# CHEVALLEY-WARNING AT THE BOUNDARY 

PETE L. CLARK, TYLER GENAO, AND FREDERICK SAIA


#### Abstract

The Chevalley-Warning Theorem is a result on the solution set of a system of polynomial equations $f_{1}, \ldots, f_{r}$ in $n$ variables over a finite field $\mathbb{F}_{q}$ in the low degree case $d:=\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right)<n$. In this note we reformulate that result in terms of fibers of the associated polynomial map and, following Heath-Brown, show that something weaker continues to hold when $d=n$. This result invites a search for homogeneous degree $n$ polynomials in $n$ variables over $\mathbb{F}_{q}$ for which the associated polynomial function $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is not surjective, and we exhibit several families of such polynomials.


## Contents

1. Chevalley-Warning 1
2. At the Boundary 4
3. A Generalization and Some Related Results 6
4. Examples 8
5. Life Beyond the Boundary 11
6. Open Questions 13

Appendix: Further Study of Homogeneous Ternary Cubic Forms 13
6.1. Singular and Reducible Cubics 14
6.2. Computational Results 16

References 17

## 1. Chevalley-Warning

Let $p$ be a prime number, let $a \in \mathbb{Z}^{+}$be a positive integer, and put $q=p^{a}$. Let $\mathbb{F}_{q}$ be "the" (unique, up to isomorphism) finite field of order $q$. Let $\mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be the ring of polynomials in variables $t_{1}, \ldots, t_{n}$ with coefficients in $\mathbb{F}_{q}$ : the elements are finite formal $\mathbb{F}_{q}$-linear combinations of monomials $t_{1}^{a_{1}} \cdots t_{n}^{a_{n}}$. The degree of such a monomial is $a_{1}+\ldots+a_{n}$, and the degree of a nonzero polynomial is the maximum degree of a monomial term that appears with nonzero coefficient. There are differing conventions on the degree of the zero polynomial: here, we define $\operatorname{deg} 0=0$, so that the degree zero polynomials are precisely the elements of $\mathbb{F}_{q}$.

Theorem 1.1 (Chevalley-Warning). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$and suppose that $d:=\sum_{j=1}^{r} d_{j}<n$. Let

$$
Z=Z\left(f_{1}, \ldots, f_{r}\right):=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mid f_{1}(x)=\ldots=f_{r}(x)=0\right\}
$$

be the solution set of the polynomial system. Then $p \mid \# Z$.

Proof. (Ax [Ax64]) If $x \in \mathbb{F}_{q}$, then $x^{q-1}=\left\{\begin{array}{ll}1 & x \neq 0 \\ 0 & x=0\end{array}\right.$. It follows that taking

$$
\chi:=\prod_{j=1}^{r}\left(1-f_{j}^{q-1}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]
$$

then for all $x \in \mathbb{F}_{q}^{n}$ we have $\chi(x)=\left\{\begin{array}{ll}1 & x \in Z \\ 0 & x \notin Z\end{array}\right.$. So as elements of $\mathbb{F}_{q}$ we have

$$
\sum_{x \in \mathbb{F}_{q}} \chi(x)=\# Z
$$

Since $\mathbb{F}_{q}$ has characteristic $p$, we see that $p \mid \# Z$ holds iff $\sum_{x \in \mathbb{F}_{q}} \chi(x)=0$. Moreover

$$
\operatorname{deg} \chi=\sum_{j=1}^{r} \operatorname{deg}\left(1-f_{j}^{q-1}\right)=(q-1) \sum_{j=1}^{r} d_{j}<(q-1) n
$$

We claim that for any polynomial $P \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ of degree less than $(q-1) n$ we have $\sum_{x \in \mathbb{F}_{q}^{n}} P(x)=0$, which will suffice to complete the proof. To establish the claim, we first observe that

$$
P \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right] \mapsto \sum_{x \in \mathbb{F}_{q}} P(x) \in \mathbb{F}_{q}
$$

is $\mathbb{F}_{q}$-linear, so it's enough to show the result for a monomial $t_{1}^{a_{1}} \cdots t_{n}^{a_{n}}$ of degree less than $(q-1) n$. We have

$$
\sum_{x \in \mathbb{F}_{q}^{n}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}=\left(\sum_{x_{1} \in \mathbb{F}_{q}} x_{1}^{a_{1}}\right) \cdots\left(\sum_{x_{n} \in \mathbb{F}_{q}} x_{n}^{a_{n}}\right)
$$

If $a_{1}+\ldots+a_{n}=\operatorname{deg}\left(t_{1}^{a_{1}} \cdots t_{n}^{a_{n}}\right)<(q-1) n$, then we must have $a_{i}<q-1$ for some $i$, so it's enough to show that if $0 \leq a_{i} \leq q-2$ then we have $\sum_{x_{i} \in \mathbb{F}_{q}} x_{i}^{a_{i}}=0$. If $a_{i}=0$ then this sum is $q$, which is 0 in $\mathbb{F}_{q}$, so suppose that $1 \leq a_{i} \leq q-2$. The group $\mathbb{F}_{q}^{\times}$is cyclic [Cl-NT, Cor. B.10]; let $\zeta$ be a generator. Then

$$
\sum_{x_{i} \in \mathbb{F}_{q}} x_{i}^{a_{i}}=\sum_{k=0}^{q-2}\left(\zeta^{k}\right)^{a_{i}}=\frac{\left(\zeta^{a_{i}}\right)^{q-1}-1}{\zeta^{a_{i}}-1}=0
$$

Theorem 1.1 can be viewed as an estimate on the size of $\# Z$, but it is not a usual "Archimedean inequality." Rather it is a " $p$-adic inequality": namely, for a nonzero ineger $n$, let $\operatorname{ord}_{p}(n)$ denote the largest power of $p$ dividing $n$. Then Theorem 1.1 gives the $p$-adic inequality $\operatorname{ord}_{p}(\# Z) \geq 1$. It is thus natural to ask for stronger $p$-adic inequalities, and we will return to address this later on.

We call Theorem 1.1 the "Chevalley-Warning Theorem" in reference to the papers of Chevalley [Ch35] and Warning [Wa35], published consecutively in the same issue of the same journal. What Chevalley proved is that under the low degree hypothesis $d<n$ we cannot have $\# Z=1$. This is already significant: if each $f_{j}$ is moreover homogeneous - that is, every nonzero monomial term has the same total degree - then the system has the trivial solution $0=(0, \ldots, 0) \in \mathbb{F}_{q}^{n}$, so Chevalley's result asserts the existence of a nontrivial solution. Specializing further to $r=1$, we get that a homogeneous polynomial over $\mathbb{F}_{q}$ in more variables than its degree
has a nontrivial solution, proving a conjecture made by Dickson [Di09] and Artin. ${ }^{1}$
The $p$-divisibility refinement was contributed by Warning, but this stronger conclusion comes just from looking more carefully at Chevalley's proof. See for instance [Cl-NT, $\S 14.2$ ] for an exposition of Chevalley's argument adapted to prove Theorem 1.1. Warning's real contribution in [Wa35] was the following result, ${ }^{2}$ which (almost!) gives a more traditional Archimedean inequality on $\# Z$.
Theorem 1.2 (Warning II). Under the hypotheses of Theorem 1.1, we have $Z=\varnothing$ or $Z \geq q^{n-d}$.
We said "almost" because Theorem 1.2 allows $Z$ to be empty. So does Theorem 1.1 , as 0 is zero modulo $p$. This is as it must be, for as soon as $d \geq 2$, the set $Z$ can indeed be empty. If $d_{j} \geq 2$ for some $1 \leq j \leq r$, let $f_{j} \in \mathbb{F}_{q}\left[t_{1}\right]$ be irreducible; otherwise we have $d_{1}=\cdots=d_{r}=1$ with $r \geq 2$, and we take $f_{1}=t_{1}, f_{2}=t_{1}+1$.

Every proof of Theorem 1.1 that we know uses the "Chevalley polynomial"

$$
\chi=\prod_{j=1}^{r}\left(1-f_{j}^{q-1}\right)
$$

Chevalley's original proof exploits the interplay between polynomials and polynomial functions and can be seen as a precursor to Alon's Combinatorial Nullstellensatz [Al99]. Ax's proof (the one we have given) is a thing of wonder that is not of the one-hit variety. His idea can be used to prove other results of ChevalleyWarning type: see e.g. [BBC19, §4].

Theorem 1.2 is not as well known as the Chevalley-Warning Theorem. We will not prove it here, though the idea behind our main result can be traced back to Warning's proof of Theorem 1.2. A good exposition of this proof can be found in [LN97, pp. 273-275]. Forrow and Schmitt observed that Theorem 1.2 is a consequence of a result of Alon-Füredi on polynomials over an arbitrary field. As shown in [CFS17], this method of proof leads to "restricted variable" generalizations of Theorem 1.2. A third proof of Theorem 1.2 was recently given by Asgarli [As18].

In the case when each polynomial $f_{j}$ is homogeneous, we can also look at the solution locus in projective space $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$, which is obtained from $\mathbb{F}_{q}^{n}$ by removing $0=(0, \ldots, 0)$ and quotienting out by the equivalence relation $\left(x_{1}, \ldots, x_{n}\right) \sim$ $\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)$ for all $\lambda \in \mathbb{F}_{q}^{\times}$. If $P \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ is homogeneous of degree $d$ then for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \backslash\{0\}$ and $\lambda \in \mathbb{F}_{q}^{\times}$, we have $P(\lambda x)=\lambda^{d} P(x)$, and thus whether $P(x)=0$ depends only on the class of $x$ in $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$. If we denote by $\mathbb{P} Z$ the solution locus in projective space, then we have

$$
\begin{equation*}
\# Z=1+(q-1) \# \mathbb{P} Z \tag{1}
\end{equation*}
$$

so Theorem 1.1 tells us that

$$
\# \mathbb{P} Z \equiv 1 \quad(\bmod p)
$$

In the homogeneous case, the low degree condition

$$
d=\sum_{j=1}^{r} d_{j}=\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right)<n
$$

[^0]is especially natural. Algebraic geometers will recognize that, in the case that the associated projective variety $V_{/ \mathbb{F}_{q}}$ is smooth, geometrically integral and of dimension $n-1-r$, it holds precisely when $V$ is Fano: a sufficiently negative multiple of the canonical bundle embeds $V$ into projective space. If instead of working over $\mathbb{F}_{q}$ our polynomials had coefficients in $\mathbb{C}$, the compact complex submanifolds of projective space so obtained would be simply connected with positive sectional curvature.

Still keeping the above "nice" geometric conditions, if in contrast we had $d>n$ then the associated projective variety $V_{/ \mathbb{F}_{q}}$ would be of "general type" and (this is somewhat stronger) a sufficiently positive multiple of the canonical bundle would embed $V$ into projective space. In dimension one over $\mathbb{C}$ these varieties are also characterized by being hyperbolic and by having noncommutative fundamental group.

The condition $d=n$ is an interesting boundary case: again keeping the nice geometric conditions, we get a Calabi-Yau variety, for which the canonical bundle is trivial. In dimension one over $\mathbb{C}$ - e.g. when $(r, n, d)=(1,3,3)$ - these are elliptic curves: they have zero sectional curvature and infinite but commutative fundamental group. In dimension two - e.g. when $(r, n, d)=(2,4,4)$ - we get K3 surfaces: simply connected Ricci-flat compact complex surfaces (topological 4-manifolds).

These geometric considerations will not be needed later. In fact, it counts among the charms of these Chevalley-Warning results that they do not require the polynomial system to have any nice geometric properties and that the proofs use no algebraic geometry whatseover. However, connections to $\mathbb{F}_{q}$-points on varieties $V_{/ \mathbb{F}_{q}}$ are part of the reason why mathematicians are interested in these results.

## 2. At the Boundary

If $d \geq n$, then the conclusion of Theorem 1.1 fails very badly. In fact, for all prime powers $q$ and positive integers $n, r, d_{1}, \ldots, d_{r}$ such that $d_{1}+\ldots+d_{r} \geq n$, there are homogeneous polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ of degrees $d_{1}, \ldots, d_{r}$ such that $Z\left(f_{1}, \ldots, f_{r}\right)=\{0\}$. Theorem 1.2 still holds when $d \geq n$ but becomes trivial: in this case, clearly either $Z=\varnothing$ or $\# Z \geq 1 \geq q^{n-d}$.

However, we will now reformulate Theorem 1.1 in such a way that something still holds "on the boundary," i.e., when $d=n$. For $g \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$, let $E(g)$ denote the induced function from $\mathbb{F}_{q}^{n}$ to $F_{q}$ :

$$
E(g): x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mapsto f(x) \in \mathbb{F}_{q}
$$

Since we have $r$ polynomials $f_{1}, \ldots, f_{r}$, we can build a function

$$
E:=\prod_{j=1}^{r} E\left(f_{j}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)
$$

The fiber of $E$ over $0 \in \mathbb{F}_{q}^{r}$ is $Z=Z\left(f_{1}, \ldots, f_{r}\right)$, and for any $b=\left(b_{1}, \ldots, b_{r}\right) \in$ $\mathbb{F}_{q}^{r}$, the fiber of $E$ over $b$ is $Z\left(f_{1}-b_{1}, \ldots, f_{r}-b_{r}\right)$. For all $1 \leq j \leq r$ we have $\operatorname{deg}\left(f_{j}-b_{j}\right)=\operatorname{deg}\left(f_{j}\right)$. So here is an equivalent fibered form of Theorem 1.1:

Theorem 2.1 (Chevalley-Warning Restated). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$, and suppose that $d:=\sum_{j=1}^{r} d_{j}<n$. Then every fiber of $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)$ has cardinality divisible by $p$.

Now what happens if $d=n$ ? Here is one easy case to build upon: suppose also that $r=n$ and $d_{j}=1$ for all $j$. Since looking at all fibers of $E$ involves translating by all possible constants anyway, we may assume that each $f_{j}$ has no constant term, and thus $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ is a linear map. Let $R$ be its rank. If $R=n$ then $E$ is invertible, so each fiber has cardinality 1 . If $R<n$ then $W:=E^{-1}(0)$ is an $\mathbb{F}_{q}$-subspace of dimension $n-R \geq 1$. For $b \in \mathbb{F}_{q}^{r}$, if $E^{-1}(b)$ is empty then it has cardinality zero modulo $p$; otherwise there is $x \in \mathbb{F}_{q}^{b}$ such that $E(x)=b$ and $E^{-1}(b)=x+W$ has cardinality $\# W=q^{n-R} \equiv 0(\bmod p)$. Thus we find that the fiber cardinalities need not be 0 modulo $p$, but they are all the same modulo $p$.

These considerations serve to motivate the following result.
Theorem 2.2 (Chevalley-Warning at the Boundary, Preliminary Form).
Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$, and suppose that $d:=\sum_{j=1}^{r} d_{j} \leq n$. Let $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)$ be the associated evaluation map. Then:
a) For all $b, c \in \mathbb{F}_{q}^{r}$ we have $\# E^{-1}(b) \equiv \# E^{-1}(c)(\bmod p)$.
b) If the common fiber cardinality in part a) is nonzero modulo $p$, then $E$ is surjective.

In Theorem 2.2, part b) follows immediately from part a): if every fiber has nonzero cardinality modulo $p$, then every fiber is nonempty, so $E$ is surjective. The key to the proof of Theorem 2.2a) is the following observation of Heath-Brown [HB11]. ${ }^{3}$
Lemma 2.3 (Heath-Brown). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$and suppose that $d:=\sum_{j=1}^{r} d_{j} \leq n$. For all $1 \leq j \leq r$, let $h_{j} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be such that $\operatorname{deg} h_{j}<d_{j}$. Then we have

$$
\# Z\left(f_{1}, \ldots, f_{r}\right) \equiv \# Z\left(f_{1}-h_{1}, \ldots, f_{r}-h_{r}\right) \quad(\bmod p)
$$

Proof. For $1 \leq j \leq r$, we may uniquely write $f_{j}=F_{j}+r_{j}$ where $F_{j}$ is homogeneous of degree $d_{j}$ and $\operatorname{deg} r_{j}<d_{j}$ : indeed $F_{j}$ is the sum of all the monomial terms of $f_{j}$ of total degree $d_{j}$ and $r_{j}$ is the sum of all the other monomial terms. We also put

$$
G_{j}:=t_{n+1}^{d_{j}} f_{j}\left(\frac{t_{1}}{t_{n+1}}, \ldots, \frac{t_{n}}{t_{n+1}}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n+1}\right]:
$$

in other words, we introduce a new variable $t_{n+1}$ and multiply each monomial term by the non-negative power of $t_{n+1}$ needed to bring the degree of the monomial up to $d_{j}$. Thus $G_{j}$ is homogeneous of degree $d_{j}$ but in $n+1$ variables. Put

$$
\begin{gathered}
Z:=\left\{x \in \mathbb{F}_{q}^{n} \mid f_{1}(x)=\ldots=f_{r}(x)=0\right\} \\
Z_{1}:=\left\{x \in \mathbb{F}_{q}^{n} \mid F_{1}(x)=\ldots=F_{r}(x)=0\right\} \\
Z_{2}:=\left\{(x, y)=\left(x_{1}, \ldots, x_{n}, y\right) \in \mathbb{F}_{q}^{n+1} \mid G_{1}(x, y)=\ldots=G_{r}(x, y)=0\right\} .
\end{gathered}
$$

For $x \in \mathbb{F}_{q}^{n}$, we have $x \in Z_{1}$ iff $(x, 0) \in Z_{2}$. On the other hand, if $y \neq 0$ then $(x, y) \in Z_{2}$ iff $\left(\frac{x}{y}, 1\right)=\left(\frac{x_{1}}{y}, \ldots, \frac{x_{n}}{y}, 1\right) \in Z_{2}$, so there are precisely $q-1$ times as many elements $(x, y) \in Z_{2}$ with $y \neq 0$ as there are elements $(x, 1) \in Z_{2}$. Finally we have $(x, 1) \in Z_{2}$ iff $x \in Z$. This gives

[^1]\[

$$
\begin{equation*}
\# Z_{2}=(q-1) \# Z+\# Z_{1} . \tag{2}
\end{equation*}
$$

\]

Theorem 1.1 applies to give $p \mid \# Z_{2}$. Since $p \mid q$, reducing (2) modulo $p$, we get

$$
\# Z \equiv \# Z_{1} \quad(\bmod p)
$$

In other words, after reduction modulo $p$, the number of solutions to the system $f_{1}=\cdots=f_{r}=0$ depends only on the highest degree homogeneous parts of the $f_{j}$ 's, which do not change if we adjust each $f_{j}$ by a polynomial $h_{j}$ of smaller degree. This establishes the result.

The proof of Theorem 2.2a) follows immediately from Lemma 2.3: indeed it is the special case of Lemma 2.3 in which each $h_{j}$ has degree 0 .

## 3. A Generalization and Some Related Results

Let's look more carefully at the case in which the finite field $\mathbb{F}_{q}$ has composite order: $q>p$. For motivation we considered the case of a linear map $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$. Though we managed not to say so, our analysis showed that all fibers have the same cardinality modulo $q$, not just modulo $p$. Moreover, while Theorem 1.1 gives a congruence modulo $p$, Theorem 1.2 gives an inequality involving $q$. This makes one wonder: in the setting of Theorem 1.1, must we have $\# Z \equiv 0(\bmod q)$ ?

The answer - yes - was first shown by Ax in 1964 as part of his study of higher $p$-adic divisibilities on $\# Z$ [Ax64]. Ax's results are optimal when $r=1$. For $r \geq 2$ Ax's results are not optimal but nevertheless give $\# Z \equiv 0(\bmod q)$. For $r \geq 2$ the optimal $p$-adic divisibilities were given by Katz [Ka71].

Theorem 3.1 (Ax-Katz). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1} \geq \ldots \geq d_{r} \geq 1$. Let $b \in \mathbb{Z}^{+}$be such that $b d_{1}+d_{2}+\ldots+d_{r}<n$. Then $q^{b} \mid \# Z\left(f_{1}, \ldots, f_{r}\right)$.

So if $\sum_{j=1}^{r} d_{j}<n$ then in Theorem 3.1 we can take $b=1$ to get $q \mid \# Z$. Using this we see immediately that the conclusion of Lemma $2.3 \operatorname{can}^{4}$ be strengthened to

$$
\# Z\left(f_{1}, \ldots, f_{r}\right) \equiv \# Z\left(f_{1}-g_{1}, \ldots, f_{r}-g_{r}\right) \quad(\bmod q)
$$

which in turn gives a strengthening of Theorem 2.2:
Theorem 3.2 (Chevalley-Warning at the Boundary). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$, and suppose that $d:=\sum_{j=1}^{r} d_{j} \leq n$. Let $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)$ be the evaluation map. Then:
a) For all $b, c \in \mathbb{F}_{q}^{r}$ we have $\# E^{-1}(b) \equiv \# E^{-1}(c)(\bmod q)$.
b) More generally, we do not change any fiber cardinality modulo $q$ if we replace each $f_{j}$ by $f_{j}+h_{j}$ with $\operatorname{deg} h_{j}<\operatorname{deg} f_{j}$.
c) If the common modulo $q$ fiber cardinality is nonzero, then $E$ is surjective.

Theorem 3.2 is a generalization of the following 1966 result.
Theorem 3.3 (Terjanian [Te66]). Let $f \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ have degree $n$ and suppose that $Z(f)=\{0\}$. For all $g \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ with $\operatorname{deg} g<n$, there is $x \in \mathbb{F}_{q}^{n}$ such that $f(x)=g(x)$. In particular $f$ is surjective.

[^2]We get Theorem 3.3 by applying Theorem 3.2 (or even Theorem 2.2) with $r=1$ to the polynomial $f$ : the hypothesis $Z(f)=\{0\}$ means that, even after adjusting by a polynomial $h$ of smaller degree, the common fiber cardinality modulo $q$ is 1 , so all fibers of $f-h$ are nonempty. Terjanian's proof is different: he uses Theorem 1.1 and the existence of polynomials of degree $q$ in $q$ variables that have exactly one solution.

Theorem 3.2c) is related to the following result, which we state in "fibered form."
Theorem 3.4 (Aichinger-Moosbauer [AM21]). Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be polynomials of positive degree, and for $1 \leq j \leq r$, put $Y_{j}:=E\left(f_{j}\right)\left(\mathbb{F}_{q}^{n}\right)$. If

$$
\begin{equation*}
\sum_{j=1}^{r}\left(\# Y_{j}-1\right) \operatorname{deg}\left(f_{j}\right)<(q-1) n \tag{3}
\end{equation*}
$$

then every fiber of $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{j}(x)\right)$ has size divisible by $p$.
Proof. The hypotheses are stable under passage from $f_{1}, \ldots, f_{r} \mapsto f_{1}-b_{1}, \ldots, f_{r}-b_{r}$ for $b_{1}, \ldots, b_{r} \in \mathbb{F}_{q}$, so it suffices to show that assuming (3) we have

$$
p \mid \# Z=\#\left\{x \in \mathbb{F}_{q}^{n} \mid f_{1}(x)=\ldots=f_{r}(x)=0\right\}
$$

If $0 \neq Y_{j}$ for some $j$ then $Z=\varnothing$ and the conclusion certainly holds, so we may assume that $0 \in Y_{j}$ for all $1 \leq j \leq r$. For $1 \leq j \leq r$, put

$$
\tilde{C}_{j}:=\prod_{x_{j} \in Y_{j} \backslash\{0\}}(t-x) \in \mathbb{F}_{q}[t], C_{j}:=\frac{1}{\tilde{C}_{j}(0)} \tilde{C}_{j} \in \mathbb{F}_{q}[t]
$$

Thus $C_{j}$ is a univariate polynomial of degree $\# Y_{j}-1$, and the induced function from $Y_{j}$ to $\mathbb{F}_{q}$ maps 0 to 1 and everything else to 0 . Now put

$$
P:=\prod_{j=1}^{r} C_{j}\left(f_{j}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]
$$

Then $\operatorname{deg} P=\sum_{j=1}^{r}\left(\# Y_{j}-1\right) \operatorname{deg}\left(f_{j}\right)<(q-1) n$ and $E(P)$ is the characteristic function of $Z$. We can now run Ax's proof with $P$ in place of Chevalley's polynomial $\chi$ to get the result.

If we have a polynomial system $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ with $d=\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right)=$ $n$ and a non-surjective evaluation map

$$
E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}, x \mapsto\left(f_{j}(x)\right)
$$

then

$$
\sum_{j=1}^{r}\left(\# Y_{j}-1\right) \operatorname{deg}\left(f_{j}\right)<(q-1) \sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right)=(q-1) n
$$

so Theorem 3.4 applies to give $p \mid \# Z$. Under the same hypotheses Theorem 3.2 gives the stronger conclusion $q \mid \# Z$. On other hand, Theorem 3.4 applies even when $d>n$ if the $Y_{j}$ 's are small enough. So neither result encompasses the other.

These results become more interesting if have a plenitude of examples of systems $f_{1}, \ldots, f_{r}$ with $d=\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right)=n$ and non-surjective evaluation map. We turn next to a discussion of such examples, which lie at the heart of the paper.

## 4. Examples

If in Theorem 3.2 all the $f_{j}$ 's are homogeneous, then using (1) relating $\# Z$ to $\# \mathbb{P} Z$ we get the following reformulation of this case of the result.
Corollary 4.1. With notation as in Theorem 3.2, suppose moreover that each polynomial $f_{j}$ is homogeneous, and let $\mathbb{P} Z$ be the solution locus in $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$. Then at least one of the following holds:
(i) We have $\# \mathbb{P} Z \equiv 1(\bmod q)$.
(ii) All fibers of $E(f): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}$ have a common nonzero cardinality modulo $q$. In particular $f$ is surjective.

Let us focus on the case of one homogeneous degree $n$ polynomial $f \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$.
Example 4.2. For $n \in \mathbb{Z}^{+}$, let $f\left(t_{1}, \ldots, t_{n}\right)=t_{1} \cdots t_{n}$. Then we have

$$
\# Z(f)=\# E^{-1}(0)=q^{n}-(q-1)^{n} \equiv(-1)^{n+1} \quad(\bmod q)
$$

so
$\# \mathbb{P} Z(f)=\frac{q^{n}-(q-1)^{n}-1}{q-1}=1+q+\ldots+q^{n-1}-(q-1)^{n-1} \equiv 1+(-1)^{n} \quad(\bmod q)$.
For every $b \in \mathbb{F}_{q}^{\times}$we can choose $x_{1}, \ldots, x_{n-1}$ to be any nonzero elements of $\mathbb{F}_{q}$ and then $x_{n}$ is uniquely determined as $x_{n}=\frac{b}{x_{1} \cdots x_{n-1}}$, so $\# E^{-1}(b)=(q-1)^{n-1} \equiv$ $(-1)^{n+1}(\bmod q)$. So in Corollary 4.1, (ii) holds but (i) does not.
In general we may factor $f$ into a product of irreducible homogeneous polynomials $g_{1}, \ldots, g_{r}$. Then we have $Z(f)=\bigcup_{i=1}^{r} Z\left(g_{i}\right)$, so Inclusion-Exclusion gives

$$
\begin{equation*}
\# Z(f)=\sum_{i} \# Z\left(g_{i}\right)-\sum_{i<j} \#\left(Z\left(g_{i}\right) \cap Z\left(g_{j}\right)\right)+\ldots+(-1)^{r} \# \bigcap_{j=1}^{r} Z\left(g_{j}\right) \tag{4}
\end{equation*}
$$

Example 4.3. Suppose $L=\prod_{i=1}^{n} L_{i}$ with $L_{i} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ degree 1 homogeneous.
a) In Example 4.2 we had $L_{i}=t_{i}$ for all $1 \leq i \leq n$. The corresponding linear functionals $E\left(t_{1}\right), \ldots, E\left(t_{n}\right)$ are the dual basis of the canonical basis $e_{1}, \ldots, e_{n}$ of $\mathbb{F}_{q}^{n}$, so they are linearly independent in the dual space $\left(\mathbb{F}_{q}^{n}\right)^{\vee}=\operatorname{Hom}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}^{n}, \mathbb{F}_{q}\right)$. Now suppose that $L_{1}, \ldots, L_{n}$ are any $n$ linearly independent linear forms, and let $f=L_{1} \cdots L_{n}$. We can compute $\# Z(f)$ using (4): the linear independence implies that the inersection of any $i$ of the hyperplanes $Z\left(L_{i}\right)$ is a linear subspace of dimension $n-i$, so we get

$$
\# Z(f)=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} q^{n-i}=q^{n}-(q-1)^{n}
$$

As above we have $\# \mathbb{P} Z(f) \not \equiv 1(\bmod q)$ and $E(f): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is surjective.
b) At the other extreme lies the case of a fixed hyperplane $H \subset \mathbb{F}_{q}^{n}$ such that $Z\left(L_{i}\right)=H$ for all $1 \leq i \leq n$. Then we have $\# Z(f)=\# H=q^{n-1}$, so

$$
\# \mathbb{P} Z(f)=\frac{q^{n-1}-1}{q-1}=1+q+\ldots+q^{n-2} \equiv 1 \quad(\bmod n) .
$$

The function $E: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, x \mapsto x^{n}$ is surjective iff $\operatorname{gcd}(n, q-1)=1$. Thus if $\operatorname{gcd}(n, q-1)=1$ then both (i) and (ii) of Corollary 4.1 hold, while if $\operatorname{gcd}(n, q-1)>1$ then only (i) holds.
c) When $n=3$ there are two other linear algebraic configurations:
(i) Precisely two of the hyperplanes $H_{i}=Z\left(L_{i}\right)$ coincide - say $H_{1}=H_{2}$. Then $Z(f)=Z\left(L_{1} L_{2} L_{3}\right)=Z\left(L_{1} L_{3}\right)$ where $L_{1}$ and $L_{3}$ are linearly independent linear forms in three variables, so (4) gives

$$
\# Z(f)=2 q^{2}-q, \quad \# \mathbb{P} Z(f)=2 q+1 \equiv 1 \quad(\bmod q)
$$

In this case $E(f)$ is surjective. More generally, let $L_{1}, \ldots, L_{m} \in$ $\mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be nonzero linear forms, viewed as elements of $\left(\mathbb{F}_{q}^{n}\right)^{\vee}$. If for some $1 \leq j \leq m$ we have that $L_{j}$ does not lie in the span of $L_{1}, \ldots, L_{j-1}, L_{j+1}, \ldots, L_{m}$, then after a linear change of variables we have $L_{1}, \ldots, L_{m-1} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n-1}\right]$ and $L_{m}=t_{n}$. If also $\bigcup_{i=1}^{m-1} Z\left(L_{i}\right) \subsetneq$ $\mathbb{F}_{q}^{n}$ - this condition being always satisfied if $m-1<q+1[\mathrm{Cl12}]$ - then $E\left(L_{1} \cdots L_{m}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is surjective.
(ii) The three hyperplanes $H_{1}, H_{2}, H_{3}$ are distinct, but their intersection is a line. Then (4) gives

$$
\# Z(f)=3 q^{2}-3 q+q=3 q^{2}-2 q, \# \mathbb{P} Z(f)=3 q+1 \equiv 1 \quad(\bmod q)
$$

After a linear change of variables we reduce to the case $L_{1}=t_{1}, L_{2}=$ $t_{2}, L_{3}=a t_{1}+b t_{2}$ with $a, b \in \mathbb{F}_{q}^{\times}$. When $q=2$ we must have $a=b=1$ and the map $E(f)$ is identically 0 . (This reflects the fact that $\mathbb{F}_{2}^{2}$ can be covered by 3 lines.) When $q=3$, after replacing $\left(t_{1}, t_{2}\right)$ by $\left(-t_{1},-t_{2}\right)$ if necessary, we have that $f$ is either $f_{1}=t_{1} t_{2}\left(t_{1}+t_{2}\right)$ or $f_{2}=t_{1} t_{2}\left(t_{1}-t_{2}\right)$, and both $E\left(f_{1}\right)$ and $E\left(f_{2}\right)$ are surjective.
Example 4.4. Suppose $d=2$, so

$$
f\left(t_{1}, t_{2}\right)=A t_{1}^{2}+B t_{1} t_{2}+C t_{2}^{2} \in \mathbb{F}_{q}\left[t_{1}, t_{2}\right]
$$

is a binary quadratic form over $\mathbb{F}_{q}$.

- If $A=C=0$, then $B \neq 0$ and $f=B t_{1} t_{2}$, so Example 4.3a) applies to give $\# \mathbb{P} Z(f)=2, \# Z(f)=2 q-1$, and every nonzero fiber has size $q-1$.

Otherwise $A \neq 0$ or $C \neq 0$; without loss of generality, suppose $A \neq 0$. Then there are no solutions $\left[X_{1}: X_{2}\right]$ in $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ with $X_{2}=0$, so $\mathbb{P} Z$ is naturally in bijection with solutions to the univariate quadratic equation $Q(t)=A t^{2}+B t+C=0$.

- Suppose $Q$ has distinct roots in $\mathbb{F}_{q}$. Then $\# \mathbb{P} Z(f)=2$, so $\# Z(f)=2 q-1$. Using Corollary 4.1 one finds that every nonzero fiber has size $q-1$.
- Suppose $Q$ has no roots in $\mathbb{F}_{q}$. Then $\# \mathbb{P} Z(f)=0$, so $Z(f)=1$ and all fibers have size 1 modulo $q$ and $E$ is surjective. For all $b \in \mathbb{F}_{q}^{\times}$, the equation

$$
C: A t_{1}^{2}+B t_{1} t_{2}+C t_{2}^{2}-b t_{3}^{2}=0
$$

is a smooth conic curve in the projective plane. It is known that all such curves have $q+1$ points. ${ }^{5}$ None of these points have $X_{3}=0$, so we get $q+1$ solutions to $A t_{1}^{2}+B t_{1} t_{2}+C t_{2}^{2}=b$.

- If $Q$ has exactly one root in $\mathbb{F}_{q}$, then $\# \mathbb{P} Z(f)=1$ and $\# Z(q)=q$. In fact we are in the situation of Example 4.3b), so $E(f)$ is surjective iff $p=2$.

Recall that if $\mathbb{F}_{q} \subset F$ is a field extension and $x \in F$ is such that $x^{q}=x$, then we must have $x \in \mathbb{F}_{q}$. This holds, for instance, because the polynomial $t^{q}-t \in F[t]$ has

[^3]degree $q$ and has every element of $\mathbb{F}_{q}$ as a root, hence has no other roots. Moreover, if $x \in F$ is such that $x^{q-1}=1$, then $x^{q}=x$, so $x \in \mathbb{F}_{q}$.

Example 4.5. We consider here the case where $d=3$ and $f\left(t_{1}, t_{2}, t_{3}\right)$ is a smooth, geometrically irreducible plane cubic. Geometrically irreducible means that $f$ does not factor into polynomials of smaller degree (even) over an algebraic closure $\overline{\mathbb{F}_{q}}$ of $\mathbb{F}_{q}$. Smooth means that (even) over the algebraic closure $\overline{\mathbb{F}_{q}}$ the partial derivatives $\frac{\partial f}{\partial t_{1}}, \frac{\partial f}{\partial t_{2}}, \frac{\partial f}{\partial t_{3}}$ do not simultaneously vanish at any point $\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,0)$.

Then $f$ defines a nice curve $C_{/ \mathbb{F}_{q}}$ of genus one, and (for instance) by the HasseWeil bounds $\left[\mathrm{S}\right.$, Thm. 5.2.3] it follows that $\# C\left(\mathbb{F}_{q}\right):=\# \mathbb{P} Z(f) \geq 1$.

By Corollary 4.1, the map $E(f): \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$ is surjective unless $\# C\left(\mathbb{F}_{q}\right) \equiv 1$ $(\bmod q)$. When does this happen? For any nice genus one curve $C_{\mathbb{F}_{q}}$, the HasseWeil bounds give

$$
\begin{equation*}
\# C\left(\mathbb{F}_{q}\right)=q+1-t_{C},\left|t_{C}\right| \leq 2 \sqrt{q} \tag{5}
\end{equation*}
$$

So we need $q \mid t_{C}$ and $\left|t_{C}\right| \leq 2 \sqrt{q}$. This places us within the class of supersingular elliptic curves. ${ }^{6}$

When $q \geq 5$, an integer $t_{C}$ satisfies $q \mid t_{C}$ and $\left|t_{C}\right| \leq 2 \sqrt{q}$ if and only if $t_{C}=0$. By a result of Waterhouse [Wa69, Thm. 4.1], for a finite field $\mathbb{F}_{q}=\mathbb{F}_{p^{a}}$ there is a nice genus one curve $C_{/ \mathbb{F}_{q}}$ with $t_{C}=0$ iff ( $a$ is odd) or ( $a$ is even and $p \not \equiv 1$ $(\bmod 4)))$. Using Waterhouse's results or direct computation, one determines all $\# C\left(\mathbb{F}_{q}\right)$ with $\# C\left(\mathbb{F}_{q}\right) \equiv 1(\bmod q)$ that arise as we range over all nice curves $C_{/ \mathbb{F}_{q}}$ of genus 1: when $q=2$ we have $\# C\left(\mathbb{F}_{2}\right) \in\{1,3,5\}$; when $q=3$ we have $\# C\left(\mathbb{F}_{3}\right) \in\{1,4,7\}$; when $q=4$ we have $\# C\left(\mathbb{F}_{4}\right) \in\{1,5,9\}$.

Consider $f=t_{1}^{3}+t_{2}^{3}+t_{3}^{3}$ over $\mathbb{F}_{4}$. For all $x \in \mathbb{F}_{4}^{\times}$we have $x^{3}=1$, while $0^{3}=0$, so $E(f)=\mathbb{F}_{2} \subsetneq \mathbb{F}_{4}$. For $(x, y, z) \in \mathbb{F}_{4}^{3}$ we have $x^{3}+y^{3}+z^{3}=0$ iff either one or all three of $x, y, z$ are zero, so $\# Z=28$ and $\# \mathbb{P} Z=9$. Thus $f$ defines a supersingular elliptic curve over $\mathbb{F}_{4}$ that meets the Hasse-Weil bound by having $4+1+2 \sqrt{4} \mathbb{F}_{4}$ rational points. There is up to $\mathbb{F}_{4}$-isomorphism a unique elliptic curve $C_{/ \mathbb{F}_{4}}$ with 9 rational points [M, p. 46]. This is a very special elliptic curve: it has j-invariant zero and automorphism group $\mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$, the largest automorphism group of any elliptic curve over any field [Si, Thm. III.10.1].

Example 4.6. Let $\mathbb{F}_{q_{1}} \subsetneq \mathbb{F}_{q_{2}}$ be a proper extension of finite fields, and put $a:=$ $\frac{q_{2}-1}{q_{1}-1}$. Let $g \in \mathbb{F}_{q_{1}}\left[t_{1}, \ldots, t_{n}\right]$ be homogeneous of degree $d \in \mathbb{Z}^{+}$, and put

$$
f=g\left(t_{1}^{a}, \ldots, t_{n}^{a}\right) \in \mathbb{F}_{q_{1}}\left[t_{1}, \ldots, t_{n}\right] \subset \mathbb{F}_{q_{2}}\left[t_{1}, \ldots, t_{n}\right]
$$

so $f$ is homogeneous of degree ad. For all $x \in \mathbb{F}_{q_{2}}^{\times}$we have

$$
\left(x^{a}\right)^{q_{1}-1}=x^{q_{2}-1}=1, \text { so } x^{a} \in \mathbb{F}_{q_{1}}
$$

and it follows that $E(f)\left(\mathbb{F}_{q_{2}}^{n}\right) \subseteq \mathbb{F}_{q_{1}} \subsetneq \mathbb{F}_{q_{2}}$.
If we now take $n=$ ad, then Corollary 4.1 implies that all fibers of $E(f)$ have size divisible by q. Example 4.5 is the case of this construction with the smallest possible parameter values: $q_{1}=2, q_{2}=4$ and $d=1$, so $n=a=3$.

On the other hand, so long as $d<n$ then Theorem 3.4 applies to show that all fibers of $E(f)$ have size divisible by $p$.

[^4]Example 4.7. Let

$$
f=t_{1} t_{2}^{3}+t_{1}^{3} t_{2}+t_{3} t_{4}^{3}+t_{3}^{3} t_{4} \in \mathbb{F}_{9}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]
$$

Then $E(f): \mathbb{F}_{9}^{4} \rightarrow \mathbb{F}_{9}$ has image $\mathbb{F}_{3} \subsetneq \mathbb{F}_{9}$. The polynomial $f$ defines a smooth quartic K3 surface, and we have $\# \mathbb{P} Z(f)=280$; this quantity is $1 \bmod 9$, as promised by Corollary 4.1, and it is not $1 \bmod 27$.

One of us learned of this example from a talk given by U. Whitcher. It lies in the parametrized family $L_{2} L_{2}$ of K3 surfaces of [DKSSVW18, Table (5.1.1)].

Example 4.8. Let $b \in \mathbb{Z}^{+}$, and suppose that $q \equiv 1(\bmod b)$. Put

$$
T_{b}:=t_{1} t_{2}^{q} \cdots t_{b}^{q^{b}-1}+t_{1}^{q} t_{2}^{q^{2}} \cdots t_{b-1}^{q^{b-1}} t_{b}+\ldots+t_{1}^{q^{b-1}} t_{2} \cdots t_{b}^{q^{b-2}} \in \mathbb{F}_{q^{b}}\left[t_{1}, \ldots, t_{b}\right]
$$

Then $T_{b}$ is homogeneous of degree $1+q+\ldots+q^{b-1} \equiv 0(\bmod b)$, so put

$$
r:=\frac{1+q+\ldots+q^{b-1}}{b} .
$$

Since we have $z^{q^{b}}=z$ for all $z \in \mathbb{F}_{q^{b}}$, for all $x_{1}, \ldots, x_{b} \in \mathbb{F}_{q^{b}}$ we have

$$
\begin{aligned}
& T_{b}\left(x_{1}, \ldots, x_{b}\right)^{q}=x_{1}^{q} x_{2}^{q^{2}} \cdots x_{b-1}^{q^{b-1}} x_{b}^{q^{b}}+x_{1}^{q^{2}} \cdots x_{b-1}^{q^{b}} x_{b}^{q}+\ldots+x_{1}^{q^{b}} x_{2}^{q} \cdots x_{b}^{q^{b-1}} \\
& =x_{1}^{q} x_{2}^{q^{2}} \cdots x_{b-1}^{q^{b-1}} x_{b}+x_{1}^{q^{2}} \cdots x_{b-1} x_{b}^{q}+\ldots+x_{1} x_{2}^{q} \cdots x_{b}^{q^{b-1}}=T_{b}\left(x_{1}, \ldots, x_{b}\right) .
\end{aligned}
$$

Thus $T_{b}\left(x_{1}, \ldots, x_{b}\right) \in \mathbb{F}_{q}$ and we have

$$
E\left(T_{b}\left(\mathbb{F}_{q^{b}}^{b}\right)\right) \subset \mathbb{F}_{q}
$$

Now for $1 \leq i \leq r$ and $1 \leq j \leq b$, let $X_{i, j}$ be independent indeterminates, and put

$$
f_{b, q}:=T_{b}\left(X_{1,1}, \ldots, X_{1, b}\right)+\ldots+T_{b}\left(X_{r, 1}, \ldots, X_{r, b}\right) \in \mathbb{F}_{q^{b}}\left[X_{1,1}, \ldots, X_{r, b}\right]
$$

Then $f_{b, q}$ is homogeneous of degree $n:=1+q+\ldots+q^{b-1}$ in $r b=n$ variables and

$$
E\left(f_{b, q}\right)\left(\mathbb{F}_{q^{b}}^{n}\right) \subset \mathbb{F}_{q},
$$

so by Corollary 4.1 we have $\mathbb{P} Z\left(f_{b, q}\right) \equiv 1(\bmod q)$.
The polynomial $f_{b, q}$ defines a smooth Calabi-Yau hypersurface over $\mathbb{F}_{q^{b}}$ of dimension $n-2$. The case of $b=2, q=3$ is Example 4.7 above. In the case of of $b=2, q=5$ we have $\# \mathbb{P} Z\left(f_{2,5}\right)=2,035,026$; this quantity is $1(\bmod 25)$, as promised by Corollary 4.1, and it is not $1(\bmod 125)$.

## 5. Life Beyond the Boundary

Let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{r}\right]$ be polynomials of degrees $d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$, and again consider the evaluation map

$$
E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)
$$

When $d=\sum_{j=1}^{r} d_{r}<n$ we can view the theorems of Chevalley-Warning, Warning II and Ax-Katz as giving information on fiber cardinalities of $E$, and when $d=n$ Theorem 3.2 also gives (weaker) such information. Can anything be said if $d>n$ ?

Yes, in some cases. Here is an old result recast in fibered form.
Theorem 5.1 (Ore [Or22]). For $f \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$, suppose that $d:=\operatorname{deg}(f) \leq$ $q-1$. Then for all $c \in \mathbb{F}_{q}$ we have either $E^{-1}(c)=\mathbb{F}_{q}^{n}$ or $\# E^{-1}(c) \leq d q^{n-1}$.

The new aspect of Ore's Theorem is that the "low degree" condition on $f$ is in terms of the size of the finite field, not in terms of the number of variables. It says that when the degree of $f$ is small compared to $q$ then the fiber cardinalities of $E(f): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ are somewhat equally distributed, except in the trivial case in which $E(f)$ is constant.

Theorem 5.1 is a special case of a result due to DeMillo-Lipton [DeML78], Zippel [Zip79] and Schwartz [Sc80]: if $F$ is any field, $A \subset F$ is a finite subset, and $f \in \mathbb{F}\left[t_{1}, \ldots, t_{n}\right]$ is a nonzero polynomial of positive degree $d$, then

$$
\# Z_{A}(f)=\#\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in A^{n} \mid f(x)=0\right\} \leq d(\# A)^{n-1}
$$

Wikipedia gives an elegant proof using very basic probability theory [Wk].
There are other results of Chevalley-Warning type that apply to certain polynomial systems $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ by taking more into account than the degrees of the polynomials. Here is one such result, again stated in fibered form.

Theorem 5.2 (Morlaye [Mo71]). Let $n, m_{1}, \ldots, m_{n} \in \mathbb{Z}^{+}$. For $1 \leq i \leq n$, put $d_{i}:=\operatorname{gcd}\left(m_{i}, q-1\right)$. Let $a_{1}, \ldots, a_{n}, b \in \mathbb{F}_{q}$ and let

$$
f=a_{1} t_{1}^{m_{1}}+\ldots+a_{n} t_{n}^{m_{n}}
$$

If

$$
\sum_{i=1}^{n} \frac{1}{d_{i}}>1
$$

then every fiber of $E(f)$ has size divisible by $p$.
Morlaye's results have been sharpened by Wan [Wa88] who showed in particular that under the hypotheses of Theorem 5.2 we have that every fiber of $E(f)$ has size divisible by $q$. A further generalization is given in [BBC19, Cor. 1.17].

A simple example in which Theorem 5.2 applies and Theorem 1.1 does not is $f\left(t_{1}, t_{2}, t_{3}\right)=t_{1}^{2}+t_{2}^{3}+t_{3}^{5}$. In this case the polynomial has degree 5 but is "sparser" than a general such polynomial. This can be formalized as follows: rather than just the degree of each polynomial $f_{j}$ one may try to take into account its support, i.e., the subset of indices $\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ such that the monomial $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$ appears in $f_{j}$ with nonzero coefficient. Adolphson-Sperber give an important result along these lines in terms of the Newton polyhedron of $f_{j}$ (which is defined in terms of its support) [AS87], and the literature contains further such results as well.

But what if we want results on the fiber cardinalities of any system of polynomials $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ such that $\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right) \leq d$ for some $d>n$ ? We know of no such results in the literature apart from Theorem 5.1 in the $r=1$ case.

In fact we claim that nothing can be said when $d \geq r n(q-1)$ and that something can be said when $d<r n(q-1)$. To explain this, let $x \in \mathbb{F}_{q}^{n}$ and put

$$
\delta_{x}:=\prod_{i=1}^{n}\left(1-\left(t_{i}-x_{i}\right)^{q-1}\right)
$$

Then $\operatorname{deg} \delta_{x}=(q-1) n$ and the associated function $E\left(\delta_{x}\right)$ maps $x$ to 1 and every other element of $\mathbb{F}_{q}^{n}$ to 0 . The functions $E\left(\delta_{x}\right)$ therefore form a basis for the $\mathbb{F}_{q^{-}}$ vector space of all functions from $\mathbb{F}_{q}^{n}$ to $\mathbb{F}_{q}$, and it follows that every function $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is obtained by evaluating a polynomial of degree at most $(q-1) n .{ }^{7}$ So as we range over all polynomials $f_{1}, \ldots, f_{r}$ with $\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right) \leq r n(q-1)$, the associated evlauation maps $E(f): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}$ give all functions between these sets, so there is nothing to say about fiber cardinalities of such polynomials maps beyond what is true of fiber cardinalities of all functions $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}$ : namely, to each $b \in \mathbb{F}_{q}^{r}$ we have a non-negative integer

$$
z_{b}=\# E^{-1}(b)
$$

with the sole constraint that $\sum_{b \in \mathbb{F}_{q}^{r}} z_{b}=q^{n}$.
On the other hand, if $d<r n(q-1)$, then for at least one $1 \leq j \leq r$ we must have $\operatorname{deg}\left(f_{j}\right)<n(q-1)$. In this case, as we saw in the proof of Theorem 1.1, we have $\sum_{x \in \mathbb{F}_{q}^{n}} f_{j}(x)=0$, so that the $j$ th component of $f \sum_{x \in \mathbb{F}_{q}^{n}} E(x)$ is 0 . But

$$
\sum_{x \in \mathbb{F}_{q}^{n}} E(x)=\sum_{b \in \mathbb{F}_{q}^{r}} z_{b} b,
$$

so we get a constraint the $z_{b}$ 's. There are maps that do not satisfy this constaint: indeed, for any $y \in \mathbb{F}_{q}^{r}$, for $1 \leq j \leq r$ let $E_{j}=y_{j} \delta_{0}$ and put $E=\left(E_{1}, \ldots, E_{r}\right)$ : $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}$. Then

$$
\sum_{b \in \mathbb{F}_{q}^{r}} z_{b} b=\sum_{x \in \mathbb{F}_{q}^{n}} E(x)=y
$$

## 6. Open Questions

Question 6.1. Under the hypotheses of Theorem 3.4, must every fiber have size a multiple of $q$ ? More generally, is there a strengthening of Theorem 3.1 that takes the image cardinalities $\# f_{j}\left(\mathbb{F}_{q}^{n}\right)$ into account?

Question 6.2. Let $L_{1}, \ldots, L_{m} \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be linear forms. Is there a general criterion for the surjectivity of $E\left(L_{1} \cdots L_{m}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ ?

Question 6.3. Let $f \in \mathbb{F}_{q}\left[t_{1}, t_{2}, t_{3}\right]$ be a smooth plane cubic curve. Is it true that $E(f): \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$ is surjective unless $q=4$ and $\# \mathbb{P} Z(f)=9$ ? (See the Appendix for some calculations in modest support of an affirmative answer.)

Question 6.4. What are the further constraints on fiber cardinalities in the family of all polynomial functions

$$
E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{r}, x \mapsto\left(f_{j}(x)\right)
$$

with $\sum_{j=1}^{r} \operatorname{deg}\left(f_{j}\right) \leq d$ when $d<r n(q-1)$ ? Can anything nice be said, for instance, when $d=n+1$ ?

[^5]
## 7. Acknowledgments

Partial support for the second and third authors was provided by the Research and Training Group grant DMS-1344994 funded by the National Science Foundation. The second author is also supported in part by the National Science Foundation Graduate Research Fellowship under Grant No. 1842396.

Appendix: Further Study of Homogeneous Ternary Cubic Forms
In this appendix we take a closer look at the evaluation map on a homogeneous cubic $f \in \mathbb{F}_{q}\left[t_{1}, t_{2}, t_{3}\right]$.
7.1. Singular and Reducible Cubics. In Example 4.5 we restricted to the case in which $f$ is smooth and geometrcally irreducible, or otherwise put, defines a nice curve of genus one. What are the possible values of $\# \mathbb{P} Z$ for a plane cubic that is singular and/or geometrically reducible? We will now write down all possibilities. We ask the reader with a prior familiarity with elliptic curves to pause and think of what the classification should look like - each of the authors has experience with elliptic curves, and the classification is longer than we would have predicted!

Example 7.1 (Geometrically Irreducible Singular Cubics). Let $f\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{F}_{q}[t]$ be a homogeneous cubic that is geometrically irreducible but singular. An irreducible plane cubic has at most one singular point $P=\left[x_{0}: y_{0}: z_{0}\right]$ in the projective plane, and over a perfect field like $\mathbb{F}_{q}$, if the cubic is singular there is a unique $\mathbb{F}_{q}$-rational singular point $[\mathrm{Ca}, \mathrm{pp} .22-24]$. At least one of $x_{0}, y_{0}, z_{0}$ must be nonzero; without loss of generality, suppose $z_{0} \neq 0$; then $\left(x_{0}, y_{0}\right)$ is a singular point of the affine plane curve $f\left(t_{1}, t_{2}, 1\right)$. The change of variables $f \mapsto g\left(t_{1}, t_{2}\right):=f\left(t_{1}-x_{0}, t_{2}-y_{0}\right)$ brings the unique singular point to $(0,0)$. Then we may write

$$
g\left(t_{1}, t_{2}\right)=g_{1}\left(t_{1}, t_{2}\right)+g_{2}\left(t_{1}, t_{2}\right)+g_{3}\left(t_{1}, t_{2}\right),
$$

with $g_{i}$ homogeneous of degree $i$. To say that the point $(0,0)$ is singular is to say that $\frac{d g}{d t_{1}}$ and $\frac{d g}{d t_{2}}$ both vanish at $(0,0)$, which means that $g_{1}=0$. If also $g_{2}=0$, then $g=g_{3}$ is geometrically reducible, which implies that $f$ is geometrically reducible, a contradiction. So we have

$$
g_{2}\left(t_{1}, t_{2}\right)=A t_{1}^{2}+B t_{1} t_{2}+C t_{2}^{2}, A, B, C \in \mathbb{F}_{q} \text { are not all zero. }
$$

We say that $f$ has a
a) split node if $g_{2}$ factors into linearly independent linear forms $L_{1}, L_{2}$ over $\mathbb{F}_{q}$.
b) nonsplit node if $g_{2}$ is irreducible over $\mathbb{F}_{q}$ but factors into linearly independent linear forms $L_{1}, L_{2}$ over an algebraic extension of $\mathbb{F}_{q}$ (equivalently, over $\mathbb{F}_{q^{2}}$ ).
c) cusp if $g_{2}=a L^{2}$ for a linear form $L$ and $a \in \mathbb{F}_{q}^{\times}$.

We claim that

$$
\# \mathbb{P} Z= \begin{cases}q & f \text { has a split node } \\ q+2 & f \text { has a nonsplit node } . \\ q+1 & f \text { has a cusp }\end{cases}
$$

Thus Corollary 4.1 implies that $E(f): \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$ is surjective in the nodal cases.
These are well-known results, ${ }^{8}$ but the interested reader can get a good sense of them as follows: consider a homogeneous degree d polynomial $f\left(t_{1}, t_{2}, t_{3}\right)$ over an algebraically closed field $k$. Then for any linear form $L \in k\left[t_{1}, t_{2}, t_{3}\right]$, the locus in the projective plane $\mathbb{P}_{F}^{2}$ of $f=L=0$ has size $d$ provided that the intersection points are counted with suitable intersection multiplicities. Each point $P=\left[x_{0}: y_{0}: z_{0}\right] \in \mathbb{P}_{k}^{2}$ itself has a multiplicity $m_{P} \in \mathbb{Z}^{+}$, which is 1 iff the point $P$ is nonsingular. More precisely, if as above we dehomogenize and move $P$ to $(0,0)$ in the affine plane to get a polynomial $g\left(t_{1}, t_{2}\right)$ with $g(0,0)=0$, then $m_{P}$ is the least $i$ such that the degree $i$ homogeneous part $g_{i}$ of $g$ is nonzero, and the tangent lines at $P$ are the linear factors of $g_{i}$. Moreover, for any line $L$ through $P$, the intersection multiplicity of $L$ with $f$ at $P$ is at least $m_{P}$, with equality iff $L$ is not a tangent line at $P$. So:
a) A split node $P$ has two tangent lines $L_{1}$ and $L_{2}$, and each is defined over $\mathbb{F}_{q}$. Since $m_{P}=2$, if $L$ is any nontangent line passing through $P$, its intersection with $P$ contributes $m_{P}=2$ to the multiplicity, whereas $\operatorname{deg} f=$ 3, leaving exactly one more $k$-rational intersection point. If $L$ is a tangent line, then its intersection with $P$ contributes at least 3 to the multiplicity, so $L$ intersects $f$ at no other point (even over the algebraic closure). For every point $Q$ of $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ different from $P$, there is a unique $\mathbb{F}_{q}$-rational line joining $Q$ to $P$, and the set of $\mathbb{F}_{q}$-rational lines through any $P \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ corresponds to the hyperplanes in a 3 -dimensional $\mathbb{F}_{q}$-vector space that contain a given line, of which there are $q+1$. Therefore the 2 tangent lines at $P$ contribute no more points to $\mathbb{P} Z$, while each of the $q+1-2=q-1$ nontangent lines contributes a unique point, giving

$$
\# \mathbb{P} Z=1+(q-1)=q
$$

b) In the case of a nonsplit node, the tangent lines are not $\mathbb{F}_{q}$-rational, which means that each of the $q+1 \mathbb{F}_{q}$-rational lines through $P$ intersects a unique $\mathbb{F}_{q}$-rational point on the projective curve. This shows that

$$
\# \mathbb{P} Z=1+(q+1)=q+2
$$

c) In the case of a cusp, there is a unique tangent line, which again intersects $P$ at no other point. Each of the $q$ other $\mathbb{F}_{q}$-rational lines through $P$ intersects a unique $\mathbb{F}_{q}$-rational point on the projective curve. This shows that

$$
\# \mathbb{P} Z=q+1
$$

Example 7.2 (Geometrically Reducible Cubics). Now suppose that $f\left(t_{1}, t_{2}, t_{3}\right) \in$ $\mathbb{F}_{q}[t]$ is a geometrically reducible cubic. There are several cases:
a) We have $f=L_{1} L_{2} L_{3}$ is a product of linear forms. This was analyzed in Example 4.3c). Our analysis was complete except for the case in which the corresponding hyperplanes are distinct and intersect in a line.
b) We have $F=L \cdot C$, with $L_{1}$ a linear form and $C$ an irreducible quadratic that factors over $\mathbb{F}_{q^{2}}$ into $L_{2} L_{3}$.

In this case we have $\# \mathbb{P} Z(C)=1$ : we have two lines that are interchanged by the action of Galois, with a unique $\mathbb{F}_{q}$-rational intersection point, and we have $\# \mathbb{P} Z(L)=q+1$. If the line intersects the conic in its

[^6]unique $\mathbb{F}_{q}$-rational point, then $\# \mathbb{P} Z=q+1$. Otherwise the line intersects the conic in two points, neither of which are $\mathbb{F}_{q}$-rational, so $\# \mathbb{P} Z=q+2$.
c) We have $f=L \cdot C$, with $L$ a linear form and $C$ a quadratic that is geometrically irreducible. In this case $\# \mathbb{P} Z$ is equal to the number of points on the line, $q+1$, plus the number of points on the conic, $q+1$, minus the number of points $I$ on the intersection, which can be 0 , 1 or 2 . We have $I=0$ iff there are two intersection points in $\overline{\mathbb{F}_{q}}$ but neither is defined over $\mathbb{F}_{q}$; in the middle case, the line is tangent to the conic, so there is one $\mathbb{F}_{q}$-rational intersection point; in the last case there are two $\mathbb{F}_{q}$-rational intersection points. Thus in the tangency case we have $\# \mathbb{P} Z=2 q+1 \equiv 1(\bmod q)$.
d) We have that $f$ is irreducible over $\mathbb{F}_{q}$ but factors over $\mathbb{F}_{q^{3}}$ as a product of linear forms. In this case over $\overline{\mathbb{F}_{q}}$ we have three lines arranged in a triangle and cyclically permuted by the action of Galois, so $\# \mathbb{P} Z=0$.
7.2. Computational Results. Two of the authors undertook a computer search for instances of homogeneous degree $n$ polynomials $f \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ with nonsurjective evaluation map $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$. By far the most interesting results were attained with $n=3$ : though in retrospect we should have found the Fermat cubic $t_{1}^{3}+t_{2}^{3}+t_{3}^{3}$ over $\mathbb{F}_{4}$ by pure thought, in fact we first did so via computer search.
7.2.1. $q=2$. Through a complete search of plane cubics over $\mathbb{F}_{2}$ we find that there are exactly 7 with non-surjective evaluation map. Each such plane cubic factors as a product of three linears over $\mathbb{F}_{2}$, with the intersection of the corresponding hyperplanes a line, i.e., is the case of Example 6.6c)(ii).
7.2.2. $q \in\{3,5,8,9,11\}$. Through complete searches, we find that there are no plane cubics with non-surjective evaluation map over $\mathbb{F}_{q}$ for $q \in\{3,5,8,9,11\}$.
7.2.3. $q=4$. Through a complete search of plane cubics over $\mathbb{F}_{4}$ we found 840 smooth, geometrically irreducible cubics with non-surjective evaluation map. They are all isomorphic, as elliptic curves, to the Fermat elliptic curve $t_{1}^{3}+t_{2}^{3}+t_{3}^{3}=0$ of Example 4.5. We also find 2583 reducible cubics $f$ with non-surjective evaluation map, having either 5 or 13 points projectively over $\mathbb{F}_{4}$. The following cases occur:
a) The cubic $f$ factors over $\mathbb{F}_{4}$ as a product of linear polynomials $L_{i}$ with corresponding hyperplanes $H_{i}$, and
(i) the $H_{i}$ are all equal (the case of Example 4.3b)), for example
$$
f=X^{3}+a X^{2} Z+a^{2} X Z^{2}+Z^{3}=(X+a Z)^{3},
$$
where $a$ is a generator of $\mathbb{F}_{4}^{*}$, or
(ii) the hyperplanes $H_{i}$ are distinct with intersection a line (the case of Example 4.4c)(ii)), for example
\[

$$
\begin{aligned}
f & =a X^{3}+a X^{2} Y+a X^{2} Z+a X Y^{2}+a X Z^{2} \\
& =X(X+a Y+a Z)\left(X+a^{2} Y+a^{2} Z\right)
\end{aligned}
$$
\]

b) The cubic $f$ factors over $\mathbb{F}_{4}$ as the product of a linear and a conic to which it is tangent, with the conic factoring over $\mathbb{F}_{16}$ as a product of linears (one case of Example 6.6b)). For example:

$$
\begin{aligned}
f & =a Y^{3}+a^{2} Z^{3}+a X^{2} Y+X^{2} Z+a^{2} X Y^{2}+X Z^{2}+a Y Z^{2} \\
& =a^{2}(a Y+z)\left(a X^{2}+a^{2} X Y+a Y^{2}+a X Z+Y Z+Z^{2}\right)
\end{aligned}
$$

The only possibility for factorization that is not determined by Corollary 4.1 to necessarily have surjective evaluation map, and does not occur over $\mathbb{F}_{4}$, is the product of a linear polynomial and a geometrically irreducible conic to which it is tangent. We have not witnessed this factorization type having non-surjective evaluation map over $\mathbb{F}_{q}$ for any $q$.
7.2.4. $q=7$. Through a complete search of plane cubics over $\mathbb{F}_{7}$ we find
a) 19494 which have non-surjective evaluation map with 22 points projectively over $\mathbb{F}_{7}$. Each of these factors as a product of three linears over $\mathbb{F}_{7}$, with the mutual intersection of the corresponding hyperplanes a line (the case of Example 4.3c)(ii)), and
b) 342 which have non-surjective evaluation map with 8 points projectively over $\mathbb{F}_{7}$. These consist of the cubes of linear factors over $\mathbb{F}_{7}$ (Example 4.3b)).

## References

[A199] N. Alon, Combinatorial Nullstellensatz. Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), 7-29.
[AM21] E. Aichinger and J. Moosbauer, Chevalley Warning type results on abelian groups. J. Algebra 569 (2021), 30-66.
[AS87] A. Adolphson and S. Sperber, p-adic estimates for exponential sums and the theorem of Chevalley-Warning. Ann. Sci. École Norm. Sup. (4) 20 (1987), 545556.
[As18] S. Asgarli, A new proof of Warning's second theorem. Amer. Math. Monthly 125 (2018), 549-553.
[Ax64] J. Ax, Zeroes of polynomials over finite fields. Amer. J. Math. 86 (1964), 255-261.
[BBC19] I. Baoulina, A. Bishnoi and P.L. Clark, A generalization of the theorems of Chevalley-Warning and Ax-Katz via polynomial substitutions. Proc. Amer. Math. Soc. 147 (2019), 4107-4122.
[Ca] J.W.S. Cassels, Lectures on elliptic curves. London Mathematical Society Student Texts, 24. Cambridge University Press, Cambridge, 1991.
[CFS17] P.L. Clark, A. Forrow and J.R. Schmitt, Warning's Second Theorem With Restricted Variables. Combinatorica 37 (2017), 397-417.
[Ch35] C. Chevalley, Démonstration d'une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 (1935), 73-75.
[Cl-NT] P.L. Clark, Number Theory: A Contemporary Introduction. http://math.uga.edu/ ~pete/4400FULL.pdf
[Cl12] P.L. Clark, Covering numbers in linear algebra. Amer. Math. Monthly 119 (2012), 65-67.
[DeML78] R.A. DeMillo and R. Lipton, A probabilistic remark on algebraic program testing. Information Processing Letters 7 (1978), 193-195.
[Di09] L.E. Dickson, On the representation of numbers by modular forms. Bull. Amer. Math. Soc. Volume 15, Number 7 (1909), 338-347.
[DKSSVW18] C.F. Doran, T.L. Kelly, A. Salerno, S. Sperber, J. Voight and U. Whitcher, Zeta functions of alternate mirror Calabi-Yau families. Israel J. Math. 228 (2018), 665705.
[HB11] D.R. Heath-Brown, On Chevalley-Warning theorems. (Russian. Russian summary) Uspekhi Mat. Nauk 66 (2011), no. 2(398), 223-232; translation in Russian Math. Surveys 66 (2011), no. 2, 427-436.
[Ka71] N.M. Katz, On a theorem of Ax. Amer. J. Math. 93 (1971), 485-499.
[LN97] R. Lidl and H. Niederreiter, Finite fields. With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
[M] A. Menezes, Elliptic curve public key cryptosystems. With a foreword by Neal Koblitz. The Kluwer International Series in Engineering and Computer Science, 234. Communications and Information Theory. Kluwer Academic Publishers, Boston, MA, 1993.
[Mo71] B. Morlaye, Équations diagonales non homogènes sur un corps fini. C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1545-A1548.
[Or22] Ö. Ore, Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I (1922), no. 7, 15 pages.
[S] H. Stichtenoth, Algebraic function fields and codes. Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.
[Sc80] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27 (1980), no. 4, 701-717.
[Si] J.H. Silverman, The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009.
[Te66] G. Terjanian, Sur les corps finis. C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A167A169.
[Wa35] E. Warning, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11 (1935), 76-83.
[Wa69] W.C. Waterhouse, Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560.
[Wa88] D.Q. Wan, Zeros of diagonal equations over finite fields. Proc. Amer. Math. Soc. 103 (1988), 1049-1052.
[Wk] https://en.wikipedia.org/wiki/Schwartz-Zippel_lemma
[Zip79] R. Zippel, An explicit separation of relativised random polynomial time and relativised deterministic polynomial time. Inform. Process. Lett. 33 (1979), 207-212.


[^0]:    ${ }^{1}$ A field that satisfies this property is called " $C_{1}$," so Chevalley proved that finite fields are $C_{1}$.
    ${ }^{2}$ Warning stated Theorem 1.2 for $r=1$ only, but his proof works verbatim in the general case.

[^1]:    ${ }^{3}$ Heath-Brown establishes Lemma 2.3 en route to proving [HB11, Thm. 1], which is a generalization of a lemma that Warning used in his proof of Theorem 1.2.

[^2]:    ${ }^{4}$ And was - this is what Heath-Brown proved in [HB11].

[^3]:    ${ }^{5}$ We sketch one argument for this: by Theorem 1.1 there is at least one point $P_{0} \in C\left(\mathbb{F}_{q}\right) \subset$ $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$. Through the point $P_{0}$ there are $q+1$ lines. One of these lines is the tangent line to $C$ at $P_{0}$ so intersects the curve $C$ at $P_{0}$ alone. Every other line intersects $C$ at one other point. All points of $C\left(\mathbb{F}_{q}\right)$ arise in this way.

[^4]:    ${ }^{6}$ An elliptic curve $C_{/ \mathbb{F}_{q}}$ is supersingular iff $p \mid t_{C}$.

[^5]:    ${ }^{7}$ Such considerations form the beginning of Chevalley's proof of Theorem 1.1.

[^6]:    ${ }^{8}$ Unfortunately we have only been able to find them in the literature in the special case of a singular Weierstrass cubic, which is why we give a detailed sketch here.

