VARGA'S THEOREM IN NUMBER FIELDS

PETE L. CLARK AND LORI D. WATSON

Abstract

We give a number field version of a recent result of Varga on solutions of polynomial equations with binary input variables and relaxed output variables.

1. Introduction

This note gives a contribution to the study of solution sets of systems of polynomial equations over finite local principal rings in the restricted input / relaxed output setting. The following recent result should help to explain the setting and scope.

Let $n, a_{1}, \ldots, a_{n} \in \mathbb{Z}^{+}$and $1 \leq N \leq \sum_{i=1}^{n} a_{i}$. Put

$$
\mathfrak{m}\left(a_{1}, \ldots, a_{n} ; N\right)= \begin{cases}1 & \text { if } N<n \\ \min \prod_{i=1}^{n} y_{i} & \text { if } n \leq N \leq \sum_{i=1}^{n} a_{i}\end{cases}
$$

the minimum is over $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}^{n}$ with $1 \leq y_{i} \leq a_{i}$ for all i and $\sum_{i=1}^{n} y_{i}=N$.
Theorem 1.1. ([Cl18, Thm. 1.7]) Let R be a Dedekind domain, and let \mathfrak{p} be a maximal ideal in R with finite residue field $R / \mathfrak{p} \cong \mathbb{F}_{q}$. Let $n, r, v_{1}, \ldots, v_{r} \in \mathbb{Z}^{+}$. Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{r} \subset R$ be nonempty subsets each having the property that no two distinct elements are congruent modulo \mathfrak{p}. Let $r, v_{1}, \ldots, v_{r} \in \mathbb{Z}^{+}$. Let $P_{1}, \ldots, P_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$ be nonzero polynomials, and put

$$
z_{\mathbf{A}}^{\mathbf{B}}:=\#\left\{x \in \prod_{i=1}^{n} A_{i} \mid \forall 1 \leq j \leq m P_{j}(x) \in B_{j} \quad\left(\bmod \mathfrak{p}^{v_{j}}\right)\right\}
$$

Then $z_{\mathbf{A}}^{\mathbf{B}}=0$ or

$$
z_{\mathbf{A}}^{\mathbf{B}} \geq \mathfrak{m}\left(\# A_{1}, \ldots, \# A_{n} ; \sum_{i=1}^{n} \# A_{i}-\sum_{j=1}^{r}\left(q^{v_{j}}-\# B_{j}\right) \operatorname{deg}\left(P_{j}\right)\right)
$$

Remark 1.2. For every finite local principal ring \mathfrak{r}, there is a number field K, a prime ideal \mathfrak{p} of the ring of integers \mathbb{Z}_{K} of K, and $v \in \mathbb{Z}^{+}$such that $\mathfrak{r} \cong \mathbb{Z}_{K} / \mathfrak{p}^{v}[\mathrm{Ne} 71]$, [BC15]. Henceforth we will work in the setting of residue rings of \mathbb{Z}_{K}.

If in Theorem 1.1 we take $v_{1}=\cdots=v_{r}=1, A_{i}=\mathbb{F}_{q}$ for all i and $B_{j}=\{0\}$ for all j, then we recover a result of E. Warning.

Theorem 1.3. (Warning's Second Theorem [Wa35])
Let $P_{1}, \ldots, P_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be nonzero polynomials, and let

$$
\mathbf{z}=\#\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mid P_{1}(\mathbf{x})=\cdots=P_{r}(\mathbf{x})=0\right\}
$$

Then $\mathbf{z}=0$ or $\mathbf{z} \geq q^{n-\sum_{j=1}^{n} \operatorname{deg}\left(P_{j}\right)}$.

By Remark 1.2 , we may write \mathbb{F}_{q} as $\mathbb{Z}_{K} / \mathfrak{p}$ for a suitable maximal ideal \mathfrak{p} in the ring of integers \mathbb{Z}_{K} of a suitable number field K. Having done so, Theorem 1.3 can be interpreted in terms of solutions to a congruence modulo \mathfrak{p}, whereas Theorem 1.1 concerns congruences modulo powers of \mathfrak{p}. At the same time, we are restricting the input variables x_{1}, \ldots, x_{n} to lie in certain subsets A_{1}, \ldots, A_{n} and also relaxing the output variables: we do not require that $P_{j}(x)=0$ but only that $P_{j}(x)$ lies in a certain subset B_{j} modulo $\mathfrak{p}^{v_{j}}$.

There is however a tradeoff: Theorem 1.1 contains the hypothesis that no two elements of any A_{i} (resp. B_{j}) are congruent modulo \mathfrak{p}. Thus, whereas when $v_{j}=1$ for all j we are restricting variables by choice - e.g. we could take each A_{i} to be a complete set of coset representatives for \mathfrak{p} in \mathbb{Z}_{K} as done above - when $v_{j}>1$ we are restricting variables by necessity - we cannot take A_{i} to be a complete set of coset representatives for $\mathfrak{p}^{v_{j}}$ in \mathbb{Z}_{K}.

We would like to have a version of Theorem 1.1 in which the A_{i} 's can be any nonempty finite subsets of \mathbb{Z}_{K} and the B_{j} can be any nonempty finite subsets of \mathbb{Z}_{K} containing $\{0\}$. However, to do so the degree conditions need to be modified in order to take care of the "arithmetic" of the rings $\mathbb{Z}_{K} / \mathfrak{p}^{d_{j}}$. In general this seems like a difficult - and worthy - problem.

An interesting special case was resolved in recent work of L. Varga [Va14]. His degree bound comes in terms of a new invariant of a subset $B \subset \mathbb{Z} / p^{d} \mathbb{Z} \backslash\{0\}$ called the price of \mathbf{B} and denoted $\operatorname{pr}(B)$ that makes interesting connections to the theory of integer-valued polynomials.

Theorem 1.4. (Varga $\left[\right.$ Va14, Thm. 6]) Let $P_{1}, \ldots, P_{r} \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] \backslash\{0\}$ be polynomials without constant terms. For $1 \leq j \leq r$, let $d_{j} \in \mathbb{Z}^{+}$, and let $B_{j} \subset \mathbb{Z} / p^{d_{j}} \mathbb{Z}$ be a subset containing 0 . If

$$
\sum_{j=1}^{r} \operatorname{deg}\left(P_{j}\right) \operatorname{pr}\left(\mathbb{Z} / p^{d_{j}} \mathbb{Z} \backslash B_{j}\right)<n
$$

then

$$
\#\left\{\mathbf{x} \in\{0,1\}^{n} \mid \forall 1 \leq j \leq r, P_{j}(\mathbf{x}) \in B_{j} \quad\left(\bmod p^{d_{j}}\right)\right\} \geq 2
$$

In this note we will revisit and extend Varga's work. Here is our main result.
Theorem 1.5. Let K be a number field of degree N, and let e_{1}, \ldots, e_{N} be a \mathbb{Z}-basis for \mathbb{Z}_{K}. Let \mathfrak{p} be a nonzero prime ideal of \mathbb{Z}_{K}, and let $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$. Let $P_{1}, \ldots, P_{r} \in \mathbb{Z}_{K}\left[t_{1}, \ldots, t_{n}\right]$ be nonzero polynomials without constant terms. For each $1 \leq j \leq r$, there are unique $\left\{\varphi_{j, k}\right\}_{1 \leq k \leq N} \in$ $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ such that

$$
\begin{equation*}
P_{j}(t)=\sum_{k=1}^{N} \varphi_{j, k} e_{j} \tag{1}
\end{equation*}
$$

For $1 \leq j \leq r$, let B_{j} be a subset of $\mathbb{Z}_{K} / \mathfrak{p}^{d_{j}}$ that contains $0\left(\bmod \mathfrak{p}^{d_{j}}\right)$. Let

$$
S:=\sum_{j=1}^{r}\left(\sum_{k=1}^{N} \operatorname{deg}\left(\varphi_{j, k}\right)\right) \operatorname{pr}\left(Z_{K} / \mathfrak{p}^{d_{j}} \backslash B_{j}\right)
$$

Then

$$
\#\left\{\mathbf{x} \in\{0,1\}^{n} \mid \forall 1 \leq j \leq r, P_{j}(\mathbf{x}) \quad\left(\bmod \mathfrak{p}^{d_{j}}\right) \in B_{j}\right\} \geq 2^{n-S}
$$

Thus we extend Varga's Theorem 1.4 from \mathbb{Z} to \mathbb{Z}_{K} and refine the bound on the number of solutions.
In $\S 2$ we discuss the price of a subset of $\mathbb{Z}_{K} / \mathfrak{p}^{d}$. It seems to us that Varga's definition of the price has minor technical flaws: as we understand it, he tacitly assumes that for an integer-valued polynomial $f \in \mathbb{Q}[t]$ and $m, n \in \mathbb{Z}$, the output $f(n)$ modulo m depends only on the input modulo m. This is not true: for instance if $f(t)=\frac{t(t-1)}{2}$, then $f(n)$ modulo 2 depends on n modulo 4 , not
just modulo 2 . So we take up the discussion from scratch, in the context of residue rings of \mathbb{Z}_{K}.
The proof of Theorem 1.5 occupies $\S 3$. After setting notation in $\S 3.1$ and developing some preliminaries on multivariate Gregory-Newton expansions in $\S 3.2$, the proof proper occurs in $\S 3.3$.

2. The Price

Consider the ring of integer-valued polynomials

$$
\operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)=\left\{f \in K[t] \mid f\left(\mathbb{Z}_{K}\right) \subset \mathbb{Z}_{K}\right\}
$$

We have inclusions of rings

$$
\mathbb{Z}_{K}[t] \subset \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right) \subset K[t]
$$

Let

$$
\mathfrak{m}(\mathfrak{p}, 0):=\left\{f \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right) \mid f(0) \equiv 0 \quad(\bmod \mathfrak{p})\right\}
$$

Observe that $\mathfrak{m}(\mathfrak{p}, 0)$ is the kernel of a ring homomorphism $\operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right) \rightarrow \mathbb{Z}_{K} / \mathfrak{p}$: first evaluate f at 0 and then reduce modulo \mathfrak{p}. So $\mathfrak{m}(\mathfrak{p}, 0)$ is a maximal ideal of $\operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$. We put

$$
\mathcal{U}(\mathfrak{p}, 0):=\operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right) \backslash \mathfrak{m}(\mathfrak{p}, 0)=\left\{f \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right) \mid f(0) \notin \mathfrak{p}\right\}
$$

Let $d \in \mathbb{Z}^{+}$, and let B be a subset of $\mathbb{Z}_{K} / \mathfrak{p}^{d}$. We say that $h \in \mathcal{U}(\mathfrak{p}, 0)$ covers \mathbf{B} if: for all $b \in \mathbb{Z}_{K}$ such that $b\left(\bmod \mathfrak{p}^{d}\right) \in B$, we have $h(b) \in \mathfrak{p}$. The price of \mathbf{B}, denoted $\operatorname{pr}(B)$, is the least degree of a polynomial $h \in \mathcal{U}(\mathfrak{p}, 0)$ that covers B, or ∞ if there is no such polynomial.

Remark 2.1. a) If B_{1}, B_{2} are subsets of $\mathbb{Z}_{K} / \mathfrak{p}^{d} \backslash\{0\}$, then

$$
\operatorname{pr}\left(B_{1} \cup B_{2}\right) \leq \operatorname{pr}\left(B_{1}\right)+\operatorname{pr}\left(B_{2}\right):
$$

If for $i=1,2$ the polynomial $h_{i} \in \mathcal{U}(\mathfrak{p}, 0)$ covers B_{i} and has degree d_{i}, then $h_{1} h_{2} \in \mathcal{U}(\mathfrak{p}, 0)$ covers $B_{1} \cup B_{2}$ and has degree $d_{1}+d_{2}$.
b) If $0\left(\bmod \mathfrak{p}^{d}\right) \in B$, then $\operatorname{pr}(B)=\infty$:

Since $0 \in B$ we need $h(0) \in \mathfrak{p}$, contradicting $h \in \mathcal{U}(\mathfrak{p}, 0)$.
c) If $d=1$, then for any subset $B \subset \mathbb{Z}_{K} / \mathfrak{p} \backslash\{0\}$, we have $\operatorname{pr}(B) \leq \# B$:

Let \tilde{B} be any lift of B to \mathbb{Z}_{K}. Then

$$
h=\prod_{x \in \tilde{B}}(t-x) \in \mathbb{Z}_{K}[t] \subset \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)
$$

covers B and has degree $\# B$. Note that here we use polynoimals with \mathbb{Z}_{K}-coefficients. It is clear that $\# B$ is the minimal degree of a covering polynomial h with \mathbb{Z}_{K}-coefficients: we can then reduce modulo \mathfrak{p} to get a polynomial in $\mathbb{F}_{q}[t]$ that we want to be 0 at the points of B and nonzero at 0 , so of course it must have degree at least $\# B$.
d) If we assume no element of B is 0 modulo \mathfrak{p}, let \bar{B} be the image of B under the natural map $\mathbb{Z}_{K} / \mathfrak{p}^{d} \rightarrow \mathbb{Z}_{K} / \mathfrak{p} \cong \mathbb{F}_{q}$; then our assumption gives $0 \notin \bar{B}$. Above we constructed a polynomial $h \in \mathbb{Z}_{K}[t]$ of degree $\# \bar{B}$ such that $h(0) \notin \mathfrak{p}$ and for all $x \in \mathbb{Z}_{K}$ such that $x(\bmod \mathfrak{p}) \in B$, we have $h(x) \in \mathfrak{p}$. This same polynomial h covers B and shows that $\operatorname{pr}(B) \leq \operatorname{pr}(\bar{B}) \leq \# B$.

For $B \subset \mathbb{Z}_{K} / \mathfrak{p}^{d} \backslash\{0\}$ we define $\kappa(B) \in \mathbb{Z}^{+}$, as follows. For $1 \leq i \leq d$ we will recursively define $B_{i} \subset \mathbb{Z}_{K} / \mathfrak{p}^{i} \backslash\{0\}$ and $k_{i-1} \in \mathbb{N}$.

- Put $B_{d}=B$, and let k_{d-1} be the number of elements of B_{d} that lie in \mathfrak{p}^{d-1}.
- Having defined B_{i} and k_{i-1}, we let B_{i-1} be the set of $x \in \mathbb{Z}_{K} / \mathfrak{p}^{i-1}$ such that there are more than k_{i-1} elements of B_{i} mapping to x under reduction modulo \mathfrak{p}^{i-1}. We let k_{i-2} be the number of elements of B_{i-1} that lie in \mathfrak{p}^{i-2}.

Notice that $0 \notin B_{i}$ for all i : indeed, B_{i} is defined as the set of elements x such that the fiber under the map $\mathbb{Z}_{K} / \mathfrak{p}^{i+1} \rightarrow \mathbb{Z}_{K} / \mathfrak{p}_{i}$ has more elements of B_{i+1} than does the fiber over 0 . We put

$$
\kappa(B):=\sum_{i=0}^{d-1} k_{i} q^{i}
$$

Lemma 2.2. We have $\kappa(B) \leq q^{d}-1$.
Proof. Each k_{i} is a set of elements in a fiber of a q-to- 1 map, so certainly $k_{i} \leq q$. In order to have $k_{i}=q$, then B_{i+1} would need to contain the entire fiber over $0 \in \mathbb{Z}_{K} / \mathfrak{p}^{i}$, but this fiber includes $0 \in \mathbb{Z}_{K} / \mathfrak{p}^{i+1}$, which as above does not lie in B_{i+1}. So

$$
\kappa(B)=\sum_{i=0}^{d-1} k_{i} q^{i} \leq \sum_{i=0}^{d-1}(q-1) q^{i}=q^{d}-1 .
$$

Theorem 2.3. For any subset $B \subset \mathbb{Z}_{K} / \mathfrak{p}^{d} \backslash\{0\}$, we have $\operatorname{pr}(B) \leq \kappa(B)$.
Proof. Step 1: For $r \geq 1$, let $A=\left\{a_{1}, \ldots, a_{q^{d-1}}\right\} \subset \mathbb{Z}_{K} / \mathfrak{p}^{d}$ be a complete residue system modulo \mathfrak{p}^{d-1} none of whose elements lie in \mathfrak{p}^{d}. We will show how to cover A with $f \in \mathcal{U}(\mathfrak{p}, 0)$ of degree q^{d-1}. We denote by $v_{\mathfrak{p}}$ the \mathfrak{p}-adic valuation on K. Let $\lambda \in \mathbb{Z}_{K}$ be an element with $v_{\mathfrak{p}}(\lambda)=\sum_{j=0}^{d-2} q^{j}$, and let $\beta \in \mathbb{Z}_{K}$ be an element such that $v_{\mathfrak{p}}(\beta)=0$ and for all nonzero prime ideals $\mathfrak{q} \neq \mathfrak{p}$ of \mathbb{Z}_{K}, we have $v_{\mathfrak{q}}(\beta) \geq v_{\mathfrak{q}}(\lambda)$. (Such elements exist by the Chinese Remainder Theorem.) Put

$$
g_{A}(t):=\prod_{j=1}^{q^{d-1}}\left(t-a_{j}\right) \in \mathbb{Z}_{K}[t], h_{A}(t):=\frac{\beta}{\lambda} g_{A}(t) \in K[t] .
$$

For all $x \in \mathbb{Z}_{K},\left\{x-a_{1}, \ldots, x-a_{q^{d-1}}\right\}$ is a complete residue system modulo \mathfrak{p}^{d-1}, so in $\prod_{j=1}^{q^{d-1}}\left(x-a_{j}\right)$, for all $0 \leq j \leq d-1$ there are q^{d-1-j} factors in \mathfrak{p}^{j}, so $v_{\mathfrak{p}}\left(g_{A}(x)\right) \geq \sum_{j=0}^{d-2} q^{j}$ and thus $v_{\mathfrak{p}}\left(h_{A}(x)\right) \geq 0$. For any prime ideal $\mathfrak{q} \neq \mathfrak{p}$ of \mathbb{Z}_{K}, both $v_{\mathfrak{q}}\left(g_{A}(x)\right)$ and $v_{\mathfrak{q}}\left(\frac{\beta}{\lambda}\right)$ are non-negative, so $v_{\mathfrak{q}}\left(h_{A}(x)\right) \geq 0$. Thus $h_{A} \in \operatorname{Int} \mathbb{Z}_{K}$. Moreover the condition that no a_{j} lies in \mathfrak{p}^{d} ensures that $v_{\mathfrak{p}}\left(g_{A}(0)\right)=\sum_{j=0}^{d-2} q^{j}$, so $h_{A} \in \mathcal{U}(\mathfrak{p}, 0)$. If $x \in \mathbb{Z}_{K}$ is such that $x \equiv a_{j}\left(\bmod \mathfrak{p}^{d}\right)$ for some j, then $v_{\mathfrak{p}}\left(x-a_{j}\right) \geq d$. Since in the above lower bounds of $v_{\mathfrak{p}}\left(g_{A}(x)\right)$ we obtained a lower bound of at most $d-1$ on the \mathfrak{p}-adic valuation of each factor, this gives an extra divisibility and shows that $v_{\mathfrak{p}}\left(h_{A}(x)\right) \geq 0$. Thus h_{A} covers A with price at most q^{d-1}.
Step 2: Now let $B \subset \mathbb{Z}_{K} / \mathfrak{p}^{d} \backslash\{0\}$. The number of elements of B that lie in \mathfrak{p}^{d-1} is k_{d-1}. For each of these elements x_{i} we choose a complete residue system A_{i} modulo \mathfrak{p}^{d-1} containing it; since no x_{i} lies in \mathfrak{p}^{d} this system satisfies the hypothesis of Step 1 , so we can cover each A_{i} with price at most q^{d-1} and thus (using Remark 2.1a)) all of the A_{i} 's with price at most $k_{d-1} q^{d-1}$. However, by suitably choosing the A_{i} 's we can cover many other elements as well. Indeed, because we are choosing k_{d-1} complete residue systems modulo \mathfrak{p}^{d-1}, we can cover every element x that is congruent modulo \mathfrak{p}^{d-1} to at most k_{d-1} elements of B. By definition of B_{d-1}, this means that we can cover all elements of B that do not map modulo \mathfrak{p}^{d-1} into B_{d-1}. Now suppose that we can cover B_{d-1} by $h \in \mathcal{U}(\mathfrak{p}, 0)$ of degree κ^{\prime}. This means that for every $x \in \mathbb{Z}_{K}$ such that $x\left(\bmod \mathfrak{p}^{d-1}\right)$ lies in $B_{d-1}, h(x) \in \mathfrak{p}$. But then every element of B whose image in \mathfrak{p}^{d-1} lies in B_{d-1} is covered by h, so altogether we get

$$
\operatorname{pr}(B) \leq k_{d-1} q^{d-1}+\operatorname{pr}\left(B_{d-1}\right)
$$

Now applying the same argument successively to B_{d-1}, \ldots, B_{1} gives

$$
\operatorname{pr}\left(B_{i}\right) \leq k_{i-1} q^{i-1}+\operatorname{pr}\left(B_{i-1}\right)
$$

and thus

$$
\operatorname{pr}(B) \leq \sum_{i=0}^{d-1} k_{i} q^{i}=\kappa(B) .
$$

3. Proof of the Main Theorem

3.1. Notation. Let K be a number field of degree N, and let e_{1}, \ldots, e_{N} be a \mathbb{Z}-basis for \mathbb{Z}_{K}. A \mathbb{Z}-basis for $\mathbb{Z}_{K}\left[t_{1}, \ldots, t_{n}\right]$ is given by $e_{j} \underline{t}^{I}$ as j ranges over elements of $\{1, \ldots, N\}$ and I ranges over elements of \mathbb{N}^{n}. So for any $f \in \mathbb{Z}_{K}\left[t_{1}, \ldots, t_{n}\right]$, we may write

$$
\begin{equation*}
f=\varphi_{1}\left(t_{1}, \ldots, t_{n}\right) e_{1}+\ldots+\varphi_{N}\left(t_{1}, \ldots, t_{n}\right) e_{N}, \varphi_{i} \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] . \tag{2}
\end{equation*}
$$

Then we have

$$
\operatorname{deg} f=\max _{i} \operatorname{deg} \varphi_{i}
$$

For a subset $B \subset \mathbb{Z}_{K} / \mathfrak{p}^{d}$, we put

$$
\bar{B}=\mathbb{Z}_{K} / \mathfrak{p}^{d} \backslash B
$$

3.2. Multivariable Newton Expansions.

Lemma 3.1.

If $f \in \mathbb{Q}[t]$ is a polynomial and $f(\mathbb{N}) \subset \mathbb{Z}$, then $f(\mathbb{Z}) \subset \mathbb{Z}$.
Proof. See e.g. [CC, p. 2].
Theorem 3.2.
Let $f \in K[t]$.
a) There is a unique function $\alpha_{\bullet}(f): \mathbb{N}^{N} \rightarrow K, \underline{r} \mapsto \alpha_{\underline{r}}(f)$ such that
(i) we have $\alpha_{\underline{r}}(f)=0$ for all but finitely many $\underline{r} \in \mathbb{N}^{N^{-}}$, and
(ii) for all $x=x_{1} e_{1}+\ldots+x_{N} e_{N} \in \mathbb{Z}_{K}$, we have

$$
\begin{equation*}
f(x)=\sum_{\underline{r} \in \mathbb{N}^{N}} \alpha_{\underline{r}}(f)\binom{x_{1}}{r_{1}} \cdots\binom{x_{N}}{r_{N}} . \tag{3}
\end{equation*}
$$

b) The following are equivalent:
(i) We have $f \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$.
(ii) For all $r \in \mathbb{N}^{N}$, $\alpha_{\underline{r}}(f) \in \mathbb{Z}_{K}$.

We call the $\alpha_{\underline{r}}(f)$ the Gregory-Newton coefficients of f.
Proof. Step 1: Let $f \in K[t]$. Let e_{1}, \ldots, e_{N} be a \mathbb{Z}-basis for \mathbb{Z}_{K}. We introduce new independent indeterminates t_{1}, \ldots, t_{N} and make the substitution

$$
t=\sum_{k=1}^{N} e_{k} t_{k}
$$

to get a polynomial

$$
\tilde{f} \in K[\underline{t}] .
$$

This polynomial induces a map $K^{N} \rightarrow K$ hence, by restriction, a map $\mathbb{Z}^{N} \rightarrow K$. For $\underline{x}=$ $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N}$, write $x=x_{1} e_{1}+\ldots+x_{N} e_{N} \in \mathbb{Z}_{K}$. Then we have

$$
\tilde{f}(\underline{x})=f(x)
$$

Let $\mathcal{M}=\operatorname{Maps}\left(\mathbb{Z}^{N}, K\right)$ be the set of all such functions, and let \mathcal{P} be the K-subspace of \mathcal{M} consisting of functions obtained by evaluating a polynomial in $K[\underline{t}]$ on \mathbb{Z}^{N}, as above. By the CATS Lemma [Cl14, Thm. 12], the map $K[\underline{t}] \rightarrow \mathcal{P}$ is an isomorphism of K-vector spaces. Henceforth we will identify $K[\underline{t}]$ with \mathcal{P} inside \mathcal{M}.

Step 2: For all $1 \leq k \leq N$, we define a K-linear endomorphism Δ_{k} of \mathcal{M}, the kth partial difference operator:

$$
\Delta_{k}(g): x \in \mathbb{Z}^{N} \mapsto g\left(x+e_{k}\right)-g(x)
$$

These endomorphisms all commute with each other:

$$
\left(\Delta_{i} \circ \Delta_{j}\right)(g)=g\left(x+e_{i}+e_{j}\right)-g\left(x+e_{j}\right)-g\left(x+e_{i}\right)+g(x)=\left(\Delta_{j} \circ \Delta_{i}\right)(g)
$$

Let Δ_{k}^{0} be the identity operator on \mathcal{M}, and for $i \in \mathbb{Z}^{+}$, let Δ_{k}^{i} be the i-fold composition of Δ_{k}. For $I=\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{N}^{N}$, put

$$
\Delta^{I}=\Delta^{i_{1}} \circ \ldots \circ \Delta^{i_{N}} \in \operatorname{End}_{K}(\mathcal{M})
$$

When we apply Δ_{k} to a monomial \underline{t}^{I}, we get another polynomial. More precisely, if $\operatorname{deg}_{t_{k}}\left(\underline{t}^{I}\right)=0$ then $\Delta_{k} \underline{t}^{I}$ is the zero polynomial; otherwise

$$
\operatorname{deg}_{t_{k}}\left(\Delta_{k} \underline{t}^{I}\right)=\left(\operatorname{deg}_{t_{k}} \underline{t}^{I}\right)-1 ; \forall l \neq k, \operatorname{deg}_{t_{l}}\left(\Delta_{k} \underline{t}^{I}\right)=\operatorname{deg}_{t_{l}} \underline{t}^{I}
$$

Thus for each $f \in \mathcal{P}$, for all but finitely many $I \in \mathbb{N}^{N}$, we have that $\Delta^{I}(f)=0$.
For the one variable difference operator, we have

$$
\Delta\binom{x}{r}=\binom{x+1}{r}-\binom{x}{r}=\binom{x}{r-1}
$$

From this it follows that for $I, \underline{r} \in \mathbb{N}^{N}$ we have

$$
\begin{equation*}
\Delta^{I}\left(\binom{x_{1}}{r_{1}} \cdots\binom{x_{N}}{r_{N}}\right)(\underline{0})=\binom{0}{r_{1}-i_{1}} \cdots\binom{0}{r_{N}-i_{N}}=\delta_{\underline{r}, I} \tag{4}
\end{equation*}
$$

So if $\beta_{\bullet}: \mathbb{N}^{N} \rightarrow K$ is any finitely nonzero function then for all $I \in \mathbb{N}^{N}$ we have

$$
\begin{equation*}
\Delta^{I}\left(\sum_{\underline{r} \in \mathbb{N}^{N}} \beta_{\underline{r}}\binom{x_{1}}{r_{1}} \cdots\binom{x_{N}}{r_{N}}\right)(\underline{0})=\beta_{I} \tag{5}
\end{equation*}
$$

and thus there is at most one such function satisfying (3), namely

$$
\alpha_{\bullet}(f): \underline{r} \mapsto \Delta^{\underline{r}}(f)(\underline{0}) .
$$

So for any $f \in \mathcal{M}$ and $\underline{r} \in \mathbb{N}^{N}$, we define the Gregory-Newton coefficient

$$
\alpha_{\underline{r}}(f):=\Delta^{\underline{r}}(f)(\underline{0}) \in K .
$$

We may view the assignment of the package $\left\{\alpha_{\underline{r}}(f)\right\}_{\underline{r} \in \mathbb{N}^{N}}$ of Gregory-Newton coefficients to $f \in \mathcal{M}$ as a K-linear mapping

$$
\mathcal{M} \rightarrow K^{\mathbb{N}^{N}}
$$

If we put $\mathcal{M}^{+}=\operatorname{Maps}\left(\mathbb{N}^{N}, K\right)$, then we get a factorization

$$
\mathcal{M} \rightarrow \mathcal{M}^{+} \xrightarrow{\alpha} K^{\mathbb{N}^{N}}
$$

where the first map restricts from \mathbb{Z}^{N} to \mathbb{N}^{N}, and the factorization occurs because the GregoryNewton coefficients depend only on the values of f on \mathbb{N}^{N}. We make several observations:
First Observation: The map α is an isomorphism. Indeed, knowing all the successive differences at 0 is equivalent to knowing all the values on \mathbb{N}^{N}, and all possible packages of Gregory-Newton coefficients arise. Namely, let S_{n} be the assertion that for all $x \in \mathbb{N}^{N}$ with $\sum_{k} x_{k}=n$ and all $f \in \mathcal{M}$, then $f(x)$ is a \mathbb{Z}-linear combination of its Gregory-Newton coefficients. The case $n=0$ is clear: $f(0)=\alpha_{0}(f)$. Suppose S_{n} holds for n, let $x \in \mathbb{N}^{N}$ be such that $\sum_{k} x_{k}=n+1$, and choose k such that $x=y+e_{k}$; thus $\sum_{k} y_{k}=n$. Then

$$
f(x)=f(y)+\Delta_{k} f(y)
$$

By induction, $f(y)$ is a \mathbb{Z}-linear combination of the Gregory-Newton coefficients of f and $\Delta_{k} f(y)$ is a \mathbb{Z}-linear combination of the Gregory-Newton coefficients of $\Delta_{k} f$. But every Gregory-Newton coefficient of $\Delta_{k} f$ is also a Gregory-Newton coefficient of f, completing the induction.
Second Observation: The composite map

$$
K[\underline{t}] \rightarrow \mathcal{M} \rightarrow \mathcal{M}^{+} \xrightarrow{\alpha} K^{\mathbb{N}^{N}}
$$

is an injection. Indeed, the kernel of $\mathcal{M} \rightarrow K^{\mathbb{N}^{N}}$ is the set of functions that vanish on $\mathbb{Z}^{N} \backslash \mathbb{N}^{N}$. In particular, any element of the kernel vanishes on the infinite Cartesian subset $\left(\mathbb{Z}^{<0}\right)^{N}$ and thus by the CATS Lemma is the zero polynomial.
Third Observation: For a subring $R \subset K$ and $f \in \mathcal{M}$, we have $f\left(\mathbb{N}^{N}\right) \subset R$ iff all of the Gregory-Newton coefficients of f lie in R. This is a consequence of the First Observation: the Gregory-Newton coefficients are \mathbb{Z}-linear combinations of the values of f on \mathbb{N}^{N} and conversely.
Step 3: For $F \in K[\underline{t}]$, we define the Newton expansion

$$
T(F)=\sum_{\underline{r} \in \mathbb{N}^{N}} \alpha_{\underline{r}}(F)\binom{t_{1}}{r_{1}} \cdots\binom{t_{N}}{r_{N}} \in K[\underline{t}] .
$$

This is a finite sum. Moreover, by definition of $\alpha_{\underline{r}}(F)$ and by (5) we get that for all $r \in \mathbb{N}^{N}$,

$$
\alpha_{\underline{r}}(T(F))=\alpha_{\underline{r}}(F) .
$$

It now follows from Step 2 that $T(F)=F \in K[\underline{t}]$. Applying this to the \tilde{f} associated to $f \in K[t]$ in Step 1 completes the proof of part a).
Step 4: If we assume that $f \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$ then $\tilde{f}\left(\mathbb{Z}^{N}\right) \subset \mathbb{Z}_{K}$ so all the Gregory-Newton coefficents lie in \mathbb{Z}_{K}. Conversely, if all the Gregory-Newton coefficients of \tilde{f} lie in \mathbb{Z}_{K}, then for $x=x_{1} e_{1}+\ldots+$ $x_{N} e_{N} \in \mathbb{Z}_{K}$, by Lemma 3.1 and (3) we have $f(x)=\tilde{f}\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}_{K}$, so $f \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$.
3.3. Proof of Theorem 1.5. We begin by recalling the following result.

Theorem 3.3. Let F be a field, and let $P \in F\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial. Let

$$
\mathcal{U}:=\left\{\mathbf{x} \in\{0,1\}^{n} \mid P(\mathbf{x}) \neq 0\right\}
$$

Then either $\# \mathcal{U}=0$ or $\# \mathcal{U} \geq 2^{n-\operatorname{deg}(P)}$.
Proof. This is a special case of a result of Alon-Füredi [AF93, Thm. 5].
We now turn to the proof of Theorem 1.5. Put

$$
Z:=\left\{x \in\{0,1\}^{n} \mid \forall 1 \leq j \leq r, P_{j}(x) \quad\left(\bmod \mathfrak{p}^{d_{j}}\right) \in B_{j}\right\} .
$$

Step 0: If $q=\# \mathbb{Z}_{K} / \mathfrak{p}$ is a power of p, then we have $p^{d} \in \mathfrak{p}^{d}$. Therefore in (1) if we modify any coefficient of $\varphi_{j, k}(t)$ by a multiple of p^{d}, it does not change P_{j} modulo \mathfrak{p}^{d} and thus does not change the set Z. We may thus assume that every coefficient of every $\varphi_{j, k}$ is non-negative.
Step 1: For $w=\sum_{i=1}^{k} \underline{t}^{I_{i}}$ a sum of monomials and $0 \leq r \leq k$, we put

$$
\Psi_{r}(w):=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq k} \underline{t}^{I_{i_{1}}} \cdots \underline{t}^{I_{i_{r}}} .
$$

For $x \in\{0,1\}^{n}$, we have $w(x)=\#\left\{1 \leq i \leq k \mid x^{I_{i}}=1\right\}$, so

$$
\Psi_{r}(w)(x)=\binom{w(x)}{r}
$$

For $f \in \mathbb{Z}_{K}\left[t_{1}, \ldots, t_{n}\right]$, write $f=\sum_{k=1}^{N} \varphi_{k}(t) e_{k}$ and suppose that all the coefficients of each φ_{k} are non-negative - equivalently, each $\varphi_{k}(t)$ is a sum of monomials. For $\underline{r} \in \mathbb{N}^{N}$, we put

$$
\Psi_{\underline{r}}(f):=\Psi_{r_{1}}\left(\varphi_{1}\right) \cdots \Psi_{r_{N}}\left(\varphi_{N}\right) \in \mathbb{Z}[\underline{t}] .
$$

For $h \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$ with Gregory-Newton coefficients $\alpha_{\underline{r}}$, we put

$$
\Psi^{h}(f):=\sum_{\underline{r} \in \mathbb{N}^{N}} \alpha_{\underline{r}} \Psi_{\underline{r}}(f) \in \mathbb{Z}_{K}[\underline{t}]
$$

For $x \in\{0,1\}^{n}$, we have

$$
\Psi_{\underline{r}}(x)=\prod_{k=1}^{N}\binom{\varphi_{k}(x)}{r_{k}}
$$

so using (2) we get

$$
\begin{aligned}
\Psi^{h}(f)(x) & =\sum_{\underline{r}} \alpha_{\underline{r}} \Psi_{\underline{r}}(f)(x)=\sum_{\underline{r}} \alpha_{\underline{r}}\binom{\varphi_{1}(x)}{r_{1}} \ldots\binom{\varphi_{N}(x)}{r_{N}} \\
& =h\left(\varphi_{1}(x) e_{1}+\ldots+\varphi_{N}(x) e_{N}\right)=h(f(x))
\end{aligned}
$$

Step 2: For $1 \leq j \leq r$, let $h_{j} \in \operatorname{Int}\left(\mathbb{Z}_{K}, \mathbb{Z}_{K}\right)$ have degree $\operatorname{pr}\left(\overline{B_{j}}\right)$ and cover $\overline{B_{j}}$. Put

$$
F:=\prod_{j=1}^{r} \Psi^{h_{j}}\left(P_{j}\right) \quad(\bmod \mathfrak{p}) \in \mathbb{Z}_{K} / \mathfrak{p}[\underline{t}]=\mathbb{F}_{q}[\underline{t}]
$$

Note that

$$
\operatorname{deg}(F) \leq \sum_{j=1}^{r} \operatorname{deg} \Psi^{h_{j}}\left(P_{j}\right) \leq \sum_{j=1}^{r}\left(\operatorname{deg}\left(h_{j}\right) \sum_{k=1}^{n} \operatorname{deg}\left(\varphi_{j, k}\right)\right)=S
$$

Here is the key observation: for $x \in\{0,1\}^{n}$, if $F(x) \neq 0$, then for all $1 \leq j \leq r$ we have $\mathfrak{p} \nmid \Psi^{h_{j}}\left(P_{j}\right)(x)=h_{j}\left(P_{j}(x)\right)$, so $P_{j}(x)\left(\bmod \mathfrak{p}^{d_{j}}\right) \notin \overline{B_{j}}$, and thus $x \in Z$.
Step 3: For all $1 \leq j \leq r$ we have $P_{j}(0)=0$ and $h_{j} \in \mathcal{U}(\mathfrak{p}, 0)$, so $h_{j}(0) \notin \mathfrak{p}$, so

$$
F(0)=\prod_{j=1}^{r} \Psi_{j}^{h}\left(P_{j}(0)\right)=\prod_{j=1}^{r} h_{j}\left(P_{j}(0)\right) \quad(\bmod \mathfrak{p})=\prod_{j=1}^{r} h_{j}(0) \quad(\bmod \mathfrak{p}) \neq 0
$$

Applying Alon-Füredi to F, we get

$$
\# Z \geq \#\left\{x \in\{0,1\}^{n} \mid F(x) \neq 0\right\} \geq 2^{n-\operatorname{deg} F} \geq 2^{n-S}
$$

completing the proof of Theorem 1.5.

References

[AF93] N. Alon and Z. Füredi, Covering the cube by affine hyperplanes. Eur. J. Comb. 14 (1993), 79-83.
[BC15] A. Brunyate and P.L. Clark, Extending the Zolotarev-Frobenius approach to quadratic reciprocity. Ramanujan J. 37 (2015), 25-50.
[CC] P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials. Mathematical Surveys and Monographs, 48. American Mathematical Society, Providence, RI, 1997.
[CFS14] P.L. Clark, A. Forrow and J.R. Schmitt, Warning's Second Theorem with restricted variables. Combinatorica 37 (2017), 397-417.
[Cl14] P.L. Clark, The Combinatorial Nullstellensätze Revisited. Electronic Journal of Combinatorics. Volume 21, Issue 4 (2014). Paper \#P4.15.
[Cl18] P.L. Clark, Fattening up Warning's Second Theorem. http://alpha.math.uga.edu/~pete/Main_Theorem. pdf
[Ne71] A.A. Nečaev, The structure of finite commutative rings with unity. Mat. Zametki 10 (1971), 679-688.
[Va14] L. Varga, Combinatorial Nullstellensatz modulo prime powers and the parity argument. Electron. J. Combin. 21 (2014), no. 4, Paper 4.44, 17 pp.
[Wa35] E. Warning, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11 (1935), 76-83.

