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Abstract: We exploit the analogy between the well ordering principle for nonempty
subsets of N (the set of natural numbers) and the existence of a greatest lower
bound for non-empty subsets of [a, b) 1 to formulate a principle of induction
over the continuum for [a, b) analogous to induction over N. While the gist of
the idea for this principle has been alluded to, our formulation seems novel. To
demonstrate the efficiency of the approach, we use the new induction form to
give a proof of the compactness of [a, b]. (Compactness, which plays a key role
in topology, will be briefly discussed.) Although the proof is not fundamentally
different from many familiar ones, it is direct and transparent. We also give
other applications of the new principle.

1 INTRODUCTION

When teaching a first course in analysis recently, I formulated a proof
of the Heine-Borel Theorem. Upon a search of archives, I learned that
W. L. Duren Jr. [4] had a close and similar idea, except that his analogy
(and formulation) is to Zorn’s Lemma as applied to a chain of intervals to
get a maximal element, while the present analogy (and formulation) is to
ordinary induction (and so perhaps more easily accessible). When several
other theorems of analysis readily found proofs through this “inductive
approach”, I thought to share the idea.

1 For real numbers a and b, [a, b) is the set of real numbers between a and b, including a
and excluding b; [a, b] is the set of real numbers between a and b, including a and b.
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While ordinary induction on N and transfinite induction on ordinals both
hinge upon the underlying well ordering structures present, and while Zorn’s
Lemma, the Axiom of Choice, or the well ordering principle for every set
can play interrelated roles with those induction forms, we confine the focus
of this paper to ordinary induction and induction on the continuum.

In Section 2, we state and show equivalence between some principles
involving induction over the set of natural numbers. The proofs are presented
to help carry the analogy for the similar principles involving induction over
the continuum presented in Section 3. After briefly discussing compactness
in Section 4, we prove the Heine-Borel theorem in Section 5, and give further
applications of the new principle in Section 6. Some brief historical remarks
and miscellanea are presented in Sections 7 and 8.

2 ORDINARY INDUCTION

When we wish to establish the truth of an assertion ∀n P(n), where n
ranges over N = {0, 1, 2, · · · }, and P(n) is a predicate about n, we may
define S = {n ∈ N : P(n)} and seek to demonstrate that S = N by exploiting
the principle of:

Induction Over N (ION). For any S ⊆ N, if

(1) 0 ∈ S, and
(2) ∀k[ k ∈ S ⇒ k + 1 ∈ S ],

then S = N.

In using ION, we find efficiency and satisfaction on a few counts. For
example, demonstrating (1) is often a simple verification, and establishing
(2) is a boot-strapping process propelled by the assumption of k ∈ S in
pursuit of concluding k + 1 ∈ S. Furthermore, when the predicate P(n) is
free of quantifiers, we seem to avoid the ‘magic’ of a proof by contradiction
which often masks and mystifies some mathematically meaningful underly-
ing processes.

The dual principle for N, ordered under “≤”, sometimes used to explain
the truth of ION, as well as used for an indirect proof of ∀n P(n), is the
following:

Well Ordering Principle (WOP). If T ⊆ N and T �= ∅, then T has a
least element.

Because we wish to find conceptual parallels, we restate ION for S ⊆ N
in the following equivalent form (known as strong induction):



Induction over the Continuum 147

ION. If
(1) ∃k[ (k ≥ 0) ∧ ([0, k) ⊆ S) ], and
(2) ∀k[ [0, k) ⊆ S ⇒ (∃l > k)[0, l) ⊆ S ],
then S = N.

Here we have [0, k) = def{j ∈ N : 0 = j ∨ j < k}. (So [0, 0) = {0}.)
At this stage, we make the following familiar observation.

Theorem 2.1 WOP iff ION.

Proof. (⇒) Assume WOP. Further suppose that S, a subset of N, satisfies
the properties (1) and (2) of ION. Presume S �= N. Then S′ = N − S, the
complement of S, is a nonempty subset of N. Applying WOP to S′, let z be
the least element of S′; note 0 < z by (1) of ION. Clearly, [0, z) ∩ S′ = ∅. So
[0, z) ⊆ S, and by (2) of ION, there is y > z such that [0, y) ⊆ S. Thus z is
not the least element of S′; a contradiction. Hence our presumption is false
and S = N.

(⇐) Assume ION. Further let T ⊆ N and presume T does not have a
least element. We will show T = ∅. Consider T ′ = N − T . Clearly 0 ∈ T ′
because otherwise 0 would be in T and its least element, contradicting the
hypothesis. Thus T ′ satisfies condition (1) of ION. Next, for arbitrary k,
assume [0, k) ⊆ T ′. But then k cannot belong to T as otherwise it would
be T ’s least element. So k ∈ T ′. So, for some l > k, [0, l) ⊆ T ′. (Here l is
possibly just k + 1.) So T ′ satisfies condition (2) of ION. Thus, ION applies
to T ′ and T ′ = N. Thus T = ∅. �

The proofs above are trivial but they are included to help carry the
intended analogy that will follow next.

3 INDUCTION OVER THE CONTINUUM

We also recall a familiar property for nonempty, bounded subsets of R
(the set of real numbers) under the ordering “≤”, for any reals a, b ∈ R
with a < b:

The Greatest Lower Bound Principle (GLBP). If T ⊆ [a, b) and
T �= ∅, then T has a greatest lower bound (in [a, b)).

Consider the interval [a, b) with a, b ∈ R, a < b, and S ⊆ [a, b). We
formulate an “induction scheme” over [a, b) as follows.

Induction Over the Continuum (IOC). If
(1) ∃x(x ≥ a) ∧ ([a, x) ⊆ S), and
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(2) ∀x[ [a, x) ⊆ S ⇒ (∃y > x)[a, y) ⊆ S ],
then S = [a, b).

Here, we have [a, x) = def{t ∈ [a, b) : a = t ∨ t < x}. So [a, a) = {a}.
Similarly to the case for ION, we establish the next two results.

Theorem 3.1 If GLBP, then IOC.

Proof. Assume GLBP. Further suppose that S, a subset of [a, b), satisfies
the properties (1) and (2) of IOC. Presume S � [a, b). Then S′ = [a, b) − S
is a bounded, non-empty subset of [a, b). Applying GLBP, let z be the
greatest lower bound of S′; note a < z < b by (1) of IOC. Clearly,
[a, z) ∩ S′ = ∅. So [a, z) ⊆ S, and by (2) of IOC, there is y > z such that
[a, y) ⊆ S. Thus z is not the greatest lower bound of S′; a contradiction.
Hence our presumption is false and S = [a, b).2 �

Theorem 3.2 If IOC, then GLBP.

Proof. Assume IOC. Further let T ⊆ [a, b) and presume T does not have
a greatest lower bound. We will show T = ∅. Consider T ′ = [a, b) − T .
Clearly a ∈ T ′ because otherwise a would be in T and its greatest lower
bound, contradicting the hypothesis. Thus T ′ satisfies condition (1) of IOC.
Next, for arbitrary x , assume [a, x) ⊆ T ′. But then x is a lower bound for
T and is not, by hypothesis, its the greatest lower bound. So there exists y
with y > x such that y is a lower bound for T . Consequently, [a, y) ⊆ T ′. So
T ′ satisfies condition (2) of IOC. Thus, IOC applies to T ′ and T ′ = [a, b).
Thus T = ∅. �

Theorems 3.1 & 3.2 combined and compared to Theorem 2.1 demonstrate
the analogy: WOP is to ION as GLBP is to IOC. As GLBP is logically
equivalent to the completeness of [a, b], IOC could be assumed as an axiom
in place of the completeness axiom.

2 As ION often is metaphorically described through “domino theory”, it seems that the
motion of a “curling stone” can serve as a metaphorical description for IOC. Indeed it
was surprising to excogitate the following quatrain, which seems to capture the idea of
IOC closely:

The Curling Stone slides; and, having slid,
Passes me toward thee on this Icy Grid,
If what’s reached is passed for’ll Crystals amid,
Th’Stone Reaches thee in its Eternal Skid.

By Harak A’Myomy (12th century), translated by Walt Friz De Gradde (1897).
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4 COMPACTNESS

The theorem of our central interest in this paper, which is about the
compactness of [a, b], helped streamline the development of analysis and
topology. It could be said that compact is to pursuits in topology as finite
is to pursuits in set theory. In the theory of sets, finite sets behave more
tamely than infinite sets; in topology, compact sets behave more tamely than
noncompact sets. For that reason, the concept was pursued mathematically
in several different planes (including mathematical logic) simultaneously or
independently during the last two centuries.

Definition 4.1 A subset of R, K , is compact if whenever a (possibly infinite)
family O of open subsets of R covers K (that is the union of members of O
contains K ), there is a finite subfamily of O that covers K .

To motivate this concept as well as the focus of this paper, the Heine-Borel
Theorem (in the next section), we recall the following result:

A function which is continuous 3 on [a, b] is uniformly continuous 4 there.
Clearly, continuity of a function at x ∈ [a, b], is an ε, δ process where δ

depends both on x and ε. However, uniform continuity guarantees a δ which
depends on ε but applies to any point x in [a, b].

While the proof of the above result using IOC is directly possible, we
delay that until the subsequent section. In the following section, we prove the
Heine-Borel Theorem, which is traditionally used to derive the above result
and many other fundamental theorems of analysis.

5 THE HEINE-BOREL THEOREM

The fact that [a, b] is a compact subset of R is established in what
appears to be three distinct ways: through “there is a finite subcover for every
infinite open cover”; through “an indirect proof to get a nested sequence of
intervals leading to an application of Cantor’s Nested Interval Theorem”; or
through “every bounded sequence has a convergent subsequence”. In the first
mentioned (and the more frequently presented) type of proof, there seems to
be a few “twists” necessitated by the indirect approach (see, for example,

3 f : R → R iscontinuous on L ⊆ R if

(∀x ∈ L)(∀ε > 0)(∃δ(x,ε) > 0)(∀y ∈ L)[ |x − y| < δ(x,ε) ⇒ | f (x) − f (y)| < ε ].
4 f : R → R is uniformly continuous on L ⊆ R if

(∀ε > 0)(∃δε > 0)(∀x ∈ L)(∀y ∈ L)[ |x − y| < δε ⇒ | f (x) − f (y)| < ε ].
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Royden’s Real Analysis, [11]); although the proof below is quite similar,
twists are absent.

Theorem 5.1 (Heine-Borel) For any a, b ∈ R with a < b, the interval [a, b]
is compact.

Proof. Let O be an open cover for [a, b]. Set

S = {t : t ∈ [a, b) and [a, t] is contained in a finite cover from O}.
Firstly, there exists x ≥ a such that [a, x) ⊆ S, as a ∈ Va ∈ O for some open
Va . Secondly, assume [a, x) ⊆ S. Since, x ∈ Vx for some open Vx ∈ O, there
exist y > x and x ′ < x with x ∈ (x ′, y) ⊆ Vx ∩ [a, b]. As x ′ ∈ S, the finite
cover for [a, x ′] together with Vx confirm that [a, y) ⊆ S.

Thus the two statements in IOC’s hypothesis are satisfied and accordingly
we have S = [a, b). Finally, as b ∈ Vb ∈ O for some open Vb, there exists a
b′ < b with b′ ∈ Vb ∩ S; so [a, b] is contained in the finite cover comprised
from the finite cover for [a, b′] together with Vb. So [a, b] is compact. �

6 OTHER APPLICATIONS

In this section, we use IOC to prove a sample of familiar theorems of
elementary analysis.

Theorem 6.1 (Heine) If f , a function from [a, b] to R, is continuous, then it
is uniformly continuous.

Proof. Assume f is continuous on [a, b]. To show f is uniformly continuous
there, let ε > 0 be given. Also, let

S = {t : t ∈ [a, b) ∧ (∃δε > 0)(∀u, v ∈ [a, t])[ |u − v| < δε ⇒ | f (u)

− f (v)| < ε ]}.
We first use IOC to show S = [a, b). Since f is continuous at a, f (a) is
defined and we have, trivially,

(∃δε > 0)(∀u, v ∈ [a, a))[ |u − v| < δε ⇒ | f (u) − f (v)| < ε ].

So [a, a) = {a} ⊆ S and S satisfies condition (1) of IOC.
Next, for an arbitrary x ∈ [a, b), assume [a, x) ⊆ S. We wish to show, for

some y > x , we have [a, y) ⊆ S. Consider x and ε
2 . Since f is continuous

at x , there exists δ(x, ε2 ) > 0, such that, for any x ′, if |x − x ′| < δ(x, ε2 ),
then | f (x) − f (x ′)| < ε

2 . (Assume δ(x, ε2 ) is smaller than x − a and b − x .)
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Consider t = x − 1
2δ(x, ε2 ). Since t ∈ S, we have, there exists δε > 0 such that,

for any u, v ∈ [a, t], if |u − v| < δε, then | f (u) − f (v)| < ε.
Further let y = x + 1

2δ(x, ε2 ). We claim that [a, y) ⊆ S. We will actually
show [a, y] ⊆ S. To establish this fact, we note that since t ∈ S and a ≤ t ′ < t
imply t ′ ∈ S, we need only show y ∈ S. To see this claim, for the given ε > 0,
we offer δ∗

ε to be the minimum of δε and 1
2δ(x, ε2 ). Next, consider arbitrary

u, v ∈ [a, y] with |u − v| < δ∗
ε . If u, v are both in [a, t] ⊆ S, since δ∗

ε ≤ δε ,
by hypothesis we have:

| f (u) − f (v)| < ε.

If either u or v is in (t, y], then both u and v are closer than
δ∗
ε ≤ 1

2δ(x, ε2 ) < δ(x, ε2 ) to x , and so the continuity of f at x applies and (invoking
the triangle inequality) we have:

| f (u) − f (v)| =| f (u) − f (x) + f (x) − f (v)|< | f (u) − f (x)| + | f (x)

− f (v)|<ε.
This completes the proof of the claim, and so condition (2) of IOC is satisfied
also. Thus, by IOC, S = [a, b). Hence for any t with a ≤ t < b we have

(∃δε > 0)(∀u, v ∈ [a, t])[ |u − v|<δε ⇒ | f (u) − f (v)|<ε ].

A similar argument applied to continuity of f at b shows that the same is true
for t = b. Since this is true for any given ε > 0, f is uniformly continuous
over [a, b]. �

Theorem 6.2 (Cousin) Let C be a collection of closed subintervals of [a, b]
such that for every x ∈ [a, b] there is a corresponding ‘fineness’ rx > 0, such
that C contains every subintervals of [a, b] with length smaller than or equal
to rx and containing x. Then there exist x0 = a < x1 < x2 < · · · < xn = b
such that [xi , xi+1] belongs to C for every 0 ≤ i < n; that is, C contains a
partition of [a, b].

Proof. Let S = {t : t ∈ [a, b) and C contains a partition of [a, t]}. Since ra

exists, for every nonnegative t ′ < ra, [a, a + t ′], which is in C, is a partition
of itself, putting each a + t ′ in S. Thus [a, ra) ⊆ S. Next, assume [a, x) ⊆ S
for x ∈ [a, b). Working with rx , and applying the induction hypothesis to
[a, x − rx

2 ], find a partition of [a, x − rx
2 ] in C, add to that partition the interval

[x − rx
2 , x + ε], for any 0 < ε ≤ rx

2 , and end up with a partition for [a, x + ε]
in C. Thus [a, x + rx

2 ) ⊆ S.
It is now clear that S satisfies the hypothesis for IOC, and therefore

S ⊇ [a, b) ⊇ [a, b − rb]. Since (b − rb) ∈ S and [b − rb, b] ∈ C, we have the
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desired partition for [a, b]. �

Theorem 6.3 (A form of the Intermediate Value Theorem) Let f be a
continuous function over [a, b] with no roots, and f (a) > 0. Then f (x) > 0
for all x ∈ [a, b].

Proof. Let S = {t : t ∈ [a, b) and f is positive over [a, t]}, and apply
IOC.�

The reader can apply IOC to similar theorems to find similar proofs.

7 THE RELEVANT (TELEGRAPHIC) HISTORY

It was E. Heine [7] who first (1872) implicitly proved what is now called
the ‘Heine-Borel’ theorem while showing if f is continuous on [a, b], then
f is uniformly continuous there. Later (1895), Cousin [3] proved similar
findings and he too implicitly used the Heine-Borel result. It was Borel [1]
who made this result explicit in his covering theorem that any countably
infinite open cover for a bounded and closed interval of R can be replaced
with a finite subcover. Finally, Lebesgue [8] and Lindelöf [9] independently
showed Borel’s result is also true in case the original cover is uncountably
infinite.

O. Veblen [14] proved [a, b] is compact iff [a, b] is closed (he did not use
the term ‘compact’). Later, in [15] he defined a linear continuum, without
the use of a metric, and observed that the same method of [14] can apply to
linear continua to draw similar conclusions.

Weierstrass’s theorem, a continuous function over [a, b] attains its
maximum at some point of [a, b], is one of the important results of analysis
and related to compactness. The term compact was first used by Frèchet in
his thesis [6] in which, motivated to generalize Weierstrass’s theorem (above)
for abstract topological spaces, he described a certain phenomenon which is
closely related to the modern usage of the word “compact”.

Most classic textbooks that prove the Heine-Borel Theorem as
a ‘covering’ theorem use a proof similar to the one in Royden’s;
I have not seen an elementary textbook that has adopted Duren’s
method [4]. The advanced (and comprehensive) textbook, Real Analysis
by Bruckner-Bruckner-Thomson [2], starts with Cantor’s Nested Interval
Theorem & Cousin’s Theorem, and considers the concepts of “full” and
“additive” for a collection of closed intervals to pave the way for establishing
the basic results of elementary analysis.

It should be noted that Duren attributes the origin of his approach to
L.R. Ford [5] who examines proofs for “statements” that are “interval-
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additive”; that is, those properties that hold in the union of two overlapping
intervals whenever they hold in each of the two intervals. Shanahan [12, 13]
rediscovers the same “additive” approach.

Moss and Roberts [10] also isolate a theme common among elementary
analysis theorems akin to the approaches by Ford, Duren, Shanahan, or
through IOC. Namely, they establish results when they find a common theme
of a transitive relation on [a, b] which links the points from a to b through
neighborhoods whenever the relation is such that every x ∈ [a, b] has a
neighborhood whose every point to the left of x is related to its every point
to the right of x .

8 MISCELLANEA

It should be clear that IOC, seen as a form of increasing induction, can be
modified to yield a form of decreasing induction over (a, b] with equivalent
results. To formulate a similar form of IOC for [a, b], the second clause has
to be altered to permit x = b, and all mentioned intervals of the form [a, y)
for y > x would have to be intersected with [a, b] before being required to be
included in S. Furthermore the proof for the principle will have to carry the
burden of two cases: when x < b and when x = b. In that event, the proofs
for some of the applications will be shorter as the last ‘capping’ step will be
already in the principle and not needed as an additional step. However, the
analogy to ordinary induction would be lost.

Our heuristic observation above has been that in the context of linear
orderings on N and R: WOP is to ION as GLBP is to IOC. Perhaps
the reader can find other interesting analogies or other applications for the
formulation of IOC in this paper.

9 EPILOGUE

Finally, purely for efficiency and concision, we note that we could
define [0, k) = def{j : 0 ≤ j < k)} (so [0, 0) = ∅), and similarly define
[a, x) = def{t : a ≤ t < x)} (so [a, a) = ∅), and state ION and IOC in the
following condensed form: if S, a subset of the universe, has some ‘inductive
expansion’ property, then as ∅ ⊆ S, S is all of the universe. Formally:

ION. If ∀k[ [0, k) ⊆ S ⇒ (∃l > k)[0, l) ⊆ S ], then S = N.
IOC. If ∀x[ [a, x) ⊆ S ⇒ (∃y > x)[a, y) ⊆ S ], then S = [a, b).
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