.3. Balancing Ext.

Theorem 6.14 (Balancing Ext).

6.4. More on Ext.

Proposition 6.15. a) For any family {Mi}i∈I of R-modules, any R-module N
and all n ≥ 0, there is a natural isomorphism

Extn(
⊕
i∈I

Mi, N) =
∏
i∈I

Extn(Mi, N).

b) For any R-module M , any family {Ni}i∈I of R-modules and all n ≥ 0, there is
a natural isomorphism

Extn(M,
∏
i∈I

Ni) =
∏
i∈I

Extn(M,Ni).
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Proof. We will give two proofs of part a) and then – to maintain balance in the
force? – assign the analogous proof(s) of part b) as an exercice.
first proof (Weibel) If P•,i is a projective resolution of Mi for all i ∈ I, then⊕

i∈I P•,i is a projective resolution of M =
⊕

i∈IMi. Now Hom(
⊕
P•,i, N) =∏

i∈I Hom(P•,i, N), and the result follows.
second proof (Rotman) The case n = 0 is an earlier seen property of Hom. We
now suppose that n > 0, assume the result holds for n− 1 and deduce it for n. For
each i ∈ I, choose a short exact sequence

0→ Ki → Pi →Mi → 0

with Pi projective. Taking direct sums, we get

0→
⊕
i∈I

Ki →
⊕
i∈I

Pi →
⊕
i∈I

Mi → 0.

Case: n = 1. We have a commutative diagram with exact rows

Hom(
⊕
i

Pi, N)→ Hom(
⊕
i

Li, N)
δ→ Ext1(

⊕
i

Mi, B)→ 0,

∏
i

Hom(Pi, N)→
∏
i

Hom(Ki, N)
d→
∏

Ext1(Mi, B)→
∏
i

Ext1(Mi, B)→ 0.

By Proposition 3.9 there is an isomorphism Ext1(
⊕

iMi, N)
∼→
∏
i Ext

1(Mi, N).
Case: n ≥ 2. We have a commutative diagram with exact rows

Extn−1(
⊕
i

Pi, N)→ Extn−1(
⊕
i

Ki, N)
δ→ Extn(

⊕
i

Mi, N)→ 0

∏
i

Extn−1(Pi, N)→
∏
i

Extn−1(Ki, N)
d→
∏
i

Extn(Mi, B)→ 0,

where σ : Extn−1(
⊕

iKi, N)→
∏
i Ext

n−1(Ki, N) is the isomorphism given by the
induction hypothesis. Thus

dσδ−1 : Extn(
⊕
i

Mi, N)
∼→
∏
i

Extn(Mi, N).

�
Proposition 6.16. a) For any commutative group B, we have

Ext1(Z, B) = 0.

b) For any n ∈ Z+ and any commutative group B, we have

Ext1(Z/nZ, B) = B/nB.

Proof. Starting with the projective resolution

0→ Z ·n→ Z→ Z/nZ→ 0

of Z/nZ as a Z-module, we get an exact sequence

Hom(Z, B)
α→ Hom(Z, B)→ Ext1(Z/nZ, B)→ Ext1(Z, N).

We have Hom(Z, B) = B, and the map α is multiplication by n. Since Z is a
projective Z-module, Ext1(Z, N) = 0, so the exact sequence gives

Ext1(Z/nZ, B) ∼= B/nB.

�
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Exercise: Let M,N be finitely generated abelian groups. Compute Ext1(M,N).

For a commutative group A, we put A∗ = Hom(A,Q/Z).

Proposition 6.17. For any torsion commutative group A, Ext1(A,Z) = A∗.

Proof. Applying the right exact functor Hom(A, ·) to the short exact sequence

0→ Z→ Q→ Q/Z→ 0,

we get a long exact cohomology sequence, a portion of which is

Hom(A,Q)→ Hom(A,Q/Z)→ Ext1(A,Z)→ Ext1(A,Q).

Since A is torsion and Q is torsionfree, Hom(A,Q) = 0, and since Q is injective,
Ext1(A,Q) = 0. �

In particular, Ext1(Q/Z, A) = Ẑ, Ext1(Qp/Zp, A) = Zp.

Exercise: Show that Ext1(Z[ 1p ],Z) = Zp/Z ̸= 0. Deduce that flat R-modules need

not be acyclic for HomR(·, B).
(Suggestion: use the short exact sequence 0→ Z→ Z[ 1p ]→ Qp/Zp → 0.)

Exercise: Show that for any commutative group M and any positive integer n,
Ext1Z(M,Z/nZ) ∼=M∗/nM∗.

Lemma 6.18. Let R→ T be a ring map. Suppose that T is projective as a left R-
module. Then any projective left T -module M is also projective as a left R-module.

Exercise: Prove it.

Proposition 6.19. (Base Change for Ext) Let R→ T be a ring map.
a) Suppose T is a flat right R-module. Let M ∈R Mod, N ∈T Mod. For n ≥ 0,

ExtnR(M,N) ∼= ExtnT (T ⊗RM,N).

b) Suppose T is a projective left R-module. Let M ∈T Mod, N ∈R Mod. For n ≥ 0,

ExtnR(M,N) ∼= ExtnT (M,HomR(T,N)).

Proof. a) Let P• → M be a projective resolution over R. Since T is flat over
R, T ⊗R P• → T ⊗R M is a projective resolution of T ⊗R M over T . Using the
Tensor-Hom Adjunction we compute

ExtnT (T ⊗RM,N) ∼= Hn(HomT (T ⊗R P•, N)) ∼= Hn(HomR(P•,HomT (T,N))

∼= Hn(HomR(P•, N)) ∼= ExtnR(M,N).

b) Let P• →M be a projective resolution over T . Since T is projective over R, by
Lemma 6.18 P• →M is also a projective resolution over R. Using the Telescoping
Hom Identity we compute

ExtnT (M,HomR(T,N)) ∼= Hn(HomT (P•,HomR(T,N)))

∼= Hn(HomR(P•, N)) ∼= ExtnR(M,N).

�
Lemma 6.20. Let R be a commutative ring, and let M,N be R-modules. For
r ∈ R, let µ : M → M be x 7→ rx, and let ν : N → N be x 7→ rx. Then for all n,
the induced homomorphisms µ∗ and ν∗ on Extn(M,N) are multiplication by r.
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Exercise: a) Prove Lemma 6.20. (Suggestion: track multiplication by r through a
projective (resp. injective) resolution of M (resp. N).)
b) Suppose R is commutative and r ∈ R is such that rM = 0, so that M is canon-
ically an R/rR-module. Show that Extn(M,N) is an R/rR-module for all N .
c) Let S be a multiplicatively closed subset of R, and let M be an S−1R-module.
Show that for all R-modules N and all n ≥ 0, Extn(M,N) and Extn(N,M) are
S−1R-modules – i.e., multiplication by each s ∈ S is invertible on them.

Our next order of business is to show that Ext functors commute with localiza-
tion. This is fundamentally more delicate than the case of the Tor functors because
– unlike the tensor product – it is not even unrestrictedly true that taking Hom’s
commutes with localization! So we proceed rather carefully.

Lemma 6.21. Let M ∈R Mod be finitely presented, i.e., there is an exact sequence

Rm → Rn →M → 0.

Then for any central multiplicative subset S ⊂ R, the natural map

Φ : S−1 HomR(M,N)→ HomS−1R(S
−1R,S−1N)

is an isomorphism.

Proof. Certainly Φ is an isomorphism when M = R; by additivity it is also an
isomorphism when M = Rn. We finish by applying the Five Lemma to

0→ S−1 HomR(M,N)→ S−1 HomR(R
n, N)→ S−1 HomR(R

m, N)

Hom(S−1M,S−1N)→ Hom(S−1Rn, S−1N)→ Hom(S−1Rm, S−1N) :

the last two vertical maps are isomorphisms, hence so is Φ. �

Proposition 6.22. Let R be a Noetherian commutative ring and S ⊂ R a multi-
plicatively closed set. For every finitely generated R-module M , all R-modules N
and all n ≥ 0, the natural map

Φ : S−1 ExtnR(M,N)→ ExtnS−1R(S
−1M,S−1N)

is an isomorphism.

Proof. Since R is Noetherian and M is finitely generated, M admits a finite free
resolution F• → M → 0. Since S−1R is a flat R-module, localization is an exact
functor and thus S−1F• → S−1M → 0 is a finite free resolution over S−1R. Because
exact functor commute with co/homology and using Lemma 6.21, we get

S−1 Ext•(M,N) = S−1(H• HomR(F•, N)) ∼= H•S−1 HomR(F•, N)

∼= H• HomS−1R(S
−1F•, S

−1N) = Ext•S−1R(S
−1M,S−1N).

�

Theorem 6.23. For left R-modules A,C, the following are equivalent:
(i) Every short exact sequence

(7) 0→ A
i→ B

p→ C → 0

splits.
(ii) Ext1R(C,A) = 0.
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Proof. At the moment we will prove (i) =⇒ (ii) only. The other direction lies
deeper and will be proved in the next section.

(i) =⇒ (ii): We take the long exact cohomology sequence of the functor
Hom(C, ·) applied to the short exact sequence (7), getting

Hom(C,B)
p◦→ Hom(C,C)→ 0.

We get a homomorphism σ : C → B with p ◦ σ = 1C , so the sequence splits. �

Application: We say that a commutative group A is torsion split if its torsion
subgroup A[tors] is a direct summand.

Exercise: Show that a commutative group A is torsion split if:
(i) A is torsion.
(ii) A is torsionfree.
(iii) A is finitely generated.
(iv) A[tors] is divisible.
(v) A/A[tors] is free.

Theorem 6.24. Let R be a Dedekind domain.
a) If A is torsionfree, then for every R-module B, Ext1(A,B) is divisible.
b) If A is torsionfree and B = N [r] for some r ∈ R•, Ext1(A,B) = 0.
c) If A[tors] = A[r] for some r ∈ R•, then A[tors] is a direct summand of A.

Proof. a) Let V = A⊗R K. Since A is torsionfree, we have an exact sequence

0→ A→ V → V/A→ 0.

Applying the cofunctor Hom(·, B), a portion of the long exact Ext sequence is

Ext1R(V,B)→ Ext1R(A,B)→ Ext2R(V/A,B).

Since R is hereditary, submodules of projective modules are projective and thus
Ext2R(A,B) = 0,12 so Ext1R(A,B) is a quotient of Ext1R(V,B). Since V is a K-
module, so is Ext1R(V,B) and thus Ext1R(V,B) and its quotient Ext1R(A,B) is a
divisible module, hence injective by Theorem 2.13.
b) Let T = A[tors] = A[r]. We will show that the sequence

0→ T → A→ A/T → 0

splits by computing Ext1R(A/T, T ) = 0. Since A/T is torsionfree, by part a),
Ext1R(A/T, T ) is divisible. On the other hand, since T = T [r], by Exercise X.X,
Ext1R(A/T, T ) = Ext1R(A/T, T )[r]. Thus multiplication by r on Ext1R(A/T, T ) is on
the one hand surjective and on the other hand identically zero, so Ext1R(A/T, T ) =
0. By Theorem 6.23 the sequence splits. �

Proposition 6.25. There is a commutative group with torsion subgroup T =⊕
p Z/pZ which is not torsion split.

Proof. Step 1: We claim that it is enough to show that Ext1(Q, T ) ̸= 0. Indeed, if
so, then there is a nonsplit extension

0→ T → A→ Q→ 0.

12This is explored in more detail in § 7.2 below.
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Since T is torsion and Q is torsionfree, T = A[tors].
Step 2: Put M =

∏
p Z/pZ. Then we have a short exact sequence

0→ T →M → D → 0,

where D = M/T . Note that D is torsionfree, divisible and nonzero, hence is a
nontrivial Q-vector space. Using the short exact sequence

0→
⊕
p

Z/pZ→
∏
p

Z/pZ→ D → 0,

we get

Hom(Q,
∏
p

Z/pZ)→ Hom(Q, D)→ Ext1(Q, T )→ Ext1(Q,
∏
p

Z/pZ).

Now Hom(Q,
∏
p Z/pZ) =

∏
pHom(Q,Z/pZ) = 0 and similarly Ext1(Q,

∏
p Z/pZ) =∏

p Ext
1(Q,Z/pZ) = 0, so

Hom(Q, D) ∼= Ext1(Q, T ).

By the above remarks about D, this shows Ext1(Q, T ) ̸= 0. (In fact it is easy to
see that it is uncountably infinite!) �

Exercise:
a) Check that

∏
p Z/pZ/

⊕
p Z/pZ is torsionfree, divisible and of cardinality 2ℵ0 .

b) Show that
∏
p Z/pZ contains no nonzero divisible submodule, and deduce that

the exact sequence

0→
⊕
p

Z/pZ→
∏
p

Z/pZ→ D → 0

is nonsplit and thus
∏
p Z/pZ is not torsionsplit.

Theorem 6.26. (Wiegold [Wi69]) Ext1(Q,Z) ∼= (R,+).

Proof. A (new?) proof is sketched in the following exercise. �

Exercise: We will show that Ext1(Q,Z) ∼= (R,+).
a) Recall that for any commutative group G, Ext1(Q, G) is a Q-vector space, and
thus it remains to determine its dimension. Show that the claimed result is equiv-
alent to #Ext1(Q,Z) = 2ℵ0 .
b) Apply the functor Hom(·,Z) to the short exact sequence

0→ Z→ Q→ Q/Z→ 0

to get
0→ Z→ Ext1(Q/Z,Z)→ Ext1(Q,Z)→ 0.

Deduce that it suffices to show #Ext1(Q/Z,Z) = 2ℵ0 .
c) Compute Ext1(Q/Z,Z) using Proposition 6.17.

Exercise: A torsion abelian group T has Property B if for all abelian groups
A, if A[tors] ∼= T , then A is torsion split.
a) Show that if T ∼= B ⊕ D with B bounded – i.e., B = B[n] for some n ∈ Z+ –
and D divisible, then T has property B.
c)∗∗ (Baer [Bae36]) Show: if T has Property B, then T ∼= B ⊕D with B bounded
and D divisible.
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6.5. Ext and Extensions.

Our goal in this section is to show that Ext1(M,N) parameterizes the set of exten-
sions of N by M . In particular this will complete the proof of Theorem 6.23.

Let A and B be left R-modules. An extension of B by A is a short exact
sequence

0→ A→ X → B → 0.

(Note the order of A and B. This terminology is rather confusing at first, but it
is quite standard, though unfortunately not strictly universal.) There is always at
least one extension of B by A, namely the split extension

(8) 0→ A→ A⊕B → B → 0.

Previously we have worked with the dichotomy split/nonsplit for extensions, but
now we want to go further and study the set of all extensions of B by A, up to a
natural equivalence relation. Namely, we say that two extensions

0→ A→ X → B → 0,

0→ A→ X ′ → B → 0

are equivalent if there is a morphism α : X → X ′ making the diagram

0→ A→ X → B → 0

0→ A→ X ′ → B → 0

commute. By the Five Lemma, such an α is necessarily an isomorphism. Note that
this notion of equivalence is very natural, since one of our enunciations of what it
means for a short exact sequence to split was that it be equivalent to one of the form
(8). Let us take E(B,A) to be the set of equivalence classes of extensions of B by A.

Example: If R = Z we claim that the set E(Z/pZ,Z/pZ) has precisely p elements.
Indeed, if we have a short exact sequence

0→ Z/pZ→ X → Z/pZ→ 0

then X is a commutative group of order p2, hence it is isomorphic to either
Z/pZ ⊕ Z/pZ or to Z/p2Z. In the first case we have indeed a short exact se-
quence of Z/pZ-vector spaces, so it certainly splits and thus there is exactly one
equivalence class of extension with X ∼= Z/pZ ⊕ Z/pZ. Now suppose X ∼= Z/p2Z.
To give a surjective homomorphism Z/p2Z → Z/pZ we need to – and may – send
the generator 1 to any nonzero element of Z/pZ, so there are p− 1 choices. We ask
the reader to check that these p − 1 extensions are pairwise inequivalent, despite
the fact that the middle modules are the same for all of them.

Exercise: Complete the calculations necessary to show that #E(Z/pZ,Z/pZ) = p.

This example has an important moral: given two extensions of B by A, if they
are isomorphic then X ∼= X ′, but the converse need not hold!

With respect to the above example, notice that Ext1(Z/pZ,Z/pZ) = Z/pZ, so
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#Ext1(Z/pZ,Z/pZ) = #E(Z/pZ,Z/pZ). We are about to vastly generalize this
observation: for any left R-modules A, B, we will give a canonical isomorphism

Φ : E(B,A) ∼→ Ext1(B,A).

Note that this certainly gives a proof of Theorem 6.23.

The definition of Φ is quite natural: suppose we have

ξ : 0→ A→ X → B → 0.

As we did before, we take the long exact cohomology sequence of the functor
Hom(·, A), getting

Hom(A,A)
δ→ Ext1(B,A).

We put

Φ(ξ) := δ(1A).

Using the naturality of the δ-functor Ext, it is immediate that Φ depends only on
the equivalence class of the extension.

Theorem 6.27. The above map Φ : E(B,A)→ Ext1(B,A) is a bijection.

Proof. Step 1: Let 0→M
j→ P → B → 0 be an exact sequence with P projective.

Applying Hom(·, A) we get an exact sequence

Hom(P,A)→ Hom(M,A)
δ→ Ext1(B,A)→ 0.

Let x ∈ Ext1(B,A) and choose β ∈ Hom(M,A) with δβ = x. Let X be the
pushout of j and β, constructed concretely as follows: let α :M → P×A by α(x) =
(j(x),−β(x)), and putX = (P×A)/β(M). The natural surjection P×A→ P → B
induces a surjective map X → B with kernel A, and thus we have a diagram

0→M
j→ P → B → 0

ξ : 0→ A
i→ X → B → 0.

Taking Ext∗(·, A) we get a commutative diagram

Hom(A,A)
δ→ Ext1(B,A)

Hom(M,A)
δ→ Ext1(B,A)

which shows that δ(1A) = x.
Step 2: We claim that in fact the above construction gives a well-defined map
Ψ : E(B,A) → Ext1(B,A). Indeed, if β′ ∈ Hom(M,A) is another lift of x, then
there is f ∈ Hom(P,A) with

β′ = β + fj.

If X ′ is the pushout of j and β′, then the maps i : A → X and σ + i : P → X
induce an isomorphism X → X ′ and an equivalence between σ and σ′. (Exercise!)
Step 3: Given an extension ξ of B by A, the projective lifting property gives us a
commutative diagram

0→M
j→ P → B → 0

0→ B
i→ X → B → 0.

Then X is the pushout of j and γ :M → A. (Exercise!) Hence Ψ(Φ(ξ)) = ξ and Φ
is injective. �
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There is a naturally defined addition law on E(A,B) with respect to which E(A,B)
becomes a commutative group and Φ becomes an isomorphism of groups, the Baer
sum of extensions. Given

ξ : 0→ A→ X → B → 0,

ξ′ : 0→ A→ X ′ → B → 0,

let P be the fiber product of f : X → B and g : X ′ → B. Then P is nearly an
extension of B by A but it is slightly too large in that it contains two independent
copies of A: indeed, using the standard concrete construction P = {(x, x′) ∈ X ×
X ′ | f(x) = g(x)} we see that A × A ⊂ P and in fact P/(A × A) ∼= B. Let
S = {(a,−a) | a ∈ A}; this is a third, antidiagonal copy of A sitting inside P .

Put X ′′ = P/S and let q : P → X ′′ be the quotient map. Then q : A × {0} ∼→
q(A×{0}) = q({0}×A) ∼← {0}×A. Denoting this common copy of A in X ′′ simply
by A, we then have an exact sequence

ξ′′ : 0→ A→ X ′′ → B → 0

and we put ξ′′ = ξ + ξ′.

Theorem 6.28. The Baer sum makes E(B,A) into a commutative goup and the
map Φ : E(B,A)→ Ext1(B,A) into a group isomorphism.

Proof. Since Φ is a bijection and Ext1(B,A) is a commutative group, it is enough
to show that Φ(ξ + ξ′) = Φ(ξ) + Φ(ξ′). . . . �
Exercise: One can certainly show directly that (E(B,A),+) is a commutative group,
but some of the verifications required (e.g. the associativity) are unrewardingly
tedious. But what is the inverse in E(B,A) of an extension ξ : 0→ A→ X → B →
0? Give it explicitly.

6.6. The Universal Coefficient Theorems.

Theorem 6.29 (Künneth Formula). Let P• be a chain complex of flat right R-
modules such that for all n d(Pn) is also flat. Then for all n ∈ Z and all left
R-modules M , there is an exact sequence

0→ Hn(P•)⊗RM → Hn(P• ⊗RM)→ TorR1 (Hn−1(P•),M)→ 0.

Proof. Step 1: Consider the short exact sequence

0→ Zn → Pn → d(Pn)→ 0.

Since Pn and d(Pn) are assumed flat, the long exact Tor sequence shows that Zn
is also flat. Therefore

0→ dPn → Zn → Hn−1(P•)→ 0

is a flat resolution of Hn−1(P•), so that TorR∗ (Hn−1(P•),M) is the homology of the
complex

0→ dPn ⊗M → Zn ⊗M → Hn−1P• ⊗M → 0

and in particular

TorR1 (Hn−1(P•),M) ∼= Ker(d : dPn ⊗M → Zn−1 ⊗M).

Step 2: Since dPn is flat, we have TorR1 (dPn,M) = 0 for all n, and thus the
complexes

0→ Zn ⊗M → Pn ⊗M → dPn ⊗M → 0
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are all exact. They compile to give a short exact sequence of chain complexes,
in which the differentials in Z• and dP• are all zero. The long exact homology
sequence is

Hn+1(dP•⊗M)→ Hn(Z•⊗M)→ Hn(P•⊗M)
α→ Hn(dP•⊗M)

δ→ Hn−1(Z•⊗M)

We have

Hn−1(Z• ⊗M) ∼= Zn−1 ⊗M,

Hn(dP• ⊗M) ∼= dPn ⊗M,

δ = d,

and thus

dPn+1 ⊗M
δ⊗1→ Zn ⊗M → Hn(P• ⊗M)

α→ dPn ⊗M
d→ Zn−1 ⊗M.

Therefore

TorR1 (Hn−1(P•),M) ∼= Ker(d) ∼= Imageα ∼= Hn(P• ⊗M)/HnP• ⊗M.

�

Remark: The (only?) evident way to ensure the hypothesis that d(Pn) is flat is
to assume that R is a ring in which a submodule of a flat module is flat. Among
domains these are precisely the Prüfer domains; in particular, among Noetherian
domains these are precisely the Dedekind domains. In fact in the applications to
algebraic topology we will have R = Z.

Exercise (John Doyle): The above result and its proof is not really about ten-
sor products and tor functors at all but rather a useful characterization of the
difference between F (Hn(P•)) and Hn(FP•) under certain conditions. Namely:
a) Let F : A → B be a right exact functor between abelian categories with enough
projectives, and let P• be a chain complex in A such that for all n both Pn and
dPn are F -ayclic. Then, for all n ∈ Z, there is an exact sequence

0→ Hn(F (P•))→ F (Hn(P•))→ L1F (Hn(P•))→ 0.

b) Deduce from part a) another proof that exact functors commute with homology.
c) Find another application of the result of part a).

There is also a more general Kunneth Formula in which the left R-module M
is replaced by a chain complex. Most of the additional content of this resides in
the definition of a tensor product of a chain complex P• of right R-modules with a
chain complex Q• of left R-modules: by definition,

(P• ⊗R Q•)n =
⊕
p+q=n

Pp ⊗R Qq,

and the differential is given by

d(a⊗R b) = (da)⊗R b+ (−1)pa⊗R (db)

for a ∈ Pp, b ∈ Qq.
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Theorem 6.30. (Künneth for Complexes) Let P• be a chain complex of right R-
modules such that Pn and dPn is flat for all n. Let Q• be a chain complex of left
R-modules. Then for all n there is an exact sequence

0→
⊕
p+q=n

Hp(P )⊗RHq(Q)→ Hn(P•⊗RQ•)→
⊕

p+q=n−1

TorR1 (Hp(P•),Hq(Q•))→ 0.

Moreover, if R is a hereditary ring and P• is a chain complex of projective R-
modules, then the above exact sequence splits.

Exercise: Prove it. (Suggestions: [H, pp. 274-275] contains a nice treatment under
the slightly stronger hypothesis that Pn and dPn is projective for all n. This is used
only to ensure that tensoring the complex 0→ Z• → P• → dP• → 0 with Q• yields
a short exact sequence of chain complexes. But this can be shown in a different
way: by first showing that for a complex Q•, tensoring any short exact sequence of
complexes with Q• yields a short exact sequence of complexes iff each Qn is flat.)

Theorem 6.31 (Universal Coefficient Theorem in Homology). Let P• be a chain
complex of free abelian groups. Then for all n and all abelian groups M , we have

Hn((P• ⊗M)) ∼= (Hn(P•)⊗M)
⊕

TorZ1 (Hn−1(P•),M).

Proof. Since every subgroup of a free abelian group is free, dPn is free abelian group
for all n, and we get

Pn ∼= Zn ⊕ dPn.
Tensoring with M gives that Zn ⊗M is a direct summand of Pn ⊗M ; it must also
then be a direct summand of the intermediate group

K = ker dn ⊗ 1 : Pn ⊗M → Pn−1 ⊗M :

that is, there is an abelian group B such that

(Zn ⊗M)⊕B ∼= K.

Let K ′ be the image of dn+1 ⊗ 1 in Pn ⊗M . Then K ′ ⊂ K and K ′ ⊂ Zn ⊗M , so

Hn(P• ⊗M) ∼= K/K ′ ∼= (Zn ⊗M)/K ′ ⊕B ∼= (Hn(P•)⊗M)⊕B.
Thus Hn(P•)⊗M is a direct summand of Hn(P• ⊗M). By the Künneth Formula

the complementary direct summand must be TorZ1 (Hn−1(P•),M). �

Exercise: Let X be a topological space. Apply Theorem 6.31 to the singular com-
plex S•(X) to get the usual Universal Coefficient Theorem from algebraic topology.

Theorem 6.32 (Universal Coefficient Theorem for Cohomology). Let P• be a chain
complex of projective left R-modules such that each dPn is projective. Then for all
n ∈ Z and all R-modules M we have a split exact sequence

0→ Ext1R(Hn−1(P•),M)→ Hn(HomR(P•,M))→ HomR(Hn(P•),M)→ 0.

Exercise: Prove Theorem 6.32. (Suggestion: adapt the proof of the Künneth For-
mula to give the existence of the short exact sequence, then adapt the proof of
Theorem 6.31 to show that it is split.)

Exercise: State and prove the Universal Coefficient Theorem for singular coho-
mology of a topological space.
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Exercise: Verify that all the results of this section work in the context of com-
plexes P• of projective left R-modules over any left hereditary ring.

7. Homological Dimension Theory

7.1. Syzygies, Cosyzygies, Dimension Shifting.

For an object M of an abelian category A, let

. . .
dn+1→ Tn

dn→ . . .
d1→ T0

d0→M → 0

be a left resolution. Let Kn = ker dn; we call this the nth syzygy of the resolution.

Dually, if we have a right resolution

0→M → T •

then we call Cn = coker dn the nth cosyzygy.

The reader should stop for a moment and recall that syzygies were used to con-
struct projective resolutions (and cosyzygies to construct injective resolutions), so
the idea that they carry some important data in their own right should perhaps
not be entirely surprising. On the other hand, the mind rebels against this a bit
because of the apparent lack of canonicity of syzygies. Is there any sense in which
the syzygies Kn of M are invariants of M and not just a chosen resolution?

Indeed there is. To get at this, we need one further (fairly natural) notion.

Two objectsM and N are projectively equivalent if there are projective modules
P1 and P2 such that M ⊕ P1

∼= N ⊕ P2. This is (clearly) an equivalence relation.
Dually, M and N are injectively equivalent if there are injectives E1 and E2

such that M ⊕ E1
∼= N ⊕ E2.

Exercise: a) Show: M is projectively equivalent to 0 iff it is projective.
b) Show: M is injectively equivalent to 0 iff it is injective.

Lemma 7.1. Let A,B be objects in an abelian category A.
a) If A and B are projectively equivalent, then for any right exact functor F and
all n > 0, Ln(A) ∼= Ln(B).
b) If A and B are injectively equivalent, then or any left exact functor F and all
n > 0, Rn(A) ∼= Rn(B).
c) If A and B are projectively equivalent, then for any epimonic cofunctor F and
all n > 0, Rn(A) ∼= Rn(B).

Exercise: Prove Lemma 7.1.

Theorem 7.2 (Schanuel’s Lemma). Let M be an object in an abelian category A.
a) Suppose we have two short exact sequences

0→ K → P →M → 0,

0→ K ′ → P ′ →M → 0,

with P and P ′ projective. Then

K ⊕ P ′ ∼= K ′ ⊕ P.
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b) More generally, suppose we have two exact sequences

0→ K → Pn → Pn−1 → . . .→ P0 →M → 0,

0→ K ′ → P ′
n → P ′

n−1 → . . .→ P ′
0 →M → 0.

Then

K ⊕ P ′
n ⊕ Pn−1 ⊕ . . . ∼= K ′ ⊕ Pn ⊕ P ′

n−1 ⊕ . . . .
In particular, K and K ′ are projectively equivalent.

Proof. a) Let Q be the fiber product of P →M , P ′ →M . Consider the diagram

K ′ 1→ K ′

0→ K → Q→ P ′ → 0.

0→ K → P →M → 0.

In particular we have short exact sequences

0→ K ′ → Q→ P → 0,

0→ K → Q→ P ′ → 0.

Since P and P ′ are projective, both of these sequences split and thus

K ′ ⊕ P ∼= Q ∼= K ⊕ P ′.

b) We leave this to the reader as an exercise. �

Exercise: Prove part b) of Theorem 7.2. (Hints: go by induction on n. Use the fact
that if 0 → A → B → C → 0 is an exact sequence then so is 0 → A → B ⊕D →
C ⊕D → 0.)

Exercise: State and prove a version of Schanuel’s Lemma for injectives.

Exercise: Show that part a) of Schanuel’s Lemma need not hold for flat resolu-
tions. (Suggestion: compare the flat resolution 0 → Z → Q → Q/Z → 0 to any
projective resolution.)

Corollary 7.3. Let M be an object in an abelian category A.
a) If A has enough projectives, then the syzygies Kn of M are well-defined inde-
pendent of the projective resolution, up to projective equivalence. It follows that
applying left derived functors (or right derived functors of epimonic cofunctors) to
syzygies is well-defined.
b) If A has enough injectives, then the cosyzygies Cn of M are well-defined indepen-
dent of the injective resolution, up to injective equivalence. It follows that applying
right derived functors to cosyzygies is well-defined.

Theorem 7.4 (Dimension Shifting). a) Let M be an object of an abelian category
A with enough projectives, and let F : A → B be a right exact functor. Then for
all n > 0,

LnF (A) ∼= L1F (Kn−1),

where Kn−1 is the n− 1st (projective) syzygy of M .
b) Dually...
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Proof. We prove part a) only, as part b) follows by the Duality Principle. First we
choose a projective resolution P• of M .
Step 0: Consider

0→ K0 → P0 →M → 0

with P0 projective. Since projectives are F -acyclic, we get

Ln(K0)→ Ln(P0)→ Ln(M)
δ→ Ln−1(K0) . . . ,

and every third object is zero, so the connecting maps give isomorphisms

Ln+1(M) ∼= Ln(K0).

Step 1: Since the image of P1 → P0 is K0, we have an exact sequence

0→ K1 → P1 → K0 → 0.

Now arguing as above gives

Ln(K0) ∼= Ln−1(K1).

Step 2: Proceeding inductively we finally get the desired result. �

Exercise: State and prove a version of dimension shifting for epimonic cofunctors.

Exercise: State and prove a version of dimension shifting for F -acyclic resolutions.

The following exercises develop an alternate take on syzygies and projective di-
mension which is sometimes useful.

Exercise: For M,N ∈R Mod, we write M ∼ N is M and N are projectively
equivalent, and denote by [M ] the projective equivalence class of M . Let G(R) be
the set of projective equivalence classes of left R-modules.
a) Show that if M1 ∼M2 and N1 ∼ N2, then M1 ⊕N1 ∼M2 ⊕N2.
b) Deduce that [M ] + [N ] = [M ⊕ N ] is a well-defined binary operation on G(R)
which endows it with the structure of a commutative monoid.
c) Show that the only invertible element of G(R) is 0 (the equivalence class of pro-
jective modules).

Exercise: For a left R-module M , we define the projective shift P(M) ∈ G(R)
to be the projective equivalence class of the zeroth projective syzygy of M : for any
short exact sequence

0→ K → P →M,

we put P(M) = [K].
a) Show that P(M) is well-defined.
b) Show that P(M) depends only on [M ], thus P : G(R)→ G(R) is well-defined.
c) Show that P is an endomorphism of the monoid G(R).
d) Let {Mi}i∈I be a family of leftR-modules. Show that P

⊕
i∈IMi = [

⊕
i∈I P(Mi)].

e) Show that for any n ∈ Z+, Pn(M) = [Kn−1], the projective equivalence class of
the (n− 1)st projective syzygy of M .
f) Show that pd(M) is the least n ∈ N such that Pn(M) = 0 ∈ G(R), or ∞ if no
such n exists.
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7.2. Finite Free Resolutions and Serre’s Theorem on Projective Modules.

A left R-module M is stably free if there is a finitely generated free module
F such that M ⊕ F is free.

Exercise: Show that free modules are stably free, and stably free modules are
projective.

In his 1972 Brandeis thesis, M.R. Gabel showed that an infinitely generated stably
free module is necessarily free. The rather short, elementary proof can be found in
[CA, Thm. 6.10]: it was taken from a treatment of K. Conrad. So from now on let
us agree to only consider finitely generated stably free modules.

Stably free modules are natural from the perspective of algebraic K-theory. In-
deed (although this may be a thoroughly unhelpful remark) they are precisely the

finitely generated modules with trivial image in the reduced K-group K̃0(R). They
are also an interesting intermediate point between projective modules and free mod-
ules.

Recall that in the early 1950’s, in the midst of a foundational study of coherent
sheaves on algebraic varieties, Serre asked the question of whether every finitely
generated projective module P over a ring Rn = k[t1, . . . , tn] – where k is an ar-
bitrary field – must be free. Since Rn is the ring of polynomial functions on affine
n-space An (by definition!; don’t be scared yet), the Serre-Swan theorem leads us
to think of P as an algebraic vector bundle on An. Suppose instead that we had
an ordinary topological vector bundle on Rn or Cn. Then because the category of
vector bundles on a paracompact space depends only on the homotopy type of the
space and Rn and Cn(∼= R2n) are contractible, it is immediate that every vector
bundle on such a space is trivial.

That was for topological vector bundles. One can ask the same question for
smooth vector bundles – this means that we require the transition functions
to be smooth – and then it is a simple exercise using smooth partitions of unity
that again every smooth vector bundle on Rn or Cn (again, smoothly Cn ∼= R2n) is
trivial. On Cn one can try once again with holomorphic vector bundles – now
the transition functions are required to be holomorphic – and we get a question
that is not completely trivial for the novice in complex geometry. But there is an
elementary fact, c the d-bar Poincare Lemma, which again swiftly implies that
holomorphic vector bundles on Cn are trivial.

Then finally we come to algebraic vector bundles, which means roughly that
the transition functions (with respect to a trivializing open covering in the Zariski
topology) are quotients of polynomials. Remarkably this makes the problem in-
credibly more difficult, and Serre was unable to prove the result – except of course
in the trivial case n = 1, when k[t] is a PID.

FAC was published in 1955. In 1958 Serre published a proof of the weaker re-
sult that every finitely generated projective module over k[t1, . . . , tn] is stably free.
It was not until 1976 that D. Quillen and A. Suslin (independently) were able to
replace stably free with “free”. To give a sense of the scope of this achievement I
mention that Quillen received the Fields Medal in 1978, in part for this work.
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In the remainder of this section we will prove Serre’s Theorem. It is in fact a
remarkable showpiece of homological algebra: the key is to study finite free resolu-
tions of modules, and the proof uses no more than quite straightforward results on
such things together with one piece of formal magic which will be introduced later.

7.2.1. FFR.

Let M be a left R-module. A finite free resolution (FFR) of M is a pro-
jective resolution P• →M with three additional properties:
(I) Each Pi is free.
(II) Each Pi is finitely generated.
(III) The resolution has finite length: Pn = 0 for all sufficiently large n.

We well know that every module admits a projective resolution. In what way
do the added conditions (I) through (III) impose restrictions on M , i.e., which
modules M are FFR? Let’s take them in turn.

• As we know, every module is a quotient of a free module, so every module admits
a free resolution: condition (I) is no restriction on M whatsoever.

• Suppose M admits a resolution by finitely generated free modules. In partic-
ular M is a homomorphic image of the finitely generated module F0 so is itself
finitely generated. What about the converse? For every finitely generated module
M there is a short exact sequence

0→ K0 → F0 →M → 0

with F0 finitely generated free. Consider the kernel K0: if it is finitely generated,
then we can find a finitely generated free module F1, a surjection F1 → K0, and
splice to get

0→ K1 → F1 → F0 →M → 0.

Similarly, if K1 happens to be finitely generated, then we can write it as a ho-
momorphic image of a free module, splice that in, and so forth. The point is that
there are rings for which not every submodule of a finitely generated free module
is finitely generated: indeed this condition is equivalent to R being left Noetherian.
So we get:

Proposition 7.5. For a module M over a left Noetherian ring M , the following
are equivalent: (i) M admits a resolution by finitely generated free modules.
(iii) M admits a resolution by finitely generated projective modules.
(iii) M is finitely generated.

Over an arbitrary ring R, we say that a module M is FPn if there is an exact
sequence

Pn → . . . P0 →M → 0

with each Pi finitely generated projective. We say that M is FP∞ if it is FPn for
all n ∈ N.

Exercise: Let R be a ring and M a left R-module.
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a) Show that M is FP0 iff it is finitely generated.
b) Show that the following conditions are equivalent:
(i) M is FP1.
(ii) M is finitely presented: there is an exact sequence

F1 → F0 →M → 0

with each Fi finitely generated free.
(iii) For every surjection ϵ : P → M with P finitely generated projective, ker(ϵ) is
finitely generated.
c) For any n ≥ 1, show that the following conditions are equivalent:
(i) M is FPn.
(ii) There is an exact sequence

Fn → . . . F0 →M → 0

with each Fi finitely generated free.

(iii) For every exact sequence Pn
dn→ . . . → P0 → M → 0 with each Pi finitely

generated projective, Ker dn is finitely generated.
(Hint for parts b) and c): Schanuel’s Lemma.)
d) The following conditions are equivalent:
(i) M admits a resolution by finitely generated free modules.
(ii) M admits a resolution by finitely generated projective modules.
(iii) M is FP∞.

From now on we will be interested only in the Noetherian case, where as we have
seen conditions (I) and (II) simply mean that M is finitely generated. We move
now to the full FFR property, and we begin with the following innocent, but fun-
damental observation of Serre.

Lemma 7.6 (Serre’s Lemma). For a finitely generated projective module P , TFAE:
(i) P is stably free.
(ii) P is FFR.

Proof. (i) =⇒ (ii): If there are finitely generated free modules F0, F1 with P⊕F1
∼=

F0, then projection of F0 onto P gives a FFR 0→ F1 → F0 → P → 0.
(ii) =⇒ (i): We go by induction on the length of the FFR. If n = 0 then P is
free. Suppose now that every finitely generated projective module with an FFR of
length n− 1 is stably free, and let

0→ Fn → . . .→ F0 → P → 0

be an FFR of a finitely generated projective module P . Let K0 = KerF0 → P .
Since P is projective, F0

∼= K0 ⊕ P . We are left with an exact sequence

0→ Fn → . . .→ F1 → K0 → 0,

which shows by induction that K0 is stably free: K0 ⊕Ra ∼= Rb for some a, b ∈ N.
Thus Ra ⊕ F0

∼= (K0 ⊕Ra)⊕ P ∼= Rb ⊕ P and P is stably free. �

Lemma 7.7. If a left R-moduleM admits a length n resolution by finitely generated
stably free modules, then M admits an FFR of length n+ 1.
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Proof. By induction on n.
n = 0: Then M is stably free, so there are a, b ∈ N with M ⊕Ra ∼= Rb and we get
a length 1 FFR

0→ Ra → Rn →M → 0.

We suppose that n > 0 and that the result holds for modules with a length n − 1
resolution by finitely generated stably free modules – henceforth we abbreviate this
to FSFR. Let P• → M → 0 be a length n FSFR. Choose a finitely generated free
module F such that P0 ⊕ F is free. We have a modified resolution

0→ Pn → . . . P2
d1⊕0→ P1 ⊕ F

d1⊕1→ P0 ⊕ F
ϵ′=ϵ⊕0−→ M → 0.

Then
0→ Pn → . . .→ P2 → P1 ⊕ F → Ker ϵ′ → 0

is a FSFR of length n− 1, so by induction Ker ϵ′ has a FFR of length n. Splicing
this FFR with 0→ Ker ϵ′ → P0 ⊕ F →M → 0 gives a FFR of length n+ 1. �
Exercise: LetM be a left module over a left Noetherian ring. Show: ifM admits an
FFR of length n, then for any resolution of M by finitely generated free modules,
the nth syzygy is stably free.

Proposition 7.8. Let R be a left Noetherian ring, and let 0→M ′ →M →M ′′ →
0 be a short exact sequence of left R-modules. If any two of M ′, M , M ′′ are FFR,
so is the third.

Proof. Since R is Noetherian, finitely generated modules are Noetherian. Any
module admitting an FFR is Noetherian, so by hypothesis two out of the three
of M ′, M , M ′′ are Noetherian, hence so is the third. Thus M ′ and M ′′ admit
infinite length resolutions F ′

• and F ′′
• by finitely generated free modules. By the

Horseshoe Lemma we can fill in with a projective resolution F• of M to get short
exact sequences

0→ F ′
n → Fn → F ′′

n → 0

for all n. Since F ′′
n is projective, this sequence splits, showing that Fn is finitely

generated free. For each n ∈ N, we get a short exact sequence of projective syzygies

0→ K ′
n → Kn → K ′′

n → 0.

If some Kn is stably free, then

0→ Kn → Fn → . . .→ F0 →M → 0

is a FSFSR, so by Lemma 7.7 M is FFR, and the same holds for M ′ and M ′′.

Case 1: Suppose M ′, M ′′ admit FFRs of length n. By Schanuel’s Lemma, K ′
n

and K ′′
n are stably free. In particular K ′′

n is projective, so Kn
∼= K ′

n ⊕K ′′
n is stably

free and M is FFR.
Case 2: Suppose M , M ′′ admit FFRs of length n. Let L be a finitely generated
free module such that Kn⊕L is free, and let L′′ be a finitely generated free module
such that K ′′

n ⊕ L′′ is free, so

(Kn ⊕ L)⊕ L′′ ∼= (K ′
n ⊕ L)⊕ (K ′′

n ⊕ L′′)

shows that K ′
n is stably free.

Case 3: Suppose M ′, M admit FFRs of length n, so K ′
n and Kn are stably free.

Splice
0→ K ′

n → Kn → K ′′
n → 0
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to

0→ K ′′
n → F ′′

n → . . .→ F ′′
0 →M ′′ → 0

to get a FSFR of M ′′, and apply Lemma 7.7. �

7.2.2. Biternary Classes.

Let X be a subclass of the class of all left R-modules. We say that X is biternary13

if given a short exact sequence

0→M ′ →M →M ′′ → 0

of left R-modules, if any two of M ′, M , M ′′ lie in X , so too does the third.

Exercise: Determine which of the following properties of modules determine a
biternary subclass of RMod for any ring R:
(i) finitely generated modules.
(ii) Noetherian modules.
(iii) Artinian modules.
(iv) finite length (= Noetherian + Artinian) modules.
(v) free modules.
(vi) stably free module.
(vii) projective modules.
(viii) flat modules.
(ix) torsionfree modules (over any domain).
(x) injective modules.
(xi) finite length modules.

Above we proved that for any left Noetherian ring, FFR is a biternary class. This
turns out to be a key idea in the proof of Serre’s Theorem. First we develop a very
modest formalism concerning biternary classes.

Exercise: Let R be a ring. Show that any intersection of biternary subclasses
of RMod is a biternary class.

From the exercise it follows that for any subclass X ⊂R Mod there is a unique
minimal biternary subclass containing it, namely the intersection of all biternary
subclasses containing it. We denote this “biternary closure” by F(X ). As usual,
when we define a “generated object” by this kind of top-down approach, it is useful
to supplement it with a more explicit bottom-up construction. In this case this is
completely straightforward: for a subclass X of RMod, we put C(X ) be the class
of all R-modules lying in a short exact sequence, the other two members of which
lie in C.

Exercise: Let X ⊂ Y ⊂R Mod be subclasses. Show:
a) We have C(X) ⊂ C(Y ).
b) We have X ⊂ C(X ).

13We have made this name up on the spot. It is meant to suggest “two out of three” and not

to stick out like a sore thumb. Our solution may nor be ideal, but in our defense J. Rotman in
[Rot] calls such a subclass a family, which is much worse.
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c) We have F(X ) =
∪∞
n=1 Cn(X ).

d) We have F(X ) ⊂ F(Y ).

Lemma 7.9. If R is left Noetherian and X ⊂ FFR, then F(X ) ⊂ FFR.

Exercise: Prove it.

7.2.3. Serre’s Theorem.

Theorem 7.10. Let R be a Notherian commutative ring. If every finitely generated
R-module is FFR, then every finitely generated R[t]-module is FFR.

Proof. Step 1: Let X be the class of finitely generated R[t]-modules which are
extended from M : M ∼= R[t]⊗R N for some R-module N . Let F• be a FFR of N .
Since R[t] is flat over R, R[t]⊗RF• is a FFR forM . By Lemma 7.9, F(X ) ⊂ FFR.
So it suffices to show: every finitely generated R[t]-module lies in F(X ).
Step 2: Suppose ann(M)∩R ̸= {0}. Letm ∈M•; then ann(m)∩R ⊃ ann(M)∩R ̸=
{0}. Put I = ann(m)∩R, so R/I ∼= ⟨m⟩R. Since R[t] is flat over R, there is a short
exact sequence

(9) 0→ R[t]⊗R I → R[t]→ R[t]⊗R ⟨m⟩ → 0.

By the Tensorial Criterion for Flatness [CA, Thm. 3.83], R[t] ⊗R I ∼= R[t]I, so
R[t]I ̸= {0}. So R[t]/R[t]I ∼= R[t] ⊗R ⟨m⟩ is (again by flatness of R[t]) a cyclic
R[t]-submodule of M , say ⟨m1⟩R[t]. So ⟨m1⟩R[t] ∈ X . Since ann(m1) = R[t]I,
ann(m1) ∩R ̸= {0}. Apply the same argument to M/⟨m1⟩: there is m2 ∈M such
that ann(m2 + ⟨m1⟩) ∩ R ̸= {0} and ⟨m1,m2⟩/⟨m1⟩ ∈ X . Since M is Noetherian,
eventually we get M = ⟨m1, . . . ,ml⟩ and thus M ∈ F(X ).
Step 3: In general, by [CA, Thm. 4.31] we have a filtration

M =M0 ⊃M1 ⊃ . . . ⊃Mn = 0

with Mi/Mi+1
∼= R/pi for a prime ideal pi of R[t]. Thus it suffices to show that for

any prime ideal p of R[t], R[t]/p ∈ F(X ). By Step 2, we may assume

ann(R[t]/p) ∩R = p ∩R = 0.

Since p ∩ R is a prime ideal of R, R and thus R[t] must be domains. Let 0 ̸= f ∈
p ⊂ R[t], and consider

0→ ⟨f⟩ → p→ p/⟨f⟩ → 0.

Since R[t] is a domain, ⟨f⟩ ∼= R[t], while ann p/⟨f⟩ ⊃ ⟨f⟩ ̸= {0}. It follows that
⟨f⟩, p/⟨f⟩ ∈ F(X ), and thus also p ∈ F(X ). Similarly, since p, R[t] ∈ F(X ), we
get R[t]/p ∈ F(X ). �

Theorem 7.11 (Serre’s Theorem). Let k be a PID, let n ∈ N, and put Rn =
k[t1, . . . , tn]. Then every finitely generated projective Rn-module is stably free.

Proof. Note first that k is Noetherian, hence so is each Rn by the Hilbert Basis
Theorem. We will show by induction on n that every finitely generated Rn-module
is FFR. This suffices by Serre’s Lemma.
The base case is n = 0, in which case R0 = k is a PID, hence a hereditary ring, so
every finitely generated R-module admits an FFR of length 1. Suppose now that
n > 0 and that every finitely generated Rn−1-module is FFR. Since Rn ∼= Rn−1[t],
by Theorem 7.10 every finitely generated Rn-module is FFR. We’re done! �
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7.3. Projective, Injective and Global Dimensions.

Let M be an R-module. The projective dimension of M is the minimal length
of a projective resolution ofM , or∞ if there is no finite length projective resolution.

The injective dimension of M is the minimal length of an injective resolution of
M , or ∞ if there is no finite length injective resolution.

The projective dimension of R is the supremum of the projective dimensions of
all R-modules. The injective dimension of R is the supremum of the injective
dimensions of all R-modules.

Exercise: Let R be a ring. Show:
a) An R-module has projective dimension 0 iff it is projective.
b) An R-module has injective dimension 0 iff it is injective.
c) R has projective dimension 0 iff it has injective dimension 0 iff it is semisimple.

Proposition 7.12. Let {Mi}i∈I be a family of left R-modules. Then:

pd
⊕
i∈I

Mi = sup
i∈I

pdMi.

Proof. Put M =
⊕

i∈IMi and d = supi∈I pdMi. If Ki,n is the nth projective
syzygy ofMi and Kn is the projective equivalence class of the nth projective syzygy
of M , then Kn ∼

⊕
i∈I Ki,n. Thus Kn is projective iff Ki,n is projective for all i,

and the result follows immediately. �

Corollary 7.13. If R has infinite projective dimension, there is a left R-module
M with pdM =∞.

Exercise: Prove Corollary 7.13.

Theorem 7.14 (Short Exact Sequence Theorem). Let 0→ A→ B → C → 0 be a
short exact sequence of left R-modules.
a) If any two of pdA, pdB, pdC are finite, so is the third.
b) If pdA < pdB, then pdC = pdB.
c) If pdA > pdB, then pdC = 1 + pdA.
d) If pdA = pdB, then pdC ≤ 1 + pdA.
e) We have pdB ≤ maxpdA,pdC, with equality unless pdC = 1 + pdA.

Proof. Step 1: First suppose C is projective, so B ∼= A ⊕ C. In this case by
Proposition X.X we have pdB = suppdA,pdC = pdA, so the result holds in this
case.
Next suppose B is projective, so pdA ≥ pdB. Then [A] = P[C], so pdC = 1+pdA.
Henceforth we assume that neither B nor C is projective.
Step 2: We prove part a). Write

0→ K → P → B → 0,

so B = P/K. Thus the submodule A is of the form Q/K for some K ⊂ Q ⊂ P and
we have

(10) 0→ K → Q→ A→ 0
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and C ∼= P/Q. It follows that

pdB = 1 + pdK,

pdC = 1 + pdQ.

The result follows by induction on the sum of the two finite projective dimensions.
Step 3: If pdA = pdB =∞, then only d) applies and the conclusion is vacuous.
If pdA = pdC =∞, then only c) and d) apply and the conclusions hold.
If pdB = pdC =∞, then only b) and d) apply and the conclusions hold.
Step 4: we may assume pdA,pdB,pdC < ∞, and we go by induction on their
sum.
Case 1: If pdK < pdQ – hence pdB < pdC – then by induction and using (10)
we get pdA = pdQ = pdC − 1 ≥ pdB.
Case 2: If pdK > pdQ – hence pdB > pdC – then by induction and using (10)
we get pdA = pdK + 1 = pdB.
Case 3: If pdK = pdQ – hence pdB = pdC – then by induction and using (10)
we get pdA ≤ pdK + 1 = pdB.
Step 5: We prove part b): suppose pdA < pdB. By Step 4 we must be in Case 3,
so pdB = pdC.
Step 6: We prove part c): suppose pdA > pdB. By Step 4 we must be in Case 1,
so pdC = pdA+ 1.
Step 7: We prove part d): suppose pdA = pdB.
If we are in Case 1, then pdC = pdA+ 1.
If we are in either Case 2 or Case 3, then pdC ≤ pdB < pdA+ 1.
Step 8: We prove part e).
Case b): suppose pdA < pdB. By part b), pdB = pdC and the result holds.
Case c): suppose pdA > pdB. By part c), pdC = 1 + pdA and the result holds.
Case d): suppose pdA = pdB. Then pdC ≤ 1 + pdA. If we have equality, we’re
done. Otherwise, pdC ≤ pdA so pdB = maxpdA,pdC. �

Proposition 7.15. a) For an R-module M , the following are equivalent:
(i) M is projective.
(ii) ExtnR(M,N) = 0 for all n ∈ Z+ and all R-modules N .
(iii) Ext1R(M,N) = 0 for all R-modules N .
b) For an R-module N , the following are equivalent:
(i) N is injective.
(ii) ExtnR(M,N) = 0 for all n ∈ Z+ and all R-modules M .
(iii) Ext1R(M,N) = 0 for all R-modules M .
(iv) Ext1R(R/I,N) = 0 for all left ideals I of R.

Proof. a) (i) =⇒ (ii): projective objects are acyclic for all derived functors of
epimonic functors.
(ii) =⇒ (iii) is clear.
(iii) =⇒ (i): We use the fact that M is projective iff N 7→ Hom(M,N) is exact.
b) Exercise. (Hint for (iv) =⇒ (iii): use Baer’s Criterion.) �

Theorem 7.16. a) For an R-module M and n ∈ N, the following are equivalent:
(i) pdM ≤ n.
(ii) ExtiR(M,N) = 0 for all i > n and all R-modules N .
(iii) Extn+1

R (M,N) = 0 for all R-modules N .
(iv) If 0 → Kn → Pn−1 → . . . → P0 → M → 0 is exact with all Pi’s projective,
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then the syzygy Kn is projective.
b) For an R-module N and n ∈ N, the following are equivalent:
(i) idN ≤ n.
(ii) Exti(M,N) = 0 for all i > n and all R-modules M .
(iii) Extn+1(M,N) = 0 for all R-modules M .
(iv) If 0 → N → E0 → . . . En−1 → C → 0 is an exact sequence with all Ei’s
injective, then also C is injective.

Proof. a) (i) =⇒ (ii): Using the projective resolution of M of length at most m
to compute the Ext’s, this is immediate.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (iv): Apply dimension shifting to the epimonic functor Hom(·, N) to get

0 = Extn+1
R (M,N) ∼= Ext1R(Kn−1, N).

Since this holds for all N , by Proposition 7.15, Kn−1 is projective.
(iv) =⇒ (i): Construct a projective reslution of M as usual, but stop at Xn−1

and instead write down the kernel (“syzygy”):

0→ Kn → Pn−1 → . . .→ P0 →M → 0.

Then the hypothesis implies that Kn is projective and thus we have constructed a
projective resolution of length at most n.
b) Exercise. �

Corollary 7.17. For any ring R, For every ring R, the projective dimension of R
is equal to its injective dimension.

This common quantity is called the global dimension of R.

Theorem 7.18 (Auslander). For any ring R, D(R) is the supremum of pdR/I as
I ranges over all left ideals of R.

Proof. Just for the purposes of the proof, let us set DA(R), the “Auslander di-
mension” of R, to be the supremum of the projective dimensions of R/I. Clearly
DA(R) ≤ D(R), so if DA(R) =∞ there is nothing to show: assume DA(R) ≤ n for
some finite n. Let B be any left R-module, and take an injective resolution with
(n− 1)st cosyzygy Cn−1. By dimension shifting, we have

0 = Extn+1(R/I,B) = Ext1(R/I,Cn−1)

for all left ideals I. By Proposition 7.15b), this gives that Cn−1 is injective, and
thus we get an injective resolution of B of length n. �

Remark: Our terminology “global dimension” is sloppy in the non-commutative
case. We are speaking about left R-modules so that we should be speaking of the
left homological dimension Dℓ(R); there is also a right homological dimen-
sion Dr(R) computed using right modules.

Obviously Dℓ(R) = Dr(R) for all commutative rings R: must this equality hold
for all rings? There is one early piece of evidence in favor of this: as we will record
shortly, Dℓ(R) = 0 iff R is left semisimple. But it follows from Artin-Wedderburn
theory that a ring is left semisimple iff it is right semisimple, and thus

Dℓ(R) = 0 ⇐⇒ Dr(R) = 0.

However this is as far as it goes.
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Theorem 7.19. a) (Kaplansky [Ka58b]) There is a ring R with Dℓ(R) = 1 and
Dr(R) = 2.
b) (Jategaonkar [Ja69]) For any 1 ≤ m ≤ n ≤ ∞ there is a ring R with Dℓ(R) = m,
Dr(R) = n.

Theorem 7.20. For a ring R:
a) R is semisimple iff D(R) = 0.
b) R is left hereditary iff D(R) ≤ 1.

Proof. a) Exercise.
b) Suppose R is left hereditary. By [CA, Cor. 3.56], a commutative ring is heredi-
tary iff every submodule of a projective R-moduleis projective. As the reader may
check, the result works verbatim in the context of left (say) modules over arbi-
trary rings. Thus for any R-module M , we choose a projective module P0 and a
surjection P0 →M → 0, and consider its kernel

0→ K0 → P0 →M → 0.

It follows that K0 is projective, so we get a projective resolution o length at most
1. Apply Theorem XX.
(ii) =⇒ (i): let I be a non-projective left ideal of R. Consider the exact sequence:

0→ I → R→ R/I → 0 :

by Theorem 7.16, if pdR/I were at most one, then I would be projective. It isn’t,
so D(R) ≥ pdR/I ≥ 2. �

Remark: Thus a commutative ring has homological dimension zero iff it is a finite
product of fields. These rings are a tiny subset of the class of all zero dimensional
rings: in fact they are precisely the regular Noetherian zero-dimensional rings. Sim-
ilarly, a domain which is not a field has homological dimension one iff it is Dedekind.
Dedekind domains are again a tiny subclass of the class of all domains of Krull di-
mension one but they are precisely the regular Noetherian ones.

Here is a result showing that the study of homological dimensions of (non-Noetherian)
rings can be connected to deep issues in set theory.

Theorem 7.21 (Osborne). a) Let m ∈ N, and let R be a Bézout domain of cardi-
nality ℵm. Then D(R) ≤ m+ 2.
b) In particular, assuming the continuum hypothesis – #R = ℵ1 – the ring R of
entire functions in the complex plane has homological dimension at most 3.

7.4. Kaplansky Pairs.

Here is an elementary construction due to Kaplansky which provides us with sev-
eral important examples of rings of infinite global dimension.

Let R be a ring. A Kaplansky pair is a pair of elements a, b ∈ R such that

{x ∈ R | ax = 0} = bR, {x ∈ R | bx = 0} = aR.

In this case we have a short exact sequence

(11) 0→ bR→ R→ aR→ 0,
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where the first map is inclusion and the second map is multiplication by a, and,
symmetrically, a short exact sequence

(12) 0→ aR→ R→ bR→ 0.

By splicing these sequences, we get an infinite free resolution of aR of the form

(13) . . .→ R→ R→ . . .→ aR→ 0,

where the maps R→ R alternate between R→ aR ↪→ R and R→ bR ↪→ R. Thus
for all n, K2n = bR and K2n+1 = aR.

Theorem 7.22. Let a, b ∈ R be a Kaplansky pair.
a) The following are equivalent:
(i) aR and bR are both projective R-modules.
(ii) At least one of aR and bR is a projective R-module.
(iii) aR⊕ bR ∼= R.
b) When R is commutative, the conditions of part a) are equivalent to
(iv) ⟨a, b⟩ = R.
c) When the equivalent conditions of part a) do not hold, we have

D(R) = pd aR = pd bR =∞.

Proof. a) Using (11) and (12), (i) =⇒ (ii) =⇒ (iii) =⇒ (i) is immediate.
b) For any ideals I and J in a commutative ring R there is a natural injection of
rings

Φ : R/(IJ)→ R/I ×R/J.
Apply this with I = aR, J = bR: we have IJ = 0, I ∼= R/J and J ∼= R/I, so

Φ : R→ bR⊕ aR.
By the Chinese Remainder Theorem and its converse [CA, § 4.3], Φ is an isomor-
phism iff I + J = R, which is condition (iv). Thus (iv) =⇒ (iii). Conversely, if
the sequence (11) splits then Φ is surjective, so (i) =⇒ (iv).
c) We may assume that neither aR nor bR is projective; using (13), this shows
that none of the syzygies of aR are projective, so by Theorem 7.16 pd aR = ∞.
Symmetrically we get pd bR =∞. Either of these implies D(R) =∞. �
Let us say that a Kaplansky pair is proper if the equivalent conditions of Theorem
7.22a) do not hold. Thus exhibiting a proper Kaplansky pair in a ring R shows that
D(R) =∞. We give four examples of this.

Proposition 7.23. Let n ∈ Z+. Then:
a) If n is squarefree, D(Z/nZ) = 0.
b) If n is not squarefree, D(Z/nZ) =∞.

Proof. Exercise. �
Proposition 7.24. Let k be a field, n ≥ 2 and R = k[t]/(tn). Then D(R) =∞.

Proof. Exercise. �
Proposition 7.25. Let k be a field, R = k[x, y]/(xy). Then D(R) =∞.

Proof. Exercise. �
Proposition 7.26. Let n > 1, let G = ⟨σ | σn = 1⟩, and let R = Z[G]. Then
a = σ − 1, b = 1 + σ + . . .+ σn−1 is a proper Kaplansky pair in R.
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Proof. Exercise. �

Exercise: Let T be a ring, and let a, b ∈ Z(T ) be non-zero-divisors. Let R = T/⟨ab⟩.
a) Show that (the natural images in R of) a and b are a Kaplansky pair in R.
b) Show that the pair (a, b) is proper iff ⟨a, b⟩ ̸= T .
c) Show that in fact all four examples above are special cases of this construction.

7.5. The Weak Dimension.

Having considered vanishing of Ext modules as a kind of measure of the dimension
of a ring R, it is natural to try to do the same thing for Tor.

Definition: The flat dimension fd(M) of a left R-module M is the minimum
length of a finite flat (left) resolution of M , or∞ if there is no finite flat resolution.
The weak dimension wD(R) of a ring R is the supremum of fd(M) as M ranges
over all left R-modules.

Exercise: a) Show that for every R-module, fd(M) ≤ pd(M).
b) Show that for every ring, wD(R) ≤ D(R).

Theorem 7.27. For an R-module N , the following are equivalent:
(i) fdN ≤ n.
(ii) TorRk (M,N) = 0 for all k ≥ n+ 1 and all modules M .

(iii) TorRn+1(M,N) = 0 for all modules M .
(iv) Every flat resolution of N has a flat (n− 1)st syzygy Kn−1.

Exercise: Prove Theorem 7.27. (Suggestion: adapt the proof of Theorem 7.16. Use
the fact that tor can be computed using flat resolutions.)

Corollary 7.28. A ring R has weak dimension at most n iff for every left R-
module M and right R-module N , TorRn+1(M,N) = 0. In particular, the left weak
dimension of R is equal to the right weak dimension of R.

Exercise: Show that wD(R) = 0 iff R is absolutely flat.

Theorem 7.29. For any ring R, the weak dimension is the supremum of fdR/I
as I ranges over all left ideals and also the supremum of fdR/I as I ranges over
all right ideals.

Proof. We recall the Homological Criterion For Flatness [CA, Thm. 3.82]: an

R-module M is flat iff TorR1 (M,R/I) = 0 for every left ideal I of R. Given this,
the proof is the same as that of Theorem 7.18. �

Theorem 7.30. a) For a ring R, the following are equivalent:
(i) Every submodule of a flat left R-module is flat.
(ii) Every left ideal of R is a flat R-module.
b) If R is a domain, the conditions of (i) and (ii) are equivalent to:
(iii) R is a Prüfer domain: every finitely generated ideal is projective.

Proof. a) (i) =⇒ (ii) is immediate, since R is a flat R-module.
(ii) =⇒ (i): If every left ideal of R is flat, then

0→ I → R→ R/I → 0
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is a flat resolution of R/I, which shows that fd(R/I) ≤ 1. By Theorem 7.29,
wD(R) ≤ 1. Now let N be a submodule of a flat R-moduleM . Since fd(M/N) ≤ 1,
applying Theorem 7.27 to

0→ N →M →M/N → 0

shows that N is flat.
b) We use the fact [CA, Thm. 21.9] that a domain is Prüfer iff every torsionfree
R-module is flat.
(iii) =⇒ (i): A submodule of a flat module is torsionfree, hence flat since R is
Prüfer.
(i) =⇒ (iii): Let K be the fraction field of R, and let M be a torsionfree R-
module. Then M ↪→M ⊗RK embeds M as a submodule of a flat R-module, so by
assumption M is flat. �

Theorem 7.31. Let R be a left Noetherian ring.
a) If M is a finitely generated left R-module, then

fdM = pdM.

b) It follows that wD(R) = D(R).

Proof. a) Of course we have fdM ≤ pdM in general, so we may assume fdM =
n <∞; our task is to construct a projective resolution of length at most n. Because
R is left Noetherian and M is finitely generated, we may construct a left reslution
of M by finitely generated left projective modules; now consider the n− 1st syzygy
of such a guy:

0→ Kn−1 → Pn−1 → . . .→ P0 →M.

In particular this is a flat resolution of M , so by Theorem 7.27 Kn−1 is flat. Being
a submodule of a finitely generated module over a left Noetherian ring, Kn−1 is
finitely generated. We finish with the fundamental result that a finitely generated
flat module over a left Noetherian ring is projective: see [Rot, Cor. 3.57] for the
non-commutative case. Thus we have constructed a projective resolution of M of
length at most n.
b) By Theorems 7.18 and 7.29, both wD(R) and D(R) can be computed using
finitely generated modules. �

7.6. The Change of Rings Theorems.

I. Kaplansky gave a remarkably efficient exposition of most of the key results of
homological dimension theory in a series of lectures in the 1950’s (so quite soon
after the theorems were first obtained). Recall that Schanuel’s Lemma emerged
from a graduate student taking his course. Another one of his innovations was to
observe that much of the content turned on a trio of results comparing projective
dimensions of modules over a ring R and over a quotient R = R/(x) where x is a
non-zero-divisor in R. We give these theorems here. In the next section Change
of Rings I will be used to prove the Hilbert Syzygy Theorem. Later we will use
Change of Rings I and II to prove the theorem of Serre and Auslander-Buchsbaum.

Theorem 7.32. (Change of Rings I) Let R be a ring, and let x ∈ R be a central
non zero-divisor. Put R = R/⟨x⟩, and let M be a nonzero left R-module. Then

pdRM = n <∞ =⇒ pdRM = n+ 1.
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Proof. We go by induction on n.
Base Case (n = 0): Suppose M is R-projective, hence a direct summmand of an
R-free module F . Using the sequence

0→ Rx→ R→ R→ 0

and the fact that Rx ∼= R since x is not a zero-divisor, we see pdRR ≤ 1 and thus

pdRM ≤ pdR F = pdR
⊕
i∈I

R ≤ 1.

On the other hand, since xM = 0 and x is not a zero-divisor, M cannot be a
submodule of a free R-module. In particular M is not R-projective, so pdRM ≥ 1.
n = 1 Case: Choose a short exact sequence of R-modules

(14) 0→ K → F →M → 0,

with F a free R-module. Since pdRM = 1, pdRK = 0. By the induction hypoth-

esis, we get pdR F = pdRK = 1, and by the Short Exact Sequence Theorem,

pdRM ≤ maxpdR F, 1 + pdRK ≤ 2.

Conversely, let

(15) 0→ T → F →M → 0

be a short exact sequence of R-modules with F free. Since xM = 0, xF ⊂ T , so

0→ T/xF → F/xF →M → 0

is a short exact sequence of R-modules. Further, since F/xF = F ⊗R R is a free
R-module, we have

pdR T/xF = pdR−1 = 0.

Therefore the sequence of R-modules

0→ xF/xT → T/xT → T/xF → 0

splits. Since M ∼= F/T
·x→ xF/xT is an isomorphism, M is a direct summand of

T/xT . Now if T were R-projective, then T/xT = T ⊗R R would be R-projective
and thus M would be R-projective, which it isn’t. Using (15) we get pdRM = 2.
n ≥ 2 Case: Considering (14), we have pdRK = pdR−1 = n− 1, so by induction

pdRK = n > 1 ≥ pdR F , so by the Short Exact Sequence Theorem we have

pdRM = pdRK + 1 = n+ 1.

�

Example: Let k be a field and R = k[t1, . . . , tn]. Applying the Change of Rings
Lemma n times to the R-module k = R/⟨t1, . . . , tn⟩ we get pdR k = n. It follows
that DR ≥ n and that Tor and Ext are not identically vanishing in degree n.

Let R be a ring. A finite sequence x1, . . . , xn of elements of the center of R is
called a regular sequence if ⟨x1, . . . , xn⟩ ( R and for all i ≥ 1, the image of xi is
a non-zero-divisor in R/⟨x1, . . . , xi−1⟩.

Proposition 7.33. Let x1, . . . , xn be a regular sequence in R, and put I = ⟨x1, . . . , xn⟩.
Then pdR/I = n.
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Proof. We go by induction on n, the base case n = 0 being trivial. For n > 0, the
images x2, . . . , xn form a regular sequence in R = R/⟨x1⟩. By induction,

pdRR/⟨x2, . . . , xn⟩ = n− 1.

Now Change of Rings I gives pdR/I = n. �

Theorem 7.34. (Change of Rings II) Let x ∈ R be a central non-zero-divisor, and
put R = R/(x). Let M be an R-module. We suppose that x is regular on M . Then

pdRM/xM ≤ pdRM.

Proof. The result holds trivially if pdRM = ∞, so suppose pdRM = n < ∞; we
go by induction on n.
Base Case (n = 0): Then M is projective, so M/xM =M ⊗R R is R-projective.
Induction Step (n > 0): Consider a short exact sequence

0→ K → F
α→M → 0

with F free. Then pdRK = n − 1 and since x is regular on R it is also on F
and thus on K. By induction, pdRK/xK ≤ n − 1. The map α induces a map
F/xF → M/xM , with kernel (K + xF )/xF ∼= K/(K ∩ xF ). If a ∈ K ∩ xF then
α(a) = 0 and thus a = xb, so 0 = α(xb) = xα(b), and since x is regular on M this
implies α(b) = 0, so b ∈ K. Thus K ∩xF = xK, and we get a short exact sequence

0→ K/xK → F/xF →M/xM → 0.

Since F/xF is R-projective, K/xK is a syzygy of M/xM , so pdRM/xM ≤ n. �

Theorem 7.35. (Change of Rings III) Let R be left Noetherian, let x ∈ R be a
central non-zero-divisor contained in the Jacobson radical of R; put R = R/(x).
Let M be a finitely generated R-module such that x is regular on M . Then

pdRM/xM = pdRM.

Proof. Let n = pdRM/xM . We must show that pdRM = n. If n = ∞, then
Change of Rings II applies, so we may assume n <∞ and go by induction on n.
Step 1: We show that if M/xM is R-free, then M is R-free.
Let v1, . . . , vn ∈ M map to an R-basis for M/xM . We claim that v1, . . . , vn ∈ M
is an R-basis. That they span M follows from aNakayama’s Lemma. Suppose∑n
i=1 civi = 0. Then since the images of v1, . . . , vn in M/xM are R-linearly in-

dependent, there are d1, . . . , dn ∈ R such that ci = xdi for all i. Thus we have
x (
∑n
i=1 divi) = 0, and since x is regular on R,

∑n
i=1 divi = 0. Arguing as above

we get that di = xd′i, and so forth. The conclusion is that for all 1 ≤ i ≤ n,
ci ∈

∩∞
k=1(x

k) = 0 by the Krull Intersection Theorem.

Step 2: We show that if M/xM is R-projective, then M is R-projective, which is
the n = 0 case of the result we are trying to prove. As in the proof of Change of
Rings II we have short exact sequences

0→ K → F →M → 0

and

(16) 0→ K/xK → F/xF →M/xM → 0.

Put B =M ⊕K. Since M/xM is R-projective, (16) splits, so

B/xB ∼=M/xM ⊕K/xK ∼= F/xF.
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Thus B/xB is R-free, so by Step 1 B is R-free and thus M is R-projective.
Step 3: Suppose n > 0 and the result holds for modules of projective dimension
n− 1. By Change of Rings II it suffices to show that pdRM ≤ n. By (16) we have
pdRK/xK ≤ n−1. The hypotheses also apply toK, so by induction pdRK ≤ n−1
and thus pdRM ≤ n. �

7.7. The Hilbert Syzygy Theorem.

Theorem 7.36. (Eilenberg-Rosenberg-Zelinsky [ERZ57]) For any ring R and n ∈ N
we have D(R[t1, . . . , tn]) = D(R) + n.

Proof. Step 0: By an evident induction argument it is enough to take n = 1. Thus
let us change our notation: starting with a ring A, put R = A[x], and our goal
is to show that D(R) = D(A) + 1. For any left A-module M , we write M [x] for
R⊗AM , and we write elements of M [x] as formal finite sums

∑
imix

i.
Step 1: We claim that for any A-module M , M is projective iff M [x] is projective.
proof of claim: As for any base change, if M is projective over A, then R⊗AM
is projective over R. Conversely, suppose M [x] is A[x]-projective, so there is a free
A[x]-module F with F ∼= M [x] ⊕M ′. Since A[x] is A-free, F is A-free, and since
M is a direct summand of M [x], we conclude that M is A-projective.
Step 2: We have pdAM = pdRM [x].
Indeed, consider an exact sequence

Kn−1 → Pn−1 → . . .→ P0 →M → 0

with Pi projective for all i. Then (since R is a flat A-module) we have an exact
sequence

Kn−1[x]→ Pn−1[x]→ . . .→ P0[x]→M [x]→ 0.

From this and Step 1 it follows that the (n− 1)st syzygy of M is projective iff the
(n−1)st syzygy ofM [x] is projective, and the result follows immediately from this.
Step 3: Suppose D(A) =∞. By Corollary 7.13 there is M ∈A Mod with pdAM =
∞. By Step 2, pdRM [x] =∞ and thus D(R) =∞.
Step 4: We may thus assume D(A) = d < ∞. It follows immediately from the
Change of Rings Theorem that D(R) ≥ d+1, and it remains to show the opposite
inequality. Let M ∈R Mod. We may view M as an A-module endowed with an
A-endomorphism f . It suffices to construct a short exact sequence

0→M [x]
ψ→M [x]

φ→ 0.

Indeed, using such a sequence the Short Exact Sequence Theorem gives

pdRM ≤ pdRM [x] + 1 = pdAM + 1 ≤ d+ 1.

Step 5: We construct φ and ψ quite explicitly. Indeed, put

φ(
∑

mix
i) =

∑
f i(mi).

This is clearly surjective. Next, f̃ = 1R⊗A f is an R-endomorphism of M [x] which
maps

∑
mix

i to
∑
f(mi)x

i. Also we have x̃ ∈ EndRM [x] which maps
∑
mix

i to∑
mix

i+1. Put

ψ = x̃− f̃ .
Then

ψ(
∑

mix
i) = −f(m0) + (m0 − f(m1))x1 + . . .+ (mr−1 − f(mr))x

r +mrx
r+1,
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so ψ is surjective. We leave the (routine) verification that φψ = 0 as an exercise,
but let’s show that kerφ ⊂ Imageψ: suppose

0 = φ(
∑

mix
i) =

∑
f i(mi) = 0.

Then ∑
i≥0

mix6i =
∑
i≥0

mix
i − f i(mi) =

∑
i≥1

(x̃i − f̃ i)(mi) ∈ Imageψ.

�

Corollary 7.37. (Hilbert Syzygy Theorem) For any field k, D(k[t1, . . . , tn]) = n.

8. Dimension Theory of Local Rings

It turns out that homological dimension theory simplifies considerably when the
ring R is commutative, Noetherian and local. In this section we (mostly) work un-
der these assumptions and further develop the theory. In particular we will define
and study the key notion of a regular local ring and prove the following results.

• (Serre, Auslander-Buchsbaum) A Noetherian local commutative ring has finite
global dimension iff it is regular, in which case its global dimension is equal to its
Krull dimension.

• (Auslander-Buchsbaum) A regular local ring is a UFD.

This latter result is striking in that it is barely homological in nature. In par-
ticular, let k be an algebraically closed field (in fact it is enough if it is perfect),
let V/k be an algebraic variety, let P ∈ V be a closed point, and let R be the local
ring of functions regular at P . Then R is a regular local ring if P is a nonsingular
point on V in the sense of the Jacobian condition from multivariable calculus.

An elementary property of UFDs is that in them every height one prime ideal
is principal (CITE). Because of this, the Auslander-Buchsbaum Theorem has the
following basic geometric consequence: let P ∈ V , and let W be a codimension one
subvariety passing through P . Then in some Zariski-open neighborhood of P , W
is a hypersurface, i.e., is cut out by a single defining equation.

Another purely algebraic consequence of Auslander-Buchsbaum is:

• The localization of a regular local ring at a prime ideal is a regular local ring.

This sounds almost innocuous but in fact it had long been an open problem in the
field and was resolved for the first time as a consequence of Auslander-Buchsbaum.

Throughout this section we assume that all of our rings are commutative. Some of
the basic concepts and minor results hold in the non-commutative case, but most
of the important theorems require commutativity, so we make this assumption at
the outset for simplicity.
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8.1. Basics on Local Rings.

We assume that R is (commutative and) local : i.e., with a unique maximal ideal
m. We put k = R/m. We need the following basic (and easy) result, which we are
content to state in a somewhat special case.

Proposition 8.1. (Nakayama’s Lemma) Let (R,m) be a local ring, M be a finitely
generated R-module and N an R-submodule with N +mM =M . Then M = N .

Proof. See e.g. [CA, §3.8]. �

Corollary 8.2. Let M be a finitely generated R-module.
a) If M ̸= 0, then M/mM ̸= 0.
b) If x1, . . . , xn ∈ M are such that their images span M/mM as a k-vector space,
then M = ⟨x1, . . . , xn⟩.

Exercise: Prove it.

Proposition 8.3. Let (R,m) be a local ring, and let M be a finitely generated
R-module. Then there is a short exact sequence

0→ K → F → R→ 0

with F finitely generated free and K ⊂ mF .

Proof. Let x1, . . . , xn ∈ M map to an R/m-basis of M/mM . Put F = Rn with
standard basis e1, . . . , en. Let φ : F → M by ei 7→ xi. By Nakayama’s Lemma, φ
is surjective; let K = Kerφ. If x =

∑n
i=1 aiei ∈ K, then 0 = φ(x) =

∑n
i=1 aixi, so

ai ∈ m for all i. �

8.2. Some Results From Commutative Algebra.

Lemma 8.4. (Prime Avoidance) Let R be a ring, and I1, . . . , In, J be ideals of R.
Suppose that all but at most two of the Ii’s are prime and that J ⊂

∪n
i=1 Ii. Then

J ⊂ Ii for some i.

Proof. We go by induction on n, the case n = 1 being trivial.
n = 2: Seeking a contradiction, suppose there is x1 ∈ J \ I2 and x2 ∈ J \ I1. Since
J ⊂ I1 ∪ I2 we must have x1 ∈ I1 and x2 ∈ I2. Then x1 + x2 ∈ J ⊂ I1 ∪ I2.
If x1 + x2 ∈ I1, then since x1 + x2, x1 ∈ I1, so is x2, contradiction; whereas if
x1 + x2 ∈ I2, then since x1 + x2, x2 ∈ I1, so is x1.

14

n ≥ 3: We may suppose that In is prime and also that for all proper subsets
S ⊂ {1, . . . , n}, J ̸⊂

∪
i∈S Ii; otherwise we would be done by induction. So for

1 ≤ i ≤ n, there is xi ∈ J \
∪
j ̸=i Ij , and then xi ∈ Ii. Consider x = x1 · · ·xn−1+xn.

Then x ∈ J , so x ∈ Ii for some i.
Case 1: x ∈ In. Then since xn ∈ In, x1 · xn−1 ∈ In, and since In is prime xi ∈ In
for some 1 ≤ i ≤ n− 1, contradiction.
Case 2: x ∈ Ij for some 1 ≤ j ≤ n − 1. Then x1 · · ·xn−1 ∈ Ij , so xn ∈ Ij ,
contradiction. �

Theorem 8.5 (Krull Intersection Theorem). Let I be an ideal in a Noetherian ring
R. Suppose either
(i) R is a domain and I is a proper ideal; or

14In fact this works for any subgroups I1, I2, J of a group G with J ⊂ I1 ∪ I2.
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(ii) I is contained in the Jacobson radical J(R) of R.
Then

∩∞
n=1 I

n = 0.

Proof. See [CA, § 8.12]. �

Theorem 8.6. (Krull Hauptidealsatz) Let R be a Noetherian ring, and let I =
⟨a1, . . . , an⟩ be a proper ideal of R. Let p be a minimal element of the set of all
prime ideals containing I. Then p has height at most n.

Proof. See [CA, § 8.13]. �

For a ring R, let MinSpecR denote the set of minimal prime ideals, i.e., those
which do not properly contain any other prime ideal. (Thus R is a domain iff
MinSpecR = {(0)}.

Theorem 8.7. Let R be a Noetherian ring. MinSpecR is finite.

Proof. [CA, § 4.6]. �

Lemma 8.8. Let (R,m) be a Noetherian local ring, and letM be a finitely generated
R-module. If Φ : m⊗RM → R⊗RM =M is injective, then R is free.

Proof. Choose x1, . . . , xn ∈ M whose images in M/mM give an R/m-basis. Con-
sider the short exact sequence

0→ K → F →M → 0

from Proposition 8.3: in particular F = Rn, the standard basis vector ei ∈ F
gets mapped to xi ∈ M , and K ⊂ mF . It suffices to show mK = K, for then
by Nakayama’s Lemma K = 0 and M = F is free. Let x =

∑n
i=1 aiei ∈ K, so∑n

i=1 aixi = 0 in M . Since m ⊗M ↪→ M , we have
∑n
i=1 ai ⊗ xi = 0, and thus∑n

i=1 ai ⊗ ei ∈ Image(m⊗K → m⊗ F ). Thus x =
∑n
i=1 aiei ∈ mK. �

Theorem 8.9. For M finitely generated over (R,m) Noetherian local, TFAE:
(i) M is free.
(ii) M is projective.
(iii) M is flat.

(iv) TorR1 (M,R/m) = 0.
(v) Ext1R(M,R/m) = 0.
(vi) The natural map Φ : m⊗RM ↪→M is an injection.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are all immediate.
(iv) =⇒ (vi): Indeed, applying · ⊗RM to

0→ m→ R→ R/m→ 0

shows that KerΦ ∼= TorR1 (R/m,M).
(vi) =⇒ (i) is Lemma 8.8.
(ii) =⇒ (v) is immediate, since projective modules are acyclic for Ext(·, N).
(v) =⇒ (i): By Proposition 8.3 there is an exact sequence

0→ K → F →M → 0

with F finitely generated free and K ⊂ mF . Applying Hom(·, R/m) and using
Ext1R(M,R/m) = 0 gives

0→ Hom(M,R/m)→ Hom(F,R/m)→ Hom(K,R/mm)→ 0.
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Thus every homomorphism f : K → R/m is attained from restricting a homo-
morphism F → R/m, but any such map is trivial on mF and thus on K: 0 =
Hom(K,R/m) = Hom(K/mK,R/m); since R/m is a field, this implies K/mK = 0.
On the other hand, since R is Noetherian, K is finitely generated, and then by
Nakayama’s Lemma K = 0, so F

∼→M and M is free. �

The following result is a nice indication of how much homological dimension theory
simplifies when we restrict to finitely generated modules over a Noetherian local
commutative ring!

Theorem 8.10. For a finitely generated module M over a Noetherian local ring
(R,m) and n ∈ N, the following are equivalent:
(i) pdM ≤ n.
(ii) TorRn+1(M,R/m) = 0.

(iii) ExtRn+1(M,R/m) = 0.

Proof. Since M is Noetherian it admits a resolution by finitely generated projec-
tive modules; let Kn be the nth syzygy. We claim that all of the conditions are
equivalent to: Kn is projective. That this condition is equivalent to (i) is Theo-
rem 7.16 (valid for any module over any ring). As for (ii): by Dimension Shifting

for Tor, TorRn+1(M,R/m) = TorR1 (Kn, R/m). Applying Theorem 8.9 we get that

TorRn+1(M,R/m) = 0 iff Kn is projective. The argument for (iii) is identical. �

Corollary 8.11. Let (R,m) be a Noetherian local ring. Then:
a) We have idR/m = D(R) = pdR/m.
b) For n ∈ N, the following are equivalent:
(i) D(R) ≤ n.
(ii) TorRn+1(R/m, R/m) = 0.

(iii) Extn+1
R (R/m, R/m) = 0.

Proof. a) As for any module over any commutative ring, we have idR/m,pdR/m ≤
R. Conversely, suppose pdR/m ≤ n. Then for all finitely generated R-modules M ,

TorRn+1(M,R/m) = 0, so by Theorem 8.10 pdM ≤ n. By Auslander’s Theorem
D(R) ≤ n. Finally, suppose idR/m ≤ n. Then for all finitely generated R-modules
M , Extn+1

R (M,R/m) = 0, so again we conclude pdM ≤ n and then D(R) ≤ n.
b) It is clear that (i) implies both (ii) and (iii). Conversely, if either TorRn+1(R/m, R/m) =

0 or Extn+1
R (R/m, R/m) = 0 then by Theorem 8.10 and part a) we have D(R) =

pdR/m ≤ n. �

Lemma 8.12. Let (R,m) be Noetherian local. If every element of m \ m2 is a
zero-divisor, then there is a ∈ R• with am = 0.

Proof. [CA, Cor. 10.8]. �

8.3. Regular Local Rings.

Let (R,m) be a Noetherian local commutative ring.

Lemma 8.13. Consider the R-module m/m2.
a) If m/m2 = 0, then m = 0 (i.e., R is a field).
b) dimk m/m

2 is finite.
c) dimk m/m

2 is equal to the minimal number of generators of the ideal m.



78 PETE L. CLARK

Proof. a) Apply Corollary X.Xa) to the finitely generated R-module m.
b) Since R is Noetherian, the ideal m is finitely generatd, and certainly any gener-
ating set for m as an R-module is a generating set for m/m2 as an R/m-module.
c) Nakayama’s Lemma! �

Definition: For our (Noetherian, local commutative) ring R we put dimeR =
dimk m/m

2, the embedding dimension of R.

Corollary 8.14. We always have dimR ≤ dimeR.

Proof. Since m is the unique maximal ideal of R, the height of m is equal to dimR.
Now we can apply Krull’s Generalized Principal Ideal Theorem. �

Let M be a finitely generated R-module. An element a ∈ R is regular on M if
the endomorphism of M given by x 7→ ax is injective. (One also says that a is a
non-zerodivisor on M .)

A finite sequence a1, . . . , an is regular on M if for all 1 ≤ i ≤ n, ai is regular
on M/⟨a1, . . . , ai−1⟩. A regular sequence is a sequence a1, . . . , an which is regu-
lar on R.

Example: Let R = k[[t1, . . . , tn]]. Then t1, . . . , tn is a regular sequence.

A regular local ring is a Noetherian, local ring (R,m) with dimR = dimeR.

Exercise: a) Show that a zero-dimensional regular local ring is a field.
b) Show that a DVR is a regular local ring.
c) Show that a one-dimensional regular local domain is a DVR.

The hypothesis that R be a domain in Exercise X.Xc) is in fact superfluous, as
the next result shows.

Theorem 8.15. A regular local ring is a domain.

Proof. We go by induction on n. If n = 0, then dimeR = 0, i.e., m/m2 = 0, and
then by Nakayama m = 0 and R is a field. So suppose that n > 0 and that the
result holds for regular local rings of dimension n− 1.

Let MinSpecR = {p1, . . . , pr}. Since dimR > 0, m ) pi for all i; and once again,
by Nakayama, m ̸= m2. By Prime Avoidance,15 Since x ∈ m \m2,

dimeR/(x) = dimR/m m/⟨m2, x⟩ = dimR/m(m/m
2)/((⟨x⟩+m2)/m2 = dimeR− 1.

Since R is local and x lies in no minimal prime of R, dimR/(x) = dimR− 1. Thus
R = R/(x) is regular local of dimension n − 1. By induction, R is a domain and
thus x is prime. Since again x lie in no minimal prime of R, (x) has height at least
one and thus height exactly one by the Krull Hauptidealsatz.

Choose q ∈ MinSpecR with q ⊂ (x). Then q = (q : x)(x).16 Since q is prime, we

15I found this clever maneuver in online lecture notes of Laura Lynch. The standard argument
works with any x ∈ m\m2 and eventually succeeds, thus proving something a bit more general...but
at the cost of having to develop a lot more background.

16Recall that for ideals I and J , (I : J) = {y ∈ R | yJ ⊂ I}. Armed only with this definition,
verifying the above equality is extremely straightforward.
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have q = (q : x) or q = (x);since (x) properly contains q, we have q = (q : x). Thus
q = (x)q and, since x ∈ m, q = mq. By Nakayama, q = 0: R is a domain. �
Corollary 8.16. Let (R,m) be a regular local ring of dimension n > 0. Let a1 ∈
m\m2. Then a1 is a regular element and R/(a1) is regular local of dimension n−1.

Proof. Since R is a domain and a1 ̸= 0, it is a regular element. Moreover, since
R is a domain the unique minimal prime is (0), so the proof of Theorem X.X goes
through with any a1 ∈ m \m2. �
Theorem 8.17. Let (R,m) be Noetherian local of Krull dimension n. TFAE:
(i) R is a regular local ring.
(ii) The maximal ideal m can be generated by n elements.
(iii) The maximal ideal m can be generated by a regular sequence a1, . . . , an.

Proof. (i) ⇐⇒ (ii): By X.X, dimeR is the least number of generators of m. So
if R is regular, m can be generated by dimeR = n elements. Conversely, by the
Krull Hauptidealsatz, m requires at least n generators, so if it can be generated by
n elements then n = dimeR.
(i) =⇒ (iii): The proof of Theorem X.X gives us a regular element a1 ∈ m such
that R/(a1) is regular local of dimension n − 1. Performing this procedure n − 1
more times yields a regular sequence a1, . . . , an ∈ m.
(iii) =⇒ (ii) is immediate. �
Exercise: Let (R,m) be a regular local ring of dimension n, and let a1, . . . , ak ∈ m.
a) Show that a1, . . . , ak is a regular sequence in m iff the images a1, . . . , ak ∈ m/m2

are R/m-linearly independent.
b) Deduce that if a1, . . . , ak is a regular sequence, k ≤ n.17
c) Deduce that any regular sequence of length n in m generates m.

Theorem 8.18 (Serre, Auslander-Buchsbaum). Let (R,m) be Noetherian local.
a) The following are equivalent:
(i) R is a regular local ring.
(ii) D(R) <∞.
b) When the equivalent conditions of part a) hold, we have D(R) = dimR.

Proof. Let d = dimR. Assume (i) holds. We will prove both (ii) and that d = D(R).
Let x1, . . . , xd be a regular sequence generating m. Then by Corollary 8.11 and

Proposition 7.33 we have

D(R) = pdR/m = d <∞.
(ii) =⇒ (i):
Step 0: Let n = pdm <∞, since D(R) <∞. We first handle the case n = 0.
Then m is free, i.e., is a principal ideal generated by a non-zero-divisor. By Krull’s
Principal Ideal Theorem, m has height at most one and thus dimR = 1. It is easy
to see that such a ring is a DVR, hence a regular local ring: e.g. [CA, § 17.5.2].
Now suppose n > 0. Applying the Short Exact Sequence Theorem to

0→ m→ R→ R/m→ 0

tells us that d = D(R) = pdR/m = pdm+ 1 = n+ 1.
Put k = dimR. We’ll go by induction on k. The case k = 0 is trivial: R is

17In fact this shows: “a regular local ring is Cohen-Macaulay”.
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local, commutative and semisimple hence is a field. Suppose the result holds for
Noetherian local rings of finite global dimension and of Krull dimension k − 1.
Step 1: We claim m \m2 contains a non-zero-divisor.
proof of claim If not, then by Lemma 8.12 there is a ∈ R• with am = 0. Fix a
finitely generated R-module N of projective dimension 1 (such a thing exists: since
n > 0, there is a finitely generated R-module M with pdM = d ≥ 1; let N be the
(d− 1)st syzygy of M). As in Theorem X.X, consider a short exact sequence

0→ K → F → N → 0

with F finitely generated free and K ⊂ mF . Since K is a first syzygy of N , it is
finitely generated projective over the local ring R, so it is free. But on the other
hand aK ⊂ amF = 0, so a ∈ annK. Nonzero free modules have zero annihilator,
so K = 0 and N = F is free: contradiction.
Step 2: Fix x ∈ m \m2 a non-zero-divisor, and put R = R/(x), a Noetherian local
ring with maximal ideal m = m/(x). We claim m isa direct summand of m/xm.
proof of claim Since x /∈ m2, by Nakayama there is a set of generators x, y1, . . . , yr
of m mapping to a basis of m/m2. We now have

(17) S + (x) = m.

Further, we have

(18) S ∩ (x) = xm.

Indeed, xm ⊂ S ∩ (x) is clear; if z ∈ S ∩ (x), then

z = ax = cx+ b1y1 + . . .+ bryr, c ∈ m, bi ∈ R,

so ax −
∑
i biyi ∈ m2. Since x, y1, . . . , yr are linearly independentin m/m2, we get

a ∈ m so z ∈ xm.
From (18) we deduce

m/xm = (x)/xm⊕ S/xm

and

m/(x) ∼= S/xm,

so m/(x) is isomorphic to a direct summand of m/xm.
Step 3: Since (x) is R-free, applying the Short Exact Sequence Theorem to

0→ (x)→ m→ m→ 0

shows pdRm = pdRm = n. Moreover by XX and Change of Rings II we have

pdRm ≤ pdRm/xm ≤ pdRm = n <∞.

Thus by Change of Rings I, pdRm = n − 1. Applying the Short Exact Sequence

Theorem again shows pdRR/m ≤ n < ∞, so R has finite global dimension. Since

x is a non-zero-divisor, dimR = dimR − 1, so by induction R is a regular local
ring with D(R) = dimR = dimR − 1. It follows that R is regular local: if x2, xk
is a regular sequence generating m, then lifting these elements to m gives a regular
sequence x1, . . . , xk for m. �
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8.4. The Auslander-Buchsbaum Theorem.

In this section we will give a proof – following Samuel following Kaplansky – of
what is probably the single deepest result in these notes: the celebrated Auslander-
Buchsbaum theorem that a regular local ring is a UFD. Apart from the main result
of the previous section the proof will – not so surprisingly – require some side results
on UFDs, all of which are covered in the section on UFDs in [CA]. We single out
the following results.

Theorem 8.19 (Nagata’s Criterion). Let R be a Noetherian domain. Suppose that
p ∈ R is a prime element such that R[ 1p ] is a UFD. Then R is a UFD.

Proof. This is (a special case of) [CA, Thm. 15.39]. �

Proposition 8.20. For a domain R, the following are equivalent:
(i) R satisfies the ascending chain condition on principal ideals, and the intersection
of any two principal ideals is a principal ideal.
(ii) R is a UFD.

Proof. This is immediate from the results of [CA, § 15.4, 15.5]. �

Theorem 8.21. (Auslander-Buchsbaum) Every regular local ring is a UFD.

Proof. We go by induction on the common quantity

d = dimR = D(R) = dimeR

for a regular local ring (R,m). As we have seen, d = 0 iff R is a field; this disposes
of the base case. Suppose now that d ≥ 1.
Step 1: Consider the short exact sequence

0→ m→ R→ R/m→ 0.

Since R is projective, m is the first syzygy of R/m, whereas by Corollay 8.11,
pdR/m = d, s pdm = d − 1. Let a1, . . . , ad be a regular sequence generating
m; as we have seen, (a1) is prime. By Nagata’s Criterion (Theorem 8.19), it is
enough to show that S = R[ 1a ] is a UFD. Notice that inverting a1 kills the maximal
ideal m – or more precisely, makes it the unit ideal – in S, so dimS ≤ d − 1.
Let p ∈ MaxSpecS, so Sp = Rp∩R. Then dimSp ≤ d − 1, and Serre-Auslander-
Buchsbaum, Sp is a regular local ring, so by induction Sp is a UFD.
Step 2: We will use Proposition 8.20 to show that S is a UFD. Since R is Noetherian,
so is S, so certainly it satisfies ACC on principal ideals. So let u, v ∈ S and put
b = Bu ∩Bv: we need to show that b is principal.
Step 2a: For any p ∈ MaxSpecB, we saw above that Bp is a UFD, hence by
Proposition 8.20 bp = Bpu∩Bpv is principal. By [CA, Thm. 7.21], b is a projective
module. On the other hand, since R is regular local it has finite global dimension
and thus b∩R admits a finite free resolution (FFR). Since S is flat over R, tensoring
the FFR from R to S yields a FFR of b = S(b ∩ R). By Serre’s Lemma, the FFR
projective module b is stably free. But by [CA, Prop. 7.14] a stably free ideal is a
free module, i.e., a principal ideal. Thus b is a principal ideal. �
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8.5. Some “Global” Consequences.

We state a few more important results, mostly without proof. Reasonably ele-
mentary proofs can be found in [Lam99, § 2.5].

Theorem 8.22. Let R be a commutative ring and S ⊂ R a multiplicatively closed
subset. Then D(S−1R) ≤ D(R).

Proof. Suppose D(R) = n < ∞. Every S−1R-module is of the form S−1M =
S−1R ⊗R M for an R-module M . Let P• → M → 0 be a projective resolution of
length at most n. Since localization preserves exact sequences and carries projec-
tive R-modules to projective S−1R-modules (in fact the latter holds for any base
change), S−1P• → S−1M → 0 is a projective resolution of length at most n. �

Theorem 8.23. Let R be regular local ring, and let p be a prime ideal of R. Then
Rp is also regular local.

Proof. By Theorem 8.18, D(R) < ∞, so by Theorem 8.22 D(Rp) < ∞. Since Rp

is Noetherian local, by Theorem 8.18 Rp is regular local. �

Lemma 8.24. Let R be a commutative Noetherian ring. For any finitely generated
R-module M , there is m ∈ MaxSpecR such that pdRM = pdRm

Rm.

Theorem 8.25. Let R be a commutative Noetherian ring.
a) The following conditions are equivalent:
(i) For all p ∈ SpecR, Rp is a regular local ring.
(ii) For all m ∈ MaxSpecR, Rm is a regular local ring.
(iii) For every finitely generated R-module M , pdM <∞.
b) If the equivalent conditions of part a) hold then

D(R) = dimR.

Remark: In contrast to the local case, a regular Noetherian ring may have infinite
Krull dimension; examples were constructed by Nagata. However, a Noetherian ring
of finite Krull dimension is regular iff it has finite global dimension. In particular:

Corollary 8.26. Let V/k be an affine variety with coordinate ring k[V ].
a) The following are equivalent:
(i) V is nonsingular.
(ii) D(k[V ]) <∞.
b) When the conditions of part a) hold, D(k[V ]) = dim k[V ] = dimV .

9. Cohomology (and Homology) of Groups

9.1. G-modules.

Let G be a monoid. A G-module is a commutative group M together with an
action of G on M by Z-linear maps, i.e., a homomorphism ρ : G→ EndZ(M). We
generally write this action as (g,m) 7→ g ·m. A homomorphism of G-modules is a
homomorphism of abelian groups that respects the group action:

gf(x) = f(g · x).
Example: Let X be a G-set, i.e., a set X together with a homorphism from G
into the monoid of all maps from X to X. There is an associated G-module: the
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G-action on X extends uniquely to a G-module structure on Z[X], the free abelian
group on X, namely g ·

∑
x∈X nx[x] =

∑
nx[g · x].

Consider the monoid ring Z[G], which is the set of all finitely nonzero functions
f : G→ Z with pointwise addition and convolution product:

(fg)(x) =
∑

(y,z)∈G2 | yz=x

f(y)g(z).

Equivalently one may view Z[G] as the collection of formal finite Z-linear com-
binations of elements of G, with pointwise addition and multiplication given by
[x][y] = [xy] and the distributive law. Note that this notation is consistent with
the previous paragraph in the sense that indeedM is a basis for the Z-module Z[G].

More generally, for any commutative ring k, one can form the monoid ring k[G].

Exercise: a) Prove the universal property of monoid rings: for any ring B,

HomRings(k[G], B) = HomMonoids(G, (B, ·)).
b) Deduce that every G-module M has the natural structure of a left Z[G]-module,
and conversely. (Hint: apply part a) to the endomorphism ring EndZ(M).)

Exercise: a) Suppose that M ∼= (N,+). Show that Z[M ] ∼= Z[t], the univariate
polynomial ring.
b) SupposeM ∼= (Z,+). Show that Z[M ] ∼= Z[t, t−1], the ring of univariate Laurent
polynomials.
c) Let M and N be monoids. Show that as rings, Z[M ×N ] ∼= Z[M ]⊗Z Z[N ].
d) Show that any polynomial ring Z[t1, . . . , tn] is isomorphic to a monoid ring.

Henceforth we will restrict attention to the case in which G is a group!

9.2. Introducing Group Co/homology.

For any G-module M , we define the G-invariants

MG = {x ∈M | gx = x∀g ∈ G};
it is the largest G-submodule of M on which G acts trivially. Similarly, we define
the G-coinvariants

MG =M/⟨gx− x | g ∈ G, x ∈M⟩;
it is the largest quotient module on which G acts trivially.

Exercise: a) Show thatM 7→MG is a left exact covariant functor from the category
of Z[G]-modules to the category of Z-modules.
b) Show that M 7→ MG is a right exact covariant functor from the category of
Z[G]-modules to the category of Z-modules.

For all n ≥ 0, we put Hn(G,M) = RnF (M), the nth right derived functor of
F (M) =MG, the nth cohomology group of G with coefficients in M.

For all n ≥ 0, we put Hn(G,M) = LnF (M), the nth left derived functor of
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F (M) =MG, the nth homology group of G with coefficients in M.

Group co/homology is the study of these functors. Of course the burden is on
us to explain why these particular derived functors are of interest. In brief preview:
• The homology and cohomology groups Hn(G,Z) and Hn(G,Z) are of fundamen-
tal importance in topology, as they turn out to be nothing else than the homology
and cohomology groups of the Eilenberg-MacLane space K(G, 1). (More generally,
for a G-module M , Hn(G,M) and Hn(G,M) are homology and cohomology of lo-
cal systems on the space K(G, 1).) This gives a beautiful and powerful connection
between algebra and topology – maybe the single most beautiful and powerful one!
•We will soon see that group homology can be understood in terms of Tor functors
over Z[G] and group cohomology can be understood in terms of Ext functors over
Z[G]. This allows us to fruitfully apply many of our earlier tools.
• Group cohomology is related to group extensions, one of the fundamental con-
cepts in pure group theory.
• Galois cohomology – roughly, group cohomology with G equal to the automor-
phism group of a Galois extension of fields – is of the utmost importance in modern
number theory. For instance, the modern formulation of class field theory, due
to Artin and Tate, places the entire theory in the context of the cohomology theory
of finite Galois groups.

9.3. More on the Group Ring.

Let G be a group, and consider R = Z[G].

If G is finite, we define the norm element N =
∑
g∈G[g] ∈ Z[G]. Note that

N ∈ Z[G]G. This is an instance of a ubiquitous trick in mathematics: when G acts
on an object X, to get a subobject which is invariant under G, start with any sub-
object and sum (or average) it over the orbit of G. It follows that the G-submodule
Z[G]N generated by N is simply {nN | n ∈ Z}.

Exercise: a) Let G be a finite group. Show: Z[G]G = Z[G]N .
b) Let G be an infinite group. Show: Z[G]G = 0.

The augmentation map: using the universal property of the group ring, there
is a unique ring homomorphism Σ : Z[G] → Z with Σ(g) = 1 for all g ∈ G. If we
think of the elements of Z[G] as formal finite Z-linear combinations of elements of
G, then Σ simply adds up the Z-coefficients:

Σ(
∑
g∈G

ng[g]) =
∑
g∈G

ng.

Since Σ(n[1]) = n, Σ is surjective. Let I = kerΣ, the augmentation ideal. Thus
we have a short exact sequence of R-modules

(19) 0→ I → Z[G]→ Z→ 0

Σ endows Z with the structure of a Z[G]-module: the G-action is trivial.

Lemma 9.1. Let I = KerΣ be the augmentation ideal of Z[G].
a) I is a free Z-module with Z-basis {[g]− [1] | g ∈ G•}.
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b) If S is a generating set for G, then {[s]− [1] | s ∈ S} is a spanning set for I as
a Z[G]-module.

Exercise: Prove Lemma 9.1

Proposition 9.2. Let M be a left Z[G]-module. Then:
a) MG = HomZ[G](Z,M).
b) MG = Z⊗Z[G] M .

Proof. a) Let φ : Z→M be a G-module map. In particular it is a Z-module map,
hence is determined by φ(1). The condition that it be a G-map is gφ(1) = φ(g ·1) =
φ(1): that is, φ(1) must be a G-invariant element of M .
b) In view of Lemma X.X, we have

MG =M/IM = Z[G]/I ⊗RM = Z⊗RM.

�
We immediately deduce the following fundamental result.

Theorem 9.3. Let M be a G-module, and let n ∈ N. Then:
a) Hn(G,M) = ExtnZ[G](Z,M).

b) Hn(G,M) = TorZ[G]
n (Z,M).

Thus we can – in principle, at least – compute both group homology and group
cohomology using a projective resolution of Z over Z[G].

The group ring construction is actually a functor from the category of groups to
the category of rings: in other words, a group homomorphism G → G′ naturally
induces a ring homomrphism Z[G]→ Z[G′].

Lemma 9.4. Let H ↪→ G be an injective group homomorphism. Let X be a set
of coset representatives for H in G. Then Z[G] is a free Z[H]-module with basis
{[x] | x ∈ X}.

Exercise: Prove it.

9.4. First Examples.

Proposition 9.5. For any group G, H1(G,Z) ∼= I/I2 ∼= Gab.

Proof. Step 1: By X.X, H1(G,Z) ∼= Tor
Z[G]
1 (Z,Z). To compute this, we apply

Tor∗(·,Z) to the augmentation sequence, getting

0 = Tor1(Z[G],Z)→ I/I2 → Z
1

Z→ 0,

so Tor1(Z,Z) ∼= I/I2.
Step 2: We define a map Φ : G→ I/I2 by Φ(g) = g − 1. Then

Φ(gh) = gh− 1 = (g − 1) + (h− 1)− (g − 1)(h− 1) ≡ Φ(g) + Φ(h) (mod I2),

so it is a homomorphism.
Step 3: Since {[g]− [1] | g ̸= 1 ∈ G} is a Z-basis for I, there is a unique Z-module
map Ψ : I → Gab with Ψ([g] − [1]) = g[G,G]. It is immediate that Φ and Ψ are
mutually inverse maps, so each is an isomorphism of commutative groups. �
Theorem 9.6. (Schur-Hopf) Let G be a group. Write G as the quotient of a free
group F by a normal subgroup R. Then

H2(G,Z) ∼= (R ∼= [F, F ])/[F,R].
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Example: Let G = ⟨σ⟩ be infinite cyclic. By Lemma X.X, I is the principal ideal
generated by [σ]− [1]. Since Z[G] ∼= Z[t, t−1] is a domain, we must have I ∼= Z[G]
and thus

0→ Z[G] ·[σ]−[1]→ Z[G]→ Z→ 0

is a free resolution of Z as a Z[G]-module. LetM be any G-module. ThenH•(G,M)
is the homology of the complex

0→M
[σ]−[1]→ M → 0,

so

H0(G,M) =M/(σ − 1)M =MG.

H1(G,M) =MG,

∀n ≥ 2, Hn(G,M) = 0.

Similarly, H•(G,M) is the cohomology of the complex

0→ HomZ[G](Z[G],M)
[σ]−[1]→ HomZ[G](Z[G],M)→ 0,

so

H0(G,M) =MG,

H1(G,M) =MG,

∀n ≥ 2, Hn(G,M) = 0.

Exercise: Let G = ⟨σ⟩.
a) Show that cdG = 1.
b) Show that D(Z[G]) = 2.
(Thus we have an example of cdG < D(Z[G]).

Proposition 9.7. Let n ∈ Z+ and let G = ⟨σ | σn = 1⟩. For any G-module M :
a) H0(G,M) =MG =M/(σ − 1)M
b) Hn(G,M) =MG/NM, n = 1, 3, 5, 7, . . .
c) Hn(G,M) = (KerN)/(σ − 1)M, n = 2, 4, 6, 8, . . .
d) H0(G,M) =MG.
e) Hn(G,M) = (KerN)/(σ − 1)M, n = 1, 3, 5, 7, . . .
f) Hn(G,M) =MG/NM, n = 2, 4, 6, 8, . . .

Proof. The Kaplansky pair (σ − 1, 1 + σ + . . .+ σn−1 = N) in Z[G] gives us a free
resolution of Z over Z[G]:

Z[G] N→ Z[G] σ−1→ Z[G] N=Σ→ Z→ 0.

Applying · ⊗Z[G] M and taking homology, we get that if n is odd,

Hn(G,M) = (KerN)/(Imσ − 1) = (KerN)/(σ − 1)M,

as claimed, whereas if n is even,

Hn(G,M) = Ker(σ − 1)/(ImageN) =MG/NM,

as claimed. Applying HomZ[G](·,M) and taking cohomology, we get parts a) and
b). Applying HomZ[G](·,M) we get parts c) and d). �
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Note that the homology and cohomology groups turned out to be the same, only
with shifted indices. Also from this perspective H0(G,M) and H0(G,M) are dis-
appointing outliers. It is natural to want to redefine them in such a way that the
co/homology is truly periodic. This leads us to a definition we will explore later:

If G is a finite group and M a G-module, we define Tate cohomology groups:

Ĥn(G,M) = Hn(G,M), n > 0,

Ĥ0(G,M) =MG/NM.

Ĥ−1(G,M) = (KerN)/IM.

Ĥn(G,M) = H1−n(G,M), n ≤ −2.
Exercise: For G finite, show that a short exact sequence of G-modules

0→ A→ B → C → 0

leads to a doubly infinite long exact sequence in Tate cohomology.

Proposition 9.8. Let G = F (S) be the free18 group on the set S. Then:
a) The augmentation ideal I is a free Z[G]-module, with basis {[s]− [1] | s ∈ S}.
b) Thus

0→ I → Z[G]→ Z→ 0

is a free resolution of Z over Z[G].
c) For all n > 1 and all G-modules M ,

Hn(G,M) = Hn(G,M) = 0.

Proof. a) For a purely algebraic proof, see [W, Prop. 6.2.6]. Later we will give a
topological proof!
b) and c) both follow immediately. �
9.5. Cohomological Dimension.

For a group G, the cohomological dimension cdG is the projective dimension
of Z as a Z[G]-module.

Proposition 9.9. For a group G, the following are equivalent:
(i) The augmentation sequence (19) splits.
(ii G is trivial.

Proof. (i) =⇒ (ii): A section σ : Z → Z[G] of the augmentation map Σ amounts
to an element x ∈ Z[G]G with Σ(x) = 1. If G is infinite, then by Exercise X.X,
Z[G]G = 0 and that ends that. Suppose now that G is finite of order n > 1. Then
Z[G]G = Z[G]N , where N =

∑
g∈G[g] is the norm element. Thus Σ(Z[G]G) =

Σ(N)Z = nZ, so there is no G-fixed element x with Σ(x) = 1.
(ii) =⇒ (i): Z is a projective Z-module. �
Exercise: a) Show that cdG ≤ D(Z[G]).
b) Show that cdG = 0 ⇐⇒ G is trivial.
(Note that if G is trivial, 0 = cdG < D(Z[G]) = D(Z) = 1.
c) Show that cdG is the supremum of the set of all natural numbers n such that
Hn(G,M) ̸= 0 for some G-module M .

18Not the free abelian group!
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Exercise: Let G be a nontrivial finite cyclic group. Show

cdG = D(Z[G]) =∞.

Exercise: Let G be an infinite cyclic group. Show

cdG = 1 < 2 = D(Z[G]).

Exercise: Let G = F (S) be a free group.
a) Show cdG = 1.
b) What is D(Z[G])?

In fact the converse also holds.

Theorem 9.10. (Stallings-Swan) If cdG ≤ 1, then G is free.

Proof. The finitely generated case is due to J.R. Stallings [St68]. The general case
is due to R.G. Swan [Sw69]. Both arguments are long and difficult. According to
http://mathoverflow.net/questions/95974 there is still no easy proof. �
Exercise: Let G be a group; let I ⊂ Z[G] be the augmentation ideal. Show TFAE:
(i) G is free (as a group).
(ii) I is free (as a Z[G]-module).
(iii) I is projective (as a Z[G]-module).

Theorem 9.11. Let H be a subgroup of G.
a) We have cdH ≤ cdG.
b) If cdG <∞, then G is torsionfree.

Exercise:
a) Deduce from Theorems 9.10 and 9.11 that any subgroup of a free group is free.
(This is ridiculous overkill. In fact it is likely that it is logically circular: I would
be surprised if the proof of Stallings-Swan did not make use of this basic fact.)
b) Fill in the details for the following (rather standard) topological proof that
subgroups of free groups are free.
Step 1: Let S be a set, and let X be the topological space obtained by wedging
together #S circles. Show that π1(X) ∼= F (S), the free group on S.
Step 2: Let X be a connected one-dimensional CW-complex. Show that X is
homotopy equivalent to a (possibly) infinite wedge of circles. (Hint: find a maximal
subtree.) Deduce that π1(X) is free.
Step 3: Let Y → X be a covering space of a connected one-dimensional CW-
complex. Show (or notice: this is almost trivial) that Y naturally has the structure
of a one-dimensional CW-complex. Deduce that π(Y ) is free.
Step 4: Conclude that any subgroup of a free group is free.

Theorem 9.12. (Serre) Let G be a torsionfree group and H a finite index subgroup.
Then cdG = cdH.

The proof of Theorem 9.12 is beyond our means, but see e.g. [Br].

Combining the theorems of Stallings-Swan and Serre, we get the following remark-
able result of pure group theory.
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Corollary 9.13. A torsionfree group admitting a finite index free subgroup is free.

Example: The modular group PSL2(Z) has an index 6 normal subgroup Γ(2) which
is free on 2 generators. However, Γ(1) = PSL2(Z) has elements of order 2 and 3:
in fact it is the free product C2 ∗ C3. So “torsionfree” is certainly necessary in the
statement of Corollary 9.13.

9.6. Products.

Let G1 and G2 be groups. If we understand the co/homology groups of G1 and G2,
it is certainly natural to try to understand the co/homolohy groups of G = G1×G2

in terms of them. This is a classic application of the Künneth Formula for chain
complexes, although it takes a little work to see how it applies. Here is the main
result.

Theorem 9.14. Let P• be a projective resolution for Z over Z[G1] and Q• be a
projective resolution for Z over Z[G2].
a) Then P• ⊗Z Q• is a projective resolution for Z over Z[G1 ×G2].
b) For all n ∈ N, we have

Hn(G1×G2,Z) ∼=
⊕
p+q=n

Hp(G1,Z)⊗ZHq(G2,Z)⊕
⊕

p+q=n−1

TorZ1 (Hp(G1,Z), Hq(G2,Z)).

c) For all n ∈ N, we have

Hn(G1×G2,Z) ∼=
⊕
p+q=n

Hp(G1,Z)⊗ZH
q(G2,Z)⊕

⊕
p+q=n−1

ExtZ1 (H
p(G1,Z),Hq(G2,Z)).

Proof. We remind the reader of our convention on tensor products of G-modules:
if we don’t write any subscript, we mean tensor product over Z.
a) Clearly our first order of business is to make sense of the claim that P• ⊗ Q•
is a complex of Z[G]-modules. The key observation here is that Z[G1] ⊗ Z[G2] is
canonically isomorphic to Z[G1 × G2]: we map [g1] ⊗ [g2] to (g1, g2). Thus it is
enough to observe that for any rings R1 and R2, if M1 is an R1-module and M2

is an R2-module, then M1 ⊗Z M2 is an R1 ⊗Z R2-module, where the latter tensor
product has a natural ring structure. This does the job.

Next we need to see that for all n ∈ N, (P• ⊗ Q•)n is projective. This comes
down to checking that if M1 is a projective R1-module and M2 is a projective R2-
module, then M1 ⊗M2 is a projective R1 ⊗ R2 module, which is very easy: using
the characterization of projective modules as direct summands of free modules we
reduce to the corresponding statement for free modules and then to the statement
that R1 ⊗R2 is a free R1 ⊗R2-module: of course it is.

Finally we need to see that the complex P•⊗Q• is exact. For this we first observe
that exactness of a complex of R-modules may be checked by considering it as a
complex of Z-modules. Then we apply the Künneth Formula for chain complexes,
which gives in particular that if P• is an acyclic complex of Z-modules, then its
tensor product with any chain complex of Z-modules remains acyclic. (The clean
way to do this is to apply it to the tensor product of the augmented complexes
P• → Z → 0 and Q• → Z → 0; otherwise we need to check the degree zero part
separately.)
b) By part a), H∗(G,Z) is the homology of the complex

(P• ⊗Q•)⊗Z[G1]⊗Z[G2] Z ∼= (P• ⊗Z[G1] Z)⊗Z (Q• ⊗Z[G2] Z).
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Noting that all chain complexes in sight are chain complexes of free Z-modules, the
Künneth Formula for complexes of Z-modules applies to give the claimed result.
c) This is exactly the same as part b), but using the Künneth Formula for Coho-
mology. �

Corollary 9.15. For any groups G1 and G2, we have

cd(G1 ×G2) ≤ cdG1 + cdG2.

Exercise: Prove it.

Corollary 9.16. For any d ∈ N, cd(Zd) = d.

Exercise: Prove it.

Exercise: Try to use the above ideas to explicitly computeHn(Zd,M) andHn(Zd,M)
for all d, n ∈ N and all Zd-modules M .

Exercise: Can you find groups G1 and G2 with cd(G1 ×G2) < cdG1 + cdG2?

10. Functorialities in Group Co/homology

10.1. Induction, Coinduction and Eckmann-Shapiro.

Let H be a subgroup of a group G, and let A be an H-module. We can man-
ufacture from A a G-module in the following two important ways:

IndGH A = Z[G]⊗Z[H] A.

Here the G-module structure comes from the left action of G on Z[G] (or, in
more technical terms that amount to the same thing, from the fact that Z[G]
is a (Z[G],Z[G])-bimodule). Such G-modules are said to be induced from H. The
special case in which H is the trivial group – i.e., A is just a Z-module – is itself of
some importance, and we put

IndGA = Z[G]⊗Z A

and simply say that A is induced.

On the other hand, we put

CoindGH A = HomZ[H](Z[G], A).

The G-action here is g · f : x 7→ f(xg).19 Such modules are said to be coinduced
from H. Again, when H is trivial we put

CoindGA = HomZ(Z[G], A)

such modules are said to be coinduced.

Free Z[G]-modules are precisely those which are induced from free Z-modules. In
general an induced G-module need not be free: for instance free Z[G]-modules are

free Z-modules and thus Z-torsionfree, but if A has Z-torsion then so does IndGA.

19Note that this is an instance of switching from a left action by g−1 to a right action by g.
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Remark: As for most of the constructions introduced here, induction and coin-
duction can also be defined for k[G]-modules, where k is a field. We recover the key
concept in representation theory: if W is a finite-dimensional k-vector space with
k-linear H-action, then

V = Z[G]⊗Z[H] W

is the induced representation. Recall that the most classical setting for reprsen-
tation is when G is finite and k = C. Then much of the core of the subject describes
how represntations of G can be obtained as induced representations from various
(simpler) subgroups. More specifically, at least to the extent of my own knowledge
of the subject, the two Fundamental Theorems in this subject are the following.

Theorem 10.1. (Artin’s Induction Theorem) Let G be a finite group, and let V be
a finite-dimensional C-representation of G. Then V is a Q-linear combination of
representations of the form IndGHW , where W is a one-dimensional representation
of a cyclic subgroup H of G.

What do we mean by a Q-linear combination of representations? The traditional
answer is that a finite-dimensional complex representation (V, ρ) of a finite group
G is determined by its character χ : G→ C, χ(g) = trace(g•). Then the Q-linear
combination business can be interpreted in terms of the corresponding characters.

However there is another way. Suppose, to fix ideas, that there are a1, . . . , an ∈ Q
and representations χ1, . . . , χn of cyclic subgroups H1, . . . , Hn of G such that

χ =
n∑
i=1

ai Ind
G
Hi
χi.

Let N be the least common multiple of a1, . . . , an. Then

Nχ =
n∑
i=1

Nai Ind
G
Hi
χi =

n∑
i=1

bi Ind
G
Hi
χi,

say, where bi = Nai ∈ Z. Some coefficients bi may be negative; if so we bring them
to the other side, finally getting an equation of the form

r⊕
i=1

ci Ind
G
Hi
χi ⊕Nχ =

s⊕
i=1

di Ind
G
Hi
χi

with ci, di ∈ Z+. At last we can interpret this in terms of honest direct sums of
C[G]-modules, and this is at least a consequence of Artin’s Theorem whose state-
ment is “character-free”. In fact it is an equivalent version of Artin’s theorem
since we can solve it for the character of χ and the character determines the rep-
resentation up to isomorphism. But in fact it is a nice exercise to prove this directly.

Exercise: Let G be a finite group, and let k be a field. We assume that char k - #G
(“nonmodular case”). Let A,M1,M2 be k[G]-modules. Suppose that for some
n ∈ Z+ we have

A⊕
n⊕
i=1

M1
∼= A⊕

n⊕
i=1

M2.

Show that M1
∼= M2. (Hint: the hypotheses on k and G are precisely those of

Maschke’s Theorem.)

Nevertheless it would be nicer to have a Z-linear combination than a Q-linear
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combination. A related theorem of Brauer accomplishes this. We say that a finite
group is elementary if it is the direct product of a cyclic group and a p-group.

Theorem 10.2. (Brauer’s Induction Theorem) Let G be a finite group, and let V
be a finite-dimensional C-representation of G. Then V is a Z-linear combination of
representations of the form IndGHW , where W is a one-dimensional representation
of an elementary subgroup H of G.

Exercise: If you are a number theorist, look up the history of Brauer’s Induction
Theorem and in particular, how it was used to prove a special case of Artin’s
Holomorphy Conjecture.

The proverbial alert reader may have noticed that the entire discussion was about
induced representations, not coinduced representations Homk[H](k[G],W ). Even if
you know classical representation theory the term “coinduction” may not ring a
bell. The following result explains why.

Lemma 10.3. If H is a finite index subgroup of a group G and A is an H-module,

CoindGH A.
∼=Z[G] Ind

G
H A.

Proof. We define

Φ : CoindGH A→ IndGH A, (f : Z[G]→ A) 7→
∑

g∈H\G

g−1 ⊗Z[H] f(g).

The sum extends over any system of right coset representatives for H in G. Let’s
check that this is well-defined. If instead of g we took hg for any h ∈ H, then we
would replace g−1 ⊗Z[H] f(g) with (hg)−1 ⊗Z[H] f(hg) = g−1h−1 ⊗Z[H] hf(g), but
by bringing the h across the tensor product the latter becomes equal to the former.

Next we check the G-equivariance of Φ: for g′ ∈ G,

Φ(g′f) =
∑

g∈H\G

g−1 ⊗Z[H] f(gg
′) = g′

∑
g∈H\G

(gg′)−1 ⊗ f(gg′) = g′Φ(f).

On the other hand, we define a map Ψ : IndGH A→ CoindGH A by∑
g∈H\G

g−1 ⊗Z[H] bg 7→ (g 7→ bg).

Again one needs to check that this map is well-defined if we switch from g to hg,
and this is very similar to the above: since

g−1 ⊗Z[H] bg = g−1h−1 ⊗Z[H] hbg = (hg)−1hbg,

we have bhg = hbg, and so

f(hg) = bhg = hbg = hf(g)

as needed. To check G-equivariance of Ψ, let x =
∑
g∈G/H g

−1 ⊗Z[H] bg and let

g′ ∈ G. Then

g′x =
∑
g

g′g−1 ⊗ bg =
∑
gg′

g′(gg′)−1 ⊗ bgg′ =
∑
g

g−1 ⊗ bgg′ ,

so Ψ(g′x) : g 7→ bgg′ , while

g′Ψ(x) : g′ · (g 7→ bg) = g 7→ bgg′ .

As it is evident that Φ and Ψ are mutually inverse, we’re done. �
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Exercise: Where in the proof did we use that H has finite index in G?

Warning: WhenG is finite, it is unfortunately rather standard to refer to HomZ[H](Z[G], A)
as “induced”. For instance, Serre does (the profinite analogue of) this in [S-CG, §
I.2.5], but at least he mentions that this construction is what he called coinduction
in [S-CL]. Some other authors are not this careful.

Theorem 10.4. (Eckmann-Fadeev-Shapiro Lemma)
Let H ⊂ G, let M be a G-module and let N be an H-module.
a) For all n ≥ 0, there are canonical isomorphisms

TorZ[G]
n (M, IndGH N) ∼= TorZ[H]

n (M,N).

ExtnZ[G](M,CoindGH N) ∼= ExtnZ[H](M,N).

b) In particular, for all H-modules N , we have

H∗(G, Ind
G
H N) ∼= H∗(H,N),

H∗(G,CoindN) ∼= H∗(H,N)

Proof. Consider the ring map Z[H] → Z[G]. Then Z[G] is a free Z[H] bimodule:
in particular it is projective and flat on both sides.
a) Apply Base Change for Tor and Ext (Theorems 6.12 and 6.19) with R = Z[H],
T = Z[G].
b) This follows immediately. �

Corollary 10.5. a) An induced G-module is acyclic for group homology.
b) A coinduced G-module is acyclic for group cohomology.

Exercise: Prove it.

Exercise: Let M be a G-module.
a) Show that M is canonically the quotient of an induced G-module . . ..
b) Show that M is canonically a submodule of a coinduced G-module....

Remark: Our treatment of the Eckmann-Shapiro Lemma was directly inspired
by the wikipedia article http://en.wikipedia.org/wiki/Shapiro’s lemma. In
particular in my first pass through these notes I had (following Weibel) included a
treatment of Base Change for Tor but not for Ext. After reading wikipedia I went
back and included this material, as well as the tensor and hom identities it requires,
making it look like this was planned all along.

10.2. The Standard Resolutions; Cocycles and Coboundaries.

Let us record some of these formulas in low dimension.

B0(G,M) = δ(C−1(G,M)) = δ−1(0) = 0.

C0(G,M) = Map(G0,M) =M.

δ0 : C0(G,M)→ C1(G,M) : a ∈M 7→ (g 7→ ga− a).
Therefore

Z0(G,M) = {a ∈M | ga = a∀g ∈ G} =MG,
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so

H0(G,M) = Z0(G,M)/B0(G,M) =MG.

δ1 : C1(G,M)→ C2(G,M), (δ1f)(g, h) = gf(h)− f(gh) + f(g),

so

Z1(G,M) = Ker δ1 = {f : G→M | f(gh) = f(g) + gf(h)}.
Elements of Z1(G,M) are called crossed homomorphisms.

B1(G,M) = Image δ0 = {f : G→M | ∃a ∈M |f(g) = ga− a∀g ∈ G}.

The resulting description of H1(G,M) = Z1(G,M)/B1(G,M) is extremely useful.
This is especially so when M is a trivial G-module because then we get the simpler
description Z1(G,M) = Hom(G,M), B1(G,M) = 0, so H1(G,M) = Hom(G,M).

We have

Z2(G,M) = {f : G2 →M | g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0}.

Elements of Z2(G,M) are called factor sets: they come up naturally when one
examines the set of extensions of the group G by the abelian group M .

B2(G,M) = {f : G2 →M | ∃F : G→M | f(g1, g2) = g1F (g2)−F (g1g2)+F (g1)∀g1, g2 ∈ G}.

The resulting description H2(G,M) = Z2(G,M)/B2(G,M) is often useful.

Three cocycles also come up in group theory, but are less important. To the best
of my knowledge instances of n-cocycles with n ≥ 4 “in nature” are extremely rare.

10.3. Group co/homology as bifunctors.

Proposition 10.6. Let ρ : G → G′ be a group homomorphism, let M be a G-
module, M ′ a G′-module, and f :M →M ′ a G-module map.
a) There are natural homomorphisms H•(G,M)→ H•(G

′,M ′).
b) There are natural homomorphisms H•(G′,M)→ H•(G,M ′).

Proof. Let P• be a projective resolution of Z over Z[G] and let P ′
• be a projective

resolution of Z over Z[G′]. Via the homomorphism Z[G] → Z[G′] we may regard
P ′
• as a resolution of Z over Z[G]. (If ρ is an embedding, then this is a projective

resolution. In general it isn’t, but that’s okay: it doesn’t need to be.) By the
Comparson Theorem for resolutions there is a chain map φ : (P• → Z → 0) →
(Q• → Z → 0) between the augented resolutions, unique up to chain homotopy.
There is then an induced map

P• ⊗Z[G] M → P ′
• ⊗Z[G] M

′ → P ′
• ⊗Z[G′] M

′,

and its induced maps on homology are the desired maps H∗(G,M)→ H∗(G
′,M ′).

Similarly, there is an induced map

HomZ[G′](P
′
•,M

′)→ HomZ[G](P
′
•,M

′)→ HomZ[G](P•,M)

and its induced maps on cohomology are the desired mapsH∗(G′,M)→ H∗(G,M ′).
�

Exercise: Describe the mapH∗(G′,M ′)→ H∗(G,M) in terms of standard cochains.
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10.4. Inflation-Restriction.

Let G be a group, H a normal subgroup, and M a G-module. Then M is nat-
urally an H-module and MH is naturally a G/H-module. As a special case of the
functorial maps defined above, we get an inflation map

Inf : H1(G/H,MH)→ H1(G,M)

and a restriction map

Res : H1(G,M)→ H1(H,M).

Each of these maps is essentially just pulling back on one-cocycles.

Theorem 10.7. (Inflation-Restriction Sequence) Let H be a normal subgroup of a
group G, and let M be a G-module. There is an exact sequence

0→ H1(G/H,MH)
Inf→ H1(G,M)

Res→ H1(H,M).

Proof. Step 1: We show Inf is injective. Let f : G/H →MH , and suppose that its
pullback to G is cohomologous to zero: i.e., there is a ∈M such that f(g) = ga−a
for all g ∈ G. Since f is constant on cosets of H, we have ga− a = gha− a for all
h ∈ H. Thus a ∈MH and f ∈ Z1(G/H,MH) is cohomologous to 0.
Step 2: We show Res ◦ Inf = 0. This is almost obvious. By looking at one-cocycles,
we see that by pulling back a one-cocycle f : G/H → M to G and then to H we
get the constant map h ∈ H 7→ f(H). Since every one-cocycle has f(1) = 0, the
pulled back cocycle is constantly zero.
Step 3: We show that KerRes ⊂ Image Inf. Let f ∈ Z1(G,M), and suppose
there is a ∈ M such that f(h) = ha − a for all h ∈ H. Without changing the
cohomology class of f we may subtract off the one-coboundary g 7→ ga − a to get
a one-cocycle which vanishes identically on H. For all g ∈ G, h ∈ G we have
f(gh) = f(g) + gf(h) = f(g), and thus f is constant on cosets of H. Similarly for
all g ∈ G, h ∈ H we have f(hg) = f(h) + hf(g) = hf(g). Since H is normal in G
there is h′ ∈ H with hg = gh′, and thus

hf(g) = f(hg) = f(gh′) = f(g),

i.e., f(G) ∈MH and thus f lies in the image of the inflation map. �
10.5. Corestriction.

11. Galois Cohomology

11.1. Hilbert’s Satz 90.

Theorem 11.1. Let K/F be a finite Galois extension. Put G = Aut(K/F ). Then:
a) H1(G,K) = 0.
b) H1(G,K×) = 0.

Proof. a) Let f : G → K be a 1-cocycle. Since K/F is finite separable, by [FT, §
7] there is c ∈ K with TrK/F (c) = 1. Put

b =
∑
σ∈G

f(σ)σ(c),

so
τ(b) =

∑
σ∈G

τ(f(σ))(τσ)(c)
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=
∑
σ∈G

(f(τσ)− f(τ)) (τσ)(c) =
∑
σ∈G

f(τσ)(τσ)(c)−
∑
σ∈G

f(τ)(τσ)(c)

= b− f(τ) · τ

(∑
σ∈G

σ(c)

)
= b− f(τ).

Thus f(τ) = b− τ(b) for all τ ∈ G, so f ∈ B1(G,K).
b) Let f : G→ K× be a 1-cocycle. By independence of characters, there is c ∈ K
such that

∑
σ∈G f(σ)σ(c) ̸= 0; fix such a c and put b =

∑
σ∈G f(σ)σ(c). Then

τ(b) =
∑
σ∈G

τ(f(σ))(τσ)(c),

so
f(τ)τ(b) =

∑
σ∈G

f(τ)τ(f(σ)) · (τσ)(c) =
∑
σ∈G

f(τσ) · (τσ)(c) = b,

i.e., f(τ) = b/τ(b). So f ∈ B1(G,K×). �
The proof of Theorem 11.1b) is a classic one. A very similar argument works in
non-abelian cohomology to show that H1(G,GLn(K)) = 0 for any n ∈ Z+ – alas
we have not given the definition of nonabelian H1 in these notes – and becomes
one of th fundamental results in this area.

In contrast, one can prove a stronger form of Theorem 11.1a) by backing away
from the explicit cocycles and using some of the ideas we have developed previously.

Exercise: Let K/F be a finite Galois extension, and put G = Aut(K/F ).
a) Show that the G-module K is induced, i.e., is of the form Z[G] ⊗Z A for some
abelian group A. (Hint: apply the Normal Basis Theorem [FT, § 9.5].
b) Deduce that Hi(G,K) = 0 for all i ≥ 1.
c) Must we have H2(G,K×) = 0? (Hint: hell no.)

Theorem 11.2. (Hilbert’s Satz 90) Let K/F be a finite Galois extension with cyclic
Galois group G = ⟨σ | σn = 1⟩.
a) For c ∈ K, the following are equivalent:
(i) TrK/F (c) = 0.
(ii) There is a ∈ K such that c = a− σ(a).
b) For c ∈ K, the following are equivalent:
(i) NK/F (c) = 1.

(ii) There is a ∈ K× such that c = a
σ(a) .

Exercise: Deduce Theorem 11.2 immediately from Theorem 11.1 and our compu-
tation of H1(G,M) for any finite cyclic group G.

Remark: Hilbert himself did not use group cohomology to prove his Satz 90, and
most field theory texts – including [FT] – give a non-cohomological proof.

Corollary 11.3. Let n ∈ Z+. Let F be a field of characteristic not dividing n.
a) Let a ∈ F× have order n in F×/F×n, and put K = F ( n

√
a). TFAE:

(i) K/F is Galois with cyclic Galois group.
(ii) K/F is Galois.
(iii) F contains a primitive nth root of unity.
b) Let K/F be a finite Galois extension with cyclic Galois group G = ⟨σ | σn = 1⟩.
If F contains a primitive nth root of unity ζn, then K = F ( n

√
a) for some a ∈ F .
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Proof. a) This is a standard field-theoretic exercise which we leave to the reader.
b) Since ζn ∈ F , NK/F (ζn) = ζnn = 1. By Hilbert’s Satz 90, there is a ∈ K× with

ζn = a
σ(a) . So for all i ∈ Z+, σ(αi) = ζinα

i. In particular σ(αn) = αn ∈ F . Put

a = αn. Only the identity of G fixes F (α) pointwise, so K = F (α) = F ( n
√
a). �

There is also an “absolute” version of Hilbert’s Satz 90 which is, e.g. from the
perspective of contemporary number theory, more natural and useful.

11.2. Topological group cohomology.

A topological group is a group G endowed with a topology τ which is com-
patible with the group structure in the following sense: the group law G × G →
G, (x, y) 7→ xy and the inversion map G→ G, x 7→ x−1 are both continuous.

A topological G-module is a topological abelian group M together with a
continuous action of G on M , i.e., the function G × M → M, (g,m) 7→ gm is
required to be continuous.

Let M be a topological G-module. For n ∈ N, let Cntop(G,M) be the continu-

ous cochains, i.e., continuous maps Gn → M . Let δ : Cn(G,M) → Cn+1(G,M)
be the usual coboundary map. Then

Bn+1
top (G,M) = δ(Cntop(G,M)) ⊂ Cn+1

top (G,M).

Accordingly, we may define the topological group cohomology

Hn
top(G,M) = Zntop(G,M)/Bntop(G,M).

Example: If G is any group and M is any G-module, then by endowing G and M
with the discrete topologies, M becomes a topological G-module.

However, if G is a nondiscrete group then Hn
top(G,M) is, in general, different from

the ordinary group cohomology Hn(G,M), and in some situations the former is
more natural.

There are many questions one should ask about these topological cohomology
groups, especially: do they arise via the formalism of homological algebra? Are
they the derived functors of M 7→ MG? Is it even the case that the category of
topological G-modules an abelian category with enough projective and/or injective
objects?

The answers to these questions are generally beyond the scope of these notes. We
recommend that the interested reader consult a recent paper of M. Flach [Fl08].

11.3. Profinite Groups.

Let {Xi}i∈I be an inverse system of topological spaces with continuous transi-
tion maps. Then X = lim←−Xi exists in the category of topological spaces. As a set

X, is the subset of
∏
i∈I Xi consisting of compatible systems {xi}i∈I , i.e., such that

whenever i ≤ j, ιji(xj) = xi.

Exercise: a) Suppose each Xi is Hausdorff. Show that the subset lim←−Xi is closed
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in
∏
i∈I Xi under the product topology.

b) Deduce that an inverse limit of compact spaces is compact.
c) Show: an inverse limit of totally disconnected spaces is totally disconnected.

Now let {Xi}i∈I be an inverse system of finite sets, and put X = lim←−Xi. We
say that X is a profinite set. We can topologize X in a natural way: give each
Xi the discrete topology and X the inverse limit topology as above. Since discrete
spaces are Hausdorff and finite spaces are quasi-compact, from the previous exer-
cise we deduce that the profinite topology onX is compact and totally disconnected.

In particular this construction works if we are given an inverse system {Gi}i∈I
of finite groups: this will be the case of interest to us here. Then G = lim←−Gi is
called a profinite group: it is a compact, totally disconnected topological group.

Exercise: Show that any profinite group is either finite or uncountably infinite.
(Hint: for instance show there are no countably infinite compact topological groups.)

In fact the converse is true, as we now explain. Let G be any topological group.
Then the open finite index normal subgroups {Ni}i∈I form a directed set under
reverse inclusion. It follows that {G/Ni}i∈I is an inverse system of finite, discrete
topological groups: if i ≤ j, then Ni ⊃ Nj and we take the natural quotient map

G/Nj → G/Ni. Let Ĝ = lim←−G/Ni. This is a profinite group, called the profinite
completion of G.

Exercise: a) For any topological group G, define a canonical topological group

homomorphism P : G→ Ĝ.
a) Suppose G is compact. Show that P is an isomorphism of topological groups iff
it is bijective.
b) Exhibit a topological group G such that P is injective but not surjective.
c) Exhibit a topological group G such that P is surjective but not injective.

Exercise: For a locally compact abelian group G, let G∨ = Homc(G,S
1) – en-

dowed with the compact open topology – be the Pontrajgin dual group. Here
we suppose that G is a profinite group.
a) Show that every continuous homomorphism G→ S1 has image in Q/Z.
b) Show that the natural topology on G∨ is discrete.
c) Show that if G ∼= lim←−Gi, then G

∨ ∼= lim−→G∨
i .

d) Deduce that G∨ is a torsion abelian group.
e) Show that G 7→ G∨ induces an anti-equivalence of categories from the category
of profinite abelian topological groups to the category of torsion abelian groups.

Exercise (Serre): Show that any torsionfree profinite commutative group is iso-
morphic to a (possibly infinite) direct product of copies of Zp for some prime p.

Theorem 11.4. For a topological group G, the following are equivalent:
(i) The canonical map P : G→ Ĝ is an isomorphism of topological groups.
(ii) G is a profinite group.
(iii) G is compact and totally disconnected.
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Proof. See [Wi, Cor. 1.2.4, Thm. 1.2.5]. �

Lemma 11.5. Let f : G → Y be a continuous map from a profinite group to a
discrete space. Then there is an open finite index normal subgroup N of G such
that f factors through G/N .

Exercise: Prove it.

Proposition 11.6. Let G be a profinite group, and let M be a G-module. TFAE:
(i) The action G×M →M is continuous for the discrete topology on M .
(ii) For every x ∈M , there is an open subgroup U of G with x ∈MU .

Proof. The action is continuous for the discrete topology on M iff for all x, y ∈M ,
S(x, y) = {g ∈ G | gx = y} is an open subset of G. For any x ∈ M , S(x, x) is
the stabilizer of x in G, so (i) =⇒ (ii). Conversely, assuming (ii) then the result
holds for whenever x = y. Now suppose x ̸= y. If there is no g ∈ G with gx = y,
then S(x, y) = ∅, which is indeed an open subset. On the other hand, if there is
g ∈ S(x, y), then S(x, y) = gS(x, x) is an open subset. �

Proposition 11.7. Let G be a profinite group acting continuously on a discrete
abelian group M . For all n ≥ 0, we have Hn

top(G,M) = lim−→Hn(G/N,MN ), where
the limit is taken over the directed system of open normal subgroups of G and for
N2 ⊃ N1, H

n(G/N2,M
N2)→ Hn(G/N1,M

N1) is inflation.

Proof. One checks that the canonical map lim−→C∗(G/Ni,M
Ni)→ C∗

top(G,M) is an
isomorphism, and the result follows upon passage to cohomology. �

Exercise: More generally, suppose we are given an inverse system {Gi}i∈I of profi-
nite groups and a direct system {Mi}i∈I of discrete Gi-modules satisfying the nat-
ural compatibility condition: if i ≤ j, then viewing Ai is a Gj-module via Gj → Gi,
then Ai → Aj is a Gj-module map. Show that there is a natural isomorphism

Hq
top(lim←−Gi, lim−→Ai) ∼= lim−→Hq

top(Gi, Ai).

11.4. The Krull Topology on Aut(K/F ).

Recall that a field extension K/F is Galois if it is algebraic, normal and sepa-
rable. However, it is entirely possible for a Galois extension to be infinite.

Example: Let {Ki/F}i∈I be any family of finite Galois extensions inside a fixed
algebraic closure F of F . If I is infinite, then the field extension K generated by
all the Ki’s is an infinite Galois extension.

If in the previous example we take the family of all finite Galois subextensions of
F/F , then we get F sep, the maximal separable algebraic subextension of F . This
is a Galois extension, and its automorphim group GF = Aut(F sep/F ) is called the
absolute Galois group of F.

Exercise: Let K/F be a Galois extension.
a) Show that K is the direct limit of its finite Galois subextensions.
b) Show that Aut(K/F ) is the inverse limit of the automorphism groups of its finite
Galois subextensions.
c) Deduce that Aut(K/F ) is a profinite group.
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Recall that the main content of finite Galois theory is this: if K/F is a finite
Galois extension, then

L 7→ Aut(K/L)

and

H 7→ KH

are mutually inverse inclusion-reversing bijections from the lattice of subextensions
of K/F to the lattice of subgroups of G = Aut(K/F ). However, if K/F is infinite
Galois with G = Aut(K/F ), this result requires modification: there are (always)
more subgroups of G than subextensions of K/F . For a simple example, let F = Fp
a finite field, and let K = Fp = limFpn be its algebraic closure. The Frobenius map
f : x 7→ xp is an element of Aut(K/F ), of infinite order. Let Z = ⟨f⟩ ⊂ Aut(K/F ).
Then KZ = F . Thus Aut(K/F ) is infinite; but a profinite group cannot be count-
ably infinite, so Aut(K/F ) must be uncountable. (In fact it is clearly isomorphic to

lim←−Aut(Fpn/Fp) = lim←−Z/nZ = Ẑ.) Thus the countable subgroup Z of Aut(K/F )

and the full uncountably infinite group Aut(K/F ) have the same fixed field, and
hence so does any group lying in between them...of which there must be uncount-
ably infinitely many!

To recover the Galois correspondence we must take note of the profinite struc-
ture on Aut(K/F ). This is a profinite group, hence carries a canonical compact,
totally disconnected topology, called the Krull Topology. Then:

Theorem 11.8. (Krull) Let K/F be a Galois extension. The maps

L 7→ Aut(K/L)

and

H 7→ KH

give inclusion-reversing bijections from the lattice of subextensions of K/F to the
lattice of Krull-closed subgroups of Aut(K/F ).

Proof. See [FT]. �

11.5. Galois Cohomology.

Let K a field. Changing our notation slightly from above, let us denote by K
a separable algebraic closure of K, i.e., a maximal algebraic, normal, separable ex-
tension of K. Let G = Aut(K/K) be the absolute Galois group of K.

There are many natural examples of G-modules, including K, K
×

and µ(K), the
group of roots of unity in K. In fact these are all instances of a more general
construction: let A/K be a commutative algebraic group. This is an algebraic
variety defined over K endowed with morphisms · : A × A → A and − : A → A
making A(R) into a commutative group for any commutative K-algebra R. Then
G naturally acts on A(K).
Here is the concrete perspective: embed A ↪→ Pn into projective space over K.
(There are algebraic varieties which cannot be so embedded – i.e., are not quasi-
projective – but by a rather deep theorem, every group variety is quasi-projective.)
Then G simply acts on projective coordinates, um, coordinatewise:

σ · [x0 : . . . : xn] = [σ(x0) : . . . : σ(xn)]
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and the action preserves A(K) .
Here is the abtract perspective: an K-valued point on any K-scheme X is simply
an embedding P : SpecK → X compatible with the K-scheme structure (ex-
plain this!). Then σ ∈ AutG gives a map σ∗ : SpecK → SpecK, and we define
σ(P ) = σ∗ ◦ P .

Anyway, now you are probably expecting us to define the Galois cohomology as
the group cohomology of G and the G-module A(K). This is the wrong definition!
It ignores the (Krull) topology on G.

Exercise: Show that if A(K) is given the discrete topology, the action of G on
A(K) is continuous. (Hint: use Proposition X.X.)

Thus the correct definition is via topological group cohomology:

Hn(K,A) = Hn
top(G,A(K)),

or, equivalently, by Proposition X.X above,

Hn(K,A) = lim
L/K

Hn(Aut(L/K), A(L)).

The Galois cohomology group H1(K,A) is called the Weil-Châtelet group of A.
(To be honest, others call it this only when A is an abelian variety. But why not
extend the terminology to the general case?)

Proposition 11.9. (Absolute Hilbert 90) For any field K we have

Hi(K,Ga) = 0∀i ≥ 1

and

H1(K,Gm) = 0.

Exercise: Prove it.

Corollary 11.10. (Cohomological Kummer Theory) Let n ∈ Z+, and let K be a
field of characteristic not dividing n (e.g. characteristic zero!). Let µn be the Galois
module of nth roots of unity in K. Then:
a) We have H1(K,µn) = K×/K×n.
b) Suppose that #µn(K) = n. Then

Hom(GK ,Z/nZ) = K×/K×n.

This gives a classification of cyclic Galois extensions of K of exponent dividing n.

Proof. a) Take Galois Cohomology of the short exact sequence of Galois modules

1→ µn(K)→ K
× n→ K

× → 1

and apply Absolute Hilbert 90.
b) When all the nth roots of unity of K lie in K, the Galois module structure on
µn(K) is trivial, so µn(K) is just the abelian group Z/nZ and thus

K×/K×n = H1(K,µn) = Hom(GK ,Z/nZ).

�
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Exercise: A Galois extension L/K is said to be abelian of exponent dividng n
if Aut(L/K) is an n-torsion abelian group. Suppose that K contains n nth roots
of unity.
a) Show that the compositum of all finite abelian extensions of exponent dividing
n is a (usually infinite) abelian extension of exponent dividing n: call it L/K.
b) Show that L is obtained by adjoining to K the nth root of every element of K×.
c) Show that Aut(L/K) ∼= K×/K×n.

12. Applications to Topology

12.1. Some Reminders.

Recall that to any topological space X we have attached a sequence {πn(X)}n≥0

of homotopy groups. Actually there are a couple of minor inaccuracies in the
above description. Let’s be a bit more careful:

n = 0: For any space X, π0(X) is the set of homotopy classes of maps from the
one-point space into X. In other words, π0(X) is the collection of path components
of X. In particular, π0(X) consists of a single point iff X is path connected. Let us
agree to write this condition as π0(X) = 0 in order to create notational consistency.
Note that π0(X) is just a set: it does not have the structure of a group. For many
natural applications the assumption π0(X) = 0 is a natural one. In particular, any
CW-complex X is locally contractible – so the path components are precisely the
connected components – and is the direct sum of its connected components.

n ≥ 1: For any space X and any point x ∈ X, the homotopy group πn(X,x)
is the set of continuous maps f : In = [0, 1]n → X with the proprety that f maps
every boundary point to x, modulo the equivalence relation ∼: f ∼ g if there is a
continuous map H : In+1 → X such that for all x ∈ In and all t ∈ [0, 1]:
• H(x, 0) = f(x), H(x, 1) = g(x), and
• if x ∈ ∂In, then H(x, y) = x.

Note that a continuous map f : In → X which maps ∂In to a fixed point x is
equivalent to a continuous map Sn → X which maps a fixed point – say the north
pole p = (0, . . . , 0, 1) – to x. Thus πn(X,x) is also the set of homotopy classes
of maps (Sn, p) → (X,x). The previous descrption though is valuable because it
allowsu us to define a group law on πn(X,x): we linearly smush f and g to maps
on (respectively) the half boxes In−1× [0, 12 ] and I

n−1× [ 12 , 1] and then define f · g
as the resulting map on In, which is well-defined and continuous because both f
and g map every point on the common border In−1 × 1

2 to x.

It is not hard to see that this product makes πn(X,x) into a group. The dependence
on the base point x is not serious and can often be suppressed. More precisely, if
x and x′ lie in the same path component, then πn(X,x) ∼= πn(X,x

′). To get an
isomorphism one chooses a path from xtox′, and the isomorphism depends only on
the homotopy class of this path. It follows that the isomorphism is canonical up to
an outer automorphism – i.e., a conjugation – of πn(X,x

′). As we shall shortly see,
when n ≥ 2 this means the isomorphisms are fully canonical. In the n = 1 case the
philosophy that one should try to phrase results about the fundamental group in a
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conjugacy-invariant way is a useful one, which comes up e.g. in covering space the-
ory. The most fully satisfactory solution to this non-canonicity issue is to replace
the fundamental group with a larger structure, the fundamental groupoid of X:
this is well beyond the scope of our intentions (or needs).

For n ≥ 2, the group is commutative – this is actually an easy exercise involving
continuously deforming half-boxes. Thus it is completely safe to write πn(X) for
n ≥ 2. The group π1(X,x), the so-called fundamental group of X, need not be
commutative. For instance, it follows from the Seifert-van Kampen theorem that
the fundamental group of a wedge of S circles is the free group F (S) on the set S.

Theorem 12.1. (Cellular Approximation) If X and Y are CW-complexes, then
any continuous map f : X → Y is homotopic to a cellular map g : X → Y .
Moreover, if there is a subcomplex Z ⊂ X on which f is already cellular, then the
homotopy H can be chosen such that H(z, t) = f(z) for all z ∈ Z and t ∈ [0, 1].

From this result one can deduce the following (though we do not give the details,
which make use of the homotopy groups of a pair) important one.

Theorem 12.2. Let X be a connected CW-complex. Let k, n ∈ N, and let ιn :
Xn → X be the natural inclusion map from the n-skeleton into X. Consider the
induced map

πk(ιn) : πk(Xn)→ πk(X).

a) If k < n, then πk is an isomorpism.
b) If k = n, then πk is surjective.

Theorem 12.3. Let X be a connected CW-complex with universal covering space
p : X̃ → X. Then for all k ≥ 2, πk(p) : πk(X̃)→ πk(X) is an isomorphism.

Proof. See e.g. [H, Prop. 4.1]. �
Theorem 12.4. (Hurewicz) Let X be a path-connected topological space.
a) For all positive integers k, there is a natural Hurewicz map

hk : πk(X)→ Hk(X).

b) Suppose that X is (n− 1)-connected, i.e., πk(X) = 0∀k ≤ n− 1. Then:
• h1 is the abelianization map.
• h1 is an isomorphism, if 2 ≤ k ≤ n.
• h1 is surjective, if 2 ≤ k = n+ 1.

Proof. See e.g. [H, Thm. 4.32]. �
Theorem 12.5. (Whitehead) Let (X,x) and (Y, y) be connected, pointed CW-
complexes. For a continuous map f : (X,x)→ (Y, y), the following are equivalent:
(i) f : X ∼ Y is a homotopy equivalence.

(ii) f is a weak equivalence: for all n ≥ 0, πn(f) : πn(X)
∼→ πn(Y ).

Proof. See e.g. [H, Thm. 4.5]. �
Tournant Dangereux: Whitehead’s Theorem does not say that if two CW-
complexes have isomorphic homotopy groups then they are homotopy equivalent!
In fact this is very false.

Exercise: Let X = S2 × RP3 and Y = RP2 × S3.
a) Show that πk(X) ∼= πk(Y ) for all k.
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b) Show that X and Y do not have identical homology groups. (In fact, because
X is a closed orientable manifold and Y is a closed nonorientable manifold, this
follows from Poincaré Duality.)
c) Deduce that X and Y are not homotopy equivalent.

In fact it is possible for complexes to have isomorphic homotopy, homology and
cohomology groups but not be homotopy equivalent. The canonical example uses
Lens spaces, which we will define in a special case later on. Of course the proof
that such spaces cannot be homotopy equivalent must lie deeper, as we must find
some other invariant to distinguish between them! (It is also possible for two lens
spaces to be homotopy equivalent but not homeomorphic, and this lies deeper still.)

Corollary 12.6. For a connected CW-complex X, the following are equivalent:
(i) X is contractible, i.e., homotopy equivalent to I0.
(ii) πn(X) = 0 for all n ≥ 0.
(iii) X is acyclic: Hn(X,Z) = 0 for all n ≥ 1.
(iv) For all abelian groups M , Hn(X,M) = 0 for all n ≥ 1.

Proof. It is clear that (i) implies all the other conditions are (iv) =⇒ (iii). The
Hurewicz Theorem gives (ii) ⇐⇒ (iii), and the Whitehead Theorem gives (ii)
=⇒ (i): note that any map between two spaces with all homotopy groups nonzero
is a weak equivalence! �
12.2. Introducing Eilenberg-MacLane Spaces.

Theorem 12.7. For any group G, there is a connected CW-complex X such that:
(EM1) π1(X) ∼= G.
(EM2) For all k ≥ 2, π1(X) = 0.

Proof. Write G = F (S)/R as the quotient of a free group F (S) by a normal sub-
group R of relations. We take X1 to be the wedge of S circles, so π1(X1) ∼= F (S).
We build X2 by adding one 2-cell for each word x ∈ R we add a 2-cell whose attach-
ing map on the boundary is given by the word x. This gives π2(X2) ∼= F (S)/R ∼= G.
By Theorem X.X, any CW-complex with this 2-skeleton has fundamental group
isomorphic to G; the only remaining issue is that by adding 2-cells we may have
introduced a nontrivial π2. If so, for each element of π2 we attach a 3-cell so as to
kill that element, getting X3 with π1(X3) ∼= G and π2(X3) ∼= 0. Now we may have
introduced nontrivial π3: if so we remedy it by adding 4-cells to kill those elements.
And so on: in the end we get a – possibly infinite-dimensional – CW-complex X
satisfying (EM1) and (EM2). �
A CW-complex X satisfying (EM1) and (EM2) is called an Eilenberg-MacLane
space, or K(G, 1)-space, for the group G.

Theorem 12.8. Any two Eilbenberg-MacLane spaces for a given group G are ho-
motopy equivalent.

Proof. Step 1: We need the following technical result, to which we refer the reader
to [H, Lemma 4.31] for the proof: fix n ∈ Z+. Let X be a CW-complex obtained
from a wedge of copies of Sn by attaching (n + 1)-cells {eβ}. Then if Y is a
path-connected space, every homomorphism ψ : πn(X)→ πn(Y ) is πk(f) for some
continuous map f : X → Y .
Step 2: Let G be a group. Let (X,x) be the K(G, 1)-space we constructed as in the
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proof of Theorem X.X above (endowed with some base point: n’importe quelle).
Let (Y, y) be a connected pointed CW-complex with πk(Y ) = 0 for all k ≥ 3. We
claim every group homomorphism ψ : π1(X) → π1(Y ) is of the form π1(f) for
some continuous map f : X → Y .
proof of claim Consider first X2, the 2-skeleton of X. Then the hypotheses of
Step 1 apply with n = 1: there is a continuous map f : X2 → Y . It remains to
extend f over each k-cell for k ≥ 3, but since πk(Y ) = 0 this is trivial.
Step 3: Now suppose that (X,x) and (Y, y) are both K(G, 1)-complexes. In par-
ticular they have isomorphic fundamental groups: choose an isomorphism ψ :
π1(X,x) → π1(Y, y). By Step 2, ψ is realized by a continuous map f : X → Y .
Because all the other homotopy groups are trivial, f must be a weak equivalence
and thus, by Whitehead’s Theorem, a homotopy equivalence. �

Exercise: a) Show that for groups G1 and G2, we have

K(G1, 1)×K(G2, 1) = K(G1 ×G2, 1).

(Here the “equality” really means homotopy equivalence.)
b) Show that the natural generalization of part a) holds for arbitrary (infinite)
products.

Actually our proof of Theorem 12.8 was fairly anemic. By more careful arguments
one can establish the following better result. For spaces X and Y , write [X,Y ] for
the set of homotopy classes of continuous maps from X to Y .

Theorem 12.9. Let G be a group, (X,x) a connected CW-complex, and let Y be
an Eilenberg-MacLane space for G. Fix y ∈ Y . Let φ : π1(X) → π1(Y, y) be a
homomorphism. Then:
a) There is a continuous map Φ : (X,x)→ (Y, y) with π1(Φ) = φ.
b) If Ψ : (X,x)→ (Y, y) is another map with π1(Ψ) = φ, then there is a homotopy
H between Φ and Ψ with H(x, t) = y for all t ∈ [0, 1].
c) In other words, for any connected complex X, we have

[X,K(G, 1)] ∼= Hom(π1(X), G).

In categorical language, part c) says that the functor X 7→ Hom(π1(X), G) from the
homotopy category of connected, pointed CW-complexes to the category of sets is
represented by the Eilenberg-MacLane spaceK(G, 1). The uniqueness ofK(G, 1) in
the homotopy category now follows from general nonsense: the Yoneda Lemma.20

Higher Eilenberg-MacLane Spaces: you may have wondered about the “1” in
K(G, 1). For any commutative group G and n ≥ 2, a K(G,n)-space is a connected
CW-complex X with πn(X) ∼= G and all other homotopy groups trivial. The above
discussion applies equally well to these higher Eilenberg-MacLane spaces.

Exercise: Let G be a commutative group.
a) Modify our construction to construct a K(G,n)-complex starting in dimension
n with a wedge of n-spheres.

20One might have thought that this piece of general nonsense would come up in a first course
on homological algebra before now. Oh well.
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b) Show that K(G,n) is unique up to homotopy type.
c)* Show that for any connected complex X we have

[X,K(G,n)] ∼= Hom(πn(X), G).

d)* Show that for any connected complex X we have

[X,K(G,n)] ∼= Hn(X,G).

In other words, Eilenberg-MacLane spaces represent cohomology.

12.3. Recognizing Eilenberg-MacLane Spaces.

An action of a group G on a CW-complex X is cellular if for all g ∈ G, the
homeomorphism g· : X → X is a cellular map. In particular,a cellular action per-
mutes the n-cells for all n ≥ 0.

Exercise: Show that a free, cellular G-action on a CW-complex is properly dis-
continuous, and thus X → G\X is a Galois covering map.

Our construction of K(G, 1)-spaces is not really very explicit. The following crite-
rion is much more helpful in practice.

Theorem 12.10. Let G be a group which acts freely and cellularly on a CW -
complex Y . Put X = G\Y , so that q : Y → X is a covering map. TFAE:
(i) X is an Eilenberg-MacLane space for G.
(ii) Y is contractible.

Exercise: Prove it.

12.4. Examples of Eilenberg-MacLane Spaces.

Although we have in a sense constructed all possible Eilenberg-MacLane spaces,
given a particular group G of interest, our construction of K(G, 1) is not especially
informative. For instance, a priori the construction yields an infinite-dimensional
complex, but in many cases one can find a finite-dimensional Eilenberg-MacLane
space for G.

Theorem XX is very useful for identifying and constructing Eilenberg-MacLane
spaces: a connected space X as an Eilenberg-MacLane space for its fundamen-
tal group iff its universal cover is contractible. Conversely, given G, to construct
K(G, 1) it is sufficient to find a free, cellular G-action on a contractible space.

Example: The circle S1 has universal cover R and fundamental group Z, so S1 =
K(Z, 1).

Example: For d ≥ 0, the torus T = (S1)d has universal cover Rd and fundamental
group Zd, so T = K(Zd, 1). Of course this follows from the previous example and
Exercise X.X, but it is a basic example worth contemplating.

Example/Exercise: Let A be any free abelian group. Let Y = A ⊗Z R and give
it the topology which is the direct limit of the usual Euclidean topologies on its
finite-dimensional subspaces.
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a) Show that Y is contractible.
b) We have naturally A ↪→ Y by x 7→ x ⊗ 1. (This map is injective because A is
torsionfree.) Thus A acts on Y by translation. Show that this action is freely and
properly discontinuous.
c) Deduce that X = Y/A is an Eilenberg-MacLane space for A.

Remark: This construction was given to me by Tyler Lawson in an answer to
my request for a topological proof that subgroups of free abelian groups are free
abelian: see http://mathoverflow.net/questions/4578.

Example: Let X be a connected graph, i.e., a connected one-dimensional CW-
complex. Then X̃ is a tree, hence contractible, so X is an Eilenberg-MacLane
space for its fundamental group. Further, X is homotopy equivalent to a wedge of
circles, so its fundamental group is a free group. Precisely, H1(X,Z) = π(X)ab is
a free abelian group; let S be a basis. Then π1(X) ∼= F (S). In particular, if S = 1
we get that the

Example/Exercise: For n ≥ 1, we have real projective space RPn, given for in-
stance as the quotient of Sn under the antipodal map x 7→ −x.
a) Show that RP1 ∼= S1.
b) Show that for n ≥ 2, π1(RPn) = Z/2Z.
c) Show that RPn admits a CW-complex structure in which (RPn)n−1 = RPn−1

and (RPn)n consists of a single cell Dn, in which the attaching map Sn−1 → RPn−1

is a twofold covering map. Deduce new proofs of parts a) and b).
d) By definition, RP∞ is the CW-complex with n-skeleton RPn for all n. Show that
RP∞ is an Eilenberg-MacLane space for Z/2Z.

Exercise: Is CP∞ an Eilenberg-MacLane space?

Exercise: For any a ≥ 1, show that there is an Eilenberg-MacLane La space for
Ca = ⟨σ | σn = 1⟩ which has exactly one n-cell for each n. Hint: the group
Ca acts freely on the unit sphere S2n−1 in Cn, e.g. one can map the generator
σ to (z1, . . . , zn) 7→ (e2πiaz1, . . . , e

2πiazn). Show that the quotient S2n−1/Ca ad-
mits a CW-complex La,n with a single k-cell for all k ≤ 2n − 1. Then show that
(La,n−1)k = (La,n)k for all k ≤ 2n− 1.

Example: We study topological surfaces, which we always assume to be connected
and paracompact.

It is a basic – and rather deep fact – that there are precisely two simply con-
nected (paracompact!) topological surfaces, namely S2 and R2. Thus these are the
two possible universal covers of any surface. Further, the only two surfaces with
universal cover S2 are S2 and RP2. (Note that since χ(S2) = 2, any covering map
S2 → X is at most a 2-fold covering. This comes close to giving the latter result.)
It follows that any surface other than S2 or RP2 is an Eilenberg-MacLane man-
ifold. In particular this shows that there is a 2-dimensional Eilenberg-MacLane
space for the group

Π(g) = ⟨a1, . . . , ag, b1, bg | [a1, b1] · · · [ag, bg] = 1⟩
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for all g ≥ 0.

Example: The following construction yields many, many interesting examples. Let
G be a connected real Lie group. Then G admits a maximal compact connected
subgroup O, any two such are conjugate, and G/O ∼= Rd is homeomorphic to a
Euclidean space, hence contractible. Now let Γ ⊂ G be a lattice: i.e., a subgroup
which is discrete and of finite covolume with respect to the Haar measure on G.
Then Γ ∩ O is discrete and compact, hence finite. It follows that there is a finite
index normal subgroup N of Γ such that the quotient Γ = Γ/N acts freely on
Y = G/O. It can be shown that the action is also properly discontinuous and
thus Y → Γ\Y is a covering map with contractible universal cover: Γ\G/O is an
Eilenberg-MacLane space for Γ.

This construction is already interesting when G is nilpotent, in which case O is
trivial. If we do this with G = Rn we get Bieberbach Groups, each of which
has a finite index normal subgroup isomorphic to Zn. We can also do it with the
Heisenberg group H3(R) and realize H3(R)/H3(Z) as an Eilenberg-MacLane space
for H3(Z).

12.5. Eilenberg-MacLane spaces and Group Co/homology.

Let Y be a (nonempty!) CW-complex. Let C•(Y ) be the associated cellular com-
plex, such that Cn(Y ) = Z[Yn] is the free abelian group on Yn and the differentials
are defined using the attaching maps. Then there is a map d0 : C0(Y ) → Z ob-
tained by sending every 0-cell to 1.

For the following exercise we will only need part b) in our application, so if you
don’t know about reduced homology groups then you can skip part a) and prove
part b) directly.

Exercise: a) Show that the homology of the complex C•(Y )
d0→ Z → 0 computes

the reduced homology groups of X.
b) In particular, if Y is connected then ker d0 = Im d1.

Theorem 12.11. Let G be a group. Then for all n ≥ 0, we have

Hn(K(G, 1),Z) ∼= Hn(G,Z),

Hn(K(G, 1),Z) ∼= Hn(G,Z).

Proof. Step 1: Let X = K(G, 1) and let Y → X be the universal covering map. For
all n ≥ 0, Yn is a free G-set, hence the associated G-module Fn = Z[Yn] is a free
Z[G]-module. To give a basis for Fn we may take one element from each G-orbit in
Yn. But because Y is the universal cover of K(G, 1), the G-orbits on Yn correspond
to the elements of Xn. Thus

(20) Fn ∼=Z[G]

⊕
C∈Xn

Z[G]C.

Step 2: As for any CW-complex, we have a boundary map dn : Fn → Fn−1 and thus
a complex F•, whose homology computes the topological homology of Y . Because

Y is contractible, by Exercise X.X the augmented complex F•
d0→ Z→ 0 is acyclic.
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Thus it gives a free resolution of Z over Z[G]!
Step 3: It follows that for all n ≥ 0,

Hn(G,Z) = Hn(F• ⊗Z[G] Z).

Since Fn ∼=
⊕

C∈Xn
Z[G]C, Fn ⊗Z[G] Z ∼=

⊕
C∈Xn

Z. It follows that F• ⊗Z[G]

Z ∼= C•(X) is precisely the singular complex of X, so its homology is the integral
homology of X! This proves part a).
Step 4: Part b) is proved similarly using HomZ[G](·,Z) in place of · ⊗Z[G] Z. �

Exercise: Let M be an abelian group, viewed as a trivial G-module. Show that

H∗(K(G, 1),M) ∼= H∗(G,M),

H∗(K(G, 1),M) ∼= H∗(G,M).

Remark: It is natural to want to push things even farther. If M is a nontrivial
G-module, can H∗(G,M) and H∗(G,M) be interpreted topologically? The answer
is yes: they can be so interpreted in terms of more general objects on K(G, 1) called
local systems. However, exactly what these things are is a bit technical. A nice
modern take on this is thatH∗(G,M) = H∗(K(G, 1),M) whereM is an associated
locally constant sheaf and the cohomology is sheaf cohomology. Unfortunately,
as usual, except for annoying isolated remarks, sheaves and their cohomology are
beyond the scope of this course.
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