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 ON THE APPLICATIONS OF MOBIUS INVERSION IN COMBINATORIAL ANALYSIS

 E. A. BENDER AND J. R. GOLDMAN

 1. Introduction. Inversion of a finite series is one of the most useful tools in combinatorics and

 probability. The classical inclusion-exclusion principle is a special case (Feller (1968), Ryser (1963)).

 Although many inversion problems can be phrased in terms of inclusion-exclusion, the framework

 often seems artificial. Frequently a "natural" ordering of the objects being studied is possible. This

 is the gestalt of the technique of M6bius inversion.

 M6bius inversion is an overcounting-undercounting, or sieving, procedure. We keep track of the
 over and undercount by indexing with the elements of a partially ordered set which classically was

 the subsets of a finite set. The M6bius inversion formula of number theory as given in Hardy and
 Wright (1960) indexes functions with the set of positive integers under the divisibility order. This

 latter formula lends its name to the general subject.

 The principle of inclusion-exclusion, which after all is not a very deep statement, was

 investigated by sev,eral 19th century mathematicians and perhaps stated most clearly by Poinc4ae. It
 has been rediscovered many times in varying degrees of generality. A fairly complete development

 of this principle together with a history and development of classical applications in probability

 theory is given in the monograph of Frechet (1940, 1943).
 The statement of the general M6bius inversion formula was first given independently by Weisner

 (1935) and Philip Hall (1936); both authors were motivated by group theory problems. Neither author

 seems to have been aware of the combinatorial implications of his work and neither developed the

 theory of M6bius functions. In a fundamental paper on Mobius functions, Rota (1964) showed the
 importance of this theory in combinatorial mathematics and gave a deep treatment of it. He noted

 the relation between such topics as inclusion-exclusion, classical number theoretic M6bius
 inversion, coloring problems and flows in networks. Since then, under the strong influence of Rota,

 the theory of M6bius inversion and related topics has become an active area of combinatorics.
 Here we present many applications of Mobius inversion in combinatorics with emphasis on

 recent results. This paper complements Rota's original paper (1964) (also to be referred to as
 Foundations I) in that Rota developed the theory of the M6bius function as related to the structure

 of the ordering. Foundations I contains an extensive bibliography. We have not reproduced this here

 but we have attempted to bring it up to date.
 We begin with a series of examples to motivate the framework of M6bius inversion.

 Example 1. Finite Series. Let f(n) be a function on the positive integers (i.e., a series f(1), f(2),
 f(3), * * * ) and let g(n) = I2mnnf(m). We invert the sum, i.e., express f(n) in terms of g; the answer is
 obviously

 (1) f(n) = g(n) -g(n -1).

 Example 2. Inclusion-Exclusion Principles. Given a set S = {S1, S2,. , Sk} and a collection of

 properties P = {p1,P2, * * * ,pn}. A property pi is defined by stating which elements have it and which
 do not (hence a property is subset of S; viz., those elements which satisfy it). For any collection T of
 properties, T C P, let N, (T) (read "N sub ' of T") be the number of elements of S which satisfy
 every property in T and possibly others. Let N= (T) be the number of elements which satisfy exactly
 the properties in T and no others. Clearly

 N_-:.(T)= N= (X),
 X:DT

 for every element which satisfies at least all properties in T satisfies exactly some set X of
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 properties where X D T. Our problem is to solve for N= (T) in terms of the function N, (X).
 Frequently we want N= (0), the number of elements satisfying no properties.

 Example 3. Classical MJbius Inversion. The following problem from number theory motivates

 some of our general terminology and results. Let f(n) be a function defined on the positive integers
 and define

 h(n)= f(k)
 kIn

 where "k I n" is read "k divides n " and the summation is therefore over all integral divisors of n. We
 wish to invert the sum, i.e., solve for f(n) in terms of h. The problem is solved in many elementary
 number theory texts. See, for example, Hardy and Wright (1960). We shall derive it as a special case
 of a more general theory.

 Example 4. Spanning Sets of a Vector Space. How many subsets of Vn (q), the n-dimensional
 vector space over a field of q elements, span the whole space? For any subspace U of Vn(q) let
 N= (U) be the number of subsets of vectors of Vn which span U. Let N,(U) be the number of sets

 spanning U or a subspace of U. Then we have N,(U) = 1vguN=(V) where the sum is over all
 subspaces of U. Our problem is to solve for N=(U) in terms of N<(U) and set U = Vn(q).

 Our four examples have a number of common ideas which we abstract in the following table:

 Example I Example 2 Example 3 Example 4

 (i) A set S Positive Subsets Positive Subspaces

 Integers of P Integers of V. (q)

 (ii) An "order" D I is a subspace
 relation (Set divisibility of (?)

 inclusion)

 (iii) A given f(n) N=(T) f(n) N=(U)
 function

 on S

 (iv) A summation g(n) = , f(m) Nz (T) h (n) = >Lf(k) N: (U) = E N= (I
 function fll kln VsU

 = N=(X)
 XQT

 In each case we want to invert a system of linear equations, i.e., solve for the given function in terms
 of the summation function. The summation function is with respect to a given "ordering." This
 ordering generalizes the usual notion of order for integers or real numbers.

 To study the inversion problem in its proper generality we now review the theory of "order"
 relations or, as they are more commonly known, "partially ordered sets."

 2. Partially ordered sets.

 DEFINITION: A partially ordered set (POS) E = (S, ' ) is a pair consisting of a set S and a binary
 relation ' on S, satisfying the following properties:

 (a) (reflexive) x ' x for all x E S,

 (1) (b) (transitive) if x ' y and y '- z then x ' z,
 (c) (anti-symmetric) if x ' y and y _ x then x = y.

 We read "x '- y" as "x is less than or equal to y." Partially ordered sets are also called ordered
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 sets. The notation and terminology of ordered sets is similar to that for ordinary inequality, e.g.,
 x <y means x ' y and x- y, and xe y means x ' y is not true.

 What distinguishes ordered sets from ordinary inequality is that elements may be "incompara-
 ble." x and y are incomparable if x ' y is false and y ' x is also false. If for every two elements x, y
 either x ? y or y ? x is true, then E = (S, ' ) is called a linearly ordered set or a chain.

 Example 1. (a) Integers with ordinary ordering: Let S be the positive integers Z+ or all integers Z
 with the usual ordering (a ? b if and only if b - a is positive). E = (S, ' ) is linearly ordered.

 (b) Let S be the integers between 1 and n with the ordinary ordering. (S, ' ) is a linearly ordered
 set.

 (c) Subsets of a set (Boolean algebra) (see Example 1.2): Let T be a set and S the collection 2T of
 subsets of T. If A, B C T, then A ?B iff A C B (A is a subset of B). (S, '?) is not a linearly ordered
 set, e.g., any two 1 element subsets are incomparable. This ordered set is often called the "subsets of
 T ordered by inclusion."

 (d) Integers under divisibility (see Example 1.3): Let S be the positive integers and let a ?- b iff
 a Jb (a divides b). Let A denote this POS.

 (e) Divisors of n: Let S be all divisors of the integer n and let a ?- b mean a I b as in the previous
 example. This POS will be denoted by An or D(n).

 (f) Subspaces of a vector space (see Example 1.4): Let S be the set of subspaces of a vector
 space and let ' mean "is a subset of."

 (g) In general, given any "mathematical system," the "sub-systems" ordered by inclusion, form a
 partially ordered set, e.g., subgroups of a group.

 DEFINITION: An interval [x, y] is the set of all elements "between" x and y, i.e., [x, y]=

 {z E S Ix - z y}. However, by an abuse of language, we sometimes use [x, y] to denote the
 induced sub-POS. ({z C S Ix ? z ? y}, c). A partially ordered set is locally finite if every interval
 has a finite number of elements.

 Example 2. (a) The real numbers with the usual ordering is not locally finite.
 (b) The POS of finite subsets of any set T is locally finite.

 DEFINITION: Two partially ordered sets are isomorphic if they differ only by a labeling of their

 elements and ordering relation; more formally, (S, '?) is isomorphic to (S', ' '), written (S, ') -)
 (SI' '), if and only if there is a one-one onto map 4: S -S' such that x ' y if and only if

 +(x) '- '+(y)

 Example 3. Subsets (continued). Let B(Tn) be the subsets of T, ordered by inclusion, where
 T, I = n, and let Sn be the set of all n -tuples of zeros and ones with a ? b meaning ai bi for each

 of the n components of a and b. Let En = (S,_ <). We claim that B(T) -En: Let t1, , tn be a
 listing of of elements of Tn. If X C T, define +(X)= x = (x1, ,xn) E S, where

 _ 0 if ti X
 Xi = xill if ti EX'

 It is easy to see that X is an isomorphism.

 3. Mobius inversion. We can now formulate and solve the general inversion problem discussed in
 Section 1. Proofs are given in Foundations I.

 THEOREM 1: MOBIUS INVERSION FORMULA I. Let N=(x) be a real valued function defined for all
 x in a locally finite partially ordered set (S, _?) and assume there is an element m E S such that
 N=(x)=0 when xem. Define N_(x) by

 (la) N_(x)= E) N=y(y).
 y: y:_~x
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 Then

 (lb) N= (x) = , (x, y)N-_(y),
 y :y _x

 where g (x, y), the Mobius function of (S, ' ), is an integer valued function of two variables on S
 defined by u (x, z) = O when xe z and, when x '- z, by

 (2) E ,u (x, y) = (x, z).
 y :x _y cz

 (8 (x, z), the Kronecker delta, is given by 8 (x, x) = 1, 8 (x, z) = 0 if x ' z.)

 NOTE: The condition N= (x) = 0 when x m assures that all sums in our theorem are finite.
 Conditions under which infinite sums are allowed remains an open question (see Hille (1937)).

 NOTE: It is not necessary to restrict N=(x) to real valued functions.

 THEOREM 2: MOBIUS INVERSION FORMULA II. Let (S, -? ) be a locally finite partially ordered set.
 Let N= (x) be defined for all x E S and let there be an I E S such that N= (x) = 0 when x X 1. Define

 (3a) N- (x)= E N= (y).
 Then

 (3b) N=(x)= E (y,x)N?(y),
 y :y cx

 where ju is defined by (2).

 COROLLARY 1. The Mobius function , of a locally finite POS can be computed recursively by
 either of the formulae

 (4a) ,(x, z) = - E ,(x, y), x <z,
 y: x _y <z

 (4b) ,u(x,z)= - E ,u(y,z), x <z,
 y x <y ?z

 together with p (x, x) = 1.

 COROLLARY 2. If x ' y - z ' w in a locally finite partially ordered set E, then 11 (y, z) in E equals
 u (y, z) in [x, w]. (The "surroundings" don't matter - only the interval on which you want ,.)

 COROLLARY 3. If E and E' are isomorphic P.O.S's with Mobius functions , and ,' and if

 [x, y] I_ [x ', y '], then g (x, y) = ,u' (x', y ').

 Example 1. Integers (continued). If S is the set of integers with the usual ordering, the Mobius
 function is given by , (n, n) = 1, , (n, n + 1) = - 1, and , (n, k) = 0 otherwise. This follows
 immediately since we have already solved the inversion problem in equation (1.1) and we need only
 compare the coefficients of the terms in (1.1) with those of the general inversion formula in equation
 (3b). This is the method of undetermined coefficients. The Mobius function can also be derived from
 formula (4a) or (4b).

 Direct products. Our main approach to computing Mobius functions will be to construct
 complicated POS's from simple ones, compute ,u for the simple sets by undetermined coefficients,
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 and use these results to compute y for complicated sets. Our construction tool is the "direct
 product." Other more sophisticated approaches are found in Rota (1964).

 DEFINITION: Let E1 = (S,, 1) and 12 = (S2,- 2) be POS's. The direct product E = SI X 12 of EI
 and E2 iS the POS (S, _ ), where

 (i) S= SI X S2 = {(a, b)Ia E SI, b E S2},

 (ii) a ?b in E if and only if a1'1b1 and a22b2,
 where a =(a1,a2) and b =(b1,b2).

 THEOREM 3: PRODUCT THEOREM. If E1 has Mobius function /U and E2 has Mobius function

 /L2, then the Mobius function y of El X 12 is given by

 (S) /1 ((XlI, X 2), (y I, Y 2)) = 1 (XlI, y I) L2 (X 2 y 2)

 Example 2: Inclusion-Exclusion, Subsets. By Example 2.3 the Boolean aJgebra B (Tn) is

 isomorphic to En, the set of n -tuples of 0's and l's. But E n -_ I x ntimes X II. For L, and y _ x we

 have ju (x, y) = (- 1)YX since the only possibilities are x = y or x = 0, y = 1. Under the isomorphism
 B(T)-E1x ...xE1, let x (x1, ,xn) and y*-*(y1, ,yn), then

 (6) p. (x,y) = p. ((xI, ,xn), (Y ,Y Mn)) = 17 , (xi, yi) - ( I)Y-= (- I )"

 where I y I is the number of elements in y. Substituting into equation (Ib) we get

 N=(x) = E (_ -)l' Plxl N_(y),

 the basic Inclusion-Exclusion Principle.

 Example 3: Divisors, Classical Mobius Inversion. (See Examples 1.3 and 2.le.) By the Unique
 Factorization Theorem D(n)- D(p ') x ... x D(pa-). Hence it suffices to compute ,u on D(p ). We

 have already done this because D(pa) is the chain 1 p Ip2. 2 pa, which is isomorphic to the
 integers treated in Example 1. Hence

 I if i=
 (Pi,P)=-I if j-i=

 0 otherwise.

 By the product theorem

 s s ( (b- 1)b-ai) if bi - ai = 0 or I for all i,
 lU (1P i S IPi)=

 i=O i=O 0 if bi -ai >1 for some i.
 Thus

 (7) y (a, b) = tu (1, b/a) -, (b/a)

 where

 ;1if n= 1

 (8) , (n) = (- 1)k if n is a product of k distinct primes
 f 0 if a square divides n.

 This is the classical Mobius function. Since D(n) is the interval [1, n] of A, we have computed ,t for
 A. We could have deduced (7) directly by observing [a, b]- [1, b/a] by the unique factorization
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 theorem. Equation (3b) becomes

 (9a) N= (x) =;u/ (y, x) N,(y) ; /l(y N(y)

 as expected and (lb) gives

 (9b) N= (x) = u (x, y) N_((y) = (k) N,(kx),

 a somewhat less known type of inversion using the classical M6bius function (Hardy and Wright,
 1960).

 We now present two applications of the former result.

 (a) The Euler phi-function. The +-function, 4 (n), is the number of positive integers x not

 exceeding n which are prime to n; i.e., gcd(n,x) = 1.
 Let N=(n) = + (n). To compute N (n) we break up the set [n] ={1,2, , n} according to the

 gcd with n, i.e., let Sd = {i E [n] Jgcd (i, n) = d}. The Sd are mutually disjoint and their union is [n].

 Hence n = Ed In Sd 1. But i E Sd iff i = kd, where k ? i and gcd (k, n/d)= 1. Hence I Sd =4(nld)
 and n = Edln40(n/d) = Ed'ln4(d') = N_(n). By Mobius inversion

 (10) 0 (n)= Y(Y)d=n s -.. + p2 . dPI P2 p IP2

 since u (nId) is non-zero only if nId is a product of distinct primes. Thus

 0 (n) = nf, (1 - I

 where the product ranges over all primes p dividing n.

 (b) Counting Necklaces. Suppose we have k different colors of beads in unlimited supply, how
 many n bead necklaces can be formed? We must specify precisely when two necklaces are the
 same. Every necklace has a front and back, but shifting the beads circularly (bead at i -> location
 i + 1) does not change the necklace.

 If we shift n beads circularly, we discover they eventually return to the initial color configuration

 after, say, d shifts where d I n. The period is the smallest number of shifts required for a return.
 Since

 RWBRWB -* BRWBRW -* WBRWBR -* RWBRWB,

 this string has period 3. Suppose we have an n long string of period d. Including itself, it has d shifts
 all of which give the same necklace when the ends are joined. Furthermore, these are the only
 strings that give this necklace. Our circular problem is reduced to a linear one:

 # necklaces of length n = d-( # strings of period d),

 where we have omitted the length on the right hand side since the initial d beads determine the
 string. Clearly

 # of strings of length n # of strings of period d.

 The left side is clearly kn since there are k colors of beads. Mobius inversion gives

 # of strings of period d = A Jd) k X.
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 Hence

 # of necklaces of length n d k,i( x = I ( jkd)

 where the simplification involves the use of (10).

 Example 4: Convex polytopes. A very detailed and beautiful study of convex polytopes is given
 by Grulnbaum (1967).

 A d-dimensional convex polytope is a bounded d-dimensional set of points in a Euclidean space

 which can be given as the intersection of half-spaces (i.e., all points on one side of a hyper-plane).
 For example the triangle in Figure 1 is the intersection of the three indicated half planes -
 determined by the lines (hyper-planes) a, b, c. We call 123 a 2-face (i.e., 2-dimensional face) of the
 polytope, 12, 23, 31 the 1-faces and 1, 2, 3 the 0-faces. In higher dimensions the notion of a face can
 be defined in terms of supporting hyperplanes (Griinbaum, 1967). A polytope can also be thought of
 as the convex closure of a finite set of points in n -space R .

 ,a

 b
 FIG. I

 Let P be a d-dimensional polytope and gp the POS of faces of P ordered by inclusion, including
 the empty face 0 of dimension - 1 and the face P. For any x E gp

 (11) [0,X]- x.

 Let fk (x) be the number of k-dimensional faces containing x. The generalized Euler relation states

 E, (- 1)d'fj (x) = 8 (x, P), where 8 (x, P) is the Knonecker delta (Grunbaum, 1967). We can rewrite
 this as

 (12) E(_ ld(P)-d(y) = (X,p),
 y : y >'x

 where d (y) is the dimension of y. From (12) and (2) we have , (y, P) = (- 1)d(P)-d(y) and then by (11)

 (13) ,. (x, y) = (_ j)d(y)-d(X).

 This suggests that a homology theory might be defined for POS's with ,u related to the Euler
 characteristic. This has been started by Rota (1964, 1971).

 A k-dimensional simplex has k + 1 vertices and every subset of j + 1 vertices determines a
 j-dimensional face. A simplicial polytope is a polytope P in which every face, except possibly P, is a
 simplex, e.g., triangles, octahedrons and tetrahedrons, are simplicial polytopes. While Euler's
 relation (equivalently, equation (13)) is the only relation satisfied by the faces of a general polytope,
 we might expect other relations for a simplicial polytope. In this case, x ' y < P implies that [x, y] is
 isomorphic to the POS of subsets of a d (y) - d (x) element set. By using (4a) to sum ,u (x, P) over all

 x _ w with d(x) =j <d(P) we get

 (14) (w)1- 1) and (we get te Dh-o) m m fk (W) (

 If we put w = 0, then d (w) I and we get the Dehn-Sommerville equations (Gruinbaum, 1967).
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 Example 5: Map coloring. A map is a planar graph: a (finite) collection of connected, bounded
 regions in the plane whose boundaries are smooth curves. Two countries sharing a segment of a
 curve (more than a point) are adjacent. If the countries are colored so that no two adjacent countries
 are the same color, the result is a proper coloring. Let G be a map and let MG (A) be the number of
 proper colorings. A submap of G is obtained by erasing boundaries between countries. Any map

 can be colored in A IGI ways where I G I is the number of countries in G. Any such coloring is proper
 for precisely one submap of G. (Just erase those boundaries between countries of the same color.)
 The relation "is a submap of" makes the submaps of G into an ordered set and

 AIG =I E. M(Ak)
 x _G

 Since [0, y] is isomorphic to the ordered set of submaps of y, we have

 x Ey

 Hence if we set N= (x) = Mx (A), then N,(y)= A lyI. By Mobius inverting and setting y = G, we
 obtain

 MG(A) AE AI ly(x,G).
 x _-G

 For obvious reasons, MG (A) is called the chromatic polynomial of G. Computation of MG (A) is
 difficult when we have no easy way to compute ,u. The chromatic polynomials were introduced as a
 tool for attacking the 4-color problem by Birkhoff and Lewis (1946). Other references include
 Whitney (1932) who derives a formula by ,u-inversion over Boolean algebras, Rota (1964), Wilf
 (1969), and Read (1968) who has a very nice introduction to the properties of chromatic
 polynomials. Redoing some of Read's proofs by using properties of the ,u-function makes a good
 exercise.

 By introducing the dual graph to a map, where the operation of erasing boundaries is replaced by
 contracting edges, the general problem of properly coloring the vertices of an arbitrary graph can be
 treated just as we have done for maps (Rota, 1964).

 Using Mobius inversion as a key tool Crapo and Rota (1971) embed the four color problem and
 the study of chromatic polynomials into a more general problem namely the critical problem for
 combinatorial geometries. This problem, which is one of finding minimal sets of separating
 hyperplanes for sets of points in finite projective spaces, includes as special cases problems in
 coding theory and Segre's results characterizing sets of independent points in projective space,
 (Dowling, 1971).

 4. Partitions of a set. An (unordered) partition of a finite n element set Sn is a collection

 {71, 72, * } of non-empty mutually disjoint subsets of Sn whose union is Sn, i.e., rl nii 0 if i J
 and U i7i = Sn. For instance {{1, 3}, {2}} is a partition of {1, 2, 3}. The sets 7i are called the blocks of
 the partition.

 Let S (n, k) denote the number of partitions of Sn into k blocks. The S (n, k) are called Stirling
 numbers of the second kind. The numbers Bn = k S (n, k) are called Bell numbers.

 Although the study of Stirling and Bell numbers presents some difficulties, (Rota, 1964) the
 number of partitions having exactly bi blocks of size i, i = 1, 2, " is easily derived. A partition of
 this sort is said to be of type bh. Thses are easily counted by enumerating permutations of the given
 set in two ways giving

 (1) # of partitions of type b - (libi)!

 Let P be the set of all partitions of S and let X = {m72, ** } and r = {o1,0-2,** } lie in P. We
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 call 7 a refinement of a- if every block 7i of 7r is contained in some block a- of a. Another was of

 thinking of this is to say that 7 is a refinement of a- if every block oi is gotten by merging blocks 7i.
 We make P into an ordered set HI(Sn) = fln = (P, c) by defining 7 ' a- to mean 7 is a refinement of
 a-. HIn is called the POS of partitions of Sn ordered by refinement.

 We will compute ,t (r, cr) for 7, a- E P following Frucht and Rota (1965). By Corollary 3.2 it
 suffices to study [7r, cr1. Since a- is gotten by merging blocks of 7, the individual elements of the
 blocks of 7 are not essential; e.g., in saying that {{1,2},{3},{4}} is a refinement of {{1,2},{3,4}} the

 elements 1 and 2 are really inessential and we could write that {{2}, {3}, {4}} is a refinement of

 {{2}, {3, 4}}. Hence in studying ,u on the interval [7r, cr1 we need only consider those 7 whose blocks
 contain one element, i.e., those 7 which are complete refinements of a set. We use 0 to denote a

 complete refinement. Thus we restrict ourselves to intervals of the form [0, cr1.
 Let cr = {I, 0r2, * * *, O-k} (the o-i are the blocks). Since every refinement of o- consists of some

 partition of each of the ai, we can regard a refinement p of o- as an ordered k -tuple (pi,... , Pk)
 where pi is a refinement of a-,. Thus [0, r - [01, orl] x . x [0, a-k]. By the product theorem it suffices
 to consider ,t on [0, w] where w consists of one block. The partition consisting of one block is

 usually written as 1. Let 1 have n elements and write it,n = pt (0, 1). We have shown that
 m

 (2) tL(Tr,a-)=Jfun, for all iT,a-EP,

 where cr ={a-I,. Oam} and 7={1, ,7nI} and oi is the union of exactly ni of the 7j's.
 We now compute ,u (0, 1) by the method of undetermined coefficients. To do this we relate

 partitions to functions.

 Let Sn be an n -set and X an arbitrary set with x elements. We associate with any function
 f: Sn,, > X a partition of Sn as follows: the blocks of the partition are the inverse images of the
 elements of X. This partition is called the kernel or co-image of the function. Different functions
 may have the same kernels. Kernels and their generalization form the basis for a combinatorial
 interpretation of finite differences (Mullin-Rota, 1970).

 Let N= (ir) be the number of functions from Sn to X whose kernel is 7T and let N7(7r) be the
 number of functions whose kernel is - Xr (in the ordering of Hln). We have

 (3) N4(7r)= > N=(or).

 By Mobius inversion

 (4) N=(r) = , ( 7r, o-) N:::(o-).

 Setting 7T = 0, we get

 (5) N= (O) = > , (4O, o) N? (c).

 N= (0) is the number of one to one functions since the inverse image of every point must be a
 point. Hence N=(O) = x(x - 1)... (x - n + 1) = (x)n. Suppose cr has r (a) blocks. Then a function is
 counted by N?(cr) if it maps all elements in the same block of a- into one point. Different blocks can
 map into the same point since the kernel need only be a. Hence N? (a-) = x r('). Substituting in (5)
 yields

 (6) x (x - 1) (x - n + 1) =L (O, x)rr

 Since this relation is true for infinitely many values of x it is a polynomial identity. This is an
 important combinatorial technique for deriving polynomial identities.
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 Clearly r (cr) = 1 if and only if a- = 1, the partition with one block. Equating coefficients of x on
 both sides of (6) we get

 (7) tLln = -)-(n -1)!

 Substituting this result into (2) we see that

 (8) J (7, a-) = f (-1ni-) (ni- 1)! = ( _)r)r(a) n (ni-1)!

 where the ith block of a- (for some fixed order) is the union of exactly ni blocks of 7.
 Equation (6) gives some more information. Let s (n, k) = 1a:r(o)=k,t (0, o-). Then by (6)

 n

 (9) Wxn = E: s (n, k) Xk.
 k = I

 The s (n, k) are called Stirling numbers of the first kind. We have provided here a combinatorial
 interpretation of s (n, k), due to Rota (1964), as a sum of values of a Mobius function.

 Example 1: Waring's Formula For Symmetric Functions. In computing the M6bius function for

 partitions we derived equation (5) expressing 1-1 functions in terms of all functions. By repeating
 this argument in terms of a "generating function" associated with each function we are led to
 symmetric functions.

 Let Sn=,={1,2, ..,n} and let X={x ,...,xi}, where l?n and xl, ,x, are independent
 variables. To each function F: Sn,, > X with kernel a- associate the monomial generating function

 g(F) = X I F(xl)IXIFl(x2)1 .. . XIF-I(x1)

 The monomial has r (a) non-trivial factors and degree n. If F is a set of functions, the generating
 function g (F), given by g (F) = >fEFg (f), is a polynomial in several variables.

 We now mimic the argument mentioned. Let N= (a-) be the generating function for the set of all
 functions from Sn to X with kernel a-. Then N2(a() is the generating function for the set of all
 functions from Sn to X with kernel ? a-. Mobius inverting and setting a- = 0 we obtain

 (10) N= (O) = ,(O, 7r) N(r).

 Now N= (0), the generating function of the set of all one-one functions is clearly

 N= (O) = xi XX X in

 where the sum is over all sets of n distinct indices from {1, 2,... , l}. By definition this is n ! times the

 elementary symmetric function of degree n in I variables, denoted by an. We now show that

 ( 1) N(7r)= (xl + X2 + *.* + XI) l (x I+X2 + b . * + xX)* **(X + X + .. )b

 where 7 has bi blocks of size i, and a given factor (x + x + + x ,) corresponds to a specific
 block of size i. Each term in the expansion of the right hand side of (11) corresponds to a choice of
 images for each of the blocks. Hence we obtain the generating function for the set of all functions
 which are constant on the blocks of r. But this generating function is precisely Nr(7r) since
 prescribing the same image for two different blocks is equivalent to merging them in the kernel.

 In the theory of symmetric functions, xl + x2 + = si is called the power sum symmetric
 function. If we substitute (11) in (10) and collect terms according to the type of X we will obtain
 Waring's formula:
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 an 1 ! Lu(O,7wr) s 1(7Ts 22 T. .

 by (1) and (8) where b ranges over all types; i.e., b + 2b2+ **= n. Hence

 (12) an = E (-1) H ( i!-1) /b( b,+ 2b2+.

 See Solomon and McEliece (1966, Section 7) for a generalization.
 Doubilet (1972) has developed the basic theory of symmetric function by this approach.

 Example 2: Connected graphs. We wish to count c,n, the number of connected labeled graphs on
 n vertices. Let S be te vertex set and l(S) the lattice of partitions of S. The number of loopless
 labeled graphs on n vertices is 1 since we may choose any collection of pairs of vertices for edges.

 Let N= (7) be the number of labeled graphs such that each block of 7 labels a connected

 component, i.e., those graphs whose components induce the partition 7 on the vertices. Then

 cn = N=(1) and we have

 2`2 = Nc_(1) =EN=(T

 We can compute N. (r). This counts all labeled graphs in which different blocks of 7X label distinct
 sets of components. Hence

 (13) N2(2) = H 2(bi

 where 7X is of type b. By Mobius inversion N= (1), the number of connected graphs, is

 N= (1) = >Nc (7)

 which by (8) and (13)

 = E (- 1) (, bi - 1)! fn 2(2 ~~~~~~~~~~~~~~~~~~~~i
 and by (1)

 = n! ( 1) (bi 1)! Hb!(j!)b

 This formula is equivalent to the generating function equation C(x) = In G(x) or G(x) = exp C(x).
 For a discussion of exponential formulas for generating functions of the form A (x) = exp B (x) see

 Doubilet, Rota and Stanley (1973) for a Mobius approach and Bender-Goldman (1971) for another

 approach.

 5. Vector Spaces. Let Vn (q) be an n dimensional vector space over the field of q elements. We
 partially order the subspaces of Vn (q) by inclusion: if U and V are subspaces of Vn (q) then U ' V
 iff U is a subspace of V. The resulting POS is denoted by L(Vn (q)). It is a "geometric lattice"
 (Crapo-Rota, 1971), because L(Vn (q)) is the lattice of subspaces of a projective space.

 The study of subspaces of a finite Vector space has deep analogies with the study of subsets of a

 finite set (Goldman-Rota, 1969, 1970). The relation is probably deeper than just an analogy but as yet
 there is no explanation for this. Some of these analogies are discussed in this section.
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 Just as (kn) counts the k-subsets of an n -set, we introduce the Gaussian coefficient (n) [n] is

 also used in the literature) defined by (k) = # k- dimensional subspaces of Vn (q). To derive (k)

 we reason by analogy with binomial coefficients:

 (n) # sequences of k distinct elements in an n-set

 VkJ # sequences of k distinct elements in a k-set

 (1)

 ( n # sequences of k independent vectors in Vk (q)
 klJq =# sequences of k independent vectors in Vk (q)~

 Let us compute the numerator of (1). We can choose the first vector in (qfn - 1) ways (the number

 of non-zero vectors in Vn (q)). The vector chosen generates q vectors, viz. all multiples of it; hence
 we may choose the second vector in (q n - q) ways. The two vectors now chosen generate, by linear

 combinations, q2 vectors; hence we may choose the third vector in (q n - q2) ways. Continuing this

 argument we have

 # sequences of k independent vectors in Vn (q)

 =(qn - 1) (qn - q) (qn - q) (q n - q 3) ... (qn _q qk -i)

 When n = k we obtain the denominator in (1). Hence

 {n (qn 1 )(q n -q) ***(qn q qk-1) (qn _) l(q n-I-)..* (q n-k+l-)

 (2) k (q) k )(qk q) *(qk _qk-) (qk - 1)(q k-I 1) (qf- 1)

 If in (2) we regard the right side as a function in the variable q and hence (n) as a function

 defined by (2), then we have

 (3) k k
 q-I

 This is the first manifestation of the relation between subspaces and subsets which is as mysterious
 as it is fascinating. In some sense "a set is a vector space over a field with one element"; a concept
 which needs a definition. Unfortunately no good one is known.

 The relation (3) is a strong heuristic guide to guessing relations over vector spaces in analogy
 with those over sets. It also provides a check on the correctness of vector space formulas by letting

 q -> 1. For example,

 (4) n (nk) and n (n iD q k n ) (k )q (n _ k )q an k )q =k _)i q ( k q)

 When q -> 1 we obtain well-known binomial coefficient identities. Both of these identities can be
 derived immediately from (2) by algebraic manipulation. Combinatorial proofs are a bit more
 involved (Goldman-Rota (1970)).

 To compute the Mobius function ,t (x, y) for L (Vn (q)) we show first that the structure of [x, y]
 depends only on d (y) - d (x) where d denotes dimension. To see this, let v1, , Vd(y) be a basis for y
 such that the first d(x) elements are a basis for x. Define

 f(vi)=0 if i'd(x) and f(vi)=vi otherwise.

 Using this map it can be shown that [x, y] [0, z] for some z where d (z) = d (y) - d (x). In fact we
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 can take z to be the quotient space y/x. Since all k-dimensional spaces over fields with q elements

 are isomorphic, we need only compute ,u (0, V, (q)) for all n. The M6bius function is

 (5)~ ~~~~~~~~{Z = l (O, V. (q)) = ) (-)q(

 In (Rota, 1964) this result is derived from more general theorems on Mobius functions. With the

 tools presently at our disposal, it could be done by induction. We present here a proof by the method

 of undetermined coefficients: we count the number of one-one linear transformations from V" (q)
 into a vector space X with x vectors in two ways.

 For every subspace U E L (V, (q)) let N= (U) be the number of linear transformations
 f: V, -> X whose null space is U, i.e., f '(0) = U. Then N? (U) is the number of linear maps from V,
 to X whose null space contains U. By Mobius inversion

 N= (U)= E ,u(U, W) N::(W),

 and with U = 0

 (6) N= (O)= (O, W) N ( W).
 WEEL(V,)

 By definition N= (0) is the number of linear maps whose null space is 0, i.e., the number of
 one-one linear maps. Such a map is specified by giving a list of n independent vectors - the image
 of an ordered basis for V, (q). By the argument used to derive formula (2), we see that the number of

 one-one maps from V, into X is given by (x - 1) (x - q) *. (x - q`).
 We now compute N?(W). A linear map has null space containing W if it maps W onto 0 and

 does anything at all with the rest of the vectors. Hence, if b1, b2,... , bn is a basis for V, where

 bl.. bd(W) is a basis for W, we must map b I ,bd(w) onto 0 and the other n -d(W) basis
 vectors onto any vectors in X. Thus N,(W) = X n -d(W). Substituting in (6) we obtain

 (7) (x - 1) (x -q) ... (x - q ) tE,d(W)X = ()lPkX

 Since this identity is true for infinitely many values of x, it is a polynomial identity. Equating the
 constant terms on both sides gives

 {aZn = (- 1) (_q) ( )=(-q )q (2)

 which proves (5). As q -> 1 we have it,n = (- I)n, the Mobius function for Boolean algebras.

 Example 1: q-identities. Now that we have proved (5), we can rewrite (7) as

 (8) ~ ~ ~ ~ ~ (x~~~qk)= (n o~1kq(k)Xn-k. (8) (l kx -) k=O k=O k q

 A typical trick is to set x = zly and multiply by yf to clear fractions. This introduces another
 variable:

 k=O k=O kq

 One often obtains such q-binomial identities by counting in two ways. This can be done by
 considering vector spaces or by considering partitions of a number. To see how the latter enters
 write

 Tek aq in o at mstq p

 Then ank (i) is the number of partitions of i into at most k parts each of size at most n (MacMahon,
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 1916). In "sum equals product" identities like (8), q often appears to a quadratic power. Here we

 have q '. Cubic and higher powers apparently never do appear. This is not understood, but may be

 associated with the formula for /tLU.
 Since (9) is true for infinitely many values of q, it is a polynomial identity. Setting z = 1 and

 choosing I q I < 1 we obtain as n ->oo
 00 00

 H (1-yq)= > (_y)kq(I( - q) ...(1 qk)
 k=O k=O

 By considering convergence in the q-adic norm (van der Waerden (1953)), many limits for

 q-identities can be simplified (Goldman-Rota, 1970).

 We now present an example where inversion over subspaces is a natural tool.

 Example 2: Spanning Subsets. Continuing our discussion of Example 1.4, we say by convention
 that 0 spans nothing and {O} spans the 0-dimensional subspace. Since every non-empty subset spans
 some subspace we see that Nc (U) is given by

 qd(U)

 Mobius invert to get N= (Vn (q)):

 (10) # spanning subsets of Vn (q) = k (k) Lk (2 - 1).
 k=0

 When q -> 1, we might reasonably expect one spanning subset, but (10) reduces to

 n= (k )k( (2 1) =' nk (_ 1)k = (I1- 1)n = O.

 For (10) to be "right" at q = 1, we need to replace 2n by 2n-k at q = 1. This happens in

 ( 1 1 ) E - k ) ,uZk (2 q 1).

 In fact (11) counts spanning sets for projective spaces whereas (10) refers to affine spaces. This
 illustrates a limitation of the q -> 1 idea. In order to use this idea our formula must refer to objects
 counted in projective and not affine space, i.e., it must be in terms of objects in L(Vn), the
 subspaces, and not contain any direct reference to the vectors in the space. Vectors are affine points
 whereas projective points are 1-dimensional subspaces.

 P. Hall (1934) and Weisner (1935, 1935a) applied Mobius inversion to p-group enumeration
 problems. Since the value of ,u for L(Vn (p)) enters and p ,k when kE 0, congruences modulo p
 are obtained.

 Part of this work was supported by the AFOSR contract 73-2436.
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