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Introduction

These notes represent my first serious attempt at a first algebraic number the-
ory course with an algebraic mindset: drawing on results of commutative algebra
and field theory in order to work over an arbitrary Dedekind domain. I have drawn
from several sources, but most of all from some wonderful notes of Drew Sutherland.

I taught a course, Math 8400, from these notes at the University of Georgia in
Fall 2022. I thank the hardy students who took the course for their engagement
with this approach, which is far from the simplest possible but seems to offer more
conceptual insight.
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CHAPTER 1

Some Background Algebra

In these notes all rings are commutative with 1. All modules are left modules.

In this first chapter we review some key definitions and results from commuta-
tive algebra. Sufficiently short and enlightening proofs will be given, but the text
[CA] provides a common reference for all of this material.

1. Chinese Remainder Theorem

Two ideals I and J in a ring R are comaximal if no proper ideal of R contains
both of them: equivalently, the ideal I + J = R. A set of ideals is called pairwise
comaximal if any two distinct ideals in the set are comaximal.

Theorem 1.1 (Chinese Remainder Theorem). Let I1, . . . , Ir be pairwise co-
maximal ideals in a ring R. Then:

a) We have I1 · · · Ir =
⋂r
i=1 Ii.

b) The natural map Φ : R →
∏r
i=1R/Ii is surjective, and thus – applying

part a) – we get an isomorphism

Φ : R/(I1 · · · Ir)
∼→

n∏
i=1

R/II .

Proof. This is [CA, Lemma 4.19 and Thm. 4.20]. �

2. Prime and Maximal Ideals; Krull Dimension

Recall that an ideal I of R is prime if I ( R and:

∀x, y ∈ R, xy ∈ I ⇐⇒ x ∈ I or y ∈ I.
Equivalently, I is prime if and only if R/I is a domain.

For a ring R, we denote by SpecR the set of prime ideals of R. It is partially
ordered under inclusion. It also carries a natural topology, the Zariski topology
[CA, Chapter13], but we will have no need of that in these notes. A maximal
ideal is defined to be an ideal that is maximal among all proper ideals of R. An
ideal I is maximal if and only if R/I is a field, so it follows that maximal ideals are
prime and moreover the maximal ideals are the maximal elements of SpecR. We
denote the partially ordered set of maximal ideals as MaxSpecR. Note though that
MaxSpecR is in general much less interesting than SpecR as a partially ordered
set : in MaxSpecR any two distinct elements are incomparable.

A standard Zorn’s Lemma argument shows that every proper ideal is contained
in at least one maximal ideal.

7



8 1. SOME BACKGROUND ALGEBRA

A ring R has finite Krull dimension if there is some number d such that for
every finite chain of prime ideals p0 ( p1 ( . . . ( p` we have ` ≤ d. In this case
the maximal length of such a chain is called the Krull dimension of R and de-
noted by dimR. If R does not have finite Krull dimension it is traditional to put
dimR =∞.1

Exercise 1.1.

a) Show that a field has Krull dimension 0.
b) Show that a finite ring has Krull dimension 0.
c) Show that Z has Krull dimension 1.
d) More generally, let R be a principal ideal domain (PID) that is not a field.

Show: dimR = 1.

3. Chain Conditions

Let (X,≤) be a partially ordered set. We say X satisfies the ascending chain
condition (ACC) if there is no infinite sequence {xn}∞n=1 of elements of X with
xn < xn+1 for all n ∈ Z+.

In a partially ordered set (X,≤), a maximal element if an element x ∈ X such
that for no element x′ in X do we have x < x′. Since X is only partially ordered,
this is not as strong as saying that for all x′ 6= x we have x′ < x: such an element
would be called a top element.2

Exercise 1.2. Show: a partially ordered set (X,≤) satisfies ACC if and only
if for every nonempty subset has a maximal element.

Although we already have a perfectly good name for this condition, it is helpful to
give it another one: a partially ordered set is Noetherian if it satisfies ACC.

Working in this level of generality it is clear that we ought to make a second,
“dual” definition. Namely, we say that a partially ordered subset satisfies the de-
scending chain condition (DCC) if there is no infinite sequence {xn}∞n=1 of
elements of X with xn > xn+1 for all n ∈ Z+.

Exercise 1.3. State and prove the analogue of Exercise 1.2 for the descending
chain condition (DCC).

Again we give a second name to this: a partially ordered set (X,≤) is Artinian if
it satisfies (DCC).

For any partially ordered set (X,≤) we can define the dual ordering ≤∗ in which
x ≤∗ y if and only if y ≤ x. Evidently a partially ordered set is Noetherian if and
only if its dual is Artinian, and a partially ordered set is Artinian if and only its
dual is Noetherian, so at this level of generality we really have “the same concept.”

1For a ring R, one could define the cardinal Krull dimension carddim(R) as the supremum

of the set of cardinalities of totally ordered subsets of SpecR: this is a cardinal number that may
be infinite. This definition is made for instance in [Cl17]. We will certainly not need it here.

2Some people say “maximum element” where we say “top element.” To me this seems terrible:
we change an adjective to the corresponding noun and the meaning changes. As Serge Lang once

said: the terminology should be functorial with respect to the ideas.
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However, in practice the two concepts separate themselves, as we will now see.

Let R be a commutative ring, and let M be an R-module. The set of all R-
submodules of M is a partially ordered set under inclusion. We say that M is a
Noetherian module if this partially ordered set is Noetherian: i.e., if there are
no infinite ascending chains of submodules.

Proposition 1.2. An R-module M is Noetherian iff every submodule of M is
finitely generated.

Exercise 1.4. Prove Proposition 1.2.

A ring R is Noetherian if R is a Noetherian R-module: in other words, if every
ideal of R is finitely generated. A ring R is Artinian if R is an Artinian R-module.

Proposition 1.3. Let R be a ring.

a) R is Noetherian iff every finitely generated R-module is Noetherian.
b) R is Artinian iff every finitely generated R-module is Artinian.

Proof. This is [CA, Exc. 8.4]. (It looks a little weird to refer to an exercise
as a proof, so let me note that the content here is [CA, Thm. 8.4] – which is proved
in the notes! – from which this follows very quickly.) �

So far Noetherian and Artinian still look like “dual” conditions on a ring, but that
is really not the case, as the following result shows.

Theorem 1.4 (Akizuki-Hopkins). For a ring R, the following are equivalent:

(i) R is Artinian.
(ii) R is Noetherian and dimR = 0.

Proof. See [CA, Thm. 8.35]. �

Thus the class of Artinian rings is a tiny subclass of the class of all Noetherian rings.

A ring R is local if it has a unique maximal ideal.

It is clear that every finite ring is Artinian: indeed, a finite ring is has only finitely
many ideals, and obviously finite sets are both Noetherian and Artinian. So for
instance Z/NZ is any Artinian ring. If we factor N = pa11 · · · parr then the ideals
(pa11 ), . . . , (parr ) of Z are pairwise comaximal, so the Chinese Remainder Theorem
gives an isomorphism

Z/NZ ∼→
r∏
i=1

Z/paii Z.

Each ring Z/paii Z is finite local, with maximal ideal generated by the class of p.
In fact this kind of CRT decomposition extends to all Artinian rings:

Theorem 1.5. Every Artinian ring is a finite product of local Artinian rings.
Thus an Artinian ring has finitely many prime ideals, all of which are maximal.

Proof. This is [CA, Thm. 8.37]. �
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4. Prime Avoidance

Lemma 1.6 (Prime Avoidance). Let R be a ring, and let I1, . . . , In, J be ideals
of R. Suppose that all but at most two3 of the Ii’s are prime ideals and that J ⊆⋃n
i=1 Ii. Then J ⊆ Ii for some i.

Proof. This is [CA, Lemma 8.51]. �

5. Annihilators

Let M be an R-module, and let m ∈M . The annihilator of m is

ann(m) := {x ∈ R | xm = 0}.

This is an ideal of R. If R is a domain, we say an R-module M is torsionfree if
for all m ∈M• := M \ {0} we have ann(m) = 0.

More generally, if S is any subset of M then we can define

ann(S) := {x ∈ R | xm = 0 ∀x ∈ S}.

In fact we have

ann(S) =
⋂
m∈S

ann(m),

so ann(S) is also an ideal of R.

Exercise 1.5. Let M be an R-module, let S ⊆ M be a subset, and let 〈S〉R
denote the R-submodule generated by S. Show:

annS = ann〈S〉R.

The extreme case is annM , the set of elements x ∈ R such that x acts on M as
the zero endomorphism. A module M is called faithful if annM = 0.

Exercise 1.6. Show that every R-module M is, in a canonical way, a faithful
R/ ann(M)-module.

An R-module M is cyclic if it can be generated by a single element.

Exercise 1.7. Let M be a cyclic R-module. Show:

M ∼= R/ ann(M).

An R-module M is simple if it is not the zero module and it has no nonzero proper
submodules.

Exercise 1.8. Let M be a simple R-module. Show: there is a unique maximal
ideal m of R such that M ∼= R/m.

3That one or two of the ideals Ii are allowed not to be prime is what the proof gives. But I
know of no application of this extra generality, and it seems easier to remember the result under

the hypothesis that every Ii is a prime ideal.
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6. Jordan-Hölder Series

Recall that a Jordan-Hölder series for a finite group is a finite chain of subgroups,
each normal in the next, with simple successive quotients. The simple quotients
are called Jordan-Hölder factors, and we count them with multiplicity. For
instance, the Jordan-Hölder factors of Z/pa11 · · · parr Z are Z/p1Z, . . . ,Z/prZ, with
multiplicities a1, . . . , ar.

Much the same holds for modules. A Jordan-Hölder series for an R-module
M is a finite chain of R-submodules, each of whose successive quotients is a simple
R-module. A module admits a Jordan-Hölder series iff it is both Noetherian and
Artinian [CA, Thm. 8.14]. (Thus for instance a module over an Artinian ring
admits a Jordan-Hölder series iff it is finitely generated.) Such modules are said
to be of finite length. The Jordan-Hölder Theorem still holds here: in any two
Jordan-Hölder series for the same finite length module, the same simple modules
(up to isomorphism, of course) appear, with the same multiplicities. Again we call
these the Jordan-Hölder factors. In particular the number of Jordan-Hölder fac-
tors – equivalently, the length of any Jordan-Hölder series – is an invariant of the
module, which is called its length.

7. Projective Modules

Theorem 1.7. For an R-module P , the following are equivalent:

(i) There is an R-module Q such that P ⊕Q is free.
(ii) If π : M → N is a surjection of R-modules and ϕ : P → N is an R-module

map, then there is a “lift” of ϕ to Φ : P →M : that is, ϕ = π ◦ Φ.
(iii) The functor Hom(P, ·) is eaxct.
(iv) Each short exact sequence of R-modules terminating at P – that is:

0→ N →M
q→ P → 0

splits: there is an R-module map σ : P → M such that q ◦ σ = 1P . This
gives an internal direct sum decomposition M = N ⊕ σ(P ).

A module satisfying these equivalent conditions is called projective.

For an R-module M , we put M∨ := HomR(M,R); this is again an R-module.

Theorem 1.8. For an R-module A, the following are equivalent:

(i) A is finitely generated projective.
(ii) For all R-modules B, the natural map

Φ : A∨ ⊗R B → HomR(A,B)

induced by (f, b) 7→ (a 7→ f(a)b) is an isomorphism.

Proof. This is [CA, Thm. 7.32]. �

Exercise 1.9.

a) Show: if M ∼= Rn for some n ∈ Z+, then also M∨ ∼= Rn.
b) Show: if P is finitely generated projective, so is P∨.

If R is a domain with fraction field K, then to a finitely generated projective module
P we can attach a rank:

rk(P ) := dimK(P ⊗R K).
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(Weonly speak of the rank for finitely generated projective modules, so when we
say “P has rank n” then it is understood that P is finitely generated.) If it helps
you to hear this, we can think geometrically of P as a vector bundle on SpecR
and the rank is, well, the rank of the vector bundle, i.e., the common dimension of
the fibers. In particular we can think of rank 1 projective modules as line bundles.

Exercise 1.10. Let R be a domain, and let I be a nonzero ideal of R.

a) Show: I is principal iff I is a free R-module iff I ∼=R R.
b) Show: if I is projective, then it has rank 1.

Still in the case that R is a domain, it is easy to see that for two finitely generated
projective modules P1 and P2 we have

rk(P1 ⊕ P2) = rkP1 + rkP2, rk(P1 ⊗R P1) = (rkP1)(rkP2).

Thus the tensor product of two rank one projective modules is another rank 1
projective module. Thus ⊗R gives a binary operation on isomorphism classes of
rank one projective R-modules. Since P ⊗RR = P , the free rank 1 R-module – i.e.,
R – gives an identity for this operation. If we believe the analogy between rank 1
projective modules and line bundles, we should expect that there are also inverses:
i.e., for every rank one projective R-module P , there i rank 1 projective R-module
P ′ such that P ⊗R P ′ ∼= R. f

I claim that P∨ serves this role: for any rank 1 projective R-module P , we have
P ⊗R P∨ ∼= R. To see this, the first step is to apply Theorem 1.8: we get

P∨ ⊗R P ∼= HomR(P, P ) = EndR(P ).

It remains to show that if P is rank 1 projective, then EndR(P ) ∼= R. This is true
if R is free. We will deduce the general case using localization...as we now discuss.

8. Localization

8.1. Localization of Rings. The concept of localization of a commutative
ring stems from the construction of the field of fractions of a domain. Namely we
formally introduce ordered pairs (a, b) of elements of R with b ∈ R•, and we form
the fraction field by imposing the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ ad = bc

and checking that the familiar formulas for addition and multiplication of fractions

(a1, b1) + (a2, b2) :=
a1b2 + b1a2

b1b2
, (a1, b1) · (a2, b2) :=

a1a2

b1b2

are well-defined on equivalence classes. The ring F that we get is certainly a field,
because when a1 6= 0, the inverse of (a1, b1) is (b1, a1). Moreover we have R ↪→ F
via a 7→ (a, 1). Of course we write a

b for the equivalence class of (a, b).

More generally, for a domain R it makes sense to invert some but not all elements
of R \ {0}. To do this, we can just take any subset B \ R• and form R[ 1

b | b ∈ B],
the subring of F generated by r and the inverses of elements of B. However, it
is to our advantage to be a bit more careful: e.g. if R = Z and B = {2, 3}, then
the subring Z[ 1

2 ,
1
3 ] can be described more precisely as { a

2b13b2
| a ∈ Z, b1, b2 ∈ N}.

Because the units in any ring form a group, if we invert 2 and invert 3 we must also
invert 2b13b2 . This leads us to the idea of a multiplicative subset S ⊂ R: this
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is a subset containing 1 and closed under multiplication: SS ⊂ S. If we start with
such a set, then indeed

R

[
1

s
| s ∈ S

]
=

{
a

s
| a ∈ R, s ∈ S

}
,

while if we start with an arbitrary subset B ⊆ R• as above, then we can take SB to
be the submonoid of R• generated by B – i.e., the set consisting of 1 and all finite
products of elements of B – and then

R

[
1

b
| b ∈ B

]
= R

[
1

s
| s ∈ SB

]
=

{
a

s
| s ∈ S

}
.

If for an arbitrary ring R we performed this construction with S a multiplicative
subset of nonzerodivisors of R – i.e., elements r ∈ R with ann r = 0 – then every-
thing holds as above. In particular, if we take R◦ to be the set of nonzerodivisors
of R, then this is the largest such multiplicatively closed subset, and the ring that
we get in this way is called the total fraction ring of R. When we move on to
inverting zero-divisors, things get one step more complicated: one would like to
define S−1R as the set of ordered pairs (a, s) with a ∈ R and s ∈ S, with

(a1, s1) ∼ (a2, s2) ⇐⇒ s2a1 = s1a2.

However it turns out that this need not be an equivalence relation!

Exercise 1.11. Find a commutative ring R and a multiplicative subset S ⊂ R
such that the relation ∼ on R × S defined by (a1, s1) ∼ (a2, s2) ⇐⇒ s2a1 = s1a2

is not an equivalence relation.

To fix this, we put

(a1, s1) ∼ (a2, s2) ⇐⇒ ∃s ∈ S such that ss2a1 = ss1a2.

(If no element of S is a zero divisor, then ss2a1 = ss1a2 ⇐⇒ s2a1 = s1a2, so this
definition is equivalent to the old one.)

Exercise 1.12. Let R be a ring, and let S be a multiplicative subset.

a) Define a relation ∼ on R× S as above:

(a1, s1) ∼ (a2, s2) ⇐⇒ ∃s ∈ S | ss2a1 = ss1a2.

Show: this is an equivalence relation.
b) Show: + and · are well-defined on equivalence classes, which makes the

set of equivalence classes into a commutative ring, denoted S−1R.
c) Show: S−1R is the zero ring (i.e., with one element 0 = 1) if and only if

0 ∈ S.
(Because of this, the case in which 0 ∈ S is often tacitly excluded.)

d) Show: there is a ring homomorphism ι : R → S−1R defined by a 7→ a
1

:=
[(a, 1)]. Also show: the kernel of ι is the set of elements r of R whose
annihilator meets S: ann(r) ∩ S 6= ∅.

e) Show: ι is surjective if and only if S ⊆ R×, in which case ι is an isomor-
phism.

Exercise 1.13 (Universal Property of Localization). Let S be a multiplicative
subset of a ring R. Show that the homomorphism ι : R → S−1R is universal for
homomorphisms ϕ : R → T in which ϕ(S) ⊂ T×: that is, for any such homomor-
phism, there is a unique homomorphism Φ : S−1R→ T such that ϕ = Φ ◦ ι.
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Localization at a prime ideal: Let I be an ideal of a ring R. Then I is a multi-
plicative subset...but not an interesting one: since 0 ∈ I, the localization I−1R is
the zero ring. Notice however that the complement R \ I is a multiplicative subset
if and only if I is a prime ideal. Thus for p ∈ SpecR, we define the localization
of R at p as

Rp := (R \ p)−1R.

We claim that Rp is a local ring. We will deduce this from some more general
recalled spectral properties of the localization map ι : R→ S−1R.

For any ring homomorphism f : A→ B, we may use f to “push forward” ideals of
A to get ideals of B: for an ideal I of A, we put

f∗(I) := IB = 〈f(i) | i ∈ I〉B .

We may also use f to “pull back” ideals of B to get ideals of A: for an ideal J of
B, we put

f∗(J) := f−1(J) = {x ∈ R | f(x) ∈ J}.

Exercise 1.14. If f : A→ B is a ring homomorphism and p is a prime ideal
of B, show that f∗(p) is a prime ideal of A. Thus we get an induced map

f∗ : SpecB → SpecA.

Lemma 1.9. Let ι : R→ S−1R be a localization map. Let I be an ideal of R.

a) We have ι∗(I) =
{
x
s ∈ S

−1R | x ∈ I and s ∈ S
}

.
b) The following are equivalent:

(i) We have I ∩ S = ∅.
(ii) We have ι∗(I) ( S−1R.

Proof. Part a) is [CA, Lemma 7.2]. Part b) is [CA, Lemma 7.4]. �

Proposition 1.10. Let S ⊂ R be multiplicatively closed, and let ι : R→ S−1R
be the localization map. If J is an ideal of S−1R, we have

J = ι∗ι
∗J.

Proof. This is [CA, Prop. 7.3]. �

Thus using ι∗, we may view the set of ideals of S−1R as a subset of the ideals of
R. It would be desirable to characterize the image of ι∗. Combining the last two
results, we see that the only proper ideals of R lying in the image of ι∗ are those
that are disjoint from S. If we restrict to prime ideals, this turns out to the only
condition:

Proposition 1.11. Let S ⊂ R be multiplicatively closed, and let ι : R→ S−1R
be the localization map.

a) If p ∈ SpecR is a prime ideal that is disjoint from S, then ι∗(p) is a prime
ideal of S−1R. Moreover we have

ι∗(ι∗p) = p.

b) The maps ι∗ and ι∗ give mutually inverse bijections from SpecS−1R to
the set of prime ideals of R that are disjoint from S.

Proof. This is [CA, Prop. 7.5] and [CA, Cor. 7.6]. �
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These considerations apply especially nicely to the case in which S = R \ p for
a prime ideal p of R. In this case, SpecRp consists of prime ideals q of R that
are disjoint from R \ p, i.e., such that q ⊂ p. Thus we find that Rp is a local
ring with unique maximal ideal pRp (often this is notationally shortened to just
p). Overall, to any commutative ring R we have attached a family of local rings
parametrized by the prime ideals of R. This is a useful construction, to say the least!

This example also shows that localization is “roughly dual” to taking quotients:
that is, let is try to compare a localization map

ι : R→ S−1R

to a quotient map attached to an ideal I of R:

q : R→ R/I.

Quotient maps also have the “pull-push property” – for all ideals J of R/I we have
q∗(q∗J) = J [CA, §1.5]. Moreover, under ι∗ the ideals of R/I correspond bijec-
tively to the ideals of R that contain I. Thus whereas quotienting by an arbitrary
ideal I “cuts off the lattice of ideals of R below I,” making I the smallest element
of the new lattice, localizing at a prime ideal p “cuts off the lattice of prime ideals
of R above p,” making p the largest element of the new lattice. The analogy is not
perfect, but it seems close enough to be helpful.

There is also a useful compatibility between quotients and localization:

Lemma 1.12. Let R be a ring, let S ⊂ R be a multiplicatively closed subset, and
let I be an ideal of R. Let q : R → R/I be the quotient map, and put S := q(S).
Then there is a canonical isomorphism

S−1R/IS−1R ∼= S
−1
R/I.

Proof. This is [CA, Lemma 7.7]. �

Exercise 1.15. Let m be a maximal ideal in a ring R.

a) Use the universal property of localization to show that the quotient map
q : R→ R/m factors through the localization map ι : R→ Rm: i.e., there
is a unique ring homomorphism α : Rm → R/m such that q = α ◦ ι.

b) Show: Ker(α) = mRm. Deduce that α induces an isomorphism

Rm/mRm
∼→ R/m.

c) Show: For all a ∈ Z+ we have a canonical isomorphism

Rm/(mRm)a
∼→ R/ma.

Exercise 1.16 (Semilocalization). Let p1, . . . , pr be prime ideals in a ring R,
none containing any of the others. Let

S :=

r⋂
i=1

(R \ pi).

a) Show: S is a multiplicatively closed subset. We define the semilocaliza-
tion of R at p1, . . . , pr as

Rp1,...,pr
:= S−1R.
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b) Show: under the identification of SpecS−1R with the elements of SpecR
that are disjoint from S, we have

MaxSpecRp1,...,pr = {p1, . . . , pr}.

Suggestion: use Prime Avoidance (Lemma 1.6).

8.2. Localization of Modules. Let S ⊂ R be a multiplicative subset. To an
R-module M , we want to define an S−1R-module S−1M and a homomorphism of
R-modules ιM : M → S−1M . In order to define these maps, the minor complica-
tion is that there are two perfectly good contructions that present themselves:

• We observe that the localization construction makes sense on M just as well
as on R: i.e., we take the quotient of M × S under the equivalence relation
(m1, s1) ∼ (m2, s2) if there is s ∈ S such that ss2m1 = ss1m2.

• Or we could put S−1M := S−1R⊗RM .

In order to check that both of these constructions work, perhaps the cleanest ap-
proach is to identify the following desired properties of S−1M and ιM : S−1M
should be an R-module on which each element of s acts bijectively, and among all
R-module maps f : M → N for which N is an R-module on which each element of
S acts bijectively, ιM : M → S−1M should be the universal such map: i.e., there
should be a unique R-module homomorphism F : S−1M → N such that f = F ◦ιM .
As usual, this determines ιM up to a unique isomorphism. So it suffices to check
that both of the above constructions satisfy this universal mapping property. We
leave this as an exercise.

Here is a closely related remark: an R-module M can be endowed with the struc-
ture of an S−1R-module compatibly with its R-module structure if and only if each
s ∈ S acts bijectively on M , in which case this S−1R-module structure is unique:
indeed, we can and must define x

s as s−1 ◦ x (where s−1 denotes the inverse of
s as an endomorphism of M). Thus for instance a Q-vector space is precisely a
commutative group in which mutiplication by n is bijective for all n ∈ Z \ {0}.
By the way, this is also analogous to the case of quotients: for an ideal I of R,
an R-module M can be given the compatible structure of an R/I-module if and
only if each element of I acts on M as the zero endomorphism, in which case the
compatible R/I-module structure is unique.

Exercise 1.17. Let S ⊂ R be a multiplicatively closed subset. Show: the kernel
of ιM : M → S−1M is the set of m ∈M such that ann(m) ∩ S 6= ∅.

Exercise 1.18. Let R be a domain, with fraction field K, and let M be an
R-module.

a) Let R be a domain with fraction field K. Let M be an R-module. show:

Ker(M →M ⊗K) = M [tors].

b) Suppose that M is finitely generated. Show: the following are equivalent:
(i) M is torsionfree.

(ii) M embeds in a finitely generated free module.
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8.3. Local Properties.

Proposition 1.13. Let f : M → N be a homomorphism of R-modules. Then
f is injective (resp. surjective, resp. bijective) if and only if fm : Mm → Nm is
injective (resp. surjective, resp. bijective) for all m ∈ MaxSpecR.

Proof. This is [CA, Prop. 7.14]. �

Exercise 1.19. Show that containment of submodules is a local property: if
N1 and N2 are submodules of an R-module M , then we have N1 ⊆ N2 if and only
if (N1)m ⊆ (N2)m for all m ∈ MaxSpecR.
(Hint: N1 ( N2 if and only if the inclusion map N1 ∩N2 → N1 is surjective.

Proposition 1.14. Let R be a domain with fraction field K, let V be a finite-
dimensional K-vector space, and let Λ be a finitely generated R-submodule of V .
Then inside V we have ⋂

m∈MaxSpecR

Λm = Λ.

Proof. This is [CA, Thm. 7.16]. �

8.4. Localization and Projective Modules. One of the most important
properties that is not local is being freeness of modules. This is highly relevant to
us, because a nonzero ideal I in a domain R is principal if and only if it is free, in
which case it is free of rank 1. We cannot check locally whether ideals are principal:
as we will soon see, in any Dedekind domain that is not a PID, every ideal is locally
free but not every ideal is free. However, what we can check locally is projectivity,
at least with some fine print.

Theorem 1.15. Let R be a ring. Suppose that R is either Noetherian or a
domain. Let M be a finitely generated R-module. The following are equivalent:

(i) M is projective.
(ii) M is locally free: Mm is free for all m ∈ MaxSpecR.

Proof. When R is Noetherian this follows from [CA, Thm. 7.29]. When R
is a domain this follows from [CA, Cor. 13.36]. �

Corollary 1.16. For a domain R and a rank 1 projective module P , we have
EndR(P ) ∼= R.

Proof. For any R-module M , we have a homomorphism of R-modules f :
R→ EndR(M). By Proposition 1.13, we have that f : P → EndR(P ) is a bijection
if and only if fm : Rm → EndR(P )⊗ Rm = EndRm

(Mm), so we are reduced to the
case in which R is a local ring. But then by Theorem 1.15 we have that M ∼= R,
and as mentioned before we certainly have EndR(R) = R. �

Thus we have shown that for a domain R, isomorphism classes of rank 1 projective
R-modules form a group under ⊗. This group is called the Picard group of R
and denoted PicR.

Digression: Over an arbitrary ring R, a finitely generated module M has a rank
function: for p ∈ SpecR, let kp := Rp/pRp. Then we put rkp(M) := dimkp M⊗Rkp.
This function is continuous, so is constant on the connected components of SpecR.
If R is a domain then SpecR is connected, so we get a constant function, and
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evaluating at p = (0) we get our previous definition of the rank. In general define a
rank 1 projective module to be a finitely generated projective module whose rank
function is constantly 1, and then once again PicR is the group of isomorphism
classes of rank 1 projective modules under ⊗.

In turn this is a special case of the Picard group of a locally ringed space....
However, since R is a domain we can give a more down-to-earth description of PicR
in terms of certain ideals of R. We do this next.

9. Fractional Ideals

Let R be a domain with fraction field K. A fractional ideal of R is a nonzero
R-submodule I of K for which there is a ∈ R• such that aI ⊆ R (equivalently,
I ⊆ 1

aR). Then aI is a nonzero ideal of R, so a good way to think about a
fractional ideal is as a (nonzero) ideal divided by a (nonzero) principal ideal.

Remark 1.17. One can extend the notion of “fractional R-ideal” to commuta-
tive rings with zero divisors. First one replaces the fraction field K with the “total
fraction ring” of R, i.e., the localization at the set of all nonzerodivisors. Second,
instead of nonzero ideals one works with ideals containing a regular element: that
is, a nonzerodivisor. In principle this is the right level of generality. Maybe I will
do this in a future version of these notes, but for now I will restrict to domains.

Exercise 1.20. Let R be a domain with fraction field K.

a) Show: every finitely generated R-submodule of K is a fractional R-ideal.
b) Show that the following are equivalent:

(i) R is Noetherian.
(ii) Every fractional R-ideal is a finitely generated R-submodule of K.

We denote the set of all fractional R-ideals by Frac(R).

If I and J are fractional R-ideals, then all of following are also fractional R-ideals
[CA, Thm. 19.1]:

• I ∩ J .
• I + J := {x+ y ∈ x ∈ I, y ∈ J} = 〈I, J〉R. • IJ := {

∑n
i=1 xiyj | xi ∈ I, yi ∈ J}.

• (I : J) := {x ∈ K | xJ ⊆ I}.

Exercise 1.21. Let R be a domain, and let S ⊂ R be a multiplicatively closed
subset. Let I and J be fractional R-ideals. Show:

a) S−1(I ∩ J) = (S−1I) ∩ (S−1J).
b) S−1(I + J) = S−1I + S−1J .
c) S−1(IJ) = (S−1I)(S−1J).
d) S−1(I : J) = (S−1I : S−1J).

Exercise 1.22. Let R be a domain, and let I and J be fractional R-ideals.
Show that the map

(I : J)→ HomR(J, I), x 7→ (y 7→ xy)

is an isomorphism of R-modules.

Exercise 1.23. Let R be a domain. For fractional R-ideals I and J , show that
the following are equivalent:
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(i) I and J are isomorphic as R-modules.
(ii) There is x ∈ K× such that J = (x)I.

Certainly we have RI = R for all I ∈ Frac(R), so Frac(R) forms a commutative
monoid under multiplication of ideals. A fractional ideal is invertible if it has an
inverse in this monoid: i.e., if there is another fractional ideal I ′ such that II ′ = R.
Thus FracR is a group if and only if every fractional R-ideal is invertible. When
does this happen? In the next chapter we will identify the class of domains for
which this holds.

Exercise 1.24. Let R be a domain, and let J be an invertible fractional R-
ideal. Show: for all I ∈ Frac(R) we have

(I : J) = IJ−1.

This provides some intuition for the colon ideal construction: when J is invertible,
(I : J) is literally I divided by J . But – intriguingly – this definition makes sense
even if J is not invertible. To follow up on this, for I ∈ Frac(R), we put

I∗ := (R : I).

Exercise 1.25. Let R be a domain, and let I ∈ Frac(R). Show: II∗ ⊆ R.

Now we have a very important lemma:

Lemma 1.18. Let R be a domain.

a) For a fractional R-ideal I, the following are equivalent:
(i) I is invertible.

(ii) We have II∗ = R.
b) (To contain is to divide) If I ⊆ J are fractional R-ideals with J in-

vertible, then
I = J(I : J).

Proof. This is [CA, Lemma 19.8]. (The proof is not at all difficult; I encour-
age you to read it.) �

Let ι : II∗ ↪→ R be the inclusion map, an injection of R-modules. Whether ι is
a bijection can be checked locally! It follows that invertibility of fractional ideals
can also be checked locally. There is one kind of fractional ideal that is rather
obviously invertible: namely, a fractional R-ideal is principal if it is monogenic as
an R-module: that is I = (a) := Ra for some a ∈ K×. Indeed, we have

(a)−1 = (a−1).

So it follows that a fractional ideal is invertible if it is locally principal. Since a
nonzero ideal in any domain is principal if and only if it is free if and only if it
is free of rank 1 as an R-module, we deduce from Theorem 1.15 that a finitely
generated fractional R-ideal is locally principal if and only if it is projective if and
only if it is projective of rank 1.

So finitely generated projective fractional ideals are invertible. It turns out that
the converse is also true, so we get:

Theorem 1.19. Let R be a domain, and let I be a fractional R-ideal. Then I
is invertible if and only if I is finitely generated projective.
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Proof. This is [CA, Thm. 19.11]. �

Thus over any domain, a fractional R-ideal is invertible if and only if it is finitely
generated projective as an R-module, in which case (by Exercise 1.10) it has rank 1.

Furthermore:

Theorem 1.20. Let R be a domain, and let I and J be invertible fractional
R-ideals.

a) Multiplication induces an isomorphism of R-modules I ⊗R J
∼→ IJ .

b) Let P be a rank 1 projective R-module. Then there is a fractional ideal I
of R such that M ∼=R I.

Proof. Part a) is [CA, Thm. 19.14]. Part b) is [CA, Thm. 19.16]. �

By Theorem 1.20, every rank 1 projective R-module is isomorphic to a fractional
ideal I. By Exercise 1.23 this ideal I is well-determined precisely up to multipli-
cation by a principal fractional ideal, so the set of isomorphism classes of rank 1
projective modules gets identified with the set of invertible ideal classes. To make
that last part more precise, we denote by Inv(R) the group of invertible fractional
R-ideals (this is the unit group of the commutative monoid Frac(R)). The principal
fractional R-ideals form a subgroup of Inv(R) that we denote Prin(R).

Now (but not for long!) we define the Cartier class group as the quotient

CaCl(R) := Inv(R)/Frac(R).

But the point is that we have named the same group twice: we have just explained
that the canonical map CaCl(R) → PicR that associates to every invertible ideal
class the isomorphism class of the underlying rank 1 projective module is an iso-
morphism, and by Theorem 1.20b) it is an isomorphism of groups.

This is an exciting result: the general trend in commutative algebra is to move
from the study of rings to the study of ideals to the study of modules. But here we
have managed to come back the other way: for any domain R, rank 1 projective
R-modules can be completely understood in terms of invertible fractional R-ideals.

Aside: we spoke of the Cartier class group of R rather than just the class group.
As you might surmise, there is another kind of class group. If R is a Noether-
ian integrally closed domain, then there is a divisor class group denoted Cl(R):
see [CA, §19.4] for one possible definition. There is a canonical injective group
homomorphism

PicR ↪→ Cl(R)

that can fail to be surjective: in algebraic geometry this corresponds to the fact
that every Cartier (= locally principal) divisor is a Weil divisor, but not necessar-
ily conversely. These two groups however do coincide whenever we have that Rm

is a UFD for all m ∈ MaxSpecR. In turn this happens whenever R is a regular ring.

In our course we are only interested in one-dimensional Noetherian domains, in
which case as mentioned before, integrally closed is the same as regular, so we
only have one kind of class group. Nevertheless the notion of a Weil divisor in a
Dedekind domain is indeed a familiar and important one: it is a finite formal Z-
linear combination of height 1 (= maximal, here) prime ideals. Thus Weil divisors
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correspond to fractional ideals and “every Weil divisor is Cartier” is a fancy way of
saying that all fractional ideals are invertible.

We will also be interested in one-dimensional Noetherian domains that are not
integrally closed, especially in the case of non-maximal orders O in a number field.
In this case the Picard group PicO is still meaningful and important, but its non-
triviality is no longer the sole obtruction to O being a PID.

10. Integral Extensions

10.1. Basic Properties. Let A ⊂ B be a ring extension. We may also write
“let B/A be a ring extension.”

Exercise 1.26. Let B/A be a ring extension. Show: B is a faithful A-module.

An element α ∈ B is integral over A if there are a0, . . . , an−1 ∈ A such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0.

In other words, α ∈ B is integral over A if there is a monic polynomial P ∈ A[t]
such that P (α) = 0.

Theorem 1.21. Let B/A be a ring extension. For α ∈ B, the following are
equivalent:

(i) α is integral over A.
(ii) A[α] is a finitely generated A-module.
(iii) There is an intermediate ring A ⊂ C ⊂ B such that α ∈ C and C is

finitely generated as an A-module.
(iv) There is a faithful A[α]-submodule of C that is finitely generated as an

A-module.

Proof. This is [CA, Thm. 14.1]. �

We say a ring extension B/A is integral if every element of B is integral over A.
Notice that a field extension is integral if and only if it is algebraic.

Lemma 1.22. Let A ⊂ B ⊂ C be a tower of rings.

a) If B is a finitely generated A-module and C is a finitely generated B-
module, then C is a finitely generated A-module: indeed, if {βi}mi=1 gen-
erates B as an A-module and {γj}nj=1 generates C as a B-module, then
{αiβj}1≤i≤m, 1≤j≤n generates C as an A-module.

b) If B is integral over A and C is integral over B, then C is integral over
A.

Proof. a) This is [CA, Lemma 14.4]. b) This is [CA, Lemma 14.3]. �

A good intuition for integral extensions B/A is that they are the ring extensions
of A that are “locally finitely generated as A-modules.” The following result shows
that under integrality, the weaker finiteness condition of being finitely generated
as an A-algebra is equivalent to the stronger finiteness condition of being finitely
generated as an A-module.

Corollary 1.23. Let B/A be a ring extension.

a) If B is finitely generated as an A-module, then B is integral over A.
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b) If B is integral over A and finitely generated as an A-algebra, then it is
finitely generated as an A-module.

Proof. (i) =⇒ (ii): If B is finitely generated as an A-module, let α ∈ B.
Condition (iii) of Theorem 1.21 applies with C = B, so α is integral over A.
(ii) =⇒ (i): Since B is finitely generated as an A-algebra, we may write B =
A[α1, . . . , αn]. Since α1 is integral over A, by Theorem 1.21, A[α1] is finitely gen-
erated as an A-module. Since α2 is integral over A, it is also integral over A[α1],
so A[α1, α2] is finitely generated as an A[α1]-module. By Lemma 1.22a), A[α1, α2]
is finitely generated as an A-module. Continuing in this manner, we get that
A[α1, . . . , αn] is finitely generated as an A-module. �

10.2. Integral Extensions of Domains. If B/A is a ring extension, then
the integral closure of A in B is the set of all elements of B that are integral
over A. We will denote this by IB(A). It is a subring of B [CA, Cor. 14.6].

Proposition 1.24. Let A ⊂ B be domains, let K be the fraction field of A and
let L be the fraction field of B.

a) The fraction field of IB(A) is IL(K).
b) In particular, if L/K is an algebraic extension, then the fraction field of

IB(A) is L.

Proof. a) This is [CA, Prop. 14.10]. b) If L/K is algebraic, then IL(K) = L,
so this follows from part a). �

Exercise 1.27. Let A be a domain with fraction field K, let L/K be an al-
gebraic field extension, and let B be the integral closure of A in L. Show: for all
α ∈ L, there is a ∈ A• such that aα ∈ B.

The following result tells us that localization commutes with integral closure.

Theorem 1.25. Let B/A be an extension of domains, and let S ⊆ A be a
multiplicatively closed subset. Then

IS−1B(S−1A) = S−1IB(A).

Proof. This is [CA, Thm. 14.9]. �

If B/A is a ring extension, A is integrally closed in B is IB(A) = A: that is, if
every element of B that is integral over A arleady lies in A. If A is a domain with
fraction field K, we say that A is integrally closed if A is integrally closed in K.

Proposition 1.26. A unique factorization domain (UFD) is integrally closed.

Proof. Let A be a UFD with fraction field K, and let α ∈ K be integral over
A, so there are a0, . . . , an−1 ∈ A such that

αn + an−1α
n−1 + . . .+ α1x+ α0 = 0.

Certainly we may assume that x 6= 0. Then, since R is a UFD, we may write α = r
s

with r, s ∈ A• and with gcd(r, s) = 1. Substituting this in gives(r
s

)n
+ an−1

(r
s

)n−1

+ . . .+ a1

(r
s

)
+ a0 = 0,

and clearing denominators, we get

rn + aN−1sr
n−1 + . . .+ sn−1a1r + sna0 = 0.
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This shows that s | rn. If s is not a unit of A it is divisible by some prime element
p, and thus p | rn and then p | r, contradicting the coprimality of r and s. So
s ∈ R× and thus α = r

s ∈ A. �

Theorem 1.27. Let A be a domain with fraction field K. Let L/K be a field
extension, and let α ∈ L be integral over A. Let P ∈ K[t] be the minimal polynomial
of α.

a) We have P (t) ∈ IK(A)[t].
b) If A is integrally closed, then α is integral over A if and only if P ∈ A[t].

Proof. This is [CA, Thm. 14.18]. �

Theorem 1.28 (Local nature of integral closure). For a domain R, the follow-
ing are equivalent:

(i) R is integrally closed.
(ii) For all p ∈ SpecR, the ring Rp is integrally closed.
(iii) For all m ∈ MaxSpecR, the ring Rm is integrally closed.

Proof. This is [CA, Thm. 14.19]. �

10.3. Spectral Properties of Integral Extensions.

Theorem 1.29. Let ι : A ↪→ B be an integral ring extension. Then:

a) The pullback map ι∗ : SpecB → SpecA is surjective.
b) If I ( A is a proper ideal of A, then ι∗(I) ( B is a proper ideal of B.
c) For p ∈ SpecB, we have that p is maximal if and only if ι∗(p) is maximal.
d) The pullback map ι∗ : MaxSpecB → MaxSpecA is surjective.
e) We have dimA = dimB.

Proof. a) This is [CA, Thm. 14.13].
b) By Zorn’s Lemma, I is contained in a maximal ideal m of R. Since ι∗(I) ⊂ ι∗(m),
it suffices to show that ι∗(m) is a proper ideal of B. By part a) there is a prime
ideal P of B such that ι∗(P) = m. This means that P ∩A = m, so P is an ideal of
B containing m, so ι∗(m) ⊂ P ( B. c) This is [CA, Cor. 14.16].
d) Let m ∈ MaxSpecA. By part a), there is P ∈ SpecB such that ι∗(P) = m. By
part c), P is maximal.
e) This is [CA, Cor. 14.17]. �

If B/A is an integral extension and p is a prime ideal of A, then a prime ideal P of
B is said to lie over p if ι∗(P) = p, or in other words if P = p.

10.4. Normalization Theorem.

Theorem 1.30 (Normalization Theorem). Let A be an integrally closed Noe-
therian domain with fraction field K, let L/K be a finite degree separable field
extension, and let B be the integral closure of R in L. Then:

a) B is finitely generated as an A-module.
b) If A is a PID, then B ∼=A A

[L:K].

Proof. This is [CA, Thm. 18.1]. �

The proof of Theorem 1.30 given in [CA] is a classic algebraic number theory
argument: it involves traces, discriminants and so forth. We will give a (different,
but not that different) proof of Theorem 1.30 later on: see Theorem 4.21.
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10.5. The Ring of Integers of a Number Field. Let K be a number field,
i.e., a finite degree extension of Q, say of degree n. We denote by ZK the integral
closure of Z in K. By Theorem 1.30, ZK a free Z-module of rank n. Moreover ZK
is a Noetherian ring: indeed, since Z is Noetherian and ZK is finitely generated as
a Z-module, by Proposition 1.3 ZK is a Noetherian Z-module. This means that ZK
satisfies (ACC) on Z-submodules, so certainly it satisfies (ACC) on ZK-submodules.
Finally, by Theorem 1.29e), we have that dimZK = 1. In the next chapter we will
define a Dedekind domain to be a Noetherian, one-dimensional integrally closed
domain; thus ZK is a Dedekind domain.

The proof of Theorem 1.30 does not actually compute a Z-basis for ZK . In general
to do so is a nontrivial problem. We will present an algorithm for this later in the
course. For now, we treat the case of n = 2:

Every quadratic number field is of the form K = Q(
√
d) for a squarefree d ∈

Z \ {0, 1}. We will compute ZK . First, we observe that
√
d ∈ ZK : indeed

√
d sat-

isfies the monic polynomial t2 − d ∈ Z[t]. It follows that Z[
√
d] ⊂ ZK . Notice that

Z[
√
d] is itself a free Z-module generated by 1 and

√
d. So the only honest first guess

is that ZK = Z[
√
d]. It turns out that this may or may not be true, depending on d.

Indeed, an arbitrary element of K can be written as α = a + b
√
d with a, b ∈ Q.

Since (α− a)2 = db2, we have found the minimal polynomial of α: it is

P (t) = t2 − 2aα+ a2 − db2.
The ring Z is a PID, hence a UFD, hence integrally closed. So by Theorem 1.27b),
we get that α ∈ ZK if and only if P (t) ∈ Z[t], hence if and only if 2a, a2 − db2 ∈ Z.

Suppose first that a ∈ Z. Then we get that db2 ∈ Z. Since d is squarefree, this
happens if and only if b ∈ Z

Now suppose that 2a ∈ Z but a /∈ Z, so that a = c
2 with c an odd integer.

Then a2 − db2 = c2−4db2

4 ∈ Z, so there exists an integer e with c2 − 4db2 = 4e.
Such an e exists only if ord2(b) = −1 and d ≡ 1 (mod 4). We conclude that if

d ≡ 2, 3 (mod 4) ZK = Z[
√
d], whereas if d ≡ 1 (mod 4), ZK is the set of all

a+b
√
d where a, b are rational numbers which are either both integers or both half-

integers. A little thought shows that this latter case can be written more cleanly

as ZK = Z[ 1+
√
d

2 ].
In summary:

Theorem 1.31. Let d be a squarefree integer not equal to 0 or 1, and put
K = Q(

√
d). Then:

ZK =

Z[
√
d] d ≡ 2, 3 (mod 4)

Z
[

1+
√
d

2

]
d ≡ 1 (mod 4).

.



CHAPTER 2

Dedekind Domains

1. PIDs and DVRs

Let R be a PID: a domain that is not a field and for which each ideal is principal.
Let K be the fraction field of R.

Then R is certainly Noetherian: indeed, every ideal is generated by a single el-
ement. By Exercise 1.1 a PID has Krull dimension 1.

Moreover R is a unique factorization domain (UFD). This is a well-known un-
dergraduate level result that can be established e.g. by first establishing that the
gcd of any two elements can be expressed as a linear combination of those elements
and then proving “Euclid’s Lemma” that irreducible elements generate prime ideals.
Here is a slightly more sophisticated approach:

Theorem 2.1 (Kaplansky). For a Noetherian domain R, the following are
equivalent:

(i) R is a UFD.
(ii) Every height 1 prime of R is principal.

Proof. See [CA, Cor. 15.2]. �

The module theory of PIDs is also especially simple and pleasant.

Theorem 2.2. Let R be a PID. Let M be a finitely generated R-module, and
let N be any R-module.

a) M is isomorphic to a direct sum of cyclic R-modules.
b) M is torsionfree if and only if M is free.
c) The following are equivalent:

(i) N is free.
(ii) N is projective.
(iii) N is a submodule of a free module.

d) The following are equivalent:
(i) N is torsionfree.

(ii) N is flat.

Proof. a) This is [CA, Thm. 16.11]. b) This is [CA, Prop. 3.62].
c) Certainly (i) implies both (ii) and (iii). That (iii) =⇒ (i) is part of [CA, Thm.
3.60]. Suppose N is projective. If N is finitely generated, then finitely generated
projective implies finitely generated torsionfree implies finitely generated free, the
latter by part b). It is a general result of Bass that over any Noetherian domain
R (or more generally, any Noetherian ring R without nontrivial idempotents) that

25
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every infinitely generated projective module is free [CA, Thm. 6.11].
d) This is [CA, Cor. 3.96]. �

For a module over any domain R we have
free =⇒ projective =⇒ flat =⇒ torsionfree.

Theorem 2.2 says that all of these conditions coincide for finitely generated modules
over a PID. For infinitely generated modules we still have that free = projective and
flat = torsionfree, but these two classes remain distinct: e.g. the additive group of
(Q,+) is a torsionfree but not free Z-module. In fact:

Exercise 2.1. Let R be a domain that is not a field, with fraction field K.
Show: the R-module K is flat but not projective.

The Z-module (Q,+) is also not a direct sum of cyclic modules. In fact, by a result
of Cohen-Kaplansky, the rings R over which every R-module is a direct sum of
cyclic modules are precisely the principal Artinian rings.

All this is to say that PIDs are a truly wonderful class of rings. If you encounter a
ring R “in real life”, you would be delighted to learn that it is a PID, as this will
make whatever you are trying to do with it much easier. The only catch is that it
is usually difficult to show that a ring is a PID. (In a first course on the subject
you learn about Euclidean rings, a subclass of Euclidean rings, and a good way
to show that rings like Z and k[t] for a field k are PIDs is to show that they are
Euclidean. But this is highly unrepresentative: most of the time it is even harder
to show that a ring is Euclidean.) As I will now try to explain, the class of PIDs is
a “delicate” class of rings that is intermediate in size between two more “robust”
classes: namely discrete valuation rings and Dedekind domains.

Exercise 2.2. Let R be a PID, and let I be a nonzero fractional R-ideal. Show:
there are distinct p1, . . . , pr ∈ MaxSpecR and unique a1, . . . , ar ∈ Z such that

I = pa11 · · · parr .
Let p ∈ MaxSpecR. We use Exercise 2.2 to define a map vp : K× → Z: namely, for
each x ∈ K× we factor the fractional ideal (x) into products of primes and define
vp(x) to be the power of p that appears.

For any field K, a map v : K× → Z is a discrete valuation if:
(V0) There is x ∈ K× such that v(x) 6= 0,
(V1) For all x, y ∈ K×, we have v(xy) = v(x) + v(y), and
(V2) For all x, y ∈ K× with x+ y 6= 0, we have v(x+ y) ≥ max v(x), v(y).

We say that v is normalized if v(K×) = Z. By (V0) and (V1), a discrete valuation
is in particular a nontrivial group homomorphism K× → Z, so if it is not surjective
then its image is of the form eZ for some e ∈ Z+. Then 1

ev is a normalized discrete
valuation. So we don’t miss out on much by restricting to normalized valuations.

In this context it is convenient to extend v to all of K by formally putting v(0) =∞;
i.e., some element that is larger than every integer.

Exercise 2.3. Let R be a PID with fraction field K, and let p ∈ MaxSpecR.
Show: the map vp defined above is a normalized discrete valuation of K.
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Exercise 2.4. Let K be a field, and let v : K× → Z be a normalized discrete
valuation on K. Put

R := {x ∈ K× | v(x) ≥ 0} ∪ {0}.
a) Show that R is a domain with fraction field K.
b) Let π be an element of K with v(π) = 1. Show that R is a local PID with

maximal ideal m = (π).

Let S be a multiplicatively closed subset of our PID R. Then the localization S−1R
is a PID: indeed, for any localization map ι : R→ S−1R and any ideal J of S−1R
we have J = ι∗ι

∗J , so every ideal in a localization comes by pushing forward an
ideal of R. The pushforward of a principal ideal is principal.

Let’s consider the special case in which we localize at a nonzero prime ideal p = (π)
of R. Then Rp = (R \ p)−1R is a local PID. By Exercise 2.2, every nonzero frac-
tional ideal of K is of the form (πn) for a unique n ∈ Z. Indeed Rp is nothing else
than the valuation ring attached to the discrete valuation vp.

A discrete valuation ring (DVR) is a local PID. For a field K, it follows from
our discussion that there is a bijective correspondence between DVRs with fraction
field K and normalized discrete valuations on K. In fact, if R is a PID with fraction
field K, then the discrete valuation rings R̃ with R ⊆ R̃ ( K are precisely Rp for
p ∈ MaxSpecR.

In summary, a DVR is a local PID, so it is in particular an integrally closed Noe-
therian local domain of Krull dimension 1. It turns out though that all these other
conditions imply that ideals are principal. In fact, among Noetherian local domains
of Krull dimension 1, there are many equivalent “nice” conditions:

Theorem 2.3 (DVR Recognition Theorem). Let (R,m) be a one-dimensional
Noetherian local domain. The following are equivalent:

(i) R is a PID.
(ii) R is a UFD.
(iii) R is integrally closed.
(iv) m is principal.
(v) R is a regular local ring: dimR/m m/m2 = 1.

Proof. This is [CA, Thm. 17.21]. �

For those who are geometrically minded, the last condition is probably the key
one. We can view any one-dimensional Noetherian domain R as being a kind of
“generalized affine curve” (or rather, as the ring of functions on such a curve, but
there is a categorical equivalence here), and condition (v) at a maximal ideal p of
R is telling us that the curve is “nonsingular at p.” Thus all the other conditions
are necessary and sufficient for this nonsingularity in the one-dimensional case.
In particular being integrally closed is what geometers call “normal.” In general
normality is weaker than nonsingularity but they coincide in dimension 1. It is
an extremely important foundational fact that nonsingularity makes the maximal
ideal principal after localization.

This result provdes all-important motivation for us: it allows us to see that while
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PIDs are nice, in some sense the condition that ideals be “globally principal” is
more than we need in order to deduce most of the other facts about PIDs of this
section. Suppose instead that we consider the class of Noetherian domains R such
that Rm is a DVR for all m ∈ MaxSpecR. Such a domain must be one-dimensional:
since some Rm is not a field, R is not a field, and if there were a maximal ideal m of
height at least 2, then Rm would have dimension at least 2 so not be a DVR. But
here is a key point: by Theorem 1.28, in order for each Rm to be integrally closed,
it is necessary and sufficient for R itself to be integrally closed. So we have shown:

Theorem 2.4. For a Noetherian domain R, the following are equivalent:

(i) R is one-dimensional and integrally closed.
(ii) For all m ∈ MaxSpecR, the local ring Rm is a DVR.

2. Dedekind domains

Theorem 2.4 allows us to make the single most important definition of this text: a
ring R is a Dedekind domain if it is an integrally closed Noetherian domain of
Krull dimension 1.

Let R be a Dedekind domain, and let I be a fractional R-ideal. Then for all
p ∈ MaxSpecR we have that Ip := IRp is a fractional Rp-ideal. Since Rp is a DVR,
necessarily Ip is principal. Thus I is locally principal, hence projective, hence in-
vertible (cf. Theorem 1.19).

Actually this is a characteristic property of Dedekind domains:

Theorem 2.5. Let R be a domain. The following are equivalent:

(i) R is a Dedekind domain.
(ii) Every ideal of R is a projective module.1

(iii) Every fractional ideal of R is invertible.

Proof. (ii) ⇐⇒ (iii) was 1.19. We just showed (i) =⇒ (ii). For (iii) =⇒
(i) see [CA, Thm. 20.1]. �

Theorem 2.6. Let R be a Dedekind domain, and let I be a nonzero, proper
ideal of R. Then there are distinct p1, . . . , pr ∈ MaxSpecR and a1, . . . , ar ∈ Z+

such that I = pa11 · · · parr .

Proof. Of course, if an ideal factors into a product of not necessarily distinct
prime ideals, then just by grouping together instances of the same prime ideal we
get a “standard form factorization” as in the statement of the theorem.

Let S be the set of nonzero, proper ideals of R that do not factor into products
of primes, partially ordered under inclusion. We want to show that S is empty,
so seeking a contradiction we assume that it is nonempty. Then because R is
Noetherian there is a maximal element I ∈ S. Then I is contained in some maximal
ideal p of R. We just saw that all nonzero ideals are invertible, so “to contain is to
divide” (Lemma 1.18): we have I = pJ for some ideal J . Then J := p−1I strictly
contains I (the ideal I is invertible too; alternately, in any Noetherian domain, the

1A module is called hereditary if every submodule is projective. (Seems like “hereditarily
projective” would be better, no?) Thus Dedekind domains are precsiely the domains that are

hereditary rings: all ideals are projective.
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equality I = pI would violate the Krull Intersection Theorem), so there are prime
ideals q1, . . . , qs such that

p−1I = q1 · · · qs,
so

I = pq1 · · · qs,
and I is a product of prime ideals after all: contradiction. �

Exercise 2.5. Let R be a Dedekind domain.

a) Show that the factorization of an ideal into primes is unique: if we have
not necessarily distinct prime ideals p1, . . . , pr and q1, . . . , qs such that

p1 · · · pr = q1 · · · qs,
then there is a bijection σ : {1, . . . , r} → {1, . . . , s} such that for all 1 ≤
i ≤ r we have qσ(i) = pi.

b) Let I be a fractional R-ideal. Show that there is a unique function a :
MaxSpecR → Z such that a(p) = 0 for all but finitely many maximal
ideals p and I =

∏
p∈MaxSpecR pa(p). Show also that I is integral if and

only if a(p) ≥ 0 for all p ∈ MaxSpecR.

Exercise 2.6. Let R be a Dedekind domain with fraction field K.

a) Let p ∈ MaxSpecR. Define a function vp : K× → Z as follows: vp(x) is
the power to which p appears in the prime factorization of the fractional
ideal (x). Show: vp is a normalized discrete valuation on K. Show that
the corresponding valuation ring

{x ∈ K | vp(x) ≥ 0} ∪ {0}
is Rp.

b) Show:
⋂

p∈MaxSpecRRp = R.

Exercise 2.7. Let I, J be fractional ideals in a Dedekind domain R, and write

I =
∏

pap , J =
∏

pbp .

(Of course for all but finitely many p we have ap = bp = 0.)

a) Show: I + J =
∏

pmin ap,bp .
b) Show: IJ =

∏
p p

ap+bp .

c) Show: I ∩ J =
∏

p p
max ap,bp .

Exercise 2.8. Let I and J be fractional ideals in a Dedekind domain. We say
that I | J if JI−1 ⊆ R.

a) Show that the following are equivalent:
(i) I | J .
(ii) J ⊆ I.

(iii) For all p ∈ MaxSpecR we have vp(I) ≤ vp(J).
b) Show that the set FracR of fractional R-ideals, partially ordered by inclu-

sion, is a lattice, with the least upper bound (or “join”) of I and J being
I + J and the greatest lower bound (or “meet”) of I and J being I ∩ J .

c) Show: IJ = (I ∩ J)(I + J).

Again it turns out that the factorization of ideals into primes characterizes Dedekind
domains among all domains:
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Theorem 2.7 (Matusita, 1944). Let R be a domain in which every nonzero,
proper ideal is a product of prime ideals. Then R is a Dedekind domain.

Proof. This is [CA, Thm. 20.8]. �

3. Moving Lemma

For a fractional ideal I in a Dedekind domain, we define the support supp I
to be the set of maximal ideals p of R for which vp(I) 6= 0: this is a finite set.
We say that two fractional ideals I and J of R are coprime if their supports are
disjoint: in other words, no maximal ideal p appears with nonzero exponent in the
factorization of both I and J .

Lemma 2.8. Let R be a Dedekind domain, and let S = {p1, . . . , pn} be a finite
set of maximal ideals of R.

a) Let I be a fractional ideal of R. There is x ∈ I such that

(1) ∀1 ≤ i ≤ n, vpi
(x) = vpi

(I).

b) [Moving Lemma] Let a be a fractional ideal of R. Then there is an integral
ideal b of a with support disjoint from S lying in the same class as a.

Proof. a) Step 1: Suppose that I is an integral ideal. We may write

I = pa11 · · · parr qb11 · · · qbss
where the qj ’s are the maximal ideals containing I other than p1, . . . , pn and ai ≥ 0
for all i and bj ≥ 1 for all j. By the Chinese Remainder Theorem, the diagonal
ring homomorphism

R→
r∏
i=1

R/pai+1
i ×

s∏
j=1

R/q
bj+1
j

is surjective. From this it follows that there is x ∈ R such that

∀i, x ∈ paii \ p
ai+1
i and ∀j, x ∈ q

bj
j \ q

bj+1
j .

Equivalently, this element x satisfies

∀i, vpi
(x) = ai = vpi

(I) and ∀j, vqj
(x) = bj = vqj

(J).

This latter condition first of all ensures that x is an element of I and second of all
gives (1).
Step 2: Now suppose that I is a fractional ideal; we may write I = J

b for J an
integral ideal and b ∈ R•. By part a), there is x ∈ R• such that for every prime
divisor p of J we have ordp(x) = ordp(J), which once again ensures that x ∈ J .

Then the element x
b does what we want: it lies in J

b = I and

∀i, vpi(
x

b
) = vpi(x)− vpi(b) = vpi(J)− vpi(b) = vpi(J).

b) Applying part a) with I = a−1, there is x ∈ a−1 such that for all 1 ≤ i ≤≤ n we
have vpi(x) = vpi(a

−1). Then the fractional ideal a−1x−1 has support prime to S
and

a−1x−1 ⊇ a−1(a−1)−1 = R.

It follows that xa has support prime to S and is contained in R. �

Corollary 2.9. Let R be a Dedekind domain.

a) Exactly one of the following holds:
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(i) R is a PID.
(ii) R has infinitely many nonprincipal prime ideals.

b) If R is semilocal – i.e., MaxSpecR is finite – then R is a PID.

Proof. Let K be the fraction field of R.
a) Conditions (i) and (ii) are certainly mutually exclusive, so it suffices to assume
that there is a finite subset S ⊆ MaxSpecR such that every p ∈ (MaxSpecR) \ S
is principal and show that every fractional ideal of R is principal.

Let I be a fractional ideal of R. By Lemma 2.8b), there is x ∈ K• such that
the support of xI is disjoint from S. By assumption, this means that xI is of the
form

∏s
j=1 q

bi
j with each qj a principal prime ideal and bi ∈ Z. But this means that

xI = (y) is principal, so I = ( yx ) is principal.
b) This follows immediately from part a). �

Here are some further applications:

Proposition 2.10. Let I be a nonzero ideal in a Dedekind domain R. Then:

a) The ring R/I is a principal ring.
b) The ring R/I is Artinian. More precisely: if

I = pa11 · · · parr ,

then the ideals of R/I correspond bijectively to the ideals pb11 · · · pbrr of R
with 0 ≤ bi ≤ ai for all 1 ≤ i ≤ r. In particular, there are precisely∏r
i=1(ai + 1) ideals of R.

Proof. a) The ring R/I is also a quotient of the semilocalization Rp1,...,pr
,

which by Corollary 2.9 is a PID. Thus R/I is a quotient of a principal ring, hence
principal.
b) This follows immediately from the fact that the ideals of R containing I are

precisely pb11 · · · pbrr with 0 ≤ bi ≤ ai for all 1 ≤ i ≤ r. �

For r ∈ N, we say that a ring R has the r-generation property if every ideal of
R can be generated by at most r elements. We say that a ring R has the (r + ε)-
generation property if for every nonzero ideal I of R and every nonzero element
x ∈ I, then there are y1, . . . , yr ∈ R usch that I = 〈xy1, . . . , yr〉R.

Exercise 2.9. Let r ∈ Z≥0. Suppose that a ring R has the r-generation prop-
erty (resp. the (r + ε)-generation property). Show: every localization S−1R of R
has the r-generation property (resp. the (r + ε)-generation property).

Theorem 2.11 (Asano-Jensen). For a domain R, the following are equivalent:

(i) R is a Dedekind domain.
(ii) R has the (1 + ε)-generation property.

Proof. (i) =⇒ (ii): let I be a nonzero ideal of R, and let x ∈ I \ {0}. We
have a short exact sequence of R-modules

0→ (x)→ I → I/(x)→ 0.

By Proposition 2.10 the R-module I/(x) is cyclic; let y be any generator, and lift
it to y ∈ I. Then I = 〈x, y〉.
(ii) =⇒ (ii) Suppose R has the (1 + ε)-generation property. In particular every
ideal is finitely generated, so it is a Noetherian domain, so it suffices to show that
for each nonzero p ∈ SpecR we have that the localization Rp is a DVR. By the
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preceding exercise, Rp has the (1 + ε)-generation property. Let I be a nonzero,
proper ideal of Rp. Then p is generated by any nonzero element x ∈ Ip together
with some other element y ∈ p, so

p = Ip + yRp.

It follows that I + p = yRp + p, and by Nakayama’s Lemma we have I = bRp. So
Rp is a local PID, hence a DVR. �

4. Modules Over a Dedekind Domain

4.1. Structure Theory for Finitely Generated Modules.

Theorem 2.12. Let R be a Dedekind domain, and let M be a finitely generated
R-module. Then:

a) P := M/M [tors] is finitely generated projective, say of rank r.
b) (i) If r = 0, then M = M [tors].

(ii) If r ≥ 1 then there is a nonzero ideal I of R such that

M ∼= M [tors]⊕ P ∼= M [tors]⊕Rr−1 ⊕ I.
c) The class [I] of I in PicR is an isomorphism invariant of M . Thus for

each r ≥ 1, the set of isomorphism classes of rank r projective R-modules
is in bijection with PicR.

d) If M [tors] is nontrivial, then there are N,n1, . . . , nN ∈ Z+ and maximal
ideals p1, . . . , pN of R such that

M [tors] ∼=
N⊕
i=1

R/pni
i .

The proof of Theorem 2.12 is not especially difficult, but it is a bit lengthy. Let us
try to separate it out into steps:
Step 1: We show: each finitely generated torsion R-module is a direct sum of cyclic
modules with prime power annihilator.
Step 2: We show: each finitely generated torsionfree R-module P is projective.
Step 3: We show: each rank n projective module P is isomorphic to a direct sum
of rank 1 projective modules and thus to

⊕n
i=1 Ii for nonzero ideals I1, . . . , In of R.

Step 4: We show: for nonzero ideals I and J of R, we have I ⊕ J ∼= IJ .
Step 5: From Steps 3 and 4, it follows that if P is a rank n projective module then
P ∼= Rn−1 ⊕ I for some nonzero ideal I of R. Finally, we show: the class of I in
PicR depends only on the isomorphism class of P .

Step 1: Let M be a finitely generated torsion R-module. If M = 〈x1, . . . , xn〉
then annM =

⋂n
i=1 ann(xi) ⊇

∏n
i=1 ann(xi) ) (0), since in any domain the prod-

uct of nonzero ideals is nonzero. So we may write

annM = pa11 · · · parr
and thusM is an R/pa11 · · · par module. Since the homomorphism R→ R/pa11 · · · parr
factors through the semilocalization Rp1,...,pr

, M is also an Rp1,...,pr
-module. Since

MaxSpecRp1,...,pr = {p1, . . . , pr} is finite, by Corolalry 2.9 we have that Rp1,...,pr

is a PID. This allows us to completely reduce to the structure theory of finitely
generated torsion modules over a PID: M is isomorphic to a direct sum of cyclic
modules with prime power annihilator, i.e., to a direct sum of modules of the form
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Rp1,...,pr
/paii

∼= R/paii .

Step 2: Let P be a finitely generated torsionfree R-module. By Theorem 1.15, P
is projective if and only if it is locally free: for all p ∈ MaxSpecR we have that Pp

is a free Rp-module. But this is easy: for any domain R and multiplicative subset
S ⊂ R, if M is a finitely generated torsionfree R-module, then MS := M ⊗R S−1R
is a finitely generated torsionfree S−1R-module. So Pp is a finitely generated tor-
sionfree module over the local PID Rp...so Pp is free.

Step 2 allows us to establish the following important fact:

Proposition 2.13. Let R be a Dedekind domain with fraction field K. For a
finitely generated R-module M , the following are equivalent:

(i) M is projective.
(ii) There is a finite-dimensional K-vector space V and an injective R-module

map M ↪→ V .

Proof. (i) =⇒ (ii): If M is projective, then it is torsionfree, so the map
M ↪→ M ⊗R K is injective (see Exercise 1.18). Take V := M ⊗R K; then V is a
finite-dimensional K-vector space, and we have an injection M ↪→ V .
(ii) =⇒ (i): Since V is a K-module, it is an R-module on which each nonzero
element of R acts invertibly, hence a torsionfree R-module. Since we have an
injective R-module map M ↪→ V , we conclude that M is a finitely generated
torsionfree R-module, hence projective by Step 2 above. �

Step 3: Let P be a finitely generated projective R-module of rank r ≥ 1. Then
V := P ⊗R K is an r-dimensional K-vector space. Let λ : V → K be a surjective
K-linear map. Then Q := λ(P ) is a finitely generated R-submodule of K, hence
projective by Proposition 2.13, and clearly of rank 1. Let K be the kernel of
λ|P : P → K; then we have a short exact sequence of R-modules

0→ K → P → Q→ 0.

Because Q is projective, this sequence splits, and we have shown that P ∼= K ⊕Q.
It follows that K is projective of rank r−1, so an evident inductive argument allows
us to write P as a direct sum of r rank one projective modules.

Step 4: The proof here is less conceptual, and for now we will just cite the result:

Lemma 2.14. Let I1, . . . , In be fractional ideals in a Dedekind domain R. Then
the R-modules

⊕n
i=1 Ii and Rn−1 ⊕ I1 · · · In are isomorphic.

Proof. See [CA, Lemma 20.17]. �

Step 5: Finally, suppose that I and J are fractional ideals of a Dedekind domain
R. We want to show that for all n ≥ 1, if Rn ⊕ I ∼=R Rn ⊕ J , then I and J lie in
the same ideal class (the converse is immediate). Using Lemma 2.14 we have

Rn+1 ⊕R = Rn+2 ∼= (Rn ⊕ I)⊕ I−1 ∼= (Rn ⊕ J)⊕ I−1 ∼= Rn+1 ⊕ JI−1.

This means that JI−1 is a rank 1 projective module that is stably free: after
taking the direct sum with a finitely generated free module, it becomes isomorphic
to a finitely generated free module. By [CA, Prop. 7.17] we conclude that JI−1 is
free, i.e., principal, hence J and I lie in the same ideal class.
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This completes the proof of the structure theorem for finitely generated modules
over a Dedekind domain. To summarize: whereas a finitely generated module M
over a PID is classified up to isomorphism by a finite sequence of ideals (a1, . . . , ar)
– such that M [tors] ∼=

⊕r
i=1R/ai – together with a natural number r(M), its rank,

to classify a finitely generated module M over a Dedekind domain, one needs one
further invariant: we may write M/M [tors] ∼= Rr−1 ⊕ I, and then that invariant is
the class of I in PicR. We call this the Steinitz class St(M) of M . In particular:

Corollary 2.15. For a finitely generated module M over a Dedekind domain,
the following are equivalent:

(i) M is free.
(ii) M is torsionfree with trivial Steinitz class: St(M) = 0.

4.2. The Characteristic Ideal. Let R be a ring, and let M be a finite length
R-module. As discussed in Chapter 1, any two Jordan-Hölder series for M have
the same associated finite multiset of simple modules, and any simple R-module
is isomorphic to R/m for a unique m ∈ MaxSpecR, so the “invariant data on
M” obtained by considering Jordan-Hölder series is precisely a finite multiset of
maximal ideals m1, . . . ,mr (it is convenient to write it as a finite sequence, with the
understanding that the sequence is well-defined up to permutations of the terms).
From this data we define the characteristic ideal of M:

χ(M) := m1 · · ·mr.

Exercise 2.10. Let M be a finite length R-module.

a) Show: χ(M) annihilates M .
b) Deduce: M is an R/χ(M)-module. Show by example that M need not be

a faithful R/χ(M)-module.

Exercise 2.11. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
R-modules.

a) Show: M2 has finite length if and only if both M1 and M3 have finite
length.

b) If M2 has finite length, show: χ(M2) = χ(M1)χ(M3).

Exercise 2.12. Let R be a domain, and let M be an R-module.

a) Suppose that M has finite length. Show: M is finitely generated torsion.
b) Find a domain R and a finitely generated torsion R-module M that does

not have finite length.

For the rest of this section we again assume that R is a Dedekind domain.

Exercise 2.13. Let R be a Dedekind domain, and let M be an R-module.

a) Show: M has finite length if and only if M is finitely generated torsion.
b) Suppose M is finitely generated torsion. As we know, we may write

M ∼=
r⊕
i=1

R/Ii.

Show: χ(M) = I1 · · · Ir.
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How should we think of the characteristic ideal χ(M) of a finitely generated torsion
R-module M? By Exercise 2.10, we know that χ(M) ⊆ annM , but the inequality
may be strict. Indeed, if we write M ∼=

⊕r
i=1R/Ii, then whereas χ(M) = I1 · · · Ir,

we have annM = lcm I1 · · · Ir. It follows that every nonzero ideal of R is a charac-
teristic ideal, and a nonzero ideal I of R is the characteristic ideal of a unique (up
to isomorphism) module if and only if I is squarefree (a product of distinct primes).

To get a little more insight, let us consider two special cases:

Example 2.16.

a) Suppose R = Z. Then a Z-module M has finite length if and only if it is
finite. When this occurs, we have M ∼=

∏r
i=1 Z/niZ and then χ(M) is the

ideal generated by n1 · · ·nr = #M . Thus one interpretation of χ(M) is a
measure of the “size” of M . Like the cardinality of a finite Z-module, the
characteristic ideal is multiplicative on short exact sequences.

b) Let k be a field, let R = k[t] be the univariate polynomial ring, and let
M be an R-module. Then M is finitely generated torsion if and only if
it is finite-dimensional as a k-vector space. Suppose that M is finitely
generated torsion. After choosing a k-basis we may identify M with kn

for some n ∈ Z+, and the R-module structure is determined by the k-
linear map t•, which we may represent as a matrix m ∈ Mn(k). The
characteristic ideal χ(M) has a unique monic polynomial generator P (t),
which is nothing else than the characteristic polynomial det(t−m). (See
e.g. [Cl-IS, Thm. 9.2].) This should help to explain “characteristic ideal.”
That χ(M) annihilates M is a version of the Cayley-Hamilton Theorem.2

This example should serve to show that in general χ(M) is measuring
something more refined than the “size” of M , since in this case the k-
dimension n sems to be a purer measure of the size of M . In general,
the length `(M) is also measuring its size (in a different way from the k-
dimension). The following exercise formalizes the fact that χ(M) is “the
universal additive (on short exact sequences) invariant of M .

Exercise 2.14. Let R be a Dedekind domain. Show: mapping a finite length
R-module to its characteristic ideal induces an isomorphism from the Grothendieck
group of the category of finite length R-modules to the group FracR.

Exercise 2.15. Let R be a Dedekind domain, and let I ⊂ J be fractional
R-ideals. Show: J/I has finite length and

χ(J/I) = JI−1.

Exercise 2.16. Show that over a Dedekind domain R, the characteristic ideal
can be computed locally: let M be a finitely generated torsion R-module. For p ∈
MaxSpecR, let Mp := M ⊗R Rp.

a) Show: Mp is a finitely generated torsion Rp-module.
b) Since Rp is a DVR, we may write χ(Mp) as papRp for some ap ≥ 0.

Show: we have ap = 0 for all but finitely many p ∈ MaxSpecR, and

χ(M) =
∏

p∈MaxSpecR

pap .

2One could argue that in this approach to Cayley-Hamilton, most of the content resides in
showing the equivalence of our two descriptions of the characteristic polynomial.





CHAPTER 3

Quadratic Lattices over a Dedekind Domain

1. Lattices: Basic Definitions

Let R be a Dedekind domain with fraction field K, and let V be a finite-dimensional
K-vector space. An R-lattice in V is a finite-dimensional R-submodule Λ of V
that spans V as a K-vector space: the last condition is equivalent to the natural
map Λ ⊗R K → V being an isomorphism. By Proposition 2.13, every lattice Λ is
finitely generated projective, and conversely every rank r projective module Λ is a
lattice in Λ⊗R K.

Exercise 3.1. Show: R-lattices in K are precisely fractional ideals of K.

Our definition of lattice makes sense for any domain R, but for any domain R
that is not Dedekind (and not a field) there will be nonprojective lattices: indeed,
already in K itself, by the previous exercise. Over a more general domain, the
theory of R-lattices in K-vector spaces does not get very far without some further
assumptions on the underlying R-modules.

Let V be an n-dimensional K-vector space. Choose a K-basis (e1, . . . , en) and
let E := 〈e1, . . . , en〉R, a free R-lattice in V . We will call the lattice E standard.

This definition, I hope, feels slightly wrong: in what way is E actually distin-
guished from all other free lattices in V ? It isn’t, of course.1 What is happening is
a bit more subtle: to compare lattices with each other, it will help to compare to a
fixed lattice...any fixed lattice. So we fixed one.
Now let Λ be any R-lattice in V . Because Λ spans V as a K-vector space, it con-
tains some K-basis λ1, . . . , λn of V , and then each ei is a K-linear combination of
the λi’s. Clearing denominators, there is d ∈ R• such that for all 1 ≤ i ≤ n we
have that de1, . . . , den is an R-linear combination of the λi’s hence lies in Λ. On
the other hand, let x1, . . . , xN generate Λ as an R-module. We may write each xi
as a K-linear combination of e1, . . . , eN , and let D be the product of all the de-
nominators of the coefficients in each of these combinations. Thus we have shown
that there are d,D ∈ R• such that

(2) dE ⊆ Λ ⊆ 1

D
E .

Exercise 3.2. Let Λ1,Λ2 be R-lattices in V . Show: there is d ∈ R• such that

dΛ1 ⊆ Λ2 ⊆
1

d
Λ1.

1Moreover, the fact that E is free will not actually be used!

37
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2. Action of AutK(V ) on Lattices

Again let V be a finite-dimensionalK-vector space. The group AutK(V ) ofK-linear
automorphisms acts on the set of R-lattices in V . This is by no means surprising:
quite generally, if R is a ring and M is an R-module, then the group AutR(M) acts
on the set SubR(M) of R-submodules of M , just by g ·N := {gn | n ∈ N}. The map
g : N → gN is an R-module isomorphism. Since V is moreover a K-module and
K is the fraction field of R, every R-linear endomorphism of V is also a K-linear
endomorphism, so EndR(V ) = EndK(V ) and thus

AutR(V ) = EndR(V )× = EndK(V )× = AutK(V ).

Thus AutK(V ) acts on all R-submodules of V , and the action takes each submod-
ule to an isomorphic submodule, so finitely generated submodules get mapped to
finitely generated submodules.

As above, we choose a K-basis e1, . . . , en of K and consider the standard lattice
E := 〈x1, . . . , xn〉. This choice of basis allows us to identify AutK(V ) with GLn(K).

Proposition 3.1. Let V be a finite-dimensional K-vector space with K-basis
e1, . . . , en, and put E := 〈e1, . . . , en〉.

a) The orbit of GLn(K) on E is the set of all free R-lattices in V .
b) The stabilizer of E is GLn(R).
c) It follows that the set of free R-lattices in K is isomorphic as a GLn(K)-

set to GLn(K)/GLn(R).

Exercise 3.3. Prove Proposition 3.1.

This is a good description of the free R-lattices in V . What about the others? Here
is an important observation

Proposition 3.2. Let V be a (nontrivial) finite-dimensional K-vector space.
Then every R-lattice in V is free if and only if R is a PID.

Proof. Lattices are finitely generated torsionfree R-modules, so if R is a PID
they are all free. Conversely, suppose that R is not a PID, so there is a nonprincipal
ideal I. Choose a basis e1, . . . , en for V , and consider the lattice

Λ := Re1 ⊕Re2 . . .⊕ Ien ∼= Rn−1 ⊕ I.
Then the Steinitz class St(Λ) is [I], the class of I, which is nontrivial, so by Corollary
2.15 the lattice Λ is not free. �

Let Λ be any R-lattice in the n-dimensional K-vector space V . By Theorem 2.12,
there is an isomorphism

ϕ :

(
n−1⊕
i=1

R

)
⊕ I → Λ.

If we tensor with K we get an isomorphism

ϕK : Kn → V.

Let e1, . . . , en be the standard basis vectors for Kn, and let v1, . . . , vn be their im-
ages under ϕ. If I = (α) were principal, then v1, . . . , vn−1, αvn is a basis for Λ. If
I is not principal, then Λ has no basis, but we still get something rather close: Λ
is the direct sum of its submodules Rv1, . . . , Rvn−1, Ivn.



3. THE FRÖHLICH INVARIANT 39

From this we can deduce the following:

Corollary 3.3. Let V be a finite-dimensional K-vector space.

a) Let Λ1 and Λ2 be two R-lattices in V . Then Λ1 and Λ2 lie in the same
AutK(V )-orbit if and only if they have the same Steinitz class: St(Λ1) =
St(Λ2).

b) Thus the set of AutK(V )-orbits on lattices in V is naturally in bijection
with PicR.

Exercise 3.4. Let I be a fractional R-ideal, and let n ≥ 2. Find the subgroup
of GLn(K) that stabilizes the R-lattice Rn−1 ⊕ I in Kn.

The above considerations also serve to motivate the following definition: if Λ is
an R-lattice in an n-dimensional K-vector space, then a pseudobasis for Λ is a
K-basis x1, . . . , xn for which there are fractional R-ideals a1, . . . , an such that

Λ = a1x1 ⊕ . . .⊕ anxn.

Above we showed that every lattice has a pseudobasis of a very particular form.
But if we take the more permissive approach, we get analogues of the Hermite and
Smith normal forms:

Theorem 3.4. Let V be an n-dimensional K-vector space.

a) [Hermite Normal Form] Let y1, . . . , yn be a K-basis for V , and let Λ be
an R-lattice in V . Then there are x1, . . . , xn ∈ V and fractional R-ideals
a1, . . . , an such that

M = a1x1 ⊕ . . .⊕ anxn

and for all 1 ≤ j ≤ n, we have xj ∈ 〈y1, . . . , yj〉K .
b) [Smith Normal Form] Let Λ1 and Λ2 be R-lattices in V . There is a K-basis

x1, . . . , xn of V and fractional ideals a1, . . . , an, b1, . . . , bn such that

Λ1 = a1x1 ⊕ . . .⊕ anxn,

Λ2 = b1x1 ⊕ . . .⊕ bnxn.

If for all i we put di := aib
−1
i , then we may further require that d1 ⊆ . . . ⊆

dn, in which case the fractional ideals d1, . . . , dn are uniquely determined
by Λ1 and Λ2.

Proof. A future version of these notes will give a full proof. For now: a
complete proof of part b) (Smith Normal Form) can be found in [O’M, §81D].
Given this, a complete proof of part a) (Hermite Normal Form) can be found in
[Ch96]. Cohen’s article also takes an algorithmic approach that is very useful e.g.
in the case in which one wishes to do computations in number fields in the “relative
case”: i.e., when the bottom number field is not Q. �

3. The Fröhlich Invariant

Now to a pair of R-lattices Λ1, Λ2 in V we will associate a fractional R-ideal
χ(Λ2,Λ1). Suppose first that we have a containment Λ1 ⊆ Λ2 of R-lattices in V .
Since Λ2 ⊆ dΛ1 for some d ∈ R•, the quotient Λ2/Λ1 is a finitely generated torsion
R-module, hence it has a characteristic ideal χ(Λ2/Λ1).

In general we choose α ∈ R• such that αΛ1 ⊆ Λ2; we put

χ(Λ2,Λ1) := (α)−nχ(Λ2/αΛ1).
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Exercise 3.5.

a) Show that χ(Λ2,Λ1) is well-defined: it does not depend upon the choice of
α used to scale Λ1 inside Λ2.

(b) If χ(Λ2,Λ1) is an integral R-ideal, does it follow that Λ1 ⊆ Λ2?

Exercise 3.6. Let I and J be fractional R-ideals, viewed as lattices in the
one-dimensional R-vector space K. Show:

χ(I, J) = JI−1.

(Comment: One might have expected it to come out to be IJ−1 instead. The
inversion is however clearly present in the defintiion: e.g. if I ∈ IntR, then
χ(R, I) = χ(R/I) = I = IR−1.)

Exercise 3.7. Let Λ1 and Λ2 be R-lattices in the n-dimensional K-vector space
V . Then Smith Normal Form (Theorem 3.4b) supplies us with a K-basis x1, . . . , xn
and fractional ideals a1, . . . , an, b1, . . . , bn such that

Λ1 = a1x1 ⊕ . . .⊕ anxn,

Λ2 = b1x1 ⊕ . . .⊕ bnxn.

For 1 ≤ i ≤ n, put di := aib
−1
i . Show:

χ(Λ2,Λ1) = d1 · · · dn.

Proposition 3.5. Let Λ1,Λ2,Λ3 be R-lattices in the K-vector space V . Then:

a)

χ(Λ3,Λ1) = χ(Λ3,Λ2)χ(Λ2,Λ1).

b)

χ(Λ2,Λ1) = χ(Λ1,Λ2)−1.

Exercise 3.8. Prove Proposition 3.5.

Proposition 3.6. Let M ∈ AutK(V ) and let Λ be an R-lattice in V . Then:

χ(Λ,MΛ) = (detM).

Proof. Both sides can be computed locally, so we are reduced to the case in
which R is a DVR. We may therefore assume that Λ is free: let x1, . . . , xn be an
R-basis for Λ, which is also a K-basis for V , which we may use to represent M by
a matrix in GLn(K). One version of Smith Normal Form tells us that there are
matrices P,Q ∈ GLn(R) such that PMQ is diagonal. Since detP,detQ ∈ R×, we
have (detPMQ) = (detM). Moreover, since P and Q are bijective lienar maps we
have MΛ = PMQΛ. Thus we may assume that M is diagonal, say with diagonal
entries d1, . . . , dn ∈ K×. Choose α ∈ R• such that αdi ∈ R• for all i. Then αMΛ
is free with basis αd1x1, . . . , αdnxn, so M/(αMΛ) ∼=

⊕n
i=1R/ddiR. Therefore

χ(Λ, αMΛ) = ((αd1) · · · (αdn)) = (αn)(d1 · · · dn).

By definition of the Fröhlich inviarant, we have

χ(Λ,Mλ) = (α−n)χ(Λ, αMΛ) = (d1 · · · dn) = (detM). �
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4. The Local-Global Principle

Again we have a Dedekind domain R with fraction field K, a finite-dimensional
K-vector space V . After choosing a basis e1, . . . , en of V , we get a standard lattice

E := 〈e1, . . . , en〉R.

Let Λ be a lattice in V . For any multiplicatively closed subset S of R, the localiza-
tion Λ := S−1R is an S−1R-lattice in V . For each p ∈ MaxSpecR we put

Λp := Λ⊗R Rp,

an Rp-lattice in V . We have

Λ ⊂ Λp ⊂ V.
Each Λp is a simpler object than Λ: since Rp is a DVR, the Rp-module Λp is
free. So it is natural to ask to what exent we can study the “global” lattice Λ in
terms of the “package of local lattices” {Λp}p∈MaxSpecR. The answer is: completely!

First of all, as a special case of Proposition 1.14 we have

Λ =
⋂

p∈MaxSpecR

Λp.

This ensures that the mapping

L : Λ 7→ {Λp}p∈MaxSpecR

that sends a global lattice to its local package is injective. It remains to determine
the image of L.

When n = 1 and MaxSpecR is infinite, the map L is not surjective. Indeed,
when n = 1 a lattice is a fractional ideal I, and for each p outside the support
supp I we have Ip = Rp. Conversely, if for each p ∈ MaxSpecR we are given a
fractional Rp-ideal I(p) in such a way that I(p) = Rp for all but finitely many
p ∈ MaxSpecR, then there is a fractional R-ideal I such that

∀p ∈ MaxSpecR, IRp = I(p).

Indeed, we may write I(p) = (pRp)ap and our assumption is that ap = 0 for all but
finitely many p, so we may (and must!) take

I =
∏

p∈MaxSpecR

pap .

In order to generalize this to n ≥ 2 we use our standard lattice E , as follows:

Theorem 3.7 (Local-Global Principle for Lattices). With notation as above,
let {Λ(p)}p∈SpecR be a package of local lattices in V . The following are equivalent:

(i) For all but finitely many p ∈ MaxSpecR we have Λ(p) = Ep.
(ii) There is an R-lattice Λ in V such that Λp = Λ(p) for all p ∈ MaxSpecR.

When these conditions hold, the lattice Λ is uniquely determined: it is
⋂

p∈MaxSpecR Λ(p).

Proof. (ii) =⇒ (i) For any R-lattice Λ we have Λp = Ep for all but finitely
many p ∈ MaxSpecR. Indeed, by 2 there are d,D ∈ R• such that

dE ⊆ Λ ⊆ 1

D
E
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from which it follows that Λp = Ep for all p lying outside the support of (dD).
(i) =⇒ (ii): Put Λ :=

⋂
p∈MaxSpecR Λ(p). We first observe that there are d,D ∈ R•

such that

∀p ∈ MaxSpecR, dEp ⊆ Λ(p) ⊆ 1

D
Ep.

For each p we can certainly find dp and Dp in R• such

dpEp ⊆ Λ(p) ⊆ 1

Dp
Ep

and because of Condition (i) we can choose dp = Dp = 1 for all but finitely many
p. Then we may take d =

∏
p dp and D =

∏
pDp. It follows that

dE =
⋂
p

dEp =
⋂
p

Λ(p) ⊆
⋂
p

1

D
Ep =

1

D
E .

Thus Λ =
⋂

Λ(p) is an R-submodule of V that is intermediate between two R-
lattices, so it is an R-lattice. Let p ∈ MaxSpecR. Since Λ(p) is an Rp-module
containing Λ, it also contains 〈Λ〉Rp

= Λp. Conversely, let x ∈ Λ(p). Then x
lies in dEq for all but finitely many q, so also lies in Λ(q) for all but a finite set
q1, . . . , qr of prime ideals. There are elements f1, . . . , fr ∈ R•, each prime to p such
that x ∈ 1

fi
Λ(qi) for all i. (Indeed, by The Chinese Remainder Theorem, for each

1 ≤ i ≤ r there is an element πi ∈ R such that vqi
(πi) = 1 and vp(πi) = 0, and we

may take fi to be any sufficiently large power of πi.) Then f := f1 · · · fr is prime
to p and fx ∈

⋂
q Λ(q) = Λ. It follows that x ∈ 1

fΛ ⊆ Λp. Thus Λ(p) = Λp. �

5. Lattices in a Quadratic Space

5.1. Bilinear Forms on a Vector Space. Let F be a field, and let V be a
finite-dimensional K-vector space. A bilinear pairing on V is a map

〈·, ·〉 : V × V → K

such that

∀x, y, z ∈ V, ∀α ∈ F, 〈αx+ y, z〉 = α〈x, z〉+ 〈y, z〉
and

∀x, y, z ∈ V, ∀α ∈ F, 〈x, αy + z〉 = α〈x, y〉+ 〈x, z〉.
Because of this, we get induced mappings

ΦL : V → V ∨, ΦL(x) 7→ 〈x, ·〉 : V → K,

ΦR : V → V ∨, ΦR(x) 7→ 〈·, x〉 : V → K.

Because V is finite-dimensional, we have V ∨ ∼=K V , so ΦL is injective if and only if
it is surjective if and only if it is an isomorphism. When these equivalent conditions
hold, we say that the bilinear form is left-nondegenerate. Similarly, we say that
the bilinear form is right-nondegenerate if ΦR is an isomorphism (equivalently,
is injective, equivalenty, is surjective).

Let e1, . . . , en be a K-basis for V . Using this basis we define the Gram matrix of
〈·, ·〉: it is the matrix G ∈Mn(K) with (i, j) entry G(i, j) := 〈ei, ej〉.
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Exercise 3.9. Using the basis e1, . . . , en we identify V with Kn. Show: for all
v, w ∈ Kn we have

〈v, w〉 = vTGw.

Thus the Gram matrix of a bilinear form completely determines the bilinear form.

Proposition 3.8. With notation as above, the following are equivalent:

(i) The bilinear form 〈·, ·〉 is left-nondegnerate.
(ii) The bilinear form 〈·, ·〉 is right-nondegenerate.
(iii) The Gram matrix G is nonsingular: detG 6= 0.

Proof. We will identify V with Kn using the basis e1, . . . , en.
Suppose first that G is singular, so there is 0 6= w ∈ Kn such that Gw = 0.

Then for all v ∈ Kn we have

〈v, w〉 = vTGw = vT 0 = 0,

so w is a nonzero element of ΦR and thus the bilinear form is right-degenerate.
Also detGT = detG = 0, so there is a nonzero v ∈ Kn such that GT v = 0, so

0 = (GT v)T = vTG,

from which it follows that for all w ∈ Kn we have

0 = vTGw = 〈v, w〉,
so v is a nonzero element of ΦL and the bilinear form is also left-degenerate.

Next suppose that G is nonsingular. Then for all nonzero w ∈ Kn we have that
Gw is nonzero; if i is a nonzero component of Gw then 〈ei, w〉 = eTi (Gw) 6= 0, so w
does not lie in the kernel of ΦR and thus the bilinear form is right-nondegenerate.
And again, GT is nonsingular, so for all nonzero v ∈ Kn we have that GT v is
nonzero, hence vTG = (GT v)T is nonzero; if j is a nonzero component of vTG
then 〈v, ej〉 6= 0, so v does not lie in the kernel of ΦL and thus the bilinear form is
left-nondegenerate. �

The proof shows that we can just say nondegenerate or degenerate; there is no
need to distinguish between left and right. Synonyms here include regular and
nonsingular.

Exercise 3.10. Show that for a bilinear form 〈·, ·〉 on a finite-dimensional
K-vector space V , the following are equivalent:

(i) The bilinear form is symmetric: for all x, y ∈ V we have 〈x, y〉 = 〈y, x〉.
(ii) The Gram matrix G is symmetric: GT = G.

If we have a nondegenerate bilinear form 〈·, ·〉 on a finite-dimensional K-vector
space V , then to a K-basis e1, . . . , en we attach the dual basis e1, . . . , en of V
characterized by:

∀1 ≤ i, j ≤ n, 〈ei, ej〉 = δ(i, j) :=

{
1 i = j

0 otherwise
.

One way to see the existence is to take e1, . . . , en to be the images of the dual
basis e∨1 , . . . , e

∨
n of V ∨ under the isomorphism Φ−1

R : V ∨ → V . The uniqueness is
immediate from the nondegeneracy.

Although we could continue to develop the theory of not-necessarily-symmetric
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bilinear forms, in all of our applications we will have a symmetric form, so let us
impose that condition now. In this case there is an associated quadratic form

q : V → K, q(x) := 〈x, x〉.
When the characteristic of K is not 2, one can recover the bilinear form from the
associated quadratic form q, so the two structures are equivalent. We don’t actually
need to discuss this, but just mention it because one often speaks of the structure
(V, 〈·, ·〉) as a quadratic space (rather than as a symmetric bilinear space).

5.2. Bilinear Forms on a Free Module. Now suppose that in place of a
field K we take a commutative ring R, and in place of a finite-dimensional K-
vector space we take a finitely generated free R-module M . Then some of the
above discussion goes through verbatim: namely, the definition of an R-bilinear
form 〈·, ·〉 : M ×M → R is a map that is R-linear in each variable for each fixed
value of the other variable. And again, a choice of a basis e1, . . . , en for M gives us
a Gram matrix

Ge(i, j) := 〈ei, ej〉.
Note that we have put a subscripted “e” on G to remember the dependence on the
basis; this will be further discussed shortly.

However, the notion of degeneracy becomes more complicated here: if R is
not a field, then an R-linear endomorphism of Rn can be injective without being
surjective: e.g. take R = Z; then multiplication by 2 on Zn is injective but not
surjective. It is still true that a surjective R-linear endomorphism must be an iso-
morphism [CA, Thm. 3.45]. So we need more careful terminology: we say that
the pairing is left-nondegenerate (resp. right-nondegnerate) if the associated
map ΦL : M →M∨ (resp. ΦR : M →M∨) is an injection. We say that the pairing
is left-perfect (resp. right-perfect) if ΦL (resp. ΦR) is an isomorphism.

At least in the case where R is a domain, it is not so hard to sort this all out:

Proposition 3.9. Let R be a domain, let M be finitely generated, free R-
module, and let 〈·, ·〉 : M ×M → R be a bilinear form. Let e1, . . . , en be an R-basis
for M .

a) The following are equivalent:
(i) The pairing is left-nondegenerate: ΦL : M ↪→M∨.

(ii) The pairing is right-nondegenerate: ΦR : M ↪→M∨.
(iii) The Gram matrix Ge (with respect to e1, . . . , en) has nonzero deter-

minant.
b) The following are equivalent:

(i) The pairing is left-perfect: ΦL : M
∼→M∨.

(ii) The pairing is right-perfect: ΦR : M
∼→M∨.

(iii) We have detGe ∈ R×. (In other words, Ge ∈ GLn(R).)
(iv) There are elements e1, . . . , en of M such that:

∀1 ≤ i, j ≤ n, 〈ei, ej〉 = δ(i, j).

Proof. a) The proof in the case where R is a field still works to show this.
b) (ii) ⇐⇒ (iv): Again, if ΦR is an isomorphism then we take ej to be Φ−1

R (e∨j ).

Conversely, if e1, . . . , en satisfy (iv) and ` ∈M∨ is an R-linear functional, then

∀x ∈ V, `(x) = 〈x, `(e1)e1 + . . .+ `(en)en〉.
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(Indeed, both sides agree at x = e1, . . . , en, so they are equal.)
(iv) =⇒ (iii): If (iv) holds, then let H ∈Mn(R) be the matrix with jth column ej .
Then one can check that H is the inverse of the Gram matrix Ge, so detGe ∈ R×.
(iii) =⇒ (ii): Similarly, if detGe ∈ R× then Ge is invertible; if H is its inverse,
then we can take ej to be the jth column of H.
(i) ⇐⇒ (ii): Similarly to the above, left-perfection holds if and only if GTe is
invertible. The adjugate equation GeG

T
e = (detGe)In shows that this happens if

and only if Ge is invertible if and only if right-perfection holds. �

In particular we don’t need to say left-perfect or right-perfect, so we won’t: we will
just say perfect. We may also say unimodular, referring to the fact that the
determinant of the Gram matrix is a unit in R.

Our next order of business is to examine what happens to the Gram matrix when
we change the basis: let f1, . . . , fn be another R-basis for M , and let P ∈ GLn(R)
be the change-of-basis matrix, i.e., the unique matrix such that Pei = fi for all
1 ≤ i ≤ n. Let Ge be the Gram matrix for e1, . . . , en and Gf be the Gram matrix
for f1, . . . , fn. Then:

∀1 ≤ i, j ≤ n, 〈fi, fj〉 = 〈Pei, P ej〉 = (Pei)
TGe(Pej) = eTi P

TGePej .

This shows that
Gf = PTGeP.

Taking determinants, we get

detGf = det(PTGeP ) = det(Ge)(detP )2.

Since P ∈ GLn(R), we have detP ∈ R×. This shows that the “determinant” of
〈·, ·〉 is not well-defined – it depends on the choice of basis – but the class of the
determinant in R/R×2 is well-defined. We call this class the discriminant δ of the
bilinear module (M, 〈·, ·〉).

5.3. Quadratic Lattices. We now wish to expand the definition of quadratic
lattice in two ways.

First let M be a finitely generated free R-module, which we view as an R-lattice
in V := M ⊗R K. Let 〈·, ·〉 : V × V → K be a K-bilinear form. Then if we restrict
〈·, 〉 to M we do not necessarily get an R-bilinear form because we may not have
〈M,M〉 ⊆ M . If this occurs we say that the lattice is integral with respect to
the bilinear form. But it can be natural and useful to consider the case of not
necessarily integral lattices in quadratic spaces. A little thought shows that in this
case, associated to any R-basis e1, . . . , en of M we still have a Gram matrix Ge,
which however now lies in Mn(K) (and in GLn(K) iff the bilinear form is nonde-
generate). The above discussion about change of R-basis goes through verbatim.
In particular, we still have a well-defined notion of discriminant here: the dis-
criminant is 0 iff the bilinear form is degenerate; otherwise the discriminant is a
well-defined element of K×/R×, so in particular defines a principal fractional idea δ.

Our final generalization is probably not surprising. Namely, suppose that we have
a symmetric bilinear form 〈·, ·〉 on a finite-dimensional K-vector space V and that
we have a not necessarily free R-lattice Λ in V . Our task is to define the discrimi-
nant δ(M) as a fractional ideal anyway. If the bilinear form is degenerate, we put
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δ(M) := 0, so we may assume that it is nondegenerate. Then, as always when we
are working with fractional ideals in a Dedekind domain, we may proceed locally:
let p ∈ MaxSpecR, and look at the Rp-lattice Λp in V . Since Rp is a DVR, this
is is a free lattice, so has a discriminant, which is a fractional Rp-ideal, which we

may identify with pδp(M) for some well-defined δp(M) ∈ Z. We then wish to define

δ(M) :=
∏

p∈MaxSpecR

pδp(M),

but there is one thing to check: that δp(M) = 0 for all but finitely many p. We can
see this as follows: take any K-basis e1, . . . , en for V and consider its Gram matrix
Ge. Then only finitely many primes p can divide any entry of the Gram matrix
and the determinant of the Gram matrix, being a principal fractional ideal of R, is
coprime to all but finitely many primes, which shows that (Mp, 〈·, ·〉) is perfect for
all but finitely many primes p.

As usual, it is possible to give a “global” definition of the discriminant. For this, we
first observe that for any n-tuple of elements x1, . . . , xn in a symmetric K-bilinear
space (V, 〈·, ·〉) we may define the discriminant

δ(x1, . . . , xn) := det〈xi, xj〉.

Exercise 3.11. With notation as above, show:

a) If the bilinear space is degenerate, then δ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈
V .

b) If the bilinear space is nondegenerate, then for x1, . . . , xn in V , we have
that δ(x1, . . . , xn) 6= 0 iff x1, . . . , xn is a K-basis for V .

Now we can give our global definition of the discriminant:

Proposition 3.10. Let R be a Dedekind domain with fraction field K, let
V be a finite-dimensional K-vector space equipped with a symmetric bilinear form
〈·, ·〉, and let Λ be an R-lattice in K. Let D be the fractional R-ideal generated by
δ(x1, . . . , xn) as x1, . . . , xn ranges over all n-tuples of elements of Λ. Then

δ(M) = D.

Exercise 3.12. Prove Proposition 3.10.

6. Dual Lattices

Throughout this section, a K-bilinear space will mean a finite-dimensional K-
vector space V equipped with a nondegnerate, symmetric K-bilinear pairing 〈·, ·〉.

To an R-lattice Λ in a K-bilinear space we may attrach its dual lattice

Λ∗ := {x ∈ V | 〈x,Λ〉 = 0}.

Exercise 3.13. Let M , N be R-lattices in V . Show: M ⊆ N =⇒ N∗ ⊆M∗.

In what follows, for a field k, by a k-bilinear space we will mean a finite dimen-
sional k-vector space V equipped with a nondegenerate k-bilinear pairing 〈·, ·〉.

Theorem 3.11. Let R be a Noetherian domain with fraction field K, and let
(V, 〈·, ·〉) by a K-bilinear space. For each R-lattice Λ in V , we have that Λ∗ is an
R-lattice in V that is isomorphic as an R-module to Λ∨.
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Proof. Let (e1, . . . , en) be a K-basis for V that lies in Λ. By Proposition 3.9,
there is a unique K-basis (e′1, . . . , e

′
n) of V such that for all 1 ≤ i, j ≤ n we have

〈e′i, ej〉 = δi,j .
Step 1: We show that 〈Λ∗〉k = V . Choose a finite set S of R-module generators

for Λ; express each in terms of the basis (e1, . . . , en), and let d be the product of all
denominators that appear. We claim that for all 1 ≤ i ≤ n that de′i ∈ Λ′. Indeed,
for m ∈ S, write m =

∑n
j=1mjej ; then for all 1 ≤ i ≤ n we have

〈de′i,m〉 = d

n∑
j=1

mj〈e′i, ej〉 = dmi ∈ R,

so de′i ∈ Λ∗. Thus Λ∗ contains (de′1, . . . , de
′
n), which is a K-basis for V .

Step 2: We show that Λ∗ is finitely generated. Let N be the free R-submodule of
M with basis (e1, . . . , en). Then N is a free R-lattice in V . For all 1 ≤ i ≤ n we
have e′i ∈ N∗. We claim that (e′1, . . . , e

′
n) is an R-basis for N∗. Since e′1, . . . , e

′
n are

K-linearly independent, they are R-linearly independent. For x ∈ N∗, if we write
x =

∑n
i=1 xie

′
i then for all 1 ≤ i ≤ n,

〈x, ei〉 = xi ∈ R,
so x ∈ 〈e′1, . . . , e′n〉R.

So N∗ is a free A-module of rank n. Since N ⊆ Λ we have Λ∗ ⊆ N∗. Since R
is Noetherian and N∗ is finitely generated, also Λ∗ is finitely generated. Thus Λ∗

is indeed an R-lattice in V .
Step 3: We show that Λ∗ ∼= Λ∨. Let

ϕ : Λ∗ → Λ∨, x 7→ (m 7→ 〈x,m〉).
This is a homomorphism of R-modules. We claim that the R-module homomor-
phism

ψ : Λ∨ → V, f 7→
n∑
i=1

f(ei)e
′
i

is the inverse of ϕ. First we need to check that for all f ∈ Λ∨ we have ψ(f) ∈ Λ∗,
so let f ∈ Λ∨ and let m =

∑m
j=1mjej ∈ Λ. Then

〈ψ(f),m〉 = 〈
n∑
i=1

f(ei)e
′
i,

m∑
j=1

mjej〉 = f(m) ∈ R.

Now let x =
∑n
i=1 xie

′
i ∈ Λ∗. Then

ψ(ϕ(x)) =

n∑
i=1

ϕ(x)(ei)e
′
i =

n∑
i=1

〈x, ei〉e′i =

n∑
i=1

xie
′
i = x.

If f ∈ Λ∨ and m =
∑n
j=1mjej ∈ Λ then

ϕ(ψ(f))(m) = ϕ(

n∑
i=1

f(ei)e
′
i)(m) =

n∑
i=1

〈f(ei)e
′
i,

n∑
j=1

mjej〉 = f(m). �

Exercise 3.14. Let R be a Noetherian domain with fraction field K. For
i = 1, 2, let (Vi, 〈·, ·〉i) be a K-bilinear space.

a) Show: 〈·, ·〉1 + 〈·, ·〉2 defines a nondegenerate K-bilinear pairing on V :=
V1 ⊕ V2.
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b) For i = 1, 2, let Λi be an R-lattice in Vi. Show: Λ := Λ1 ⊕ Λ2 is an
R-lattice in V and Λ∗ = Λ∗1 ⊕ Λ∗2.

Corollary 3.12. Let R be a Noetherian domain with fraction field J , let V be
a K-bilinear space, and let Λ be a free R-lattice in V , with basis e1, . . . , en. Then
Λ∗ has a unique R-basis (e′1, . . . , e

′
n) such that 〈e′i, ej〉 = δi,j.

Proof. In the proof of theorem 3.11 we may take N = Λ. Then we get that
Λ∗ = N∗ is free with basis (e′1, . . . , e

′
n) satisfying 〈e′i, ej〉 = δi,j . The uniqueness is

left to the reader. �

Lemma 3.13. Let R be a Notherian domain with fraction field K, let (V, 〈·, ·〉) be
a k-bilinear space, let Λ be an R-lattice in V , and let S be a multiplicative subset of
R. Then S−1Λ and S−1Λ∗ are (S−1R)-lattices in V satisfying (S−1Λ)∗ = S−1Λ∗.

Proposition 3.14. Let R be a Dedekind domain with fraction field K, let
(V, 〈·, ·〉) be a symmetric K-bilinear space, and let Λ be an R-lattice in V . Then
Λ∗∗ = Λ.

Proof. In a tautological way we have Λ ⊆ Λ∗∗. By Proposition 1.13 it there-
fore suffices to check the equality after replacing R by Rp for each p ∈ MaxSpecR.
Then R is a PID so lattices are free: if (e1, . . . , en) is a basis for Λ, then by Corol-
lary 3.12 there is a unique basis (e′1, . . . , e

′
n) for Λ∗ such that 〈e′i, ej〉 = δi,j for all

i, j; applying this result again, there is a unique basis (e′′1 , . . . , e
′′
n) for Λ∗∗ such that

〈e′′i , e′j〉 = δi,j for all i, j. But the symmetry of the pairing and the uniqueness forces
e′′i = ei for all i and thus Λ∗∗ = Λ. �

More generally, we could work in any Noetherian domain R and assume that our
lattice Λ is projective. Then for all p ∈ MaxSpecR, the Rp-lattice Λp is free, so it
follows from Lemma 3.13 that Λ∗ is also projective. Then the proof of Proposition
3.14 goes through to show that Λ∗∗ = Λ.

I believe that for any Noetherian domain R and R-lattice Λ in V , we should
have Λ∗∗ = Λ if and only if Λ is reflexive (reflexive modules are defined in §4.4).

There is an important relation among the discriminant, the dual lattice and the
Fröhlich invariant:

Corollary 3.15. Let 〈·, ·〉 be a nondegenerate symmetric K-bilinear form on
V . Let Λ be an R-lattice in V , and let δ be the discriminant of Λ. Then

δ = χ(Λ∗,Λ).

Proof. This equality of fractional ideals can be checked locally, so we may
assume that R is a DVR and thus Λ is free with basis (e1, . . . , en), say and then Λ∗

has a unique basis (e′1, . . . , e
′
n) such that 〈e′i, ej〉 = δi,j . Writing

ej =

n∑
i=1

Mi,je
′
i

we get that Λ = MΛ∗, so by Proposition 3.6 we have χ(Λ∗,Λ) = (detM). Moreover
for all 1 ≤ i, j ≤ n we have

〈ei, ej〉 = 〈
∑
k

Mk,ie
′
k, ej〉 = Mj,i,

so δ = detMT = detM . �
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Corollary 3.16. Let 〈·, ·〉 be a nondegenerate symmetric K-bilinear form on
V , and let Λ1,Λ2 be two R-lattices in V . Then:

a) We have δΛ1
= δΛ2

χ(Λ1,Λ2)2.
b) If Λ2 ⊆ Λ1, then δΛ2

= δΛ1
a2 for an ideal a of R.

Proof. Once again both sides can be computed locally, so we may assume
that R is a DVR, so Λ1 and Λ2 are free R-lattices. Let x1, . . . , xn be an R-basis for
Λ1 and y1, . . . , yn be an R-basis for Λ2, and let P ∈ GLn(K) be such that yi = Pxi
for all i. Let G1 be the Gram matrix for the basis x1, . . . , xn and let G2 be the
Gram matrix for the basis y1, . . . , yn. Then G2 = PTG1P , so

(3) δΛ2
= (detP )2δΛ1

.

Moreover we have Λ2 = PΛ1, so by Propositions 3.5 and 3.6 we have

(4) χ(Λ1,Λ2) = χ(Λ1, PΛ1) = (detP ).

Combining (3) and (4) we get part a). Part b) follows: indeed a = χ(Λ1,Λ2), which
is an integral ideal since Λ2 ⊆ Λ1. �

Exercise 3.15. Let 〈, ·, ·〉 be a nondegenerate symmetric K-bilinear form on a
finite-dimensional K-vector space V , let Λ be an R-lattice in V , and let δ ∈ FracR
be the discriminant of Λ.

a) Let [δ] be the class of δ in PicR. Show that [δ] is a square: i.e., there is
I ∈ FracR such that [δ] = [I]2.

b) Let St(Λ) be the Steinitz invariant of Λ. Show:

[δ] = St(Λ)2.

I want to end this section with some “fancy” remarks that are motivated by Ex-
ercise 3.15. In the next chapter we will introduce the standard ANT1 setup: we
have a Dedekind domain A with fraction field K and a finite degree sparable field
extension L/K, and we take B to the integral closure of A in L. Then the trace
form (to be studied in detail) on B/A defines a nondegenerate quadratic form
〈x, y〉 := Trace(xy) on L. Using this we can define the discriminant δB/A as the
discriminant of the A-lattice B with respect to the trace form. In the classical
case A = Z, the discriminant is a principal ideal because Z is a PID. However, in
general – even for a relative extension of number fields – the discriminant δ is a not
necessarily principal integral A-ideal, and then Exercise 3.15 applies to show that
its class in PicA is a square.

We will see later that B∗ is a fractional B-ideal, whose inverse

∆B/A := (B∗)−1

is an integral B-ideal, called the different ideal. As we will see, it is deeply related
to ramification in the extension B/A. When K is a number field, it is a theorem
of Hecke from circa 1923 [He, Satz 176, p. 261] that the class of the different ideal
∆B/A in PicB is a square. This deep result raises the question of whether the
squareness [∆B/A] in PicB holds in the standard ANT1 setup: i.e., for the integral
closure of an arbitrary Dedekind domain in a finite degree separable field extension.
The answer is negative, as was shown later by Fröhlich, Serre and Tate [FST62].

Their example is of an arithmetic geometric character, and indeed the paper
[FST62] is a must-read for those interested in the arithmetic of algebraic curves. It
is slightly over one page long. Let me say just a little bit about their construction
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with the hope of tempting you to read it: they show that for an perfect field k and
any nice genus zero curve C/k without k-rational points and containing a closed
point P of degree divisible by 4 — these hypotheses are satisfied e.g. for the conic

C/Q : X2 + Y 2 + Z2 = 0,

one can take B to the the affine coordinate ring k[C \ {P}]. By a version of the
Noether Normalization Theorem [CA, Thm. 14.24], there is a k-subalgebra A of B
that is isomorphic to k[t] and such that B is finitely generated as an A-module. It
follows that B is the integral closure of A in L := k(C). If ∆ is the discriminant of
B/A, then it is actually an easy consequence of the Differential Pullback Theorem
[AC, Thm. 3.18] that ∆ cannot be a square in PicB.

In the above construction there is a lot of latitude in the choice of k, but it will
not work to choose k finite, since genus 0 curves over a finite field necessarily have
k-rational points. The authors of [FST62] raise the question of whether Hecke’s
Theorem continues to hold when A is the affine coordinate ring of a nice affine
curve over a finite field (this is well-known to be the closest function field analogue
of the number field case). This was shown affirmatively by Armitage [Ar67], who
also gives a new proof of Hecke’s theorem in the number field case.

Some further algebraic number theory of differents, discriminants and Steinitz
classes is given in [Sc13].



CHAPTER 4

Algebraic Number Theory in Dedekind Domains

1. Etale Algebras

Exercise 4.1. Let k be a field, and let f, g ∈ k[t] be polynomials, not both 0.
By the gcd of f and g we mean the monic generator of the ideal 〈f, g〉. Let l/k be
a field extension. Show that gcd(f, g) as computed in k[t] is the same as gcd(f, g)
as computed in l[t].

Exercise 4.2. Let k be a field, and let f ∈ k[t] be a nonzero polynomial. Let
f ′ be its “formal” derivative. We say f is separable if gcd(f, f ′) = 1.

a) Suppose f ∈ k[t] is irreducible. Show: f is separable if and only if f ′ 6= 0.
b) Let l/k be a field extension. Show: if f ∈ k[t], then f is separable if and

only if f is separable when regarded as a polynomial over l.
c) Suppose k is algebraically closed. Show: f is separable if and only if it is

a product of distinct linear factors.
d) Let K/k be an algebraically closed extension field. Show: f is separable if

and only if f splits into distinct linear factors in K.

Let k be a field. An étale k-algebra is a finite dimensional commutative k-algebra
l that is isomorphic to

∏r
i=1 li where each li/k is a finite degree separable field

extension. The dimension of an étale algebra is its dimension as a k-vector space.

Lemma 4.1. Let A be a finite-dimensional commutative k-algebra. The follow-
ing are equivalent:

(i) A is reduced.
(ii) A is a finite product of finite degree field extensions of k.

Proof. (i) =⇒ (ii): The descending chain condition holds on k-submodules
of A, hence on A-submodules of A: A is Artinian. By Theorem 1.5 there are local
Artinian rings (ri,mi)

r
i=1 such that A =

∏r
i=1 ri. Since A is reduced, so is each ri.

Since mi is the nilradical of ri we have mi = 0 for all i, and thus ri is a field.
(ii) =⇒ (i): Fields are reduced, and any product of reduced rings is reduced. �

We say that a k-algebra A is monogenic if there is x ∈ A such that the k-
subalgebra of A generated by x is A itself. Evidently a k-algebra is monogenic if
and only if it is a quotient of k[t]. Recall that every finite degree separable field
extension if monogenic: the Primitive Element Corollary [FT, Cor. 7.3]. Does this
monogenicity hold for separable k-algebras that are not fields? Let’s see:

Exercise 4.3. Let k be a field, and let l = k[α] be a field extension of degree
2 ≤ d < ℵ0. Let G be the set of generators of l as a k-algebra: that is, the set of
β ∈ l such that k[β] = l. Show: G is infinite if and only if k is infinite.

51
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Exercise 4.4. Let k be an infinite field, and let A =
∏r
i=1 li be an étale k-

algebra. By the Primitive Element Theorem, for 1 ≤ i ≤ r, there is a monic
irreducible polynomial fi ∈ k[t] such that k[t]/(fi) ∼= li.

a) Suppose that the polynomials f1, . . . , fr are pairwise distinct. Show that
A ∼= k[t]/(f1 · · · fr) and thus A is monogenic.

b) Use the previous exercise to show that we can always choose the polyno-
mials f1, . . . , fr to be pairwise distinct.

Exercise 4.5. Let q be a prime power, and let A = Frq, viewed as an étale Fq-
algebra. Let N ∈ Z+, and suppose we have a surjective Fq-algebra homomorphism

ϕ : Fq[t1, . . . , tN ]→ A.

a) Let I = 〈tq1 − t1, . . . , t
q
N − tN 〉. Show that I ⊆ Kerϕ.

(b) Show: ϕ induces a surjective Fq-algebra homomorphism FqNq → Frq.
c) Deduce: qN ≥ r. That is, A needs at least logq(r) generators as an Fq-

algebra.

Exercise 4.6. For a field k, show that the following are equivalent:

(i) Every étale k-algebra is isomorphic to kn for some n ∈ Z+.
(ii) The field k is separably closed.

Proposition 4.2. Let k be a field, let A/k be a k-algebra, and let l/k be a field
extension. If A is an étale k-algebra, then A/l := A⊗k l is an étale l-algebra.

Proof. A finite product of étale algebras is an étale algebra, so we may assume
that A/k is a finite degree separable field extension. By the Primitive Element
Corollary we have A ∼= k[t]/(f) for some monic separable polynomial f , and then
A/l = k[t]/(f)⊗k l = l[t]/(f). A polynomial f over a field is separable if and only
if gcd(f, f ′) = 1. Since f is separable, there are a, b ∈ k[t] such that af + bf ′ = 1;
evidently this same equation holds in k[t], which shows the gcd condition still holds
in the larger field, so f ∈ l[t] is separable, so f = f1 · · · fr with fi distinct monic
irreducible polynomials, and then by the Chinese Remainder Theorem

A/l = l[t]/(f) = l[t]/(f1 · · · fr) ∼=
r∏
i=1

k[t]/(fi)

is a separable k-algebra. �

Theorem 4.3. Let k be a field, and let A be a finite-dimensional commutative
k-algebra. The following are equivalent:

(i) A is an étale k-algebra.
(ii) For every algebraically closed field extension K/k, we have that A/K :=

A⊗k K is reduced.

Proof.
(i) =⇒ (ii): Since étale algebras are reduced, this follows from Proposition 4.2.
¬ (i) =⇒ ¬ (ii): Suppose that A is not an étale k-algebra. Being a commutative
Artinain ring, k is a finite product of Artinian local rings, so we find that since
A is not étale, either A is not reduced or it is a finite product

∏r
i=1 li of finite

degree field extensions, at least one of which is inseparable. Since A ↪→ A/K , if A
is not reduced, neither is A/K . So it suffices to show that if l/k is a finite degree
inseparable field extension then l⊗kK is not reduced. Since l/k is inseparable, there
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is x ∈ l with an inseparable minimal polynomial f ∈ k[t]. The minimal polynomial
does not change upon base extension (Exercise 4.1), so the minimal polynomial of
x ∈ A/K is inseparable, so K[t]/(f) ∼= K[x] ⊆ A/K is not reduced, so A/K is not
reduced. �

Corollary 4.4. Let k be a field, and let A/k be a finite-dimensional commu-
tative k-algebra. Then:

a) If A is an étale k-algebra, then so is every k-subalgebra of A.
b) Let l/k be any field extension. If A/l is an étale k-algebra, then A is an

étale k-algebra.

Proof. a) Let B be a k-subalgebra of A. If K is any algebraically closed field
containing k, then A/K is reduced, hence so is its subring B/K , so B is an étale
k-algebra.
b) Let K be an algebraically closed field extension of l. Since A/l is etale, A/K is
reduced. Since K is also an algebraically closed field extension of k, we conclude
that A is an étale k-algebra. �

Theorem 4.5. Let A be a finite-dimensional commutative k-algebra. Consider
the following conditions:

(i) A is an étale k-algebra.
(ii) For all α ∈ A, the minimal polynomial f ∈ k[t] of α is separable.
(iii) For every field extension l/k, the l-algebra A/l := A⊗k l is reduced.
(iv) For every field extension l/k, the l-algebra A/l is a product of fields.
(v) We have A = k[t]/(f) for a separable polynomial f ∈ k[t].

Then:

a) We have (v) =⇒ (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
b) If k is infinite, then (i) =⇒ (v).

Proof. a) (v) =⇒ (i): We may assume without loss of generality that f is
monic. A monic separable polynomial f is a product of distinct irreducible monic
separable polynomials: f = g1 · · · gr. By the Chinese Remainder Theorem we have

A = k[t]/(f) ∼=
r∏
i=1

k[t]/(gi),

and each k[t]/(gi) is a separable field extension of k, so A is an étale k-algebra.
(i) ⇐⇒ (iii): If A is étale, then by Theorem 4.3 we have A ⊗k K is reduced for
every algebraically closed field extension K. Because if l/k is a field extension with
algebraic closure K we have A⊗k l ↪→ A⊗kK, also A⊗k l is reduced, so (iii) holds.
The converse follows directly from Theorem 4.3.
(i) =⇒ (ii): Suppose that for 1 ≤ i ≤ r, we have a finite degree separable
field extension li/k such that A =

∏r
i=1Ai. Let α = (α1, . . . , αr) ∈ A. Since

subextensions of separable field extensions are separable, for all 1 ≤ i ≤ r the
minimal polynomial fi ∈ k[t] of αi is separable. Then the minimal polynomial of α
is the least common multiple of f1, . . . , fr, and the least common multiple of finitely
many separable polnomials is separable.
(ii) =⇒ (iii): First, A must be reduced: the minimal polynomial of a nonzero
nilpotent element is tk for some k ≥ 2, which is not separable. By Lemma 4.1 we
therefore have A ∼=

∏r
i=1 li with each li/k a finite degree field extension. If for some

1 ≤ i ≤ r the field extension li/k is inseparable, let αi ∈ li be an element with
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inseparable minimal polynomial fi ∈ k[t]. The element α ∈ A with ith coordinate
αi and all other coordinates 0 has minimal polynomial fi, so is inseparable.
b) This is Exercise 4.4. �

Let A/k be an étale algebra of dimension n. A field extension l/k splits A if
A/l ∼= ln. If K/k is separably closed, then A/K is is a finite product of finite degree
separable field extensions of K, of which there are none but K itself, so A/K ∼= Kn

and thus K splits A.

If we write our étale algebra as A =
∏r
i=1 li, then a field etension l/k splits A

if and only if it splits li for all i. We may then write li = k[t]/(fi) for a separable
polynomial f , and then l splits li if and only if f splits into linear factors in l, so l
is a splitting field for li if and only if it contains a Galois closure of li. Thus, all in
all, if we view the li’s as living in a common algebraic closure k of k (as we may, up
to isomorphism) then the unique minimal extension l/k that splits A is the Galois
closure of the compositum l1 · · · lr. This is also the splitting field of the polynomial
f1 · · · fr (which need not be separable, but as above can be chosen to be separable
when k is infinite).

Proposition 4.6. Let A be an étale k-algebra, and let K/k be a field that splits
A. Then we have an isomorphism of étale K-algebras

A⊗k K
Σ→ KHomk(A,K)

given by
Σ : β ⊗ 1 7→ (σ(β))σ.

Proof. It is easy to reduce to the case in which A = k[t]/(f) is a separable
field extension. In K the polynomial f factors as f = (t − α1) · · · (t − αn) with
distinct αi. By standard field theory, Homk(A,K) is in natural bijection with the
roots α1, . . . , αn, via the map t 7→ αi. We have natural isomorphisms

A⊗k K = K[t]/

n∏
i=1

(t− αi) =

n∏
i=1

K[t]/(t− αi) =

n∏
i=1

K

that map
x⊗ 1 7→ x 7→ (α1, . . . , αn) 7→ (σ1(x), . . . , σn(x)).

Since x⊗ 1 genereates A⊗kK as a K-algebra, it follows that for all y ∈ A we have
y ⊗ 1 7→ (σ(β))σ. �

2. Norm and Trace

Let A ⊆ B be an extension of commutative rings such that B is free and finitely
generated as an A-module. Then for any b ∈ B, the map b· : B → B is B-linear
hence also A-linear. After choosing an A-basis e1, . . . , en of B, we may represent
this map by a matrix m(b) ∈Mn(A). In this way we can define a trace map

TB/A : B → A, b 7→ trm(b) =

n∑
i=1

m(b)i,i.

The trace is an A-linear functional on B, i.e., an A-valued A-linear map. We can
also define the norm map

NB/A : B → A, b 7→ detm(b) ∈ A.
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The norm map is mutiplicative, so it restricts to a group homomorphism

NB/A : B× → A×.

Exercise 4.7. Let B1, B2 be two ring extensions of A that are each free and
finitely generated as A-modules. Show that for all b = (b1, b2) ∈ B1 ×B2, we have

TB1×B2/A(b1, b2) = TB1/A(b1) + TB2/A(b2)

and

NB1×B2/A(b1, b2) = NB1/A(b1)NB2/A(b2).

The following result shows the compatibility of the trace and norm with base
change. The proof is almost immediate, but it is very important.

Proposition 4.7. Let A ⊆ B be a ring extension such that B is free of finite
rank n as an A-module, and let ϕ : A → A′ be a ring homomorphism. Then
B′ := B ⊗A A′ is free of rank n as an A′-module, and

∀b ∈ B, ϕ(TB/A(b)) = TB′/A′(b⊗ 1), ϕ(NB/A(b)) = NB′/A(b⊗ 1).

Exercise 4.8. Prove Proposition 4.7.

Theorem 4.8. Let k be a field, and let A/k be an étale k-algebra. Let K/k be
a field extension that splits A. Then for all a ∈ A we have

TA/k(a) =
∑

σ∈Homk(A,K)

σ(a) and NA/k(a) =
∏

σ∈Homk(A,K)

σ(a).

Proof. Let n = dimk A. Then the isomorphism A/K → Kn of Proposition 4.6
maps a⊗1 to (σ1(a), . . . , σn(a)). The matrix of multiplication by (σ1(a), . . . , σa(n))
is just the diagonal matrix with entries σ1(a), . . . , σn(a). It follows that

TA/k(a) = TA/K/K(a⊗ 1) = TKn/K(σ1(a), . . . , σn(a)) =

n∑
i=1

σi(a)

and

NA/k(a) = NA/K/K(a⊗ 1) = NKn/K(σ1(a), . . . , σn(a)) =

n∏
i=1

σi(a). �

Proposition 4.9. Let l/k be a field extension of degree n, and let K/k be a
field containing the normal closure of l/k. Let a ∈ l× have minimal polynomial

f =
∑d
i=0 ait

i ∈ k[t] that splits in K as f =
∏d
i=1(t− αi) (since we do not assume

that l/k is separable, the αi’s need not be distinct). Let χ ∈ k[t] be the characteristic
polynomial of a· acting on l. Put

e := [l : k(a)].

Then:

a) We have χ(t) = f(t)e.

b) We have Tl/k(a) = e
∑f
i=1 αi = −ead−1.

c) We have Nl/k(a) =
∏d
i=1 α

e
i = (−1)deae0.
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Proof. a) This is [FT, Cor. 6.5].
b),c) From part a) it follows that the eigenvalues of a• are the roots of f , with each

multiplicity multiplied by e, so Tl/k = e
∑f
i=1 αi and Nl/k =

∏d
i=1 α

e
i . By standard

algebra on roots and coefficients of polynomials we have α1 + . . . + αd = −ad−1

– from which the second formula for the trace follows by multiplying by e – and
α1 · · ·αd = (−1)da0 – from which the second formula for the norm follows by raising
to the eth power. �

Here is a generalization of Theorem 4.8 to all finite degree field extensions. It makes
use of the notions of separable degree and inseparable degree of a finite degree field
extension K/F . For this, see [FT, §5.2].

Theorem 4.10. Let K/F be a field extension of degree n < ∞ and separable
degree ns. Put pe = n

ns
= [K : F ]i. Let K be an algebraic closure of K. Let α ∈ K

and let f(t) be the characteristic polynomial of α• ∈ EndF (K). Let τ1, . . . , τns
be

the distinct F -algebra embeddings of K into K. Then

f(t) =

ns∏
i=1

(t− τi(α))p
e

.

It follows that

(5) NK/F (α) = (

ns∏
i=1

τi(α))p
e

and

(6) TrK/F (α) = pe
m∑
i=1

τi(α).

Proof. Put L = F [α]. Let d = [L : F ] be the degree, let ds = [L : F ]s be the
separable degree and let di = [L : F ]i be the inseparable degree. Also let ns be the
separable degree of K/F . Let σ1, . . . , σds be the distinct F -algebra homomorphisms
from L into F . For each 1 ≤ i ≤ ds, σi extends to ns

ds
F -algebra homomorphisms

from K into F . Let

f(t) = (

ds∏
i=1

(t− σi(α)))di

be the minimal polynomial of α over F , and let g(t) be the characteristic polynomial
of α• on K, so by Proposition 4.9 we have

g(t) = f(t)[K:L] = (

ds∏
i=1

(t− σi(α))di
n
d =

(
(

ds∏
i=1

(t− σi(α))
ns
ds

)ni

=

(
ns∏
i=1

(t− τi(α))

)pi
.

Equations (5) and (6) follow immediately. �

Corollary 4.11. Let R be an integrally closed domain with fraction field k,
and let l/k be a finite degree field extension. If a ∈ l is integral over R, then

Tl/k(a), Nl/k(a) ∈ R.
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Proof. This follows from Proposition 4.9 and [CA, Thm. 14.18]. �

Theorem 4.12 (Transitivity of Trace and Norm). Let A ⊆ B ⊆ C be com-
mutative rings with B free and finitely generated over A and C free and finitely
generated over B. Then C is free and finitely generated over A and

TC/A = TB/A ◦ TC/B and NC/A = NB/A ◦NC/B .

Proof. That C is free and finitely generated over A is an easy exercise. The
rest of it is annoyingly more difficult than one might like: it should be in my field
theory notes, but isn’t yet. For now, please see [B, §III.9.4]. �

3. The Trace Form

Suppose that A ⊂ B is an extension of commutative rings with B free of rank N
as an A-module. Using the trace, we define a symmetric A-bilinear form on B:

T (x, y) := Tr(xy).

We define the discriminant δB/A as the discriminant of the trace form; again, this
is well-defined up to the square of a unit in A, hence gives a well-defined principal
ideal of A. (We will be content to refer to either one as the discriminant.)

First we consider the case in which A and B are both fields. In this case it is
immediate from (6) that if K/F is inseparable then the trace map TrK/F vanishes
identically. So let us assume that K/F is separable, and let σ1, . . . , σn be the
F -algebra embeddings of K into F . Then by (6) for all x ∈ K,

TrK/F (x) =

n∑
i=1

σi(x).

Let x = (x1, . . . , xn) ∈ Kn, and let S(x) ∈Mn(F ) be the matrix with

S(x)ij = σi(xj).

Then

(S(x)TS(x))ij =

n∑
k=1

σk(xi)σk(xj) =

n∑
k=1

σk(xixj) = TrK/F (xixj).

Thus, if we set

δ(x) := det TrK/F (xixj)

then we have

(7) δ(x) = (detS(x))2.

Exercise 4.9. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree separable extension, and let B be the integral closure of A in L. Let
M/K be the Galois clsoure of L/K.

a) Show: M contains K(
√
δL/K).

b) Let Λ be any A-lattice in L. Show: M contains K(
√
δΛ).
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3.1. The Trace Form of a Field Extension.

Theorem 4.13. (Dedekind’s Lemma on Linear Independence of Characters)
Let M be a monoid and K a field. The set X(M,K) of all monoid homomorphisms
M → K× is linearly independent as a subset of the K-vector space KM of all
functions from M to K.

Proof. By definition, a subset of a vector space is linearly independent iff
every nonempty finite subset is linearly independent. So it’s enough to show that
for all N ∈ Z+, every N -element subset of X(M,K) is linearly independent in KM .
We show this by induction on N . The base case, N = 1, is immediate: the only
one element linearly dependent subset of KM is the zero function, and elements
of X(M,K) are nonzero at all values of M . So suppose N ≥ 2, that every N − 1
element subset of X(M,K) is linearly independent, and let χ1, . . . , χN be distinct
elements of X(M,K). Let α1, . . . , αN ∈ K be such that for all x ∈M , we have

(8) α1χ1(x) + . . .+ αNχN (x) = 0.

Our goal is to show that α1 = . . . = αN = 0. Since χ1 6= χN , there is m ∈M such
that χ1(m) 6= χN (m). Substituting mx for x in (8), we get that for all x ∈M ,

(9) α1χ1(m)χ1(x) + α2χ2(m)χ2(x) + . . .+ αNχN (m)χN (x) = 0.

Multiplying (9) by χ1(m)−1 and subtracting this from (8), we get

(10) ∀x ∈M, α2

(
χ2(m)

χ1(m)
− 1

)
χ2(x) + . . .+ αN

(
χN (m)

χ1(m)
− 1

)
χN (x) = 0.

By induction, χ2, . . . , χN are linearly independent, so αN

(
χN (m)
χ1(m) − 1

)
= 0 and thus

αN = 0. Thus (8) gives a linear dependence relation among the N − 1 characters
χ1, . . . , χN−1, so by induction α1 = · · · = αN−1 = 0. �

Theorem 4.14. Let K/F be a field extension of finite degree n. The following
are equivalent:
(i) The trace form T : K ×K → F is nondegenerate.
(ii) There exists some x ∈ K such that Tr(x) 6= 0.
(iii) The trace function Tr : K → F is surjective.
(iv) The extension K/F is separable.

Proof. (i) =⇒ (ii): This is immediate.
(ii) =⇒ (iii): Since Tr : K → F is F -linear and nonzero, it must be surjective.
(iii) =⇒ (iv): It follows from (6) that TrK/F ≡ 0 when K/F is not separable.
(iv) =⇒ (i): Let x = (x1, . . . , xn) ∈ Kn be any basis for K/F . We must show
that ∆(x) = detT (xixj) 6= 0. Seeking a contradiction we suppose ∆(x) = 0; then

by (7), we have det(σi(xj)) = 0, and this means that there are α1, . . . , αn ∈ F , not
all 0, such that

n∑
i=1

αiσi(xj) = 0 ∀j.

Since this holds for all elements of a basis of K/F , we deduce

∀x ∈ K,
n∑
i=1

αiσi(x) = 0,

contradicting Dedekind’s Lemma (Theorem 4.13). �
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Exercise 4.10. Give a different proof of (iv) =⇒ (i) in Theorem 4.14 using
the Primitive Element Corollary and the Vandermonde determinant.

Exercise 4.11. Let K/F be a degree n field extension, and let x = (x1, . . . , xn) ∈
Kn be linearly dependent over F . Show that ∆(x) = det TrK/F (xixj) = 0.

Example 4.15 (Trace form of a quadratic field extension). Let F be a field of

characteristic different from 2, and let K = F (
√
D) be a quadratic field extension.

We wish to explicitly compute the trace form. A natural choice of F -basis for K is
(1,
√
D). The Gram matrix is then

M =

[
Tr(1) Tr(

√
D)

Tr(
√
D) Tr(D)

]
=

[
2 0
0 2D

]
.

The corresponding quadratic form is 2x2 + 2Dy2, of discriminant

4D = D ∈ K×/K×2.

Theorem 4.16. Let A/k be a finite dimensional commutative k-algebra. The
following are equivalent:

(i) The trace form associated to A is nondegenerate.
(ii) A is an étale k-algebra.

Proof. Step 1: Suppose A is not reduced. Then A is not étale. Also there is
a nilpotent x ∈ A•. For all y ∈ A the element xy is nilpotent, hence has trace zero,
so x lies in the kernel of the trace form. Thus in this case neither (i) nor (ii) holds.
Step 2: Suppose A is reduced, so A =

∏r
i=1 li is a finite product of finite degree

field extensions. The trace form on A decomposes as a direct product of the trace
forms restricted to li. A finite product of bilinear spaces is nondegenerate if and
only if each factor is nondegenerate, so we are reduced to showing that if l/k is a
finite degree field extension, then the trace form is nondegenerate if and only if l/k
is separable. In this case the result is [FT, Thm. 6.10]. �

Exercise 4.12. Let k be a field, and let A/k be a finite dimensional commuta-
tive k-algebra. In this exercise we will determine when the trace map T : A→ k is
identically 0 in the case when A is a principal ideal ring.

a) Show: we can write A =
∏r
i=1Ai with each Ai a local, Artinian principal

ring: there is a principal maximal ideal p = (π); if e is the least positive
integer such that πe = 0 then all the ideals of A are

(11) A ) p ) p2 ) . . . ) pe−1 ) pe = (0).

b) For x ∈ A =
∏r
i=1Ai, write x = (x1, . . . , xr). Show: T (x) =

∑r
i=1 TAi/k(xi).

Thus T : A→ k is the zero map if and only if each Ti = TAi/k is the zero
map, so we may assume that A is local.

c) Let x ∈ A. Since each pe is an A-submodule, it is in particular a k-
subspace of A, so (11) gives a filtration of the finite-dimensional k-vector
space A by subspaces invariant under the k-linear map x•. If W ′ ⊆W ⊂ A
are subspaces such that x(W ′) ⊆ W ′ and x(W ) ⊆ W , then x• gives a
well-defined k-linear map on the quotient W/W ′; we denote its trace by
T (x|W/W ′). Show:

T (x) =

e−1∑
i=0

T (x|pi/pi+1).
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d) Let 0 ≤ i ≤ e − 1. Show that multiplication by πe induces an A-module
isomorphism A/p→ pi/pi+1 that commutes with multiplication by x. De-
duce that for all 0 ≤ i ≤ e − 1 we have T (x|pi/pi+1) = T (x|A/p) and
thus

T (x) = eT (x|A/p).

e) Conclude that the trace form on a local principal Artinian k-algebra (A, p)
is identically 0 if and only if A/p is an inseparable field extension of k or
e is divisible by the characteristic of k.

4. Lattices and Pairings

For a ring R and an R-module M , we put

M∨ := HomR(M,R).

This is also an R-module, via a ∈ R, f ∈ M∨ 7→ (x ∈ M 7→ af(x)). This is an
additive contravariant functor from the category of left R-modules to itself.

For any R-module M we have a natural map

ιM : M →M∨∨, (x, f) ∈M ×M∨ 7→ f(x) ∈ R.

We say that M is torsionless if ιM is an injection and that M is reflexive if ιM
is an isomorphism.

Lemma 4.17. For an R-module M , the following are equivalent:

(i) M is torsionless.
(ii) There is a set I such that M is a submodule of RI :=

∏
i∈I R.

Proof. Suppose there is an R-module embedding ι : M ↪→ RI for some set
I. For each i ∈ I, let πi : RI → R be projection onto the ith factor and let
ιi := πi ◦ ι ∈ M∨. For x ∈ M•, since ι is an injection there is i ∈ I such that
ιi(x) 6= 0. Thus M is torsionless. Conversely, if M is torsionless then the natural

map M → RM
∨

given by x 7→ (f(x))f∈M∨ is an injection. �

In particular, every submodule of a free module is torsionless.

Lemma 4.18. Let R be a Noetherian domain, and let M be a finitely generated
R-module. The following are equivalent:

(i) M is torsionless.
(ii) M is torsionfree.
(iii) M is a submodule of a finitely generated free module.

Exercise 4.13. Show that the additive group (Q,+) of the rational numbers is
a torsionfree Z-module that is not torsionless.

Exercise 4.14. Let G := ZN be the direct product of countably infinitely many
copies of the Z. Show: G is a torsionless Z-module that is not free.

Exercise 4.15. a) Show: a projective module is torsionless.
b) Show: a submodule of a torsionless module is torsionless.
c) Show: a finitely generated free module is reflexive.
d) Show: a finitely generated projective module is reflexive.
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Let R be a Noetherian domain with fraction field k. For a fractional R-ideal I we
have a canonical isomorphism from (R : I) to I∨: if for x ∈ k we have xI ⊂ R then
x· ∈ I∨. Conversely, let λ ∈ I∨. The map λ extends uniquely to a k-linear map λk
from k to itself: indeed, if x ∈ k, then x = i

r with i ∈ I and r ∈ R• and then we
must take

λk(x) =
1

r
λ(i).

It is easy to see that λk is a well-defined k-linear map. Then λk : k → k is given
by multiplication by α for a unique α ∈ k and thus in (R : I).

For any fractional R-ideal, we put I∗ := (R : I) and I := I∗∗. In this case the
canonical injection on the torsionless R-module I

ιI : I ↪→ I∨∨

is just the injection from I to

I := (R : (R : I)).

Thus I is reflexive if and only if I = I: such ideals are called divisorial. Because
a fractional R-ideal is invertible if and only if it is projective and finitely generated
projective modules are reflexive, we see that invertible ideals are divisorial.

Pairings: let M be an R-module, and let 〈·, ·〉 : M ×M → R be an R-bilinear
map. This induces an R-linear map

ϕ : M →M∨, x 7→ (y 7→ 〈x, y〉)).

We say that the pairing is nondegenerate if ϕ is injective and perfect if ϕ is an
isomorphism. If M is finitely generated and R is a field, then nondegenerate and
perfect are the same; in general they are not. For instance, if R = M = Z then
every bilinear pairing Z× Z→ Z is given by

〈x, y〉 = nxy

for some n ∈ Z. Then the pairing is nondegenerate if and only if n 6= 0 and is
perfect if and only if n ∈ {±1}.

Proposition 4.19. Let M be a free R-module of rank n, and let 〈·, ·〉 : M ×
M → R be a perfect pairing. For each R-basis (e1, . . . , rn) of M there is a unique
basis (e′1, . . . , e

′
n) of M such that

∀1 ≤ i, j ≤ n, 〈e′i, ej〉 = δi,j =

{
1 i = j

0 otherwise
.

LetR be a Noetherian domain with fraction field k, and let V be a finite-dimensional
k-vector space. An R-lattice in V is a finitely generated R-submodule Λ of V
that spans V as a k-vector space: equivalently, the natural map

Λ⊗R k → V, x⊗ α 7→ αx

is an isomorphism.
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4.1. AKLB Applications.

Proposition 4.20. Let R be a domain with fraction field K, let L/K be a
finite degree field extension, and let S be the integral closure of R in L. Then:

a) Every element of L may be written as s
r with s ∈ S and r ∈ R.

b) Thus 〈S〉K = L and L is the fraction field of S.

Proof. Let α ∈ L. By scaling the minimal polynomial of α by an element of
R• we get a polynomial

f(t) = ant
n + . . .+ a1t+ a0 ∈ R[t]

such that an 6= 0 and f(α) = 0. Thus

an−1
n f(

α

an
) = tn + an−1t

n−1 + anan−2t
n−2 + . . .+ an−2

n a1t+ an−1
n a0 ∈ R[t]

is monic and has anα as a root. So anα is integral over R, and thus s := anα lies
in S, the integral closure of A in L and α = s

an
, establishing part a). It follows

immediately that 〈S〉K = L, and then the fraction field of S contains S and in
particular contains R hence also contains the fraction field K of R. So the fraction
field of S is L. �

Theorem 4.21 (Normalization Theorem). Let A be an integrally closed Noe-
therian domain with fraction field K, let L/K be a finite degree separable field
extension, and let B be the integral closure of A in L. Then:

a) B is an A-lattice in L. In particular, B is finitely generated as an A-
module.

b) We have that A is a Dedekind domain if and only if B is a Dedekind
domain.

Proof. Step 1: We write 〈·, ·〉 for the trace pairing on B: 〈x, y〉 := TB/A(xy).
Let x ∈ S. By Corollary 4.11, for all y ∈ B we have 〈x, y〉 = TB/A(xy) ∈ A, which
shows that

B ⊆ B∗.
Step 2: By Proposition 4.20 we know that B spans L as a K-vector space, so B
contains a K-basis (e1, . . . , dn) of L. So

Λ := 〈e1, . . . , en〉A
is an A-lattice in L and Λ ⊆ B. It follows that

B ⊆ B∗ ⊆ Λ∗.

Since Λ∗ is a (free) R-lattice in L, it is finitely generated as an A-module. Since A
is Noetherian, the submodule B is also finitely generated. Thus B is an A-lattice
in L. This completes the proof of part a).
Step 3: Since B is a finitely generated module over the Noetherian ring A, the
A-module B is Noetherian: every submodule is finitely generated. Let I be an
ideal of B. Then I is an B-submodule of B, hence also an A-submodule of B, so I
is finitely generated as an A-module, hence also finitely generated as an B-module,
i.e., finitely generated as an ideal. Thus B is Noetherian. It is integrally closed
by [CA, Cor. 14.11] (which states that the integral closure of a domain in any
field extension is integrally closed.) Since B/A is an integral extension, we have
dimA = dimB [CA, Cor. 14.17]. Thus B is a Dedekind domain if and only if
dimB = 1 if and only if dimA = 1 if and only if A is a Dedekind domain. �



4. LATTICES AND PAIRINGS 63

Splitting of primes: suppose that A is a Dedekind domain with fraction field K,
L/K is a finite degree field extension, and B is the integral closure of A in L. We
assume that B is finitely generated as an A-module, which we just saw happens
when L/K is separable. Let ι : A ↪→ B denote the inclusion map.

If I is a nonzero ideal of A, consider the pushforward

ι∗(I) := IB.

We claim that just because ι is an integral ring extension, if I is a proper ideal of A
then ι∗(I) is a proper ideal of B. Indeed, since I is proper there is a maximal ideal
p of A containing I, and ι∗(I) ⊆ ι∗(p), so it suffices to show that ι∗(p) is proper.
By [CA, Thm. 14.19] the ring Bp = (A \ p)−1B is the integral closure of Ap in L.
If pB = B, then pBp = Bp, which contradicts [CA, Lemma 14.12].

Or better: by [CA, Thm. 14.13] there is a prime ideal P of B such that ι∗P = p.
Then ι∗p = 〈p〉B ⊆ 〈P〉B = P, so is proper.

Standard properties of integral extensions tell us that the pullback maps

ι∗ : SpecB → SpecA, ι∗ : MaxSpecB → MaxSpecA

are both surjective.

Exercise 4.16. Show: ι∗(IJ) = ι∗(I)ι∗(J).

Now suppose that A is a Dedekind domain, hence so is B. Because the pushforward
is multiplicative, we may focus on the case of pushing forward a prime ideal. For
p ∈ MaxSpecA, write

pS = Pe11 · · · Perr .

The exponent ei is called the ramification index of Pi over p and is also denoted
e(Pi|p).

The ideals P1, . . . ,Pr of B are precisely the prime ideals of S that contain p. We
claim that

(ι∗)−1{p} = {P1, . . . ,Pr}.

First, if P ∈ MaxSpecB is such that P ∩ A = p, then P contains p, so P = Pi for
some i. Conversely, for 1 ≤ i ≤ r we have that Pi ∩A is a maximal ideal of A that
contains p, so Pi ∩A = p.

If P lies over p then the kernel of the composite map A ↪→ B → B/P is P ∩A = p,
so we get an induced injection

A/p ↪→ B/P.

Since p and P are both maximal ideals, this is a field homomorphism. Since B is
finitely generated as an A-module, certainly B/P is finitely generated as an A/p
vector space (the images of any set of generators will still generate). We define the
residual degree

fP = f(P|p) := [S/P : R/p].
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Lemma 4.22. Let A be a Dedekind domain with fraction field K, let K ⊂ L ⊂
M be a tower of finite degree field extensions, let B be the integral closure of A in L
and let C be the integral closure of A in M . We suppose that B is finitely generated
as an A-module and C is finitely generated as a B-module.1 Let r ∈ MaxSpecC,
let q := r ∩B and let p := q ∩A. Then:

e(r|p) = e(r|q)e(q|p) and f(r|p) = f(r|q)f(q|p).

Exercise 4.17. Prove Lemma 4.22.

Lemma 4.23. Let R be a Dedekind domain, p ∈ MaxSpecR and e ∈ Z+. Then

dimR/p p
e/pe+1 = 1.

Proof. Let S := R \ p and Rp := S−1R. Then R/p = Rp/pRp and pe/pe+1 =
(pRp)e/(pRp)e+1. So we may replace R with Rp and thereby assume that R is
a DVR, hence a PID. If p = (π), then multiplication by πe gives an R-module
isomorphism from R/p to pe/pe+1. �

Theorem 4.24. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree field extension, let B be the integral closure of A in L, and assume
that B is finitely generated as an R-module. Let p ∈ MaxSpecR.

a) We have dimR/pB/pB = [L : K].
b) We have

∑
P|p ePfP = [L : K].

Proof. Put n := [L : K].
a) Let S := A \ p, and let Ap := S−1A, Bp := S−1B. Then

Ap/pAp = S−1A/(pS−1A) ∼= A/p

and
Bp/pBp = (S−1B)/(pS−1B) ∼= B/pB.

Thus if the result holds for Ap and Bp then it holds for A and B, so we may assume
that A is a PID and thus that B is a free A-module of rank n. Then as A-modules
we have

pB ∼= pAn = (pA)n,

so
B/pB ∼= (A/pA)n,

giving the result.
b) As in part a), we may assume that A is a DVR and thus B is a semilocal
Dedekind domain, hence a PID. Write

pB = Pe11 · · · Pegg .
By the Chinese Remainder Theorem we have

B/pB = B/

g∏
i=1

Peii ∼=
g∏
i=1

B/Peii .

By part a) we have

n = [L : K] = dimA/pB/pB =

g∑
i=1

dimA/pB/Peii .

1It follows that C is finitely generated as an A-module.
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Now consider
B ⊇ Pi ⊇ P2

i ⊇ . . . ⊇ P
ei
i .

By Lemma 4.23, each successive quotient Pai /P
a+1
i is a one-dimensional B/Pi-

vector space, hence an fPi
-dimensional A/p-vector space. It follows that

dimA/pB/Peii = eifPi

so

n =

g∑
i=1

eifPi
. �

Under the hypotheses of Theorem 4.24 let us introduce some further terminology:

• We say L/K is totally ramified at P if eP = [L : K].
• We say L/K is unramified at P if eP = 1 and (B/P)/(A/p) is separable.
• We say L/K is unramified over p if every P lying over p is unramified. This
holds if and only if B/pB is an étale A/p-algebra.
• We say p is inert in L if L/K is unramified over p and pB is a prime ideal.
• We say p splits completely in L if there are [L : K] primes of B lying over p.

Example 4.25. Let l/k be an inseparable field extension of finite degree n, let
A := k[t], a PID with fraction field K = k(t). Let L = l(t). The integral clousre
of A in L is B = l[t]. Then an l-basis for k is a basis for B as an A-module. Let
p = (t). Then pB = tB is still prime. We have A/p = k and B/pB = l. So p is
ramified in L/K even though there is a unique prime of B lying over p.

Exercise 4.18. Show: if p in A splits completely in B, then L/K is unramified
over p.

Example 4.26. Let A be a domain with fraction field K, let L/K be a purely
inseparable algebraic extension (possibly of infinite degree), and let B be the integral
closure of A in L. Then for any p ∈ SpecR there is a unique prime of S lying over
p, namely

rad(pB) := {x ∈ B | xn ∈ pB for some n ∈ Z+}.
This is [CA, Lemma 14.20].

5. The Discriminant

Let A be a Dedekind domain with fraction field K, let L/K be a finite degree
separable field extension, and let B be the integral closure of A in L. Let 〈·, ·〉 be
the trace form for L/K: that is, for x, y ∈ L, we put

〈x, y〉 := T (xy) ∈ K.
For x1, . . . , xn ∈ L, we put

δ(x1, . . . , xn) := det〈xi, xj〉.

Exercise 4.19. Show: for x1, . . . , xn we have δ(x1, . . . , xn) 6= 0 if and only if
x1 . . . , xn are linearly independent over R.

Since A is integrally closed, the quadratic lattice B is integral : 〈B,B〉 ⊆ A. It
follows that for any integral A-lattice Λ in B, for the discriminant δΛ of Λ (cf. §3.5)
we have

δΛ ∈ IntA.



66 4. ALGEBRAIC NUMBER THEORY IN DEDEKIND DOMAINS

Especially, we define the discriminant ideal δB/A to be δB .

Proposition 4.27. Let L/K be a separable field extension of degree n, and let
K/K be a field extension containing a Galois closure of L: equivalently, for which
there are distinct elements σ1, . . . , σn ∈ HomK(L,K).

a) For a1, . . . , an ∈ L we have

δ(a1, . . . , an) = (detσi(aj))
2
.

b) For x ∈ L we have

δ(1, x, x2, . . . , xn−1) =
∏

1≤i<j≤n

(σi(x)− σj(x))
2
.

Proof. Part a) essentially repeats (7). Part b) follows from part a) using the
Vandermonde determinant. �

Proposition 4.28. Let S ⊆ A be a multiplicative subset. Then

S−1δB/A = δS−1B/S−1A.

Proof. If x1, . . . , xn ∈ B then δ(x1, . . . , xn) is an element of both δB/A and
of δS−1B/S−1A. Thus

S−1δB/A = 〈δ(x1, . . . , xn) | x1, . . . , xn ∈ B〉S−1A ⊆ δS−1B/S−1A.

Conversely, if y1, . . . , yn ∈ S−1B then there is s ∈ S such that syi ∈ B for all i.
Then

δ(y1, . . . , yn) = s−2nδ(sy1, . . . , syn) ∈ S−1δB/A,

so δS−1B/S−1A ⊆ S−1δB/A. �

Theorem 4.29. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, and let B be the integral closure of A in
L. Let δ be the discriminant ideal of B/A. For p ∈ MaxSpecR, the following are
equivalent:

(i) The prime p ramifies in L.
(ii) We have p | δ.

Proof. Both conditions are local on A: that is, we may replace A with Ap

and B with Bp := B ⊗A Ap. Now A is a DVR and B is a free A-module. Because
of the compatibility of the trace form with base change, we have that p | δ if and
only if the trace form on the A/p-algebra B/pB has discriminant 0. Let us put
k(p) := A/p. Since k(p) is a field, by Theorem 4.3 the discrminant of B/pB is 0 if
and only if B/pB is not an étale k(p)-algebra. We may factor

pB = Pe11 · · · Perr ,
and then

B/pB ∼= B/

r∏
i=1

B/Peii ∼=
r∏
i=1

B/Peii .

A finite product of k-algebras is étale if and only if each factor is étale. For B/Peii
to be étale, it must be reduced, which holds iff ei = 1. The B/Pi is an étale
k(p)-algebra if and only if the extension is separable. Thus p - δ if and only if each
ramification index equals 1 and each residual extension (B/Pi)/k(p) is separable,
which is precisely the definition for p to be unramified in L. �
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6. The Ideal Norm

Let A be a Dedekind domain with fraction field K, let L/K be a degree n separa-
ble field extension, and let B be the integral closure of A in L, so B is a Dedekind
domain and finitely generated as an A-module. Let ι : A ↪→ B be the inclusion map.

As for any inclusion ι : A ↪→ B of domains, we have a group homomorphism
ι∗ : FracA→ FracB defined by

ι∗(I) := BI = I ⊗A B.

We will now define a group homomorphism

N : FracB → FracA

in the other direction. Because FracB is a free Z-module with basis MaxSpecB,
we may freely define N(P) for all P ∈ MaxSpecB and this extends to a unique
group homomorphism. The most obvious such map is probably the one that sends
P to the unique prime p of A that lies below it. However, we will make a different
choice (and explain why!).

Let J be a nonzero integral ideal of B. We claim that B/J is a finitely gen-
erated torsion A-module. Indeed, if J = P1 · · · Pr for not necessarily distinct
Pj ∈ MaxSpecB, then

J ∩A ⊇ (P1 ∩A) · · · (Pr ∩A),

which is a nonzero ideal of A, so B/J is a finitely generated A/(J∩A)-module, hence
a finitely generated torsion A-module. Therefore we may take the characteristic
ideal of B/J as an A-module, which we write as χA(B/J). By definition, this is
the ideal norm of J :

N(J) := χA(B/J).

It is sometimes convenient for bookkeeping to also define the norm of the zero ideal:
as you surely suspected, we will put

N((0)) := (0).

Lemma 4.30. For any nonzero ideals I and J in a Dedekind domain A, we
have I/(IJ) ∼=A A/J .

Proof. Both sides are A/J-modules, so if we factor J = pa11 · · · parr , they are
also modules over the semilocalization Ap1,...,pr

. Thus we may assume that A is a
PID, and in this case the result is easy: if I = (α) then multiplication by α gives
an isomorphism from A/J to I/(IJ). �

Proposition 4.31. For any nonzero ideals J1, J2 of B, we have

N(J1J2) = N(J1)N(J2).

Proof. We have a short exact sequence of finite length A-modules

0→ J2/(J1J2)→ B/(J1J2)→ B/J2 → 0,

so χA(B/J1J2) = χA(J2/(J1J2))χA(B/J2). By Lemma 4.30 we know that J2/(J1J2)
and B/J1 are isomorphic B-modules, so certainly they are isomorphic A-modules.
Thus χA(J2/(J1J2) = χA(B/J1), and the result follows. �
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So far we have defined the ideal norm as a map from integral B-ideals to integral
A-ideals. We want to extend this to a map

N : FracB → FracA.

There are two very reasonable ways to do this:
(1) For nonzero integral ideals I, J of B, we put

(12) N(IJ−1) :=
N(I)

N(J)
.

Indeed, by Proposition 4.31, the ideal norm on integral ideals is a homomorphism
from the monoid IntB of nonzero integral ideals of B under multiplication to the
monoid IntA of nonzero integral ideals of A. For a Dedekind domain A, the monoid
IntA of nonzero A-ideals under multiplication is the free commutative monoid on
MaxSpecA and FracA is its group completion, the free commutative group on
MaxSpecA. From this it follows easily that there is a unique way to extend any
monoid homomorphism IntB → IntA to a group homomorphism FracB → FracA:
namely, as we did above.

(2) For a fractional ideal J of B, we may view B and J as A-lattices in the K-vector
space L and take their Fröhlich invariant χA(B/J).

Happily, (1) and (2) turn out to be the same. For notational simplicity, let us
define the ideal norm of a fractional ideal via (12). Then:

Proposition 4.32. Let J ∈ FracB. Then N(J) = χA(B/J).

Proof. This is the definition of N(J) for integral ideals J . If J is a fractional
B-ideal, let α ∈ A• be such that I := αJ ⊆ B, so J = I(α)−1. We observe that
N((α)) = (α)n: indeed, by localizing we can reduce to the case that A is a PID
and then if e1, . . . , en is an A-basis for B, then αe1, . . . , αen is an A-basis for αB,
so B/αB ∼=

⊕n
i=1A/(α). Then we have

χA(B/J) = (α)−nχ(B/αJ) = N(αB)−1N(αJ) =
N(I)

N(αB)
. �

Let us introduce a different notion of an ideal norm. If R is a ring and I is an ideal
such that R/I is finite, we put

||I|| := #R/I.

When A = Z there is a close realtionship between these two norms. In this case
B = ZL is the ring of integers of the number field L. Since the characteristic ideal
of a finite length Z-module M is the principal ideal generated by #M , we find:

∀J ∈ IntZL, N(J) = ||J ||.
The latter ideal norm ||J || – when it is different from N(J) – will make only very
sporadic appearances in these notes (e.g. in our discussion of the Chebotarev
Density Theorem in the function field case). But while we are here, let us record
one result about it.

Theorem 4.33 (Samuel [Sa71]). Let R be a Noetherian ring, and let n ∈ Z+.
The set of ideals I of R with ||I|| = n is finite.

Proof. See [CA, Thm. 22.3]. �
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Now let us compute the ideal norm more concretely. As above, multiplicativity
reduces us to the case of N(P) for P ∈ MaxSpecB. In this case, p := P ∩ A is a
prime ideal of A, so B/P is a finite-dimensional A/p-vector space, so

χ(B/P) = pdimA/p B/P = pfP|p .

Corollary 4.34. If [L : K] = n, then for all I ∈ FracA we have N(ι∗(I)) =
In.

Proof. Both sides of N(ι∗(I)) = In are multiplicative in I, so it is enough
to consider the case of a prime ideal p of A. Then ι∗(p) = Pe11 · · · Perr . Fo each

1 ≤ i ≤ r we have N(P) = pf(P|p), so using Theorem 4.24b), we get

N(ι∗(p))) =

r∏
i=1

peP|pfP|p = p
∑r

i=1 e(P|p)f(P|p) = pn. �

We now give still another interpretation of the ideal norm in terms of the norm
NL/K of the field extension L/K. First:

Proposition 4.35. Let β ∈ L. Then N((β)) = NL/K(β).

Proof. We have N((β)) = χA(B/(βB)). Since βB is the image of the lattice
B under the linear transformation β·, by Proposition 3.6 we have

χA(B/(βB)) = (detβ·) = NL/K(β). �

Proposition 4.35 shows in particular that using the notation N for the ideal norm
is not as “overloaded” as it first appeared.

If A is a DVR, then B is a PID, so every fractional ideal is principal. In gen-
eral, like any ideal in a Dedekind domain, the ideal norm can be computed locally,
and this leads to the following result.N(

Theorem 4.36. Let J ∈ FracB. Then

N(J) = 〈NL/K(β) | β ∈ J〉A.

Proof. Let I be the A-module generated by NL/K(β) for β ∈ J , so we want

to show that I = N(J). If we write I =
∏

p p
ap and N(J) =

∏
p p

bp then we want
to show that ap = bp for all p or, equivalently, that for all p ∈ MaxSpecA we have
Ip = N(J)p as ideals of Ap. Note that

Ip = 〈NL/K(β) | β ∈ J〉Ap
= 〈NL/K(β) | β ∈ Jp〉Ap

and N(J)p = N(Jp). Since Bp is a PID, Jp is principal, say, Jp = (πp), and then
N(Jp) = 〈NL/Kπp〉Ap

, which shows that N(Jp) ⊆ Ip. On the other hand, every
β ∈ Jp is therefore of the form πpγp for some γp ∈ Bp, and thus NL/K(β) =
NL/K(πp)NL/K(γp) ∈ 〈NL/K(πp)〉Ap

= N(J)p, so Ip ⊆ N(Jp). �

7. Dedekind-Kummer and Monogenicity

7.1. Dedekind-Kummer Version 1.

Exercise 4.20. Let R be a Dedekind domain with fraction field K, let V be a
finite-dimensional K-vector space. Let Λ1,Λ2,Λ3 be three lattices in V . Suppose:

(i) We have Λ2 ⊆ Λ3.
(ii) We have χ(Λ1,Λ2) = χ(Λ1,Λ3).
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Then Λ2 = Λ3.

Exercise 4.21. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree separable field extension, and let B be the integral closure of A in L.
Let I and J be nonzero ideals of B. Suppose that I ⊆ J and N(I) = N(J). Show:
I = J .

Theorem 4.37 (Dedekind-Kummer, Take 1). Let A be a Dedekind domain with
fraction field K, let L/K be a degree n separable field extension, and let B be the
integral closure of A in L. We suppose that there is α ∈ B such that B = A[α].
Let f ∈ A[t] be the minimal polynomial of α. Then: for p ∈ MaxSpecA, let

f =

r∏
i=1

gi
ei

be the factorization of the image f of f in A/p[t]. For 1 ≤ i ≤ r, let gi be any lift
of gi to a monic polynomial in A[t], and put

Pi := 〈p, gi(α)〉.
Then each Pi is a maximal ideal of B, we have

pB =

r∏
i=1

Peii

and we have B/Pi ∼= A[t]/gi. In particular, we have f(Pi|pi) = deg(gi).

Proof. Step 1: Since B = A[α] ∼= A[t]/(f), we have

B/Pi = A[α]/〈p, gi(α) ∼= A[t]/〈f, p, gi〉 ∼= (A/p)[t]/〈f, gi〉 ∼= (A/p)[t]/(gi).

Now p is a maximal ideal of A, so A/p is a field, so (A/p)[t] is a PID and thus
the irreducible polynomial gi generates a maximal ideal in it. This shows that Pi
is a maximal ideal of B, and evidently it contains p. Moreover it is clear that the
residual degree f(Pi|p) = [(A/p)[t]/(gi) : A/p] = deg gi.
Step 2: We claim that pB divides

∏r
i=1 P

ei
i . Indeed, we have

r∏
i=1

Peii =

r∏
i=1

〈p, gi(α)〉ei =

r∏
i=1

(pB + (gi(α))ei .

When we multiply out this product, it is clear that every term is divisible by p,
except possibly for the term in which p does not appear, but this latter term is

r∏
i=1

(gi(α)ei) ≡ (f(α)) ≡ 0 (mod pB).

Step 3: We now know that pB ⊃
∏r
i=1 P

ei
i . To show equality it suffices to show

that N(
∏r
i=1 P

ei
i ) = pn, since then N(

∏r
i=1 P

ei
i ) = pn = N(pB), so pB =

∏r
i=1 P

ei
i

by Exercise 4.21.
So: we have

N(

r∏
i=1

P〉ei) = p
∑r

i=1 f(Pi|p)ei = p
∑r

i=1 ei deg gi = pdeg f = pn. �.

Let us give some applications.

Example 4.38. Let D ∈ Z• be a squarefree integer that is not a square, and
let K = Q(

√
D).
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a) Suppose D ≡ 2, 3 (mod 4). Then ZK = Z[
√
D], and the discriminant is

∆ = 4D. The minimal polynomial of
√
D is f(t) = t2 −D. Let p ∈ Z be

a prime number. By Dedekind-Kummer:
• If ∆ is a nonzero square modulo p, then let u ∈ (Z/pZ)2 by such that
u2 = ∆. Then f factors mod p as (t+ u)(t− u). By Dedekind-Kummer,

(p) splits in ZK into two primes P1 = 〈p,
√
D + u〉, P2 = 〈p,

√
D − u〉.

• If ∆ is not a square modulo p, then t2 −D remains irreducible modulo
p, so p is inert in ZK . Notice that Dedekind-Kummer says that the ideal

over p is generated by p and
√
D

2−D, but of course the latter element is
0, so the ideal is generated by p: that’s what inert means.
• If p | ∆, then f factors modulo p as t2. The unique prime P of ZK over

(p) is P := 〈p,
√
D〉.

b) Suppose D ≡ 1 (mod 4). Then ZK = Z[α] where α = 1+
√
D

2 , and the

discriminant is ∆ = D. The minimal polynomial of α is f(t) = t2 +
t + 1−D

4 . Let p be an odd prime number. Since the discriminant of this
polynomial is D, this goes much the same as in the previous part:
• If D is a nonzero square modulo p, then (p) splits into P1 = 〈p, t + u
and P2 = 〈p, t− u〉, where u is a root of t2 + t+ 1−D

4 modulo p.
• If D is not a square modulo p, then (p) is inert in ZK .
• If p | D, then let r ∈ Z be such that modulo p we have t2 + t + 1−D

4 =

(t− r)2. Then (p) = P2, where P = 〈p, α− r〉.

Exercise 4.22. Let D 6= 1 be a squarefree integer such that D ≡ 1 (mod 4),

and let K = Q(
√
D. Show:

a) If D ≡ 1 (mod 8), then 2 splits in ZK .
b) If D ≡ 5 (mod 8), then 2 is inert in ZK .

Example 4.39. Let A be a PID with fraction field K, let L/K be a separable
quadratic field extension, and let B be the integral closure of A in L. I claim that
B/A is a free A-module (necessarily of rank 1): if not, there is x ∈ B \ A and
a ∈ A• such that ax ∈ A. But then x ∈ 1

aA ⊆ K and also is integral over A; since
A is integrally closed, we get x ∈ A, a contradiction. Let α be the lift of a generator
of B/A to A. Then B = A[α], so B is monogenic. Let f(t) = t2 + bt + c ∈ A[t]
be the minimal polynomial for α, and let ∆ = b2 − 4c. Let p = (p) ∈ MaxSpecA.
Then if ∆ is a nonzero square in A/(p), then (p) splits in B, if ∆ is not a square
in A/(p), then (p) is inert in B, and if p | ∆ then p ramifies in B.

Example 4.40. Let N ∈ Z≥3. Let ζN = e2πi/N and put K := Q(ζN ), the N th
cyclotomic field. By [FT, Thm. 9.8], the minimal polynomial for ζN is ΦN (t), the
monic polynomial whose roots are the primitive N th roots of unity. We will use the
fact that ZK = Z[ζN ]. Thus the factorization of a prime ideal (p) of Z corresponds
to the factorization of ΦN modulo p. In particular:
• Suppose p ≡ 1 (mod N). Then N | (p−1), so the cyclic group F×p has an element
of order N , or in the other words, the fiinite field Fp contains a primitive N th root
of unity, so ΦN (t) splits completely modulo p and thus (p) splits in ZK .
• Conversely, let p - N . Then ΦN (t) is separable in Fp. If it splits completely, then
the primitive N th roots of unity live in Fp, so N | p− 1, so p ≡ 1 (mod N). Thus
a prime p splits completely in ZK iff p ≡ 1 (mod N).
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• If p | N , there is no primitive pth root of unity in Fp, hence no primitive N th
root of unity in Fp. Thus Φn(t) is not separable in Fp[t], so p ramifies in ZK .

The obvious limitation in Theorem 4.37 is the assumption that B = A[α] for some
α ∈ B: when this holds for a ring extension B/A, we say that B is monogenic over
A. One might at first think that this monogenicity is automatic: after all, it is for
a finite separable field extension L/K, as part of the Primitive Element Theorem.
But such an extension B/A of Dedekind domains need not be monogenic, even
when A is a PID. The following result allows for the production of a large class of
counterexamples.

Proposition 4.41. Let A be a Dedekind domain with fraction field K, let L/K
be a degree n separable field extension, and let B be the integral closure of A in L.
Suppose that there is p ∈ MaxSpecR with the following properties:

(i) The residue field A/p is finite, say of order q.
(ii) There are more than q prime ideals P of B such that P lies over p and

f(P|p) = 1.

Then B is not monogenic over A.

Proof. The idea is simple: seeking a contradiction, we suppose that B =
A[α] ∼= A[t]/(f) for an irreducible monic polynomial f . Applying Theorem 4.37
and hypotheses (i) and (ii), we will get a contradiction.

Indeed, let f be the image of f in the polynomial ring (A/p)[t]. By Theorem
4.37, the primes P of B lying over p are in bijection with the distinct irreducible
factors g of f and moreover we have f(P|p) = deg g. It follows then that the degree
1 primes lying over p – i.e., the primes P with f(P|p) = 1 – are in bijection with
the distinct linear factors of f . Because A/p is finite of cardinality q, every such
linear factor is of the form t − α for some α ∈ A/p, so there are at most q such
factors....contradicting (ii). �

If we apply Proposition 4.41 with A = Z, we find: if K is a number field of degree n
and p is a prime number such that ZK has more than p degree 1 primes lying over
p, then ZK is not monogenic. The number of degree 1 primes is certainly at most n,
so in order for this strategy to succeed we need n ≥ p+ 1 ≥ 3. Using the methods
of Number Theory II one can prove that such examples bound: e.g. for any prime p
and n, r ∈ Z+ such that 1 ≤ r ≤ n, there is a degree n number field K for which ZK
has precisely r degree 1 primes lying over (p), so if r > p then ZK is not monogenic.

To give “Number Theory I” examples we will borrow from the following fact that
will be covered later on: let A be a Dedekind domain with fraction field K, let L1

and L2 be finite degree separable field extensions inside an algebraic closure K of
K, and let L be the compositum L1L2. For i = 1, 2 let Bi be the integral clousre
of A in Li, and let B be the integral closure of A in L. Suppose p ∈ MaxSpecA
splits completely in both B1 and in B2. Then p splits completely in B.

We can apply this to show that various biquadratic number fieldsKd1,d2 := Q(
√
d1,
√
d2)

are not monogenic. First suppose that d1 and d2 are distinct squarefree integers,
each different from 1, such that d1 ≡ d2 ≡ 1 (mod 8). By Exercise 4.22, 2 splits
in both Q(

√
d1) and Q(

√
d2), so by the above observation, 2 splits completely in

Kd1,d2 . Thus ZKd1,d2
has 4 > 2 degree 1 primes lying over (2), so by Proposition
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4.41, the Dedekind domain ZKd1,d2
is not monogenic over Z.

Now replace the congruence condition d1 ≡ d2 ≡ 1 (mod 8) by d1 ≡ d2 ≡ 1
(mod 3). Then 3 splits in both Q(

√
d1) and Q(

√
d2), so 3 splits completely in

Kd1,d2 . Thus ZKd1,d2
has 4 > 3 degree 1 primes lying over (3), so by Proposition

4.41, the Dedekind domain ZKd1,d2
is not monogenic over Z.

7.2. A Supplement to Dedekind-Kummer. The material of this section
comes from [Se:CL, Ch. III].

Proposition 4.42. Let R be a DVR with maximal ideal m and residue field k.
Let f ∈ R[t] be monic of positive degree, and put

S := R[t]/(f).

Then S is a semi-local ring, and its maximal ideals are obtained as follows: let f be
the image of f in k[t], and factor it: f = pe11 · · · perr with p1, . . . , pr ∈ k[t] distinct
monic irreducible polynomials. For each 1 ≤ i ≤ r, choose gi ∈ R[t] that lifts pi
(i.e., so that the reduction of gi modulo m is pi). For 1 ≤ i ≤ r, put

Pi := 〈m, gi〉.
Then MaxSpecS = {P1, . . . ,Pr}.

Proof. For 1 ≤ i ≤ r, we have

S/Pi = R[t]/〈m, f, gi〉 = k[t]/(pi)

is a (finite degree) field extension of k, so Pi is a maximal ideal of S. The ideals
P1, . . . ,Pg are precisely the maximal ideals of S that contain mS. We claim that
these are all the maximal ideals of S. To see this, let P be any maximal ideal of S. If
P did not contain mS, then we would have P+mS = S; since S is finitely generated
as a module over the local ring (R,m), Nakayama’s Lemma implies P = S, a
contradiction. �

Lemma 4.43. Let R be a commutative ring, let f ∈ R[t], and let a ∈ R. There
is a unique g ∈ R[t] such that

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

Proof. By the universal property of polynomial rings, there is a unique R-
algebra homomorphism Ψ : R[t] → R[t] that maps t to t − a. Clearly the unique
homomorphism that maps t to t + a is its inverse, so Ψ is an isomorphism. In
particular, it is an R-module isomorphism, so it carries the R-basis {tn | n ∈ N} to
the R-basis {(t− a)n | n ∈ N}. Thus there unique {bn}∞n=0 in R, all but finitely of
which are zero, such that

f =

∞∑
n=0

bn(t− a)n = b0 + b1(t− a) + (t− a)2
∞∑
n=2

bn(t− a)n−2.

Evaluating at a we find b0 = f(a). Differentiating and then evaluating at a we find
that b1 = f ′(a). Taking g :=

∑∞
n=2 bn(t− a)n−2, we get

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

The polynomial g has to be unique, for if another polynomial h worked in its place
we would have (t − a)2(g(t) − h(t)) = 0, but the monic polynomial (t − a)2 is not
a zero divisor in R[t]. �
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Let R be a Dedekind domain with fraction field K, let L/K be a finite degree
field extension, and let S be the integral closure of R in L. We say that S/R is
monogenic if there is α ∈ S such that S = R[α]. (In particular this implies that
S is finitely generated as an R-module, which is always true if L/K is separable
but need not hold in general.) In a “global” context, monogenicity is a sensitive
issue: it is far from guaranteed that e.g. the ring of integers of a number field
is monogenic over Z. (In this classical context, instead of monogenicty one often
speaks in terms of the existence of a power basis.) However, in the local context
monogenicity is much easier: the following result shows in particular that if R is a
complete discrete valuation ring with perfect residue field then S/R is monogenic
for every finite degree separable field extension L/K. In particular, the ring of
integers of every p-adic field is monogenic over Zp.

Theorem 4.44. Let R be a DVR with fraction field K. Let L/K be a separable
finite degree field extension, and let S be the integral closure of R in L. We assume:

(i) S is a DVR; and
(ii) the residual extension l/k is separable.

Then S is monogenic over R.

Proof. Let p be the maximal ideal of R and P be the maximal ideal of S,
and let π be a uniformizer of S. Let e = e(L/K), so pS = (πe). Let k := R/p
and l := S/P, so f = [l : k]. By Theorem 4.24 we have ef = [L : K]. Since l/k
is assumed separable, by the Primitive Element Theorem there is x ∈ l such that
l = k[x]. Let x be a lift of x to S.
Step 1: We claim that {xiπj}0≤i<f, 0≤j<e span S as an R-module.2 By Nakayama’s
Lemma it is enough to show that their images in S/pS span it as an R-module.
Since pS = πeS, it is enough to show that for all 0 ≤ m < e, if the elements span
S/πmS then they span S/πm+1S. For m = 0, we have S/πS = l, so certainly
the elements 1, x, . . . , xf−1 span. Inductively we assume that for 1 ≤ m < e the
elements xiπj with 0 ≤ j < m span S/πmS, and let x ∈ S. Then by assumption
there are ri,j ∈ R and y ∈ S such that

x−
∑
i,j

ri,jx
iπj = πmy.

There are a0, . . . , af−1 ∈ R such that y −
∑
i aix

i ∈ πS. Thus

x−
∑
i,j

ri,jx
iπi −

f−1∑
i=0

aix
iπm ∈ πm+1S.

Step 2: We claim that we may choose x such that there is g ∈ R[t] monic of degree
f such that g(x) is a uniformizer of S.
Proof: Start first with g ∈ R[t] monic that reduces to the minimal polynomial of x
over k. Let w be the normalized valuation on L, so w(g(x)) ≥ 1. If w(g(x)) = 1,
we have found our g. Otherwise w(g(x)) ≥ 2. Let π be a uniformizer for L. By
Lemma 4.43 there is s ∈ S such that

g(x+ π) = g(x) + πg′(x) + π2s.

2Since L/K is separable, S is free of rank n as an R-module. By [CA, Thm. 3.44], the claim
implies that {xiπj} − 0 ≤ i < f, 0 ≤ j < e in fact form an R-basis of S.
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Since l/k is separable, we have g′(x) 6= 0, so w(πg′(x)) = 1 and thus w(g(x+π)) = 1.
Thus x+ π is an acceptable choice of x.
Step 3: Choose x as in Step 2 and put π := g(x). By Step 1, the elements
{xig(x)j}0≤i<f, 0≤j<e span S over R. Thus S = R[x]. �

8. The Different

Throughout this section we will maintain the following setup: let A be a Dedekind
domain with fraction field K, let L/K be a finite degree separable field extension,
and let B be the integral closure of A in L.

During the proof of Theorem 4.21 we observed that B∗ is an A-lattice in L and

B ⊆ B∗.
We make the following additional observation:

Lemma 4.45. B∗ is a fractional B-ideal.

Proof. It is enough to check that BB∗ ⊆ B∗: for then B∗ is a B-submodule
of L that is finitely generated as an A-module, hence certainly finitely generated as
a B-module, and thus it is a fractional B-ideal.

Let x ∈ B and y ∈ B∗. We need to check that for all z ∈ B, TL/K(xyz) ∈ A.
Now TL/K(xyz) = TL/K((zx)y) ∈ A since zx ∈ B and y ∈ B∗. �

Since B∗ is a fractional B-ideal containing B, when we factor it as
∏

paii all the
nonzero exponents are negative. Therefore its inverse is a proper B-ideal: we call
it the different of S over R:

∆B/A := (B∗)−1.

Proposition 4.46. Let A be a Dedekind domain with fraction field K, let
K ⊆ L ⊆M be a tower of finite degree field extensions, let B be the integral closure
of A in L and let C be the integral closure of A in M (C is also the integral closure
of B in M). Then we have

∆C/A = ∆B/A∆C/B .

Proof. See [N, pp. 195-196]. �

Proposition 4.47. Let S ⊆ A be a multiplicative subset. Then we have

S−1∆B/A = ∆S−1B/S−1A.

Proof. Both inverses and duals are compatible with localization. �

Theorem 4.48. We have

δB/A = NB/A(∆B/A).

Proof. Using Corollary 3.15 and Proposition 4.32, we get

δB/A = χA(B∗/B) = χA(B/B∗)−1 = N(B∗)−1 = N((B∗)−1) = N(∆B/A). �

Lemma 4.49. For a nonzero ideal I of B, we have I | ∆B/A if and only if

TrL/K(I−1) ⊆ A.

Proof. We have I | ∆B/A if and only if I ⊇ ∆B/A if and only if I−1 ⊆ B∗. if

and only if TrL/K(I−1) = TrL/K(I−1B) ⊆ A. �
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Theorem 4.50 (Dedekind’s Different Theorem). Let P ∈ MaxSpecB lie over
p ∈ MaxSpecA. Let e = e(P|p). Then:

a) If e /∈ p and (B/P)/(A/p) is separable, then ordP(∆B/A) = e− 1.
b) If e ∈ p or (B/P)/(A/p) is inseparable, then ordP(∆B/A) ≥ e.

Proof. We may localize and thus assume that A is a DVR. Write p = (p).
We observe that to establish a) and b) it suffices to show:

(13) Pe−1 | ∆B/A

and

(14) Pe | ∆B/A ⇐⇒ e ∈ p or (B/(P))/(A/p) is inseparable.

Step 1: We will show (13). For this, write

pB = Pe−1a.

Since by definition e = ordP(pB), we still have P | a. By Lemma 4.49 it suffices to
show that TrL/K(P−(e−1)) ⊆ A. Since

P−(e−1) =
1

p
a,

we have TrL/K(P−(e−1)) ⊆ A if and only if

TrL/K(a) ⊆ pA.
Let α ∈ a. Then TrL/K(α) = TrB/A(α) and

TrB/A(α) (mod (p)) = Tr(B/pB)/A/(p)(α).

Since pB = pB and a are divisible by the same prime ideals of B, they have the same
radical: rad(pB) = rad(a). It follows that there is N ∈ Z+ such that αN ∈ pB, so
α is a nilpotent element of B/pB, so its trace is 0.
Step 2: We will show (14). Write p = Peb, so P - b. As above, we have that
Pe | ∆B/A if and only if Tr(b) ⊆ pA if and only if:

∀β ∈ b, Tr(B/pB)/A/pA(β) = 0.

In what follows, all our traces will have bottom ring the field A/pA, so if X is
a finite-dimensional commutative A/pA-algebra and x ∈ X, we will simplify the
notation by writing TX(x) instead of TrX/(A/pA)(x).

Since the ideals Pe and b are coprime, the Chinese Remainder Theorem gives
B/pB ∼= B/Pe×B/b and thus for all x = (x1, x2) ∈ B/pB = B/Pe×B/b we have

TB/pB(x) = TB/Pe(x1) + TB/b(x2).

Of course if x ∈ b and we write x = (x1, x2), then x2 = 0. It follows that for all
x ∈ b we have

TB/pB(x) = TB/Pe(x1) = TB/Pe(x).

Moreover, for all y ∈ B, there is x ∈ B such that

{
x ≡ y (mod Pe)
x ≡ 0 (mod b)

, so

TB/Pe(y) = TB/Pe(x) = TB/pB(x).

Thus we conclude that

TB/π(b) = 0 ⇐⇒ TB/Pe(B/Pe) = 0.
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Now B/Pe is a local principal Artinian A/p-algebra, so by Exercise 4.12 its trace
map is identically 0 if and only if the residue extension (B/P)/(A/p) is inseparable
or e is divisible by the characteristic of A/p; the latter holds if and only if e ∈ p. �

Corollary 4.51. Let P ∈ MaxSpecB lie over p ∈ MaxSpecA. Then:

a) We have that P ramifies if and only if P | ∆B/A.
b) We have that p ramifies if and only if p | δB/A.

Proof. Part a) follows from Dedekind’s Different Theorem. As for part b),
because NB/A(∆B/A) = δB/A, the primes of A that divide δB/A are precisely the
primes p that lie under a prime P of B that divides ∆B/A, which by part a) are
precisely the primes of A lying under ramified primes of B, which are (by definition!)
precisely the ramified primes of A. �

Remark 4.52. The argument that a) =⇒ b) in Corollary 4.51 can be reversed
to show that b) =⇒ a) if we moreover assume that P is the only prime of B that
lies over A. This does not seem like an especially helpful remark, but actually it
is: in Number Theory II one introduces completions, and then it is easy to check
that just as the different is compatible with localization, it is also compatible with
completion, so one can assume that A is a complete DVR. This forces B to also
be a (complete) DVR: i.e., there is only one prime lying over p. This is the way
Sutherland proves Corollary 4.51 in his notes.

Corollary 4.53. Let A be a Dedekind domain with fraction field K, let L/K
be a degree n separable field extension, and let B be the integral closure of A in L.
Let p ∈ MaxSpecA, and write

pB = Pe11 · · · Perr , fi = f(Pi|p).
Then:

a) We have

(15) vp(δK) ≥ n−
g∑
i=1

fi.

b) Equality holds in (15) if and only if p - e1 · · · er and each residue extension
(B/Pi)/(A/p) is separable.

Proof. By Theorem 4.50, we have Pe1−1
1 · · · Per−1

r | ∆K . The discriminant is
the norm of the different, so we find that δB/A is divisible by

pf1(e1−1)+...fr(er−1) = p
∑r

i=1 eifi−
∑r

i=1 fi = pn−
∑r

i=1 fi .

Moreover, according to Theorem 4.50, we get no further p-divisibility if and only if
no ramification index is divisible by p and every residual extension is separable. �

Dedekind’s Different Theorem is a very useful tool in computational number theory.
Here is an example due to K. Conrad:

Example 4.54. Let K = Q( 3
√

2). There is an obvious Z-order in K, namely

O = Z( 3
√

2). We will show that O = ZK . Since O ∼= Z[t]/(t3 − 2), the dicriminant
of O is Res(f, f ′) = −108 = −4 ·27. We will show that |δZK

| = 108: then O = ZK .
Since δZK

| 108, the only primes that could ramifiy in K are 2 and 3. In fact 2
and 3 are each totally ramified in K:

(2) = (
3
√

2)3.
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To see that 3 is totally ramified, put

α :=
3
√

2 + 1, u :=
3
√

4 +
3
√

2 + 1.

Since u( 3
√

2− 1) = 1, u ∈ O×. Moreover

α3 = 3(α2 − α+ 1) = 3(
3
√

4 +
3
√

2 + 1),

so (α)3 = 3. By Dedekind’s Different Theorem, the unique prime of K lying over 2
contributes a factor of 22 to δK and the unique prime of K lying over 3 contributes
at least a factor of 33 to δK , so δK is divisible by 108.

Exercise 4.23. Let K be a field, let f ∈ K[t] be a monic separable polynomial,
with roots α1, . . . , αn in an algebraic closure of K.

a) Show:
∑n
i=1

1
f ′(αi)

= f(t)
t−αi

= 1.

(Suggestion: The left hand side is a polynomial of degree at most n. Show
that it evaluates to 1 at αi for 1 ≤ i ≤ n.)

b) Similarly, show: for all 0 ≤ k ≤ n− 1, we have

(16)

n∑
i=1

αki
f ′(αi)

f(t)

t− αi
= tk.

c) Write

f(t) = (t− α)(cn−1(α)tn−1 + . . .+ c1(α)t+ c0(α)) ∈ K[t].

Show: for all 0 ≤ i, j ≤ n− 1 we have
n∑
i=1

αki
f ′(αi)

cj(αi) = δj,k.

(Suggestion: equate the coefficients of tj in the LHS and RHS of (16).)

Theorem 4.55. Let R be a Dedekind domain with fraction field K, and let
L = K(α) be a finite degree separable field extension. Let f ∈ K[t] be the minimal
polynomial of α. Write

f = (t− α)(cn−1(α)tn−1 + . . .+ c1(α)t+ c0(α)) ∈ L[t].

a) The dual basis to the basis (1, . . . , αn−1) of L is ( c0(α)
f ′(α) ,

c1(α)
f ′(α) , . . . ,

cn−1(α)
f ′(α) ).

b) Suppose α is integral over R and put Λ := A[α]. Then

Λ∗ =
1

f ′(α)
Λ.

Proof. Step 1: Write f(t) = ant
n + . . .+ an−1t+ a0 ∈ K[t]; we have an = 1.

Then
f(t)

t− α
=
f(t)− f(α)

t− α
=

n∑
i=1

ti − αi

t− α

=

n∑
i=1

n−1∑
j=0

aiα
i−1−jtj

=

n−1∑
j=0

 n∑
i=j+1

aiα
i−1−j

 tj .
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It follows that

cj(α) =

n∑
i=j+1

aiα
i−1−j

and in particular that cj(α) is a polynomial in α with coefficients in K.
Step 2: Let the roots of αin an algebraic closure of F be α1 = α, α2, . . . , αn. By
Exercise 4.23, for 0 ≤ j, k ≤ n− 1 we have

TrL/K(
αkcj(α)

f ′(α)
=

n∑
i=1

αki
f ′(αi)

cj(αi) = δj,k,

so the dual basis to (1, α, . . . , αn−1) is ( c0(α)
f ′(α) ,

c1(α)
f ′(α) , . . . ,

cn−1(α)
f ′(α) ).

Step 3: Suppose that α is integral over A, so the coefficients ai of the minimal
polynomial f lie in R. Using the fact that an = 1, our formula for cj(α) gives a
system of equations

cn−1(α) = 1,

cn−2(α) = an−1 + α,

cn−3(α) = an−2 + an−1α+ α2,

...

c1(α) = a2 + a3α+ . . .+ an−2α
n−2,

c0(α) = a1 + a2α+ . . .+ αn−1.

The equations imply that each ci(α) lies in A[α], the A-submodule of L spanned
by the powers of α. But their particular form implies that each power of α lies in
〈c0(α), . . . , cn−1(α)〉A. So

Λ∗ =
1

f ′(α)
〈c0(α), . . . , cn−1(α)〉A =

1

f ′(α)
〈1, α, . . . , αn−1〉A =

1

f ′(α)
Λ. �

The different ideal can be computed by passing to the completion of A at each
p ∈ MaxSpecA. In Number Theory II we will see that if (A, p) is a complete DVR
with fraction field K, L/K is a finite degree separable extension, B is the integral
closure of A in L, then B is a complete DVR with maximal ideal P, say. Then if the
residual extension (B/P)/(A/p) is separable then B is monogenic as an A-algebra.
Thus Theorem 4.55 can in principle always be used to compute the different of an
extension B/A so long as the residue fields of A are perfect.

Exercise 4.24. Let A be a domain, let f ∈ A[t] be a monic polynomial, and
let B := A[t]/(f). Let ΩB/A be the module of Kähler differentials (see [FT, §13.2]):
this is a B-module equipped with a universal A-derivation d : B → ΩB/A.

a) Show: the map 1 7→ dt induces a B-module isomorphism

B/(f ′(t))B
∼→ ΩB/A.

b) Suppose that A and B are Dedekind domains. Show:

(17) ann ΩB/A = ∆B/A.

In fact (17) holds whenever A is a Dedekind domain with fraction field K and B
is its integral closure in a finite degree separable field extension [N, Prop. III.2.7].
This provides a hint as to why the different ideal ∆B/A appears when one studies
ramification of coverings of algebraic curves.



80 4. ALGEBRAIC NUMBER THEORY IN DEDEKIND DOMAINS

9. Prime Decomposition in a Galois Extension

9.1. Invariants under a Galois Extension. Let A be an integrally closed
Noetherian domain with fraction field K, let L/K be a separable field extension of
finite degree N , and let B be the integral closure of A in L. By Theorem 4.21, B is
an integrally closed Noetherian domain that is finitely generated as an A-module,
and moreover dimB = dimA.

Let G = Aut(L/K) be the Galois group of L/K. For a subring X of L, we put

XG := {x ∈ X | ∀σ ∈ G, σ(x) = x}.

It is immediate that if Xvis a subring of L, then XG is a subring of K. Which
subring we get is not so immediately clear, except in one case: by basic Galois
theory, we have LG = K.

Proposition 4.56. With notation as above, we have BG = A.

Proof. It is clear that A = AG ⊆ BG ⊆ LG = K. Since B/A is an integral
extension, also BG/A is integral. So if x ∈ BG then x is an element of K that is
integral over A, hence x ∈ A since A is integrally closed. �

Exercise 4.25. Let B be a domain, and let G be a finite group acting effectively
on B by ring automorphisms. Let L be the fraction field of B and let K be the
fraction field of A.

a) Show that the action of G on B extends uniquely to an action of G on L.
Show also that L/K is a finite Galois extension with Aut(L/K) = G.

b) Show that there is a unique extension of G to an action on the rational
function field L(t) such that each element of G fixes t. Show also that
L(t)/K(t) is a finite Galois extension with Aut(L(t)/K(t)) = G.

c) For x ∈ B, consider the polynomial Φx :=
∏
σ∈G(t− σx). Show that

Φx = NL(t)/K(t)(t− x),

so

Φx ∈ (B[t])G = BG[t].

Deduce that B/BG is an integral extension.
d) Show: if B is integrally closed, so is BG.

Proposition 4.57. Let G be a finite group acting effectively by automorphisms
on a ring B, with invariant ring BG. Let ι : BG ↪→ B.

a) If P ∈ SpecB and σ ∈ G, then σ(P) := {σ(x) | x ∈ P} is a prime ideal
of R. Moreover if p := ι∗(P) = P ∩BG, then also ι∗(σ(P)) = p.

That is: G acts on SpecB and this action stabilizes each fiber of the
map ι∗ : SpecB → SpecBG.

b) Let p ∈ SpecBG. Then the G-action on the fiber (ι∗)−1(p) is transitive.

Proof. a) We leave this as an exercise.
b) Let P1 and P2 be two prime ideals of B lying over the prime ideal p of BG. For
x ∈ B, we put NG(x) :=

∏
σ∈G σ(x) ∈ BG. If x ∈ P1, then

NG(x) ∈ P1 ∩BG = p ⊆ P∈.
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Since P2 is a prime ideal containing NG(x), there is at least one σ ∈ G such that
σ(x) ∈ P2, so it follows that

P1 ⊂
⋃
σ∈G

σ(P2).

By part a) and Prime Avoidance (Lemma 1.6) it follows that there is σ ∈ G such
that P1 ⊆ σ(P2). Since B/BG is integral, there are no proper containments of
prime ideals of B lying over the same prime ideal of BG [CA, Cor. 14.15], so
P1 = σ(P2). �

Exercise 4.26. Prove Proposition 4.57a).

9.2. Galois Symmetry. We now intersect with the standard setup of this
chapter: namely, suppose that A is a Dedekind domain with fraction field K, that
L/K is a Galois extension of finite degree n, with G = Aut(L/K), and B is the
integral closure of A in L. Then all of the previous results apply: in particular, for
any p ∈ MaxSpecA, the Galois group G acts transitively on the set of primes of B
lying over p.

The presence of this transitive group action both simplifies and deepens our dis-
cussion of how prime ideals of A decompose in B. Indeed, let P1 and P2 be two
maximal ideals of B lying over the same maximal ideal p of A. By Proposition 4.57
there is σ ∈ G such that σ(P1) = P2. Then σ induces a field isomorphism

σ : B/P1
∼→ σ(B)/σ(P1) = B/P2.

In fact, because G acts trivially on A, this is not just a field isomorphism but an
A/p-algebra isomorphism. It follows that

f(P1|p) = [B/P1 : A/p] = [B/P2 : A/p] = f(P2|p).

The Galois group G also acts on FracB. The following result analyzes this action.

Proposition 4.58. For I ∈ FracB, consider the following three conditions:

(i) There is a fractional ideal a of A such that aB = I.
(ii) For all σ ∈ G we have σ(I) = I.
(iii) For all p ∈ MaxSpecA, if P1,P2 ∈ MaxSpecB both lie over p, then

vP1(I) = vP2(I).

Then: (i) =⇒ (ii) ⇐⇒ (iii).

Proof. (i) =⇒ (ii): If aB = I, then I is the B-module generated by the
subset a, so for all σ ∈ G, σ(I) is the B-module generated by the subset σ(a). But
since a ⊆ K we have σ(a) = a, so σ(I) = I.
(ii) ⇐⇒ (iii): We have

I =
∏
P|p

∏
p∈MaxSpecA

PvP(I).

For p ∈ MaxSpecA, since G permutes {P | p}, if I has the same valuation at every
such P, then σ(I) = I. Conversely, since the action on {P | p} is transitive, if there
were P1 and P2 both lying over p such that vP1

(I) 6= vP2
(I), then there is σ ∈ G

such that σ(P1) = P2, and then

vP2
(σ(I)) = vP1

(I) 6= vP2
(I),

so σ(I) 6= I. �



82 4. ALGEBRAIC NUMBER THEORY IN DEDEKIND DOMAINS

Condition (i) is indeed generally stronger than the other two conditions: indeed,
suppose p ∈ MaxSpecA is totally ramified in B: pA = Pe is a prime power with
e ≥ 2. Then P = PG but P is not pushed forward from A.

From Proposition 4.58 we deduce: if P1,P2 ∈ MaxSpecB both lie over p ∈
MaxSpecA, then

e(P1|p) = e(P2|p).

Indeed, condition (i) applies to pB, and hence so does condition (iii).

Corollary 4.59. With notation as above, let p ∈ MaxSpecA, and let P1, . . . ,Pg
be the primess of B lying over p. Then we may write ep for the common value
e(Pi|p) for all i and fp for the common value f(Pi|p) for all i, and then we have

pB = (P1 · · · Pr)ep
and

epfpg = [L : K].

Exercise 4.27. Let I ∈ FracB. As explained above, condition (iii) of Propo-
sition 4.58 is not enough to ensure that I = aB for some a ∈ FracA. However,
there is a similar, but stronger, condition that is necessary and sufficient to ensure
that I = aB. Find it and prove it. (Hint: use the ramification indices ep.)

9.3. Decomposition and Inertia Groups and Fields. We maintain our
running assumptions:we have a Dedekind domain A with fraction field K, a degree
nGalois extension L/K withG = Aut(L/K), andB is the integral closure of A in L.

Let p ∈ MaxSpecA, and let P ∈ MaxSpecB lie over p. We define the decom-
position group

D(P|p) := {σ ∈ L | σ(P) = P}.
As we know, G acts transitively on the fiber {P | p}. Recall that whenever a group
G acts on a set X, if x ∈ X and g ∈ G, if Stabx is the stabilizer of x, then we have

Stabgx = g Stabx g
−1.

In particular, if G acts transitively on X then the various point stabilizers precisely
yield a full, single conjugacy class of subgroups.

So this happens here: when we switch from one prime lying over p to a different
prime lying over p, the decomposition group changes to a conjugate subgroup, and
all conjugates of any one decomposition group do arise this way. The most favorable
case is that in which the extension L/K is abelian – i.e., G is commutative. Then
conjugation is trivial, so the decomposition group depends only on the downstairs
prime p, and in this case will be denoted by D(p).

It follows from Corollary 4.59 and the Orbit-Stabilizer Theorem that

#D(P|p) = epfp.

To ease the notation in what follows, let us write

k(p) := A/p

for the residue field at p and

l(P) := B/P
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for the residue field at P. Thus l(P)/k(p) is a field extension of finite degree f(P/p).

Using the decomposition groupD := D(P/p) we can break up L/K into the tower of
fields L/LD(P|p)/K. Let AD be the integral closure of A in LD. Let pD := P ∩AD,
so P | pD | p. On the one hand, D = Aut(L/LD) acts transitively on the set of
primes of B lying over pD, but on the other hand, by definition D acts trivially on
the set of primes of B lying over p, so it certainly acts trivially on the smaller set of
primes of B lying over pD. Taking these two statements together, we find that P
is the only prime of B lying over pD, so e(P|pD)f(P|pD) = #D = epfp, and thus

e(pD|p) = f(pD|p) = 1.

If D is normal in G, then LD/K is Galois: in this case p splits completely in LD.

Exercise 4.28. With notation as above, let M be a subextension of L/K. Let
P ∈ MaxSpecB lie over pM ∈ MaxSpecAM , which lies over p ∈ MaxSpecA.

a) Show:
D(P|pM ) = D(P|p) ∩Aut(L/M).

b) Show: LD(P|pM ) = LDM .

Exercise 4.29. With notation as above, let M be a subextension of L/K, let
AM be the integral closure of A in M , and let pM := P∩M . Show that the following
are equivalent:

(i) We have M ⊆ LD(P/p).
(ii) we have e(pM/p) = f(pM/p) = 1.

(Hint for (ii) =⇒ (i): use part b) of the previous Exercise.)

Corollary 4.60. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, and let B be the integral closure of A in
L. Let p ∈ MaxSpecA.

(i) There is a unique subextension Ls of L/K with the following property: for
a subextension F of L/K, the prime p splits completely in F if and only
if F ⊆ Ls.

(ii) If L/K is Galois, then so is Ls/K.

Proof. a) Let M be the Galois closure of L/K, let BM be the integral closure
of A in M , and suppose that

pBN = Pe11 · · · Perr .
If F is a subextension of M/K, let AF be the integral closure of A in F . For
1 ≤ i ≤ r, put qi := Pi ∩ AF . Then p splits completely in F if and only if
we have e(qi|p)f(qi|p) = 1 for all i. By Exercise 4.29, this holds if and only if
F ⊆

⋂r
i=1M

D(Pi|p). Thus we may take

Ls := L ∩
s⋂
i=1

MD(Pi|p).

b) If L/K is Galois, then M = L and Ls =
⋂s
i=1 L

D(Pi|p) = L〈D(Pi|p)〉. Since the
D(Pi|p) form a full conjugacy class of subgroups of G = Aut(L/K), the subgroup
〈D(Pi|p)〉 is the precisely the least normal subgroup generatated by any one of the
decomposition groups D(Pi|p). In particular it is normal, so its fixed field Ls is
Galois over K. �
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Theorem 4.61. Let A be a Dedekind domain with fraction field K. Let Ksep

be a separable closure of K, and let K1, . . . ,Kr be subextensions of Ksep/K, each
with finite degree over K, and put

L := K1 · · ·Kr.

For 1 ≤ i ≤ r, let Ai be the integral closure of A in Ki and let B be the integral
closure of A in L. Let p ∈ MaxSpecA be a prime that splits completely in Ai for
all i. Then p splits completely in B.

Proof. Let Ls be the subextension of L/K given by Corollary 4.61. For
1 ≤ i ≤ r, since p splits in Ai, we have Ki ⊆ Ls. Therefore L = K1 · · ·Kr is also
contained in Ls, so p splits completely in B. �

Corollary 4.62. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable extension, with Galois closure M . For a prime p ∈
MaxSpecA, the following are equivalent:

(i) p splits completely in L.
(ii) p splits completely in M .

Proof. (i) =⇒ (ii): The Galois closure M of L/K is the compositum of
the finitely many distinct fields σ(L) as σ runs through embeddings of L into an
algebraic (or, if you like, separable algebraic) closure of K. So Theorem 4.61 applies.
(ii) =⇒ (i): This is immediate from the multiplicativity of ramification degrees
and inertial indices in towers. �

Next we turn to a naturally defined “reduction” homomorphism

r : D(P/p)→ Aut(l(P)/k(p)) :

indeed, for σ ∈ D(P/p), we have σ(P) = P and thus σ induces an automorphism

r(σ) : B/P → σ(B)/σ(P) = B/P.

Let us give a name to the kernel of this homomorphism: we call this the inertia
group I(P/p). That is:

I(P/p) := {σ ∈ D(P/p) | σ acts trivially on B/P}.

Exercise 4.30. Show that I(P/p) is also the set of σ ∈ G such that for all
x ∈ B we have σ(x)− x ∈ P.

In order to make progress we want to throw in one more assumption: namely that
the residue field k(p) = A/p is perfect. By definition, this means that every finite
extension is separable, so in particular the extension l(P)/k(p) is separable. Every
field of characteristic 0 is perfect, as is every finite field. The latter is the more
important observation for us, since classical algebraic number theory takes place in
the case A = Z, in which case the residue fields are just Z/pZ.

Theorem 4.63. With notation as above, suppose that for p ∈ MaxSpecA the
residue field k(p) := A/p is perfect. Let P ∈ MaxSpecB lie over p, and put l(P) :=
B/P. Then:

a) The extension l(P)/k(p) is finite Galois (of degree fp).
b) The reduction map r : Aut(L/K)→ Aut(l(P)/l(p) is surjective.
c) We have #I(P/p) = # Ker r = ep.
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Proof. a) Let us abbreviate D := D(P/p) and I := I(P/p). Let AD be the
integral closure of A in LD, and let pD := P ∩ LD. Let’s further put

eD := e(P|pD), fD := f(P/pD).

As seen above, we have e(pD|p) = f(pD|p) = 1. The latter gives us AD/pD = A/p.
Because l(P)/k(p) is a finite degree separable extension, it has a primitive

element: say l(P) = k(p)[α]. Lift α to an element α ∈ B, and let f ∈ LD[t] be
the minimal polynomial for α. Because α is integral over A it is also integral over
AD, so in fact f ∈ AD[t]. Because L/LD is Galois, the polynomial f splits in L
and every root of f is of the form σ(α) for some α ∈ D. Now let f be the image of
f in AD/pD[t] = A/p[t]. It follows that the roots of f are all of the form r(σ)(x)
for some σ ∈ D. All of these roots lie in l(P), so l(P) is the splitting field of the
polynomial f ∈ k(p) and therefore is a normal extension of k(p), hence a Galois
extension of k(p) since we assumed that k(p) was perfect.
b) Since every conjugate of α over k(p) is of the form r(σ)(α), every element of
Aut(l(P)/k(p)) is of the form r(σ) for some σ ∈ D. Thus r is surjective.
c) We know that r : D → Aut(l(P)/k(p) is surjective with kernel I(P/p), so

#I(P/p) =
#D

# Aut(l(P)/k(p))
=
epfp
fp

= ep. �

For L/K a finite Galois extension with G = Aut(L/K) and P ∈ MaxSpecB lying
over p ∈ MaxSpecA, using the inertia group we can refine our above filtration of
subfields to:

K
r
⊂ LD(P|p)

f
⊂ LI(P|p) e

⊂ L.
We have a parallel to much of the above discussion when we replace the de-
composition subgroup D(P|p) by the inertia subgroup I(P|p) and the condition
e(P|p)f(P|p) = 1 with the condition e(P|p) = 1. We leave the proofs as exercises.

Exercise 4.31. Let L/K be finite Galois, and let M be a subextension of L/K.
Let P ∈ MaxSpecB lie over pM ∈ MaxSpecAM , which lies over p ∈ MaxSpecA.

a Show:

I(P|pM ) = I(P|p) ∩Aut(L/M).

b) Show: LI(P|pM ) = LDM .

Exercise 4.32. Let L/K be finite Galois, let M be a subextension of L/K,
let AM be the integral closure of A in M , and put pM := P ∩ AM . Show that the
following are equivalent:

(i) We have M ⊆ LI(P|p).
(ii) We have e(pM |p) = 1.

Corollary 4.64. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, and let B be the integral closure of A in
L. Let p ∈ MaxSpecA.

(i) There is a unique subextension Li of L/K with the following property: for
a subextension F of L/K, the prime p is unramified in F if and only if
F ⊆ Li.

(ii) If L/K is Galois, then so is Ls/K.

Exercise 4.33. Prove Corollary 4.64.
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Theorem 4.65. Let A be a Dedekind domain with fraction field K. Let Ksep

be a separable closure of K, and let K1, . . . ,Kr be subextensions of Ksep/K, each
with finite degree over K, and put

L := K1 · · ·Kr.

For 1 ≤ i ≤ r, let Ai be the integral closure of A in Ki, and let B be the integral
closure of A in L. Let p ∈ MaxSpecA be a prime that is unramified in Ai for all i.
Then p is unramified in B.

Exercise 4.34. Prove Theorem 4.65.

Corollary 4.66. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, with Galois closure M . For a prime
p ∈ MaxSpecA, the following are equivalent:

(i) p is unramified in L.
(ii) p is unramified in M .

9.4. Frobenius Elements. We maintain the standard setup of this section:
suppose A is a Dedekind domain with fraction field K, L/K is a finite Galois ex-
tension with G = Aut(L/K), and B is the integral closure of A in L. To this we
now add the hypotheses that for p ∈ MaxSpecA the residue field k(p) = A/p is
finite, say of cardinality q = pa.

Let P ∈ MaxSpecB lie over A. Our hypothesis gives us a complete description
of D(P|p)/I(P|p). By Theorem 4.63, the reduction map induces an isomorphism
from D(P/p)/I(P|p) to Aut(l(P)/k(p), where once again we put l(P) = B/P.
Since k(p) is finite of cardinality q, l(P) must be finite of cardinality qfp , and it
follows that Aut(l(P)/k(p)) is cyclic of order f .

This already implies some Galois-theoretic restrictions on how primes of A can
decompose in B:

Exercise 4.35. Let A be a Dedekind domain with fraction field K, let L/K be
a degree n Galois extension with Galois group G, and let p ∈ MaxSpecA.

a) Suppose that:
(i) The residue field k(p) := A/p is finite.

(ii) The prime p is inert in B: i.e., pB is a prime ideal of B.
Show: G is cyclic.

b) Find infinitely many number fields K that are Galois over Q and such
that no prime (p) of Z is inert in ZK .

We continue with the above dicsussion. Beyond being cyclic, Aut(l(P)/k(p) has a
canonical generator, namely the q-power Frobenius map Fq : x 7→ xq. We define a
Frobenius element τP|p to be an element of D(P|p) that maps under r to this
canonical generator Fq. In general, τP|p is well-defined up to an element of the
inertia group I(P|p), so when p is unramified in B – as we will henceforth assume
– we get a uniquely defined Frobenius element τP|p.

Exercise 4.36. With notation as above, suppose p is unramified in L/K, let
P be a prime of B lying over p, and let σ ∈ G = Aut(L/k).

a) Show:
τσ(P)|p = στP|pσ

−1.
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b) Deduce that the set {τP|p | P lies over p} of Frobenius elements attached
to the set of primes of B lying over p fill out a full conjugacy class in G.

9.5. Supplement on Inseparable Extensions. Some of the above holds
when the degree n field extension L/K is normal but not separable. With the lack
of separability, we still have that B is a Dedekind domain but it need not be the
case that B is finitely generated as an A-module. But the results we discuss here
do not require B to be finitely generated as an A-module.

Proposition 4.67. Suppose that L/K is normal, and put G = Aut(L/K). Let
p ∈ MaxSpecR. Then G acts transitively on MaxSpecS/pS, i.e., on the set of
maximal ideals of S lying over p.

Proof. Let pa be the inseparable degree of L/K, so for x ∈ L,

(18) NL/K(x) =

(∏
σ∈G

σ(x)

)pa
.

Suppose to the contrary that there are maximal ideals P1 6= P2 lying over p such
that for all σ ∈ G, P2 6= σP1. By the Chinese Remainder Theorem, there is x ∈ S
such that

x ∈ P2,

∀σ ∈ G, x ≡ 1 ∈ σ(P1).

Then

NL/K(x) = x

xpa−1 ·
∏

16=σ∈G

σ(x)

 ∈ P2 ∩R = p.

On the other hand, for all σ ∈ G, x /∈ σP1; equivalently σ−1x /∈ P1, and as σ
runs through all elements of G so does σ−1, so for all σ ∈ G, σ(x) /∈ P1. Thus
NL/K(x) ∈ p ⊂ P1 but by (18) is a product of elements none of which are in P1,
contradicting the primality of P1. �

Exercise 4.37. Let A be an integrally closed domain with fraction field K, let
L/K be a degree n purely inseparable field extension, and let B be the integral
closure of A in L.

a) Deduce from Proposition 4.67 that the natural map MaxSpecB → MaxSpecA
is a bijection.

b) Show directly the following stronger result: let A be a domain with fraction
field K, L/K a purely separable algebraic extension (possibly of infinite
degree), B the integral closure of A in L, and p ∈ SpecA. Then rad(pA)
is the unique prime ideal of B lying over p.

Exercise 4.38. Suppose that A is a Dedekind domain with fraction field K,
that L/K is an arbitrary finite degree field extension, and that B is the integral
closure of A in L. Show that the natural map SpecB → SpecB has finite fibers:
for all p ∈ SpecA, SpecB/pB is finite. (Suggestion: localize to reduce to the case
in which p is maximal. Then reduce to the case in which L/K is normal by passing
to the normal closure.)
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10. Hensel’s Different Theorem

Theorem 4.68 (Hensel). Let P ∈ MaxSpecB lie over p ∈ MaxSpecA. We
put: k := A/p, l := B/P, e := e(P|p). Suppose that l/k is separable. Then:

(19) vP(∆B/A) ≤ e− 1 + vP(e)

Notice that in the hypothesis of Hensel’s Theorem, if P/p is tamely ramified then
the upper bound is vP(∆B/A) ≤ e−1. In fact, by Theorem 4.50a) we have equality
in this case. Thus the new content of Hensel’s Theorem is an upper bound on
vP(∆B/A) in the presence of wild ramification (and a separable residual extension).

We will give the proof of Theorem 4.68, but our proof will use some results from
Number Theory II [NTII]. You will probably wish to wait to read this proof until
they are familiar with the theory of completions of discretely valued fields.

Proof. We will use the fact that ∆B/A can be computed after completion:
if BP is the completion of B with respect to the P-adic valuation and Ap is the
completion of A with respect to the p-adic valuation, then [N, Prop. III.2.2(iii)]

∆B/A ⊗B BP = ∆BP/Ap
.

To ease the notation, we simply assume that A and B are complete DVRs. By
Theorem 4.44, we get that B is monogenic over A: say B = A[α]. Let

f = tN +

n−1∑
i=0

ait
i =

n∑
i=0

ait
i ∈ A[t]

be the minimal polynomial of α. By Theorem 4.55 we have

s = vP(f ′(α)).

Suppose first that L/K is unramified. By Dedekind-Kummer, the polynomial f ∈
k[t] is separable, so f

′
(α) 6= 0 and thus s = vP(f ′(α)) = 0 = e − 1.3 By

Corollary 4.64 there is a unique maximal unramified subextension L′ of L/K. Let
B′ be the integral closure of A in L′, let P ′ be the unique prime of B′ lying over
p, and let l′ := B′/P ′. We claim that L/L′ is totally ramified over P ′. If not, then
l/l′ is a proper, finite degree separable field extension. As argued in [NTII, §2.2]
using Hensel’s Lemma, this gives an unramified subextension M of L/L′ such that
[M : L′] = [l : l′] > 1, contradicting the fact that L′ was the maximal unramified
subextension of L/K. Using this and Proposition 4.46 we reduce to the case in
which L/K is totally ramified over p. Then by [NTII, Thm. 2.11], if α = Π is a
uniformizing element for P then B = A[Π] and the minimal polynomial f of α is
is Eisenstein at p: we have a0 ∈ p \ p2 and ai ∈ p for all 1 ≤ i ≤ N − 1. Thus

f ′(α) =

e∑
i=1

iaiα
i−1.

For 1 ≤ i ≤ e we have

vP(iaiα
i−1) = vP(i+vP(ai) + (i− 1)vP(α)

= e (vp(i) + vp(ai)) + (i− 1) ≡ i− 1 (mod e),

3We knew this already from Theorem 4.50, but this is a different argument from the one
given above.
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so all of these valuations are distinct. It follows that

s = vP(f ′(α)) = min
1≤e

vP(iaiα
i−1) ≤ vP(eαe−1) = e− 1 + vP(e). �

11. The Chebotarev Density Theorem

Let k be either Q or Fp(t); o = Z or Fp[t]. Let K/k be a finite separable extension
and L/K be a finite Galois extension. Let R be the integral closure of o in K, S
the integral closure of o in S. We further write ΣR (resp. ΣS) for the set of nonzero
prime ideals of R (resp. of S). For brevity, we summarize this situation by saying
that S/R is a Galois extension of global rings.

Notice that R and S are Dedekind rings with finite quotients, so all of the ma-
terial of the previous section applies: especially, for any prime p in R not dividing
∆(S/R), we have a Frobenius conjugacy class τp ⊂ Gal(L/K).

We also have (just!) one more thing: we have a norm map on the nonzero in-
tegral ideals of R, with the property that there are only finitely many ideals of
norm less than or equal to any given number.

Let T ⊂ ΣR. We say that T has a natural density if

lim
x→∞

#{I ∈ T | N(I) ≤ x}
#{I ∈ ΣR | N(I) ≤ x}

exists; if so we define its natural density δ(T ) ∈ [0, 1] to be the above limit.

We say that T has a Dirichlet density if

lim
s→1+

∑
p∈T N(p)−s∑
p∈ΣR

N(p)−s

exists; if so we define its Dirichlet density δD(T ) ∈ [0, 1] to be the above limit.

Exercise 4.39. Let T ⊂ ΣR.

a) Show that if T has a natural density, then it has a Dirichlet density and
δD(T ) = δ(T ).

b) Exhibit a T which has a Dirichlet density but no natural density.

For any group G, a normal subset T ⊂ G will be a subset which is invariant
under conjugation: for all σ ∈ G, σTσ−1 = S.

Exercise 4.40. Show that a subset T of G is normal iff it is a disjoint union
of conjugacy classes.

Notice that if G is abelian, then all subsets are normal.

11.1. The Chebotarev Density Theorem.

Theorem 4.69. (Chebotarev, 1922) Let S/R be a Galois extension of global
rings, with G = Gal(L/K). Let X ⊂ G be a normal subset, and consider the
Chebotarev set TX ⊂ ΣR of prime ideals p which are unramified in S and such
that the Frobenius conjugacy class τp is contained in X.

a) The set TX has Dirichlet density #X
#G .

b) If charK = 0, then TX has natural density #X
#G .



90 4. ALGEBRAIC NUMBER THEORY IN DEDEKIND DOMAINS

Exercise 4.41. Suppose that you know Chebotarev Density when T ⊂ G is a
single conjugacy class. Deduce the general case.

Corollary 4.70. For any separable extension S/R of local rings with [L :
K] = n, the density of the set S of primes p of R which split completely in S is

1
# Gal(M/K) , where M is the Galois closure of L/K. In particular we have

1

n!
≤ δ(S) ≤ 1

n
.

Exercise 4.42. Prove Corollary 4.70.

Corollary 4.71. (Equidistribution of Frobenius elements in the abelian case)
With notation as above, suppose that G = Gal(L/K) is commutative. Then for any
σ ∈ G, the set of unramified primes p such that τp = σ has density 1

#G .

The “intersection” of Corollaries 4.70 and 4.71 is important in of itself: that in an
abelian extension L/K of degree n, the set of unramified primes p of R for which
τp = 1 – i.e., which split completely in L – has density 1

n .4

Example 4.72. Let L/K be a quadratic extension. Then the set of ramified
primes is finite, and the set of primes which split completely and the set of inert
primes both have density 1

2 . Applying this in particular to K = Q, L = Q(
√
D),

this gives: for (p, 4D) = 1, the set of primes p such that (Dp ) = 1 and the set such

that (Dp ) = −1 each have density 1
2 .

Example 4.73. Let K = Q and L = Q(ζn), where ζn is (still) a primitive nth
root of unity. The well-known irreducibility of the cyclotomic polynomials easily
implies that Gal(L/K) = (Z/nZ)×, the isomorphism being given by a (mod n) 7→
(ζn 7→ ζan). Recall that every prime not dividing n is unramified. So for p with
gcd(p, n) = 1, there is a well-defined Frobenius element τp in G; it is a great
exercise to check that under the above isomorphism τp is precisely the class of p
in (Z/nZ)×. Thus in this very special case we recover the following seminal result:

Theorem 4.74. (Dirichlet’s Theorem) For n ∈ Z+ and any a with gcd(a, n) =
1, the set of primes p which are congruent to a (mod n) has density 1

ϕ(n) .

Exercise 4.43. Let P (t) ∈ Z[t] be a monic polynomial of positive degree d.

For a prime number `, let P̃` ∈ F`[t] denote the obvious (coefficientwise) modulo `
reduction of P .

a) If P is reducible over Z[t], then for all `, P̃` is reducible over F`[t]. Thus,
applying the contrapositive, we get a sufficient condition for irreducibility
of P : it suffices for P̃` to be reducible for some `.

b) Suppose that the degree d is a prime number. Show a (much more

interesting) converse: the set of primes ` such that P̃`(t) is irreducible has
positive density.

c) Find an irreducible quartic (i.e., d = 4) polynomial all of whose mod `
reductions are reducible.

d) Show that a polynomial as in part c) exists for all composite degrees d.5

4This special case was proved much earlier by Frobenius: see below.
5This is proved in [Br86]. The generalization to polynomials over any global ring is proved

in [GSS05].
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11.2. Some further remarks.

Theorem 4.69 was conjectured by Frobenius in 1896. He was able to prove a sub-
stantial special case: in the Frobenius Density Theorem the subset T must be
invariant under conjugation and also have the property that if σ ∈ T , so is every
other generator of the cyclic subgroup generated by σ, i.e., for all i prime to the
order of σ, σi ∈ T . Note that when G is a symmetric group (which is what the
Galois group of an extension of global fields will be “with probability 1”) the first
condition implies the second, since σi has the same cycle type as σ. Also Frobenius’
theorem applies in the case in which T is a normal subgroup of G; in particular it
applies to T = {e}, giving Corollary 4.70.

Nikolai Grigorevich Chebotarev was born in 1896 and died in 1947. He proved
the density theorem in summer of 1922, having just turned 26, while being physi-
cally occupied with rather menial labor (e.g., bringing buckets of cabbages to the
market for his mother to sell) in the city of Odessa. He was not able to defend his
dissertation (on the density theorem) until 1927.

Strictly speaking what Chebotarev proved was weaker than Theorem 4.69: he
proved the result when K is a number field and for the Dirichlet density δD(TX).

The generalization to natural density in the number field case is a significant piece
of analytic number theory. Even in the special case of Dirichlet’s Theorem (proved
in the case of Dirichlet density by....Dirichlet), the version for natural density was
not proven until much later by de la Vallée Poussin. Apparently the replacement
of Dirichlet density by natural density in the full-fledged Chebotarev Theorem was
first done by Hecke (and is sufficiently difficult not to be found in any of the stan-
dard texts that I have consulted). It should be noted that in the vast majority of
cases the real import of the Density Theorem is to show that the set of primes in
question is infinite, and for this it certainly doesn’t matter which density is used.

The proof in the function field case – charK > 0 – is not dramatically differ-
ent, and in some ways it is simpler. It seems to have first been proven by Reichardt
in 1936. The argument is similar to Chebotarev’s and in some ways simpler.

However, in the function field case it is not always true that the natural density
δ(TX) exists! It turns out that δD(TX) exists when the extension L/K has trivial
constant field extension – i.e., if the algebraic closure of Fp in K is algebraically
closed in L – but there are counterexamples in the general case. This was pointed
out to me by Melanie Matchett Wood on 6/19/13, correcting an error in the way
Theorem 4.69 had originally been stated (in spring 2008). Wood also suggests the
reference [Ba08] for more information on this phenomenon.

There are effective versions of the Chebotarev Density Theorem, i.e., one can
give an explicit upper bound on the norm of the least unramified prime p whose
Frobenius conjugacy class lies in the normal subset T of Gal(L/K). I have had oc-
casion to look at such estimates: as one might imagine, the estimates depend on all
the quantities in question (especially, the discriminant ∆(S/R)) in a somewhat com-
plicated way. What is unconditionally known is somewhat disappointingly weaker
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than what should be true: if one is willing to assume the Generalized Riemann
Hypothesis (GRH) then there are bounds which are a full logarithm better than
the unconditional bounds.



CHAPTER 5

Geometry of Numbers

1. Geometry of Numbers

1.1. Convex subsets of Euclidean space. Let N ∈ Z+, and let Ω be a
subset of RN . A point p ∈ RN is a center for Ω if for all x ∈ Ω, the reflection of x
through p also lies in Ω.

Exercise 5.1. A bounded subset Ω of RN can have at most one center.

We will mostly be interested in properties of subsets of RN that are isometry in-
variants. In particular it will usually be no loss of generality to assume that 0 ∈ Ω.
So we define a subset Ω to be centrally symmetric if 0 is a center for Ω: that is,
for all x ∈ RN we have x ∈ Ω ⇐⇒ −x ∈ Ω.

A subset Ω of RN is convex if for all P,Q ∈ RN , if P,Q ∈ Ω then the entire
line segment from P to Q is contained in Ω: precisely, for all λ ∈ [0, 1] we have
(1− λ)P + λQ ∈ Ω.

Here are some “undergraduate level facts” about convexity (indeed, most of these
results were either proved or assigned as exercises in the undergraduate real analysis
course I taught in Fall 2022):

Exercise 5.2. Let Ω be a nonempty subset of R. Show: Ω is convex if and
only if Ω is an interval.

Exercise 5.3.

a) Let {Ωi}i∈I be a family of convex subsets of RN indexed by a nonempty
set I. Show:

⋂
i∈I Ωi is always convex, but if #I ≥ 2 then

⋃
i∈I Ωi need

not be.
b) Let Ω1 ⊆ Ω2 ⊆ . . . ⊆ Ωn ⊆ . . . be an ascending chain of convex subsets of

RN . Show:
⋃∞
n=1 Ωn is convex.

c) Let Ω1 ⊆ RN1 and ω2 ⊆ RN2 be convex subsets. Show that the Cartesian
product Ω1 × Ω2 ⊆ RN1+N2 is convex.

Exercise 5.4. Show: open and closed balls in RN are convex.

And here are some results about convexity that are just a little deeper than the
ones above. First we need the notion of a convex combination: if x1, . . . , xn are
vectors in RN , then a convex combination of x1, . . . , xn is a linear combination

λ1x1 + . . .+ λnxn

satisfying the extra conditions

λ1, . . . , λn ≥ 0, λ1 + . . .+ λn = 1.

93
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For a subset S ⊂ RN , we define ConvS to be the set of convex combinations of
x1, . . . , xn, where we range over all finite sequences of elements of S. Notice that
if S = {x, y} then ConvS is the line segment from x to y. A nonempty subset
S ⊆ RN is affinely independent if for each x0 ∈ S, the set {x− x0 | x ∈ S \ {0}}
is linearly independent. Actually, it suffices to require this condition for any one
x0 ∈ S: this means that after S is translated back to the origin, its set of nonzero
elements is linearly independent. Evidently if S ⊆ RN is affinely independent, then
#S ≤ N + 1. If S is an affinely independent set with cardinality n, we call ConvS
an n-simplex.

Exercise 5.5. Let S ⊆ RN .

a) Show that there is a unique subset C(S) of RN with the properties that:
C(S) ⊇ S, C(S) is convex, and for all convex subsets Ω ⊇ S we have
Ω ⊇ C(S).

b) Show that C(S) = ConvS.

This subset is called the convex hull of S.

Exercise 5.6. Let (X, τ) be a topological space. For a subset Y ⊆ X we denote
by Y ◦ the interior of Y , i.e., the largest open subset contained in Y ; and we denote
by Y the closure of Y , i.e., the smallest closed subset containing Y . A subset Y is
regular-open if Y = (Y )◦. A subset Y is regular-closed if Y = Y ◦.

a) Show: evey regular-open subset of a topological space is open. Exhibit a
subset Y of R that is open but not regular-open.

b) Show: every regular-closed subset of a topological space is closed. Exhibit
a subset Z of R that is closed but not regular-closed.

c) Show: if Ω ⊆ RN is convex, then Ω◦ = (Ω)◦. Deduce: an open convex set
is regular-open.

d) Show: if Ω ⊆ RN is convex, then Ω = Ω◦. Deduce: a closed convex set is
regular-closed.

Exercise 5.7. Let Ω be a subset of RN . Show that the following are equivalent:

(i) Ω is convex.
(ii) Ω◦ is convex.
(iii) Ω is convex.

A bounded subset Ω ⊆ RN is Jordan measurable if its characteristic function

1Ω : RN → R by x 7→

{
1 x ∈ Ω

0 x /∈ Ω

is Riemann integrable. Yes, I said Riemann! Because Riemann integrable functions
are Lebesgue integrable, a bounded Jordan measurable subset is certainly also
Lebesgue measurable, but being Jordan measurable is strictly stronger: indeed,
Lebesgue’s Criterion1 says that the bounded function 1Ω is Riemann integrable if
and only if its discontinuities form a set of Lebesgue measure zero. It is easy to see
that 1Ω is discontinuous precisely on the boundary ∂Ω of Ω, so....a bounded set is
Jordan measurable if and only if its boundary has Lebesgue measure zero.

Here is a basic fact:

1My colleague Roy Smith showed me where this result appears in Riemann’s work, so I don’t
know why it is not named after Riemann....but it isn’t.
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Theorem 5.1. A bounded convex subset Ω ⊆ RN is Jordan measurable (hence
Lebesgue measurable).

Proof. See e.g. [Sz97]. �

1.2. Lattices in Euclidean Space. Let V be a finite-dimensional R-vector
space. A lattice Λ in V is the Z-span of an R-basis of V . Thus if dimV = N we
have Λ ∼=Z ZN .

Earlier in our course we studied lattices in a finite-dimensional K-vector space,
where K is the fraction field of a Dedekind domain R. When R = Z, a lattice in
a finite-dimensional Q-vector space V is indeed just the Z-span of a Q-basis of V .
(Because Z is a PID, Z-lattices must be free.) Thus our definition of lattices over
real vector spaces is as close as it could possibly by to our definition: indeed, we
just replaced Q by R. However, this change of course causes some, um, changes.
Since R has infinite dimension as a Q-vector space, there are infinite subsets of
RN that are Q-linearly independent but not R-linearly independent, and it follows
that V contains subgroups isomorphic to Zn for all n ∈ Z+. Thus, whereas in
an N -dimensional Q-vector space, every subgroup isomorphic to ZN is a Q-latice,
when N ≥ 2 this does not hold in an N -dimensional R-vector space: the problem
is precisely that the subgroup Λ could lie in a proper R-subspace.

For the following discussion we may as well choose an R-basis of V and thereby
identify V with RN .

For a subgroup Λ of RN such that Λ ∼=Z ZN , the extra condition on Λ to be a
lattice is topological: we claim that it is necessary and sufficient for Λ to be dis-
crete: that is, for all x ∈ Λ there is δ > 0 such that the open δ-ball B◦(x, δ) centered
at x contains no point of Λ \ {x}. One direction of this is pretty clear: we can start
with the fact that the standard lattice ZN in RN is a discrete subgroup. Moreover,
since GL(RN ) = GLN (R) acts R-linearly on RN , it acts on subgroups of (RN ,+)
and it sends lattices to lattices: indeed, for m ∈ GLN (R) if Λ is the Z-module
spanned by the R-basis v1, . . . , vN of RN , then mΛ is the Z-module spanned by the
R-basis mv1, . . . ,mvN of RN . By the way, this action is clearly transitive because
GLN (R) acts simply transitively on ordered R-bases of RN , and the stabilizer of
ZN is GLN (Z), so the set of all lattices in RN can be identified with the coset space

GLN (R)/GLN (Z).

This in particular gives it the structure of a locally compact topological space. In
this topology, two lattices Λ1 and Λ2 are “close together” if we can choose ordered
v1, . . . , vN for Λ1 and w1, . . . , wN for Λ2 such that for all 1 ≤ i ≤ N , the vectors vi
and wi are “close together.”

Anyway, a homeomorphism of topological spaces takes discrete subspaces to dis-
crete subspaces, so this shows that every lattice in RN is a discrete subgroup. The
converse takes a little more work. We will work a bit more generally. First:

Lemma 5.2. Let G be a Hausdorff topological group, and let H be a locally
compact subgroup of G. Then:

a) The subgroup H is closed in G.



96 5. GEOMETRY OF NUMBERS

b) In particular: if H is discrete, then H is closed in G.

Proof. a) Let K be a compact neighborhood of the identity element e in H.
Let U be an open neighborhood of e in G such that U ∩H ⊆ K. Let x lie in the
closure H of H. Then there is a neighborhood V of x in G such that V −1V ⊆ U ,
and thus

(V ∩H)−1(V ∩H) ⊆ U ∩H ⊆ K.

Since x ∈ H, we have that V ∩H is nonempty. Choose y ∈ V ∩H; then V ∩H ⊆ yK.
For every neighborhood W of x, also W ∩ V is a neighborhood of x, so W ∩ V ∩H
nonempty; it follows that x ∈ V ∩H. Since yK is a compact subset of the Hausdorff
space H, it is closed, an thus

x ∈ V ∩H ⊆ yK = Y K ⊆ H.

It follows that H is closed.
b) This is immediate from part a): discrete groups are locally compact. �

For a subgroup G ⊆ RN , we define the real rank r(G) to be the maximal size
of an R-linearly independent subset of G, so 0 ≤ r(G) ≤ N . This is a reasonable
definition for us to make at this point because, as we saw, if Λ ⊆ RN is a subgroup
that is isomorphic to ZN , then Λ is a lattice precisely when r(Λ) = N . Now:

Theorem 5.3. Let G be a discrete subgroup of (RN ,+), of real rank r. Then
there are R-linearly independent elements v1, . . . , vr ∈ RN forming a Z-basis for G.

Proof. By Lemma 5.2, we know that G is closed. Evidently we have r =
0 ⇐⇒ G = {0}, so we may assume that 1 ≤ r ≤ N .

By definition of the real rank, there are e1, . . . , er ∈ G that are R-linearly
independent. Let

P :=

{ r∑
i=1

xiei | xi ∈ [0, 1]

}
be the corresponding paralleletope. Then G ∩ P is closed, discrete and compact,
hence finite. Let x ∈ G. Since r is the real rank of G, there are λ1, . . . , λr ∈ R such
that

x =

r∑
i=1

λiei.

For j ∈ Z, put

xj := jx−
r∑
i=1

bjλicei.

Thus

xj =

r∑
i=1

(jλi − bjλic) ei,

so xj ∈ G ∩ P. Since x = x1 +
∑r
i=1bλicei, we see that G is generated as a Z-

module by G ∩ P, hence is finitely generated. Moreover, since G ∩ P is finite and
Z is infinite, there are distinct j, k ∈ Z such that xj = xk. Then

∀1 ≤ i ≤ r, (j − k)λi = bjλic − bkλic,
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so λi ∈ Q for all i. Thus G is generated as a Z-module by a finite number of Q-
linear combinations of the ei’s. Let d be a common denominator for the coefficients
of this finite generating set, so

dG ⊆ 〈e1, . . . , er〉Z.

This shows that the free rank of dG is at most r, but the free rank of dG is equal to
the free rank of G, so the free rank of G is at most r. Conversely, since e1, . . . , er
are R-linearly independent they are certainly Z-linearly independent, so G is free
of rank r. Let v1, . . . , vr be any Z-basis for G. Since the R-span of v1, . . . , vr
contains the R-linearly indendent set e1, . . . , er,t he elements v1, . . . , vr must also
be R-linearly independent. �

A lattice Λ in RN has a covolume Covol Λ ∈ R>0: if v1, . . . , vN is a Z-basis for Λ,
let Mv ∈ GLN (R) be the matrix whose columns are v1, . . . , vN ; then we put

Covol Λ := |detMv|.

We should check that this is independent of the chosen Z-basis, but this is easy:
if w1, . . . , wN is another Z-basis of Λ, let A be the matrix representing the linear
automorphism of RN that carries vi to wi for all 1 ≤ i ≤ N . Then, if Mw ∈ GLN (R)
is the matrix with columns w1, . . . , wN , we have

Mw = AMv.

Moreover the jth column of A gives the coefficients in the unique expression of
wj as an R-linear combination of v1, . . . , vN ; but wj is a Z-linear combnation of
v1, . . . , vN , so A ∈MN (Z). The same argument with the v’s and w’s reversed shows
that A−1 ∈MN (Z), so A ∈ GLN (Z) and thus detA ∈ Z× = {±1}, so

|detMw| = |detMv|.

So the covolume of a lattice in RN is well-defined. However, we should also not
neglect to explain why we are calling it a “covolume”! In general, if a group G acts
on a topological space X by homeomorphisms, we have the notion of a fundamen-
tal region for the action of G. Strictly speaking, this should be a subset R ⊆ X
containing precisely one element from each G-orbit. We cannot doubt that funda-
mental regions exist in great abundance: they correspond to sections ι : G\X → X
of the orbit map q : X → G\X. (This means that q ◦ ι = 1G\X .) Indeed, given
any section ι its image ι(G\X) is a fundamental region, and if R is a fundamental
region then ι sends a G-orbit to the unique element of R lying in that orbit.

However, this definition of the fundamental region makes no use of the topology
on X. In practice, it is much more enlightening and useful to choose fundamental
regions with nice topological properties. For instance, consider (ZN ,+) acting on
RN by translation. Then R := [0, 1)N is a fundamental region. This is topologically
okay, but I would rather it be either open or closed, which will cause us to loosen
our definition of fundamental region slightly. Let us say that a family {Yi}i∈I of
subsets of a topological space X is a tiling of X if:

(T1)
⋃
i∈I Yi = X, and

(T2) For all i 6= j, we have Y ◦i ∩ Y ◦j = ∅.
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As an example, let I = ZN and for i = (i1, . . . , iN ) ∈ ZN , put

Yi :=

N∏
n=1

[in, in + 1].

This gives a tiling of RN by “closed unit cubes,” each of which is a translate of
Y0 = [0, 1]N by an element of ZN . Going back to our general setup of a group G
acting on a space X, let us change our mind slightly and say that a subset Y ⊆ X
is a fundamental region if {gY }g∈G is a tiling of X. Thus X is the union of the

translates of Y under G but the union doesn’t have to be disjoint: we allow g1Y
and g2Y to intersect along their boundaries. In this context, we find that [0, 1]N

is a closed fundamental region for the action of ZN on RN . In general, if Y is a
closed fundamental region for the action of G on X, then

q|Y : Y → G\X

is a continuous surjection. So for instance, if we have a compact fundamental region
Y , then the quotient space G\X is compact.

In our situation we also have a measure on RN – Lebesgue measure – that is trans-
lation invariant, an thus every subgroup of RN acts on RN by measure-preserving
automorphisms. There is some general theorem here involving a topological spaceX
equipped with a Borel measure µ and a group G acting on X by measure-preserving
automorphisms. Then – perhaps under some additional hypotheses – there should
exist a measurable fundamental region, and any two measurable fundamental re-
gions will have the same measure. We can then define the measure of G\X to be
the measure of any measurable fundamental region. But let us not digress to nail
this down precsiely: we will be using only a very special case.

Indeed, if we have a lattice Λ in RN , then to any Z-basis v1, . . . , vN of Λ we
can attach a fundamental parallelopiped

Pv := {x1v1 + . . .+ xNvN | x1, . . . , xN ∈ [0, 1]}.

Then Pv is a compact, convex fundamental region for Λ. Moreover, the volume (i.e.,
Lebesgue measure) of Pv is the covolume of Λ: indeed that |detMv| is the volume of
Pv is a standard interpretation of the determinant in linear algebra: or if you like, it
is the linear case of the change of variables formula in multivariable calculus.vvThe
reason we call this the covolume of Λ is that it is, first of all, certainly not the
measure of Λ (Λ is countable so has measure zero) but of “the region between
points of Λ.” Indeed, Covol Λ bears an inverse relationship to the size of Λ:

Exercise 5.8. Let Λ1 ⊆ Λ2 be two latices in RN . Show:

Covol Λ1 = [Λ2 : Λ1] Covol Λ2.

Finally, we remark that different fundamental parallelopipeds for the same lattice
all have the same size (volume = measure) but have very different shapes. Indeed,
any bounded subset of RN contains only finitely many points of Λ hence only
finitely many bases for Λ, hence only finitely many fundamental parallelopipeds
for Λ. Thus e.g. the fundamental parallelograms for Z2 in R2 can be put into a
sequence, and as the terms of this sequence increase the parallelograms get longer
(their diameters tend to ∞) and thinner (all their areas are 1

2 ).
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1.3. Minkowski’s Convex Body Theorem. We define a convex body to
be a subset Ω ⊆ RN that is nonempty, convex, centrally symmetric and bounded.
Some people also require a convex body to have nonempty interior. The following
exercise gives some perspective on this:

Exercise 5.9. Let Ω ⊆ RN be convex. Show that the following are equivalent:

(i) Ω is “flat,” i.e., is contained in some hyperplane H of RN .
(ii) Vol Ω = 0.
(iii) Ω has empty interior.

Thus requiring a convex body to have nonempty interior is the same as requiring
it to have positive volume. We will soon see why we don’t need to require this.

One more fact about convex sets and volumes: let M ∈ GLN (R); we identify
M with the corresponding linear function x ∈ RN 7→ Mx. Then it is a basic
property of Lebesgue measure that for any measurable subset S ⊆ RN , the set
M(S) := {M(s) | s ∈ S} is measurable, and moreover we have

Vol(M(S)) = |detM |Vol(S).

In particular, for α ∈ R>0, we may define the dilate of S by α to be

αS := {αs | s ∈ S}.

Then αS = Mα(S) where Mα is the diagonal matrix with all diagonal entries equal
to α, so

Vol(αS) = |detMα(S)|Vol(S) = αN Vol(S).

Moreover, for a lattice Λ in RN and M ∈ GLN (R) we have

Covol(M(Λ)) = |detM |Covol Λ.

This follows (for instance) from the previous observation applied to a fundamental
parallelopiped for Λ.

Geometry of Numbers starts when we consider a convex body Ω ⊆ RN and a
lattice Λ ⊆ RN together: consider Ω ∩ Λ. What can we say about this set?

Well, first of all it is nonempty. Indeed, since Ω is nonempty, it contains some
point x; since Ω is centrally symmetric, it also contains −x, and since Ω is convex
it contains 1

2 (x) + 1
2 (−x) = 0.

Let Λ• := Λ \ {0}. Could Λ• ∩ Ω be empty?

Yes, of course. The set Λ• is closed, so the distance from a point of Λ• to 0
assumes a minimum value [?, Thm. 2.114], which we actually call the minimum
m(Λ) of the lattice Λ. So B◦(0,m(Λ)), the open ball centered at the origin with
radius m(Λ), does not meet Λ• (i.e, the intersection is empty). Of course if R is
sufficiently large, then B◦(0, R) does meet Λ•. The key question is: in order for
Ω∩Λ• to be nonempty, is it sufficient for Vol Ω to be sufficiently large with respect
to Covol Λ?
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As with many problems in the geometry of numbers, there is a useful linear equiv-
ariance. That is, let M ∈ GLN (R). Certainly Ω meets Λ• if and only if M(Ω)
meets M(Λ). Moreover we have nd for all M ∈ GLN (R), we have

Vol(MΩ)

Covol(MΛ)
=
|detM |Vol(Ω)

|detM |Covol(Λ)
=

Vol(Ω)

Covol(Λ)
,

so the ratio Vol(Ω)
Covol(Λ) is invariant under linear changes of variable. Because of this,

if there is some number VN such that for all convex bodies Ω with Vol Ω > VN we

have Ω∩(ZN )• 6= ∅, then for all convex bodies Ω and lattices Λ with Vol(Ω)
Covol(Λ) > VN

we may choose M ∈ GLN (R) such that MΛ = ZN and then

2N <
Vol(Ω)

Covol(Λ)
=

Vol(M(Ω))

Covol(ZN )
= Vol(M(Ω)),

so M(Ω) meets ZN = M(Λ) and thus Ω meets Λ. Since Ω = (−1, 1)N has volume
2N and doesn’t meet (ZN )• we must have VN ≥ 2N . And now we are ready for the
theorem:

Theorem 5.4. (Minkowski’s Convex Body Theorem) Let Ω ⊂ RN be a convex
body, and let Λ ⊂ RN be a lattice.

a) If Vol Ω > 2N Covol Λ, then Ω ∩ Λ• 6= ∅.
b) If Ω is compact and Vol Ω = 2N Covol Λ, then Ω ∩ Λ• 6= ∅.

Proof. a) Step 1: We prove Blichfeldt’s Lemma: if Ω ⊆ RN is packable
— for all x 6= y ∈ ZN , (x+ Ω) ∩ (y + Ω) = ∅ — and measurable, then Vol Ω ≤ 1.

To see this: for x = (x1, . . . , xN ) ∈ ZN , put

Ωx := Ω ∩
N∏
i=1

[xi, xi + 1).

Thus Ω =
∐
x∈ZN Ωx, so Vol(Ω) =

∑
x∈ZN Vol(Ωx). Since Ω is packable, the family

{−x+ Ωx}x∈ZN is pairwise disjoint, so

Vol(
∐
x∈ZN

(−x+ Ωx)) =
∑
x∈ZN

Vol(−x+ Ωx) =
∑
x∈ZN

Vol(Ωx) = Vol(Ω).

On the other hand, for all x ∈ ZN , we have −x+ Ωx ⊆ [0, 1)N , so

Vol(Ω) = Vol(
∐
x∈ZN

(−x+ Ωx)) ≤ Vol[0, 1)N = 1.

Step 2: As explained above, it suffices to treat the case in which Λ = ZN and that
Vol Ω > 2N . In fact, applying the linear transformation x 7→ x

2 , which changes

volumes by a factor of 2−N , it also suffices to treat the case in which Λ = (1/2Z)N

and Vol Ω > 1. Thus Blichfeldt’s Lemma tells us that Ω is not packable, which
means there are P1, P2 ∈ Ω and x 6= y ∈ ZN such that x + P1 = y + P2; thus
P := P1−P2 ∈ (ZN )•. As argued above, since Ω is convex and centrally symmetric,
we also have P2 ∈ Ω and then 1

2P1 − 1
2P2 is a nonzero element of Ω ∩ (1/2Z)N .

b) We leave this as an exercise. �

Exercise 5.10. Prove Theorem 5.4b).
(Suggestion: By part a), for all ε > 0, the dilate (1 + ε)Ω contains an element of
Λ•. Argue that there must in fact be a fixed element P ∈ (ZN )• that lies in (1+ ε)Ω
for all ε > 0, and make a limiting argument using the fact that Ω is closed.)
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2. The Additive Embedding

2.1. Basic Setup.

Let K/Q be a number field of degree N . Thus K is an N -dimensional Q-vector
space, so we may consider Z-lattices in K, e.g. ZK . In the previous section we were
studying Z-lattices in finite-dimensional R-vector spaces. Well, to any nontrivial
Q-vector space V we can attach an R-vector space:

VR := V ⊗Q R.

If V was finite-dimensional, then every Z-lattice in V is also a Z-lattice in VR.
(There are countably many Z-lattices in V and uncountably many Z-lattices in R,
so certainly most Z-lattices in VR are not contained in V .) Thus we may consider
KR := K ⊗Q R and thereby realize, e.g., ZK as a Z-lattice in KR.

This is indeed most of the idea of the additive embedding: Z-lattices and Z-
orders in K may be realized as Z-lattices in a real vector space, so Geometry of
Numbers methods may be fruitfully brought to bear. But there is one more piece:
KR is isomorphic to RN , but not equal to it. So it is not clear how to define the
covolume of a Z-lattice in KR. From an abstract perspective, the extra ingredient
necessary is a Haar measure on K/R, i.e., a translation invariant Borel measure.
These are unique up to scaling, so the problem can be thought of as needeing to
specify one lattice as “standard” and decreeing its covolume to be 1. (This suggests
possibly taking ZK as the standard lattice, but this is not what we want to do:
then its covolume would be 1, whereas for what we actually do we will find that
knowing CovolZK is equivalent to knowing δK .) Alternately, if we choose an iso-
morphism ι : RN → KR then the have chosen a basis v1, . . . , vN for KR (the image
of the standard basis of RNu under ι). We could then “transport the Lebesgue
measure” from RN to KR under this isomorphism or just realize that this transport
of structure means that the lattice Λ0 := 〈v1, . . . , vN 〉Z gets covolume 1.

The correct thing to do involves the use of the N field embeddings σi : K ↪→ C.
Recall that for any degree N separable field extension K/F and any field exten-
sion L/K that contains a splitting field for K/F , there are precisely N F -algebra
embeddings σi : K ↪→ L: indeed, by the Primitive Element Theorem we have
K = F [α], and the minimal polynomial f ∈ F [T ] of α is separable of degree N , so
HomF (K,L) is in natural bijection with the set of distinct roots of f in L, of which
we have N because we assumed that L is a splitting field for K/F .

A number field K is totally real if R contains a splitting field for K/Q: in other
words, writing K = Q[α], the minimal polynomial of α splits into distinct linear
factors over R (or, in the less careful language that is more commonly used, f has
only real roots). In the terminology of §4.1, this means that R is a splitting field for
the étale Q-algebra K, so writing out these N embeddings σ1, . . . , σN : K ↪→ R in
some order, Proposition 4.6 provides us with a canonical isomorphism of R-algebras

σ : KR → RN , x⊗ 1 7→ (σ1(x), . . . , σN (x)).

But now we can see a connection with the discriminant: let x = (x1, . . . , xN ) ∈ KN .
As we did, in Chapter 4, we may take the discriminant of this N -tuple:

δ(x) = det TrK/F (xixj),
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and by (7) this is equal to (detS(x))2, where S(x) is the N×N matrix with entries
in Q with (i, j) entry equal to σi(xj). Thus:

Proposition 5.5. Let K be a totally real number field of degree N , with distinct
Q-algebra embeddings σ1, . . . , σN : K → R. Let x1, . . . , xN ∈ K be Z-linearly
independent, and put

Λx := 〈x1, . . . , xN 〉Z.
Then:

a) σ(Λx) is a lattice in RN .
b) We have δΛx ∈ Z+.
c) We have

Covolσ(Λx) =
√
δΛx .

Proof. To simplify notation, we will not distinguish between Λx ⊆ K and its
isomorphic image σ(Λx) ⊆ RN .
a),c) The jth column of the matrix S(x) is (σ1(xj), . . . , σN (xj)) = σ(xj), the jth
basis element of Λx. We are about to write down a formula for (detS(x))2 that
will show that detS(x) is nonzero, and thus S(x) is nonsingular and Λx will be a
lattice, with Covol Λx = detS(x). Indeed we have

(20) disc Λx = (detS(x))2 = (Covol Λx)
2
.

b) Equation (20) shows that Λx is the square of a real number, so Λx ∈ Z+. �

This is a very striking result: the discriminant of a lattice in a number field has a
geometric meaning. We now want to extend this from totally real number fields to
arbitrary number fields. To see how to do this, look back at KR. If K = Q[α] and
f ∈ Q[t] is the minimal polynomial for α, then

KR ∼= Q[t]/(f)⊗Q R = R[t]/(f).

Now, because C is algebraically closed, an irreducible polynomial g ∈ R[t] must
have degree 1 or 2. So we may write

f = g1 · · · grh1 · · ·hs ∈ R[t]

for distinct monic irreducibles g1, . . . , gr, h1, . . . , hs with deg gi = 1 for all 1 ≤ i ≤ r
and deg hj = 2 for all 1 ≤ j ≤ s. The Chinese Remainder Theorem then gives

KR ∼=
r∏
i=1

R[t]/(hi)×
s∏
i=1

R[t]/(hj) ∼= Rr × Cs.

We now want to give a specific embedding σ : K ↪→ Rr × Cs. The field C is alge-
braically closed so certainly contains a splitting field for K/R, so we have precisely
N field embeddings σi : K ↪→ C. For 1 ≤ i ≤ N , we have σi(K) ⊆ R if and
only if σi(α) ∈ R. Because we can identify σ1(α), . . . , σN (α) with the roots of f
in C, it follows that the number of embeddings σi such that σi(K) ⊆ R is r, the
number of real roots of f . We call these embeddings real and the others com-
plex. Moreveover, we get an action of Aut(C/R) = {1, c} on the set HomQ(K,C):
complex conjugation sends σi to σi = c ◦ σi. Evidently the fixed points under this
action are precisely the real embeddings, so the complex embeddings come in com-
plex conjugate pairs, s counts the number of pairs and r + 2s = N .

It will be helpful to order the embeddings as follows: σ1, . . . , σr : K ↪→ R are
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the real embeddings (in some order) and then the last 2s embeddings are ordered
so that σr+2 = σr+1 and so forth: i.e., we put the complex conjugate pairs next to
each other in the list. Having done that we define our additive embedding

σ : K ↪→ Rr × Cs, σ(x) = (σ1(x), . . . , σr(x), σr+1(x), σr+3(x), . . . , σr+2s−1(x)).

Once again, if x = (x1, . . . , xN ) ∈ KN is an N -tuple such that x1, . . . , xN are
Z-linearly independent, we can consider

Λx := σ(〈x1, . . . , xN 〉Z) = 〈σ(x1), . . . , σ(xN )〉Z ⊆ Rr × Cs.
We want to show that Λx is a lattice in Rr × Cs and compute its covolume. As
in the case s = 0 that we did above, it suffices to do the second thing: getting a
finite covolume will tell us that Λx is a lattice. When s ≥ 1 we need to think just
a little bit about what covolumes mean in Rr × Cs. One simple answer is to just
identify C with R2 via z 7→ (<(z),=(z)), which tells us how to identify Rr × Cs
with RN . This works, but just to warn you, it results in a slightly annoying factor
in the formula:

Example 5.6. Suppose K = Q(
√
−1). Let Λ = ZK be the lattice in K spanned

by 1 and
√
−1. In this case we may take σ1 : K ↪→ C to be the identity map and

σ2 to be complex conjugation. In this case our additive embedding

σ : K ↪→ C
is just the inclusion map. When we identify C with R2 as suggested above, we find
that σ(ZK) = Z⊕Z inside R2. Evidently then the covolume of σ(ZK) is 1, whereas
δZK

= −4. This is slightly odd: in the totally real case, the discriminant was the
square of the covolume, but here the disrimaint is twice the square of the covolume.

Now we are fully prepared for the general case:

Theorem 5.7. Let K be a degree N number field with r real embeddings and s
pairs of complex embeddings. Let x1, . . . , xN ∈ K be Z-linearly independent; put

Λx := 〈x1, . . . , xN 〉Z.
Then:

a) σ(Λx) is a lattice in Rr × Cs.
b) Identify Rr ×Cs with Rr+2s using z 7→ (<z,=z) for each complex compo-

nent, we have2

Covolσ(Λx) = 2−s|detS(x)|
and thus

(21) |δΛx | = 4s(Covol Λx)2.

Proof. Again, we will not distinguish notationally between the Z-lattice Λx

in K and the Z-lattice σ(Λx) in Rr × Cs.
Let T (x) ∈MN,N (C) be the matrix whose jth column is

σ(xj) = (σ1(xj), . . . , σr(xj),<σr+1(xj),=σr+1(xj), . . . ,<σr+s(xj),=σr+s(xj)).
Then Λx is a lattice if and only if T (x) is nonsingular, and if so its covolume is
|detT (x)|. Since by (7) we have detS(x)2 = δΛx , the crux of the matter is to

2In the expression | detS(x)|, detS(x) is a complex number, and we have taken its absolute
value in the usual sense.
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compute detT (x) in terms of detS(x). These matrices are very closely related:
each of first r rows of T (x) is the same as the corresponding row of S(x); the
remaining rows correspond to conjugate pairs of complex embeddings, and where
in S(x) we have σi(xj) and σi(xj), in T (x) we have <(σi(xj)) and =(σi(xj)). If
we call the two rows of the first matrix R1 and R2 and the two rows of the second
matrix R3 and R4, then we have

R3 =
R1 +R2

2
, R4 =

R1 −R2

2
√
−1

.

Thus we can get from the first two rows the second two rows by row operations,
which changes the determinant by a factor of i

2 . This occurs s times in all, so

detT (x) =

(
i

2

)s
detS(x).

Because detS(x) 6= 0, this shows that Λx is a lattice. Moreover, we have

|δΛx | = |detS(x)2| = 4s(det |T (x)|)2 = 4s Covol Λ2
x. �

If we wanted to, we could set things up so as not to get the factor of 4s. As we
saw, it came from our identification of Rr × Cs with Rr+2s. If intead we took the
Haar measure on each factor C to be twice the standard Lebesgue measure, then
this factor would disappear. This convention is sometimes taken: see e.g. [Clxx].

2.2. A Standard Volume Calculation.

Proposition 5.8. Let r, s ∈ N, n = r + 2s, t ∈ R, and let

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑
i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Then for all t ≥ 0, we have that Bt is a compact, convex body and

VolBt = 2r
(π

2

)s tn
n!
.

Exercise 5.11. Prove Proposition 5.8. (Cf. [S, pp. 66-67].)

2.3. Finiteness of the Ideal Class Monoid.

For a number field K of degree n = r + 2s, we define the Minkowski constant

M(K) =

(
4

π

)s
n!

nn
|d(K)| 12 .

Theorem 5.9. Let a be a nonzero integral ideal of ZK . Then a contains a
nonzero element x such that

|NK/Q(x)| ≤M(K)N(a).

Proof. Let σ : K → Rr × Cs be the canonical embedding. Let t ∈ R>0, and
as in Proposition 5.8 put

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑
i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Bt is a compact, convex body (Proposition 5.8). Choose t such that

2r
(π

2

)s tn
n!

= VolBt = 2n Covol a = 2n2−s
√
|d(K)|N(a),
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i.e., such that

tn = 2n−rπ−sn!
√
|d(K)|N(a).

By Minkowski’s Convex Body Theorem, there is x ∈ a• such that σ(x) ∈ Bt, so

|NK/Q(x)| =
r∏
i=1

|σi(x)|
r+s∏
j=r+1

|σj(x)|2 ≤

 1

n

r∑
i=1

|σi(x)|+ 2

n

r+s∑
j=r+1

|σj(x)|

n

≤ tn

nn

=

(
4

π

)s
n!

nn

√
|d(K)|N(a) = M(K)N(a);

the first inequality uses the AGM Inequality and the second the definition of Bt. �

Exercise 5.12. Show: Bt is a compact, convex body.

Lemma 5.10. Let K be a number field of degree n, and let r ∈ Z+. Then

#{a ∈ FracZK | a ⊃ ZK , [a : ZK ] = r} ≤ 2r
n

<∞.

Proof. If a ⊃ ZK and [a : ZK ] = r, then ra ⊂ ZK and thus

ZK ⊂ a ⊂ 1

r
ZK .

Since
1
rZK

ZK

∼= (Z/rZ)n, there are at most as many choices of a as there are subsets

of an rn-element set (of course this is a ridiculously crude upper bound). �

Corollary 5.11. Let K be a number field. Then PicZK is finite.

Proof. By Lemma 5.10 the set of fractional ZK-ideals containing ZK with
index at most M(K) is finite: let us call these fractional ideals I1, . . . , Ic. Let
a ∈ FracZK . By Theorem 3, there is α ∈ a• such that

[ZK : αZK ] = |NK/Q(α)| ≤M(K)N(a) = M(K)[ZK : a],

and thus we have[
1

α
a : ZK

]
= [a : αZK ] =

[ZK : αZK ]

[ZK : a]
≤M(K).

It follows that there is some 1 ≤ i ≤ c such that 1
αa = Ii and thus a = αIi. It

follows that # PicZK ≤ c. �

Although we only recorded that PicZK is finite, the proof gives an explicit (though
not very good) upper bound on # PicZK in terms of n, r, s and |δK |.

Next we observe that in the above argument, we never inverted any nonprinci-
pal ideal, so we have not used that we were working in the Dedekind domain ZK
in any crucial way. So in fact we can prove a more general finiteness result: let
O ⊂ ZK be any Z-order in K: i.e., a Z-lattice in K that is a subring.

For any domain R with fraction field K, we define the ideal class monoid ICM(R):
we introduce an equivalence relation ∼ on FracR: a ∼ b if there are α, β ∈ K×
such that αa = βb. (The fact that principal fractional ideals are invertible makes
this relation transitive.) Then ICM(R) is the set of equivalence classes. It is easy to
see that if a1 ∼ b1 and a2 ∼ b2 then a1a2 ∼ b1b2, so the multiplication of fractional
ideals descends to a binary operation on equivalence classes that makes ICM(R)
into a commutative monoid. Moreover, by definition of a fractional ideal, every
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nonzero fractional ideal is equivalent to a nonzero integral ideal, so ICM(R) may
also be viewed as equivalence classes of nonzero integral ideals. Finally, we have:

ICM(R)× = Pic(R).

That is, the group of invertible elements is precisely the Picard group.

Now let O be a Z-order in K: that is, a Z-lattice in K that is also a subring.
Since O is finitely generated over Z, every element is integral over Z, so O ⊆ ZK ,
with finite index.

The following exercise is essentially asking you to revisit everything that we have
done in this section and realize that we could have worked a bit more generally, in
particular with ideals of O.

Exercise 5.13. Let O be an order in K, and put f := [ZK : O]. Let a be a
nonzero O-ideal.

a) Show: σ(a) is a lattice in Rn of covolume 2−sf
√
|δK |[O : a].

b) Show: there is x ∈ a• such that

|NK/Q(x)| ≤ f [O : a]M(K).

c) Show: ICM(O) is finite. Thus also Pic(O) is finite.

When we study nonmaximal orders more deeply3 we will learn that in fact the nat-
ural map PicO → PicZK given by pushing forward fractional ideals is a surjection,
so # PicZK | # PicO, and moreover there is a nice formula for # PicO

# PicZK
. In other

words, PicO is rather well-understood in terms of PicZK , so proving the finiteness
of PicO is not much of an additional contribution. However we showed that the
set of classes of not necessarily invertible O-ideals is still finite. This is interesting!
In general, ICM(O) is much less well understood than PicO.

3. Discriminant Bounds and Hermite’s Theorem

Theorem 5.12. (Minkowski) Let K be a number field of degree n ≥ 2 with s
complex places.

a) We have

|δK | ≥
(π

4

)2s n2n

(n!)2
≥ π

3

(
3π

4

)n−1

.

b) In particular |δ(K)| > 1.

Proof. a) Applying Theorem with a = ZK , we get: there is x ∈ Z•K such that

|NK/Q(x)| ≤M(K).

Because |NK/Q(x)| = #ZK/(x), certainly 1 ≤ |NK/Q(x)|, and we deduce

1 ≤M(K) =

(
4

π

)s
n!

nn
|δ(K)| 12 .

Thus

|δK | ≥
(π

4

)2s n2n

(n!)2
≥
(π

4

)n n2n

(n!)2
=: an.

3Unfortunately this does not take place in the current draft! But see [N, §1.12].
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We have

a2 =
π2

4
,

and the binomial theorem gives

an+1

an
=
π

4

(
1 +

1

n

)2n

≥ 3π

4
.

Thus for n ≥ 2,

|δ(K)| ≥ π2

4

(
3π

4

)n−2

=
π

3

(
3π

4

)n−1

.

b) If n ≥ 2, |δ(K)| ≥ π
3 ·

3π
4 = π2

4 > 1. �

Remark 5.13. Actually the proof shows that |δK | > 2 for all n ≥ 2. But this is
only interesting if we don’t know Stickelberger’s Theorem: δK ≡ 0, 1 (mod 4). We
will prove this later on: Theorem 6.5.

Our next theorem is of the form: “there are only finitely many number fields such
that...” Since so far for us a number field is just a finite degree field extension of
Q, there is a shallow set-theoretic problem here. For instance, consider the number
fields Q[x]/(x2 + 1) and Q[x]/(x2 − 2x + 2). The first field is isomorphic to Q[i]
and the second field is isomorphic to Q[1 + i]; but Q[1 + i] = Q[i], so the two fields
Q[x]/(x2 + 1) and Q[x]/(x2 − 2x + 2) are isomorphic. But are they equal? The
answer is no, but the question is not so great either. It would be better not to
distinguish between isomorphic number fields.

However there is another approach that is often better still. Let Q be the alge-
braic closure of Q that lives inside C: that is, the integral closure of Q in C. We
can then think of number fields as being the subfields of Q that have finite degree
over Q. Every abstract number field K can be embedded inside Q: indeed, we know
that the number of such embeddings is N = [K : Q]. The field K/Q is Galois if and
only if for any two embeddings σi, σj : K ↪→ Q we have σi(K) = σj(K). In general,

these isomorphic but possibly distinct subfields of Q are called the conjugates of
σ1(K) over Q. So an abstract number field may have multiple isomorphic copies
inside Q, but at most [K : Q] so certainly finitely many. Therefore any statement
about finiteness of a class of number fields means the same thing if we count iso-
morphism classes as it does if we count subfields of Q. We will always interpret
finiteness statements in these equivalent ways.

Theorem 5.14 (Hermite I). For all d ∈ Z, there are only finitely many number
fields with discriminant d.

Proof. By Theorem 5.12, it suffices to show that for any fixed r, s ∈ N, there
are only finitely many number fields with r real places, s complex places, degree
N = r + 2s and discriminant d. We may, and shall, assume that N ≥ 2. Let K be
such a number field.

Let B ⊂ Rr × Cs be as defined as follows:
• If r > 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ RN such that |y1| ≤ 2N−1

(
π
2

)−s√|d|,
|yi| ≤ 1

2 for 2 ≤ i ≤ r, and |zj | ≤ 1
2 for 1 ≤ j ≤ s.

• if r = 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ RN such that |z1 − z1| ≤ 2N
(
π
2

)1−s√|d|,
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|z1 + z1| ≤ 1
2 and |zj | ≤ 1

2 for 2 ≤ j ≤ s.
We leave it as an exercise to show that B is a compact, convex body, and

VolB = 2N−s
√
|d|.

By Theorem 5.7, the lattice σ(ZK) has covolume

2−s
√
|d|,

so – what luck! – we have VolB = 2N Covolσ(ZK). Thus Minkowski’s Convex
Body Theorem applies to give us x ∈ Z•K such that σ(x) ∈ B.

We claim x is a primitive element of K, i.e., that K = Q[x]. Suppose first that
r > 0, so |σi(x)| ≤ 1

2 for all i ≥ 2. Since

|NK/Q(x)| =
N∏
i=1

|σi(x)| ∈ Z+,

we must have |σ1(x)| > 1. Thus we have σ1(x) 6= σi(x) for all i ≥ 2, and it
follows that x is a primitive element for K. (Cf. [FT, Thm. 5.5].) Similarly, if

r = 0, then |σ1(x)| = |σ1(x)| ≥ 1. Moreover one of the defining conditions for
B gives |<(σ1(x))| ≤ 1

4 , so it follows that σ1(x) is not real. Thus again we have
σ1(x) 6= σi(x) for all ≥ 2, so x is a primitive element for K.

Let f =
∏n
i=1(t−σi(x)) ∈ Z[t] be the minimal polynomial for x. The inequali-

ties defining B show that all the conjugates σi(x) are bounded, hence coefficients of
the minimal polynomial of x, being elementary symmetric functions in the σi(x)’s,
are also bounded, and this gives finitely many choices for x and thus finitely many
choices for K. �

Exercise 5.14. Let A be a Dedekind domain with fraction field K, let L/K be
a degree N separable field extension, and let B be the integral closure of A in L. Let
p ∈ MaxSpecA and let P ∈ MaxSpecB lying over p. Let e be the ramification index
of P/p. Let vp be the p-adic valuation on K and let vP be the P-adic valuation on
L. Show:

∀x ∈ K×, vP(x) = evp(x).

Lemma 5.15. Let K/Q be a number field of degree N ≥ 2. For each prime
number p, we have

vp(δK) ≤ NblogpNc+N − 1 ≤ Nblog2Nc+N − 1.

Proof. We have

vp(δK) = vp(NK/Q(∆K/Q)) =
∑
P|p

fPvP(∆K).

Since eP ≤ N we have vp(eP) ≤ blogpNc, so by Exercise 5.14 we have

vP(eP) ≤ ePblogpNc.

Using this together with (19), we get

vP(∆K) ≤ eP − 1 + vP(eP) = eP − 1 + ePvp(eP) ≤ eP − 1 + ePblogpNc,

so

vp(δK) =
∑
P|p

fPvP(∆K) ≤
∑
P|p

fP
(
eP − 1 + ePblogpNc

)
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= N +NblogpNc −
∑
P|p

fP ≤ NblogpNc+N − 1. �.

Theorem 5.16 (Hermite’s Theorem II). Let S be a finite set of prime numbers,
and let N ∈ Z+. Then there are only finitely many number fields K of degree N
that are unramified outside S.

Proof. Let p1 < . . . < pr be the primes of S. If K is a degree N number field
that is unramified outside of S then |δK | = pa11 · · · parr for some a1, . . . , ar ∈ Z≥0.
By Lemma 5.15 the exponents a1, . . . , ar are bounded in terms of N , so there are
only finitely many possibilities for δK , and by Hermite’s Theorem I there are only
finitely many number fields with any given discriminant. �

4. The Dirichlet Unit Theorem

Let K be a number field. For x ∈ K, we will abbreviate NK/Q(x) to N(x).

We wish to study the structure of the unit group Z×K .

Lemma 5.17. For x ∈ ZK , the following are equivalent:

(i) We have x ∈ Z×K .
(ii) We have |N(x)| = 1.

Proof. If x ∈ Z×K , there is y ∈ Z×K such that xy = 1, and then

|N(x)||N(y)| = |N(xy)| = |N(1)| = 1.

Since |N(x)|, |N(y)| ∈ Z+, this forces |N(x)| = 1. Conversely, if |N(x)| = 1, the
minimal polynomial of x over Q is xn+an−1x

n−1+. . .+a1x±1 = 0 (cf. Proposition
4.9a)), so x · (xn−1 + an−1x

n−2 + . . .+ a1) = ±1, so x ∈ Z×K . �

Exercise 5.15. Let K be a number field, and let ζ ∈ K be a root of unity: that
is, ζn = 1 for some n ∈ Z+. Show: ζ ∈ Z×K .

Theorem 5.18 (Dirichlet Unit Theorem). Let K be a number field of degree
n = r + 2s. Then Z×K is a finitely generated abelian group, with free rank r + s− 1
and torsion subgroup the group µ(K) of roots of unity in K, which is finite.

Proof. Let σ1, . . . , σr : K ↪→ R be the real embeddings, and let σr+1, . . . , σr+s :
K ↪→ C be complex embeddings, no two of which are complex conjugate. We define
the multiplicative embedding, a homomorphism L : ZK \ {0} → Rr+s, by

L : x 7→ (log |σ1(x)|, . . . , log |σr+s(x)|).

Step 1: We claim that for any compact subset B ⊂ Rr+s, its preimage

B′ := L−1(B)

is finite. Because B is bounded, there is α > 1 such that:

∀x ∈ B′, ∀1 ≤ i ≤ r + s, |σi(x)| ≤ α.

It follows that the coefficients of the characteristic polynomial of an element x ∈ B′
are bounded; since these coefficients lie in Z, there are therefore only finitely many
such polynomials and hence only finitely many elements of B′.
Step 2: It follows from Step 1 that L−1(0) = KerL is finite. In particular, each
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element of KerL has finite order, i.e., is a root of unity. Conversely, since L is a
homomorphism of Z-modules, we have

L(Z×K [tors]) ⊆ Rr+s[tors] = {0}.

So Z×K [tors] —- i.e., the set of roots of unity in K — lies in L−1(0).

Step 3: It follows from Step 1 that L(Z×K) is a discrete subgroup of Rr+s, hence

free abelian of rank at most r + s. Moreover, for x ∈ Z×K , by Lemma 5.17 we have

±1 = N(x) =

n∏
i=1

σi(x) =

r∏
i=1

σi(x)

r+s∏
j=r+1

σj(x)σj(x),

hence L(x) lies in the hyperplane

W :
r∑
i=1

yi + 2
r+s∑
j=r+1

yj = 0.

Thus

L(Z×K) ⊂W ∼= Rr+s−1,

so in fact L(Z×K) is free abelian of rank at most r + s− 1.

Step 4: The last, most delicate part of the argument, is to show that L(Z×K) has
rank r + s − 1. We show this by a duality argument: for any nonzero linear form
f : W → R, we claim there exists u ∈ Z×K such that f(L(u)) 6= 0. From this it

follows that 〈L(Z×K)〉R = W , so L(Z×K) ∼= Zr+s−1.
Put M := r + s− 1. The map

π : W → RM , (y1, . . . , yr+s) 7→ (y1, . . . , yr+s−1)

is an R-linear isomorphism, so for any y = (y1, . . . , yM+1) ∈W , we may write

f(y) = c1y1 + . . .+ cMyM , ci ∈ R.

Fix a real number α ≥ 2N
(

1
2π

)s√|δK |. For any λ = (λ1, . . . , λM ) with λi > 0 for
all i, choose λM+1 > 0 such that

r∏
i=1

λi

r+s∏
j=r+1

λ2
j = α.

In Rr × Cs, the set B of elements (y1, . . . , yr, z1, . . . , zs) with |yi| ≤ λi and |zj | ≤
λr+j is a compact, symmetric convex set of volume

r∏
i=1

2λi

r+s∏
j=r+1

πλ2
j = 2rπsα ≥ 2N−s

√
|δK |.

By Minkowski’s Convex Body Theorem and Theorem 5.7 there is xλ ∈ Z•K such
that σ(xλ) ∈ B. Thus

1 ≤ |N(xλ)| =
N∏
i=1

|σi(xλ)| ≤
r∏
i=1

λi

r+s∏
j=r+1

λ2
j = α.

Moreover, for all 1 ≤ i ≤M , we have

|σi(xλ)| = |N(xλ)|
∏
j 6=i

|σj(xλ)|−1 ≥
∏
j 6=i

λ−1
j = λiα

−1
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so
λiα
−1 ≤ |σi(xλ)| ≤ λi,

hence
0 ≤ log λi − log |σi(xλ)| ≤ logα.

Applying the linear form f we get∣∣∣∣f(L(xλ))−
M∑
i=1

ci log λi

∣∣∣∣ ≤
(

M∑
i=1

|ci|

)
logα =: γ,

say. Let β > γ be a constant, and for each h ∈ Z+, choose positive real numbers

λ1,h, . . . , λM,h such that
∑M
i=1 ci log λi,h = 2βh. Put λ(h) = (λ1,h, . . . , λM,h) and

let xh = xλ(h) be the corresponding element of Z•K . Then |f(L(xh))− 2βh| < β, so

(2h− 1)β < f(L(xh)) < (2h+ 1)β.

It follows that the f(L(xh)) are all distinct. But since |N(xh)| ≤ α, there are only
finitely many principal ideals xhZK , so there exists h 6= h′ with (xh) = (xh′) and
thus xh = uxh′ with u ∈ Z×K . Thus f(L(u)) = f(L(xh))− f(L(xh′)) 6= 0. �

Exercise 5.16. Let K be a number field of degree N ≥ 2. Let µK := K×[tors]
be the group of roots of unity in K. By Theorem 5.18, we know that µK is finite.

a) Show: the group µK is cyclic.
b) Put m := #µK . Show: ϕ(m) ≤ N .

(Hint: use that the cyclotomic polynomial Φm(t) ∈ Q[t] is irreducible.)
c) Show: if N = 2, then m ∈ {1, 2, 4, 6} and that all of these possibilities

occur for imaginary quadratic fields.
d) Show: there is an absolute constant C such that for all N ≥ 3 we have

m ≤ C log logN .





CHAPTER 6

Some Classical Number Theory

1. Brill’s Theorem on the Discriminant

Recall the signum (or sign) function

sgn : R→ R, x 7→


1 x > 0

0 x = 0

−1 x < 0

.

Theorem 6.1. Let K be a number field of degree N , with s complex conjugate
pairs of complex embeddings. Then:

sgn(δZK
) = (−1)s.

Proof. Let σ1, . . . , σN : K ↪→ C be the distinct field embeddings of K into K.
As we know, we may embed K into C and thereby view σi as a homomorphism into
C. Let x1, . . . , xN be a Z-basis for ZK . As in §4.3, we put x = (x1, . . . , xN ) ∈ KN

and let S(x) be the matrix with (i, j) entry σi(xj). By (7) we have

δZK
= (detS(x))2.

Since δZK
∈ R×, this means that δZK

> 0 if and only if detS(x) ∈ R. But now con-
sider the effect of complex conjuation on the rows of S(x). The row corresponding
to real embeddings are pointwise fixed. The rows corresponding to conjugate pairs
of complex embeddings are pairwise interchanged. Since interchanging two rows of
a matrix multiplies the determinant by −1, we find that

detS(x) = (−1)s detS(x).

Thus detS(x) ∈ R if and only if s is even. �

Corollary 6.2. Let K be a number field with s complex conjugate pairs of
complex embeddings.

a) Let Λ be any Z-lattice in K. Then sgn(δΛ) = (−1)s.
b) In particular, for any Z-order O in K, we have sgn(δO) = (−1)s.

Exercise 6.1. Prove Corollary 6.2.

2. Stickelberger’s Theorem on the Discriminant

Let A be a Dedekind domain with fraction field K, let L/K be a degree n separable
field extension, and choose α ∈ L such that L = K(α). Put O := A[α].

Lemma 6.3. We have

∆(1, α, . . . , αn−1) =
∏

1≤i<j≤n

(αi − αj)2
.

113



114 6. SOME CLASSICAL NUMBER THEORY

Proof. �

The siginificance of this is that if f ∈ K[t] is the minimal polynomial for α, then∏
1≤i<j≤n (αi − αj)2

= ∆(f) is the discriminant of the polynomial f , say by def-

inition. It is then a piece of classical algebra that ∆(f) can also be computed
as the resultant Res(f, f ′) of f and f ′ (CITE). This makes the computation of
the discriminant of a monogenic order A[α] very straightforward (especially for a
computer).

Proposition 6.4. Let A be an integrally closed domain with fraction field K,
let f ∈ K[t] be a separable monic polynomial, with splitting field L. Then there is
P ∈ A such that ∆(f) ≡ P 2 (mod 4A).

Proof. Write f =
∏n
I=1(t− αi) with αi ∈ L. Consider the quantity

P :=
∏

1≤i<j≤n

(αi + αj).

Then: P lies in L, is integral over A, and is invariant under Aut(L/K), so P ∈ A.
Now consider the quantity E

E := ∆(f)− P 2.

If K has characteristic 2 then ∆(f) = P 2 is a square in A. Otherwise E
4 is an

element of K that is integral over A, so E ∈ 4A and thus ∆(f) ≡ P 2 (mod 4A). �

Theorem 6.5 (Stickelberger). Let K be a number field, and let O be any Z-
order in K. Then δ(O) ≡ 0, 1 (mod 4).

Proof. Step 0: It is enough to show that δK := ∆(ZK) ≡ 0, 1 (mod 4); then
for any Z-order O in K we have

δ(O) = [ZK : O]2δK ≡ [ZK : O]2δK (mod 4) ≡ 0, 1 (mod 4).

Step 1: Suppose that 2 | δK . Then there is a prime ideal p of ZK such that
e := e(p|(2)) ≥ 2. Then by Theorem 4.50b) we have vp(∆ZK/Z) ≥ e − 1, with
equality if and only if 2 - e, from which it follows that vp(∆ZK

/Z) ≥ 2 and thus

that δK is divisible by ||p2|| = 22f(p|2), hence by 4.
Step 2: Suppose 2 - δK , so we may write δK = u2d with d squarefree. If d = 1 then

δK is a square in Z/4Z, hence δK ≡ 1 (mod 4). It d 6= 1, then Q(
√
δK) = Q(

√
d) )

Q, and if M is the Galois closure of K/Q, then by Exercise 4.9 shows that
√
d ∈M .

Since δK is odd, 2 is unramified in K, hence also in the Galois closure L (Corollary

4.66), hence also in Q(
√
d), which implies d ≡ 1 (mod 4) and thus

δK = u2d ≡ 1 (mod 4). �

Exercise 6.2. Let d ∈ Z \ {0, 1} be such that d ≡ 0, 1 (mod 4).

a) Show: there is an order O in a quadratic number field such that δO = d.
b) Show: if O1 and O2 are two orders in quadratic number fields, then O1

∼=
O2 as rings if and only if δO1 = δO2 .

Exercise 6.2 gives a converse to Theorem 6.5 for not necessarily maximal orders.
In contrast, understanding which integers are fundamental discriminants – i.e.,
discriminants of the full ring of integers of some number field – is much harder. To
the best of my knowledge this remains mostly open.
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Intelligencer 18 (1996), 26–37.

[St-ANT] P. Stevenhagen, Number Rings. Course notes available at
http://websites.math.leidenuniv.nl/algebra/ant.pdf.
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