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Abstract. In 1964, J. Ax gave a ten line proof of the Chevalley–Warning

Theorem. The novelty was an innocuous result about summing a polynomial

f ∈ Fq [t1, . . . , tN ] over all x ∈ FN
q . Recent work of Aichinger–Moosbauer

provides a context in which we can seek to generalize Ax’s Lemma to maps

f : A→ B between any two finite commutative groups, and indeed Aichinger–

Moosbauer proved such a result when the target group B has prime exponent.
In this paper we define a summation invariant σ(A,B) that fits naturally

into the Aichinger–Moosbauer caclulus. We give upper and lower bounds on

σ(A,B) and its exact value in many (but not all) cases. We also give Diophan-
tine applications, including a qualitative Ax–Katz Theorem for polynomials

over any finite rng. The bounds that we get turn out to be closely related to

Ax’s part of the Ax–Katz Theorem.

1. Introduction

1.1. Overview and Main Results. In this paper A and B will always denote
commutative groups, and except for occasional allusions and recalled general re-
sults, A will be assumed to be finite. We denote by BA the set of all functions
f : A→ B. Then BA is itself a commutative group under pointwise addition, and
indeed has a natural Z[A]-module structure (see §3).

To each f ∈ BA, following Aichinger and Moosbauer [AM21] we assign a func-
tional degree fdeg(f) ∈ N ∪ {±∞}. Here we use the convention of [CS22, Defini-
tion 2.3], in which fdeg(f) = −∞ if and only if f = 0.1

For d ∈ N ∪ {−∞}, let

Fd(A,B) := {f : A→ B | fdeg(f) ≤ d}

and

F(A,B) := {f : A→ B | fdeg(f) <∞};
these are subgroups of BA. We define a summation map

∫ : BA → B, (f : A→ B) 7→ ∫ f :=
∑
x∈A

f(x)

and then the summation invariant

σ(A,B) := sup{d ∈ N ∪ {−∞} | ∫ f = 0 for all f ∈ Fd(A,B)}.

In this paper we are interested in the following problem.

1Aichinger and Moosbauer do not allow −∞ as a functional degree and instead define the 0
map to have functional degree 0. We find that the present convention deals with the trivial case

in a tidier way, but there is certainly no essential difference.

1
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Problem 1. Compute σ(A,B) for every finite commutative group A and commu-
tative group B.

We do not completely solve Problem 1, but we address it significantly enough to
give a wide-ranging Diophantine application. Here are some of our main results:

• In §2 the computation of σ(A,B) is reduced to the case in which A is a p-group
and B is a finite cyclic p-group for some prime number p.

• In §3.2 we give an upper bound on σ(A,B) (Proposition 3.8).

• In §4 we determine σ(A,B) when A is cyclic (Theorem 4.2).

• In §5 we determine σ(A,B) when A has exponent p (Theorem 5.1). In order
to do so, we make use of a characterization of σ(A,B) in terms of the filtration on
the group ring (Z/exp(B)Z)[A] given by powers of the augmentation ideal in order
to reduce to a purely algebraic result on group rings (Theorem 5.2), which in turn
requires an auxiliary result on Grassmannians that we establish in §5.3.

• In §6 we give a Diophantine application (Theorem 6.2): let R be a finite rng.2 Let
p be a prime number dividing the order of R. Let r, d1, . . . , dr be positive integers.
Then there is a function V : Z+ → Z+ such that for all b ∈ Z+, if n ≥ V (b), then
for every system f1, . . . , fr of polynomial expressions with n indeterminates and
coefficients in R such that for each j, fj has degree dj , the cardinality of the zero
locus {x ∈ Rn | f1(x) = . . . = fr(x) = 0} is divisible by pb. When R is a finite field,
this is a qualitative consequence of a celebrated result of J. Ax [Ax64]. Thus our
resut extends this “Ax Effect” from finite fields to all finite rngs. Even restricting
to finite commutative rings, this is the first Ax–Katz type result over any ring that
is neither a principal ideal ring nor has prime characteristic.

We deduce Theorem 6.2 from a purely group-theoretic result (Theorem 6.5) in
a manner that stands in close analogy to Aichinger–Moosbauer’s group-theoretic
generalization of the Chevalley-Warning Theorem (see §1.2). In fact the Diophan-
tine content of these results is carried by a group-theoretic result (Theorem 6.4)
whose proof is essentially a classic argument of Ax translated into the Aichinger–
Moosbauer functional calculus. This cleanly illustrates that the computation of the
key invariant σ(A,B) — along with another invariant δ◦(A,B) that was computed
by the first author and U. Schauz — is where most of the content resides.

1.2. Motivation and Context. In this section we would like to provide some
additional context, explaining how our work is motivated by and may be viewed
as a continuation and synthesis of prior results of Chevalley–Warning, Ax–Katz,
Wilson, Aichinger–Moosbauer and Clark–Schauz.

We begin by recalling the following celebrated results on the p-divisibility of the
number of solutions to a low degree system of polynomial equations over a finite

2A “rng” is like a ring but need not have a multiplicative identity. It also need not be
commutative.
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field. For a nonzero integer n and an integer q ≥ 2, we denote by ordq(n) the largest
b ∈ N such that qb | n; we also put ordq(0) =∞.

Theorem 1.1. Let N, r, d1, . . . , dr ∈ Z+ with d1 ≥ . . . ≥ dr and

(1) d1 + . . .+ dr < N.

For 1 ≤ j ≤ r, let fj(t1, . . . , tN ) ∈ Fq[t1, . . . , tN ] be a polynomial of degree dj. Let

Z = {(x1, . . . , xN ) ∈ FNq | f1(x1, . . . , xN ) = . . . = fr(x1, . . . , xN ) = 0}

be the common zero set in FNq of the fi’s. Then: Then:

a) (Chevalley–Warning [Ch35], [Wa35]) We have #Z ≡ 0 (mod p).

b) (Ax–Katz [Ax64], [Ka71]) We have ordq(#Z) ≥
⌈
N−(d1+...+dr)

d1

⌉
.

The proofs of Theorem 1.1a) given by Chevalley and by Warning are elementary
but nontrivial: they require more than one page. In [Ax64], apart from proving
the r = 1 case of Theorem 1.1b), J. Ax also gave a remarkable ten line proof of
Theorem 1.1a). What Chevalley and Warning had missed is merely the following:

Lemma 1.2 (Ax’s Lemma). Let q be a prime power, and let a1, . . . , aN ∈ N.

a) If each ai is a positive multiple of q − 1, then∑
x=(x1,...,xN )∈FN

q

xa11 · · ·x
aN
N = (−1)N .

b) If ai is not a positive multiple of q − 1 for some 1 ≤ i ≤ N , then∑
x=(x1,...,xN )∈FN

q

xa11 · · ·x
aN
N = 0.

c) If f ∈ Fq[t1, . . . , tN ] has degree less than (q − 1)N , then
∑
x∈FN

q
f(x) = 0.

There is no known ten line proof of Theorem 1.1b). Ax’s proof of the r = 1 case
polynomial used Jacobi sums and Stickelberger’s congruence, while N.M. Katz’s
proof of the general case used zeta functions and p-adic cohomology. An Ax-style
proof of Theorem 1.1b) was given by Wan [Wa89], while Hou [Ho05] gave a short
deduction of the full statement of Theorem 1.1b) from the r = 1 case, and D.J.
Katz [Ka12] proved a result in coding theory that implies Theorem 1.1b).

None of the proofs of Theorem 1.1b) look anything like Ax’s proof of theorem
1.1a). However, Wilson gave in [Wi06] a proof of Theorem 1.1b) in the case of q a
prime number using a result [Wi06, Lemma 4] that is cognate to Ax’s Lemma: we
will state a form of his result after introducing some further terminology.

Next we discuss the recent work of Aichinger–Moosbauer [AM21] that gives a fully
fledged finite difference calculus for maps between commutative groups. As men-
tioned above, for commutative groups A and B and any function f : A → B, this
calculus assigns a functional degree [AM21, §2], [CS22, §2.3]

fdeg(f) ∈ N ∪ {±∞}.
In the case in which A and B are both finite p-groups, every function has finite
functional degree, and thus there is a largest functional degree δ(A,B). The quan-
tity δ(A,B) was determined by Aichinger–Moosbauer in special cases and then in
general by Clark–Schauz [CS22, Thm. 4.9]: see §2.1. Moreover, if R is a rng,
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f ∈ R[t1, . . . , tN ] is a polynomial and E(f) : RN → R is the function obtained by
evaluating f at elements of RN , then we have [AM21, Lemma 12.5]

(2) fdeg(E(f)) ≤ deg(f).

The following result is Wilson’s Lemma ([Wi06, lemma 4]) translated into the
language of functional degrees. It appeared in a draft of [CS23a] but was later
taken out because only a variant “lifted version” was used [CS23a, Lemma 3.1].

Lemma 1.3 (Wilson’s Ax Lemma). Let p be a prime number, and let 1 ≤ b ≤ N .
Let f : (Z/pZ)N → Z/pbZ be a function. If

(3) fdeg(f) < (N − b+ 1)(p− 1),

then ∑
x∈A

f(x) = 0.

In §7 we will deduce Lemma 1.3 from [CS23a, Lemma 3.1].

Aichinger and Moosbauer also proved an Ax-type Lemma:

Lemma 1.4. (Aichinger–Moosbauer’s Ax Lemma [AM21, Lemma 12.1])
Let A and B be finite commutative p-groups, with A nontrivial and B of exponent
p. Let f, g : A→ B be maps such that fdeg(f) < fdeg(g). Then we have∑

x∈A
f(x) = 0.

Proof. This is [AM21, Lemma 12.1]. It also follows from our Corollary 3.3 . �

Aichinger–Moosbauer applied Lemma 1.4 to prove the following result.

Theorem 1.5. Let p be a prime number and let A =
⊕m

i=1 Z/paiZ and B =⊕n
i=1 Z/pbiZ be finite commutative p-groups. Let f1, . . . , fr : AN → B be functions,

and suppose that r∑
j=1

fdeg(fj)

( n∑
i=1

(pbi − 1)

)
<

(
m∑
i=1

pai − 1

)
N.

Then p | #{x ∈ AN | f1(x) = . . . = fr(x) = 0}.

As explained in §6.4, Theorem 1.1a) is a consequence of Theorem 1.5 and (2).

Recently [CS23a, Cor. 1.9] used Lemma 1.3 to Clark–Schauz prove the following
Group-Theoretic Prime Ax–Katz Theorem:

Theorem 1.6. Let N,n, r ∈ Z+, and put A = (Z/pZ)n. Let f1, . . . , fr : AN → A
be nonconstant functions. If

Z := {x ∈ AN | f1(x) = . . . = fr(x) = 0},

then

ordp(#Z) ≥
⌈
n(N −

∑r
j=1 fdeg(fj))

maxrj=1 fdeg(fj)

⌉
.
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This recovers Theorem 1.1b) over the prime field Fp and also the p-weight variant
of Theorem 1.1b) given by Moreno-Moreno [MM95].

It is natural to ask for a version of Theorem 1.6 for any finite commutative group
A (one easily reduces to the case of a p-group). We observe that both Lemma 1.3
and Lemma 1.4 address Problem 1:

Lemma 1.7. Let p be a prime number.

a) (Wilson) Let N, b ∈ Z+ with N ≥ b. Then we have

σ((Z/pZ)N ,Z/pbZ) ≥ (N − b+ 1)(p− 1)− 1.

b) (Aichinger–Moosbauer) Let A be a finite commutative p-group, and let B
be a commutative group of exponent p. Then we have

σ(A,B) ≥ δ(A,B)− 1.

This strongly suggests that a systematic study of σ(A,B) is relevant to extending
Theorem 1.6 to the situation where A has composite exponent. This leads to the
“Ax Effect” and related results pursued in §6 of this paper.

1.3. A Concurrent Work. After this paper was first written, the first author and
U. Schauz continued their work on group-theoretic generalizations of Theorem 1.1b)
in [CS23b]. A version of Ax’s Lemma appears there as well, but with some subtle
differences. In order to explain the discrepancy, in §7, for a finite commutative
group A and B ∈ Z+ we define a lifted summation constant σ̃(A,Z/BZ).

We include in this section a brief comparison of σ̃(A,Z/BZ) and σ(A,Z/BZ):
it turns out that we have σ̃(A,Z/BZ) ≤ σ(A,Z/BZ) in all cases, but in the cases
of most importance to Theorem 1.1b) and its generalizations, the inequality is
strict. There is a kind of “rivalry” between our approach and the approach taken
in [CS23b] that seems interesting. But we leave the task of a systematic comparison
and possible synthesis to a future work.

2. Introducing σ(A,B)

2.1. Notation and Recalled Results. We write N for the set of non-negative
integers, Z+ for the set of positive integers and P for the set of prime numbers.

If R is a commutative ring, M is an R-module, and I is an ideal of R, then we put

M [I] := {x ∈M | ax = 0 ∀a ∈ I},
the I-torsion submodule of M .

In this paper, abstract commutative groups will always be written additively. For
a commutative group A, we put A• := A \ {0}. For N ∈ Z+ we put

A[N ] := {a ∈ A | Na = 0},
A[N∞] := {a ∈ A | Nka = 0 for some k ∈ Z+},

and
A[tors] =

⋃
N∈Z+

A[N ].

If there is some N ∈ Z+ such that A = A[N ], then we say A has finite expo-
nent and define the exponent exp(A) to be the least such N ; otherwise we put
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exp(A) := 0.3

In [CS22, §4] the authors determine, for each finite commutative group, the set
of functional degrees

D(A,B) := {fdeg(f) | f ∈ BA}.
We also put

δ(A,B) := {sup fdeg(f) | f ∈ BA} and δ◦(A,B) := {sup fdeg(f) | f ∈ F(A,B)}.

In particular, we have:

Theorem 2.1 (Clark–Schauz). Let A, B be nontrivial commutative groups, with
A finite and B of finite exponent.

a) Suppose that for a prime number p and positive integers a1 ≥ . . . ar and b
we have A ∼=

⊕r
i=1 Z/paiZ and exp(B) = pb. Then

δ(A,B) = δ◦(A,B) =

r∑
i=1

(pai − 1) + (b− 1)(p− 1)pa1−1.

b) If there is no prime number p such that A and B are both finite p-groups,
then δ(A,B) =∞.

c) Suppose that the distinct prime divisors of #A are p1 < . . . < pr. For
1 ≤ i ≤ r, let Ai := A[p∞i ] and Bi := B[p∞i ]. Then

δ◦(A,B) = max
1≤i≤r

δ◦(Ai, Bi) = max
1≤i≤r

δ(Ai, Bi).

Remark 2.2. While for any commutative ring R, any n ∈ Z+ and any d ∈ N, we
know an explicit R-module basis for the set R[t1, . . . , tn]≤d of polynomial functions
of degree at most d – namely the set of monomials ta11 · · · tann with a1 + . . .+ an ≤ d
– for most finite commutative p-groups A and B we do not (yet) know the structure
of the finite Z-module Fd(A,B) nor a minimal set of generators.

2.2. The Summation Invariant. If A is finite, we define a map

∫ : BA → B, (f : A→ B) 7→ ∫ f :=
∑
x∈A

f(x).

It is immediate that ∫ is a group homomorphism. Still assuming that A is finite,
we define the summation invariant

σ(A,B) := sup{d ∈ N ∪ {−∞} | ∫ f = 0 for all f ∈ Fd(A,B)}.

For b ∈ B, let Cb : A→ B be the function mapping every a ∈ A to b. Then

∫ Cb = (#A)b,

so ∫ Cb = 0 if and only if b ∈ B[#A]. Since the functions of functional degree 0 are
precisely the functions Cb for b ∈ B•, we deduce:

Lemma 2.3. Let A be a finite commutative group, and let B be a commutative
group. Then σ(A,B) ≥ 0 if and only if exp(B) | #A.

In particular, we have σ(A,B) = −∞ unless B has finite exponent.

3This is not a standard definition, but it is analogous to the definition of “characteristic zero.”
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2.3. Reductions in the computation of σ(A,B). Throughout this section A
and B are nontrivial commutative groups with A finite and B of finite exponent.
In this context it is certainly clear that ∫ f 6= 0 for some f ∈ BA: just take a function
that is nonzero at exactly one element of A. However this kind of “delta function”
(cf. [AM21, §7] and [CS22, §4.2]) need not have finite functional degree, making it
non-obvious that σ(A,B) is necessarily finite. However the next result shows that
this is always the case as a consequence of an important “primary decomposition”
for the summation invariant.

Proposition 2.4. Let A and B be nontrivial commutative groups with A finite
and B = B[N ] for some N ∈ Z+. Let p1 < . . . pn be the distinct prime divisors of
(#A) ·N , and for 1 ≤ i ≤ n, let Ai := A[p∞i ] and Bi := B[p∞i ], so

A =

n∏
i=1

Ai and B =

n∏
i=1

Bi.

We have

(4) σ(A,B) = min
i|Bi 6=0

σ(Ai, Bi) <∞.

Proof. Let f ∈ BA have finite functional degree. By [CS22, Thm. 3.13], we

have f = (f1, . . . , fn) for functions fi ∈ BAi
i . We have ∫ f = 0 if and only if∑

x∈A fi(x) = 0 for all 1 ≤ i ≤ n. For 1 ≤ i ≤ r we have∑
x∈A

fi(x) =
#A

#Ai

∑
xi∈Ai

fi(xi).

Since
∑
xi∈Ai

fi(xi) is an element of the pi-group Bi and pi - #A
#Ai

, we deduce:

∫ f = 0 ⇐⇒ ∀1 ≤ i ≤ r, #A

#Ai
∫ fi = 0 ⇐⇒ ∀1 ≤ i ≤ r, ∫ fi = 0.

If i is such that Bi 6= 0, then we have

σ(Ai, Bi) < δ(Ai, Bi) <∞ :

indeed for any bi ∈ Bi \ {0} the delta function δ0,bi has ∫ δ0,bi = bi 6= 0 and – like
every function between finite commutative p-groups – finite functional degree. In
particular, there is fi ∈ BAi

i of functional degree σ(Ai, Bi) + 1 such that ∫ fi 6= 0.
Also by [CS22, Thm. 3.13] we have

fdeg(f) = max
i

fdeg(fi) = max
i|Bi 6={0}

fdeg(fi).

Thus for d ∈ N, there is f ∈ BA of functional degree d with ∫ f 6= 0 if and only if
for some i there is fi ∈ BAi

i of functional degree d with ∫ fi 6= 0 if and only if

d > min
i|Bi 6=0

σ(Ai, Bi),

and thus we have
σ(A,B) = min

i|Bi 6=0
σ(Ai, Bi).

As mentioned above, for all i with Bi 6= 0 we have σ(Ai, Bi) < δ(Ai, Bi) <∞, and
this shows that σ(A,B) <∞. �

Lemma 2.5. Let A and B be nontrivial commutative groups, with A finite and B
of finite exponent.
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a) We have σ(A,B) < δ(A,B).
b) If ι : B ↪→ B′ is an injective homomorphism, then σ(A,B) ≥ σ(A,B′).
c) If ι : A ↪→ A′ is an injective homomorphism, then σ(A′, B) ≥ σ(A,B).

Proof. a) If A and B are not both p-groups, then

σ(A,B) <∞ = δ(A,B).

If A and B are both finite p-groups, then δ(A,B) <∞, so σ(A,B) = δ(A,B) would
imply that ∫ f = 0 for every f ∈ BA. Taking f to be any delta function δ0,b for
b ∈ B \ {0} we get ∫ δ0,b 6= 0.
b) If f ∈ BA has functional degree at most σ(A,B′), then ι ◦ f ∈ (B′)A and

fdeg(ι ◦ f) = fdeg(f) ≤ σ(A,B′),

so

∫ f = ∫(ι ◦ f) = 0.

c) Without loss of generality we may identify A with ι(A) and assume that A is
a subgroup of A′. Let f : A′ → B have functional degree at most σ(A,B). For
y ∈ A′, we write [y]f : A′ → B for the function x 7→ f(y + x).4

It is easy to see that fdeg([y]f) = fdeg(f): for instance, this follows from the fact
that fdeg(f) depends only on the annihilator ideal of f as a Z[A]-module [CS22,
Lemma 3.7] because [y] is a unit in the group ring and thus ann([y]f) = ann(f).
Or: just because for all a ∈ A′ we have

∆a([y]f)(x) = f(a+ y + x)− f(y + x) = ([y]∆af)(x)

we get: for all a0, . . . , ad ∈ A′, ∆a0 · · ·∆adf = 0 if and only if ∆a0 · · ·∆ad([y]f) = 0.
Now let x1, . . . , xr be a set of coset representatives for A in A′, and for 1 ≤ i ≤ r,

let gi be the restriction of [xi]f to A. By [CS22, Lemma 3.9a)], we get

fdeg(gi) = fdeg(f |A) ≤ fdeg(f) ≤ σ(A,B),

and thus

∫ f =

∫
x∈A′

f(x) =

r∑
i=1

∑
a∈A

f(xi + a) =

r∑
i=1

∫ gi = 0. �

Lemma 2.6. Let A be a finite commutative group, and let B be a commutative
group of finite exponent.

a) Let {Bx}x∈X be a family of nontrivial commutative groups. We have

σ(A,
⊕
x∈X

Bx) = σ(A,
∏
x∈X

Bx) = min
x∈X

σ(A,Bx).

b) We have σ(A,B) = σ(A,Z/exp(B)Z).

Proof. a) Let f : A→
∏
x∈X Bx, so f = (fx) with fx : A→ Bx. By [CS22, Lemma

2.16] we have fdeg(f) = supx∈X fdeg(fx). Moreover we have ∫ f = 0 if and only if
∫ fx = 0 for all x ∈ X, and it follows that

σ(A,
∏
x∈X

Bx) = min
x∈X

σ(A,Bx).

4The notation comes from the interpretation of the set BA′ of all maps f : A′ → B as a module
over the group ring Z[A′]: see §3.
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If this minimum is −∞, then there is x ∈ X and bx ∈ Bx \ Bx[#A]. Let b ∈⊕
x∈X Bx have x-coordinate bx and all other coordinates 0; then the constant

function Cb : A→ B has functional degree 0 and ∫ Cb 6= 0, so

σ(A,
⊕
x∈X

Bx) = −∞ = min
x∈X

σ(A,Bx).

Otherwise, let x ∈ X be such that

σ(A,Bx) = min
x∈X

σ(A,Bx) ≥ 0.

Then there is a function fx : A → Bx of functional degree σ(A,Bx) + 1 such
that ∫ fx 6= 0. Let f : A →

⊕
x∈X Bx be the function with x-component fx

and every other component 0. Then fdeg(f) = σ(A,Bx) + 1 and ∫ f 6= 0, so
σ(A,

⊕
x∈X Bx) ≤ σ(A,

∏
x∈X Bx). Since

⊕
x∈X Bx ↪→

∏
x∈X Bx is an injective

homomorphism, so part b) gives

σ(A,
⊕
x∈X

Bx) ≥ σ(A,
∏
x∈X

Bx).

b) Let N be the exponent of B. Then by [CS22, Thm. 2.1], we may write B =⊕
x∈X Cx, where Cx is cyclic of exponent Mx | N and Mx = N for at least one x.

By parts b) and c), we get

σ(A,B) = σ(A,
⊕
x∈X

Cx) = min
x∈X

σ(A,Cx) = σ(A,Z/NZ) = σ(A,Z/exp(B)Z). �

2.4. When σ(A,B) = 0.

Theorem 2.7. Let A and B be nontrivial commutative groups, with A finite. The
following are equivalent:

(i) We have σ(A,B) = 0.
(ii) We have exp(B) | #A and moreover: the Sylow 2-subgroup A[2∞] is non-

trivial, cyclic and isomorphic to the Sylow 2-subgroup of Z/exp(B)Z.

Proof. Step 1: By Lemma 2.3, we have σ(A,B) = −∞ if and only if expB - #A, so
we may assume that expB | #A. Let p1 < . . . < pr be the distinct prime numbers
dividing expB, and for 1 ≤ i ≤ r put

Ai := A[p∞i ] and Bi := B[p∞i ].

For all 1 ≤ i ≤ r we have expBi | #Ai, so σ(Ai, Bi) ≥ 0. Proposition 2.4 thus gives

σ(A,B) = 0 ⇐⇒ σ(Ai, Bi) = 0 for some 1 ≤ i ≤ r.
so we are reduced to the case in which A is a finite p-group and B is a p-group of
exponent dividing #A. Moreover Lemma 2.6b) gives σ(A,B) = σ(A,Z/exp(B)Z),
so we are reduced to the case in which

A =

r⊕
i=1

Z/paiZ and B = Z/pbZ with a1 ≥ . . . ≥ ar ≥ 1.

We must show that if p > 2 then ∫ f = 0 for all f : A→ B of functional degree 1,
while for p = 2 there is f : A → B of functional degree 1 such that ∫ f 6= 0 if and
only if A is nontrivial, cyclic and isomorphic to B.
Step 2: Let f : A → B have functional degree 1. By [CS22, Remark 4c)], there is
a nonzero group homomorphism ε : A→ B and b• ∈ B such that

∀x ∈ A, f(x) = ε(x) + b•.
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We have

∫ f = ∫ ε+ (#A) · b• = ∫ ε,
so we may assume that f is a group homomorphism. The image B := f(A) is

therefore cyclic of order pb
′

for some 1 ≤ b′ ≤ min(a1, b), and conversely every such
b′ is certainly attained by a suitable f . Every nonempty fiber of f has cardinality
#A
#B = pa1+...+ar−b′ , so

∫ f = pa1+...+ar−b′
∑
y∈B

y.

Since pb−b
′

(mod pb) is a generator for B, we have

∑
y∈B

y = pb−b
′
pb
′
−1∑

i=0

i (mod pb) =
pb−b

′
(pb
′ − 1)pb

′

2
(mod pb).

• When p > 2, this shows:
∑
y∈B y = 0, so ∫ f = 0. So σ(A,B) ≥ 1 in this case.

• When p = 2, we find that

∫ f = 0 ⇐⇒ a1 + . . .+ ar − b′ + b− 1 ≥ b ⇐⇒ a1 + . . .+ ar ≥ b′ + 1.

As mentioned above, the largest possible value of b′ is min(a1, b), so we find that
that σ(A,B) = 0 if and only if a1 = b and r = 1. This holds if and only if A is
nontrivial, cyclic and isomorphic to B. �

Remark 2.8. Maintain the notation of Theorem 2.7. The proof of Theorem 2.7
shows that if f : A→ B is a group homomorphism, then ∫ f 6= 0 if and only if the
Sylow 2-subgroup A[2∞] of A is nontrivial cyclic and the restriction of f to A[2∞]
is an injection. Moreover, because in all cases we have

a1 + . . .+ ar − b′ + b− 1 ≥ b− 1,

it also shows that when ∫ f 6= 0, then ∫ f has order 2 in B. Taking f to be the
identity map on a finite commutative group A, we recover Miller’s group-theoretic
generalization of Wilson’s Theorem: see [Mi03] and [Cl-W, Thm. 1.4].

3. Group Rings

3.1. Two group ring characterizations of σ(A,Z/NZ). Let A,B be commu-
tative groups with A finite. Then BA is naturally a module over the group ring
(Z/exp(B)Z)[A]. We have an augmentation homomorphism

ϕ : (Z/exp(B)Z)[A] � Z/exp(B)Z

that is uniquely determined by mapping, for each a ∈ A, the element [a] to 1. Put

I := ker(ϕ),

the augmentation ideal. Since B is a Z/exp(B)Z-module, we may endow B with
the structure of a (Z/exp(B)Z)[A]-module by letting each [a] act on B as 1B : this
is the natural Z/exp(B)Z-module structure on B pulled back via the map ϕ.

Aichinger and Moosbauer define the functional degree of a nonzero f ∈ BA us-
ing the augmentation ideal: namely, we say fdeg(f) ≤ n if and only if In+1 kills f .
Equivalently, for d ∈ N we have

Fd(A,B) = BA[Id+1] = {f ∈ BA | ∀θ ∈ Id+1, θf = 0}.
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This also means that the determination of δ(A,B) – the largest possible functional
degree for f ∈ BA – is equivalent to the commutative algebra problem of deter-
mining whether the augmentation ideal of (Z/exp(B)Z)[A] is nilpotent and if so
computing its nilpotency index νA,B(I), i.e., the smallest power of I that is (0). If
we put νA,B(I) =∞ if I is not nilpotent, then we get [CS22, Thm. 4.1]

δ(A,B) = νA,B(I)− 1.

Aichinger and Moosbauer showed that for nontrivial finite commutative groups A
and B, the augmentation ideal I of (Z/exp(B))Z[A] is nilpotent if and only if A
and B are both p-groups for some prime p, which was the first result determining
when δ(A,B) is finite for such groups A and B (a special case of Theorem 2.1).

In the works of Aichinger–Moosbauer and Clark–Schauz, this algebraic inter-
pretation of δ(A,B) allowed information to flow in both directions: in many cases
νA,B(I) is easy to compute or was already known, and this determines δ(A,B).
However for most pairs of finite commutative p-groups A and B, the nilpotency
index νA,B(I) was not known, and thus the determination of δ(A,B) by Clark–
Schauz – using prior results of a more arithmetic nature – gave the first general
solution of this algebraic problem.

In this section we will give an analogous discussion for the quantity σ(A,B). Indeed
we will give two interpretations of σ(A,B) in terms of powers of the augmentation
ideal in the group ring (Z/exp(B)Z)[A].

First: the map
∫

: BA → B is in fact a (Z/exp(B)Z)[A]-module homomorphism:
it is evidently a Z/exp(B)Z-module homomorphism, so the matter of this is that
for all a ∈ A and f ∈ BA we have∫

([a]f) =
∑
x∈A

([a]f)(x) =
∑
x∈A

f(a+ x) =
∑
x∈A

f(x) = ∫ f.

It follows that
∫(IBA) = 0.

Suppose now that B = Z/NZ for N ∈ N. (Recall that in Lemma 2.6b) we reduced
the general case to this case.) Then we may identify the group ring (Z/NZ)[A]
with (Z/NZ)A: the element

∑
a∈A na[x] corresponds to the function a ∈ A 7→ na ∈

Z/NZ. This is compatible with the (Z/NZ)[A]-module structure on (Z/NZ)A. It
follows that (Z/NZ)A is a free, rank 1 (Z/NZ)A-module with basis δ0,1, the function
that maps 0 to 1 and every other element of A to 0. Under this identification, the
functional

∫
: (Z/NZ)A → Z/NZ is precisely the augmentation homomorphism ϕ.

We deduce:

Theorem 3.1. Let A be a finite commutative group, and let N ∈ Z+.

a) For f ∈ (Z/NZ)A, we have ∫ f = 0 if and only if f ∈ I(Z/NZ)A.
b) If N | #A, then σ(A,Z/NZ) is the largest k ∈ N such that

(Z/NZ)A[Ik+1] ⊆ I(Z/NZ)A.

Corollary 3.2. Let N ∈ Z+, and let A be a finite commutative group. Then
[(Z/NZ)A : I(Z/NZ)A] = N .

Proof. We have

(Z/NZ)A/I(Z/NZ)A ∼= (Z/NZ)[A]/IZ/NZ[A] ∼= ϕ((Z/NZ)[A]) ∼= Z/NZ. �
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Corollary 3.3. Let p be a prime number, let A be a finite commutative p-group,
and let B be a commutative group of exponent p. We have

σ(A,Z/pZ) = δ(A,B)− 1.

Proof. Lemma 2.6b) gives δ(A,B) = δ(A,Z/pZ), so we may assume thatB = Z/pZ.
Every f ∈ (Z/pZ)A is annihilated by Iδ(A,Z/pZ)+1, so every g ∈ I(Z/pZ)A is

annihilated by Iδ(A,Z/pZ). It follows that

I(Z/pZ)A ⊆ Fδ(A,Z/pZ)−1(A,Z/pZ) ( F(A,Z/pZ) = (Z/pZ)A.

By Lemma 3.2b) we have [(Z/pZ)A : I(Z/pZ)A] = p, so by Theorem 3.1 we have

Ker(

∫
) = I(Z/pZ)A = Fδ(A,Z/pZ)−1(A,Z/pZ). �

Remark 3.4. Lemma 1.7b) was stated as an inequality, following [AM21, Lemma
12.1]. But because δ(A,B) is finite in this case, if σ(A,Z/pZ) were equal to δ(A,B)
that would mean that ∫ f = 0 for every function f ∈ BA. This conclusion is
manifestly false: take f to be nonzero at exactly one point.

But our proof of this result is different from that of [AM21, Lemma 12.1].

Our next application is a sort of analogue of the Fundamental Theorem of Calculus
in the case where A is a finite cyclic group.

Corollary 3.5. Let M,N ∈ Z+, and let B = B[M ] be an M -torsion commutative
group. For f : Z/NZ→ B, the following are equivalent:

(i) We have ∫ f = 0.
(ii) The function g “is a derivative”: there is g : Z/NZ→ B such that f(x) =

g(x+ 1)− g(x) for all x ∈ Z/NZ.

Proof. Step 1: The group B is isomorphic to
⊕

x∈X Z/MxZ for Mx | M . For a
finite commutative group A and a map f : A →

∏
x∈X Z/MxZ, we may write

f = (fx : A → Z/MxZ). Each of the properties of lying in the kernel of
∫

and
being a derivative holds for f if and only if it holds for each fx, so to prove the
result for maps f : Z/NZ→

∏
x∈X Z/MxZ we reduce to the case of B = Z/MxZ.

Suppose now that f : Z/NZ→
⊕

x∈X Z/MxZ. Then for all a ∈ Z/NZ we have
fx(a) = 0 for all but finitely many x ∈ X; but Z/NZ is also finite, so in fact
fx = 0 for all but finitely many x. Thus: if f is the derivative of some g : Z/NZ→∏
x∈X Z/MxZ, then also f is the derivative of some h : Z/NZ →

⊕
x∈X Z/MxZ,

since for all but finitely many x ∈ X we may just take gx = 0. So we have reduced
to maps f : Z/NZ→ Z/MZ.
Step 2: Let f ∈ (Z/MZ)Z/NZ. Lemma 3.2 says that ∫ f = 0 iff f ∈ I(Z/NZ)Z/MZ.
By [CS22, Remark 2.7b)], the ideal I is generated by [1] − [0]. Thus we have
f ∈ I(Z/MZ)Z/NZ if and only if f = ([1]− [0])g = ∆1(g). �

We now move on to our second group ring interpretation of σ(A,B), which holds
in the case B = Z/NZ. (Recall that in §2 we reduced the general computation of
σ(A,B) to this case.) Let A be a finite commutative group, and let N ∈ Z+. In
the group ring (Z/NZ)[A], consider the norm element

ω :=
∑
x∈A

[x].
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For any η ∈ (Z/NZ)[A], we have

ωη = ϕ(η)ω,

where ϕ : (Z/NZ)[A]→ Z/NZ is the augmentation map.

Lemma 3.6. Let r be a finite commutative ring in which each ideal is principal.
For m,n ∈ Z+, let Mm,n(r) be the set of m× n matrices with coefficients in r. For
A ∈Mm,n(r), let rowspace(A) be the r-submodule of rn generated by the rows of A.
Then we have

# rowspace(A) ·# Ker(A) = (#r)n.

Proof. Of course, the map v ∈ M1,n(r) = rn 7→ Av ∈ Mm,1(r) = rm is r-linear, so
the first isomorphism theorem for r-modules gives us:

rn/Ker(A) ∼= A(rn)

and thus

(#r)n = # Ker(A) ·#A(rn).

Evidently A(rn) is the column space of A, i.e., the r-submodule of rm generated by
the columns of A. So our task is to show a version of “row rank” = “column rank”
in this context, namely that

# rowspace(A) = # columnspace(A).

In turn the row space of A is the column space of the transpose AT , so it suffices
to show that

#A(rn) = #AT (rm).

We will use that the ring r is an elementary divisor ring [Ka49, §12]: this
means there is P ∈ GLm(r) and Q ∈ GLn(r) such that PAQ is diagonal – i.e.,
has aij = 0 unless i = j. Put r := min(m,n). We do not change the size of the
image of a map between finite sets by composing with bijections, so because r is
an elementary divisor ring we may assume that A is diagonal, say with diagonal
entries a1, . . . , ar. Then the row space is the direct sum of the cyclic r-modules
R1, . . . , Rr generated by the rows (a1, 0, . . . , 0), . . . , (0, . . . , ar, 0, . . . , 0) (all other
rows are zero). The cyclic r-module Ri is isomorphic to r/ ann(Ri) ∼= r/ ann(ai),
so the size of the row space is

∏r
i=1 #r/ ann(ai). Exactly the same holds for the

column space: it is the direct sum of the cyclic r-modules C1, . . . , Cr generated by
the columns (a1, 0, . . . , 0), . . . , (0, . . . , ar, 0, . . . , 0) (all other columns are zero), so it
also has size

∏r
i=1 #r/ ann(ai). �

Theorem 3.7. Let A be a finite commutative group, and let N ∈ Z+ be such that
N | #A. Let I be the augmentation ideal of the group ring R := (Z/NZ)[A], and
let ω =

∑
x∈A[x] ∈ (Z/NZ)[A] be the norm element. Then for all d ∈ N, we have

σ(A,Z/NZ) = d ⇐⇒ ω ∈ Id+1 \ Id+2.

Proof. Step 1: We will show that if ω ∈ Id+1, then σ(A,Z/NZ) ≥ d.
Indeed, under our identification of (Z/NZ)A with the group ring R, we have

Fd(A,Z/NZ) = R[Id+1], so if ω ∈ Id+1 then for all f ∈ Fd(A,Z/NZ) we have

0 = ωf = ϕ(f)ω = (∫ f)ω
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and thus ∫ f = 0.
Step 2: Let J1 ) J2 be ideals of R. We claim that we have a proper containment
of torsion submodules:

R[J2] ) R[J1].

For this it suffices to show that for any ideal J of R, we have

(5) #J ·#R[J ] = #R,

for then as J grows in size, R[J ] must shrink. To see this, let n := #A, and write
out the elements of A in some order: A = {x1 = 0, x2, . . . , xn}, and thereby identify
R = (Z/NZ)[A] with (Z/NZ)n. Now let m := #J , and write out the elements of J
in some order: J = {r1, . . . , rm}, with each ji ∈ (Z/NZ)n. This allows us to define
the matrix

AJ ∈Mm,n(Z/NZ),

whose rows are r1, . . . , rm. Evidently the row space of AJ is J itself. We claim that
the size of Ker(AJ) is #R[J ]; if so, we apply Lemma 3.6 with r = Z/NZ to get

#J ·#R[J ] = # rowspace(AJ) ·# Ker(AJ) = #(Z/NZ)n = #R.

To establish the claim, for b =
∑n
i=1 bi[xi] ∈ R, put

b∗ :=

n∑
i=1

bi[−xi]

and then define b1∗ , . . . , bn∗ by

n∑
i=1

bi∗ [xi] =

n∑
i=1

bi[−xi].

Then for a =
∑n
i=1 ai[xi] ∈ R, the matrix product

[a1, . . . , an][b1, . . . , bn]T =

n∑
i=1

aibi

is the coefficient of [0] in ab∗. It follows that b lies in the kernel of AJ if and only
if for all 1 ≤ j ≤ m, the coefficient of [0] in rjb

∗ is 0. But for all x ∈ A, we have
[−x]rj ∈ J , so [−x]rj = rx(j) for some 1 ≤ x(j) ≤ m, so the coefficient of [0] in
[−x]rjb

∗ is the coefficient of [x] in rjb
∗. This shows that b lies in the kernel of AJ

if and only if rjb
∗ = 0 for all j. We deduce that the kernel of AJ is R[J ]∗; since

b 7→ b∗ is an involution on R, we have # Ker(AJ) = #R[J ]∗ = #R[J ].
Step 3: Let d ∈ N be such that ω /∈ Id+2. Then J := 〈Id+2, ω〉 ) Id+2, so by Step
2, there is

f ∈ R[Id+2] \R[J ] = Fd+1(A,Z/NZ) \R[J ].

Since f is killed by Id+2 and not by J , we must have

(∫ f)ω = ωf 6= 0,

and thus ∫ f 6= 0. So σ(A,Z/NZ) < d+ 1. �
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3.2. An Upper Bound on σ(A,B).

Proposition 3.8. Let N, a1, . . . , aN , b ∈ Z+. Then for any commutative group B,

σ(

N⊕
i=1

Z/aiZ, B) ≤
N∑
i=1

(ai − 1)− 1.

Proof. Put A =
⊕N

i=1 Z/aiZ. If B does not have finite exponent, then by Lemma
2.3 we have σ(A,B) = −∞ and the result holds trivially. So we may assume
that B has finite exponent. Then using Proposition 2.4 we reduce to the case in
which A and B are both p-groups for some prime number p, so we may suppose

that A =
⊕N

i=1 Z/peiZ. If exp(B) = pb, then using Lemma 2.6b), Lemma 2.5b),
Corollary 3.3 and Theorem 2.1a), we get

σ(A,B) = σ(A,Z/pbZ) ≤ σ(A,Z/pZ)

= δ(A,Z/pZ)− 1 =

N∑
i=1

(pei − 1)− 1 =

N∑
i=1

(ai − 1)− 1. �

As the proof shows, the upper bound on σ(A,B) given in Proposition 3.8 is an
equality when A is a p-group and B has exponent p. We will see that equality also
holds when A has exponent p and σ(A,B) ≥ 0: this is Theorem 5.1.

Example 3.9. Take A = B = Z/4Z. Proposition 3.8 gives σ(Z/4Z,Z/4Z) ≤ 2,
while by Theorem 2.7 we have σ(Z/4Z,Z/4Z) = 0. This is the minimal example
in which strict inequality occurs in Proposition 3.8 Our next result (Theorem 4.2)
implies that the inequality in Proposition is strict when A = Z/paZ and B = Z/pbZ
for any prime p and integers 2 ≤ b ≤ a.

4. Computing σ(A,B) when A is cyclic

In this section we will compute the invariant σ(A,B) when A is a finite cyclic
group and B is a commutative group of finite exponent. By Lemma 2.5e) we have
σ(A,B) = σ(A,Z/exp(B)Z) so we may assume that B is also finite cyclic. Then
§3 further reduces us to the case in which A and B are p-primary groups. Thus we
are left to compute σ(Z/paZ,Z/pbZ) for a, b ∈ Z+.

We need one preliminary. let k ∈ Z+, and consider the function

x 7→
(
x

k

)
(mod pb) : Z→ Z/pbZ.

It is easy to see that this function descends to Z/paZ for some a ∈ Z+: indeed,
since

(
x
k

)
is an polynomial with integer coefficients divided by k!, we may take

a = b + vp(d!). However one can usually take a smaller value for a than this.
Indeed, the minimal a for each b and k is known:

Theorem 4.1. Let p a prime, and let k, b ∈ Z+. The least N ∈ Z+ such that

∀x ∈ Z,
(
x+N

k

)
(mod pb) =

(
x

k

)
(mod pb)

is pb+blogp kc.
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Proof. This is [Fr67, Thm. 4.8].5 �

Theorem 4.2. Let p be a prime, and let a, b ∈ Z+.

a) If a < b, then σ(Z/paZ,Z/pbZ) = −∞.
b) If a ≥ b, then σ(Z/paZ,Z/pbZ) = pa−b+1 − 2.

Proof. a) If a < b, then σ(Z/aZ,Z/pbZ) = −∞ by Lemma 2.3.
b) Suppose 1 ≤ b ≤ a. For any d ∈ N, consider the function

B̃d : Z→ Z/pbZ, x 7→
(
x

d

)
(mod pb).

Theorem 4.1 implies that for all 0 ≤ d ≤ pa−b+1 − 1, the function

B̃d : Z→ Z/pbZ, x 7→
(
x

d

)
(mod pb)

is pa-periodic, so it descends to a function

Bd : Z/paZ→ Z/pbZ,

but the function B̃pa−b+1 is not pa-periodic. It follows that for all 0 ≤ n ≤ pa−b+1−1,

the functions B0, . . . , Bn form a basis for the Z/pbZ-module Fn(Z/paZ,Z/pbZ) of
functions f : Z/paZ→ Z/pbZ of functional degree at most n. This in turn implies
that for all 0 ≤ n ≤ pa−b+1 − 1 we have σ(Z/paZ,Z/pbZ) ≥ n if and only if
∫ Bd = 0 for all 0 ≤ d ≤ n. We claim that ∫ Bd = 0 for all 0 ≤ d ≤ pa−b+1 − 2 but
∫ Bpa−b+1−1 6= 0, which will complete the proof.

By Corollary 3.5, for 0 ≤ d ≤ pa−b+1−1 we have ∫ Bd = 0 if and only if Bd = ∆1g
for some g : Z/paZ → Z/pbZ. Pulling back by the quotient map q : Z → Z/paZ
induces an injective Z/pbZ[Z]-module homomorphism N

q∗ : (Z/pbZ)Z/p
aZ ↪→ (Z/pbZ)Z,

which means that we may view functions f : Z/paZ→ Z/pbZ as pa-periodic func-
tions F : Z → Z/pbZ, compatibly with the derivative operator ∆1 = [1] − [0]. For
all d ∈ N we have

∆1B̃d+1 = B̃d.

It follows that for all 0 ≤ d ≤ pa−b+1 − 2 we have

∆1Bd+1 = Bd,

so ∫ Bd = 0 and thus σ(Z/paZ,Z/pbZ) ≥ pa−b+1 − 2. On the other hand, since

∆1B̃pa−b+1 = B̃pa−b+1−1, every function G : Z → Z/pbZ with ∆1G = B̃pa−b+1−1 is

of the form B̃pa−b+1 + C for some C ∈ Z/pbZ. Since none of these functions are
pa-periodic, the function Bpa−b+1−1 is not a derivative, so ∫ Bpa−b+1−1 6= 0. �

5. Computing σ((Z/pZ)N ,Z/pbZ)

5.1. Statement of the Result. In this section we compute σ((Z/pZ)N ,Z/pbZ))
for all N, b ∈ Z+.

Theorem 5.1. Let p be a prime, and let b,N ∈ Z+.

a) If N < b, then σ((Z/pZ)N ,Z/pbZ) = −∞.
b) If N ≥ b, then σ((Z/pZ)N ,Z/pbZ) = N(p− 1)− 1.

5Fray writes “Although this result and the corresponding one for fixed k are known, references
on them are not readily available.”
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Part a) follows from Lemma 2.3, while the upper bound in part b) comes from
Proposition 3.8. The lower bound in part b) is a consequence of the following
result:

Theorem 5.2. Let p be a prime, and let N ∈ Z+. There is Cp(N) ∈ Z \ pZ such
that in the group ring Z[(Z/pZ)N ] we have

Cp(N)

 ∑
x∈(Z/pZ)N

[x]− pN
 ∈ IN(p−1).

More precisely, we may take

Cp(N) :=

{
1 N = 1∏N
d=2(1− pd−1) N ≥ 2

.

Assuming Theorem 5.2, let 1 ≤ b ≤ N . Under the reduction modulo pb homo-
morphism Z[(Z/pZ)N ]→ Z/pbZ[(Z/pZ)N ] the augmentation ideal of the first ring
maps onto the augmentation ideal of the second ring; denoting the augmentation
ideal of Z/pbZ[(Z/pZ)N ] by Ipb and once again setting

ω :=
∑

x∈(Z/pZ)N

[x],

Theorem 5.2 gives

Cp(N)σ ∈ IN(p−1)

pb
,

which implies ω ∈ IN(p−1)

pb
since Cp(N) is a unit in Z/pbZ[(Z/pZ)N ]. According to

Theorem 3.7, since ω ∈ IN(p−1)

pb
, we have σ((Z/pZ)N ,Z/pbZ) ≥ N(p− 1)− 1.

We will prove Theorem 5.2 by induction on N . We treat the base case, then
give a linear algebraic result, then use that result to prove the induction step.

5.2. The Base Case. We work in the group ring Z[Z/pZ], with augmentation
ideal I. Put

α :=

p−1∑
i=1

([i]− [0])
p−1 ∈ Z[Z/pZ].

Evidently α lies in Ip−1. On the other hand, the multiplicative group U(p) =
(Z/pZ)× acts on Z[Z/pZ] by ring automorphisms, such that for u ∈ (Z/pZ)×, and
x ∈ Z/pZ we have u[x] = ux. Evidently α lies in the invariant subring Z[Z/pZ]U(p),
which is the ring of almost constant elements η =

∑
x∈Z/pZ ηx[x] such that ηx = ηy

for all x, y 6= 0. The almost constant elements are precisely the Z-linear combina-
tions of ω and [0], so there are m,n ∈ Z such that

α = mω + n[0].

Since 0 = ϕ(α) = mp+ n and the coefficient of [0] in α is (p− 1)(−1)p−1, we find:

ω − p = ω − p[0] = (−1)pα ∈ Ip−1.

Thus in the notation of Theorem 5.2, we may indeed take Cp(1) = 1.
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5.3. A bijection of Grassmannians. Let F be a field, and let V/F be an N -
dimensional vector space. For 1 ≤ d ≤ n− 1, let Gd(V ) be the set of d-dimensional
linear subspaces of V . Recall that there is a bijection from Gd(V ) to GN−d(V ): let
V ∨ = HomF (V, F ) be the dual space. Then

P : Gd(V ∨)→ GN−d(V ), W 7→ P (W ) :=
⋂
`∈W

Ker(`)

is a bijection, so if ι : V → V ∨ is a vector space isomorphism then

Φ : Gd(V )
Gd(ι)−→ Gd(V ∨)

Φ−→ GN−d(V )

is a bijection. An isomorphism ι : V → V ∨ comes in particular from any nonde-
generate symmetric bilinear form 〈, 〉 on V : v 7→ 〈v, ·〉. If V = FN one can take the
standard dot product, and then the map Φ is just

W ∈ Gd(V ) 7→W⊥ := {v ∈ FN | ∀w ∈W, v · w = 0}.
When F = R this bijection has a desirable additional property: for all W ∈ Gd(V )
we have W ∩W⊥ = {0}. For a symmetric bilinear form 〈, 〉 on V , the associated
bijection Φ has the property W ∩ Φ(W ) = {0} if and only if the bilinear form is
anisotropic: for all v ∈ V , 〈v, v〉 = 0 implies v = 0. However, depending upon
F and N , an N -dimensional F -vector space may or may not admit an anisotropic
symmetric bilinear form. In particular, such a form does not exist over a finite field
F unless N ≤ 2. Nevertheless we have the following result.

Proposition 5.3. Let N, d ∈ Z with 1 ≤ d < N . For any field F , there is a
bijection

Φ : Gd(FN )→ GN−d(FN )

such that W ∩ Φ(W ) = {0} for all W ∈ Gd(FN ).

Proof. Consider the bipartite graph G = (V1, V2, E) where V1 = Gd(FN ), V2 =
GN−d(FN ) and there is an edge connecting W ∈ Gd(FN ) to X ∈ GN−d(FN ) if
and only W ∩X = {0}. The desired result is equivalent to the existence of a perfect
matching in G: a bijection Φ : V1 → V2 such that x ∼ Φ(x) for all x ∈ V1.
Case 1: F = Fq is finite. In this case we will apply Hall’s Marriage Theorem [IAM,
Thm. 9.46] to obtain a semi-perfect matching Φ : V1 → V2, i.e., an injection such
that for all v ∈ V1 we have that Φ(v) is adjacent to v. Since V1 and V2 are finite
sets of the same cardinality, this gives the desired bijection.

For W ∈ Gd(FNq ), the number of X ∈ GN−d(FNq ) such that W ∩X = {0} is:6

(qN − qd) · · · (qN − qN−1)

(qN−d − 1) · · · (qN−d − qN−d−1)
= qd(N−d).

Replacing d with N − d, we get: for each X ∈ GN−d(FNq ), the number of W ∈
Gd(FNq ) such that W ∩X = {0} is also qd(N−d). Thus G is a qd(N−d)-regular graph.
For any nonempty subset S ⊆ V1, the number of edges with a vertex lying in S is
qd(N−d) · #S. So if the set N(S) = {v ∈ V2 | some vertex in S is adjacent to v}
had size less than #S, then by the Pigeonhole Principle some vertex in N(S) would
be adjacent to more than qd(N−d) vertices in S, contradicting the regularity of the
graph. Thus Hall’s Marriage Theorem applies.

6The numerator is the number of ordered bases for such an X and the denominator is
# GLNd

(Fq).



AX’S LEMMA IN THE AICHINGER–MOOSBAUER CALCULUS 19

Case 2: F is infinite, say of cardinality κ. In this case the set of edges containing
a given vertex of G has cardinality κ.7 So it suffices to show that any κ-regular
bipartite graph (V1, V2, E) with #V1 = #V2 = κ has a perfect matching. This can
be shown by a transfinite back-and-forth argument. Let α be the least ordinal of
cardinality κ. We may identify V1 with α× {1} and V2 with α× {2}. We define a
transfinite process with two stages for each β ∈ α, i.e., for each ordinal 0 ≤ β < α.
At Stage β, part one, if the element (β, 1) of V1 has not been matched at any
earlier stage, we match it with the smallest unmatched element of V2; otherwise we
do nothing. At Stage β, part two we do exactly the same with the roles of V2 and
V1 reversed. At any stage β of the process we have used at most 2#β < κ edges,
so these matchings are always possible. In the end we get a perfect matching. �

Remark 5.4. A nearly identical argument shows that for 1 ≤ d < N and any field
F , there is a bijection

Ψ : Gd(FN )→ GN−d(FN )

such that W ∩ Φ(W ) ) {0} for all W ∈ Gd(FN ). In particular, taking d = 1, we
get that there is a bijection Ψ between lines in FN and hyperplanes in FN such that
` ∈ Ψ(`) for all lines `. Even in R3 this does not seem immediately obvious.

5.4. The Induction Step. Let N ≥ 2, and put V := (Z/pZ)N . We call elements
of G1(V ) lines and elements of GN−1(V ) hyperplanes.

Inductively, we may suppose that there is Cp(N − 1) ∈ Z \ pZ such that for any
hyperplane H we have

Cp(N − 1)(
∑
x∈H

[x]− pN−1) ∈ I(p−1)(N−1)
H ⊂ I(p−1)(N−1).

Here IH is the augmentation ideal of Z[H], which under the natural injective ring
homomorphism Z[H] ↪→ Z[V ] is mapped into the augmentation ideal I of Z[V ]. By
Proposition 5.3 there is a bijection ` 7→ H(`) from the set of lines in (Z/pZ)N to
the set of hyperplanes in (Z/pZ)N such that we have `∩H(`) = {0} for all lines `.
Now we put

α` = Cp(N − 1)

(∑
x∈`

[x]− p

) ∑
y∈H(`)

[y]− pN−1

 ∈ Z[V ]

and
α :=

∑
`∈G1(V )

α`.

It is clear that α ∈ IN(p−1). We wish to show that

α = Cp(N)(
∑
x∈V

[x]− pN )

7One can see this, for instance, as follows: for W ∈ Gd(FN ), let v1, . . . , vd be a basis of W ,

and let wd+1, . . . , wN−1 be such that v1, . . . , vd, wd+1, . . . , wN−1 is linearly independent. Then

for every ω ∈ FN that is nonzero in the quotient V = FN/〈v1, . . . , vd, wd+1, . . . , wN−1〉, we have
that Xω = 〈wd+1, . . . , wN−1, ω〉 is an N − d-dimensional subspace such that W ∩ Xω = {0}.
Moreover Xω = Xω′ if and only if q(ω) = q(ω′), where q : V → V is the quotient map. But V is a

one-dimensional F -vector space, hence has cardinality κ. Since #Gd(FN ) = κ for all 1 ≤ d < N ,
this is the largest possible degree. Alternately, for each W ∈ Gd(FN ), the set of X ∈ GN−d(FN )
such that W ∩X = {0} is the set of F -rational points of a nonempty Zariski-open subset of GNd

,

which is a rational variety, and every such set has cardinality κ.
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for some Cp(N) ∈ Z \ pZ. We claim that α =
∑
x∈V αx[x] is almost constant:

i.e., for all x, y ∈ V \ {0}, we have αx = αy. Assuming the claim: the almost

constant elements are precisely the invariants Z[V ]GL(V ), which consist of Z-linear
combinations of ω =

∑
x∈V [x] and [0] = 1. So there are m,n ∈ Z such that

α = mω + n[0].

For each ` ∈ G1(V ), the coefficient of [0] in α` is Cp(N − 1)(pN−1 − 1)(p − 1), so
the coefficient of [0] in α is

Cp(N − 1)(pN−1 − 1)(p− 1) ·#G1(V ) = Cp(N − 1)(pN − 1)(pN−1 − 1).

We have

0 = ϕ(α) = mpN + n,

so

α = m(ω − pN ).

Since also

m+ n = α0 = Cp(N − 1)(pN − 1)(pN−1 − 1),

we get

α = (1− pN−1)Cp(N − 1).

Thus, for N ≥ 2 if we take

Cp(N) :=

N∏
d=2

(1− pd−1) ∈ Z \ pZ,

then

α = Cp(N)(ω − pN ) ∈ IN(p−1).

Finally we must establish the claim that α is almost constant. For ` ∈ G1(V ) and
x ∈ V , the coefficient α`,x of [x] in αx takes on only four possible values:
• When x = 0 it takes the value c1 = Cp(N − 1)(pN−1 − 1)(p− 1).
•When x lies in `\{0} (hence x /∈ H(`)) it takes the value c2 = Cp(N−1)(1−pN−1).
• When x lies in H(`) \ {0} (hence x /∈ `) it takes the value c3 = Cp(N − 1)(1− p).
• When x lies in neither ` nor H(`) it takes the value c4 = Cp(N − 1). The point
of this is that the integers c1, c2, c3, c4 do not depend on `.

Now let x ∈ V \ {0}. The number of lines ` containing x is 1, while the number
of lines ` such that x lies in H(`) is the number of hyperplanes containing x, which

is #GN−2(V/〈x〉) = pN−1−1
p−1 . The number of lines ` such that x /∈ (` ∪ H(`)) is

one less than the number of hyperplanes not containing x – every hyperplane H is
of the form H(`) for a unique line `, and the extra condition that x /∈ ` rules out

precisely the hyperplane H(〈x〉)) – so is pN−1
p−1 −

pN−1−1
p−1 − 1. So for x 6= 0, we have

αx = c2 +
pN−1 − 1

p− 1
c3 +

(
pN − 1

p− 1
− pN−1 − 1

p− 1
− 1

)
c4,

establishing that α is almost constant and completing the proof.
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6. The Ax Effect

6.1. Introduction. Consider the following result:

Theorem 6.1 (Ax Effect). Let q = pa be a prime power. If we fix r, . . . , dr ∈ Z+,
then there is a function

V : Z+ → Z+

such that for all b ∈ Z+, if n ≥ V (b), then every polynomial system P1, . . . , Pr ∈
Fq[t1, . . . , tn] with deg(Pj) = dr for all j has

ordp
(
#{x ∈ Fnq | f1(x) = . . . = fr(x) = 0}

)
≥ b.

The Ax Effect says that if we hold the number and degrees of the polynomials fixed
and increase the number of variables, the guaranteed p-adic divisibility on the size
of the solution set grows arbitrarily large. This is an immediate consequence of
Theorem 1.1b). We call it the “Ax Effect” because it is also a consequence of a
weaker form of Theorem 1.1b) established in J. Ax’s 1964 work [Ax64, p. 260, Cor.].

In this section we will extend the Ax Effect to any finite rng.

Theorem 6.2 (Ring-Theoretic Ax Effect). Let R be a finite rng. Fix positive
integers r, d1, . . . , dr. For each prime p | #R, there is a function V : Z+ → Z+

such that for all b ∈ Z+, if n ≥ V (b), then all polynomial expressions f1, . . . , fr in
n indeterminates over R with deg(fj) = dj) for all j, we have

ordp (#{x ∈ Rn | f1(x) = . . . = fr(x) = 0}) ≥ b.
Indeed, we may take

V (b) = max

b, δ0((R,+),Z/pbZ)
(∑r

j=1 fdeg(fj)
)

+ 1

p− 1

 .

Remark 6.3. Certainly in Theorem 6.2 we need p | #R: for a prime number
` - #R, if we take d1 = . . . = dr = 1, then the solution locus is a coset of a subgroup
of (Rn,+) so has size not divisible by `. It seems likely that for all r, d1, . . . , dr ∈ Z+

and any ` - #R, there is a system of r polynomials with degrees d1, . . . , dr and
solution locus of size not divisible by `.

As in the prior work of Aichinger–Moosbauer and Clark–Schauz [AM21], [CS23a],
this ring-theoretic result is an immediate consequence of purely group-theoretic
results that we now discuss. Here is the key:

Theorem 6.4 (Group-Theoretic Prime Ax Theorem). Let A be a finite commuta-
tive group. Let r ∈ Z+. For each 1 ≤ j ≤ r, let Bj be a finite commutative group,
and let fj : A→ Bj be a map of finite functional degree. Put

Z = Z(f1, . . . , fr) := {x ∈ A | ∀1 ≤ j ≤ r, fj(x) = 0}.
Let p be a prime dividing each of #A, #B1, . . . ,#Br, and let b ∈ Z+. If

(6)

r∑
j=1

δ0(Bj ,Z/pbZ) fdeg(fj) ≤ σ(A[p∞],Z/pbZ),

then

pb | #Z(f1, . . . , fr).
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Remarkably, the proof of Theorem 6.4 is a close analogue of Ax’s ten line proof of
Theorem 1.1a). More precisely, this proof generalizes seven of the ten lines of Ax’s
proof; the other three lines compute the quantities δ◦ and σ appearing in (6) in the
cases needed to prove Theorem 1.1a).

The quantities δ0(Bj ,Z/pbZ) appearing in Theorem 6.4 are known in all cases:
see Theorem 2.1. Although we do not know the exact value of σ(A[p∞],Z/pbZ) in
all cases, we know enough about it to deduce the following result.

Theorem 6.5 (Group-Theoretic Ax Effect). Let p be a prime, and let A and B be
finite commutative groups, each of size divisible by p. For each r, d1, . . . , dr ∈ Z+,
there is a function V : Z+ → Z+ such that for all b ∈ Z+, if N ≥ V (b) and

f1, . . . , fr : AN → B

are functions with fdeg(fj) = dj for all j, then

pb | {x ∈ AN | f1(x) = . . . = fr(x) = 0}.
Indeed, we may take

V (b) = max

b, δ0(B,Z/pbZ)
(∑r

j=1 fdeg(fj)
)

+ 1

p− 1

 .

Theorem 6.2 follows immediately from Theorem 6.5 using (2).

We prove Theorem 6.4 in §6.2 and Theorem 6.5 in §6.3. In §6.4 we make some
further remarks about these bounds; in particular we will see that a special case of
Theorem 6.4 is even more closely connected to Ax’s work towards Theorem 1.1b)
than the qualitative consequence Theorem 6.1 suggests.

6.2. Proof of Theorem 6.4. Note that this argument is longer than seven lines
because the result has been stated in maximum generality, making it a bit notation-
ally heavy. We hope that the underlying simplicity of the argument is not obscured.

We put B :=
⊕r

j=1Bj . For a commutative group X, we put

Xp := X[p∞].

Step 1: Suppose A and B are p-groups. Let χ : B → Z/pbZ map 0 to 1 and every
other element to 0. Then for all x ∈ A, we have

χ(f1(x), . . . , fr(x)) =

{
1 if fj(x) = 0 for all j

0 otherwise
,

so we have ∫ χ(f1, . . . , fr) = #Z(f1, . . . , fr) and thus

#Z(f1, . . . , fr) ≡ ∫ χ(f1, . . . , fr) (mod pb).

For commutative groups B1, . . . ,Br and C, suppose we have a map

G :

r⊕
j=1

Bj → C.

For 1 ≤ J ≤ r, the Jth partial functional degree pfdegJ(G) [AM21, Defini-
tion 5.1] is the supremum of the functional degrees of all functions g : BJ → C



AX’S LEMMA IN THE AICHINGER–MOOSBAUER CALCULUS 23

obtained from G by evaluating every argument but the Jth at an element x′ ∈⊕
j∈{1,...,r}\{J} Bj . We recall [AM21, Thm. 5.3]: if also for all 1 ≤ j ≤ r we have

fj : A→ Bj , then G(f1, . . . , fr) : A→ C and

fdeg(G(f1, . . . , fr)) ≤
r∑
j=1

pfdegj(G) fdeg(fj).

Therefore

fdeg(G(f1, . . . , fr)) ≤
r∑
j=1

pfdegj(G) fdeg(fj) ≤
r∑
j=1

δ(Bj ,Z/pbZ) fdeg(fj).

We now apply the above with Bj = Bj for all j and G = χ. Since Bj is a finite
p-group, every map from Bj to Z/pbZ has finite functional degree, and thus

fdeg(χ(f1, . . . , fr)) ≤
r∑
j=1

δ(Bj ,Z/pbZ) fdeg(fj) =

r∑
j=1

δ◦(Bj ,Z/pZ) fdeg(fj) ≤ σ(A,Z/pbZ).

It follows that ∫ χ(f1, . . . , fr) = 0, completing the proof in this case.
Step 2: Since A and B are finite, we have

A =
⊕
p∈P

Ap and B =
⊕
p∈P

r⊕
j=1

(Bj)p,

and these are all really finite direct sum decompositions. If X and Y are finite
commutative groups and f ∈ F(X,Y ), then for all p ∈ P we have f(Xp) ⊂ Yp,
and moreover, if we write fp for f |Xp : Xp → Yp then f =

⊕
p fp and fdeg(f) =

maxp fdeg(fp) [AM21, Thm. 9.2]. Moreover we have for all j that

δ0(Bj ,Z/pbZ) = δ((Bj)p,Z/pbZ).

So if S is the set of prime divisors of #A ·#B, then for all p ∈ S we have

(7) Z(f1, . . . , fr) =
∏
p∈S

Z((f1)p, . . . , (fr)p).

Applying Step 1 to {(fj)p : Ap → (Bj)p}rj=1, we find that pb divides the size of
Z((f1)p, . . . , (fr)p), which is one of the factors in the Cartesian product represen-
tation (7) for Z(f1, . . . , fr), so pb | #Z(f1, . . . , fr).

6.3. Proof of the Group-Theoretic Ax Effect. Let p ∈ P, and let A and B
be finite commutative groups each of size divisible by p. Fix r, d1, . . . , dr, b ∈ Z+.
We must show that there is V (b) ∈ Z+ such that for all N ≥ V (b) and any
f1, . . . , fr : AN → B with fdeg(fj) = dj for all j, we have pb | #Z(f1, . . . , fr).

By Theorem 6.4, we see that pb | #Z(f1, . . . , fr) whenever

δ◦(B,Z/pbZ)

 r∑
j=1

fdeg(fj)

 ≤ σ(A[p∞]N ,Z/pbZ).

Since p | #A, we have an injective group homomorphism (Z/pZ)N ↪→ A[p∞]N , so
by Lemma 2.5c) and Theorem 5.1, when N ≥ b we have

N(p− 1)− 1 = σ((Z/pZ)N ,Z/pbZ) ≤ σ(A[p∞]N ,Z/pbZ).
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It follows that pb | #Z(f1, . . . , fr) when

N ≥ max

b, δ0(B,Z/pbZ)
(∑r

j=1 fdeg(fj)
)

+ 1

p− 1

 ,

completing the proof of Theorem 6.5.

6.4. Remarks. Let us take b = 1 in Theorem 6.4, and focus on the case of p-groups,
so that we have finite commutative p-groups A, B1, . . . , Br and maps {fj : A →
Bj}rj=1. To better compare with other results, we replace A by AN for some N ∈ Z+

(this neither gains nor loses generality), so that we have maps {fj : AN → Bj}rj=1.
Then we get in particular that #Z(f1, . . . , fr) is divisible by p if

r∑
j=1

δ(Bj ,Z/pZ) fdeg(fj) ≤ δ(AN ,Z/pZ)− 1 = Nδ(A,Z/pZ)− 1

i.e., if and only if

r∑
j=1

δ(Bj ,Z/pZ) fdeg(fj) < Nδ(A,Z/pZ).

This result is slightly more general than Theorem 1.5:one recovers that result by
taking all the groups B1, . . . , Br to be the same.8 If we further take A = B, then
we get that the number of simultaneous zeros of f1, . . . , fr : AN → A is divisible
by p if

∑r
j=1 fdeg(fj) < N . This is [AM21, Thm. 12.3], which is a group-theoretic

generalization of the Chevalley–Warning Theorem. But more than that, the proof
given by Aichinger–Moosbauer (to which our proof reduces) is remarkably close to
J. Ax’s famous ten line proof of Chevalley–Warning.

It is interesting to see what the bound of Theorem 6.4 gives in the “classical case”:
let A = (Z/pZ)a for some a ∈ Z+, let N ∈ Z+, and for maps

f1, . . . , fr : AN → A

we put

Z(f1, . . . , fr) = {x ∈ AN | f1(x) = . . . = fr(x) = 0}.
Then Theorem 6.4 gives that for b ∈ Z+, we have pb | #Z(f1, . . . , fr) if

r∑
j=1

δ((Z/pZ)a,Z/pbZ) fdeg(fj) ≤ σ((Z/pZ)aN ,Z/pbZ).

We get that if b ≤ aN , we have pb | #Z(f1, . . . , fr) if

b < a

(
N∑r

j=1 fdeg(fj)
− 1

)
+ 1

if and only if

b ≤
⌈
a

(
N∑r

j=1 fdeg(fj)
− 1

)⌉
.

8Aichinger and Moosbauer’s proof of [AM21, Thm. 12.2] would yield this more general result.
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In particular, when r = 1 our bound is

ordp(#Z(f) ≥
⌈
a

(
N

fdeg(f)
− 1

)⌉
.

When r = 1, the Ax–Katz bound was already proved by Ax: working over Fpa , it
is

ordp(#Z(f) ≥ a
⌈

N

deg(f)
− 1

⌉
.

Thus when r = a = 1, this simple argument does prove Ax–Katz. When r = 1 and
a > 1, our bound is overall incomparable to Ax’s bound: it is weaker in that when
deg(f) - N because Ax’s placement of the ceiling function is more favorable, but
it is stronger in that the functional degree is equal to the p-weight degree of the
Chevalley-reduced representative (see [CS23a, §4]).

But as mentioned above, Ax also gave a result [Ax64, p. 260, Cor.] for any system
f1, . . . , fr of polynomials: putting D :=

∑r
j=1 deg(fj), Ax showed

ordp(#Z(f1, . . . , fr)) ≥ a
⌈
N

D
− 1

⌉
.

Putting D :=
∑r
j=1 fdeg(fj), our bound is

ordp(#Z(f1, . . . , fr) ≥
⌈
a

(
N

D
− 1

)⌉
.

We end this section by mentioning that Theorem 6.2 is the first result of its kind:
i.e., the first Ax–Katz type higher p-adic congruence for the size of the solution
set of a polynomial system over an arbitrary finite rng R. The cases that had
previously been addressed are precisely (i) when R is a finite field [Ax64], [Ka71],
(ii) when R is a finite commutative principal ring [MR75], [Ka12], and (iii) when
(R,+) has exponent p [CS23a].

7. The Lifted Summation Constant

Let N ∈ Z+ and let a1, . . . , aN , b ∈ Z≥2 be such that aN | aN−1 | . . . | a1. We put

[a] :=

N∏
i=1

{0, 1, . . . , ai − 1}.

For a commutative group B and a function F : ZN → B, we put∫
[a]

F :=
∑
x∈[a]

F (x).

We define the lifted summation constant σ̃(
⊕N

i=1 Z/aiZ,Z/bZ) as the supre-
mum of all d ∈ N ∪ {−∞} such that for all F : ZN → Z with functional degree at
most d, we have b |

∫
[a]
F .

The following result is the analogue for σ̃ of Proposition 3.8.

Lemma 7.1. We have σ̃(
⊕N

i=1 Z/aiZ,Z/bZ) ≤
∑N
i=1(ai − 1)− 1 <∞.
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Proof. Take F : ZN → Z by F (x) =
∏N
i=1

(
xi

ai−1

)
. By [CS23a, §2.3] we have

fdeg(F ) =
∑N
i=1 ai. Moreover, for x = (x1, . . . , xN ) ∈ [a], we have

F (x) =

{
1 if x = (a1 − 1, . . . , aN − 1)

0 otherwise
,

so
∫

[a]
F = 1, which is not divisible by b. �

Lemma 7.2. We have

σ̃(

N⊕
i=1

Z/aiZ,Z/bZ) ≤ σ(

N⊕
i=1

Z/aiZ,Z/bZ).

Proof. We suppose that f :
⊕N

i=1 Z/aiZ → Z/bZ has functional degree at most

σ̃(
⊕N

i=1 Z/aiZ,Z/bZ). Let q : ZN �
⊕N

i=1 Z/aiZ be the natural map. By [CS22,
Lemma 3.9] we have

fdeg(f ◦ q) = fdeg(f) ≤ σ̃(

N⊕
i=1

Z/aiZ,Z/bZ) <∞,

so by [CS23a, §2.4] there is a function F : ZN → Z such that F (mod bZ) = f ◦ q
and fdeg(F ) = fdeg(f ◦ q) = fdeg(f) ≤ σ̃(

⊕N
i=1 Z/aiZ,Z/bZ). By definition of the

lifted summation constant we have b |
∫

[a]
F ; since [a] is a set of coset representatives

for
⊕N

i=1 Z/aiZ in ZN , this implies ∫ f = 0. �

Of course Lemma 7.1 follows from Proposition 3.8 and Lemma 7.2, but in the proof
of Lemma 7.2 we needed to know that σ̃ is always finite, which Lemma 7.1 gives.

The analogue of Proposition 2.4 also holds for σ̃: namely if p1 < . . . < pr are
the distinct primes divding a1 · · · aN · b and for a finite commutative group X, Xi

denotes the Sylow pi-subgroup of X, then

σ̃(

N⊕
i=1

Z/aiZ,Z/bZ) = min
1≤i≤r

σ̃((

N⊕
i=1

Z/aiZ)i, (Z/bZ)i).

We omit the proof. So as usual we are reduced to the case of commutative p-groups.

Wilson’s proof of Theorem 1.1b) over the prime field Fp implicitly uses this lifted
summation constant. Indeed, [Wi06, Lemma 4] is equivalent to the following result:

Lemma 7.3. Let p be a prime number, and let N, b ∈ Z+ with N ≥ b. Then

(8) σ̃((Z/pZ)N ,Z/pbZ) ≥ (N − b+ 1)(p− 1)− 1.

Proof. This is [CS23a, Lemma 3.1]. �

Combining Lemmas 7.3 and 7.2, we get Lemma 1.7a).

We end by showing some cases where σ̃ = σ and one important case where σ̃ < σ.

• Suppose a ≥ b ≥ 1. From [CS23b, Prop. 2.2 and Lemma 2.3] we get

σ̃(Z/paZ,Z/pbZ) = pa−b+1 − 2.
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Combining with our Theorem 4.2 we deduce

σ̃(Z/paZ,Z/pbZ) = σ(Z/paZ,Z/pbZ).

In fact our proof of Theorem 4.2 applies verbatim to σ̃.

• It follows from [CS23b, Cor. 2.7] that

σ̃(

N⊕
i=1

Z/paiZ,Z/pZ) =

N∑
i=1

(pai − 1)− 1.

By Corollary 3.3, we have

σ(

N⊕
i=1

Z/paiZ,Z/pZ)) = δ(

N⊕
i=1

Z/paiZ,Z/pZ))− 1 =

N∑
i=1

(pai − 1)− 1,

so σ = σ̃ in this case as well.

• It follows from [CS23b, Cor. 2.8] that for N ≥ b ≥ 1 we have

(9) σ̃((Z/pZ)N ,Z/pbZ) = (N − b+ 1)(p− 1)− 1,

or in other words that equality holds in (8). However, by Theorem 5.1 we have

(10) σ((Z/pZ)N ,Z/pbZ) = N(p− 1)− 1,

which shows that when N ≥ b ≥ 2 we have

σ̃((Z/pZ)N ,Z/pbZ) < σ((Z/pZ)N ,Z/pbZ).
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