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Abstract. We prove three theorems on torsion points and Galois representations for complex multi-
plication (CM) elliptic curves over number fields. The first theorem is a sharp version of Serre’s Open

Image Theorem in the CM case. The second theorem determines the degrees in which a CM elliptic

curve has a rational point of order N , provided the field of definition contains the CM field. The
third theorem bounds the size of the torsion subgroup of an elliptic curve with CM by a nonmaximal

order in terms of the torsion subgroup of an elliptic curve with CM by the maximal order. We give
several applications.
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1. Introduction

1.1. Overview. Let F be a field of characteristic 0, and let E/F be an elliptic curve. We say E has
complex multiplication (CM) if the endomorphism algebra

End0E = End(E/F )⊗Z Q

is strictly larger than Q, in which case it is necessarily an imaginary quadratic field K and O =
End(E/F ) is a Z-order in K. This paper continues a program of study of torsion points and Galois

representations on CM elliptic curves defined over number fields. Contributions have been made by
Olson [Ol74], Silverberg [Si88], [Si92], Parish [Pa89], Aoki [Ao95], [Ao06], Ross [Ro94], Kwon [Kw99],
Prasad-Yogananda [PY01], Breuer [Br10] and Lombardo [Lo15], and the present authors and our
collaborators [CCRS13], [CCRS14], [BCS], [CP15], [BCP], [BP16].

Two long-term goals of this program are on the one hand to completely understand the adelic
Galois representation on any CM elliptic curve defined over a number field and on the other hand to
determine all degrees of CM points on modular curves associated to congruence subgroups of SL2(Z).
These two problems are closely related. An archetypical example is the following case of the First
Main Theorem of Complex Multiplication (the full statement is reproduced as Theorem 2.9): if
K is an imaginary quadratic field E/K(j(E)) is an OK-CM elliptic curve, then for all N ∈ Z+ the field

obtained by adjoining to K(j(E)) the Weber function of the N -torsion subgroup is K(N), the N -ray
class field of K. For all N ≥ 3, we have (see Lemma 2.11)

[K(N) : K(j(E))] =
#(OK/NOK)×

#O×K
.

This implies that the mod N Galois representation on an OK-CM elliptic curve E/K(j(E)) is as large
as possible up to twisting, and we will show there is an OK-CM elliptic curve E/K(j(E)) such that the

mod N Galois representation surjects onto the mod N Cartan subgroup (O/NO)× (see Theorem 4.8).
This is a sharp version of Serre’s Open Image Theorem in the OK-CM case. The corresponding result
on the modular curve side is: the field of moduli of an OK-CM point on X(N)/K(ζN ) is K(N).

The above results restrict to the case of the maximal order OK , as does most of the classical theory.1

Here we work in the context of an arbitrary order O, of conductor f, in an imaginary quadratic field
K. Let F ⊃ K be a number field, and let E/F be an O-CM elliptic curve. For any positive integer N ,

we define the reduced mod N Cartan subgroup to be the quotient of CN (O) = (O/NO)× by the
image of O× under the natural map qN : O → O/NO. That is,

CN (O) = CN (O)/qN (O×).

(The map q×N : O× → (O/NO)× is injective when N ≥ 3; when N = 2 its kernel is {±1}.) We define
the reduced Galois representation to be the following composite homomorphism:

ρN : gF
ρN−→ CN (O)→ CN (O).

This representation is independent of the F -rational model of E, and our first result shows that it
plays a natural role in the study of Galois representations on CM elliptic curves.

Theorem 1.1. (Uniform Open Image Theorem)
a) For all O-CM elliptic curves E/K(j(E)), the reduced Galois representation

ρN : gK(j(E)) → CN (O)

is surjective.
b) For all number fields F ⊃ K and all O-CM elliptic curves E/F we have

[CN (O) : ρN (gF )] | #O×[F : K(j(E))] ≤ 6[F : K(j(E))].

1The adelic formalism incorporates arbitrary orders, but even so the explicit determination of the class field in the

“First Main Theorem” has been given only for the maximal order.
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c) For all orders O and all N ≥ 2, there is a number field F ⊃ K and an O-CM elliptic curve E/F
such that E[N ] = E[N ](F ) and

[F : K(j(E))] = #CN (O).

The surjectivity of ρN is deduced from the following result, which is an extension of the classical First
Main Theorem of Complex Multiplication from maximal orders to all orders.

Theorem 1.2. Let O be an order of conductor f, let E/C be an O-CM elliptic curve, and let N ∈ Z+.
Then the Weber function field K(j(E))(h(E[N ])) is the compositum of the N -ray class field of K with

the N f-ring class field of K. Moreover, we have [K(j(E))(h(E[N ])) : K(j(E))] = #CN (O).

Let us briefly describe the proof. Building on the classical First Main Theorem, our prior work with
Stankewicz [BCS], and work of Parish [Pa89], we show that K(j(E))(h(E[N ])) contains K(N) and
K(N f). Some observations on Weber functions established in §2.3 imply that the order of the reduced

Cartan subgroup #CN (O) is an upper bound for the degree [K(j(E))(h(E[N ])) : K(j(E))], so it
remains to show that equality holds. To do this, we use both class field theory and an analysis of the
Galois representation on an auxiliary OK-CM elliptic curve.

It follows from Theorem 1.1 that if E/F is an O-CM elliptic curve and F ⊃ K, the index of

the image of the adelic Galois representation on E in the Cartan subgroup “C = (O ⊗ Ẑ)× divides
#O×[F : K(j(E))]. If F does not contain K, then the image of the adelic Galois representation has

index dividing [F : Q(j(E))]#O× in a subgroup of GL2(Ẑ) that contains the adelic Cartan “C with
index 2. This is close to being a complete description of the adelic Galois representation on any CM
elliptic curve defined over a number field. It falls short in two aspects: first, for a fixed N ≥ 3, to get a
mod N Galois representation with index #O× in the mod N Cartan, our construction takes F to be
a proper extension of the minimal possible ground field K(j(E)). Second, it shows that at any finite
level N the index of the mod N representation in the Cartan can be any divisor of #O× but does not
address whether this can happen for the adelic Galois representation. These do not impact the second
aspect of our program, which studies degrees of level N structures of CM elliptic curves and fields of
moduli of CM points on modular curves and studies all pairs (E,LN )/F for a level N structure LN
over a number field F ⊃ K(j(E)), not just pairs in which the underlying elliptic curve E arises from
base extension of an elliptic curve E/K(j(E)).

We propose to use Theorem 1.1 to determine all degrees of CM points on modular curves. To carry
this out requires further work of a more algebraic nature: an analysis of orbits of the mod N Cartan
subgroup CN (O) on level N structures. To understand the relevance of this, let E/K(j(E)) be an O-CM
elliptic curve. If P ∈ E[tors] is a point of order N , the field of moduli of the point (E,P ) on X1(N)
depends only on the O× orbit P of P . Since the reduced Galois representation is surjective, the degree
of this field over K(j(E)) may be computed by determining the size of the orbit of CN (O) on P .

We give an analysis of Cartan orbits on O/NO in §5 and §6. The algebra is much simpler when O
is maximal, and in this case our analysis is complete. When O is nonmaximal we give substantial, but
not full, information on the structure of the Cartan orbits, enough to yield the following result.

Theorem 1.3. Let O be an order in K of conductor f, and let N ∈ Z≥2.
There is a positive integer T (O, N), explicitly computed in §6, such that:
(i) if F ⊃ K is a number field and E/F is an O-CM elliptic curve with an F -rational point of order
N , then T (O, N) | [F : K(j(E))], and
(ii) there is a number field F ⊃ K and an O-CM elliptic curve E/F such that [F : K(j(E))] = T (O, N)
and E(F ) contains a point of order N .

Theorem 1.3 should be compared to Theorem 5.2, a refinement of bounds of Silverberg [Si88], [Si92]
and Prasad-Yogananda [PY01]. Theorem 5.2 also gives a divisibility on [F : K(j(E))] imposed by the
existence of an F -rational point of order N : in the current notation, Theorem 5.2 asserts

ϕ(N) | #O× · T (O, N).
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This bound is “homogenous” in the sense that it is a single bound that holds in all cases. Theorem
1.3 gives the optimal divisibility in all cases.

We give two other applications of our Cartan orbit analysis: the determination of all possible tor-
sion subgroups of a K-CM elliptic curve E/K(j(E)) (§5.7) and the set of N ∈ Z+ for which there is a
K(j(E))-rational cyclic N -isogeny (Theorem 5.18).

Although we seek results which treat elliptic curves with CM by a nonmaximal order on an equal
footing with the OK-CM case, in most cases (e.g. in Theorem 1.1) the proofs use “change of order”
functorialities. Let F be a number field, let E/F be an O-CM elliptic curve, and let f be the conductor
of O. Then there is an F -rational isogeny ι : E → E′ such that EndE′ = OK . The induced gF -module
map E[N ] → E′[N ] is an isomorphism iff gcd(f, N) = 1; otherwise there is a nontrivial kernel. But
nevertheless there are relations between the mod N Galois representations on E and E′. Here is the
last main result of this paper:

Theorem 1.4. (Isogeny Torsion Theorem) Let O be an order in an imaginary quadratic field K,
F ⊃ K be a number field, E/F an O-CM elliptic curve, and ι : E → E′ the canonical isogeny, with E′

an OK-CM elliptic curve. Then:

#E(F )[tors] | #E′(F )[tors].

We give examples where the exponent of E′(F )[tors] is strictly smaller than that of E(F )[tors], showing

we cannot hope to view E(F )[tors] as a subgroup of E′(F )[tors], and we prove that #E′(F )[tors]
#E(F )[tors] can be

arbitrarily large (see Propositions 5.8 and 5.9). Moreover, the statement is false if we do not require
F ⊃ K. Despite the fact that this relationship is not as strong as one might hope, Theorem 1.4 has
applications to determining fields of moduli of partial level N structures (§5.2, §5.3).

1.2. Related work. Our proof of Theorem 1.1 builds crucially on work of J.L. Parish [Pa89]. Also
the classification of torsion over K(j(E)) is one of the main results of [Pa89]. Parish’s work has minor
flaws with regard to the imaginary quadratic fields Q(

√
−1) and Q(

√
−3) – leading in particular to

some omitted groups in his classification of torsion over K(j(E)) – and at another key point is a bit
laconic, so when we want to use results appearing in or motivated by [Pa89] we give complete proofs.

A paper of R. Ross [Ro94] contains a result related to Theorem 1.4: in the notation of Theorem
1.4, Ross’s assertion implies that the groups E(F )[tors] and E′(F )[tors] have the same exponent. This
is false: Proposition 5.8 gives counterexamples. Nevertheless it was Ross’s work that led us to the
statement of Theorem 1.4.

S. Kwon gave a classification of degrees of cyclic isogenies rational over Q(j(E)) in the CM case
[Kw99]. Our Theorem 5.18 is the analogue over K(j(E)).

D. Lombardo has recently shown that if E/F is a CM elliptic curve defined over a number field F
containing the CM field K, then the index of the adelic Galois representation in the Cartan subgroup
divides #O×[F : K] [Lo15]. This is in general a weaker bound than that of Theorem 1.1; the two
coincide when j(E) ∈ Q. On the other hand, Lombardo establishes largeness of Galois results for all
abelian varieties of CM type and then specializes to elliptic curves.

Á. Lozano-Robledo has informed us that he has also done work on the image of the adelic Galois
representation in the CM case.

2. Preliminaries

2.1. Foundations. We begin by setting some terminology for orders in imaginary quadratic fields.
Let K be an imaginary quadratic field and O a Z-order in K. We put

f = [OK : O],

the conductor of O. Then

O = Z + fOK , ∆(O) = f2∆K .
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Conversely, for fixed K and f ∈ Z+ there is a unique order O(f) in K of conductor f. Thus an
imaginary quadratic order is determined by its discriminant ∆, a negative integer which is 0 or 1
modulo 4. Conversely, for any negative integer ∆ which is 0 or 1 modulo 4, we put

τ∆ =
∆ +

√
∆

2
,

and then Z[τ∆] is an order in K of discriminant ∆.

Throughout this paper we will use the following terminological convention: by “an order O” we
always mean a Z-order O in an imaginary quadratic field, which is determined as the fraction field of
O and denoted by K. We may specify an order O by giving its discriminant, which also determines
K. If K is already given, then we specify an order O in K by giving the conductor f.

For any O-CM elliptic curve E we have K(j(E)) = K(f), the ring class field of K of conductor f
([Co89, Thm. 11.1]). We may thus determine [K(j(E)) : K] via the following formula:

Theorem 2.1. For N ∈ Z+, let K(N) denote the N -ring class field of K. Then K(1) = K(1) is
the Hilbert class field of K, and for all N ≥ 2 we have

[K(N) : K(1)] =
2

wK
N
∏
p|N

Å
1−
Å

∆K

p

ã
1

p

ã
.

Proof. See e.g. [Co89, Cor. 7.24]. �

For number field F , a positive integerN , and E/F an elliptic curve, we denote by ρN the homomorphism

gF → AutE[N ] ∼= GL2(Z/NZ),

the modulo N Galois representation. If E/F has CM by the order O in K, then E[N ] ∼=O O/NO
(see [Pa89, Lemma 1], generalized in Lemma 2.5 below), and provided F ⊃ K we have

ρN : gF ↪→ AutO E[N ] ∼= GL1(O/NO) = (O/NO)×.

In other words, the image of the mod N Galois representation lands in the mod N Cartan subgroup

CN (O) = (O/NO)×.

Lemma 2.2. Let O be an order of discriminant ∆, and let N = par1 · · · parr ∈ Z+.
a) We have CN (O) =

∏r
i=1 Cpai

i
(O) (canonical isomorphism).

b) We have #CN (O) = N2∏
p|N

Ä
1−
Ä

∆
p

ä
1
p

ä Ä
1− 1

p

ä
.

Proof. a) It suffices to tensor the Chinese Remainder Theorem isomorphism Z/NZ =
∏r
i=1 Z/p

ai
i Z

with the Z-module O and pass to the unit groups.
b) By [CCRS13], for any prime number p we have

#Cp(O) = p2

Å
1−
Å

∆

p

ã
1

p

ãÅ
1− 1

p

ã
.

The natural map Cpa(O)→ Cp(O) is surjective with kernel of size p2a−2 [CP15, p. 3]. Together with
part a) this shows that if N = pa11 · · · parr then

#CN (O) =
r∏
i=1

p2ai−2
i (pi − 1)

Å
pi −

Å
∆

pi

ãã
= N2

∏
p|N

Å
1−
Å

∆

p

ã
1

p

ãÅ
1− 1

p

ã
. �

Finally, we establish the following relationship between [K(f) : K(1)] and #CN (O) which will be
used in the proof of Theorem 1.1. Here, ϕ denotes Euler’s totient function and ϕK(I) the natural
generalization for a nonzero ideal I of OK . That is,

ϕK(I) = #(OK/I)× = |I|
∏
p|I

Å
1− 1

|p|

ã
,
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where |I| = #OK/I.

Lemma 2.3. Let K be an imaginary quadratic field with ring of integers OK , and let O be the order
in K of conductor f. Then for N ∈ Z+ we have

(1)
ϕK(N f)ϕ(N)

[K(f) : K(1)]ϕ(N f)
= [O×K : O×] ·#CN (O).

Proof. If f = 1, then (1) reduces to ϕK(N) = #(OK/NOK)×, which is true. Suppose f > 1, so
Theorem 2.1 can be applied. Then the left hand side of (1) is

[O×K : O×]N2

∏
p|Nf

Ä
1−
Ä

∆K

p

ä
1
p

ä Ä
1− 1

p

ä∏
p|N

Ä
1− 1

p

ä
∏
p|f

Ä
1−
Ä

∆K

p

ä
1
p

ä∏
p|Nf

Ä
1− 1

p

ä
= [O×K : O×]N2

∏
p|N

Å
1− 1

p

ã ∏
p|Nf, p-f

Å
1−
Å

∆K

p

ã
1

p

ã
= [O×K : O×]N2

∏
p|N

Å
1−
Å

∆

p

ã
1

p

ã
= [O×K : O×]#CN (O). �

2.2. Torsion Kernels. Let E/C be an O-CM elliptic curve. For a nonzero ideal I of O, we define the
I-torsion kernel

E[I] = {P ∈ E | ∀α ∈ I, αP = 0}.
There is an invertible ideal Λ ⊂ O such that

E ∼= C/Λ.

If we put

(Λ : I) = {x ∈ C | xI ⊂ Λ} = {x ∈ K | xI ⊂ Λ}
then we have (immediately) that

E[I] = {x ∈ C/Λ | xI ⊂ Λ} = (Λ : I)/Λ.

Let |I| = #O/I.

Lemma 2.4. Let I, J ⊂ O be nonzero ideals and E/C be an O-CM elliptic curve.
a) If I ⊂ J , then E[J ] ⊂ E[I].
b) We have E[I] ⊂ E[|I|]. In particular

#E[I] ≤ |I|2.

Proof. a) This is immediate from the definition. b) By Lagrange’s Theorem, every element of O/I is
killed by |I|, so |I| ⊂ |I|O ⊂ I. Apply part a). �

Lemma 2.5. If I is an invertible O-ideal, then

E[I] = I−1Λ/Λ ∼=O O/I.

In particular #E[I] = |I| = #O/I.

Proof. An ideal I is invertible iff there is an O-submodule I−1 of K such that II−1 = O. If so, then
for x ∈ K we have

xI ⊂ Λ ⇐⇒ xII−1 = xO ⊂ I−1Λ ⇐⇒ x ∈ I−1Λ,

giving E[I] = I−1Λ/Λ. Because Λ is a locally free O-module, for all p ∈ SpecO we have Λp
∼= Op

and thus (I−1Λ/Λ)p ∼= (I−1/O)p ∼= (O/I)p. Thus I−1Λ/Λ is locally free of rank 1 as an O/I-module.
But the ring O/I is semilocal, hence has trivial Picard group: any locally free rank 1 O/I-module is
isomorphic to O/I. �
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Lemma 2.6. Let R be a Dedekind domain, and let M be a cyclic torsion R-module, and let N ⊂ M
be an R-submodule. Then:
a) N is also a cyclic R-module.
b) We have N ∼= R/ annN .

Proof. Let I = annM . SinceM is a finitely generated torsion module over a domain, we have I 6= 0 and
M ∼= R/I. Thus N ∼= I ′/I for some ideal I ′ ⊃ I. The ring R/I is principal Artinian [CA, Thm. 20.11],
so the ideal I ′/I of R/I is principal. Thus N is a cyclic, torsion R-module, so N ∼= R/ annN . �

Theorem 2.7. Let E/C be an OK-CM elliptic curve, and let M ⊂ E(C) be a finite OK-submodule.
Then M = E[annM ] ∼=O O/ annM and thus #M = |annM |.
Proof. That M ⊂ E[annM ] is a tautology. Because O = OK every nonzero O-ideal is invertible, so
by Lemma 2.5 we have #E[annM ] = |annM |. On the other hand, let t = #M . Then M ⊂ E[t] ∼=OK
OK/tOK , a finite cyclic OK-module. By Lemma 2.6 we have M ∼= OK/ annM so #M = |annM |.
Thus M = E[annM ], hence Lemma 2.5 gives M ∼= O/ annM and #M = |annM |. �

Remark 2.8. There is nonzero prime ideal p of O such that the local ring Op is not a DVR. If
p ∩ Z = (`), then O/p ∼= Z/`Z. Since every ideal of O can be generated by two elements, we have
dimO/p p/p

2 = 2. Thus #O/p2 = `3 and (`3) ⊂ p2. It follows that in the quotient ring O/`3O the

maximal ideal p + `3O is not principal. Let E/C be an O-CM elliptic curve, so E[`3] ∼=O O/`3O. So

the O-submodule M = pE[`3] of E[`3] is not cyclic and thus not isomorphic to O/ annM .

Now we recall an important classical result.

Theorem 2.9. (First Main Theorem of Complex Multiplication) Let E/C be an OK-CM elliptic curve,

and let I be a nonzero ideal of OK . Let h : E → P1 be a Weber function. Then:

K(1)(h(E[I])) = KI .

Proof. See e.g. [Si94, Thm. II.5.6]. �

Combining Theorems 2.7 and 2.9, we get the class-field theoretic containment corresponding to any
finite OK-submodule of E(F ), for any OK-CM elliptic curve E defined over a number field F ⊃ K.
Theorem 2.9 implies that whenever E is an OK-CM elliptic curve, K(1)(h(E[N ])) = K(N). In the case
of CM by an arbitrary order in K, we will show the Weber Function Field need not equal K(N) (see
Theorem 4.6), but a containment has previously been established.

Theorem 2.10. [BCS, Thm. 3.16] Let E be a K-CM elliptic curve defined over a number field F ⊃ K.
Then we have

(2) F (h(E[N ])) ⊃ K(N).

For convenience, we record here the formulas for [KI : K(1)].

Lemma 2.11. Let I be a nonzero ideal of K, and let KI be the I-ray class field. We put U(K) = O×K
and UI(K) = {x ∈ U(K) | x− 1 ∈ I}.
a) We have

[KI : K(1)] =
ϕK(I)

[U(K) : UI(K)]
.

b) If K 6= Q(
√
−1),Q(

√
−3), then

[KI : K(1)] =

®
ϕK(I) I | (2)
ϕK(I)

2 I - (2)
.

c) If K = Q(
√
−1), then

[KI : K(1)] =


ϕK(I) I | (1 + i)
ϕK(I)

2 I - (1 + i) and I | (2)
ϕK(I)

4 I - (2)

.
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d) If K = Q(
√
−3), then

[KI : K(1)] =


1 I = (1)
ϕK(I)

2 I 6= (1) and I | (ζ3 − 1)
ϕK(I)

3 I = (2)
ϕK(I)

6 otherwise

.

Proof. Parts b)-d) can be deduced from a), which appears as [Co00, Cor. 3.2.4]. �

2.3. On Weber Functions.

Theorem 2.12. (Weber Function Principle) Let N ∈ Z≥3, let O be the order of conductor f in K, and
let F = K(f). For an O-CM elliptic curve E/F , fix an embedding F ↪→ C such that j(E) = j(C/O).
Define

W (N,O) = K(f)(h(E[N ])).

a) W (N,O) is a subfield of F (E[N ]) and [F (E[N ]) : W (N,O)] | #O×.
b) There is an elliptic curve E/F such that

[F (E[N ]) : W (N,O)] = #O×.

c) As we range over all elliptic curves E/F with j(E) = j(C/O), we have⋂
E

F (E[N ]) = W (N,O).

Proof. a) Let w = #O×. The field F (E[N ])/F is Galois with Galois group ρN (gF ) ⊂ CN (O). Because
N ≥ 3, the homomorphism O× → CN (O) is injective. Since h(P ) = h(Q) for points P,Q on E if and
only if there exists ξ ∈ O× such that ξ(P ) = Q (e.g. [La87, Thm. I.7]), it follows that

W (N,O) = F (E[N ])ρN (gF )∩O× .

Thus

[F (E[N ]) : W (N,O)] | w.
b), c) If E/F , E′/F with j(E) = j(E′), then K(f)(h(E[N ])) = K(f)(h(E′[N ])) by the model indepen-

dence of the Weber function. Thus W (N,O) ⊂
⋂
E F (E[N ]). To see that equality holds, let E/F have

j(E) = j(C/O). Let p be a prime of OF which is unramified in F ′ = F (E[N ]). By weak approxi-

mation, there is π ∈ p \ p2. Put L = F (π
1
w ), and let χ : gF → µw be a character with splitting field

F
kerχ

= L. Then L/F is totally ramified over p, so F ′ and L are linearly disjoint over F . It follows
that

ρN,Eχ(gF ′) = (ρN,E/F ′ ⊗ χ)(gF ′) = χ(gF ′) = µw.

Thus

w = [F (Eχ[N ]) : F (E[N ]) ∩ F (Eχ[N ])] | [F (Eχ[N ]) : W (N,O)] | w,
so F (Eχ[N ]) has degree w over W (N,O) = F (E[N ]) ∩ F (Eχ[N ]). �

Remark 2.13. Theorem 2.12 holds for N = 2 with #O× replaced by #O×
2 . See §4.5 and §4.6.

3. The Isogeny Torsion Theorem

3.1. Proof of the Isogeny Torsion Theorem. Let ∆K be the discriminant of K and ∆ the discrim-
inant of O, so ∆ = f2∆K , where f is the conductor of O. There is an F -rational isogeny ι : E → E′ and
a field embedding F ↪→ C such that after extending the base to C we have E ∼=C C/O, E′ ∼=C C/OK ,
and after adjusting the source and target of ιC by these isomorphisms ι/C becomes the quotient map

C/O → C/OK . The kernel of ι is cyclic of order f. Let τK = ∆K+
√

∆K

2 so OK = Z[τK ] and O = Z[fτK ].

Identifying E[tors] with C/O[tors] as above, for any N ∈ Z+ we have that e1 = 1
N +O, e2 = fτK

N +O
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is a Z/NZ-basis for E[N ], and similarly e′1 = 1
N +OK , e′2 = τK

N +OK is a Z/NZ-basis for E′[N ]. With
respect to this basis the image of the mod N Galois representation consists of matrices of the form

(3)

ñ
a bf2

∆K−∆2
K

4
b a+ bf∆K

ô
| a, b ∈ Z/NZ.

For finite commutative groups T and T ′, we have #T | #T ′ if and only if #T [`∞] | #T ′[`∞] for all
prime numbers `. So we fix ` and show #E(F )[`∞] | #E′(F )[`∞]. If ` - f then ι induces an isomorphism
E(F )[`∞]→ E′(F )[`∞], so we may assume that ord` f ≥ 1. By (e.g.) the Mordell-Weil Theorem there
is 0 ≤ m ≤ n such that

E(F )[`∞] ∼= Z/`mZ⊕ Z/`nZ.

There is nothing to show unless n ≥ 1, so we assume so. Put N = `n, so E(F )[`∞] ⊂ E[N ], and let
{e1, e2} be the basis for E[`n] and {e′1, e′2} be the basis for E′[`n] as above. Put k = min(ord` f, n).

By assumption, there exists a point P ∈ E(F ) of order `n. Then P ′ = ι(P ) has order `d for some
n − k ≤ d ≤ n. If d = n, then E′(F )[`n] has exponent `n and full `m-torsion since ι(`n−me1) =
`n−me′1 ∈ E′(F ) generates E′[`m] as an OK-module. Thus E′(F )[`n] has size at least `m+n and we
are done. So we may assume d < n. There are α, β ∈ Z/`nZ such that P = αe1 + βe2, so we have

0 = `dι(P ) = ι(`dP ) = ι(`dαe1) + ι(`dβe2) = `dαe′1 + `dfβe′2 = `dαe′1

since `k | f. This implies `n−d | α, so we may write α = `n−dα′. In addition, we conclude ` - β since
`dP = `dβe2 has order `n−d.

Put δ = min(m + n − d, n). Since δ ≤ m + n − d ≤ m + k and E has full `m-torsion, the mod `δ

Galois representation takes a restricted form:

ρ`δ(gF ) ⊂
ßï

1 + `mA 0
`mB 1 + `mA

ò
| A,B ∈ Z/`δZ

™
.

Since `n−δP = α`n−δe1 + β`n−δe2 is rational, all such matrices in the image of Galois satisfyï
1 + `mA 0
`mB 1 + `mA

ò ï
`n−dα′

β

ò
=

ï
`n−dα′

β

ò
,

which gives the condition

`n+m−dBα′ + β`mA ≡ 0 (mod `δ).

But δ ≤ n + m − d and ` - β, so this implies `δ−m | A. Thus the image of the mod `δ Galois
representation consists of matrices of the formï

1 0
`mB 1

ò
.

It follows that ι(`n−δe1) ∈ E′[tors] is F -rational. Indeed, for all σ ∈ gF we have

σ(ι(`n−δe1)) = ι(σ(`n−δe1))

= ι(`n−δe1 + `mB`n−δe2)

= ι(`n−δe1) + `m+n−δBfe′2

= ι(`n−δe1),

since `k | f and m + n + k − δ ≥ n. So ι(`n−δe1) = `n−δe′1 is an F -rational point of E′ of order `δ

which generates E′[`δ] as an OK-module. If δ = n, then

#E(F )[`∞] = `m+n ≤ `2n = #E′(F )[`n] ≤ #E′(F )[`∞].

Otherwise, δ = m+ n− d and E′ has full `δ-torsion and a point of order `d. Thus E′(F )[`n] has size
at least `δ+d = `m+n.
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4. The Uniform Open Image Theorem

4.1. The Projective Torsion Field. Let F be a field. For a positive integer N not divisible by
the characteristic of F and E/F an elliptic curve, we define the projective modulo N Galois
representation as the composite map

PρN : gF
ρN−−→ AutE[N ] ∼= GL2(Z/NZ)→ PGL2(Z/NZ) := GL2(Z/NZ)/(Z/NZ)×.

The projective torsion field is

F (PE[N ]) = F
ker PρN

.

Thus F (PE[N ]) is the unique minimal field extension of F on which the image of ρN consists of
scalar matrices. It follows that F (E[N ])/F (PE[N ]) is a Galois extension with automorphism group a
subgroup of (Z/NZ)×.

Observe that the projective Galois representation and thus the projective torsion field are unchanged
by quadratic twists. If E/F has CM by an order of discriminant ∆ = f2∆K 6= −3,−4 and F ⊃ K,
then the projective N -torsion field is a well-defined abelian extension of K(f). An important result
of J.L. Parish identifies this projective torsion field with a suitable ring class field. When ∆ = −4
(resp. ∆ = −3) we have quartic twists (resp. sextic twists) which can change the projective Galois
representation and the projective torsion field.

Theorem 4.1. Let O be an order of discriminant ∆ = f2∆K . Let E be an O-CM elliptic curve defined
over F = K(f). Let N ≥ 2.
a) We have F (PE[N ]) ⊃ K(N f). Thus we may put

d(E,N) = [F (PE[N ]) : K(N f)].

b) If ∆ /∈ {−3,−4}, then d(E,N) = 1, i.e., F (PE[N ]) = K(N f).
c) If ∆ = −4, then d(E,N) | 2.
d) If ∆ = −3, then d(E,N) | 3.

Proof. For N ∈ Z+, let O(N) be the order of conductor N in K. Thus O = O(f).
Step 1: We show that F (PE[N ]) ⊃ K(N f) in all cases.
There is a field embedding F ↪→ C such that E/C ∼= C/O. The C-linear map z 7→ Nz carries O(f)
into O(N f) and induces a cyclic N -isogeny C/O(f) → C/O(N f). Let C be the kernel of this isogeny,
viewed as a finite étale subgroup scheme of E/C. Then C has a (unique) minimal field of definition
F (C) ⊂ F (E[N ]), hence of finite degree over F . The field F (PE[N ]) is precisely the compositum of
the minimal fields of definition of all order N cyclic subgroup schemes C ⊂ E/C, so F (C) ⊂ F (PE[N ]).
Since C is F (PE[N ])-rational, the elliptic curve E/C has a model over this field, and thus

F (PE[N ]) ⊃ K(j(E/C)) = K(N f).

Step 2: In view of Step 1, we have F (PE[N ]) ⊃ K(N f) ⊃ K(f) = K(j(E)), so we have F (PE[N ]) =
K(N f) iff [F (PE[N ]) : K(f)] ≤ [K(N f) : K(f)]. We have

[F (PE[N ]) : K(f)] = #PρN (gF ) ≤ #(O/NO)×/(Z/NZ)× = N
∏
p|N

Å
1−
Å

∆

p

ã
1

p

ã
.

• Suppose f > 1. Using Theorem 2.1 to compute [K(N f) : K(1)] and [K(f) : K(1)] gives

[K(N f) : K(f)] =
[K(N f) : K(1)]

[K(f) : K(1)]
= N

∏
p|N, p-f

Å
1−
Å

∆

p

ã
1

p

ã
= N

∏
p|N

Å
1−
Å

∆

p

ã
1

p

ã
,

because 1−
Ä

∆
p

ä
1
p = 1 for all p | f. Thus d(E,N) = 1 in this case.

• Suppose f = 1, so ∆ = ∆K . Then

[K(N f) : K(f)] = [K(N) : K(1)] =
2

wK
N
∏
p|N

Å
1−
Å

∆

p

ã
1

p

ã
.
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If ∆ /∈ {−3,−4} then 2
wK

= 1, and again we get d(E,N) = 1. If ∆ = −4 then 2
wK

= 1
2 , so

the calculation shows d(E,N) ∈ {1, 2}, and if ∆ = −3 then 2
wK

= 1
3 , so the calculation shows

d(E,N) ∈ {1, 3}. �

The following result is an an analogue of [BCS, Thm. 5.6] for higher twists.

Proposition 4.2. (Higher Twisting at the Bottom)
For M ∈ Z+, we denote the mod M cyclotomic character by χM .
a) Let K = Q(

√
−1) and let ` ≡ 5 (mod 8) be a prime number. There is a character Ψ : gK → (Z/`Z)×

of order `−1
4 and an OK-CM elliptic curve E/K such that the mod ` Galois representation is

σ 7→ ρ`(σ) =

ï
Ψ(σ) 0

0 Ψ−1(σ)χ`(σ)

ò
.

b) Let K = Q(
√
−3) and let ` ≡ 7, 31 (mod 36) be a prime number. There is a character Ψ : gK →

(Z/`Z)× of order `−1
6 and an OK-CM elliptic curve E/K such that the mod ` Galois representation is

σ 7→ ρ`(σ) =

ï
Ψ(σ) 0

0 Ψ−1(σ)χ`(σ)

ò
.

Proof. a) Because ` ≡ 1 (mod 4), the Cartan subgroup C`(O) is split, and for an OK-CM elliptic
curve (E1)/K , the mod ` Galois representation has the form

σ 7→ ρ`(σ) =

ï
Ψ1(σ) 0

0 Ψ−1
1 (σ)χ`(σ)

ò
for a character Ψ1 : gK → (Z/`Z)×. Under this isomorphism, the matrix representation of i ∈ OK
is a diagonal matrix

ï
z 0
0 z−1

ò
, where z is a primitive 4th root of unity in Z/`Z. A general OK-

CM elliptic curve over K is of the form Eψ1 for a character ψ : gK → µ4 ⊂ (Z/`Z)×. Let Q4(`) =
(Z/`Z)×/(Z/`Z)×4. Then the image of z in Q4(`) has order 4: if not, there is w ∈ (Z/`Z)× such that
z = w2, and then w has order 8 in (Z/`Z)×, contradicting the assumption that ` ≡ 5 (mod 8). Thus
the natural map µ4 → Q4(`) given by i 7→ z (mod (Z/`Z)×4) is an isomorphism; we denote the inverse
isomorphism Q4(`)→ µ4 by ι. Now take

ψ : gK
Ψ−1

1→ (Z/`Z)×
q→ Q4(`)

ι→ µ4.

Let Ψ2 = ψΨ1. Then the twist Eψ1 has mod ` Galois representation

σ 7→ ρ`(σ) =

ï
Ψ2(σ) 0

0 Ψ−1
2 (σ)χ`(σ)

ò
.

The composite Ψ2 : gK → (Z/`Z)× → Q4(`) is trivial, so Ψ2(gK) has order c | `−1
4 . Thus

#ρ`,Eψ1
(gK) | c(`− 1) | (`− 1)2

4
= [K(`) : K(1)] = [K(`) : K].

Because K(Eψ1 [`]) ⊃ K(`), we have #ρ`,Eψ1
(gK) = (`−1)2

4 and c = `−1
4 .

b) Since ` ≡ 1 (mod 3), we have a primitive 6th root of unity z in Z/`Z. Since ` ≡ 7, 31 (mod 36),

we have 4, 9 - `− 1, so z has order 6 in Q6(`) = (Z/`Z)×/(Z/`Z)×6. Also (`−1)2

6 = [K(`) : K(1)]. The
argument of part a) carries over. �

Example 4.3. a) Let K = Q(
√
−1), and let ` ≡ 5 (mod 8). Let E/K be an OK-CM elliptic curve

with mod ` Galois representation as in Proposition 4.2a). Then since χ`(gK) = (Z/`Z)×, [K(PE[`]) :
K] = `− 1, whereas [K(`) : K] = `−1

2 . So d(E, `) = 2.

b) Let K = Q(
√
−3), and let ` ≡ 7, 31 (mod 36). Let E/K be an O-CM elliptic curve with mod `

Galois representation as in Proposition 4.2b). As in part a), we have [K(PE[`]) : K] = ` − 1 and
[K(`) : K] = `−1

3 . So d(E, `) = 3.
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Remark 4.4. Parts a) and b) of Theorem 4.1 are due to J.L. Parish [Pa89, Prop. 3]. However,
Parish alludes to a calculation of the above sort rather than explicitly carrying it out. Since Theorem
4.1 will play an important role in the proof of Theorem 1.1, we have given a complete proof.

In [Pa89, Prop. 3], Parish assumes K 6= Q(
√
−1),Q(

√
−3). In an “addendum” [Pa89, p. 263], he

claims:
• If ∆ = −4 then F (PE[N ]) = K(N) for all N ≥ 3, and
• If ∆ = −3 then F (PE[N ]) = K(N) for all N ≥ 4.
As Example 4.3 shows, both claims are false.

Proposition 4.5. Let O be an order of discriminant ∆ = f2∆K , and let N ∈ Z+. Then there is an
O-CM elliptic curve E/K(Nf) such that the mod N Galois representation consists of scalar matrices.

Proof. When ∆ /∈ {−3,−4}, this is immediate from Theorem 4.1b): in that case, the elliptic curve
has a model defined over K(f). Thus we may assume that ∆ ∈ {−3,−4}, so f = 1. Let ζ ∈ O×K
be a primitive wKth root of unity. Let O be the order in K of conductor N , let Ẽ/K(N) be an O-

CM elliptic curve, and let ι : Ẽ → E be the canonical K(N)-rational isogeny to an OK-CM elliptic

curve E, let ι∨ : E → Ẽ be the dual isogeny, and let C be the kernel of ι∨. Identifying E[N ] with
N−1OK/OK ⊂ C/OK , ι∨ : C/OK → C/O is the map z + OK 7→ Nz + O, so C is the Z-submodule
of C/OK generated by P1 = 1

N + OK . Because C is stable under the action of gK(N), this action is
given by an isogeny character, say

σ(P1) = Ψ(σ)P1.

Let P2 = ζP1. Then {P1, P2} is a Z/NZ-basis for E[N ]. Moreover, for σ ∈ gK(N),

σP2 = σζP1 = ζσP1 = ζΨ(σ)P1 = Ψ(σ)ζP1 = Ψ(σ)P2.

It follows that σ ∈ gK(N) acts on E[N ] via the scalar matrix Ψ(σ). �

4.2. Proof of Theorem 1.1b) when F = K(f). In this section we prove Theorem 1.1 b) in the case
F = K(f). The general case F ⊃ K(f) is treated in the next section.

Step 1: Let O be an order in K of conductor f, let F = K(f) and let E/F be an O-CM elliptic

curve. Let N ∈ Z+. Identifying ρN (gF ) with a subgroup of CN (O), put

IN = IN (E/K(f)) = [CN (O) : ρN (gF )].

Our task is to show that as we vary over all imaginary quadratic fields K, all f ∈ Z+, and all elliptic
curves E defined over F = K(f) with EndE ∼= O(f) in K and all N ∈ Z+, we have IN | #O×, or
equivalently,

#CN (O)

#O×
| [F (E[N ]) : F ].

Because the ρN form an inverse system, we have N | N ′ =⇒ IN | IN ′ . So we may – and shall –
assume 3 | N and thus

[K(N) : K(1)] =
ϕK(N)

wK
.

Put L = K(N f). By Theorems 2.10 and 4.1 we have

F (E[N ]) ⊃ K(N)L,

so it is enough to show that

(4)
#CN (O)

#O×
| [K(N)L : K(f)].

Although (4) is purely class-field theoretic, we will show it using CM elliptic curves.

Step 2: Suppose first that f = 1, so O = OK . Then since 3 | N we have

[K(N)L : K(f)] = [K(N) : K(1)] =
ϕK(N)

wK
,
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and we are done. Now suppose that f > 1. Then

(5) [K(N)L : K(f)] =
[K(Nf) : K(1)]

[K(f) : K(1)][K(Nf) : K(N)L]
.

Combining equation (5) with Lemmas 2.11 and 2.3 we get

[K(N)L : K(f)] =
ϕK(N f)/wK

[K(f) : K(1)][K(Nf) : K(N)L]

=
#CN (O)

#O×
· ϕ(N f)/ϕ(N)

[K(Nf) : K(N)L]
.

It now suffices to show that

[K(Nf) : K(N)L] | ϕ(N f)

ϕ(N)
.

Step 3: By Proposition 4.5 there is an OK-CM elliptic curve (E0)/L for which the mod N f Galois

representation has scalar image. Since 3 | N f, there is a character Ψ : gL → (Z/3Z)× = {±1} such
that

ρ3(σ) =

ï
Ψ(σ) 0

0 Ψ(σ)

ò
.

Thus the quadratic twist E1 of E0 by Ψ has trivial mod 3 Galois representation, so

L(E1[3]) = L = L(h(E1[3])).

We claim that this implies that for all 3 |M ∈ Z+, we have

L(E1[M ]) = L(h(E1[M ])) = LK(M).

proof of claim: The Galois group Aut(L(E1[M ])/L) is naturally identified with a subgroup G(M)
of CM (OK). Because M ≥ 3, the composite homomorphism

(6) O×K → CM (OK)→ C3(OK)

is injective. We have

L(h(E1[M ])) = L(E1[M ])G(M)∩O×
K .

Since

G(3) ∩ O×K = (G(M) ∩ O×K) (mod 3),

the injectivity of (6) means that if G(M) ∩ O×K ) {e}, then G(3) ∩ O×K ) {e}. But G(3) = {e}, so

that G(M) ∩ O×K = {e}, establishing the claim.

Let G = Aut(K(Nf)/L), H = Aut(K(Nf)/K(N)L). Since K(Nf) = L(E1[N f]) and K(N)L = L(E1[N ]),
we may identify G with a subgroup of scalar matrices of CNf(OK), and H is the subgroup of matrices

which are 1 mod N . So #H | ϕ(Nf)
ϕ(N) .

4.3. End of the Proof of Theorem 1.1b). Let O be the order of conductor f in an imaginary
quadratic field K, let F ⊃ K(f) be a number field, and let E/F be an O-CM elliptic curve: we may
choose the embedding F ↪→ C such that j(E) = j(C/O). We want to to show that the index of
the image of the Galois representation on E/F in CN (O) divides #O×[F : K(f)]. Equivalently, we
want to establish this divisibility on the index of the mod N Galois representation for all sufficiently
divisible N ∈ Z+, so we may (and shall) assume that 3 | N . Let (E1)/K(f) be an elliptic curve with
j(E1) = j(E). Put

W (N,O) = K(f)(h(E1[N ])).

We saw above that K(N)K(N f) ⊂ K(f)(E1[N ]). Since this holds for all E1 with j(E1) = j(C/O), the
Weber Function Principle (Theorem 2.12) gives

K(N)K(N f) ⊂W (N,O).
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By part a) of the Weber Function Principle and (4) we have

[W (N,O) : K(f)] | #CN (O)

#O×
| [K(N)K(N f) : K(f)],

so we deduce

(7) W (N,O) = K(N)K(N f), [W (N,O) : K(f)] =
#CN (O)

#O×
.

It follows from (7) and the Weber Function Principle that we may choose (E1)/K(f) so that ρE1,N (gK(f)) =

CN (O). By the standard theory of twists, there is an extension L/F of degree #O× such that
E/L ∼= (E1)/L, and thus

[CN (O) : ρE,N (gF )] | [CN (O) : ρE1,N (gL)] | [L : K(f)] = #O×[F : K(f)].

4.4. Proof of Theorem 1.1c). Let O be the order of conductor f in an imaginary quadratic field
K, let w = #O×, and let N ≥ 3; the last assumption implies that µw ↪→ CN (O). Let E/K(f) be any
O-CM elliptic curve. Again we may view G = Aut(K(f)(E[N ])/K(f)) as a subgroup of CN (O). Let

H = G ∩ µw and L = (K(f)(E[N ]))H . Then [L : K(f)] | #CN (O)
w and ρE,N (gL) ⊂ µw, so a suitable

twist of E/L has trivial mod N Galois representation. By Theorem 1.1b) we must in fact have

[L : K(f)] =
#CN (O)

w
.

The excluded case N = 2 will be treated in Corollary 4.7.

4.5. Proof of Theorem 1.2. Let O be the order of conductor f in an imaginary quadratic field K.
For N ∈ Z+, put

W (N,O) = K(f)(h(E[N ])),

where E/K(f) is an elliptic curve with j(E) = j(C/O); the field is independent of the choice of E. In
the course of proving Theorem 1.1 we showed that

W (N,O) ⊃ K(N)K(N f).

When 3 | N , we showed (7) that equality holds and that [W (N,O) : K(f)] = #CN (O)
#O× . Conversely,

these statements about W (N,O) imply Theorem 1.1: immediately when F = K(f), and by an easy
twisting argument when F ⊃ K(f), as in §4.3. This leaves open the question of whether (7) holds when
3 - N . The next result shows that it holds for all N ≥ 3 and gives a suitable analogue when N = 2.

Theorem 4.6. Let O be an order of conductor f.
a) For all N ≥ 3, we have

(8) W (N,O) = K(N)K(N f), [W (N,O) : K(f)] =
#CN (O)

#O×
.

b) We have

(9) W (2,O) = K(2)K(2f) = K(2f), [W (2,O) : K(f)] =
2#C2(O)

#O×
.

Proof. a) Step 0: When f = 1 this reduces to known results: WN = K(N) and (since N ≥ 3)

[K(N) : K(1)] = ϕK(N)
#O× . Thus we may assume f > 1, so O× = {±1}.

Step 1: Let M = K(N)K(N f). We already know

M ⊂W (N,O)

and (by the Weber Function Principle)

[W (N,O) : K(f)] | #CN (O)

#O×
.
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So it suffices to show

(10)
#CN (O)

#O×
| [M : K(f)].

In turn, for this it is sufficient to construct an O-CM elliptic curve E/M with trivial mod N Galois
representation, for then Theorem 1.1 gives (10).
Step 2: By Proposition 4.5, there is an O-CM elliptic curve E/K(Nf) for which the mod N Galois
representation consists of scalar matrices. We extend the base to get E/M . Let ι : E → E′ be the

canonical isogeny to an OK-CM elliptic curve. Since W (N,OK) = K(N) ⊂ M , we have ρE′,N (gM ) ⊂
µK . Let ι∨ : E′ → E be the dual isogeny. Since ι and ι∨ are cyclic isogenies, there is a point
P ∈ E′(M) of order N such that Q = ι∨(P ) has order N . If K 6= Q(

√
−1),Q(

√
−3) then µK = {±1},

so the gM -orbit of P is contained in {±P}, hence the gM -orbit of Q is contained in {±Q}. Thus Q
is an M -rational point on a suitable quadratic twist ED, and since quadratic twists do not change
whether the Galois representation is given by scalar matrices, the mod N Galois representation on
ED/M is trivial.

Now suppose K = Q(
√
−1) or Q(

√
−3) and let ζ be a primitive wKth root of unity, so O = Z[fζ].

Then we can take P = ζ
N . Explicitly, the dual isogeny is

ι∨ : z +OK 7→ fz +O,

so Q = ι∨(P ) = fζ
N + O, which has order N in C/O. Suppose for some 1 ≤ k < wK , the point

ι∨(ζkP ) = fζk+1

N + O is a scalar multiple of Q = fζ
N + O. Then fζk+1

N + O = α fζ
N + O for some

α ∈ (Z/NZ)×. Since fζk+1

N −α fζ
N ∈ O only if α ∈ {±1}, again the gM -orbit of Q is contained in {±Q}

and we can make a quadratic twist as above. (In fact this argument shows that ρN,E′(gM ) ⊂ {±1}.)
b) Again, when f = 1, this reduces to known results: W (2,O) = K(2) and [K(2) : K(1)] = 2ϕK(2)

#O×

(Lemma 2.11). So suppose f > 1. It follows from Theorem 2.1 and Lemma 2.11 that K(2) = K(2) and
thus K(2)K(2f) = K(2f). Further, from Theorem 2.1 and Lemma 2.2 we get

[K(2f) : K(f)] = #C2(O) =
2#C2(O)

#O×
.

Since N = 2 and O× = {±1}, Theorem 4.1 implies that for any O-CM elliptic curve E/K(f) we have

W (2,O) = K(f)(h(E[2])) = K(f)(x(E[2])) = K(f)(E[2])) ⊃ K(f)(PE[2])) ⊃ K(2f).

Since [W (2,O) : K(f)] = [K(f)(E[2]) : K(f)] ≤ #C2(O), we conclude W (2,O) = K(2f). �

Corollary 4.7. For all orders O, there is a number field F ⊃ K and an O-CM elliptic curve E/F

such that E[2] = E[2](F ) and [F : K(j(E))] = 2#C2(O)
#O× .

Proof. Let O be the order of conductor f in K. By Proposition 4.5, there is an O-CM elliptic curve
E/K(2f) such that the mod 2 Galois representation consists of scalar matrices. Since the only scalar
matrix in C2(O) is the identity, we have E[2] = E[2](K(2f)). So we may take F = K(2f). �

4.6. Proof of Theorem 1.1a). From Theorem 4.6 we deduce that the image of Galois is as large as
possible, up to twisting.

Theorem 4.8. Let O be the order of conductor f in an imaginary quadratic field K, and let E/K(f) be an

O-CM elliptic curve. For any N ∈ Z+, there is a twist E′ of E/K(f) such that ρE′,N (gK(f)) = CN (O).

Proof. If N ≥ 3, this follows from part b) of the Weber Function Principle and part a) of Theorem
4.6. If N = 2 and j 6= 0, 1728, then this is Theorem 4.6b). We now address the remaining cases.

Let K = Q(
√
−3), and let E/K be an OK-CM elliptic curve. If [K(E[2]) : K] = 3, we are done, so

suppose K(E[2]) = K. As in the proof of the Weber Function Principle, let π ∈ p\p2 for some prime p

of OK . Then let L = K(π
1
6 ), and let χ : gK → µ6 be a character with splitting field F

kerχ
= L. Then

the twist Eχ/K has [K(Eχ[2]) : K] = 3, as desired. The case K = Q(
√
−1) is similar: if K(E[2]) = K,
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we take χ : gK → µ4 to be a character corresponding to L = K(π
1
4 ). Then we will have Eχ/K with

[K(Eχ[2]) : K] = 2. �

Corollary 4.9. For all O-CM elliptic curves E/K(f), the reduced Galois representation

ρN : gK(f) → CN (O)

is surjective.

Proof. Let E/K(f) be an O-CM elliptic curve. By Theorem 4.8, there is a character χ : gK(f) → µw
and a twist Eχ of E/K(f) such that ρEχ,N (gK(f)) = CN (O). Since ρEχ,N (σ) = χ(σ)ρE,N (σ), the result
follows. �

5. Applications

5.1. SPY Divisibilities.

Lemma 5.1. Let H,K be subgroups of a group G. If H is normal and H∩K = {1}, then #K | [G : H].

Proof. The composite homomorphism K ↪→ G→ G/H is an injection. �

Theorem 5.2. Let O be an order in an imaginary quadratic field K, and let E be an O-CM elliptic
curve defined over a number field F ⊃ K. If E(F ) has a point of order N ∈ Z+, then

ϕ(N) | #O×

2

[F : Q]

# PicO
.

Proof. Let IN = [CN (O) : ρN (gF )] be the index of the mod N Galois representation in the Cartan
subgroup. By Theorem 1.1 we have

IN | #O×[F : K(j(E))] =
#O×

2

[F : Q]

# PicO
.

Since there is a rational point of order N , ρN (gF ) contains no scalar matrices other than the identity,
so by Lemma 5.1 we have ϕ(N) | IN , and we’re done. �

5.2. A Theorem of Franz. Let O be an order in K, of conductor f, and let E/K(f) be an O-CM
elliptic curve. Choose a field embedding K(f) ↪→ C such that j(E) = j(C/O) and an isomorphism

E/C
∼→ C/O. This induces an isomorphism E(K(f))[tors]

∼→ C/O[tors], which we use to view (the

image in C/O of) τK = ∆K+
√

∆K

2 as a point of E(K(f))[tors] of order f.

Theorem 5.3. (Franz [Fr35]) With notation as above, we have

K(f)(h(τK)) = K(f).

Proof. As in the proof of Theorem 1.4, over C we may view the canonical isogeny as ι : C/O → C/OK .
We take e1 = 1

f + O and e2 = τK + O as a basis for E[f]. Then e2 generates ker(ι), a K(f)-rational

cyclic subgroup of order f, and there is a character Ψ : gF → (Z/fZ)× such that

ρE,f(σ) =

ï
Ψ(σ) 0
∗ Ψ(σ)

ò
.

If f ≤ 2, then K(f)(h(τK)) = K(f) = K(f) and the result holds. Thus we may assume f ≥ 3.
Let L := K(f)(h(e2)). Since j(E) 6= 0, 1728, the restriction Ψ|gL : gL → {±1} defines a quadratic
character χ, and on the twist Eχ of E/L the point e2 becomes L-rational. As in the proof of Theorem

5.5 of [BCS], let Ψ± : gK(f) → (Z/fZ×)/{±1} denote the composition of Ψ with the natural map

(Z/fZ)× → (Z/fZ)×/±1. Then L ⊂ (K(f))ker Ψ± , so [L : K(f)] | ϕ(f)
2 . If ι : Eχ → E′ is the canonical

isogeny, then the proof of Theorem 1.4 shows that ι(e1) is an element of E′(L) which generates E′[f]
as an OK-module. Thus E′ has full f-torsion over L, so by Theorem 2.9, K(f) ⊂ L. So

[L : K(f)] ≥ [K(f) : K(f)] =
ϕ(f)

2
≥ [L : K(f)],
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and thus K(f)(h(e2)) = L = K(f). �

5.3. The Field of Moduli of a Point of Prime Order. In the introduction, we discussed a pro-
gram to determine fields of moduli of all CM points on modular curves. Theorem 4.6 carries out
this program for the curves X(N). In this section we will obtain a result on the curves X1(N) – not
definitive, but enough to illustrate where we are going and to showcase the tools we’ve developed.

Let K 6= Q(
√
−1),Q(

√
−3) be an imaginary quadratic field, and let O ⊂ K be the order of con-

ductor f. Here we use Theorem 1.4 to determine the smallest field F ⊃ K for which there exists an
O-CM elliptic curve E/F with an F -rational point of order ` > 2.

Lemma 5.4. Let K be an imaginary quadratic field, let f ∈ Z+, and let ` > 2 be prime. Then
K(`) ∩K(`f) = K(`).

Proof. Let ∆ = f2∆K . The statement is immediate if f = 1, so suppose f > 1. By Theorem 2.1,

[K(`f) : K(f)] = `−
Å

∆

`

ã
.

Since [K(`)K(`f) : K(f)] = #C`(O)/2 by Theorem 4.6, we have in both cases that

[K(`)K(`f) : K(`f)] =
#C`(O)

2[K(`f) : K(f)]
=

1

2
(`− 1).

Thus [K(`) : K(`) ∩ K(`f)] = [K(`)K(`f) : K(`f)] = 1
2 (` − 1). As we have K(`) ⊂ K(`) ∩ K(`f) and

[K(`) : K(`)] = 1
2 (`− 1), the result follows. �

Theorem 5.5. Let K 6= Q(
√
−1),Q(

√
−3) be an imaginary quadratic field, and let O be the order of

conductor f in K. Let F ⊃ K.
a) Let E/F be an O-CM elliptic curve such that E(F ) contains a point of prime order ` > 2. Then
there is a prime p of OK lying over ` such that K(f)Kp ⊂ F .
b) If

(
∆
`

)
6= −1, then there is a prime p is a prime of OK lying over ` and an O-CM elliptic curve

E/K(f)Kp such that E(K(f)Kp) has a point of order `.

If
(

∆
`

)
= −1, then an O-CM elliptic curve E/F with an F -rational point of order ` must have full

`-torsion (see [BCS, Thm. 4.8] or Lemma 5.12). In this case, K(`f)K(`) ⊂ F by Theorem 4.6. The
existence of an elliptic curve E/K(`f)K(`) with full `-torsion is guaranteed by Theorem 1.1c).

Proof. a) Let F ⊃ K and E/F be an O-CM elliptic curve with an F -rational point of order `. By
Theorem 1.4, there is an OK-CM elliptic curve E′/F with an F -rational point P of order `. If M is the

OK-submodule of E′(F ) generated by P , then M = E′[annM ] and #M = |annM | by Theorem 2.7.
Since ` | #M , we must have p | annM for some prime p of OK above `. By Theorem 2.9 we have

K(f)Kp ⊂ K(f)KannM = K(j(E))K(1)(h(E′[annM ])) ⊂ F.
b) If

(
∆
`

)
6= −1, then an O-CM elliptic curve E/K(f) possesses a K(f)-rational cyclic subgroup of order

`. (See e.g. [CCRS13, p.13]. This is also a special case of Theorem 5.18.) By [BCS, Thm. 5.5], there
is an extension L/K(f) of degree (`− 1)/2 and a quadratic twist (E1)/L such that E1(L) has a point
of order `. By part a), there is a prime p of OK lying over ` such that K(f)Kp ⊂ L, so it will suffice
to show that [K(f)Kp : K(f)] ≥ `−1

2 .

If ` - f, then ` is unramified in K(f). Thus K(f), Kp are linearly disjoint over K(1), and we have
[K(f)Kp : K(f)] = [Kp : K(1)] = 1

2 (`− 1) since
(

∆K

`

)
=
(

∆
`

)
6= −1. If ` | f, then by Lemma 5.4 we have

Kp ∩K(f) ⊂ K(`) ∩K(f) = K(`).

Thus Kp ∩K(f) = Kp ∩K(`), so

[K(f)Kp : K(f)] = [Kp : Kp ∩K(f)] = [Kp : Kp ∩K(`)] = [K(`)Kp : K(`)]

and it is enough to show that [K(`)Kp : K(`)] ≥ `−1
2 .
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•
(

∆K

`

)
= 1: We will prove that Kp∩K(`) = K(1) using CM elliptic curves. Let (E0)/K(1) be an

OK-CM elliptic curve. Then E0[p] is stable under the action of gK(1) and generated by a point P
of order `. By [BCS, Thm. 5.5], there is an extension L/K(1) of degree (`−1)/2 and a quadratic
twist (E1)/L such that P becomes L-rational. By Theorem 2.9 we have Kp ⊂ L, and Kp = L

since [Kp : K(1)] = 1
2 (`−1). Over K(`)Kp, the curve E1 has a rational point of order `, and the

mod ` Galois representation is scalar by Theorem 4.1. Thus E1 has full `-torsion over K(`)Kp,
and K(`) ⊂ K(`)Kp. This implies 1

2 (` − 1) | [K(`)Kp : K(`)] = [Kp : Kp ∩ K(`)]. Since

[Kp : K(1)] = 1
2 (`−1), we haveKp∩K(`) = K(1), and [K(f)Kp : K(f)] = [Kp : K(1)] = 1

2 (`−1).

•
(

∆K

`

)
= −1: In this case, Kp = K(`), so Kp ∩K(`) = K(`). This implies [K(f)Kp : K(f)] =

[Kp : K(`)] = 1
2 (`− 1).

•
(

∆K

`

)
= 0: Since [K(`) : K(1)] = ` and [Kp : K(1)] = 1

2 (` − 1), we have Kp ∩ K(`) = K(1).

Thus [K(f)Kp : K(f)] = [Kp : K(1)] = 1
2 (`− 1). �

Remark 5.6. Assume the setup of Theorem 5.5 but take K = Q(
√
−1) or K = Q(

√
−3). Then the

assertion of Theorem 5.5b) is false. Indeed, if ` ≥ 5 and
(

∆
`

)
6= −1, we have [K(f)Kp : K(f)] | 1

wK
(`−1).

(See Lemma 2.11.) Suppose F ⊃ K, and let E/F be an elliptic curve with CM by the order in K of

conductor f. If E(F ) contains a rational point of order `, then Theorem 5.2 implies 1
2 (`−1) | [F : K(f)].

Thus F must properly contain K(f)Kp.

5.4. Sharpness in the Isogeny Torsion Theorem.

Lemma 5.7. Let E be an O-CM elliptic curve defined over a number field F containing the CM field
K, and let ι : E → E′ be the canonical F -rational isogeny to an OK-CM elliptic curve E′/F . Write

E(F )[tors] = Z/sZ× Z/eZ, E′(F )[tors] = Z/s′Z× Z/e′Z,

where s | e and s′ | e′. Then s | s′.

Proof. There is an OK-CM elliptic curve E′/F and a canonical F -rational isogeny ι : E → E′. Once

again, there is a field embedding F ↪→ C such that the base change of ι to C is, up to isomorphisms
on the source and target, given by the canonical map C/O → C/OK . It follows that if

P =
1

s
+O ∈ E[s], P ′ =

1

s
+OK ∈ E′[s],

then ι(P ) = P ′ and 〈P ′〉OK = E′[s]. As P ∈ E(F ), we have P ′ = ι(P ) ∈ E′(F ). �

In [Ro94, §4], Ross claims that a CM elliptic curve E defined over a number field F containing the CM
field, then the exponent of the finite group E(F )[tors] is an invariant of the F -rational isogeny class. In
the setting of Lemma 5.7, this would give e = e′, and combining this with the conclusion of Lemma 5.7
we would get an injective group homomorphism E(F )[tors] ↪→ E(F ′)[tors]. This conclusion is stronger
than that of Theorem 1.4.

Unfortunately Ross’s claim is false: in the setup of Lemma 5.7 one can have e′ < e (in which case
there is no injective group homomorphism E(F )[tors] ↪→ E′(F )[tors]), as the following result shows.

Proposition 5.8. Let ` > 3 be a prime number, let K = Q(
√
−`), let n ∈ Z≥3, let O be the order in

K of conductor f = `b
n
2 c, and let F = K(f). For any O-CM elliptic curve E/F , there is an extension

L/F of degree ϕ(`n) such that E(L) has a point of order `n, and no OK-CM elliptic curve has an
L-rational point of order `k for k > 1

2

(
n+ 1 + bn2 c

)
(hence no L-rational point of order `n).

Proof. Let E/F be an O-CM elliptic curve. As in (3) we may choose a basis {e1, e2} for E[`n] so that
the image of the mod `n Galois representation consists of matricesñ

a bf2
∆K−∆2

K

4
b a+ bf∆K

ô
| a, b ∈ Z/`nZ.
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Since ` ramifies in K and f = `b
n
2 c, we have ord`(bf

2 ∆K−∆2
K

4 ) = 1 + 2bn2 c ≥ n, so the matrices have
the form ï

a 0
b a+ bf∆K

ò
| a, b ∈ Z/`nZ.

The action of gF on 〈e2〉 gives a character Φ : gF → (Z/`nZ)×. Take M = (F )ker Φ. Then
[M : F ] | ϕ(`n) and Φ|gM is trivial. Thus there exists an extension L/F with [L : F ] = ϕ(`n) such
that E(L) contains e2.

Let E′/L be an OK-CM elliptic curve, and suppose E′(L) contains a point P of order `k. Let p be

the prime ideal of OK such that `OK = p2. We claim that the OK-submodule M = 〈P 〉OK of E′(L)

generated by P contains E[p2k−1] and thus, by Theorem 2.9, that Kp2k−1 ⊂ L. Indeed, by Theorem
2.7, we have M = E[I] for some ideal I of OK such that (OK/I,+) has `-power order and exponent
`k. Since ` ramifies in OK , this forces I to be of the form pa for some a ∈ Z+, and the smallest a such
that (OK/pa,+) has exponent `k is a = 2k − 1, establishing the claim. Thus

ord`([K
p2k−1

: K(1)]) = 2k − 2 ≤ ord`([L : K(1)]) =
⌊n

2

⌋
+ n− 1,

so k ≤ 1
2 (n+ 1 + bn2 c). �

In the setting of Theorem 1.4, one wonders whether #E(F )[tors] = #E′(F )[tors]. In fact #E′(F )[tors]
#E(F )[tors]

can be arbitrarily large:

Proposition 5.9. Let ` be an odd prime, let K 6= Q(
√
−1),Q(

√
−3) be an imaginary quadratic field,

let O be the order in K of conductor `, and let F = K(`). For any O-CM elliptic curve E/F there is
an extension L/F such that if ι : E → E′ is the canonical isogeny to an OK-CM elliptic curve E, then

` | #E′(L)[tors]

#E(L)[tors]
.

Proof. Let E/F be an O-CM elliptic curve. As above, there is a basis {e1, e2} for E[`] such that

ρ`(gF ) ⊂
ßï

a 0
b a

ò
| a, b ∈ Z/`Z

™
and there is an extension L/F with [L : F ] = ` − 1 such that E(L) contains e2. In fact, E(L)[`∞] ∼=
Z/`Z. Indeed, E does not have full `-torsion over L since Theorem 4.6 would imply K(`)K(`2) ⊂ L
and 1

2`(`− 1) = [K(`)K(`2) : K(`)]. In addition, E has no point of order `2 by Theorem 5.2.
Let ι : E → E′ be the canonical L-rational isogeny from E/L to E′/L, where E′ has OK-CM. Since

e2 ∈ E(L), the proof of Theorem 1.4 shows ι(e1) ∈ E′(L), and ι(e1) generates E′[`] as an OK-module.

In other words, Z/`Z× Z/`Z ↪→ E′(L)[tors]. It follows that ` | #E′(L)[tors]
#E(L)[tors] . �

Finally, Theorem 1.4 requires K ⊂ F . This hypothesis cannot be omitted:

Proposition 5.10. Let ` > 3 be a prime with ` ≡ 3 (mod 4) and let n ∈ Z≥3. Let K = Q(
√
−`), and

let O be the order in K of conductor f = `b
n
2 c. Let F = Q(j(C/O)). There is an elliptic curve E/F

and an extension L/F of degree ϕ(`n)
2 such that:

(i) L 6⊃ K,
(ii) E(L) has a point of order `n, and
(iii) for every OK-CM elliptic curve E′/L we have `n - #E′(L)[tors].

Proof. Let E/F be an O-CM elliptic curve. By [Kw99, Corollary 4.2], E has an F -rational subgroup
which is cyclic of order `n. It follows from [BCS, Theorem 5.6] that there is a twist E1 of E/F and an

extension L/F of degree ϕ(`n)/2 such that E1(L) has a point of order `n. Note [L : Q] = hK`
bn2 c ϕ(`n)

2
is odd (see [Co89, Proposition 3.11]) , so K 6⊂ L.

Let E′/L be an OK-CM elliptic curve. Since [L : Q] is odd, E′(L)[`∞] must be cyclic, as full `k-

torsion would imply Q(ζ`k) ⊂ L by the Weil pairing. As in the proof of Proposition 5.8, E′(LK)
contains no point of order `n. Hence E′(L) contains no point of order `n, and `n - #E′(L)[tors]. �



20 ABBEY BOURDON AND PETE L. CLARK

5.5. Minimal and Maximal Cartan Orbits. Let O be an order, let N ∈ Z+, and let P ∈ O/NO
be a point of order N . Since CN (O) contains all scalar matrices, if P ∈ O/NO has order N , then the
orbit of CN (O) on P has size at least ϕ(N). On the other hand, the orbit of CN (O) on P is certainly
no larger than the number of order N points of O/NO.

In this section we will find all pairs (O, N) for which there exists a Cartan orbit of this smallest
possible size and also all pairs for which there exists a Cartan orbit of this largest possible size.

We introduce the shorthand H(O, N) to mean: there is a point P of order N in O/NO such that
the CN (O)-orbit of P has size ϕ(N).

Lemma 5.11. Let O be an order, and let N = `a11 · · · `arr ∈ Z+. Then H(O, N) holds iff H(O, `aii )
holds for all 1 ≤ i ≤ r.

Proof. This is an easy consequence of the Chinese Remainder Theorem. �

Lemma 5.12. Let O be the order of discriminant ∆, ` a prime number and a ∈ Z+.
a) If

(
∆
`

)
= 1, there is an O-submodule of O/`aO with underyling Z-module Z/`aZ.

b) If
(

∆
`

)
= −1, then C`a(O) acts simply transitively on the order `a elements of O/`aO.

Proof. a) if
(

∆
`

)
= 1, then O/`O = OK/`OK ∼= Z/`Z × Z/`Z, so O ⊗ Z` is isomorphic as a ring to

Z` × Z` (see e.g. [Ei, Cor. 7.5]) and thus O/`aO is isomorphic as a ring to Z/`aZ× Z/`aZ.
b) If

(
∆
`

)
= −1, then O ⊗ Z` = OK ⊗ Z` is a complete DVR with uniformizer `, so the ring O/`aO is

finite, local and principal with maximal ideal 〈`〉. An element of O/`aO has order `a iff it lies in the
unit group C`a(O). �

Lemma 5.13. Let O be the order of discriminant ∆, and let N ∈ Z+. The following are equivalent:
(i) If 2 | N , then

(
∆
2

)
6= 1.

(ii) The Z/NZ-subalgebra of O/NO generated by CN (O) is O/NO.

Proof. Using the Chinese Remainder Theorem we reduce to the case of N = `a a power of a prime
number `. Let B be the Z/`aZ-subalgebra generated by C`a(O), so #B = `b for some b ≤ 2a.
(i) =⇒ (ii): Since 0 ∈ B \ C`a(O), we have

#B ≥ #C`a(O) + 1

= `2a
Å

1− 1

`

ãÅ
1−
Å

∆

`

ã
1

`

ã
+ 1 ≥

®
4
9`

2a + 1 > `2a−1, if ` ≥ 3
1
2`

2a + 1 > `2a−1, if ` = 2 and
(

∆
2

)
6= 1

.

Thus b = 2a and B = O/`aO.
¬ (i) =⇒ ¬ (ii): If ` = 2 and

(
∆
2

)
= 1, then

O/2aO ∼=
ßï

α 0
0 β

ò
| α, β ∈ Z/2aZ

™
and C2a(O) consists of the set of such matrices with α, β ∈ (Z/2aZ)×. Thus C2a(O) is contained in
the subalgebra

B =

ßï
α 0
0 β

ò
| α, β ∈ Z/2aZ and α ≡ β (mod 2)

™
of order 22a−1, so B ⊂ B ( O/2aO.2 �

Lemma 5.14. For an order O and N ∈ Z+, the following are equivalent:
(i) There is an ideal I of O with O/I ∼= Z/NZ.
(ii) There is an O-submodule of O/NO with underlying commutative group Z/NZ.
(iii) H(O, N) holds.

2Since #B ≥ #C2a (O) + 1 = 22a−2 + 1 > 22a−2, in fact we have B = B.
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Proof. (i) ⇐⇒ (ii):
Step 1: Let Λ be a free, rank 2 Z-module, and let Λ′ be a Z-submodule of Λ containing NΛ. By the
structure theory of modules over a PID, there is a Z-basis e1, e2 for Λ and positive integers a | b such
that ae1, be2 is a Z-basis for Λ′. Thus

Λ/Λ′ ∼= Z/aZ⊕ Z/bZ, Λ′/NΛ ∼= Z/(N/b)Z⊕ Z/(N/a)Z.

It follows that Λ/Λ′ ∼= Z/NZ ⇐⇒ Λ′/NΛ ∼= Z/NZ.
Step 2: If I is an ideal of O with O/I ∼= Z/NZ, then I ⊃ NO, so I/NO ∼= Z/NZ by Step 1. Let M
be an O-submodule of O/NO with underyling Z-module Z/NZ. Then M = I/NO for an ideal I of
O, and by Step 1 we have O/I ∼= Z/NZ.
(ii) =⇒ (iii): Let P ∈ O/NO have order N such that the subgroup generated by P is an O-submodule.
For all g ∈ CN (O), gP = agP for ag ∈ (Z/NZ)×. Conversely, since CN (O) contains all scalar matrices,
the orbit of CN (O) on P has size ϕ(N).
(iii) =⇒ (ii): Case 1: Suppose 2 - N or

(
∆
2

)
6= 1. Let P ∈ O/NO be a point of order N with

CN (O)-orbit of size ϕ(N). There is a Z/NZ-basis e1, e2 of O/NO with e1 = P , and our hypothesis

gives that with respect to this basis CN (O) lies in the subalgebra

ßï
a b
0 d

ò
| a, b, d ∈ Z/NZ

™
of upper

triangular matrices. By Lemma 5.13, O/NO also lies in the subalgebra of upper triangular matrices,
and thus 〈P 〉 is an O-stable submodule with underlying Z-module Z/NZ.

Case 2: Suppose 2 | N and
(

∆
2

)
= 1, and write N = 2aN ′ with 2 - N ′. By Lemma 5.12 and the

equivalence of (i) and (ii), there is an ideal I1 in O with O/I1 ∼= Z/2aZ, and by Case 1 there is an
ideal I2 in O with O/I2 ∼= Z/N ′Z. By the Chinese Remainder Theorem, O/I1I2 ∼= Z/NZ. Since (i)
⇐⇒ (ii), this suffices. �

Theorem 5.15. Let O be an order of discriminant ∆, and let N ∈ Z+. The following are equivalent:
(i) H(O, N) holds.
(ii) ∆ is a square in Z/4NZ.

Proof. Using the Chinese Remainder Theorem and Lemma 5.11, we reduce to the case in which N = `a

is a power of a prime number `.
Case 1 (` is odd): Since gcd(4, `a) = 1, we may put D = ∆

4 ∈ Z/`aZ. Then ∆ is a square in Z/4`aZ
iff D is a square in Z/`aZ, and

(11) O/`aO ∼= Z/`aZ[t]/(t2 −D).

If there is s ∈ Z/`aZ such that D = s2, then

O/`aO ∼= Z/`aZ[t]/((t+ s)(t− s)),
so if I is the ideal 〈t + s, `a〉 of O, then O/I ∼= Z/`aZ. By Lemma 5.14, H(O, `a) holds. Conversely,
suppose H(O, `a) holds, so by Lemma 5.14 there is an ideal I of O with O/I ∼= Z/`aZ. Since `a ∈ I,
we may regard I as an ideal of O/`aO such that (O/`aO)/I ∼= Z/`aZ. In other words, we have a
Z/`aZ-algebra homomorphism

f : Z/`aZ[t]/(t2 −D)→ Z/`aZ.

Then f(t)2 = D ∈ Z/`aZ, so D is a square in Z/`aZ.
Case 2 (` = 2, ∆ is odd): Then

(
∆
`

)
= ±1.

• If
(

∆
`

)
= 1, then ∆ ≡ 1 (mod 8); by Hensel’s Lemma, ∆ is a square in Z/`aZ. On the other hand,

by Lemmas 5.12a) and 5.14, H(O, `a) holds.
• If

(
∆
`

)
= −1, then ∆ ≡ 5 (mod 8), so ∆ is not a square modulo 8 and thus not a square modulo

4 · 2a. On the other hand, by Lemma 5.12b) H(O, `a) does not hold.
Case 3: (` = 2, ∆ is even): Again we may put D = ∆

4 ∈ Z/`aZ, and again (11) holds. The argument of
Case 1 shows that H(O, `a) holds iff D is a square modulo Z/`aZ iff ∆ is a square modulo Z/4`aZ. �

Proposition 5.16. Let O be an order, and let N ∈ Z+. The following are equivalent:
(i) CN (O) acts simply transitively on order N elements of O/NO.
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(ii) CN (O) acts transitively on order N elements of O/NO.
(iii) For all primes ` | N we have

(
∆
`

)
= −1.

Proof. As usual, we may assume N = `a is a prime power. Certainly (i) =⇒ (ii).
(ii) =⇒ (iii): We have

#C`a(O) = `2a−2(`− 1)

Å
`− (

∆

`
)

ã
,

whereas the number of elements of order `a in O/`aO is

N(O, `a) := #O/`aO −#`O/`aO = `2a−2(`− 1)(`+ 1).

Transitivity of the action implies #C`a(O) ≥ N(O, `a), which holds iff
(

∆
`

)
= −1.

(iii) =⇒ (i): Since
(

∆
`

)
6= 0, we have O/`aO ∼= OK/`aOK , and thus also C`a(O) = (O/`aO)× ∼=

C`a(OK). Thus O/`aO is a finite local principal ring with maximal ideal m = 〈`〉 and unit group
C`a(O) = O/`aO \m. The set of order `a elements of O/`aO is O/`aO \m = C`a(O), so the action of
the unit group C`a(O) on this set is the action of C`a(O) on itself, which is simply transitive. �

Corollary 5.17. Let O an order of conductor f. Let N =
∏r
i=1 `

ai
i ∈ Z+ be such that

Ä
∆
`i

ä
= −1 for

all i. Let F be a number field, and let E/F be an O-CM elliptic curve such that E(F ) has a point of
order N . Then

(12) #CN (O) | [FK : K(f)].

Moreover, for all O and N satisfying the above conditions, equality can occur in (12).

Proof. Replace F by FK; then F ⊃ K(f). By Proposition 5.16, CN (O) acts transitively on order N
elements of O/NO, so the O-submodule generated by any one of them is O/NO. Thus the existence
of one F -rational point of order N implies that ρN is trivial, and thus also ρE,N is trivial. Applying
Theorem 1.1 gives (12). That equality can occur follows from Theorem 1.1c). �

5.6. Torsion over K(j): Part I. Let O be an order of discriminant ∆ = f2∆K . We will give a com-
plete classification of the possible torsion subgroups of O-CM elliptic curves E/K(f). In this section we
will treat the cases ∆ 6= −3,−4. For the remaining cases we will make use of Theorem 6.2, so we will
come back to those cases in §6.5.

If E(K(f)) has a point of order N , then since [CN (O) : ρN (gK(f))] | #O×, there must be some

P ∈ O/NO of order N with a CN (O)-orbit of order dividing #O×.

• By Theorem 5.2, if E(K(f)) has a point of order N , then ϕ(N) | 2, so

N ∈ {1, 2, 3, 4, 6}.

• Lemma 2.2b) implies that for all N ≥ 3, we have #CN (O) ≥ 4 (equality holds if N = 3 and ∆ ≡ 1
(mod 3)). By Theorem 1.1 we cannot have E[N ] = E[N ](K(f)).

Thus E(K(f))[tors] is isomorphic to one of the groups in the following list:

{e},Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z× Z/2Z,Z/2Z× Z/4Z,Z/2Z× Z/6Z.
We will show that all of these groups occur.

Points of order 2: By Theorem 4.6b), E(K(f))[2] has order 4 if 2 splits in O, order 2 if 2 ram-
ifies in O and order 1 if 2 is inert in O. Thus:

E(K(f))[2] ∼=


{e} ∆ ≡ 5 (mod 8)

Z/2Z ∆ ≡ 0 (mod 4)

Z/2Z× Z/2Z ∆ ≡ 1 (mod 8)

.
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Points of order 3, 4, or 6: Let E/K(f) be any O-CM elliptic curve. We claim that for N ∈ {3, 4, 6},
there is a quadratic twist ED of E such that ED(K(f)) has a point of order N iff H(O, N) holds.
Indeed, as above, since the index of the mod N Galois representation in CN (O) divides 2, if some
ED(K(f)) has a point of order N , then O/NO has a point of order N with a CN (O)-orbit of size 2.
Since ϕ(N) = 2, there is a Cartan orbit of size 2 iff H(O, N) holds. Conversely, if H(O, N) holds then
there is a point of order N with a CN (O)-orbit of size 2, hence on some quadratic twist ED we have
an F -rational point of order N . Applying Theorem 5.15, we get:

• Some O-CM E/K(f) has a point of order 3 iff ∆ ≡ 0, 1 (mod 3).
• Some O-CM E/K(f) has a point of order 4 iff ∆ ≡ 0, 1, 4, 9 (mod 16).
• Some O-CM E/K(f) has a point of order 6 iff ∆ ≡ 0, 1, 2, 9, 12, 16 (mod 24).

Because the only full N -torsion we can have is full 2-torsion, and 2-torsion is invariant under qua-
dratic twists, we immediately deduce the complete answer in all cases.

• If ∆ ≡ 0 (mod 48), then there are twists E1, E2, E3 of E with

E1(K(f))[tors] ∼= Z/2Z, E2(K(f))[tors] ∼= Z/4Z, E3(K(f))[tors] ∼= Z/6Z.
• If ∆ ≡ 1, 9, 25, 33 (mod 48) then there are twists E1, E2 of E with

E1(K(f))[tors] ∼= Z/2Z× Z/2Z, E2(K(f))[tors] ∼= Z/2Z× Z/6Z.
• If ∆ ≡ 4, 16, 36 (mod 48), then there are twists E1, E2, E3 of E with

E1(K(f))[tors] ∼= Z/2Z, E2(K(f)) ∼= Z/4Z, E3(K(f)) ∼= Z/6Z.
• If ∆ ≡ 5, 29 (mod 48), then E(K(f))[tors] = {e}.
• If ∆ ≡ 8, 44 (mod 48), then E(K(f))[tors] = Z/2Z.
• If ∆ ≡ 12, 24, 28, 40 (mod 48), then there are twists E1, E2 of E with

E1(K(f))[tors] ∼= Z/2Z, E2(K(f)) ∼= Z/6Z.
• If ∆ ≡ 13, 21, 37, 45 (mod 48), then there are twists E1, E2 of E with

E1(K(f))[tors] = {e}, E2(K(f))[tors] ∼= Z/3Z.
• If ∆ ≡ 17, 41 (mod 48), then there are twists E1, E2 of E with

E1(K(f))[tors] ∼= Z/2Z× Z/2Z, E2(K(f))[tors] ∼= Z/2Z× Z/4Z.
• If ∆ ≡ 20, 32 (mod 48), then there are twists E1, E2 of E with

E1(K(f))[tors] ∼= Z/2Z, E2(K(f)) ∼= Z/4Z.

5.7. Isogenies over K(j): Part I.

Theorem 5.18. Let O be an order of discriminant ∆ = f2∆K , and let N ∈ Z+.
a) If ∆ 6= −3,−4, then there is an O-CM elliptic curve E/K(f) with a K(f)-rational cyclic N -isogeny
iff ∆ is a square in Z/4NZ.
b) If ∆ = −4, then then there is an O-CM elliptic curve E/K(f) with a K(f)-rational cyclic N -isogeny
iff N is of the form 2ε`a11 · · · `arr for primes `i ≡ 1 (mod 4) and ε, a1, . . . , ar ∈ N with ε ≤ 2.
c) If ∆ = −3, then there is an O-CM elliptic curve E/K(f) with a K(f)-rational cyclic N -isogeny
iff N is of the form 2ε3a`a11 · · · `arr for primes `i ≡ 1 (mod 3), ε, a, a1, . . . , ar ∈ N with (ε, a) ∈
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}.

Proof. Step 1: Let E/K(f) be an O-CM elliptic curve. If ∆ is a square in Z/4NZ, then by Theorem
5.15 there is a point P of order N in O/NO such that C = 〈P 〉 is invariant under CN (O), so C
is gK(f)-stable and E → E/C is a cyclic N -isogeny. If ∆ /∈ {−4,−3}, then the projective Galois

representation PρN : gK(f) → CN (O)/(Z/NZ)× is a quotient of the reduced Galois representation,
hence surjective. So K(f)-rational cyclic N -isogenies correspond to CN (O)-orbits on O/NO of size
ϕ(N), which by Theorem 5.15 exist iff ∆ is a square in Z/4NZ.
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Step 2: If ∆ ∈ {−4,−3}, then as above the condition that ∆ is a square modulo 4N is sufficient for
the existence of a K(f)-rational cyclic N -isogeny, but it is no longer clear that it is necessary, and in
both cases it turns out not to be. The complete analysis will make use of Theorem 6.2, so we defer
the end of the proof until §6.6. �

6. The Torsion Degree Theorem

6.1. Statement and Preliminary Reduction. Throughout this section O denotes an order of con-
ductor f and discriminant ∆ = f2∆K .

For N ∈ Z≥2, let T̃ (O, N) be the least size of an orbit of CN (O) on an order N point of O/NO.

Lemma 6.1. We have T̃ (O, 2) =

®
1 if

(
∆
2

)
6= −1

3 if
(

∆
2

)
= −1

.

Proof. By Theorem 5.15, we have
(

∆
2

)
6= −1 iff there is a C2(O)-orbit of size ϕ(2) = 1 on O/2O iff

T̃ (O, 2) = 1. In the remaining case
(

∆
2

)
= −1 we have #C2(O) = 3 and no orbit of size 1, hence

T̃ (O, 2) = 3. �

Theorem 6.2. (Torsion Degree Theorem) Let O be an order of conductor f, and let N ∈ Z≥3.
a) There is a positive integer T (O, N) such that:
(i) if F ⊃ K(f) is a number field and E/F is an O-CM elliptic curve with an F -rational point of order
N , then T (O, N) | [F : K(f)], and
(ii) there is a number field F ⊃ K(f) with [F : K(f)] = T (O, N) and an O-CM elliptic curve E/F with
an F -rational point of order N .
b) If (∆, N) = (−3, 3), then T (O, N) = 1.
c) Suppose (∆, N) 6= (−3, 3). Let N = `a11 · · · `arr be the prime power decomposition of N . Then

T (O, N) =

∏r
i=1 T̃ (O, `aii )

#O×
.

d) If `a = 2, then T̃ (O, `a) = 2 is computed in Lemma 6.1. If `a > 2, then T̃ (O, `a) is as follows,
where k = ord`(f):

(1) If ` - f, then T̃ (O, `a) =


`a−1(`− 1) if

(
∆
`

)
= 1,

`2a−2(`− 1) if
(

∆
`

)
= 0,

`2a−2(`2 − 1) if
(

∆
`

)
= −1.

(2) If ` | f, then T̃ (O, `a) =



`a−1(`− 1) if
(

∆K

`

)
= 1,

`a−1(`− 1) if
(

∆K

`

)
= −1 and a ≤ 2k,

`2a−2k−1(`− 1) if
(

∆K

`

)
= −1 and a > 2k,

`a−1(`− 1) if
(

∆K

`

)
= 0 and a ≤ 2k + 1,

`2a−2k−2(`− 1) if
(

∆K

`

)
= 0 and a > 2k + 1.

Remark 6.3. The case N = 2 is excluded because of the somewhat anomalous behavior of 2-torsion.
But it is easy to see that Theorem 6.2a) remains true when N = 2, and moreover:
• If ∆ ∈ {−4,−3} then T (O, 2) = 1.

• Otherwise, T (O, 2) =

®
1 if

(
∆
2

)
6= −1

3 if
(

∆
2

)
= −1

.

Let F ⊃ K(f) be a number field, and let E/F be an O-CM elliptic curve. As usual, we choose an
embedding F ↪→ C such that j(E) = j(C/O). Let P ∈ E[tors] have order N . We call the field

K(f)(h(P ))
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the field of moduli of P . It is independent of the chosen model of E/F , and on some twist Eχ of
E/K(f)(h(P )) the point P is K(f)(h(P ))-rational. Further, the pair (E,P ) induces a closed point P on
the modular curve X1(N)/K , and K(f)(h(P )) is the residue field K(P). Theorem 6.2 concerns the
degree [K(f)(h(P )) : K(f)]. Our setup shows that it is no loss of generality to assume F = K(f).

Let qN : O → O/NO be the natural map, and let q×N : O× → CN (O) be the induced map on unit
groups. As in the introduction, we define the reduced mod N Cartan subgroup:

CN (O) = CN (O)/qN (O×).

Let E[N ] be the set of O×-orbits on E[N ]. Then the action of CN (O) on E[N ] induces an action of

CN (O) on E[N ]. The field of moduli K(f)(h(P )) depends only on the image P of P in E[N ]. By
Theorem 1.1, the composite homomorphism

gF
ρE,N−→ CN (O)→ CN (O)

is surjective (and model-independent). Let HP = {g ∈ CN (O) | gP = P}. It follows that

Aut(K(f)(h(P ))/K(f)) ∼= CN (O)/HP .

Thus [K(f)(h(P )) : K(f)] is the size of the orbit of the reduced Cartan subgroup CN (O) on P . (As
we will see, in almost every case this is the size of the orbit of CN (O) on P divided by #O×.) This
reduces the proof of Theorem 6.2 to a purely algebraic problem.

6.2. Generalities. For an order N point P ∈ O/NO, let MP = {xP | x ∈ O} be the cyclic O-
submodule of O/NO generated by P . If we put IP = {x ∈ O | xP = 0}, then we have

MP
∼=O O/IP .

The isomorphism is canonical and determined by mapping P ∈MP to 1 + IP ∈ O/IP .

Lemma 6.4. a) With notation as above, let

S(IP ) = {g ∈ CN (O) | g ≡ 1 (mod IP )}.

Then with respect to the CN (O)-action, S(IP ) is the stabilizer of P , so as a CN (O)-set the orbit of
CN (O) on P is isomorphic to CN (O)/S(IP ).

b) Moreover, there is a canonical isomorphism of groups CN (O)/S(IP )
∼→ (O/IP )×.

Proof. a) For g ∈ CN (O), we have gP = P ⇐⇒ (g − 1)P = 0 ⇐⇒ (g − 1) ∈ IP , giving the first
assertion. The Orbit Stabilizer Theorem gives the second assertion.
b) The ring homomorphism f : O/NO → O/I induces a homomorphism on unit groups f× : CN (O)→
(O/IP )×, with kernel S(IP ). Since O/NO has finitely many maximal ideals, f× is surjective [CA,
Thm. 4.32]. �

Lemma 6.5. There is a positive integer M | N such that

O/IP ∼=Z Z/NZ⊕ Z/MZ.

Proof. As a Z-module, O/IP is a quotient of O/NO ∼=Z Z/NZ⊕ Z/NZ, so

O/IP ∼=Z Z/N ′Z⊕ Z/MZ

with M | N ′ | N . Since P has order N in (O/IP ,+), we have N ′ = N . �

The following result computes the size of the reduced Cartan orbit on an order N point of O/NO in
terms of the size of the Cartan orbit. We recall that we have assumed N ≥ 3.

Lemma 6.6. a) Suppose (∆, N) 6= (−3, 3), and let P ∈ O/NO have order N . Then the orbit of

CN (O) on P has size #O× times the size of the orbit of CN (O) on P .
b) Suppose (∆, N) = (−3, 3). Then the order 3 points of O/3O lie in two orbits under C3(O): one of
size 2 and one of size 6. The corresponding reduced Cartan orbits each have size 1.
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Proof. a) The Cartan orbit has size #(O/IP )×, and the reduced Cartan orbit is smaller by a factor
of the cardinality of the image of O× → (O/IP )×.
• Suppose ∆ /∈ {−4,−3}. Then O× = {±1}, and since N ≥ 3, we have −1 6≡ 1 (mod IP ).
• Suppose ∆ = −4. Since IP 6⊃ (2), by Lemma 2.11 the group UIP (K) is trivial, and thus the map
O× → (O/IP )× is injective.
• Suppose ∆ = −3. By assumption N ≥ 4, so IP - (ζ3 − 1) and the map O× → (O/IP )× is injective.
b) The assertion about Cartan orbits is a case of [CCRS13, Lemma 19]. (And another proof will be
given in the next section.) The fact that both reduced Cartan orbits have size 1 follows from the
already established fact that there is an O-CM E/Q(

√
−3) with full 3-torsion. �

In view of Lemma 6.6, to prove Theorem 6.2 it suffices to compute the least size of an orbit of CN (O)
on an order N point of O/NO and show that this divides the size of every such orbit. The following
result further reduce us to the case of N a prime power.

Proposition 6.7. Let N ≥ 2 have prime power decomposition N = `a11 · · · `arr . Let P ∈ O/NO have
order N , and let IP = annP . For 1 ≤ i ≤ r, let Pi = N

`
ai
i

P , and let IPi = annPi. Then:

a) The ideals IP1
, . . . , IPr are pairwise comaximal: we have IPi + IPj = O for all i 6= j.

b) We have IP = IP1 · · · IPr .
c) We have a canonical isomorphism of rings

O/IP
∼→

r∏
i=1

O/IPi

which induces a canonical isomorphism of unit groups

(O/IP )×
∼→

r∏
i=1

(O/IPi)×.

d) The Cartan orbit of P is isomorphic, as a CN (O)-set, to the direct product of the C`ai
i

(O)-orbits of

the Pi’s.

Proof. a) For 1 ≤ i ≤ r, we have (O/IPi ,+) ∼= Z/`aii Z⊕Z/`bii Z with 0 ≤ bi ≤ ai; in particular it is an
`i-group. Thus for i 6= j, (O/(Ii + Ij),+) is a homomorphic image of an `i-group and an `j-group, so
it is trivial.
b) By the Chinese Remainder Theorem, we have IP1 · · · IPn =

⋂n
i=1 IPi . Since Pi is a multiple of

P , we have IP ⊂ IPi for all i, and thus IP ⊂
⋂r
i=1 IPi . Conversely, choose y1, . . . , yr ∈ Z such that∑r

i=1 yi
N
`
ai
i

= 1. If x ∈
⋂r
i=1 IPi then x N

`
ai
i

P = 0 for all i, hence

0 =
r∑
i=1

yi
N

`aii
xP = xP,

so x ∈ IP . Thus IP =
⋂n
i=1 IPi = IP1 · · · IPn .

c) The Chinese Remainder Theorem gives the first isomorphism; the second follows by passing to unit
groups.
d) Apply Lemma 6.4 and part c). �

6.3. The Case ` - f.

Theorem 6.8. Let E/K(f) be an O-CM elliptic curve. Let `a > 2 be a prime power such that ` - f.
We will describe all orbits of C`a(O) on order `a points of O/`aO: their sizes and their multiplicities.
a) If

(
∆
`

)
= 1, there are 2a + 1 orbits: two orbits of size `a−1(`− 1), for all 1 ≤ i ≤ a− 1 two orbits

of size `a+i−2(`− 1)2, and one orbit of size `2a−2(`− 1)2.
b) If

(
∆
`

)
= 0, there are two orbits: an orbit of size `2a−2(`− 1) and an orbit of size `2a−1(`− 1).

c) If
(

∆
`

)
= −1, there is one orbit, of size `2a−2(`2 − 1).
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Proof. Step 1: Suppose O = OK . Then every O-submodule of E[N ] is of the form E[I] for an ideal
I ⊃ NO, and E[I] ∼=O O/I: thus every submodule is of the form MP = 〈P 〉O and is determined by
its annhilator ideal IP . Conversely, if I ⊃ NO is an ideal, then Lemmas 2.4 and 2.5 give that E[I] is
an O-submodule of E[N ] with annihilator ideal I.
Split Case

(
∆
`

)
= 1: Then `O = p1p2 for distinct prime ideals p1, p2 of norm `. The ideals containing

`aO are precisely pc1p
d
2 with max(c, d) ≤ a. We have ring isomorphisms

O/pc1pd2 ∼= O/pc1 ×O/pd2 ∼= Z/`cZ× Z/`dZ,

hence unit group isomorphisms

(O/pc1pd2)× ∼= (O/pc1)× × (O/pc2)× ∼= (Z/`cZ)× × (Z/`dZ)×,

so

#(O/pc1pd2)× = ϕ(`c)ϕ(`d).

To get points of order `a we impose the condition max(c, d) = a. Thus O-modules generated by the
points of order `a are

E[pa1 ], E[pa1p2], . . . , E[pa1p
a
2 ] = E[`a], E[pa−1

1 pa2 ], . . . , E[p1p
a
2 ], E[pa2 ].

So there are 2a+1 Cartan orbits, one of size ϕ(`a)ϕ(`a) and, for all 0 ≤ i ≤ a−1, two of size ϕ(`a)ϕ(`i).
The smallest orbit size is `a−1(`− 1), and all the other orbit sizes are multiples of it.
Ramified Case

(
∆
`

)
= 0: Then `O = p2 for a prime ideal p of norm `. For any b ∈ Z+, the ring

O/pb is local of order `b with residue field Z/`Z, so the maximal ideal has size `b−1 and thus

#(O/pb)× = `b − `b−1 = `b−1(`− 1).

Since p2 = (`), the least c ∈ N such that `c ∈ pb is c = d b2e. It follows that

(O/pb,+) ∼=Z Z/`d
b
2 eZ⊕ Z/`b

b
2 cZ.

So the annihilator ideals of points of order `a in O/`aO are precisely p2a−1 and p2a. We get two
Cartan orbits, one of size #(O/p2a−1)× = `2a−2(`−1) and one of size #(O/p2a)× = `2a−1(`−1). The
smallest orbit size is `2a−2(`− 1), and the other orbit size is a multiple of it.
Inert Case

(
∆
`

)
= −1: Then `O is a prime ideal, so the ideals containing `aO are precisely `iO for

i ≤ a. Clearly O/`iO has exponent `a iff i = a, so the O-module generated by any point of order `a

is E[`a]. There is a single Cartan orbit, of size #(O/`aO)× = ϕK(`a) = `2a−2(`2 − 1).
Step 2: Now let O be an order with ` - f. The natural maps O/`aO → OK/`aOK and C`a(O) →
C`a(OK) are isomorphisms, so the sizes and multiplicities of orbits carry over from OK to O. �

6.4. The Case ` | f. Now suppose ` | f. The ring O/`O is isomorphic to Z/`Z[ε]/(ε2) – as one sees,
e.g., using the explicit representation of (3) – and is thus a local Artinian ring with maximal ideal p,
say, and residue field Z/`Z. Because [p : `O] = `, the only proper nonzero O-submodule of O/`O is
p/`. Thus there are two Cartan orbits on the order ` elements of O/`O: one of order `− 1 and one of
order `2 − ` = #(O/`O)×.

For all a ∈ Z+, the ring O/`aO is local – for a maximal ideal m of O, we have `a ∈ m ⇐⇒ ` ∈ m
– with residue field Z/`Z. It turn follows that for any order `a point P ∈ O/`aO and IP = {x ∈ O |
xP = 0}, the ring O/IP is local with residue field Z/`Z. By Lemma 6.5, we may write

(13) MP = O/IP ∼=Z Z/`aZ⊕ Z/`bZ

for some 0 ≤ b ≤ a, and then

#(O/IP )× = #O/IP −
#O/IP

`
= `a+b−1(`− 1).

So the size of a Cartan orbit on an order `a element of O/`aO is of the form (` − 1)`c for some
a− 1 ≤ c ≤ 2a− 1. So in this case it is a priori clear that the minimal size of a Cartan orbit divides
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the size of all the Cartan orbits. We want to understand how Cartan orbits grow when we lift a point
of order `a to a point of order `a+1. First observe that x 7→ `x gives an O-module isomorphism

O/`aO ∼→ `O/`a+1O,

so we can view O/`aO as an O-submodule of O/`a+1O. With P as in (13), let Q ∈ O/`a+1O be such
that `Q = P . Put MQ = {xQ | x ∈ O} and IQ = {x ∈ O | xQ = 0}, and write

(14) MQ = O/IQ ∼=Z Z/`a+1Z⊕ Z/`b
′
Z

for 0 ≤ b′ ≤ a + 1. Because `Q = P , we have `MQ = MP . Thus we find: if b = 0, then b′ ∈ {0, 1},
whereas if b ≥ 1 then necessarily b′ = b + 1. So: if the C`a(O)-orbit on P has the smallest possible
size ϕ(`a), then the C`a+1-orbit on Q either has size ϕ(`a+1) or size ϕ(`a+2) (as we will see shortly,
both possibilities can occur), whereas if the C`a(O)-orbit on P has size ϕ(`a+b) > ϕ(`a), then the
C`a+1(O)-orbit on Q has size ϕ(`a+b+2): i.e., upon lifting from P to Q the size grows by a factor of `2.

Since H(O, `a+1) implies H(O, `a), for each fixed ` and O there are two possibilities.
Type I: H(O, `a) holds for all a ∈ Z+.
In Type I, for all a ∈ Z+ the least size of a C`a(O)-orbit is ϕ(`a).
Type II: There is some A ∈ Z+ such that H(O, `a) holds iff a ≤ A.
In Type II, for 1 ≤ a ≤ A, the least size of a C`a(O)-orbit is ϕ(`a), but for all a ≥ A, whenever we lift
a point of order `a to a point of order `a+1 the size of the Cartan orbit grows by a factor of `2, so for
all a > A the least size of a C`a(O)-orbit is `a−Aϕ(`a).

We now determine the smallest size of a C`a(O)-orbit on an order `a point of O/`aO by using Theorem
5.15 to determine the type and compute the value of A in Type II.

Case 1: Suppose
(

∆K

`

)
= 1. Then for all a ∈ Z+ H(OK , `a) holds, so ∆K is a square modulo

4`a, hence ∆ = f2∆K is also a square modulo 4`a, so H(O, `a) holds, and we are in Type I.
Case 2: Suppose

(
∆K

`

)
= −1, and put k = ord`(f).

• Let ` > 2. If a ≤ 2k, then `a | ∆, so ∆ is a square mod `a and hence also mod 4`a: thus H(O, `a)
holds. However, if a = 2k + 1 then we claim H(O, `a) does not hold. Indeed, suppose there is s ∈ Z
such that ∆ = f2∆K ≡ s2 (mod `a). Then `k | s; taking S = s

`k
we have f2

`2k
∆K ≡ S2 (mod `a−2k),

which implies that ∆K is a square modulo `: contradiction. So we are in Type II with A = 2k.
• Let ` = 2, and write f = 2kF . Suppose a ≤ 2k. Since 4 | ∆K − 1, we have

2a+2 | (2kF )2(∆K − 1) = ∆− (2kF )2,

so H(O, 2a) holds. Suppose a ≥ 2k + 1. If ∆ is a square modulo 2a+2, then we find that ∆K ≡ 1
(mod 8), so

(
∆K

2

)
= 1: contradiction. So we are in Type II with A = 2k.

Case 3: Suppose
(

∆K

`

)
= 0, and put k = ord`(f).

• Let ` > 2. If a ≤ 2k+1, then `a | ∆, so ∆ is a square mod `a and hence also mod 4`a: thus HO, `a)
holds. However, if a = 2k + 2 then we claim H(O, `a) does not hold. Indeed, ord`(∆) = 2k + 1 < a,
so if ∆ ≡ s2 (mod `a), then ord`(s

2) = 2k + 2: contradiction. So we are in Type II with A = 2k + 1.
• Let ` = 2, and write f = 2kF . Suppose a ≤ 2k + 1. Since 4 | ∆K , there is s ∈ Z such that

8 | ∆K − s2, so

2a+2 | 22k+3 | (2kF )2(∆K − s2) = ∆− (2kFs)2,

so H(O, 2a) holds. Suppose a ≥ 2k + 2. If ∆ is a square modulo 2a+2, then ∆K is a square modulo
2a+2−2k, hence modulo 16: contradiction. So we are in Type II with A = 2k + 1.

6.5. Torsion over K(j): Part II. We return to complete the classification of torsion on O-CM el-
liptic curves E/K(f) begun in §5.7.

II. Suppose ∆ = −4, so j = 1728 and K(f) = K = Q(
√
−1).
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• By Theorem 5.2, if E(K) has a point of order N , then ϕ(N) | 4, so

N ∈ {1, 2, 3, 4, 5, 6, 8, 10}.
• Using Theorem 6.2 we get

T (O, 1) = T (O, 2) = T (O, 4) = T (O, 5) = T (O, 10) = 1,

T (O, 3) = T (O, 6) = 2, T (O, 8) = 4.

• We have C2(O) = µ4/{±1}. Thus #C2(O) = 2 so every O-CM elliptic curve E/K has a K-rational
point of order 2, and some O-CM elliptic curve E/K has E[2] = E[2](K).

• Because T̃ (O, 5) = 4, if an O-CM elliptic curve E/K has a K-rational point of order 5, the index of
the mod 5 Galois representation in C5(O) is divisible by 4. Because #C2(O) = 2, if an O-CM elliptic
curve E/K has full 2-torsion then the index of the mod 2 Galois representation in C2(O) is divisible
by 2. Thus if an O-CM elliptic curve E/K had Z/2Z×Z/10Z ↪→ E(K)[tors], the index of the mod 10
Galois representation in C10(O) would be divisible by 8, contradicting Theorem 1.1.
• If N ≥ 3 then #CN (O) > #O×, so no O-CM elliptic curve E/K has E[N ] = E[N ](K).
Thus the groups which can occur as E(K)[tors] are precisely

Z/2Z,Z/2Z× Z/2Z,Z/2Z× Z/4Z,Z/10Z.
III. Suppose ∆ = −3, so j = 0 and K(f) = K = Q(

√
−3).

• By Theorem 5.2, if E(K(f)) has a point of order N , then ϕ(N) | 6, so

N ∈ {1, 2, 3, 4, 6, 7, 9, 14, 18}.
• Using Theorem 6.2 we get

T (O, 1) = T (O, 2) = T (O, 3) = T (O, 6) = T (O, 7) = 1,

T (O, 4) = 2, T (O, 9) = T (O, 14) = 3, T (O, 18) = 9.

•We have C2(O) = µ6/{±1}. Thus as we range over all O-CM elliptic curves E/K , the group E(K)[2]
can be trivial (using Theorem 4.8) or have size 4, but it cannot have size 2.
• We have C3(O) = µ6. Thus there is an O-CM elliptic curve E/K with E[3] = E[3](K).

• If N ≥ 4 then #CN (O) > #O×, so no O-CM elliptic curve E/K has E[N ] = E[N ](K).
Thus the groups which can occur as E(K)[tors] are precisely

{e},Z/3Z,Z/7Z,Z/2Z× Z/2Z,Z/2Z× Z/6Z,Z/3Z× Z/3Z.

Remark 6.9. a) Case I. of the above calculation is a more detailed and explicit version of one of
the main results of [Pa89]. Parish offers addenda on Cases II. and III., but without proof, and the
possibilities E(K(f))[tors] ∼= Z/10Z in Case II. and E(K(f))[tors] ∼= Z/7Z and E(K(f))[tors] ∼= Z/3Z×
Z/3Z in Case III are not mentioned.
b) In Cases II. and III. a classification of the possibilities for E(K(f))[tors] apart from the “Olson
groups” {e}, Z/2Z, Z/3Z, Z/4Z, Z/6Z, Z/2Z× Z/2Z is done in [BCS, Thm. 1.4]. The older method
of proof used computer calculations on degrees of preimages of j = 0 and j = 1728 on modular curves
[BCS, Table 2].

6.6. Isogenies over K(j): Part II. We return to complete the classification of K(j)-rational cyclic
isogenies for elliptic curves with CM by the orders of discriminants ∆ = −4 and ∆ = −3. Recall
that these cases have additional complexity coming from the fact that µK acts nontrivially on the
projectivized torsion group PE[N ]. In this case, there is an O-CM elliptic curve (E0)/K for which the
projective mod N Galois representation

PρN : gK → CN (O)/(Z/NZ)×

is surjective, and thus as we vary over all possible K-models of E0, the representation PρN twists by
a character

Pχ : gK → µK/{±1}.
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Thus the index of PρN (gK) in CN (O)/(Z/NZ)× divides 2 when wK = 4 and divides 3 when wK = 6.
We will rule out the existence of K-rational cyclic N -isogenies for various values of N using the

following “T̃ -argument”: suppose that T̃ (O, N) > ϕ(N)wK2 . Then every CN (O)-orbit on a point of

order N in O/NO has size a multiple of T̃ (O, N), so every CN (O)/(Z/NZ)×-orbit on PE[N ] has size

a multiple of T̃ (O,N)
ϕ(N) , which by our hypothesis is greater than wK

2 . So after passing to a field extension

L of degree wK
2 to trivialize Pχ, we find that gL acts without fixed points on PE[N ], and there is no

L-rational cyclic N -isogeny and thus certainly no K-rational cyclic N -isogeny.

Let O be the order of discriminant ∆ = −4, so K(j) = K = Q(
√
−1) and wK = 4.

• If ` ≡ 1 (mod 4), then for all a ∈ Z+ we have that −4 is a square in Z/4`aZ so there is a K-rational
cyclic `a-isogeny. In fact we get that every O-CM elliptic curve E/K has a K-rational cyclic `a-isogeny.

• If ` ≡ 3 (mod 4), since T̃ (O,`)
ϕ(`)

wK
2

= `2−1
2(`−1) = `+1

2 > 1, by the T̃ -argument there is no K-rational `-

isogeny.
• If ` = 2, then since T (O, 4) = 1, we can have a K-rational point of order 4 (as already seen in §6.5),

hence a cyclic K-rational 4-isogeny. Since T̃ (O,8)

ϕ(8)
wK
2

= 16
4·2 > 1, by the T̃ -argument there is no cyclic

K-rational 8-isogeny.
Any elliptic curve over a number field admitting a rational cyclic N -isogeny also admits a rational
cyclic M -isogeny for all M | N . Moreover, if an elliptic curve E/F admits F -rational cyclic N1, . . . , Nr
isogenies for pairwise coprime N1, . . . , Nr, then the subgroup generated by the kernels of these isoge-
nies is F -rational and cyclic of order N1 · · ·Nr so E admits an F -rational cyclic N1 · · ·Nr-isogeny. The
assertion of Theorem 5.18b) now follows.

Let O be the order of discriminant ∆ = −3, so K(j) = K = Q(
√
−3) and wK = 6.

• If ` ≡ 1 (mod 3), then similarly to the ∆ = −4 case above we get that every O-CM elliptic curve
E/K has a K-rational cyclic `a-isogeny for all a ∈ Z+.

• If ` ≡ 2 (mod 3) and ` > 2, then since T̃ (O,`)
ϕ(`)

wK
2

= `2−1
3(`−1) = `+1

3 > 1, by the T̃ -argument there is no

cyclic K-rational `-isogeny.
• If ` = 2, then since T (O, 2) = 1 there is an O-CM elliptic curve E/K with a K-rational 2-isogeny.

•. Since T̃ (O,4)

ϕ(4)
wK
2

= 12
2·3 > 1, by the T̃ -argument there is no cyclic K-rational 4-isogeny.

• We claim that there is an O-CM elliptic curve E/K with a K-rational cyclic 9-isogeny. Let p be the

unique prime ideal of O lying over 3, and let P be a generator of the cyclic O-module E[p3] ⊂ E[9], so
P has order 9. By Lemma 6.4, the C9(O)-orbit on P can be identified with the unit group (O/p3)×, of
order 18. The O-module generated by P is also isomorphic to (ζ3 − 1)O/9O, and using this represen-
tation it is easy to compute that the group (O/p3)× is generated by the images of the scalar matrices
(Z/9Z)× and the cube roots of unity. Thus Galois acts on the image of P in PE[9] via a character Pχ.
After twisting by the inverse of this character, the image of P in PE[9] becomes fixed by Galois and
we get a K-rational cyclic 9-isogeny.

• Since T̃ (O,18)

ϕ(18)
wK
2

= 54
3·6 > 1, by the T̃ -argument there is no K-rational cyclic 18-isogeny.

• Since T̃ (O,27)

ϕ(27)
wK
2

= 162
3·18 > 1, by the T̃ -argument there is no K-rational cyclic 27-isogeny.

• From §6.5 (or Theorem 6.2) we know there is an O-CM elliptic curve E/K with a rational point
of order 6, hence certainly a cyclic K-rational 6-isogeny.
Using the same considerations as in the ∆ = −4 case above we get the assertion of Theorem 5.18c).
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