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Abstract. We give a version of Ax-Katz’s p-adic congruences and Moreno-Moreno’s

p-weight refinement that holds over any finite commutative ring of prime character-
istic. We deduce this from a purely group-theoretic result that gives a lower bound

on the p-adic divisibility of the number of simultaneous zeros of a system of maps

fj : A → Bj from a fixed “source” finite commutative group A of exponent p to
varying “target” finite commutative p-groups Bj . Our proof combines Wilson’s proof

of Ax-Katz over Fp with the functional calculus of Aichinger-Moosbauer.

1. Introduction

This is the second in a sequence of papers in which we attempt a synthesis and further de-
velopment of work of Wilson [Wi06] and of Aichinger and Moosbauer [AM21]. Whereas in
the first paper [CS21] we applied arithmetic results of Weisman [We77] and Wilson [Wi06]
to answer a purely algebraic problem posed by Aichinger-Moosbauer, in this paper the
process is reversed: we use the algebraic work of [CS21] along with Aichinger-Moosbauer’s
functional calculus to deduce arithmetic results. In particular we give a purely group-
theoretic result that implies the theorem of Ax-Katz in the case of systems of polynomial
equations over a prime finite field Fp and the theorem of Moreno-Moreno on systems of
polynomial equations over a finite field Fq.

1.1. Notation and Terminology. We denote by P the set of (positive) prime numbers,
write N for the set of non-negative integers, and put Z+ := N \ {0}. We endow the set

Ñ := N ∪ {−∞,∞}

with the most evident total ordering, in which −∞ is the least element and ∞ is the
greatest element. The symbol −∞ is also used as the degree of the zero polynomial,
which explains our restriction to nonzero polynomials or functions in some theorems.

Throughout, q = pN denotes a positive integer power of a prime number p and Fq shall
denote “the” (unique up to isomorphism) finite field of order q. For n ∈ Z \ {0}, we
denote by ordq(n) the largest power of q that divides n; we also put ordq(0) = ∞.

In this paper, rings are not necessarily commutative. We say that a ring R is a do-
main if for all x, y ∈ R, xy = 0 implies x = 0 or y = 0. A rng is like a ring but not
necessarily having a multiplicative identity. If R,R1, . . . , Rr are sets, such that each of
the sets R1, . . . , Rr contains a distinguished element denoted 0, and if f1 : Rn→ R1, . . . ,
fr : Rn→ Rr are functions (possibly given as polynomials), we also define

Z(f1, . . . , fr) = ZRn(f1, . . . , fr) :=
{
x ∈ Rn | f1(x) = 0, . . . , fr(x) = 0

}
.

1



2 PETE L. CLARK AND UWE SCHAUZ

1.2. Chevalley-Warning and Ax-Katz. We begin by recalling the following results of
Chevalley-Warning and Ax-Katz.

Theorem 1.1. Let p ∈ P and q := pN. Let f1, . . . , fr ∈ Fq[t1, . . . , tn] be nonzero polyno-
mials. If Z := ZFn

q
(f1, . . . , fr) and

∑r
j=1 deg(fj) < n , then

a) ordp(#Z) ≥ 1 (Chevalley-Warning Theorem [Ch35], [Wa35]),

b) ordq(#Z) ≥
⌈
n−

∑r
j=1 deg(fj)

maxr
j=1 deg(fj)

⌉
(Ax-Katz Theorem [Ax64], [Ka71]).

Theorem 1.1b) in the case of one polynomial was proved in 1964 by J. Ax [Ax64], while
the general case was proved in 1971 by N.M. Katz [Ka71]. Also in [Ax64], Ax gave a
strikingly simple ten line proof of Theorem 1.1a). There is certainly no known ten line
proof of Theorem 1.1b): Ax’s proof for one polynomial used methods of algebraic number
theory – Jacobi sums and Stickelberger’s congruence – while Katz’s proof of the general
case used some sophisticated arithmetic geometry – zeta functions and p-adic cohomology.
An Ax-style proof of Theorem 1.11.1b) was given by D. Wan [Wa89], while Hou [Ho05]
gave a short deduction of Theorem 1.11.1b) from the r = 1 case. Also D.J. Katz [Ka12]
proved a result in coding theory that implies Theorem 1.1b).

What if we replace Fq by a finite ring R? If R is finite commutative and principal
(i.e., every ideal of R is principal), then for each prime number p the largest power of p
dividing #ZRn(f1, . . . , fr) for all polynomials f1, . . . , fr ∈ R[t1, . . . , tn] of given positive
degrees was determined: for r = 1 by Marshall-Ramage [MR75] and in general by D.J.
Katz [Ka09].

A finite commutative ring is Artinian, hence is a finite product of finite local Artinian
rings, each of which must have prime power order. In this way we immediately reduce to
the case of finite rings of prime power order. Most such rings are however not principal,
and there had been no known analogue of Chevalley-Warning – let alone of Ax-Katz –
over any finite non-principal ring until the following recent result.

Theorem 1.2. (Aichinger-Moosbauer [AM21, Thm. 12.6]) Let R be a finite rng of order
a power of a prime number p, and let f1, . . . , fr ∈ R[t1, . . . , tn] be nonzero polynomials.
If Z := ZRn(f1, . . . , fr) and

∑r
i=1 deg(fi) < n , then

ordp(#Z) ≥ 1.

Our first main result gives a version of Ax-Katz for all finite rngs of exponent p.

Theorem 1.3 (Ring-Theoretic Prime Ax-Katz Theorem). Let R be a finite rng with
underlying additive group (R,+) of prime exponent p, so (R,+) ∼=

(
(Z/pZ)N,+

)
for some

N ∈ Z+. Let f1, . . . , fr ∈ R[t1, . . . , tn] be nonzero polynomials. If Z := ZRn(f1, . . . , fr),
then

ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 deg(fj)

)
maxrj=1 deg(fj)

⌉
.

Remark 1.4. If we take R to be the finite field FpN of order pN, the conclusion of
Theorem 1.3 is that

(1) ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 deg(fj)

)
maxrj=1 deg(fj)

⌉
,
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while the Ax-Katz Theorem yields the p-adic congruence

(2) ordp(#Z) ≥ N ordpN (#Z) ≥ N

⌈
n−

∑r
j=1 deg(fj)

maxrj=1 deg(fj)

⌉
.

The latter placement of the ceiling functions is more favorable, as the lower bound in (2)
is better than the lower bound in (1) if N > 1. This is why we speak of Theorem 1.3 as
a generalization of the “Prime Ax-Katz Theorem” and not of the Ax-Katz Theorem.

Moreno-Moreno [MM95] used the Prime Ax-Katz Theorem as input to give a different p-
adic congruence for polynomial systems over any finite field Fq that takes into account the
p-weight degrees of the polynomials. When q > p the Moreno-Moreno p-adic congruences
neither imply nor are implied by the Ax-Katz p-adic congruences: cf. [MM95, Thm. 0-1].
In §4 we will give a p-weight version of Theorem 1.3 that generalizes the Moreno-Moreno
p-adic congruences from Fq to any finite commutative ring of prime exponent.

Theorems 1.2 and 1.3 follow from deeper group-theoretic results, as we now explain.

1.3. The Aichinger-Moosbauer Functional Calculus. In their recent work [AM21],
Aichinger-Moosbauer developed a fully fledged calculus of finite differences for functions
f : A → B, where A and B are commutative groups. When A and B are R-vector
spaces, this subject has a long pedigree, going back at least to work of Fréchet [Fr09].
More recent works addressing the same topic include Leibman [Lei02] – who works with
not necessarily commutative groups – and Laczkovich [La04] – who surveys and works to
synthesize some of the prior literature. Neverthless, though the idea of such a calculus
was not new, Aichinger-Moosbauer’s work is strikingly elegant, systematic and useful.

We denote by BA the set of all functions f : A → B. It is a commutative group under
pointwise addition. For each a ∈ A, we define a difference operator ∆a ∈ End(BA) by

∆af : x 7−→ f(x+ a)− f(x).

These endomorphisms all commute. Following Aichinger-Moosbauer, we assign to each

f ∈ BA a functional degree fdeg(f) ∈ Ñ as follows:

• We put fdeg(f) = −∞ if and only if f = 0.1

• For n ∈ N, we say that fdeg(f) ≤ n if ∆a1 · · ·∆an+1f = 0 for all a1, . . . , an+1 ∈ A. If
this holds for some n ∈ N, then fdeg(f) is the least n for which it holds.

• If fdeg(f) ≤ n holds for no n ∈ N, then we put fdeg(f) = ∞.

In other words, if we set sup(∅) := −∞, then

(3) fdeg(f) = sup
{
n ∈ N | ∃a1, . . . , an ∈ A, ∆a1 · · ·∆anf ̸= 0

}
.

For commutative groups A and B and d ∈ N, we put

Fd(A,B) := {f ∈ BA | fdeg(f) ≤ d},

and we also put

F(A,B) := {f ∈ BA | fdeg(f) < ∞}.

1Aichinger-Moosbauer in [AM21] assign the functional degree 0 to the zero function. Here we follow
the convention of [CS21]. It certainly makes no mathematical difference.
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As introduced in [AM21, §2] and also discussed in [CS21, §3], if Z[A] is the integral
group ring of A, then the commutative group BA has a canonical Z[A]-module structure
determined by the product

[a]f : x 7−→ [a]f(x) := f(x+ a)

of scalars of the form [a] ∈ Z[A] and vectors f ∈ BA. In view of this, we may equally well
view ∆a as the element [a]− [0] of Z[A], since this element acts on BA in the previously
defined way. We write e(B) for the exponent exp(B) if this number is finite and set
e(B) := 0 otherwise. This means e(B) ̸= 0 if and only if there exists an N ∈ Z+ such
that Nb = 0 for all b ∈ B, and then e(B) = exp(B) is the least such N . With that
definition, BA is canonically a Z/e(B)Z-module, so we may also view ∆a as living in the
group ring (Z/e(B)Z)[A].

The functional degree gives a notion of “polynomial function of degree d” even when
there is no ring in sight. Moreover the notion of functional degree is partially compatible
with the degree of an actual polynomial function, in the following sense:

Lemma 1.5. Let R be a rng, let f be a polynomial over R in n variables, and let
E(f) ∈ RRn

be the associated function. Then fdeg(E(f)) ≤ deg(f).

Proof. This is [AM21, Lemma 12.5]. □

Lemma 1.5 shows that any discrepancy between the functional degree and the degree of a
polynomial map will only make Chevalley-Warning /Ax-Katz type results stated in terms
of the functional degree stronger than their classical analogues.

Here is the group-theoretic result of Aichinger-Moosbauer that underlies Theorem 1.2.

Theorem 1.6 (Group-Theoretic Chevalley-Warning Theorem).
Let N,m,α1, . . . , αm, n, β1, . . . , βn, r ∈ Z+, let p ∈ P, and let

A :=

m⊕
i=1

Z/pαiZ, B :=

n⊕
i=1

Z/pβiZ

be finite commutative p-groups. Let f1, . . . , fr : AN → B be nonzero functions. If Z :=
ZAN (f1, . . . , fr) and( r∑

j=1

fdeg(fj)

)( n∑
i=1

(pβi− 1)

)
<

( m∑
i=1

pαi − 1

)
N,

then

ordp(#Z) ≥ 1.

Proof. This is [AM21, Thm. 12.2]. □

Applying Theorem 1.6 with A = B = (R,+), the additive group of a finite rng of order
a power of p and using Lemma 1.5, we deduce Theorem 1.2.

Here is the main result of this paper.
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Theorem 1.7. Let N, r, β1, . . . , βr ∈ Z+, let p ∈ P, and put A := (Z/pZ)N. For each
1 ≤ j ≤ r, let fj ∈ (Z/pβjZ)A be a nonzero function. If Z := ZA(f1, . . . , fr), then

ordp(#Z) ≥
⌈
N −

∑r
j=1

pβj−1
p−1 fdeg(fj)

maxrj=1 pβj−1 fdeg(fj)

⌉
.

Remark 1.8. The codomains of the maps fj in Theorem 1.7 can easily be generalized
from cyclic p-groups Z/pβjZ to arbitrary finite commutative p-groups Bj. If, for each
1 ≤ j ≤ r,

Bj =

K(j)⊕
k=1

Z/pβj,kZ with βj,1 ≥ · · · ≥ βj,K(j) ≥ 1 ,

then each of the given maps fj : A → Bj can be composed with the coordinate projection
πk : Bj → Z/pβj,kZ =: Bj,k , for 1 ≤ k ≤ K(j). This yields functions fj,k := πk ◦ fj with

max
1≤k≤K(j)

(
fdeg(fj,k)

)
= fdeg(fj) .

Evidently, fj(x) = 0 for all j if and only if fj,k(x) = 0 for all j and k. So, applying
Theorem 1.7 to the family of all maps fj,k : A → Bj,k that are nonzero, we get

ordp(#Z(f1, . . . , fr)) ≥
⌈
N −

∑r
j=1 fdeg(fj)

∑K(j)
k=1

pβj,k−1
p−1

maxrj=1 pβj,1−1 fdeg(fj)

⌉
.

This result may be viewed as a generalization of Theorem 1.7, which we recover by taking
each Bj to be cyclic. In practice, however, this result loses information from Theorem
1.7 in that for each j we use only max1≤k≤K(j)

(
fdeg(πk ◦ fj)

)
instead of the individual

functional degrees of the maps πk ◦ fj .

We also have the following corollary, which generalizes Theorem 1.3:

Corollary 1.9 (Group-Theoretic Prime Ax-Katz Theorem). Let N,n, r ∈ Z+, and put
A := (Z/pZ)N. Let f1, . . . , fr ∈ AAn

be nonzero functions. If Z := ZAn(f1, . . . , fr), then

ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 fdeg(fj)

)
maxrj=1 fdeg(fj)

⌉
.

Proof. Let Ã := An ∼= (Z/pZ)nN . For 1 ≤ k ≤ N , let πk : A → Z/pZ be the kth
coordinate projection. For 1 ≤ j ≤ r and 1 ≤ k ≤ N , put

fj,k := πk ◦ fj ∈ (Z/pZ)A
n

= (Z/pZ)Ã, with fdeg(fj,k) ≤ fdeg(fj)

according to [CS21, Lemma 3.8b)]. For x ∈ An, we have fj(x) = 0 for all j if and only
if fj,i(x) = 0 for all j and i. So, applying Theorem 1.7 to to the family of all maps

fj,k ∈ (Z/pZ)Ã that are nonzero, we get

ordp(#Z) ≥ · · · ≥
⌈
Nn−

∑r
j=1

∑N
k=1 fdeg(fj)

maxrj=1 fdeg(fj)

⌉
=

⌈
N
(
n−

∑r
j=1 fdeg(fj)

)
maxrj=1 fdeg(fj)

⌉
. □

If R is a finite rng with underlying additive group (R,+) finite of exponent p, then
applying Corollary 1.9 with A = (R,+) and using Lemma 1.5, we deduce Theorem 1.3.
Combining it instead with a p-weight analogue of Lemma 1.5 (Proposition 4.3), we will
get our p-weight improvement of Theorem 1.3 that recovers the Moreno-Moreno Theorem.
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Remark 1.10. In an earlier version of our work, Corollary 1.9 was our main result,
but switching to Theorem 1.7 made the proof easier: cf. Remark 1.8. The idea to this
improvement arose from a draft manuscript [GGZ] that D. Grynkiewicz sent us in March
of 2022. These results are also contained in the arxiv preprint [Gr22]. The statement of
our Theorem 1.7 is directly inspired by [GGZ, Thm. 1.3.22], which is closely related to
Theorem 1.7 but involves sums over residue systems modulo p and reductions modulo pow-
ers of p of polynomials f1, . . . , fr ∈ Z[t1, . . . , tN ] rather than arbitrary functions between
commutative p-groups. Moreover, in a later draft of the same manuscript, Grynkiewicz,
Geroldinger and Zhong give a weighted version of their result.

1.4. Structure of the Paper.

• In §2 we give a canonical series representation for a map f : A → B between com-
mutative groups of finite functional degree when A is finitely generated. Moreover, for
commutative domains of characteristic 0, we explore the connection between functions of
finite functional degree and integer-valued polynomials.

• In §3 we carry over a lemma of Wilson to our setting and then prove Theorem 1.7.

• In §4 we discuss p-weights and prove a p-weight improvement of Theorem 1.3.

• In §5 we discuss work of the present authors [CS23] and of Clark-Triantafillou [CT23]
that continues and complements the present work.

1.5. Acknowledgments. Thanks to E. Aichinger for his interest in our present work,
which led to the communication of the results of Geroldinger-Grynkiewicz-Zhong. Thanks
to D. Grynkiewicz for showing us two early versions of [GGZ]. Thanks to A.C. Cojocaru,
N. Jones and N. Triantafillou for stimulating conversations.

2. The Fundamental Representation for f ∈ BZN

2.1. Preliminaries. Let N ∈ Z+, and let B be a commutative group. In this section we
give a canonical series representation for functions f ∈ F(ZN, B) in terms of binomial
polynomials: (

t
d

)
:= t(t−1)···(t−d+1)

d! ∈ Q[t] if d ∈ Z+.

Obviously,
(
x
d

)
is an integer if x ∈ N, as it is the usual binomial coefficient. But,

(
x
d

)
is

always an integer, also for negative x ∈ Z: see e.g. [CC, p. 19]. The binomial polynomials(
t
d

)
∈ Q[t] are integer-valued polynomials as they give rise to functions

(
x
d

)
from Z to

Z. We also take
(
x
0

)
: Z → Z to be the constant function 1. And, we define

(
x
d

)
: Z → Z

to be the zero function for negative d ∈ Z. We discuss this kind of functions in §2.3.

For 1 ≤ i ≤ n, let ei be the ith standard basis vector of ZN. We write ∆i for the

difference operator ∆ei of BZN

.

Lemma 2.1. Let B be a subgroup of the commutative group B, and let f ∈ BZN

. Then
the following properties are equivalent:

(i) f(ZN ) ⊆ B.
(ii) ∆if(ZN ) ⊆ B for all 1 ≤ i ≤ N , and f(0) ∈ B.

Proof. (i) ⇒ (ii) is immediate.

(ii) ⇒ (i): For any x ∈ ZN and any 1 ≤ i ≤ N , we have

∆if(x) = f(x+ ei)− f(x) ∈ B,
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which shows that f(x+ ei) ∈ B ⇐⇒ f(x) ∈ B. Since f(0) ∈ B, an immediate inductive
argument now shows that f(x) ∈ B for all x ∈ ZN . □

For n := (n1, . . . , nN ) ∈ NN, we put

∆n := ∆n1
1 · · ·∆nN

N .

Because e1, . . . , eN is a set of generators for ZN, the following characterization of the
functional degree follows from or [AM21, Lemmas 2.2], or from [CS21, Lemma 3.11]:

Proposition 2.2. Let f ∈ BZN

and define sup(∅) := −∞. Then

fdeg(f) = sup
{
|n| | n ∈ NN, ∆nf ̸= 0

}
.

If we compare this expression with the following definition of the j-th partial functional

degree for functions f in BZN

, which is given by

(4) fdegj(f) := sup
{
n ∈ N | ∆n

j f ̸= 0
}
,

it is easy to see that, for each 1 ≤ j ≤ N ,

fdegj(f) ≤ fdeg(f) ≤
N∑
i=1

fdegi(f).

All this can easily be generalized to domains that are a direct product of arbitrary
commutative groups A1, . . . , AN , as in [AM21, §5]. Regarding this product as an internal

direct product, we define the j-th partial functional degree of a function f ∈ B
⊕N

i=1 Ai by

fdegj(f) := sup
{
n ∈ N | ∃ a1, . . . , an ∈ Aj , ∆an · · ·∆a1f ̸= 0

}
.

It follows from [AM21, Lemmas 2.2] or [CS21, Lemma 3.11] that

(5) fdeg(f) = sup
{
n ∈ N | ∃ a1, . . . , an ∈ A1 ∪ · · · ∪An, ∆an

· · ·∆a1
f ̸= 0

}
From this we easily get [AM21, Theorem 5.2], for which we present a shortened proof:

Theorem 2.3. Let A1, . . . , AN , B be commutative groups, and let f ∈ B
⊕N

i=1 Ai . Then,
for each 1 ≤ j ≤ N ,

fdegj(f) ≤ fdeg(f) ≤
N∑
i=1

fdegi(f).

Proof. We may assume f ̸= 0, as the inequality holds otherwise. Comparing (3) and

(4), we see that fdegj(f) ≤ fdeg(f). To prove fdeg(f) ≤
∑N

i=1 fdegi(f) =: n ≥ 0, let
a1, . . . , an+1 ∈ A1 ∪ · · · ∪ An. By (5), it suffices to show that ∆an+1

· · ·∆a1
f = 0. As

n+1 >
∑N

i=1 fdegi(f), there exists a 1 ≤ j ≤ N such that more than nj := fdegj(f) of the
elements a1, . . . , an+1 lie inside Aj . Without loss of generality, assume a1, . . . , anj+1 ∈ Aj .
Then ∆anj+1

· · ·∆a1
f = 0, by (4), and ∆an+1

· · ·∆a1
f = 0 follows. □

For the convenience of the reader, we also restate [CS21, Lemma 2.2].

Lemma 2.4. Let A and B be commutative groups. Let a ∈ A, n ∈ N and let ∆n
a be the

n-fold product ∆a · · ·∆a ∈ EndBA. For all f ∈ BA and all x ∈ A, we have

∆n
af(x) =

n∑
i=0

(−1)i
(
n
i

)
f(x+ (n− i)a) =

n∑
j=0

(−1)n−j
(
n
j

)
f(x+ ja).

We recall an old result for comparison and future use:
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Lemma 2.5. Let R be a commutative domain, let f ∈ R[t1, . . . , tn], and let Xi be a
nonempty subset of R with #Xi > degi(f), for each 1 ≤ i ≤ n. If f(x) = 0 for all
x ∈ X :=

∏n
i=1 Xi , then f = 0.

Proof. We can immediately reduce to the case in which #Xi = degi(f) + 1 for all i.
Then the case R = Z is [AT92, Lemma 2.1], and their proof works verbatim over any
commutative domain. More general results appear in [Sc08, §2]; see also [Cl14, Thm.
12]. □

The following result is related to Lemma 2.5 and also to [Sc14, Thm. 2.5].

Lemma 2.6. Let N ∈ Z+, let B be a commutative group and let f ∈ BZN

. For each
1 ≤ i ≤ N , let ai ∈ Z, di ∈ N with di ≥ fdegi(f), and put

[ai, ai + di] := {ai, ai + 1, . . . , ai + di}.

If f(x) = 0 for all x ∈
∏N

i=1[ai, ai + di] , then f = 0.

Proof. We proceed by induction on N .

Base Case: Suppose that N = 1, i.e. f ∈ BZ, fdeg(f) ≤ d1 and f(a) = f(a+ 1) = · · · =
f(a + d1) = 0. Applying Lemma 2.4 with d1 + 1 in the place of that lemma’s n, with 1
in the place of that lemma’s a, and with a − 1, resp. a, in the place of that lemma’s x,
we can deduce f(a − 1) = 0, rsp. f(a + d1 + 1) = 0. Repeating this argument we get
· · · = f(a− 2) = f(a− 1) = 0 and 0 = f(a+ d1 + 1) = f(a+ d1 + 2) = · · · , i.e. f = 0.

Induction Step: Suppose that N ≥ 2 and that the result holds for all f ∈ F(ZN−1, B).
For 0 ≤ j ≤ dN , put

gj := f( ·, . . . , ·, aN + j) : ZN−1→ B.

Then we have fdegi gj ≤ di for all 1 ≤ i ≤ N − 1 and gj vanishes identically on∏N−1
i=1 [ai, ai + di], so induction gives gj = 0 for all 0 ≤ j ≤ dN . It follows that for

each fixed (x1, . . . , xN−1) ∈ ZN−1 the function f(x1, . . . , xN−1, ·) : Z → B vanishes on
[aN , aN + dN ], and it has functional degree at most dN . So, by the base case, these
functions are identically zero, which means that f is identically zero. □

Lemma 2.7. Let B be a commutative group, and let f : NN −→ B be a function. If
∆nf(0) = 0 for all n ∈ NN, then f is the zero function.

Proof. Given a function f : NN → B with ∆nf(0) = 0 for all n ∈ NN , we prove the
formally stronger conclusion ∆mf(x) = 0 for all x,m ∈ NN. We do this by induction on
|x| := x1 + · · ·+ xN .

Base Case: If |x| = 0 then x = 0 and ∆mf(x) = ∆mf(0) = 0 for all m ∈ NN, by the
assumption on f .

Induction Step: Let 0 ̸= x ∈ NN and assume that the statement holds for all z ∈ NN

with |z| < |x|, and for all m ∈ NN. As x ̸= 0, there is an index i such that xi ≥ 1. Hence,
by the induction hypothesis, for each m ∈ NN,

∆mf(x− ei) = 0 and ∆m+eif(x− ei) = 0,
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so that

∆mf(x) = ∆mf(x)−∆mf(x− ei)

= ∆i(∆
mf)(x− ei)

= ∆m+eif(x− ei)

= 0,

completing the induction step and the proof. □

2.2. The Fundamental Representation. We can now prove the following result, on
which much of the rest of this work is based.

Theorem 2.8. Let B be a commutative group, and let f ∈ BZN

.

a) There is a unique function a• : NN → B such that

f(x) =
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
an for all x ∈ NN.

The function values of a• are given by the formula an = ∆nf(0).

b) If d := fdeg(f) < ∞, then

f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
∆nf(0) for all x ∈ ZN.

Proof. a) To prove the uniqueness, assume there is an a• with f(x) :=
∑(

x1

n1

)
· · ·

(
xN

nN

)
an

for all x ∈ NN. For each x = (x1, . . . , xN ) ∈ NN we have
(
x1

n1

)
· · ·

(
xN

nN

)
= 0 unless ni ≤ xi

for all 1 ≤ i ≤ N , so for each fixed x we have a finite sum. For all n ∈ Z+, we have(
x+1
n

)
−
(
x
n

)
=

(
x

n−1

)
. From this it follows that, for all m,n ∈ N,

∆m

((
x1

n1

)
· · ·

(
xN

nN

))
(0) =

N∏
i=1

(
0

ni −mi

)
=

{
1 if m = n ,

0 otherwise.

With that, if we apply ∆m to f(x) =
∑(

x1

n1

)
· · ·

(
xN

nN

)
an and evaluate at 0 , we see that

am = ∆mf(0). So, the function a• : n 7→ ∆nf(0) is the only possible choice.

To show that this choice indeed yields the function f , define f̂ : NN → B by

f̂(x) :=
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
∆nf(0).

By what we have already proven about the uniqueness of coefficients, for each n ∈ NN, the

coefficient ∆nf(0) must be equal to ∆nf̂(0), i.e. ∆n(f − f̂)(0) = 0. With that, Lemma

2.7 yields f − f̂ = 0, i.e. f = f̂ , as desired.

b) We have ∆nf(0) = 0 for all n ∈ NN with |n| > d, so

f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
∆nf(0) for all x ∈ NN.

The right hand side of this equation, however, defines a function P : ZN → B. And, f−P
has functional degree at most d and vanishes on NN. So, by Lemma 2.6, f = P . □
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A finite linear combination
∑

|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
an of multivariate binomial polynomials(

x1

n1

)
· · ·

(
xN

nN

)
with coefficients an in the group B, as in Theorem 2.8b), was called a

polyfract in [Sc14]. Due to the uniqueness of the coefficients an in Theorem 2.8a), we

do not have to distinguish between a polyfract
∑

|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
an , where the xi may

be seen as symbolic variables, and the corresponding polyfractal function

f : ZN −→ B , x 7−→
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
an .

It is also clear that the functional degree of such a map is given by

(6) fdeg(f) = sup
{
|n| ≤ d | n ∈ NN, an ̸= 0

}
,

where sup(∅) := −∞. This follows from the fact that

∆mi
i

(
xi

ni

)
=

(
xi

ni −mi

)
and the observation that xi 7→

(
xi

ni−mi

)
is not the zero map whenever mi ≤ ni. So if we

combine Theorem 2.8b) with formula (6), we obtain the following corollary, which allows
us to calculate the functional degree in a more localized fashion – at least if the functional
degree is known to be finite.

Corollary 2.9. Let B be a commutative group, and let f ∈ BZN

. If fdeg(f) < ∞ then

fdeg(f) = fdeg0(f) := sup
{
|n| | n ∈ NN, ∆nf(0) ̸= 0

}
.

In this corollary, the point 0 can be replaced by any other point a ∈ ZN, since fdeg([a]f) =
fdeg(f). If fdeg(f) = ∞, however, we may have fdeg0(f) < ∞. This is because fdeg0(f)

depends only on the function values f(x) at points x ∈ NN, whereas the requirement
fdeg(f) < ∞ allows only one unique extension from NN to ZN – the extension given by
the formula in Theorem 2.8b).

We also see that in the case B = Q, the series representation in Theorem 2.8b) provides

a polynomial f̂ ∈ Q[t1, . . . , tN ] that describes f :

Corollary 2.10. If f ∈ QZN

has finite functional degree, then there exists a polynomial

f̂ ∈ Q[t1, . . . , tN ] with deg(f̂) = fdeg(f) and f̂(x) = f(x) for all x ∈ ZN.

Remark 2.11.

a) For B a finitely generated commutative group, the series representation in Theo-
rem 2.8b) was explored in [Sc14, §2].

b) The series expansion of Theorem 2.8 is a discrete analogue of the Taylor series
expansion of a smooth function f : RN → R. Theorem 2.8a) implies a uniqueness
property: for any two functions a•, b• : NN → B that each map all but finitely
many elements of the domain to 0, define associated functions

fa• : ZN → B, x 7→
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
an

and

fb• : ZN → B, x 7→
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
bn.
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Then fa• = fb• if and only if a• = b•. This is a discrete analogue of the fact that
in a power series expansion centered at 0, the coefficients are determined by the
partial derivatives at 0.

c) Just as it is immediate to also consider Taylor series expansions centered at a
nonzero point a ∈ RN, there are also representations of f ∈ F(ZN, B) based on
the values ∆nf(a) for any fixed a ∈ ZN.

Next we recall some notation and a result from [CS21, §3.2]. If ε : A → A and µ : B → B′

are homomorphisms of commutative groups, then we have group homomorphisms

ε∗ : BA−→ BA′
, f 7−→ ε∗f := f ◦ ε

and
µ∗ : BA−→ (B′)A, f 7−→ µ∗f := µ ◦ f.

It is easy to see that ε∗ is injective if and only if ε is surjective and that µ∗ is surjective
if and only if µ is surjective.

The following result is [CS21, Lemma 3.9].

Lemma 2.12 (Homomorphic Functoriality I). Let ε : A′ → A and µ : B → B′ be
homomorphisms of commutative groups, and let f ∈ BA. Then:

a) fdeg ε∗f ≤ fdeg f , with equality if ε is surjective;
b) fdegµ∗f ≤ fdeg f , with equality if µ is injective.

The following conceptually similar result is a consequence of Theorem 2.8.

Corollary 2.13 (Homomorphic Functoriality II). Let B,B′ be commutative groups, let

µ : B → B′ be a homomorphism, and let f ∈ BZN

.

a)

µ∗f(x) =
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
µ(∆nf(0)) for all x ∈ NN.

b) If d := fdeg(µ∗f) < ∞, then

µ∗f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
µ(∆nf(0)) for all x ∈ ZN.

Proof. The map µ∗ : BZN → (B′)Z
N

is a homomorphism of Z[ZN ]-modules. Therefore,
for all n ∈ NN,

(7) ∆nµ∗f = ∆n(µ∗f) = µ∗(∆
nf) = µ∗∆

nf .

From this and Theorem 2.8a) it follows that, for all x ∈ NN,

µ∗f(x) =
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
∆nµ∗f(0) =

∑
n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
µ(∆nf(0)) ,

establishing part a). Applying Theorem 2.8b) to µ∗f and using (7) again, we get that,
for all x ∈ ZN,

µ∗f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
∆nµ∗f(0) =

∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·

(
xN

nN

)
µ(∆nf(0)) .

□
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2.3. Polynomial Functions and Integer-Valued Polynomials. In this section we
use Theorem 2.8 to compare integer-valued polynomials to functions of finite functional
degree. The results of this section are not used elsewhere in this paper. However, integer-
valued polynomials and their reductions occur in Wilson’s proof of Ax-Katz over Fp

[Wi06, Lemma 4], and the technique of representing functions between residue rings of Z
via integer-valued polynomials also occurs in a work of Varga [Va14] generalizing Warn-
ing’s Second Theorem. It seems potentially useful to know that these techniques can be
viewed in terms of the Aichinger-Moosbauer calculus.

Let R be a non-trivial commutative ring, let N ∈ Z+, and consider the evaluation
map

E : R[t1, . . . , tn] −→ RRN

, f 7−→ (x 7→ f(x)).

This is an R-algebra homomorphism; its image is, by definition, the ring of polynomial
functions on RN, which we denote by P(RN, R). The map E is never an isomorphism,
though the manner of the failure depends upon R. If R is finite then R[t1, . . . , tn] is

infinite while RRN

is finite, so E has an infinite kernel. If R is infinite, then E is not
surjective [Cl14, Thm. 4.3]. More precisely:

Proposition 2.14. Let R be a non-trivial commutative ring, and let N ∈ Z+. Then the
following properties are equivalent:

(i) The evaluation map E : R[t1, . . . , tN ] −→ RRN

is surjective.

(ii) The function

δ0,1 ∈ RRN

, x 7−→

{
1 if x = 0

0 if x ̸= 0

lies in the image of E.

(iii) The ring R is a finite field.

Proof. To show that (iii) implies (i), which then entails (ii), assume that R = Fq is a
finite field. In this case the study of E was the essence of Chevalley’s proof of Theorem
1.1a) in [Ch35]. He showed that E is surjective, with kernel ⟨tq1 − t1, . . . , t

q
N − tN ⟩. For

English language proofs of modest generalizations, see [Cl14, Cor. 2.5 and Prop. 4.4].

To show that ¬(iii) implies ¬(ii), which then entails ¬(i), we distinguish two cases.
Case 1, R is not a field: In this case, there exists a proper ideal I in R, and then
every function F in the image P(RN, R) of E is congruence-preserving module I: if
x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN are such that xi ≡ yi (mod I) for all 1 ≤ i ≤ N ,
then f(x) ≡ f(y) (mod I). But, if a ∈ I\{0}, then a ≡ 0 (mod I) while

δ0,1(0, . . . , 0) = 1 ̸≡ 0 = δ0,1(a, . . . , a) (mod I).

So δ0,1 is not congruence-preserving and does not lie in the image of E.
Case 2, R is not finite: In this case, [CS21, Thm. 4.9a)] gives fdeg(δ0,1) = ∞. So by
Lemma 1.5, δ0,1 is not a polynomial function, and does not lie in the image of E. □

If R is an infinite commutative ring that is not a field, we just gave two proofs (in Cases 1

and 2) that δ0,1 ∈ RRN \P(RN, R). The second proof showed more: that δ0,1 has infinite
functional degree. In general, for non-trivial commutative rings R, Lemma 1.5 says that

(8) P(RN, R) ⊆ F(RN, R) ⊆ RRN

.
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This leads to a more interesting version of the question of when E is surjective.

Question 2.15. For which non-trivial commutative rings R and numbers N ∈ Z+ do we

have P(RN, R) = F(RN, R) – i.e., when is every function f ∈ RRN

of finite functional
degree a polynomial function?

Here is an answer to Question 2.15 when R is finite.

Proposition 2.16. For non-trivial finite commutative rings R, the following properties
are equivalent:

(i) P(RN, R) = F(RN, R) for all N ∈ Z+.

(ii) P(RN, R) = F(RN, R) for some N ∈ Z+.

(iii) R ∼=
∏r

i=1 Fp
αi
i

for some r, α1, . . . , αr ∈ Z+ and prime numbers p1 < · · · < pr.

Proof. If R is a finite commutative ring of order pα1
1 · · · pαr

r (for primes p1 < · · · < pr),
then we have a unique internal direct product decomposition R =

∏r
i=1 ri , with ri a ring

of order pαi
i [Cl-CA, Thm. 8.37] – the pi-primary component of R. We have a natural

ring isomorphism

R[t1, . . . , tn] =

r∏
i=1

ri[t1, . . . , tn]

and also, by [AM21, Thm. 9.4] or [CS21, Thm. 3.13], a natural decomposition

F(RN, R) =

r∏
i=1

F(rNi , ri).

Using these decompositions we get that

P(RN, R) = F(RN, R) ⇐⇒ ∀1 ≤ i ≤ N, P(rNi , ri) = F(rNi , ri).

So we reduce to the case in which R has prime power order and, by [AM21, Thm. 9.1],

RRN

= F(RN, R).

Hence, our problem reduces to the previous problem of when the evaluation map is
surjective. By Proposition 2.14, this holds if and only if R is a finite field. So, independent
of N ∈ Z+: P(RN, R) = F(RN, R) if and only if, for all 1 ≤ i ≤ r, ri is a finite field Fp

αi
i
,

i.e. R ∼=
∏r

i=1 Fp
αi
i
. □

When R is infinite we do not know a complete answer to Question 2.15, but we will
exhibit some positive and negative results.

Lemma 2.17. Let h ∈ F(QN,Q). If h|ZN = 0 then h = 0.

Proof. Let D ∈ Z+, and define hD ∈ QZN

by

hD(x) := h
(x1

D
, . . . ,

xN

D

)
.

The function hD is obtained by precomposing h with a group endomorphism of (QN,+), so
hD ∈ F(QN,Q) by [AM21, Thm. 4.3]. Hence, by Corollary 2.10, there exists a polynomial

ĥD(t) ∈ Q[t1, . . . , tN ] with ĥD(x) = hD(x) for all x = (x1, . . . , xN ) ∈ ZN. Applying

Lemma 2.5 to ĥD with X = (DZ)N gives ĥD = 0. Thus for all D ∈ Z+ we have
h|(D−1Z)N = 0, so h = 0. □
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Proposition 2.18. For all N ∈ Z+, we have P(QN,Q) = F(QN,Q).

Proof. That P(QN,Q) ⊆ F(QN,Q) is clear. To show that F(QN,Q) ⊆ P(QN,Q) let
g ∈ F(QN,Q), say with fdeg(g) ≤ d ∈ N. By Corollary 2.10, there exists a polynomial
ĝ ∈ Q[t1, . . . , tN ] with deg(ĝ) ≤ d such that ĝ(x) = g(x), for all x = (x1, . . . , xN ) ∈ ZN.
So h := E(ĝ)− g is zero on ZN and fdeg(h) ≤ d by [AM21, Lemma 3.2]. By Lemma 2.17
it follows that h = 0, which implies E(ĝ) = g, i.e. g ∈ P(QN,Q). □

From now until the end of §2.3 we will assume that R is a commutative domain of charac-

teristic 0, with fraction fieldK. In this case the evaluation map E : R[t1, . . . , tN ] −→ RRN

is injective [Cl14, Prop. 4.5] and thus induces an isomorphism R[t1, . . . , tN ]
∼−→ P(RN, R).

It is a result of Aichinger-Moosbauer [AM21, Lemma 10.4] that for all f ∈ K[t1, . . . , tn]
we have fdeg(E(f)) = deg(f). We will show that the same conclusion holds over R and,
in fact, a little more. Namely, we consider the subring of integer-valued polynomials

Int(RN, R) :=
{
f ∈ K[t1, . . . , tN ] | E(f)(RN ) ⊆ R

}
⊆ K[t1, . . . , tN ].

Proposition 2.19. Let R be a commutative domain. If f ∈ Int(RN, R) and ER(f) :=(
x 7→ f(x)

)
∈ RRN

, then

(9) fdeg(ER(f)) ≤ deg(f),

with equality if R has characteristic 0.

Proof. Let f ∈ Int(RN, R). By Lemma 2.12, domain restriction and codomain restriction
does not increase the functional degree, so Lemma 1.5 yields

fdeg(ER(f)) ≤ fdeg(E(f)) ≤ deg(f).

Now, assume that R has characteristic 0 and that d := deg(f) ≥ 0. To complete the
proof, it suffices to show that fdeg(ER(f)) ≥ d. As deg(f) = d, a monomial tn1

1 tn2
2 · · · tnN

N

with n1 + n2 + · · · + nN = d occurs in the standard expansion of f . If the operators
∆i are applied to polynomials in the same way as they are applied to functions, then
deg(∆n1

1 · · ·∆nN

N f) = deg(f) − (n1 + · · · + nN ) = 0, because each application of a ∆i

reduces the degree by exactly 1, as the quotient field of R has characteristic 0. This
shows that the function ∆n1

1 · · ·∆nN

N ER(f) = ER(∆
n1
1 · · ·∆nN

N f) is constant but not zero,
so that fdeg(ER(f)) ≥ d, indeed. □

If R is a commutative domain of characteristic p > 0, strict inequality can occur in (9).
To get an equality one needs to use the p-weight degree and, when R is finite, reduced
polynomials: see §4.3.

For a commutative domains R, Proposition 2.19 gives a refinement of (8):

(10) P(RN, R) ⊆ Int(RN, R) ⊆ F(RN, R) ⊆ RRN

.

This yields a negative answer to Question 2.15 whenever Int(RN, R) ⊋ P(RN, R), which
certainly holds for R = Z as e.g. t(t− 1)/2 is an integer-valued polynomial that does not
lie in Z[t]. This leads us to the following result:

Theorem 2.20.

a) B :=
{(

x1

n1

)
· · ·

(
xn

nN

)
| n ∈ NN

}
is a basis of the Z-module F(ZN,Z).

b) F(ZN,Z) = Int(ZN,Z).



THE GROUP-THEORETIC PRIME AX-KATZ THEOREM 15

Proof. Part b) of Theorem 2.8 implies that B spans F(ZN,Z) as a Z-module, and part a)
of that theorem states the uniqueness property that characterizes a basis.

By Proposition 2.19, we also have Int(ZN,Z) ⊆ F(ZN,Z), and it remains to show that
F(ZN,Z) ⊆ Int(ZN,Z). The well-known fact that for all n ∈ N we have

(
x
n

)
∈ Int(Z,Z)

follows from Lemma 2.1 and induction. Since Int(ZN,Z) is a ring, we have b ∈ Int(ZN,Z)
for all b ∈ B. So,

F(ZN,Z) = ⟨B⟩Z ⊆ Int(ZN,Z). □

Theorem 2.20 implies that B is a Z-basis of the ring Int(ZN,Z) of integer-valued polyno-
mials, a result of Ostrowski [Os19]. See [CC, Ch. 11] for a general treatment of Int(RN, R)
for commutative domains R. Cahen-Chabert also address when Int(RN, R) = P(RN, R)
in [CC, §I.3], showing in particular that equality holds when every residue field of R is
infinite [CC, Cor. I.3.7], so e.g. when R is a Q-algebra. Our next result implies that, for
each N ∈ Z+, Int(RN, R) ⊊ F(RN, R) whenever R ⊋ Q is a Q-algebra.

Let us say that a ring R is a Cayley ring if the Cayley homomorphism

C : R −→ End(R,+), r 7−→ r• : x 7→ rx

is an isomorphism (equivalently, is surjective).

Example 2.21.

a) The following rings are Cayley ring:
1. prime fields, i.e. Q and the finite fields Fp with p ∈ P;
2. subrings of Q, i.e. localizations of Z, including Z and Q.

b) A commutative ring is not Cayley if it is free of rank greater than 1 as a module
over some proper subring. Thus, none of the following rings are Cayley rings:
1. non-prime fields, i.e. fields other than Q and Fp, for all p ∈ P;
2. algebras R over any field F such that F ⊊ R;
3. rings of integers ZK of number fields K ⊋ Q;
4. valuation rings of p-adic fields K ⊋ Qp, for any p ∈ P.

Proposition 2.22. Let R be a commutative domain of characteristic 0. If for some
N ∈ Z+ we have Int(RN, R) = F(RN, R), then R is a Cayley ring.

Proof. Proceeding by contraposition, suppose that R is not a Cayley ring: this means
precisely that there is a Z-linear map L : (R,+) → (R,+) that is not of the form E(f)
for a linear polynomial f ∈ R[t]. If K is the fraction field of R, then moreover L is not
of the form E(f) for a linear polynomial f ∈ K[t]: if f = ax + b with a, b ∈ K, then
evaluating at 0 gives b = 0 and evaluating at 1 gives a = L(1) ∈ R. Since fdeg(L) = 1,
by Proposition 2.19. L is therefore not given by any integer-valued polynomial. This
establishes the result for N = 1. For each N ∈ Z+, the function LN : RN → R with
LN (x1, . . . , xN ) = L(x1) is again Z-linear, but it is not the restriction to RN of any
K-linear polynomial function. So LN ∈ F(RN, R) \ Int(RN, R). □

Proposition 2.22 and Example 2.21 give lots of examples in which Int(RN, R) ⊊ F(RN, R):
e.g. any field K ⊋ Q. On the other hand, using similar arguments to the ones we have
made, one can show that Int(RN, R) = F(RN, R) for any subring R of Q.
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2.4. Lifting. Suppose that µ : B → B′ is a surjective homomorphism of commutative
groups and f ∈ F(ZN, B′). By Theorem 2.8b), there is a unique function a• : NN → B′

that is nonzero in at most finitely many points, we say finitely nonzero, such that

f(x) =
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
an for all x ∈ ZN.

By a lift of a• to B (through µ) we will mean a finitely nonzero function ã• : NN → B
such that µ ◦ ã• = a•. A proper lift is a lift ã• that moreover satisfies, for all n ∈ NN,

ãn = 0 ⇐⇒ an = 0 .

Proper lifts always exist, and they are unique if and only if µ : B → B′ is an isomorphism

or a• is identically 0. To a proper lift ã• we attach the function f̃ ∈ BZN

defined by

f̃(x) :=
∑

n∈NN

(
x1

n1

)
· · ·

(
xN

nN

)
ãn .

We see that fdeg(f̃) = sup{|n| | ãn ̸= 0} = sup{|n| | an ̸= 0} = fdeg(f). Combined with
Corollary 2.13, we have

µ ◦ f̃ = f and fdeg(f̃) = fdeg(f) .

We also call f̃ a proper lift of f , and may conversely say that f is the reduction of f̃ .

Moreover, the concept of a proper lift can be strengthened if B and B′ are direct
products (or direct sums) of families (Bj)j∈J and (B′

j)j∈J , respectively, and if µ is the
Cartesian product (or direct product) of homomorphisms µj : Bj → B′

j . In that situ-
ation, if π̃j : B → Bj and πj : B′ → B′

j denote the corresponding projections, we have

πj ◦ µ = µj ◦ π̃j for each j ∈ J . We then say ã• : NN → B is coordinate-wise proper if
each π̃j ◦ ã• : NN → Bj is a proper lift of πj ◦ a• : NN → B′

j . Accordingly, we speak of a

coordinate-wise proper lift f̃ ∈ BZN

of f ∈ F(ZN, B′) if each π̃j ◦ f̃ is a proper lift of πj ◦f .
This kind of proper lifts always exist, as well, as one can construct the coordinate-wise
lifts π̃j ◦ ã• first, and then combine them into one lift ã•.

Combining this discussion with Theorems 2.8 and 2.20, we find that for each N,m ∈ Z+,
every f ∈ F(ZN, Z/mZ) is the reduction of an integer-valued polynomial of degree
fdeg(f). In particular, this applies when for some p ∈ P we have m = pβ and f is
(pα1, . . . , pαN )-periodic for some α1, . . . , αN ∈ Z+, i.e., if f lies in the image of the natural

map (Z/pβZ)
⊕N

i=1 Z/pαiZ → (Z/pβZ)ZN

, a situation that we are about to examine in more
detail.

Remark 2.23. The fact that functions Z/pαZ → Z/pβZ can (after pullback via ε : Z →
Z/pαZ) be represented by reductions of integer-valued polynomials is applied in work of
Varga [Va14]. In [CW18] this work was generalized to maps of the form ZK/pα → ZK/pβ

where K is a number field, ZK is its ring of integers, and p is a nonzero prime ideal of ZK

(so that ZK/pα and ZK/pβ are finite rings of p-power order for some p ∈ P). Perhaps
these works could be refined using considerations from the present paper and [CS21].
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2.5. Representation of Functions Between Finite Commutative p-Groups. If A
is a finitely generated commutative group, then for some N ∈ Z+ we have a surjective
group homomorphism ε : ZN → A. Indeed, up to a harmless isomorphism, we may write

A as
⊕N

i=1 Z/aiZ with parameters 1 ̸= ai ∈ N and then take

ε : ZN →
N⊕
i=1

Z/aiZ , (x1, . . . , xN ) 7→ (x1 + a1Z, . . . , xN + aNZ) .

As recalled in Lemma 2.12, the pullback map ε∗ restricts to an injective group homomor-
phism

ε∗ : F(A,B) ↪→ F(ZN, B) .

and thus every f ∈ F(A,B) has the same functional degree as its pullback to ZN, which
by Theorem 2.8b) has a canonical series representation.

For commutative groups A and B, we recall the quantity

δ(A,B) := sup{fdeg(f) | f ∈ BA},

introduced in [AM21] and further studied in [CS21]. It depends only on the isomorphism
type of A and B, and moreover, as shown in [CS21, Cor. 4.3],

δ(A,B) = δ(A,Z/e(B)Z).

When both A and B are nontrivial and finite, [CS21, Thm. 4.9] says that δ(A,B) < ∞ if
and only if A and B are p-groups for the same p ∈ P. Moreover, by [CS21, Thm. 4.9c)],
if p ∈ P and N, β, α1, . . . , αN ∈ Z+, then

δ
( N⊕
i=1

Z/pαiZ,Z/pβZ
)
= δp

(
α, β) ,

where

δp
(
α, β) :=

N∑
i=1

(pαi− 1) + (β − 1)(p− 1)pmax{α1,...,αN}−1.

Theorem 2.24. Let p ∈ P, let N,α1, . . . , αN ∈ Z+, and put A :=
⊕N

i=1 Z/pαiZ. Let B
be a commutative group, and let F : ZN → B be the pullback of a function f : A → B.

a) If β ∈ Z+ is such that pβf(a) = 0 for all a ∈ A, then

F (x) =
∑
n∈NN

|n|≤δp(α,β)

(
x1

n1

)
· · ·

(
xN

nN

)
∆nF (0) for all x ∈ ZN.

b) For all h ∈ Z+ and all n ∈ Nn with |n| > δp(α, h),

∆nF (x) ∈ phB for all x ∈ ZN.

c) Let µh : B → B/phB be the quotient map. The conclusion of part b) continues
to hold for every function F : ZN → B such that µh ◦ F : ZN → B/phB is the
pullback of a function g : A → B/phB.



18 PETE L. CLARK AND UWE SCHAUZ

Proof. a) Let B := ⟨f(A)⟩ be the subgroup generated by the image of f . Because f(a) ∈
B[pβ ] for all a ∈ A, we have that B = B[pβ ]. We may view f as a function with codomain
B, which by [CS21, Cor. 3.10b)] does not change its functional degree, so we may assume
that B = B. So by [CS21, Thm. 4.9c)], we get

fdeg(F ) = fdeg(f) ≤ δp(α, β),

and the result follows from Theorem 2.8.

b) Let µh : B → B/phB be the quotient map. The map µh ◦ f : A → B/phB has
functional degree at most δp(α, h), hence so does its pullback to ZN, which is µh ◦F . For
all n ∈ NN with |n| > δp(α, h) this means µh ◦ ∆nF = ∆n(µh ◦ F ) = 0, which implies
that, for all x ∈ ZN, µh(∆

nF (x)) = µh ◦∆nF (x) = 0, i.e. ∆nF (x) ∈ phB.

c) The proof of the previous part used only that µh ◦ F is pulled back from A. □

We deduce following results, the latter being a vector-valued analogue of the former.

Corollary 2.25. Let p ∈ P, and let N, β, α1, . . . , αN ∈ Z+. Let f :
⊕N

i=1 Z/pαiZ →
Z/pβZ be any function, let F : ZN → Z/pβZ be the pullback of f , and let F̃ : ZN → Z be
a proper lift of F . Then:

a)

F̃ (x) =
∑
n∈NN

|n|≤δp(α,β)

(
x1

n1

)
· · ·

(
xN

nN

)
∆nF̃ (0) for all x ∈ ZN.

b) For all h ∈ Z+ and all n ∈ Nn with |n| > δp(α, h),

ph
∣∣ ∆nF̃ (0) .

Proof. a) Since fdeg(F̃ ) = fdeg(F ) = fdeg(f) ≤ δp(α, β), this follows from Theorem 2.8b).

b) Assuming n > δp(α, h), we prove that ph divides ∆nF̃ (0). If h ≥ β then

fdeg(F̃ ) = fdeg(F ) = fdeg(f) ≤ δp(α, β) ≤ δp(α, h) < |n| ,

so that ∆nF̃ (0) = 0, which is divisible by ph. Hence, we may assume 1 ≤ h < β. We show

that, in this case, Theorem 2.24c) applies to F̃ and Z in the place of F and B, which

then yields ∆nF̃ (0) ∈ phZ , i.e. ph | ∆nF̃ (0), as desired. With the canonic surjections

µβ : Z → Z/pβZ and µβ
h : Z/pβZ → Z/phZ, it suffices to recognize µh ◦ F̃ as the pullback

of g := µβ
h ◦ f . Since F is the pullback of f , however, we obtain µβ

h ◦F as the pullback of

µβ
h ◦ f . But, µβ

h ◦ F = µh ◦ F̃ , because µh = µβ
h ◦ µβ and µβ ◦ F̃ = F , as F̃ is a lift of F .

So, indeed, µh ◦ F̃ is the pullback of the function g. □

Corollary 2.26. Let p ∈ P, let N, β, α1, . . . , αN ∈ Z+. For each j in a nonempty index

set J , let βj ∈ {1, . . . , β}. Let f :
⊕N

i=1 Z/pαiZ →
∏

j∈J Z/pβjZ be any function, let

F : ZN →
∏

j∈J Z/pβjZ be the pullback of f , and let F̃ : ZN →
∏

j∈J Z = ZJ be a proper
lift of F . Then:

a)

F̃ (x) =
∑
n∈NN

|n|≤δp(α,β)

(
x1

n1

)
· · ·

(
xN

nN

)
∆nF̃ (0) for all x ∈ ZN.

b) If F̃ is coordinate-wise proper then, for all h ∈ Z+ and all n with |n| > δp(α, h),

ph divides each coordinate of ∆nF̃ (0) ∈ ZJ.
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Proof. a) The exponent of
∏

j∈J Z/pβjZ divides pβ , so that

fdeg(F̃ ) = fdeg(F ) = fdeg(f) ≤ δp(α, β) ,

and Theorem 2.8b) applies to give the result.

b) Fix j ∈ J and assume F̃ as in the hypothesis. Then π̃j ◦ F̃ is a proper lift of πj ◦ F ,
where πj :

∏
i∈J Z/pβiZ → Z/pβjZ and π̃j : ZJ → Z are the coordinate projections. So,

the functions F̃j := π̃j ◦ F̃ , Fj := πj ◦ F , and fj := πj ◦ f meet the requirements of
Corollary 2.25b), which yields

ph | ∆nF̃j(0) = ∆n(π̃j ◦ F̃ )(0) = (π̃j ◦∆nF̃ )(0) = π̃j(∆
nF̃ (0)) . □

3. The Group-Theoretic Ax-Katz Theorem

3.1. Wilson’s Lemma. Let N ∈ Z+. For s, t1, . . . , tN ∈ N, we put

[s) := {0, 1, . . . , s− 1} and [st) :=

N∏
i=1

[sti).

With Z(p) we denote the set of rational numbers of non-negative p-adic valuation. For
each x ∈ R, we set

x := max(x, 0).

Now, let A and B be commutative groups, and let S ⊆ A be a finite subset. Following
[KP12], for each f ∈ BA, we define∫

S

f :=
∑
x∈S

f(x) ∈ B.

The following result is an equivalent (but simpler) reformulation of [Wi06, Lemma 4].

Lemma 3.1. Let p ∈ P and let N, β ∈ Z+. If f ∈ ZZN

is such that

fdeg(f) < (p− 1)(N − β + 1) ,

then ∫
[p)N

f ≡ 0 (mod pβ).

Proof. Step 1: If 0 ≤ i ≤ p− 2 then
∑

x∈Z/pZ x
i = 0: indeed, upon choosing a generator

ζ of the cyclic group (Z/pZ)×, we get∑
x∈Z/pZ

xi =

p−2∑
j=0

(ζi)j =
(ζi)p−1 − 1

ζi − 1
= 0 .

It follows that if i1, . . . , iβ ∈ [p− 1) then∑
(x1,...,xβ)∈[p)β

xi1
1 · · ·xiβ

β =

β∏
j=1

∑
xj∈[p)

x
ij
j ≡ 0 (mod pβ).

We deduce that if g ∈ Z(p)[x1, . . . , xβ ] has degj(g) ≤ p− 2 for all 1 ≤ j ≤ β, then∫
[p)β

g =
∑

(x1,...,xβ)∈[p)β

g(x1, . . . , xβ) ≡ 0 (mod pβ).
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Step 2: If the result holds for a set of functions f1, . . . , fm then it holds for the Z-
submodule of ZZN

that they generate. Because of this and Theorem 2.8, it suffices to
show that the result holds for the polynomial

f :=

(
x1

n1

)
· · ·

(
xN

nN

)
∈ Q[x1, . . . , xN ] ,

where (n1, . . . , nN ) ∈ NN is arbitrary with |n| < (p−1)(N−β+1). Under that requirement
we have

#
{
1 ≤ j ≤ N | nj < p− 1

}
≥ β ,

for if not, we would get |n| =
∑N

j=1 nj ≥ (p − 1)(N − β + 1). So, we may assume,
without loss of generality, that nj < p − 1 for all 1 ≤ j ≤ β. Then, for every fixed
y = (yβ+1, . . . , yN ) ∈ ZN−β ,

gy(x1, . . . , xβ) := f(x1, . . . , xβ , yβ+1, . . . , yN ) ∈ Z(p)[x1, . . . , xβ ],

and degj(gy) = nj ≤ p− 2 for all 1 ≤ j ≤ β. So, using Step 1, we get∫
[p)N

f =
∑

y∈[p)N−β

∑
(x1,...,xβ)∈[p)β

gy(x1, . . . , xβ) ≡ 0 (mod pβ). □

3.2. The Proof of Theorem 1.7.

Proof of Theorem 1.7. Without lose of generality, we may assume that, for 1 ≤ j ≤ r,

dj := fdeg(fj) > 0 .

We set
M := max

1≤j≤r
pβj−1dj ∈ Z+

and put

β :=

⌈
N −

∑r
j=1

pβj−1
p−1 dj

max
1≤j≤r

pβj−1dj

⌉
=

⌈
N −

∑r
j=1

pβj−1
p−1 dj

M

⌉
.

We have

β <
N −

∑r
j=1

pβj−1
p−1 dj

M
+ 1

and thus

(11)

r∑
j=1

pβj − 1

p− 1
dj < N −M(β − 1) .

For 1 ≤ j ≤ r, we define χj : Z → Z/pβZ by

χj(x) :=

{
1 if x ≡ 0 (mod pβj ),

0 otherwise.

Since χj is pulled back from Z/pβjZ, it has finite functional degree; let χ̃j be a proper
lift of χj from Z/pβZ to Z . Let χ : Zr → Z/pβZ be the tensor product

⊗r
j=1 χj of the

χj , and let χ̃ : Zr→ Z be the tensor product
⊗r

j=1 χ̃j of the χ̃j : for all (x1, . . . , xr) ∈ Zr,

χ(x1, . . . , xr) :=

r∏
j=1

χj(xj) =

r∏
j=1

χ̃j(xj) + pβZ = χ̃(x1, . . . , xr) + pβZ .
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For 1 ≤ j ≤ r, let Fj : ZN → Z/pβjZ be the pullback of fj and let F̃j be a proper lift
of Fj from Z/pβjZ to Z. Then, with the bijection [p)N → (Z/pZ)N given by x 7→ [x] :=
(xj + pZ)Nj=1, we have for all x ∈ [p)N,

χ(F̃1(x), . . . , F̃r(x)) =

{
1 if [x] ∈ Z(f1, . . . , fr),

0 otherwise.

Thus, the desired conclusion that pβ divides #Z(f1, . . . , fr) is equivalent to∫
[p)N

χ(F̃1, . . . , F̃r) = 0 ∈ Z/pβZ ,

and thus also to

(12) ordp

(∫
[p)N

χ̃(F̃1, . . . , F̃r)

)
≥ β .

By Corollary 2.25, there is a function cj : N → Z with cj(n) = 0 for all but finitely many
n ∈ N, such that, for all x ∈ Z,

χ̃j(x) =
∑
n∈N

(
xj

n

)
cj(n) ,

and, for each h ∈ Z+,

(13) nj > pβj − 1 + (h− 1)(p− 1)pβj−1 =⇒ ph
∣∣ cj(nj) .

Therefore, for all x ∈ ZN,

χ̃(F̃1(x), . . . , F̃r(x)) = χ̃1(F̃1(x)) · · · χ̃r(F̃r(x))

=
∑
n∈Nr

(
F̃1(x)

n1

)
· · ·

(
F̃r(x)

nr

)
c1(n1) · · · cr(nr) .

Hence, ∫
[p)N

χ̃(F̃1, . . . , F̃r) =

∫
[p)N

∑
n∈Nr

(
F̃1

n1

)
· · ·

(
F̃r

nr

)
c1(n1) · · · cr(nr)

=
∑
n∈Nr

c1(n1) · · · cr(nr)

∫
[p)N

(
F̃1

n1

)
· · ·

(
F̃r

nr

)
.

Thus to prove (12), it suffices to show that, for each n = (n1, . . . , nr) ∈ Nr,

(14) ordp
(
c1(n1) · · · cr(nr)

)
+ ordp

(∫
[p)N

(
F̃1

n1

)
· · ·

(
F̃r

nr

))
≥ β.

Now, for each 1 ≤ j ≤ r, let hj be the unique integer with

(15) pβj − 1 + (hj − 1)(p− 1)pβj−1 < nj ≤ pβj − 1 + hj(p− 1)pβj−1.

Then (13) gives ordp(cj(nj)) ≥ hj . So, on one hand,

(16) ordp
(
c1(n1) · · · cr(nr)

)
=

r∑
j=1

ordp(cj(nj)) ≥
r∑

j=1

hj =: α ,
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and then (14) certainly holds if α ≥ β. On the other hand, if α < β then β − 1− α ≥ 0.

Hence, as fdeg(F̃j) = fdeg(Fj) = fdeg(fj) ≤ dj , using [AM21, Thm. 4.3 & Lem. 6.1], (15),
the definition of M, (11) and that M ≥ 1, we get

fdeg

((
F̃1

n1

)
· · ·

(
F̃r

nr

))
≤

r∑
j=1

njdj

≤ (p− 1)

r∑
j=1

(pβj − 1

p− 1
+ hjp

βj−1
)
dj

≤ (p− 1)
( r∑
j=1

pβj − 1

p− 1
dj +Mα

)
< (p− 1)

(
N −M(β − 1− α)

)
≤ (p− 1)

(
N − (β − α) + 1

)
.

Hence, Lemma 3.1 implies

(17) ordp

(∫
[p)N

(
F̃1

n1

)
· · ·

(
F̃r

nr

))
≥ β − α .

Combining (16) and (17) we get (14), which completes the proof of Theorem 1.7. □

4. p-weights

4.1. p-weight degrees. Let p ∈ P. Each d ∈ N can be written in the form d =
∑N

i=0 aip
i

with uniquely determined coefficients ai ∈ [p). Using this base p expansion, we define the
p-weight of d as

σp(d) = σp,N(d) :=

N∑
i=0

ai.

We have σp(d) ≤ d with equality if and only if d ∈ [p). For fixed p and large d, we have
σp(d) = O(log d), so the p-weight of d can be much smaller than d itself.

Let R be a commutative rng. The p-weight degree of a nonzero monomial term
c td1

1 · · · tdn
n with c ∈ R \ {0} is defined to be

σp(c t
d1
1 · · · tdn

n ) :=

n∑
i=1

σp(di),

and the p-weight degree of a nonzero polynomial f ∈ R[t1, . . . , tn] is the maximum p-
weight degree of its nonzero monomial terms. We also set σp(0) := −∞. A polynomial
has positive degree if and only if it has positive p-weight degree.

We will also need the product
⊗n

i=1 fi of functions f1 : A1 → R , . . . , fn : An → R
on commutative groups A1, . . . , An, where R is again a rng, which is defined by

n⊗
i=1

fi :

n∏
i=1

Ai → R , (x1, . . . , xn) 7→ f1(x1) · · · fn(xn) .
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In this setting, we have the following lemmas.

Lemma 4.1. For each 1 ≤ j ≤ n, let aj,1, . . . , aj,K(j) ∈ Aj ⊆
∏n

i=1 Ai , and let
(a1, . . . , aK) be a permutation of all K := K(1) + · · ·+K(n) given elements aj,k . Then

∆a1 · · ·∆aK

(
f1 ⊗ · · · ⊗ fn

)
=

(
∆a1,1 · · ·∆a1,K(1)

f1
)
⊗ · · · ⊗

(
∆an,1 · · ·∆an,K(n)

fn
)
.

Proof. If a = (a, 0) ∈ A1 = A1 × {0} ⊆ A1 ×A2 and (x1, x2) ∈ A1 ×A2 then(
∆a(f1 ⊗ f2)

)
(x1, x2) = f1(x1 + a)f2(x2)− f1(x1)f2(x2)

= (f1(x1 + a)− f1(x1))f2(x2)

=
(
(∆af1)⊗ f2

)
(x1, x2) .

Hence, ∆a(f1 ⊗ f2) = (∆af1)⊗ f2 . More generally, if a ∈ Aj then

∆a(f1 ⊗ · · · ⊗ fn) = f1 ⊗ · · · ⊗ fj−1 ⊗ (∆afj)⊗ fj+1 ⊗ · · · ⊗ fn .

From this, and the commutativity of the operators ∆aj,k
, the stated equation follows. □

Lemma 4.2. We have

fdegj
( n⊗
i=1

fi
)
≤ fdeg(fj) for all 1 ≤ j ≤ n .

In particular,

fdeg
( n⊗
i=1

fi
)
≤

n∑
i=1

fdeg(fi) .

Equality holds in both inequalities, as shown in [AM21, Lemma 6.2], if R is a domain and
the functions f1, . . . , fn are all nonzero.

Proof. Assume 1 ≤ j ≤ n. Lemma 4.1 shows that ∆aj,1
· · ·∆aj,K(j)

(
f1 ⊗ · · · ⊗ fn

)
= 0

whenever K(j) > fdeg(fj), because

∆aj,11· · ·∆aj,K(j)

(
f1⊗· · ·⊗fn

)
= f1⊗· · ·⊗fj−1⊗· · ·⊗

(
∆aj,1 · · ·∆aj,K(j)

fj
)
⊗fj+1⊗· · ·⊗fn

and ∆aj,1
· · ·∆aj,K(j)

fj = 0 if K(j) > fdeg(fj). This means fdegj
(⊗n

i=1 fi
)
≤ fdeg(fj). If

we combine these inequalities with Theorem 2.3, we get

fdeg
( n⊗
i=1

fi
)
≤

n∑
i=1

fdegi
( n⊗
j=1

fj
)
≤

n∑
i=1

fdeg(fi) .

It remains to show that

fdeg
( n⊗
i=1

fi
)
≥

n∑
i=1

fdeg(fi)

whenever R is a domain and K(j) := fdeg(fj) ≥ 0, for all 1 ≤ j ≤ n. To prove this, we
choose for each 1 ≤ j ≤ n elements aj,1, . . . , aj,K(j) ∈ Aj such that

∆aj,1
· · ·∆ajK(j)

fj ̸= 0 .

Then, by Lemma 4.1, and because R is a domain,

∆a1,1 · · ·∆an,K(n)

(
f1⊗· · ·⊗fn

)
=

(
∆a1,1 · · ·∆a1,K(1)

f1
)
⊗· · ·⊗

(
∆an,1 · · ·∆an,K(n)

fn
)
̸= 0 ,

which means that fdeg
(⊗n

i=1 fi
)
≥ K(1) + · · ·+K(n) =

∑n
i=1 fdeg(fi), indeed. □

The next result is the first half of [AM21, Theorem 10.3] in a more general setting.
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Proposition 4.3. Let p ∈ P, and let R be a commutative ring of characteristic p. Let
f ∈ R[t1, . . . , tn] be a polynomial, with associated function E(f) ∈ RRn

. Then

(18) fdeg(E(f)) ≤ σp(f) .

Proof. Since fdeg(E(f)) = −∞ if E(f) = 0, we may assume that E(f) ̸= 0. By [AM21,
Lemma 3.2] we have fdeg(f1+f2) ≤ max

(
fdeg(f1), fdeg(f2)

)
. Since σp(f) is the maximum

of the p-weight degrees of the nonzero monomial terms of f , we reduce to the case of a
monomial term

f = c td1
1 · · · tdn

n , c ∈ R \ {0} .
Using [AM21, Lemmas 6.1] and Lemma 4.2, we get

fdeg(c td1
1 · · · tdn

n ) ≤ fdeg(c) +

n∑
i=1

fdeg(E(tdi
i )) =

n∑
i=1

fdeg(E(tdi
i )) .

We have reduced to the univariate monomial case and must show: for all d ∈ Z+ we have

fdeg(E(td)) ≤ σp(d) .

Writing d =
∑N

i=0 aip
i with ai ∈ [p) and using [AM21, Lemma 6.1], we get

fdeg(E(td)) = fdeg

( N∏
i=0

(E(tp
i

))ai

)
≤

N∑
i=0

ai fdeg(E(tpi)) =

N∑
i=0

ai = σp(d) ,

since each E(tp
i

) is a nonzero group homomorphism and thus has functional degree 1. □

4.2. A Generalized Moreno-Moreno Theorem. Combining Corollary 1.9 and Propo-
sition 4.3 we get:

Theorem 4.4. Let R be a finite commutative ring of prime characteristic p and order
pN. Let f1, . . . , fr ∈ R[t1, . . . , tn] be nonzero polynomials. If Z := ZRn(f1, . . . , fr), then

ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 σp(fj)

)
maxrj=1 σp(fj)

⌉
.

Proof. The result trivially holds if all functions E(fj) are zero. If some but not all
functions E(fj) are zero, it is enough to prove the theorem for the set of functions fj
with E(fj) ̸= 0, as that yields a lower bound at least as good as the stated one. So we
may assume that Corollary 1.9 applies. The resulting inequality

ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 fdeg(E(fj))

)
maxrj=1 fdeg(E(fj))

⌉
remains true if every functional degree fdeg(E(fj)) is replaced by an upper bound for
fdeg(E(fj)), such as the one given in Proposition 4.3. □

If in Theorem 4.4 we take R to be the finite field FpN , we recover the Moreno-Moreno
Theorem [MM95, Thm. 1].

Theorem 4.5 (Moreno-Moreno). Let p ∈ P and q := pN . Let f1, . . . , fr ∈ Fq[t1, . . . , tn]
be nonzero polynomials. If Z := ZFq (f1, . . . , fr), then

ordp(#Z) ≥
⌈
N
(
n−

∑r
j=1 σp(fj)

)
maxrj=1 σp(fj)

⌉
.
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4.3. Functional degrees of polynomial functions in positive characteristic. Let
R be a commutative ring of prime characteristic p. Must we have equality in (18)? When
R is a field, this is answered by [AM21, Thm. 10.3]. In this result Aichinger-Moosbauer
show that fdeg(E(f)) = σp(f) whenever R is an infinite field of characteristic p. Later
in this section we will show that this result continues to hold whenever R is an infinite
domain of characteristic p.

The case of R = Fq is more closely related to the main results in this paper: a strict
inequality fdeg(E(f)) < σp(f) would yield a further improvement of the Ax-Katz Theo-
rem. It turns out that strict inequality can occur, however in a way that leads only to
improvements of the Ax-Katz Theorem that had already been well understood.

To explain, we call a nonzero monomial term cd t
d1
1 · · · tdn

n ∈ Fq[t1, . . . , tn] reduced if
dj ≤ q − 1 for all 1 ≤ j ≤ n . (Note the strong dependence on the ground field.) A
polynomial is reduced if each of its nonzero monomial terms are reduced.

Just using the fact that xq = x for all x ∈ Fq, it is easy to see that to every

f ∈ Fq[t1, . . . , tn] there is a reduced polynomial f ∈ Fq[t1, . . . , tn] that induces the same

function Fn
q → Fq as f . Already in [Ch35], Chevalley showed that every function in FFn

q
q

is equal to E(f) for a unique reduced polynomial f . (For an English language proof
and some modest generalizations, see [Cl14, §2.3 and §3.1].) In particular, the polyno-
mial f alluded to above is the unique reduced polynomial inducing the same function as f .

Now for any f1, . . . , fr ∈ Fq[t1, . . . , tn], since the solution set

Z(f1, . . . , fr) := {x ∈ Fn
q | f1(x) = · · · = fr(x) = 0}

depends only on the associated functions E(f1), . . . , E(fr), we always have

Z(f1, . . . , fr) = Z(f1, . . . , fr).

One gets easy strengthenings of many results of Chevalley-Warning type – in particular
the theorems of Chevalley-Warning and Ax-Katz – by replacing f1, . . . , fr by f1, . . . , fr,
since in this process none of the degrees can increase.

The following result is part of [AM21, Thm. 10.3].

Theorem 4.6 (Aichinger-Moosbauer). Let f ∈ Fq[t1, . . . , tn] be a nonzero polynomial,

and let E(f) ∈ FFn
q

q be the associated polynomial function. Then

fdeg(E(f)) = σp(f).

Proposition 4.3 and Theorem 4.6 imply that

σp(f) = fdeg(E(f)) ≤ σp(f) ;

that is, passing to the reduced polynomial also cannot increase the p-weight degree. So,
in the setting of the Moreno-Moreno Theorem, one can improve the conclusion to

ordp(#ZFn
q
(f1, . . . , fr)) ≥

⌈
N
(
n−

∑r
j=1 σp(fj)

)
maxrj=1 σp(fj)

⌉
which by Theorem 4.6 is the optimal application of Corollary 1.9 to polynomials over Fq.
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Remark 4.7. For a reduced polynomial f ∈ Fp[t1, . . . , tn], we have deg(f) = σp(f), so
Moreno-Moreno gives no essential improvement upon Ax-Katz when q = p.

Now we prepare for our generalization of [AM21, Thm. 10.3] with the following result.

Lemma 4.8. Let A be an infinite commutative codomain that is a finitely generated Fp-
algebra. Let x1, . . . , xm ∈ A \ {0}, and let M ∈ Z+. Then there is a maximal ideal m of
A such that:

(i) x1, . . . , xm /∈ m, and
(ii) A/m is a finite field of size greater than M .

Proof. Replacing x1, . . . , xm with x := x1 · · ·xm, we reduce to the case of m = 1. Zariski’s
Lemma [Cl-CA, Thm. 11.1] implies that for every maximal ideal m of A, the field A/m is
a finite-dimensional Fp-vector space, hence a finite field. The same argument shows that
A is not itself a field; also A is a Noetherian ring [Cl-CA, Cor. 8.39]. Moreover, since A
is a finitely generated algebra over the field Fp it is a Jacobson domain [Cl-CA, Prop.
11.3b)], so

⋂
m∈MaxSpecA m = (0). In particular A has infinitely many maximal ideals,

since a finite intersection of nonzero ideals in a domain is nonzero. It follows that the
set U(x) of maximal ideals m of A such that x /∈ m is nonempty. We claim that U(x) is
moreover infinite: if on the contrary we had U(x) = {m1, . . . ,mn}, then for 1 ≤ i ≤ n
choose yi ∈ mi \{0}, and we see that xy1 · · · yn is a nonzero element of A that lies in every
maximal ideal of A: contradiction. Finally, by [Cl-CA, Thm. 22.23], in any Noetherian
ring S, for all M ∈ Z+ there are only finitely man ideals I of M such that S/I is finite of
size at most M . So in any infinite family of maximal ideals of A, the size of the residue
ring approaches infinity. □

Theorem 4.9. Let R be an infinite commutative domain of characteristic p. Let f ∈
R[t1, . . . , tn] and let E(f) ∈ P(Rn, R) be the associated polynomial function. Then

fdeg(E(f)) = σp(f).

Proof. By Proposition 4.3 it suffices to show that fdeg(E(f)) ≥ σp(f). Let K be the
fraction field of R.
Case 1, K/Fp is an algebraic field extension: This case is already covered by [AM21,
Thm. 10.3], as necessarily R = K: indeed, for every nonzero element x ∈ R there is a
positive integer nx such that xnx = 1, so x−1 = xnx−1 ∈ R.
Case 2, K/Fp is transcendental: In this case R must contain elements that are transcen-
dental over Fp: let t be such an element, and let A be the Fp-subalgebra of R generated
by t and the coefficients of f . Let a ∈ Z+. By Lemma 4.8, there is a maximal ideal m of
A that does not contain any of the coefficients of f and such that F := A/m is a finite
field F of order at least pa. Let f be the image of f in F[t1, . . . , tn]. By Lemma 2.12 we
have

fdeg(E(f)) ≥ fdeg(E(f)|An) ≥ fdeg(E(f)).

By our choice of m, the monomials appearing in f with nonzero coefficient are the same
as those appearing in f with nonzero coefficient, so σp(f) = σp(f). Choosing a larger
than max1≤i≤n degi(f) makes f F-reduced, so by Theorem 4.6 we have

fdeg(E(f)) ≥ fdeg(E(f)) = σp(f) = σp(f). □
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5. Further Work

It is natural to ask for a generalization of Theorem 1.7 in which instead of (Z/pZ)N , we
may take A to be any finite commutative p-group. Such a result will be given in the
forthcoming work [CS23]. The proof follows the same basic strategy: the p-adic divisi-
bility comes from a combination of Corollary 2.25 and a generalization of Lemma 3.1 to
sums of the form

∫∏N
i=1[p

αi )
f .

Here is a quick overview of this work: to solve the number-theoretic problem of deter-
mining ordp(

∫∏N
i=1[p

αi )
f) for

f(x) =

(
x1

n1

)
· · ·

(
xN

nN

)
in terms of n1, . . . , nN is not very difficult, but to solve the discrete optimization problem
of, for each fixed α = (α1, . . . , αN ), minimizing this quantity over all n = (n1, . . . , nN ) ∈
NN with fixed d := |n| takes more work. Then we must minimize the total p-adic divis-
ibility obtained from this and from Corollary 2.25. The answer obtained is intricate in
the general case, suggesting that these complications may be inherent to the problem.

The β = 1 case of Lemma 3.1 gives a result of Ax [Ax64]; let’s call it Ax’s Lemma.
Ax’s Lemma comprises most of the ten line proof of Chevalley-Warning referred to in the
introduction. It suggests a further problem in the Aichinger-Moosberger calculus.

Question 5.1. Let A and B be finite commutative p-groups. What is the largest d ∈ Ñ
such that for all f ∈ BA with fdeg(f) ≤ d, we have∫

A

f :=
∑
x∈A

f(x) = 0 ?

Let us call this largest possible d the summation invariant σ(A,B). In this notation,
Ax’s Lemma amounts to:

∀p ∈ P, ∀N ∈ Z+, σ
(
(Z/pZ)N, Z/pZ

)
= N(p− 1)− 1.

In the paper [CT23] the following generalization of Ax’s Lemma will be shown:

(19) ∀p ∈ P, ∀N ∈ Z+, ∀1 ≤ β ≤ N, σ((Z/pZ)N, Z/pβZ) = N(p− 1)− 1.

In [CT23] we use (19) to derive a qualitative generalization of Ax-Katz over any finite
rng R of size divisible by p: if we fix the number and degrees of polynomials f1, . . . , fr,
then ordp(#ZRN (f1, . . . , fr)) approaches infinity with the number N of variables.

Such results also follow from the main theorem of [CS23] – but the argument is differ-
ent. Unlike the proofs presented here and in [CS23], the arguments of [CT23] do not use
the fundamental representation (Theorem 2.8): they work entirely in finite characteristic.

Notice that (19) is a finite characteristic variant of Lemma 3.1, but when β > 1 the
conclusion of (19) is stronger than the conclusion of Lemma 3.1. At first this seems
strange: if in Lemma 3.1 we weakened fdeg(f) < (p−1)(N−β+1) to fdeg(f) < N(p−1)
then in general it is false that ordp(

∫
[p)N

f) ≥ β. However, to compare the two results we

must take f : (Z/pZ)N → Z/pβZ and pull it back to F : ZN → Z/pβZ, so the bound of
(19) applies only to functions F : ZN → Z/pβZ that are p-periodic, whereas Lemma 3.1
applies to all functions F : ZN → Z/pβZ. Thus in the application of Lemma 3.1 to results
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on maps between finite commutative groups, we are losing critical information, namely
periodicity properties of the functions coming from the fact that they were pulled back
from finite characteristic. This explains why our present approach also includes Theorem
2.24, which uses the periodicity properties to deduce further p-adic divisibilities coming
from the coefficients of the fundamental representation.

The two-pronged approach taken here and in [CS23] seems to be quantitatively supe-
rior to the approach via σ(A,B) alone taken in [CT23], but it would be interesting to
clarify the relationship between them.
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