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CHAPTER 1

Normed Fields and Valuation Theory

1. Absolute values and valuations

1.1. Basic definitions.

All rings are commutative with unity unless explicit mention is made otherwise.

A norm on a field k is a map | · | : k → R≥0 satisfying:

(V1) |x| = 0 ⇐⇒ x = 0.
(V2) ∀x, y ∈ k, |xy| = |x||y|.
(V3) ∀x, y ∈ k, |x+ y| ≤ |x|+ |y|.

Example 1.1. On any field k, define | |0 : k → R≥0 by 0 7→ 0, x ∈ k\{0} 7→ 1.
This is immediately seen to be a norm on k, called the trivial norm. In many
respects it functions as an exception in the general theory.

Example 1.2. The standard norm on the complex numbers: |a+bi| =
√
a2 + b2.

The restriction of this to Q or to R will also be called “standard”.

Example 1.3. The p-adic norm on Q: write a
b = pn cd with gcd(p, cd) = 1 and

put |ab |p = p−n.

It is straightforward to check that | · |p is a norm on Q. It will be more rewarding to
give a conceptual explanation. Later we will see that we we can associate a norm
| · |p to any nonzero prime ideal p in a Dedekind domain. This hints that norms are
both plentiful and intimately related to classical algebraic number theory.

Exercise 1.1. Let | · | be a norm on the field k.
a) Show that the function d : k × k → R by d(x, y) := |x− y| is a metric.
b) (Reverse Triangle Inequality) Show: for all a, b ∈ k, ||a| − |b|| ≤ |a− b|.1

Exercise 1.2. Let R be a ring in which 1 6= 0. Let | · | : R → R≥0 be a map
which satisfies (V1) and (V2) (with k replaced by R) above.
a) Show that |1| = 1.
b) Show that R is an integral domain, hence has a field of fractions k.
c) Show that there is a unique extension of |·| to k, the fraction field of R, satisfying
(V1) and (V2).
d) Suppose that moreover R satisfies (V3). Show that the extension of part b) to k
satisfies (V3) and hence defines a norm on k.

1This is the first of many points in the course where basic metric topology intervenes. Because
students may be rusty on such things, we prefer to err on the side of assuming too little rather

than too much familiarity with such topics.
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6 1. NORMED FIELDS AND VALUATION THEORY

e) Conversely, show that every integral domain admits a mapping | · | satisfying
(V1), (V2), (V3).

Exercise 1.3.
a) Let | | be a norm on k, and let x ∈ k be a root of unity: we have xn = 1 for
some n ∈ Z+. Show: |x| = 1.
b) Show that for a field k, the following are equivalent:
(i) Every nonzero element of k is a root of unity.
(ii) The characteristic of k is p > 0, and k/Fp is algebraic.
c) If k/Fp is algebraic, show that the only norm on k is | · |0.

In Chapter 2 we will see that the converse of Exercise 1.3c) is also true: a field that
is not algebraic over a finite field admits a nontrivial norm.

Exercise 1.4. Let (k, | · | be a normed field, and let σ : k → k be a field
automorphism. Define σ∗| | : k → R by x 7→ |σ(x)|.
a) Show that σ∗| · | is a norm on k.
b) Show that this defines a left action of Aut(k) on the set of all norms on k which
preserves equivalence.
c) Let d be a squarefree integer, not equal to 0 or 1. Let k = Q(

√
d) viewed as a

subfield of C (for specificity, when d < 0, we choose
√
d to lie in the upper half

plane, as usual), and let | · | be the restriction of the standard valuation on C to k.

Let σ :
√
d 7→ −

√
d be the nontrivial automorphism of k. Is σ∗| | = | · |? (Hint: the

answer depends on d.)

1.2. Absolute values and the Artin constant.

For technical reasons soon to be seen, it is convenient to also entertain the fol-
lowing slightly weaker version of (V3): for C ∈ R>0, let (V3C) be the statement

(V3C) ∀x ∈ k, |x| ≤ 1 =⇒ |x+ 1| ≤ C.

A mapping | · | : k → R≥0 satisfying (V1), (V2) and (V3C) for some C will be
called an absolute value.

For an absolute value | | on a field k, we define the Artin constant Ck to be
the infimum of all C ∈ R>0 such that | · | satisfies (V3C).

Exercise 1.5. Let | · | be an absolute value on k.
a) Show that | · | satisfies (V3C) for some C, then C ≥ 1.
b) Let Ck be the Artin constant. Show that | · | satisfies (V3Ck).
c) Compute Ck for the standard norm on C and the p-adic norms on Q.

Lemma 1.4. Let k be a field and | · | an absolute value, and C ∈ [1,∞). Then
the following are equivalent:
(i) ∀x ∈ k, |x| ≤ 1 =⇒ |x+ 1| ≤ C.
(ii) ∀x, y ∈ k, |x+ y| ≤ C max(|x|, |y|).

Proof. Assume (i) and let x, y ∈ k. Without loss of generality we may assume
that 0 < |x| ≤ |y|. Then |xy | ≤ 1, so |xy + 1| ≤ C. Multiplying through by |y| gives

|x+ y| ≤ C|y| = C max(|x|, |y|).
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Now assume (ii) and let x ∈ k be such that|x| ≤ 1. Then

|x+ 1| ≤ C max(|x|, |1|) = C max(|x|, 1) = C. �

Lemma 1.5. Let k be a field and | · | an absolute value with Artin constant C.
Then | · | is a norm iff C ≤ 2.

Proof. (=⇒) Let | · | be a norm on k, and let x ∈ k be such that |x| ≤ 1.
Then

|x+ 1| ≤ |x|+ |1| = |x|+ 1 ≤ 1 + 1 = 2.

(⇐=) Suppose C ≤ 2. Let x, y ∈ k. Without loss of generality, we may assume
that 0 < |x| ≤ |y|. Then |xy | ≤ 1, so |1 + x

y | ≤ C ≤ 2. Multiplying through by y,

we get |x+ y| ≤ 2|y| = 2 max(|x|, |y|). Applying this reasoning inductively, we get
that for any x1, . . . , x2n ∈ k with 0 < |x1| ≤ . . . ≤ |x2n |, we have

|x1 + . . .+ x2n | ≤ 2n max
i
|xi|.

Let r be an integer such that n ≤ 2r < 2n. Then

(1) |x1 + . . .+ xn| = |x1 + . . .+ xn + 0 + . . .+ 0| ≤ 2r max
i
|xi| ≤ 2nmax

i
|xi|.

Applying this with x1 = . . . = xn = 1 gives that |n| ≤ 2n. Moreover, by replacing
the max by a sum, we get the following weakened version of (17):

|x1 + . . .+ xn| ≤ 2n

n∑
i=1

|xi|.

Finally, let x, y ∈ k be such that 0 < |x| ≤ |y|. Then for all n ∈ Z+,

|x+ y|n = |
n∑
i=0

(
n

i

)
xiyn−i| ≤ 2(n+ 1)

n∑
i=0

|
(
n

i

)
||x|i|y|n−i

≤ 4(n+ 1)

n∑
i=0

(
n

i

)
|x|i|y|n−i = 4(n+ 1)(|x|+ |y|)n.

Taking nth roots and the limit as n→∞ gives |x+ y| ≤ |x|+ |y|. �

Why absolute values and not just norms?

Lemma 1.6. Let | · | : k → R≥0 be an absolute value with Artin constant C.
Put

| · |α : k → R≥0, x 7→ |x|α.
a) The map | · |α is an absolute value with Artin constant Cα.
b) If | · | is a norm, | · |α need not be a norm.

Exercise 1.6. Prove Lemma 1.6.

This is the point of absolute values: the set of such things is closed under the op-
eration of raising to a power, whereas the set of norms need not be.

Moreover, Lemma 1.6 suggests a dichotomy for absolute values. We say an ab-
solute value is non-Archimedean if the Artin constant is equal to 1 (the smallest
possible value). Conversely, if the Artin constant is greater than one, we say that
the norm is Archimedean.
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For example, on k = Q, the p-adic norm | · |p is non-Archimedean, whereas the
standard absolute value | · |∞ is Archimedean with Artin constant 2.

Exercise 1.7. Let | | be an absolute value on l, and let k be a subfield of l.
a) Show that the restriction of | · | to k is an absolute value on k.
b) If | · | is a norm on l, then the restriction to k is a norm on k.

1.3. Equivalence of absolute values.

Two absolute values | · |1, | · |2 on a field k are equivalent if there exists α ∈ R>0

such that | · |2 = | · |α1 . When convenient, we write this as | · |1 ∼ | · |2.

By a place on a field k, we mean an equivalence class of absolute values.2 It
is easy to check that this is indeed an equivalence relation on the set of absolute
values on a field k. Moreover, immediately from Lemma 1.6 we get:

Corollary 1.7. Each absolute value on a field is equivalent to a norm.

Theorem 1.8. Let | · |1, | |2 be two nontrivial absolute values on a field k. The
following are equivalent:
(i) There exists α ∈ R>0 such that | · |α1 = | · |2.
(ii) ∀x ∈ k, |x|1 < 1 =⇒ |x|2 < 1.
(iii) ∀x ∈ k, |x|1 ≤ 1 =⇒ |x|2 ≤ 1.
(iv) ∀x ∈ k, all of the following hold:

|x|1 < 1 ⇐⇒ |x|2 < 1,

|x|1 > 1 ⇐⇒ |x|2 > 1,

|x|1 = 1 ⇐⇒ |x|2 = 1.

Remark: This may seem like a strange way to organize the equivalences, but it will
be seen to be helpful in the proof, which we give following [Ws, Thm. 1-1-4].

Proof. We shall show (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). That (i)
=⇒ (ii) (and, in fact, all the other properties) is clear.
(ii) =⇒ (iii): let x ∈ k be such that |x|1 = 1. We must show that |x|2 = 1. Since
| · |1 is nontrivial, there exists a ∈ k with 0 < |a|1 < 1, and then by (ii) we have

0 < |a|2 < 1. Then, for all n ∈ Z+, |xna|1 < 1, so |xna|2 < 1, so |x|2 < |a|
− 1

n
2 .

Taking n to infinity gives |x|2 ≤ 1. We may apply the same argument to x−1,
getting |x|2 ≥ 1.
(iii) =⇒ (iv): Choose c ∈ k such that 0 < |c|2 < 1. Then for sufficiently large n,

|x|1 < 1 =⇒ |x|n1 ≤ |c|1 =⇒ |x
n

c
|1 ≤ 1 =⇒ |x|n2 ≤ |c|2 < 1 =⇒ |x|2 < 1.

So far we have shown (iii) =⇒ (ii). As in the proof of (ii) =⇒ (iii) we have
|x|1 = 1 =⇒ |x|2 = 1. Moreover

|x|1 > 1 =⇒ | 1
x
|1 < 1 =⇒ | 1

x
|2 < 1 =⇒ |x|2 > 1.

2Warning: in more advanced valuation theory, one has the notion of a K-place of a field k,
a related but distinct concept. In these notes we shall always use place in the sense just defined.
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This establishes (iv).
(iv) =⇒ (i): Fix a ∈ k such that |a|1 < 1. Then |a|2 < 1, so

α =
log |a|2
log |a|1

> 0.

We will show that | · |2 = | · |α1 . For this, let x ∈ k, and put, for i = 1, 2,

γi =
log |x|i
log |a|i

.

It suffices to show γ1 = γ2. Let r = p
q be a rational number (with q > 0). Then

r =
p

q
≥ γ1 ⇐⇒ p log |a|1 ≤ q log |x|1

⇐⇒ |ap|1 ≥ |xq|1 ⇐⇒ |x
q

ap
|1 ≤ 1 ⇐⇒ |x

q

ap
|2 ≤ 1

⇐⇒ p log |a|2 ≥ q log |x|2 ⇐⇒
p

q
≥ γ2. �

Exercise 1.8. Let | · | be an absolute value on a field k. Show that | · |
is Archimedean (resp. non-Archimedean) iff every equivalent absolute value is
Archimedean (resp. non-Archimedean).

1.4. Artin-Whaples Approximation Theorem.

Theorem 1.9. (Artin-Whaples) Let k be a field and | |1, . . . , | |n be inequivalent
nontrivial norms on k. Then for any x1, . . . , xn ∈ k and any ε > 0, there exists
x ∈ k such that

∀ i, 1 ≤ i ≤ n, |x− xi|i < ε.

Proof. Our proof closely follows [A, §1.4].
Step 1: We establish the following special case: there exists a ∈ k such that |a|1 > 1,
|a|i < 1 for 1 < i ≤ n.
Proof: We go by induction on n. First suppose n = 2. Then, since | · |1 and | · |2 are
inequivalent and nontrivial, by Theorem 1.8 there exist b, c ∈ k such that |b|1 < 1,
|b|2 ≥ 1, |c|1 ≥ 1, |c2| < 1. Put a = c

b .
Now suppose the result holds for any n − 1 norms, so that there exists b ∈ k

with |b|1 > 1 and |b|i < 1 for 1 < i ≤ n − 1. Using the n = 2 case, there is c ∈ k
such that |c|1 > 1 and |c|n < 1.
Case 1: |b|n ≤ 1. Consider the sequence ar = cbr. Then for all r ∈ Z+ we have
|ar|1 > 1 while |ar|n < 1. For sufficiently large r, |ar|i < 1 for all 2 ≤ i ≤ n, so we
may take a = ar.
Case 2: |b|n > 1. This time, for r ∈ Z+, we put

ar =
cbr

1 + br
.

Then for i = 1 and i = n,

lim
r→∞

|ar − c|i = lim
r→∞

|c|i
|br − (1 + br)|i
|1 + br|i

= lim
r→∞

|c|i
|1 + br|i

= 0,

so for sufficiently large r we have

|ar|1 = |c|1 > 1 and |ar|n = |c|n < 1.
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On the other hand, for 1 < i < n,

|ar|i =
|c|i|b|ri
|1 + br|i

≤ |c|i|bi|r < 1.

Therefore we may take a = ar for sufficiently large r.
Step 2: We claim that for any δ > 0, there exists a ∈ k such that ||a|1− 1| < δ and
|a|i < δ for 1 < i ≤ n.
Proof: If b is such that |b|1 > 1 and |b|i < 1 for 1 < i ≤ n, then the computations

of Step 1 show that we may take ar = br

1+br for sufficiently large r.
Step 3: Fix δ > 0. By Step 2, for each 1 ≤ i ≤ n, there exists ai ∈ k such that
||a|i − 1| < δ and for all j 6= i, |ai|j < δ. Put A = maxi,j |xi|j . Take

x = a1x1 + . . .+ anxn.

Then

|x− xi|i ≤ |aixi − xi|i +
∑
j 6=i

|ajxj |i ≤ Aδ + (n− 1)Aδ = nAδ.

Thus taking δ < ε
nA does the job. �

Remark: Theorem 1.9 also goes by the name weak approximation. By any name,
it is the most important elementary result in valuation theory, playing a role highly
analogous to that of the Chinese Remainder Theorem in commutative algebra. On
other hand, when both apply the Chinese Remainder Theorem is subtly stronger,
in a way that we will attempt to clarify at little later on.

1.5. Archimedean absolute values.

In the land of Archimedean absolute values, there is one theorem to rule them
all. It is as follows.

Theorem 1.10. (Big Ostrowski Theorem) Let k be a fi eld and |·| an Archimedean
absolute value on k. Then there exists a constant α ∈ R>0 and an embedding
ι : k ↪→ C such that for all x ∈ k, |x| = |ι(x)|α∞. In other words, up to equivalence,
every Archimedean absolute value arises by embedding k into the complex numbers
and restricting the standard norm.

Theorem 1.10 is a deep result: every known proof from first principles takes several
pages. It immediately implies all of the other results in this section, and conversely
these results – and more! – are used in its proof. Indeed, to prove Big Ostrowski it
is convenient to use aspects of the theory of completions, so the proof is deferred
until Chapter 2.

For a field k, let Z · 1 be the additive subgroup generated by 1. Recall that if
k has characteristic 0, then Z · 1 is isomorphic to the integers, whereas if k has
characteristic p > 0, Z · 1 ∼= Fp.3

Proposition 1.11. Let | · | be an absolute value on a field k. The following are
equivalent:
(i) | · | is non-Archimedean.
(ii) |Z · 1| is bounded.

3Thus either way Z · 1 is a subring of k, often called the prime subring.
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Proof. Since both conditions (i) and (ii) are unaffected by changing the abso-
lute value within its equivalence class, we may and shall assume that | · | is a norm.

The implication (i) =⇒ (ii) follows from the remark preceding the statement
of Proposition 1.11. Now suppose (ii): for specificity, suppose that there exists
M > 0 such that |n · 1| ≤M for all n ∈ Z. Let a, b ∈ k and n ∈ Z+. Then

|a+b|n = |(a+b)n| = |
n∑
i=0

(
n

i

)
aibn−i| ≤M

n∑
i=0

|a|i|b|n−i ≤M(n+1) max(|a|, |b|)n.

Taking nth roots of both sides and letting n approach infinity gives the result. �

Corollary 1.12. An absolute value on a field of positive characteristic is non-
Archimedean.

Lemma 1.13. (Ostrowski Lemma) Every Archimedean absolute value on Q is
equivalent to the standard Archimedean norm | · |∞.

Proof. Let | · | be an Archimedean absolute value on Q. Once again we may,
and shall, assume that | · | is a norm. By Proposition 1.11, | · | is unbounded on the
integers, so we may define N to be the least positive integer such that |N | > 1. Let
α ∈ R>0 be such that |N | = Nα. Our task is to show that |n| = nα for all n ∈ Z.
We show separately that |n| ≤ nα and |n| ≥ nα.

Step 1: For any n ∈ Z+, consider its base N expansion:

n =
∑̀
i=0

aiN
i

with 0 ≤ ai < N , a` 6= 0. (Of course ` depends on n and N .) Then

|n| ≤
∑̀
i=0

|ai|Nαi.

Note that n ≥ N `. Also, by definition of N , we have |ai| ≤ 1 for all i. So

|n| ≤
∑̀
i=0

Nαi = Nα`
∑̀
i=0

(N−α)i ≤ nα
∞∑
i=0

N−αi = C1n
α,

where C1 =
∑∞
i=0N

−αi, a constant. Now let A be a positive integer. Applying the
above inequality with nA in place of n, we get

|n|A ≤ C1n
αA.

Taking Ath roots and the limit as A approaches infinity gives

|n| ≤ nα.

Step 2: Keeping N and ` = `(n) as above, we have N ` ≤ n < N `+1. Then

|N `+1| = |N `+1 − n+ n| ≤ |N `+1 − n|+ |n|,

so

|n| ≥ |N `+1| − |N `+1 − n| ≥ Nα(`+1) − (N `+1 − n)α

≥ Nα(`+1) − (N `+1 −N `)α = Nα(`+1)

(
1− (1− 1

N
)α
)
≥ C2n

α,

where C2 = 1− (1− 1
N )α, a constant. Arguing as above, we get |n| ≥ nα. �
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Theorem 1.14. (Computation of the Artin constant) Let k be a field and | · |
an absolute value on k.
a) The Artin constant Ck of k is max(|1|, |2|) = max(1, |2|).
b) For any subfield l of k, the Artin constant of the restriction of | · | to l is Ck.

Proof. (E. Artin) a) The absolute value | · | is non-Archimedean iff Ck = 1 iff
max(1, |2|) = 1, so we may assume that it is Archimedean. By Corollary 1.12 the
field k has characteristic 0 and thus contains Q. Moreover by Proposition 1.11 the
restriction of | · | to Q is Archimedean. If | |∞ denotes the standard Archimedean
norm on Q, then by the Ostrowski Lemma (Lemma 1.13), there is β > 0 such that
the restriction of | · |Q is | · |β∞. On the other hand, let α > 0 be such that Ck = 2α.
Thus the conclusion of part a) is equivalent to α = β.

Let a, b, a1, . . . , am ∈ k. Assuming without loss of generality that 0 < |a| ≤ |b|,
we get |ab | ≤ 1 so |ab + 1| ≤ 2α, hence

|a+ b| ≤ 2α max(|a|, |b|).

This argument is familiar from the proof of Lemma 1.1. A similar adaptation gives

|a1 + . . .+ am| ≤ (2m)α max
i
|ai|.

In particular, we have

|a+ b|m = |(a+ b)m| ≤ (2(m+ 1))α max
i
|
(
m

i

)
||a|i|b|m−i.

Since
∑n
i=0

(
m
i

)
= 2m, we have

|
(
m

i

)
| =

(
m

i

)β
≤ 2mβ .

Thus

|a+ b|m ≤ (2(m+ 1))α2mβ(max(|a|, |b|))m.
Taking mth roots and the limit as m→∞, we get

|a+ b| ≤ 2β max(|a|, |b|),

so that Ck = 2α ≤ 2β . Since

|1 + 1| = 2β = 2β max(|1|, |1|),

we also have 2β ≤ 2α, so α = β.
b) This follows immediately from part a), as the computation of the Artin constant
depends only on the restriction of the absolute value to its prime subring. �

1.6. Non-archimedean norms and valuations.

Exercise 1.9. Let (k, | · |) be a normed field.
a) Show: for all a, b ∈ k, we have ||a| − |b|| ≤ |a− b|.
For the remainder of the exercise, we suppose that the norm is non-Archimedean.
b) Suppose |a| > |b|. Show that |a+ b| = |a|.
c) Show: for all n ∈ Z+ and x1, . . . , xn ∈ k, |x1 + . . .+ xn| ≤ maxi |xi|.
d) (Principle of Domination) Suppose x1, . . . , xn ∈ k and |xi| < |x1| for all
i > 1. Show that |x1 + . . .+ xn| = |x1|.
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Exercise 1.9d) can be restated as: if in a finite collection of elements, there is
a unique element of maximal norm, then that element “dominates” in the sense
that the norm of it is the norm of the sum. Although this result does not lie any
deeper than the non-Archimedean triangle inequality, its usefulness cannot be over-
stated: if you are trying to prove estimates on the norm of a sum of terms in a
non-Archimedean field, always expect to use the principle of domination.

Until further notice, we let (k, | · |) be a non-Archimedean normed field.

Exercise 1.10. Define

R = {x ∈ k | · |x| ≤ 1}
and

m = {x ∈ k | · |x| < 1}.
Show that R is a ring and that m is the unique maximal ideal of m.

Thus R is a local ring, called the valuation ring of (k, | · |).

Remark: More generally, an integral domain R is called a valuation ring if for
every x ∈ k×, at least one of x, x−1 lies in R.

Exercise 1.11. Show that two non-Archimedean norms on a field k are equiv-
alent iff their valuation rings are equal.

Exercise 1.12. Let R be a valuation ring.
a) Show that R× is the set of elements x ∈ k× such that both x and x−1 lie in R.
b) Show that R \ R× is an ideal of R and hence is the unique maximal ideal of R:
R is a local ring.

In the non-Archimedean case it is often fruitful to consider, in place of the norm
| · | itself, its logarithm. This goes as follows:

A (rank one) valuation on a field k is a map v : k → R ∪ {∞} such that:
(V1) v(x) =∞ ⇐⇒ x = 0.
(V2) For all x, y ∈ k, v(xy) = v(x) + v(y).
(V3) For all x, y ∈ k, v(x+ y) ≥ min(v(x), v(y)).

Exercise 1.13. Show that v : 0 7→ −∞, k× 7→ 0 is a valuation on k, called
trivial.

Two valuations v and v′ on k are equivalent if there exists c > 0 such that v′ = cv.

Exercise 1.14. Let k be a field and v a valuation on k.
a) Show that Γ := v(k×) is a subgroup of (R,+). It is called the value group.
b) Show that a valuation is trivial iff its value group is {0}.
A valuation is called discrete if Γ is a nontrivial discrete subgroup of (R,+).
c) Show that every discrete subgroup of (R,+) is infinite cyclic.
d) Deduce that every discrete valuation is equivalent to one with value group Z.
Such a discrete valuation is said to be normalized.

Exercise 1.15. Let k be a field and c ∈ (1,∞).
a) If | · | is a non-Archimedean norm on k, show v = − logc | | is a valuation on k.
b) If v is a valuation on k, then | · | = c−v is a non-Archimedean norm on k, with
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valuation ring R = {x ∈ k | v(x) ≥ 0}.
c) Show that different choices of c yield equivalent norms.

Theorem 1.15. Let v be a nontrivial valuation on a field k with valuation ring
R and maximal ideal m. The following are equivalent:
(i) v is discrete.
(ii) There is an element π ∈ R such that m = (π).
(iii) The valuation ring R is a PID.
(iv) R is a Noetherian.
A valuation ring satisfying the equivalent conditions (ii) - (iv) is called a discrete
valuation ring or a DVR.

Proof. (i) =⇒ (ii): If v is discrete, then by Exercise 1.14 we may as well
assume that the value group is Z. Let π ∈ k be such that v(π) = 1. Then it is
easily seen that m = (π).
(ii) =⇒ (i): If m = (π), then necessarily π is an element of minimal positive
valuation, so v is discrete.
(ii) =⇒ (iii): This is similar to – but easier than! – the proof that Z is a PID.
Namely, since (ii) =⇒ (i), every ideal contains an element of minimal positive
valuation, and one readily shows such an element is a generator.
(iii) =⇒ (iv): a ring is Noetherian iff every ideal is finitely generated, so of course
a PID is Noetherian.
(iv) =⇒ (ii): we may assume that m = 〈x1, . . . , xn〉 with v(x1) ≤ . . . ≤ v(xn).
Then for all i ≥ 2, v( xi

x1
) ≥ 0, so xi

x1
∈ R, so x1 | xi, so m = 〈x1〉. �

The moral here is that the discrete valuations are by far the easiest to understand.
Thus it is natural to wonder whether we really need to bother with non-discrete
valuations. The answer is yes, at least in certain circumstances. The following
exercise gives an indication of this.

Exercise 1.16. Let (A,+) be a commutative group. Recall that A is divisible
if for all x ∈ A and n ∈ Z+, there exists y ∈ A such that ny = x. (Equivalently,
the multiplication by n map [n] : A→ A is surjective.)
a) Show: no nontrivial discrete subgroup of R is divisible.
b) Show: a quotient of a divisible group is divisible.
c) Show: if k is algebraically closed, then k× is a divisible group.
d) Deduce: an algebraically closed field admits no discrete valuation.

Exercise 1.17. For any field k, let R = k[[t]] be the ring of formal power
series with k-coefficients and k((t)) its fraction field, the field of formal Laurent
series

∑∞
n=N ant

n.
a) Show that for any ring S, the units of S[[t]] are precisely the formal power series
whose constant term is a unit in S.
b) Show that a nonzero f ∈ k[[t]] may be uniquely written as f = tNu with u ∈ R×.
c) Show that f 7→ N is a discrete valuation on k[[t]].

Exercise 1.18. Let f be a field, F = f((t)), and F an algebraic closure of F .

Let R = F [{t 1
n }n∈Z+ ] and let k be the fraction field of R.

a) Show that every element in R (resp. k) can be written as a formal power series

(resp. formal Laurent series) in t
1
n for some n ∈ Z+ which depends on k.4

4Either type of series is called a Puiseux series.
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b) Show that the units in R are the Puiseux series with nonzero coefficient of t0.
Deduce that R is a local ring.

c) Show that any nonzero f ∈ k may be uniquely written as t
p
q · u with u ∈ R×.

Deduce that R is a valuation ring. Show that R is not Noetherian, so is not a DVR.

d) Define |‖ : k → R>0 by 0 7→ 0, f = t
p
q · u 7→ 2−

p
q . Show that |‖ is a norm on k.

1.7. R-regular valuations; valuations on Dedekind domains.

Let R be an integral domain with fraction field k. We say that a valuation v
of k is R-regular if v(x) ≥ 0 for all x ∈ R, i.e., if R is contained in the valuation
ring Rv of v.

Theorem 1.16. (Classification of R-regular valuations on a Dedekind domain)
Let R be a Dedekind domain with fraction field K, and let p a nonzero prime ideal

of R. We define a map vp : K → Z ∪ −∞ as follows: vp(0) = −∞. Let α ∈ K×.
Write α = x

y with x, y ∈ R \ {0}. Let

(x) = paq, (y) = pbq′

with gcd(p, qq′) = 1. Put vp = a− b.
a) The map vp : K → Z

⋃
{∞} is a normalized discrete valuation.

b) Conversely, let v be a nontrivial valuation on K. If v is R-regular – i.e., v(R) ⊂
[0,∞] – then v ∼ vp for a unique nonzero prime ideal p of R. In particular, any
nontrivial R-regular valuation on K is discrete.

Proof. The proof of part a) is straightforward and left to the reader as Exer-
cise 1.19 below. As for part b), let v be a nontrivial R-regular valuation on K. Let
us call its valuation ring Av and its maximal ideal mv, so by hypothesis R ⊂ Av.
Put p := R ∩ mv. Since p is nothing else than the pullback of the prime ideal mv
under the homomorphism of rings R ↪→ Av, certainly p is a prime ideal of R. We
claim that it is nonzero. Indeed, p = {0} would mean that every nonzero element
of R is a unit in Av. Since every nonzero element of K is a quotient of two nonzero
elements of R, this would give Av = K, contradicting the nontriviality of v. Thus
p is a nonzero prime ideal in the Dedekind domain R, hence maximal. Let Rp be
the localization of R at p, a discrete valuation ring. Since every element of R \ p
is a unit in Av, we have an inclusion of nontrivial valuation rings Rp ⊂ Av. By
Theorem 1.8, this implies that vp ∼ v. �

Exercise 1.19. Prove Theorem 1.16a).

Proposition 1.17 (Dedekind Approximation). Let R be a Dedekind domain
with fraction field K. Let S = {p1, . . . , pr} be a finite set of nonzero prime ideals
of R, let n1, . . . , nr ∈ Z and x1, . . . , xr ∈ K. Then there is x ∈ K such that:
(i) For all 1 ≤ i ≤ r, vpi(x− xi) = ni and
(ii) vq(x) ≥ 0 for all nonzero prime ideals q different from the pi’s.

Proof. Step 1: For 1 ≤ i ≤ r, choose yi ∈ K such that vpi
(xi − yi) = ni.

By Artin-Whaples approximation there is a ∈ K such that vpi
(a− yi) > ni for all

1 ≤ i ≤ r, and the principle of domination gives vpi
(a− xi) = ni for all 1 ≤ i ≤ r.

Step 2: Let {q1, . . . , qm} be the set of prime ideals disjoint from S at which a has
negative valuation. If m = 0, we’re done. Otherwise, let N = −min1≤j≤m vqj (a),
and let M ∈ N be such that

M > ni − vpi
(a) ∀1 ≤ i ≤ r.
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By the Chinese Remainder Theorem there is c ∈ R such that c ≡ 1 (mod pMi ) for
all 1 ≤ i ≤ r and c ≡ 0 (mod qNj ) for all 1 ≤ j ≤ m. Thus vp(ac) ≥ 0 for all p /∈ S,
and for all 1 ≤ i ≤ r we have

vpi
(ac− xi) = vpi

((a− xi)− (ac− a)) = ni,

so we may take x = ac. �

Proposition 1.17 is not an immediate consequence of Artin-Whaples approximation
because of the extra integrality conditions. In the case where K is a gloal field, this
result is also related to the related to the Strong Approximation Theorem, one
of the fundamental results of Chapter 6.

Exercise 1.20. The special case of Proposition 1.17 in which x1 = . . . = xr = 0
is already a useful fact. Give a proof of this case that does not use Artin-Whaples
approximation. Can you prove the general case without it?

Exercise 1.21.
Let R be a Dedekind domain with fraction field K. Let S ⊂ MaxSpecR be finite.
a) (Moving Lemma) Let I be a fractional ideal of R. Show: there is α ∈ K× such
that (α)I is coprime to S – i.e., (α)I =

∏n
i=1 q

ai
i with ai ∈ Z and q1, . . . , qn ∈

MaxSpecR \ S.
b) Show: if R is semilocal – i.e., MaxSpecR is finite – then R is a PID.
c) More generally, suppose R is semilocal, let L/K be a finite degree field extension,
and let S be the integral closure of R in L. Show: S is a PID. (If you like, you
may assume that L/K is separable or that S is finitely generated as an R-module.
The result is still true without these assumptions, but you may not wish to worry
about the commutative algebraic technicalities.)
d) Let R = Z and L = Q(

√
−5), so S = Z[

√
−5]. Use

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

to show that S is not a PID. Deduce: there are infinitely many prime numbers!5

e) What about the converse of part c)? More precisely: is there R with MaxSpecR
infinite and such that for all finite degree field extensions L/K, the integral closure
S of R in L is a PID? (See [Cl67].)

1.8. Some Classification Theorems.

In this section we give some cases of fields k over which we can classify all norms.
The first, and most famous, case is k = Q:

Theorem 1.18. (Norms on Q) Up to equivalence, the nontrivial norms on Q
are precisely the Archimedean norm | · |∞ and the p-adic norms.

Proof. Let | · | be a nontrivial norm on Q. If | · | is Archimedean, then by
Lemma 1.13 it is equivalent to | · |∞. Otherwise | · | is non-Archimedean. Then by
Proposition 1.11, it is Z-regular on the Dedekind domain Z, so its valuation ring is
the localization at a prime ideal of Z, i.e., it is a p-adic norm.

To show how little is up our sleeves, let’s rephrase the non-Archimedean argu-
ment in more concrete terms:

Let | · | be a nontrivial non-Archimedean norm on Q. By Proposition 1.11,
|Z| ⊂ [0, 1]. If |n| = 1 for every nonzero integer, then by multiplicativity | · | would

5This ridiculous – but amusing – proof of the infinitude of SpecZ is due to Larry Washington.
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be the trivial norm on Q, so there exists a positive integer n with |n| < 1. Let p be
the least such positive integer; it follows easily that p is prime. By adjusting the
norm in its equivalence class, we may assume that |p| = 1

p , and our task is now to

prove that | | = | · |p. As a multiplicative group, Q× is generated by −1 and the
primes numbers `. Certainly | − 1| = | − 1|p = 1, so it suffices to show that for
all primes ` 6= p, |`| = |`|p = 1. So suppose not, i.e., there exists ` > p such that
|`| < 1. Then there exist integers x, y such that xp+ y` = 1, and hence

1 = |1| = |xp+ y`| ≤ max(|xp|, |y`|) ≤ max(|p|, |`|) < 1,

contradiction! �

Next we give the “function field analogue” of Theorem 1.18: namely, we will classify
all norms on Fq(t). Recall that by Exercise 1.3, every norm on Fq(t) restricts to
the trivial norm on Fq. So the following is a more general result:

Theorem 1.19. (Norms on k(t)) Let k be any field and let K = k(t), the field
of rational functions over k. Then every nontrivial norm on K that is trivial on k
is equivalent to exactly one of the following norms:
(i) | |P for P ∈ k[t] a monic irreducible polynomial, or

(ii) the norm | · |∞ defined by p(t)
q(t) 7→ 2deg(p(t))−deg(q(t)).

Proof. Let |·| be a norm on K which is trivial on k. Note that since |·| is trivial
on k, in particular |Z · 1| ⊂ [0, 1] so by Proposition 1.11 | · | is non-Archimedean.
Let R = Fq[t] – a Dedekind domain with fraction field K.
Case 1: If | · | is R-regular, then by Theorem 1.16 the associated valuation is vp for
a unique prime ideal p of R. This is equivalent to what is stated in (i).
Case 2: Suppose |R| 6⊂ [0, 1]. Since by hypothesis |k| ⊂ [0, 1], we must have |t| > 1.
Adjusting | · | in its equivalence class we may assume that |t| = 1

2 , and our task is

now to show that | · | = | · |∞, for which it is sufficient to show that |P | = 2degP for
each polynomial P (t) = ant

n + . . .+ a1t+ a0. But we know that |aiti| = 2i for all
i, so by the Principle of Domination (Exercise 1.9d)) we get |P | = 2degP . �

Note the following remarkable similarity between Theorems 1.18 and 1.19: in both
cases, most of the valuations come from the prime ideals of a particularly nice
Dedekind domain (in fact, a PID) with fraction field k, but there is one exception,
a valuation “at infinity”. This seems strange: in the case of Q this exceptional
valuation is Archimedean, whereas in the case of k(t) it is non-Archimedean.

Exercise 1.22. Suppose k is algebraically closed.
a) Show that the group G = PGL2(k) acts faithfully on k(t). (Hint: linear fractional
transformation).
b) Show that the orbit of | · |∞ under G consists of | · |∞ together with all the norms
| · |Pc

where Pc(t) = t− c for c ∈ k.
c) Show that G acts transitively on the set of norms of k(t) which are trivial on k
iff k is algebraically closed.

The proof of Theorem 1.19 pulls the norm | · |∞ on k(t) out of a hat and then
shows that it is up to equivalence the unique norm on k(t) that is trivial on k and
not regular on k[t]. The following explanation is perhaps more conceptual: a norm
on k(t) that is trivial on k and not regular on k[t] corresponds to a valuation v∞
which is non-negative on k but negative at t. One can obtain such a valuation by
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pulling back the valuation vt via the automorphism ι ∈ Aut(k(t)/k) determined by

ι(t) = 1
t . If f = p(t)

q(t) = amt
m+...+a1t+a0

bntn+...+b1t+b0
with am, bn 6= 0, then

v∞

(
p

q

)
= vt

(
amt

−m + . . .+ a1t
−1 + a0

bnt−n + . . .+ b1t−1 + b0

)
= vt

(
amt

n + . . .+ a0t
m+n

bntm + . . .+ b0tm+n

)
= n−m = deg(q)− deg(p).

And here is another take on the uniqueness: let v be any rank one valuation on k(t)
that is trivial on k. Then the valuation ring Rv contains t or 1

t and thus contains

either R[t] or R[ 1
t ]. The latter ring is equally well a Dedekind domain (of course it

is the isomorphic image of R[t] under the field automorphism ι) so the k[ 1
t ]-regular

valuations on k(t) correspond to maximal ideals in k[ 1
t ]. The maximal ideals of k[t]

other than t are the maximal ideals of k[t, 1
t ], which are also the maximal ideals of

k[ 1
t ] other than 1

t .

Let us now try to extend the above work to finite extension fields. This brings
us to some key definitions: a number field is a field k that is a finite extension
of Q. A function field is a field that is a finite extension of Fp(t) for some prime
p. (As a small remark, we would not change the definition of a function field by
requiring the extension to be separable: because Fp is perfect, a field that is a finite,
nonseparable extension of Fp(t) can also be realized as a finite separable extension
of Fp(t).) A global field is a field k that is a finite extension either of Q or of Fp(t).

The side-by-side treatment of number fields and function fields is one of the hall-
marks of modern number theory. We must quote André Weil, who eloquently cast
it in the language of his day (May, 1967):

“Once the presence of the real field, albeit at infinite distance, ceases to be re-
garded as a necessary ingredient in the arithmetician’s brew, it goes without saying
that the function-fields over finite fields must be granted a fully simultaneous treat-
ment with number-fields instead of the segregated status, and at best the separate
but equal facilities, which hitherto have been their lot. That, far from losing by
such treatment, both races stand to gain by it, is one fact which will, I hope, clearly
emerge from this book.”

We turn next to the classification of norms on an algebraic number field k. Much
of what we have said before carries over verbatim. There is a subtlety concerning
the inequivalent Archimedean norms that will not completely resolve at this point
but rather return to in Chapter 2 after developing further tools. Moreover, unlike
the case of R = Z, k = Q, it is not immediately obvious that every valuation on K
is regular on the ring of integers. For this, we use the following result:

Proposition 1.20. Let L/K be a finite degree field extension. Let R be a
Dedekind domain with fraction field K, and let S be the integral closure of R in L.
a) The ring S is a Dedekind domain with fraction field L.
b) Let v be a valuation on L. Then v is S-regular iff its restriction to K is R-regular.

Proof. a) It is straightforward to see that S is an integrally closed domain
in which every nonzero prime ideal is maximal (equivalently, of Krull dimension at
most one): integral closures are integrally closed [C:CA, Cor. 14.11], and integral
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extensions preserve the Krull dimension [C:CA, Cor. 14.17], and neither of these
results lies very deep. So the matter of it is to show that S is Noetherian. Though
this may seem like an unlikely worry, actually for all d ≥ 2 there is an integrally
closed Noetherian domain R of Krull dimension d with fraction field K and a finite
degree field extension L/K such that the integral closure of R in L is not Noe-
therian! It turns out that things are much nicer in Krull dimension one: it is a
consequence of the celebrated Krull-Akizuki Theorem [C:CA, Cor. 18.8] that
if R is a Noetherian domain of Krull dimension 1 with fraction field K and L/K is
a finite degree field extension, then the integral closure S of R in L is Noetherian,
hence a Dedekind domain. This is a rather deep theorem. However, under the
additional assumption that L/K is separable it becomes much easier, because then
one can show that S is finitely generated as an R-module. Since R is Noetherian, S
is then a Noetherian R-module: i.e., all R-submodules of S are finitely generated,
and thus a fortiori all S-submodules of S – i.e., all ideals of S are finitely generated.
The proof of this is not essentially different from the special case that the ring of
integers of a number field is finitely generated as a Z-module: see [C:CA, Thm.
18.1]. (In fact, when L/K is not assumed to be separable, S need not be finitely
generated as an R-module, so the Krull-Akizuki Theorem really does lie deeper.)

b) Since R ⊂ S, certainly the R-regularity of v|K is necessary for the S-
regularity of v. Conversely, let x be an element of S. By definition of integral
closure, there exists n ∈ Z+ and a0, . . . , an−1 ∈ R such that

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0.

Seeking a contradiction, we suppose v(x) = N < 0. Since each ai is in R, by
hypothesis we have v(ai) ≥ 0 for all 0 ≤ i < n, so v(aix

i) = iN + v(ai) ≥ iN ,
whereas v(xn) = nN . Thus in the sum xn + an−1x

n−1 + . . .+ a1x+ a0 we have a
unique term of smallest valuation; by Exercise 1.9c), we get

∞ = v(0) = v(xn + an−1x
n−1 + . . .+ a1x1 + a0) = nN,

a contradiction. So v(x) ≥ 0. �

Theorem 1.21. (Norms on a number field)
Let k ∼= Q[t]/(P (t)) be a number field, with ring of integers Zk. Then:
a) For every non-Archimedean norm, the corresponding valuation is equivalent to
the valuation vp attached to a nonzero prime ideal of Zk. Moreover, the valuations
vp are pairwise inequivalent.
b) Every Archimedean embeddding, up to equivalence, is of the form x 7→ |ι(x)|,
where ι : k → C is a field embedding and | · | is the standard absolute value on C.
c) Let r1 be the number of real roots of P (t), and let r2 be half the number of complex
roots of P (t). Let r be the number of Archimedean places. Then 1 ≤ r ≤ r1 + r2.

Proof. a) Since Zk is a Dedekind domain, this follows from Theorem 1.16 and
Proposition 1.20.
b) By the Big Ostrowski Theorem, every Archimedean absolute value, up to equiv-
alence, arises from an embedding ι : k ↪→ C. Since k/Q is finite separable, there
are [k : Q] embeddings of k into C, obtained by sending t (mod P (t)) to each of
the [k : Q] complex roots of P (t).
c) The subtlety is that distinct embeddings ι : k ↪→ C may give rise to the same
norm: cf. Exercise 1.4c). Indeed, because complex conjugation on C preserves the
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standard norm |·|∞, the number r of Archimedean places of k is at most the number
of orbits of the set of embeddings under complex conjugation, namely r1 + r2. �

Remark: Indeed we always have equality in part c): the number of Archimedean
places is precisely r1 + r2. I looked long and hard to find a proof of this fact using
only the tools we have developed so far. I found it in exactly one place: [Lor]. But
the proof given there is not easy! We will come back to this point in the context of
a more general discussion on extension of valuations.

Exercise 1.23. Let k be a field, R = k[t], K = k(t), and L/K be a finite degree
field extension. Let | · | be an absolute value on L that is trivial on k.
a) Let S be the integral closure of k[t] in L.6 Show that | | = | · |P for some prime
ideal P of S iff the restriction of | · | to k is not | · |∞.
b) Let | · |p be an R-regular norm on K, with corresponding prime ideal p of R.
Express the number of places of L which restrict to | · | in terms of the factorization
of p in S.
c) Suppose L ∼= K[t]/P (t) for an irreducible polynomial P (t).7 Can you give a more
concrete description of the number of places of L which restrict to | · |p?
d) Show that the number of places of L that extend the infinite place | · |∞ of K is
positive and at most [L : K]. Can you say more?

Exercise 1.24. (For those with some knowledge of algebraic geometry.) Let
C/k be a smooth, projective geometrically integral curve. Let v be a rank one valu-
ation on the function field k(C) that is trivial on k. Show: there is a unique closed
point P such that for all f ∈ k(C)×, v(f) is the order of vanishing of f at P .

Let L/K be a finite degree field extension and | · | a place on K. As we can see from
the above results and exercises, with our current vocabulary it is slightly awkward
to describe the number of places of L which extend the place | · | of K. To elaborate:
suppose for simplicity that | · | is a non-Archimedean place whose corresponding
valuation is discrete and that L/K is separable. Then the valuation ring R of | · |
is a DVR with fraction field K. Let S be the integral closure of R in L, so that
S is again a Dedekind domain with finitely many maximal ideals (so, in fact, a
PID). What we want is precisely to count the number of maximal ideals of S. In
classical number theory, we do this via the criterion of Kummer-Dedekind: namely,
we write L = K[x] ∼= K[t]/(P ), where x ∈ S has minimal polynomial P (t), and
then we factor P modulo the maximal ideal p of R. Unfortunately this only works
when S = R[x]. In the number field case, it is easy to see that this condition holds
at least for all but the primes dividing the discriminant of the minimal polynomial
P , which is usually enough for applications. But now we are in the local case, and
as we shall see it is simply not true that S need be monogenic as an R-module.

In summary, the fact that ring extensions are more complicated than field ex-
tensions is doing us in. What would be fantastic is if the number of maximal ideals
of S could be expressed in terms of the factorization of the polynomial P in some
field extension. This is exactly what the theory of completions will give us, so
we turn to that next.

6Recall that S is a Dedekind domain: cf. the proof of Proposition 1.20a).
7By the Primitive Element Corollary, this occurs if L/K is separable.
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2. Completions

2.1. Introduction.

The key idea is that of the completion K̂ of a normed field (K, | · |). This is
a special case of the completion of a metric space – a concept which we will re-
view – but bears further scrutiny in this case because we wish K̂ to itself have the
structure of a normed field.

Theorem 1.22. Let (K, | · |) be a normed field.

a) There is a complete normed field (K̂, | · |) and a homomorphism of normed fields

ι : (K, | · |)→ (K̂, | · |) such that ι(K) is dense in K̂.
b) The homomorphism ι is universal for norm-preserving homomorphisms of K
into complete normed fields.
c) In particular, K̂ is unique up to canonical isomorphism.
d) It follows that any homomorphism of normed fields extends uniquely to a homo-
morphism on the completions.

Remark: In categorical language, these results amount to the following: completion
is a functor from the category of normed fields to the category of complete normed
fields which is left adjoint to the forgetful functor from the category of complete
normed fields to the category of normed fields. We stress that, for our purposes
here, it is absolutely not necessary to understand what the previous sentence means.

2.2. Reminders on metric spaces.

Let X be a set. A metric on X is a function ρ : X ×X → [0,∞) satisfying:
(M1) (positive definiteness) ∀x, y ∈ X, ρ(x, y) = 0 ⇐⇒ x = y.
(M2) (symmetry) ∀x, y ∈ X, ρ(x, y) = ρ(y, x).
(M3) (triangle inequality) ∀x, y, z ∈ X, ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

A metric space is a pair (X, ρ) where ρ is a metric on X.

For x an element of a metric space X and r ∈ R>0, we define the open ball

B<r(x) = {y ∈ X | ρ(y, x) < r}.
The open balls form the base for a topology onX, the metric topology. With your
indulgence, let’s check this. What we must show is that if z ∈ B<r1(x) ∩B<r2(y),
then there exists r3 > 0 such that B<r2(z) ⊂ B<r1(x) ∩ B<r2(y). Let r3 =
min(r1−ρ(x, z), r2−ρ(y, z)), and let w ∈ B<r3(z). Then by the triangle inequality
ρ(x,w) ≤ ρ(x, z)+ρ(z, w) < ρ(x, z)+(r1−ρ(x, z)) = r1, and similarly ρ(y, w) < r2.

Given a finite collection of metric spaces {(Xi, ρi)}1≤i≤n, we define the product
metric on X =

∏n
i=1Xi to be ρ(x, y) = maxi ρi(xi, yi).

8

Remark: As is typical, instead of referring to “the metric space (X, ρ)”, we will
often say instead “the metric space X”, i.e., we allow X to stand both for the set
and for the pair (X, ρ).

8This is just one of many possible choices of a product metric. The non-canonicity in the
choice of the product is a clue that our setup is not optimal. But the remedy for this, namely

uniform spaces, is not worth our time to develop.
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Exercise 1.25. Let X be a set. A function ρ : X ×X → R≥0 satisfying (M2)
and (M3) is called a pseudometric, and a set X endowed with a pseudometric is
called a pseudometric space.
a) Show that all of the above holds for pseudometric spaces – in particular, the open
balls form the base for a topology on X, the pseudometric topology.
b) Show that for a pseudometric space (X, ρ), the following are equivalent:
(i) ρ is a metric.
(ii) The topological space X is Hausdorff.
(iii) The topological space X is separated (i.e., T1: points are closed).
(iv) The topological space X is Kolmogorov (i.e., T0: no two distinct points have
exactly the same open neighborhoods).
c) Define an equivalence relation ∼ on X by x ∼ y ⇐⇒ ρ(x, y) = 0. Let
X = X/ ∼ be the set of equivalence classes. Show that ρ factors through a function
ρ : X ×X → R≥0 and that ρ is a metric on X. Show that the map q : X → X is
the Kolmogorov completion of the topological space X, i.e., it is the universal
continuous map from X into a T0-space.

A Cauchy sequence in a metric space (X, ρ) is a sequence {xn} in X such that
for all ε > 0, there exists N ∈ Z+ such that m,n ≥ N =⇒ ρ(xm, xn) < ε. Every
convergent sequence is convergent. Conversely, we say that a metric space X is
complete if every Cauchy sequence converges.

Let X and Y be metric spaces. A function f : X → Y is uniformly contin-
uous if for all ε > 0, there exists δ > 0 such that ∀x, y ∈ X, ρX(x, y) < δ =⇒
ρY (f(x), f(y)) < ε.

Exercise 1.26. Let (X, ρ) be a metric space. Show that ρ : X × X → R is
a uniformly continuous function: here R is endowed with the standard Euclidean
metric ρ(x, y) = |x− y|.

Exercise 1.27. Let f : X → Y be a continuous function between metric spaces.
a) If f is uniformly continuous and {xn} is a Cauchy sequence in X, show that
{f(xn)} is a Cauchy sequence in Y .
b) Give an example to show that a merely continuous function need not map Cauchy
sequences to Cauchy sequences.

A topological space is compact if it is Hausdorff and every open covering has a
finite subcovering. A topological space is locally compact if it is Hausdorff and
every point admits a compact neighborhood. This is equivalent (thanks to the
Hausdorff condition!) to the apparently stronger condition that every point has a
local base of compact neighborhoods.

A metric space (X, ρ) is ball compact9 if every closed bounded ball is compact.

Exercise 1.28. Consider the following properties of a metric space (X, ρ):
(i) X is compact.
(ii) X is ball compact.
(iii) X is locally compact.
(iv) X is complete.

9I made up the term.
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Show that (i) =⇒ (ii) =⇒ (iii) and (ii) =⇒ (iv), but none of the other
implications hold.

2.3. Ultrametric spaces.

An ultrametric space is a metric space (X, ρ) in which the following stronger
version of the triangle inequality holds:

∀x, y, z ∈ X, ρ(x, z) ≤ max(ρ(x, y), ρ(y, z)).

Proposition 1.23. (Isosceles Law)
Let x, y, z be points in an ultrametric space (X, ρ).
a) If ρ(x, y) < ρ(x, z), then ρ(x, z) = ρ(y, z).
b) In particular, at least two of ρ(x, y), ρ(x, z), ρ(y, z) must be equal: “Every tri-
angle in an ultrametric space is isosceles.”

Proof. a) We have

ρ(y, z) ≤ max ρ(y, x), ρ(x, z) = ρ(x, z).

If we had ρ(y, z) < ρ(x, z), then

ρ(x, z) ≤ max ρ(x, y), ρ(y, z) < ρ(x, z),

a contradiction.
b) This follows immediately. �

Lemma 1.24. Let (X, ρ) be an ultrametric space, let xn → x be a convergent
sequence in X, and let y ∈ X \ {x}. Then for all sufficently large n, ρ(xn, y) =
ρ(x, y).

Proof. Choose N ∈ Z+ such that for all n ≥ N , ρ(x, xn) < ρ(x, y), and apply
the Isosceles Law to x, xn, y. �

Lemma 1.25. Let (X, ρ) be a compact metric space, and let f : X → R be
locally constant: for all x ∈ X, there is r > 0 such that f |B<r(x) is constant.
Then:
a) The image f(X) is finite.
b) f is uniformly locally constant: there is δ > 0 such that for all x, y ∈ X, if
ρ(x, y) < δ then f(x) = f(y).

Proof. a) By the very definition of a locally constant function, for all x ∈ X,
Ux = f−1(f(x)) is open in X. This gives an open covering of X; since X is compact
we may extract a finite subcovering. This shows that f(X) is finite. (Note that
we did not use the metric yet: this holds for any continuous function on a quasi-
compact topological space.)
b) A direct proof of this is similar to the argument that any continuous function on
a compact metric space is uniformly continuous. We leave this to the reader as an
(informal exercise). To show something a little different, we recall that every open
covering {Ui}i∈I of a compact metric space (X, ρ) has a Lebesgue number: i.e.,
there is some δ > 0 such that any subset Y ⊂ X with diameter at most δ lies in
some Ui. Applying this fact to the finite covering given by the fibers of the map f
as in part a), we deduce the result. �
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Proposition 1.26. Let (X, ρ) be an ultrametric space, and let Ω ⊂ X be a
compact subset.
a) Let y ∈ X \ Ω. Then the set {d(x, a) | x ∈ Ω} is finite.
b) Let y ∈ Ω. Then the set {d(x, y) | x ∈ Ω} is bounded and has no positive real
number as an accumulation point.

Proof. a) The function f : Ω → R given by x 7→ ρ(x, y) is continuous; it
follows easily from Lemma 1.24 that it is locally constant. By Lemma 1.25, f(Ω) =
{d(x, y) | x ∈ Ω} is finite. b) As above we define f : Ω → R by x 7→ ρ(x, y). Fix
ε > 0. We may apply part a) with Ω replaced by Ω\B<ε(y) to get that f(Ω)∩[ε,∞)
is finite. This shows both the boundedness and the nonexistence of any positive
real number as an accumulation point. �

Exercise 1.29. Let B = B<r(x) be an open ball in an ultrametric space (X, ρ)
and let y ∈ B<r(x). Show that y is also a center for B: B = B<r(y). Does the
same hold for closed balls?

Exercise 1.30. Let B1, B2 be two balls (each may be either open or closed) in
an ultrametric space (X, ρ). Show that B1 and B2 are either disjoint or concentric:
i.e., there exists x ∈ X and r1, r2 ∈ (0,∞) such that Bi = B(x, ri) or Bc(x, ri).

Exercise 1.31. Let (X, ρ) be an ultrametric space.
a) Let r ∈ (0,∞). Show that the set of open (resp. closed) balls with radius r forms
a partition of X.
b) Deduce from part a) that every open ball is also a closed subset of X and that
every closed ball of positive radius is also an open subset of X.
c) A topological space is zero-dimensional if there exists a base for the topology
consisting of clopen (= closed and open) sets. Thus part b) shows that an ultra-
metric space is zero-dimensional. Show that a zero-dimensional Hausdorff space is
totally disconnected. In particular, an ultrametric space is totally disconnected.

Exercise 1.32. Prove or disprove: it is possible for the same topological space
(X, τ) to have two compatible metrics ρ1 and ρ2 (i.e., each inducing the given
topology τ on X) such that ρ1 is an ultrametric and ρ2 is not.

Exercise 1.33. Let Ω be a nonempty set, and let S =
∏∞
i=1 Ω, i.e., the space

of infinite sequences of elements in Ω, endowed with the metric ρ(x, y) = 2−N if
xn = yn for all n < N and xN 6= yN . (If xn = yn for all n, then we take N =∞.)
a) Show that (S, ρ) is an ultrametric space, and that the induced topology coincides
with the product topology on S, each copy of Ω being given the discrete topology.
b) Show that S is a complete10 metric space without isolated points.
c) Without using Tychonoff’s theorem, show that S is compact iff Ω is finite. (Hint:
since S is metrizable, compact is equivalent to sequentially compact. Show this via
a diagonalization argument.)
d) Suppose Ω1 and Ω2 are two finite sets, each containing more than one element.
Show that the spaces S(Ω1) and S(Ω2) are homeomorphic.

2.4. Normed commutative groups.

Let G be a commutative group, written additively. By a norm on G we mean
a map | | : G→ R≥0 such that:

10Completeness is formally defined in the next section.
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(NAG1) |g| = 0 ⇐⇒ g = 0.
(NAG2) ∀g ∈ G, | − g| = |g|.
(NAG3) ∀g, h ∈ G, |g + h| ≤ |g|+ |h|.

For example, an absolute value on a field k is (in particular) a norm on (k,+).
By analogy to the case of fields, we will say that a norm is non-Archimedean if
∀g, h ∈ G, |g + h| ≤ |g|+ |h|.

Exercise 1.34. For a normed commutative group (G, |·|), define ρ : G2 → R≥0

by ρ(x, y) = |x− y|.
a) Show that ρ defines a metric on G. Show that the norm is non-Archimedean
iff ρ is an ultrametric.
b) Show that the norm | · | : G→ R is uniformly continuous.

The metric topology on G is Hausdorff and first countable, so convergence can be
described in terms of sequences: a sequence {xn} in X converges to x ∈ G if for
all ε > 0, there exists N = N(ε) such that for all n ≥ N , ρ(xn, x) < ε. A sequence is
said to be convergent if it converges to some x. Since G is Hausdorff, a sequence
converges to at most one point.

A semi-norm on a commutative group is a map | · | : G → R≥0 which satisfies
(NAG2) and (NAG3). Show that a semi-norm induces a pseudometric on G.

Exercise 1.35. Suppose G is an arbitrary (i.e., not necessarily abelian) group
– with identity element e and group law written multiplicatively – endowed with a
function | · | : G→ R≥0 satisfying:
(NAG1) |g| = 0 ⇐⇒ g = e.
(NAG2) ∀g ∈ G, |g−1| = |g|.
(NAG3) ∀g, h ∈ G, |gh| ≤ |g|+ |h|.
a) Show that d : G×G→ R, (g, h) 7→ |gh−1| defines a metric on G.
b) If | · | is a norm on G and C ∈ R>0, show that C| · | is again a norm on G. Let
us write | · |1 ≈ | · |2 for two norms which differ by a constant in this way.
c) Define on any group G a trivial norm; show that it induces the discrete metric.

In any topological commutative group, it makes sense to discuss the convergence
of infinite series

∑∞
n=1 an in G: as usual, we say

∑∞
n=1 an = S if the sequence

{
∑n
k=1 ak} of partial sums converges to S.

A series
∑∞
n=1 an is unconditionally convergent if there exists S ∈ G such

that for every permutation σ of the positive integers, the series
∑∞
n=1 aσ(n) con-

verges to S.

In a normed commutative group G we may speak of absolute convergence: we
say that

∑∞
n=1 an is absolutely convergent if the real series

∑∞
n=1 |an| converges.

Exercise 1.36. For a normed group G, show that the following are equivalent:
(i) Every absolutely convergent series is unconditionally convergent.
(ii) G is complete.

Whether unconditional convergence implies absolute convergence is more delicate.
If G = Rn with the standard Euclidean norm, then by the Riemann Rearrange-
ment Theorem unconditional convergence implies absolute convergence. On the
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other hand, it is a famous theorem of Dvoretzky-Rogers [DR50] that in any infi-
nite dimensional real Banach space (i.e., a complete, normed R-vector space) there
exists a series which is unconditionally convergent but not absolutely convergent.

Convergence in complete non-Archimedean normed groups is much simpler:

Proposition 1.27. Let G be a complete, non-Archimedean normed group, and
let {an}∞n=1 be a sequence in G. The following are equivalent:
(i) The series

∑∞
n=1 an is unconditionally convergent.

(ii) The series
∑∞
n=1 an is convergent.

(iii) limn→∞ an = 0.

Exercise 1.37. Prove Proposition 1.27.

Proposition 1.28. Let X be a topological space.
a) Let (M,ρ) is a complete metric space, and let fn : X → M be a sequence of
continuous functions such that for all ε > 0, there is N ∈ Z+ such that for all
m,n ≥ N ,

ρ(fm, fn) = sup
x∈X

ρ(fm(x), fn(x)) < ε.

There is a continuous function f : X →M such that fn converges uniformly to f .
b) (Ultrametric Weierstrass M-Test) Let (G, | · |) be a complete ultrametric
normed commutative group, and let fn : X → G be a sequence of continuous
functions such that

||fn|| = sup
x∈X
|fn(x)| → 0.

Then the series
∑
n fn converges uniformly on X to a continuous function.

Proof. a) For each x ∈ X, fm(x) is a Cauchy sequence in the complete metric
space M , so it converges; we define f(x) to be the limit. It is immediate to see that
the convergence of fn to f is uniform on X, and the usual argument from advanced
calculus / undergraduate real analysis that the limit of a uniformly convergent
sequence of continuous functions is continuous applies here.
b) Because G is ultrametric, the hypothesis of part a) applies to the sequence of
partial sums

∑n
k=1 fk. �

Exercise 1.38. Use Proposition 1.27 to give an explicit example of a series in
Qp which is unconditionally convergent but not absolutely convergent.

Exercise 1.39. Let (G, | · |) be a normed commutative group. Suppose that G
is locally compact in the norm topology.
a) Show that G is complete.
b) Must G be ball compact?

2.5. The topology on a normed field.

Let k be a field and | · | an Artin absolute value on k. We claim that there is
a unique metrizable topology on k such that a sequence {xn} in k converges to
x ∈ k iff |xn − x| → 0. To see this, first note that the condition |xn − x| → 0
depends only on the equivalence class of the Artin absolute value, since certainly
|xn − x| → 0 ⇐⇒ |xn − x|α → 0 for any positive real number α. So without
changing the convergence of any sequence, we may adjust | · | in its equivalence
class to get an absolute value (i.e., with Artin constant C ≤ 2) and then we define



2. COMPLETIONS 27

the topology to be the metric topology with respect to ρ(x, y) = |x − y| as above.
Of course this recovers the given notion of convergence of sequences. Finally, we
recall that a metrizable topological space is first countable and that there exists at
most one first countable topology on a set with a given set of convergent sequences.
We call this topology the valuation topology.

Exercise 1.40. Show that the trivial valuation induces the discrete topology.

Exercise 1.41. Let (k, | · |) be a valued field, and let {xn} be a sequence in k.
Show that xn → 0 iff |xn| → 0.

Proposition 1.29. Let | · |1 and | · |2 be norms on a field k. The following are
equivalent:
(i) | · |1 ∼ | · |2 in the sense of Theorem 1.4.
(ii) The topologies induced by | · |1 and | · |2 coincide.

Proof. The direction (i) =⇒ (ii) follows from the discussion given above.
Assume (ii). Let x ∈ k. Then |x|1 < 1 ⇐⇒ xn → 0 in the | · |1-topology iff xn → 0
in the | · |2-metric topology ⇐⇒ |x|2 < 1 ⇐⇒ | · |1 ∼ | · |2. �

An equivalent topological statement of Artin-Whaples approximation is:

Theorem 1.30. (Artin-Whaples Restated) Let k be a field and, for 1 ≤ i ≤ n,
let | · |i be inequivalent nontrivial norms on k. Let (k, τi) denote k endowed with
the | · |i-norm topology, and let kn =

∏n
i=1(k, τi). Then the diagonal map ∆ : k ↪→

kn, x 7→ (x, . . . , x) has dense image.

Exercise 1.42. Convince yourself that this is equivalent to Theorem 1.5.

Exercise 1.43. Show that any two closed balls of finite radius in a normed field
are homeomorphic. Deduce that a locally compact normed field is ball compact.

2.6. Completion of a metric space.

Lemma 1.31. Let (X, ρX) be a metric space, (Y, ρY ) be a complete metric space,
Z ⊂ X a dense subset and f : Z → Y a continuous function.
a) There exists at most one extension of f to a continuous function F : X → Y .
(N.B.: This holds for for any topological space X and any Hausdorff space Y .)
b) f is uniformly continuous =⇒ f extends to a uniformly continuous F : X → Y .
c) If f is an isometric embedding, then its extension F is an isometric embedding.

Exercise 1.44. Prove Lemma 1.31.

Let us say that a map f : X → Y of topological spaces is dense if f(X) is dense
in Y . An isometric embedding is a map f : (X, ρX)→ (Y, ρY ) such that for all
x1, x2 ∈ X, ρY (f(x1), f(x2)) = ρX(x1, x2). An isometry is a surjective isometric
embedding.

Exercise 1.45. Let f be an isometric embedding of metric spaces.
a) Show that f is uniformly continuous with δ = ε.
b) Show that f is injective. Therefore an isometry is bijective. Show that if f is an
isometry, then f−1 is also an isometry.

Theorem 1.32. let (X, ρ) be a metric space.

a) There is a complete metric space X̂ and a dense isometric embedding ι : X → X̂.
b) The completion ι satisfies the following universal mapping property: if (Y, ρ) is
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a complete metric space and f : X → Y is a uniformly continuous map, then there
exists a unique uniformly continuous map F : X̂ → Y such that f = F ◦ ι.
c) If ι′ : X ↪→ X̂ ′ is another isometric embedding into a complete metric space with

dense image, then there exists a unique isometry Φ : X̂ → X̂ ′ such that ι′ = Φ ◦ ι.

Proof. a) Let X∞ =
∏∞
i=1X be the set of all sequences in X. Inside X,

we define X to be the set of all Cauchy sequences. We introduce an equivalence
relation on X by x• ∼ y• if ρ(xn, yn)→ 0. Put X̂ = X/ ∼. For any x ∈ X, define
ι(x) = (x, x, . . .), the constant sequence based on x. This of course converges to x,

so is Cauchy and hence lies in X . The composite map X
ι→ X ∼→ X̂ (which we

continue to denote by ι) is injective, since ρ(xn, yn) = ρ(x, y) does not approach
zero. We define a map ρ̂ : X × X → R by

ρ̂(x•, y•) = lim
n→∞

ρ(xn, yn).

To see that this limit exists, we may reason (for instance) as follows: the sequence
x•×y• is Cauchy in X×X, hence its image under the uniformly continuous function
ρ is Cauchy in the complete metric space R, so it is convergent. It is easy to see
that ρ̂ factors through to a map ρ̂ : X̂ → X̂ → R. The verification that ρ̂ is a
metric on X̂ and that ι : X → X̂ is an isometric embedding is straightforward and
left to the reader. Moreover, if x• = {xn} is a Cauchy sequence in X, then the

sequence of constant sequences {ι(xn)} is easily seen to converge to x• in X̂.
b) Let x• ∈ X be a Cauchy sequence inX. As above, since f is uniformly continuous
and Y is complete, f(x•) is convergent in Y to a unique point, say y, and we put

y = F (x•). Since X is dense in X̂ this is the only possible choice, and by Lemma
1.31 it does indeed give a well-defined uniformly continuous function F : X → Y .
c) Isometric embeddings are uniformly continuous, so we may apply the universal

mapping property of part b) to the map ι′ : X ↪→ X̂ ′ to get a map Φ : X̂ → X̂ ′.

Similarly, we get a map Φ′ : X̂ ′ → X̂. The compositions Φ′ ◦ Φ and Φ′ ◦ Φ are
uniformly continuous maps which restrict to the identity on the dense subspace
X, so they must each by the identity map, i.e., Φ and Φ′ are mutually inverse
bijections. By Lemma 1.31c), Φ is an isometric embedding, so it is an isometry. �

We refer to X̂ as the completion of X.11

Corollary 1.33. (Functoriality of completion)
a) Let f : X → Y be a uniformly continuous map between metric spaces. Then

there exists a unique map F : X̂ → Ŷ making the following diagram commute:

X
f→ Y

X̂
F→ Ŷ .

b) If f is an isometric embedding, so is F .
c) If f is an isometry, so is F .

Proof. a) The map f ′ : X → Y ↪→ Ŷ , being a composition of uniformly
continuous maps, is uniformly continuous. Applying the universal property of com-
pletion to f ′ gives a unique extension X̂ → Ŷ .
Part b) follows immediate from Lemma 1.31b). As for part c), if f is an isometry,

11Really we should refer to the map ι : X ↪→ X̂ as the completion, but one rarely does so.
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so is its inverse f−1. The extension of f−1 to a mapping from Ŷ to X̂ is easily seen
to be the inverse function of F . �

Exercise 1.46. For a metric space (X, ρ), define the distance set D(X) =
ρ(X ×X), i.e., the set real numbers which arise distances between points in X.
a) Prove or disprove: if D is a discrete subset of R, then ρ is ultrametric.
b) Prove or disprove: if ρ is an ultrametric, then D is discrete.

c) Let X̃ be the completion of X. Show that D(X̃) = D(X) (closure in R).
d)(U) Determine which subsets of R≥0 arise as distance sets of some metric space.

Exercise 1.47. The notion of a metric space and a completion seems to pre-
suppose knowledge of R, the set of real numbers. In particular, it is a priori logically
unacceptable to define R to be the completion of Q with respect to the Archimedean
norm |·|∞. (Apparently for such reasons, Bourbaki’s influential text General Topol-
ogy avoids mention of the real numbers until page 329, long after a general dis-
cussion of uniform spaces and topological groups.) Show that this is in fact not
necessary and that the completion of a metric space can be used to construct the
real numbers. (Hint: first define a Q-valued metric and its completion.)

2.7. Completions of normed commutative groups and normed fields.

When G is a normed commutative group (or a field with an absolute value) we

wish to show that the completion G̃ is, in a natural way, again a normed commuta-
tive group (or a field with an absolute value). This follows readily from the results
in the previous section, but we take the opportunity to point out a simplification
in the construction of Ĝ in this case.

As above, we put G∞ =
∏∞
i=1 and G the subset of Cauchy sequences. But this time

G∞ is a commutative group and G is a subgroup of G∞ (easy exercise). Further-
more, we may define g to be the set of sequences converging to 0, and then g is a
subgroup of G. Thus in this case we may define Ĝ simply to be the quotient group
G/g, so by its provenance it has the structure of a commutative group. Moreover,
if x• is a Cauchy sequence in G, then by Exercise 1.34 the sequence |x•| is Cauchy
in R, hence convergent, and we may define

|x•| := lim
n→∞

|xn|.

We leave it to the reader to carry through the verifications that this factors to give
a norm on Ĝ whose associated metric is the same one that we constructed in the
proof of Theorem 1.32.

Now suppose that (k, | · |) is a normed field. Then the additive group (k,+) is

a normed commutative group, so the completion k̂ exists at least as a normed
commutative group. Again though we want more, namely we want to define a

multiplication on k̂ in such a way that it becomes a field and that the norm satis-
fies |xy| = |x||y|. Again the product map on k is uniformly continuous, so that it

extends to k̂, but to see that k̂ is a field the algebraic construction is more useful.
Indeed, it is not hard to show that k∞ is a ring, the Cauchy sequences K form a
subring. But more is true:
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Lemma 1.34. The set k of sequences converging to 0 is a maximal ideal of the

ring K of Cauchy sequences. Therefore the quotient K/k = k̂ is a field.

Proof. Since a Cauchy sequence is bounded, and a sequence which converges
to 0 multiplied by a bounded sequence again converges to 0, it follows that k is
an ideal of K. To show that the quotient is a field, let x• be a Cauchy sequence
which does not converge to 0. Then we need to show that x• differs by a sequence
converging to 0 from a unit in K. But since x• is Cauchy and not convergent to
0, then (e.g. since it converges to a nonzero element in the commutative group

k̂) we have xn 6= 0 for all sufficiently large n. Since changing any finite number
of coordinates of x• amounts to adding a sequence which is ultimately zero hence
convergent to 0, this is permissible as above, so after adding an element of k we may
assume that for all n ∈ Z+, xn 6= 0, and then the inverse of x• in K is { 1

xn
}. �

Exercise 1.48. (This is challenging.) Find all maximal ideals in the ring K.

Exercise 1.49. Let (k, | · |) be a nontrivially normed field.
a) Show that #{x ∈ k | 0 < |x| < 1} = #k.
b) Show that the cardinality of the set of all convergent sequences in k is (#k)ℵ0 .
Deduce that the same holds for the set of all Cauchy seqeunces of k.
c) Show that the cardinality of the completion of k is (#k)ℵ0 . (Hint: consider sep-
arately the cases in which #k = (#k)ℵ0 and #k < (#k)ℵ0 .

Thus for a field k to be complete with respect to a nontrivial norm, it must sat-
isfy a rather delicate cardinality requirement: (#k)ℵ0 = #k. This certainly implies
#k ≥ 2ℵ0 = #R, i.e., k has at least continuum cardinality. Conversely, there
are certainly complete fields of continuum cardinality, and indeed have (2ℵ0)ℵ0 =
2ℵ0×ℵ0 = 2ℵ0 . However, there are sets S with 2ℵ0 < #S < (#S)ℵ0 .

Let (k, | · |) be a normed field, and let σ : k → k be a field automorphism. We say
that σ is an automorphism of the normed field (k, | · |) if σ∗| · | = | · |.

Exercise 1.50. Let (K, | · |) be a normed field and σ an automorphism of K.
a) Show: if σ∗| · | ∼ | · |, then σ is continuous for the norm topology on K.
b) Suppose σ is continuous for the norm topology on K. Show: σ∗| · | ∼ | · |.
c) Suppose σ is continuous for the norm topology on K. Show that σ is an auto-
morphism of (K, | · |) if any one of the following holds:
(i) The norm | · | is Archimedean.
(ii) The norm | · | is non-Archimedean and the corresponding rank one valuation is
discrete.
(iii) The automorphism σ has finite order.
d) (M. Suwama) Let (K, | · |) be the field of Puiseux series over a field k (see Ex-
ercise 1.18). Construct an automorphism σ of K that is continuous for the norm
topology on K but σ∗| · | = | · |2.

Exercise 1.51. Let (k, | · |) be a complete normed field, and let σ be an auto-
morphism of k. Put | · |′ = σ∗| · |. Show: k is complete with respect to | · |′.

Exercise 1.52. A field K is rigid if it has no automorphism other than the
identity.
a) Let σ ∈ AutR. Show that σ is continuous for the topology induced by | · |∞.
(Suggestion: for x, y ∈ R we have x < y ⇐⇒ y − x ∈ R×2 ⇐⇒ σ(y − x) ∈
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R×2 ⇐⇒ σ(x) < σ(y). Thus |x| < 1 ⇐⇒ |σ(x)| < 1.
b) Show: the only continuous automorphism of R is the identity, and deduce R is
rigid.
c) Show: the only continuous automorphism of Qp is the identity.
d) Thus, to show that Qp is rigid, it suffices to show that every automorphism of Qp
is continuous. Later we will deduce this from a result of Schmidt: Theorem 2.47.
Can you show this using only the material we’ve developed so far?

Exercise 1.53. Let k/Q be a number field of degree n. Let l be its Galois
closure, and let G := Aut(l/Q). There is a monic irreducible polynomial p ∈ Q[t]
such that k ∼= Q[t]/(f), and then l is the splitting field of k. There is a natural
faithful action of G on the roots of p in l, which gives G as a subgroup of Sn.
a) Suppose that n ≥ 3 and G = Sn. Show that k is rigid.
b) Can you give other sufficient criteria on G as a subgroup of Sn that make k
rigid?

Exercise 1.54. Let k be a field complete with respect to a discrete, nontrivial
valuation. Let R be its valuation ring.
a) Show that k is homeomorphic to the infinite disjoint union

∐∞
i=1R.

b) Let k1, k2 be two fields complete with respect to discrete, nontrivial valuations,
with valuation rings R1, R2. Suppose that R1 and R2 are compact. Show that k1

and k2 are homeomorphic, locally compact topological spaces.

We now give an algebraic construction of the completion in the special case of a
discretely valued, non-Archimedean norm on k. Namely, the norm is equivalent to
a Z-valued valuation v, with valuation ring

R = {x ∈ k | v(x) ≥ 0}
and maximal ideal

m = {x ∈ k | v(x) > 0} = {x ∈ k | v(x) ≥ 1}.

Lemma 1.35. With notation above, suppose that k is moreover complete. Then
the ring R is m-adically complete. Explicitly, this means that the natural map

R→ lim
n
R/mn

is an isomorphism of rings.

Proof. This is straightforward once we unpack the definitions.
Injectivity: this amounts to the claim that

⋂
n∈Z+ mn = 0. In fact this holds for

any nontrivial ideal in a Noetherian domain (Krull Intersection Theorem), but it is
obvious here, because mn = (πn) = {x ∈ R | v(x) ≥ n, and the only element of R
which has valuation at least n for all positive integers n is 0.
Surjectivity: Take any element x of the inverse limit, and lift each coordinate
arbitrarily to an element xn ∈ R. It is easy to see that {xn} is a Cauchy sequence,
hence convergent in R – since k is assumed to be complete and R is closed in k, R
is complete). Let x be the limit of the sequence xn. Then x 7→ x . �

Exercise 1.55. Let v be a discrete valuation on a field k. Let R̂ = limnR/m
n.

a) Show that R̂ is again a discrete valuation ring – say with valuation v̂ – whose
maximal ideal m̂ is generated by any uniformizer π of R.

b) Let K be the fraction field of R̂. Show that K is canonically isomorphic to k̂, the
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completion of k in the above topological sense.
c) Let n ∈ Z+. Explain why the natural topology on the quotient R/mn is the
discrete topology.
d) Show that the following topologies on R̂ all coincide: (i) the topology induced

from the valuation v̂; (ii) the topology R̂ gets as a subset of
∏
nR/m

n (the product

of discrete topological spaces); (iii) the topology it inherits as a subset of k̂ under
the isomorphism of part b).

2.8. Non-Archimedean Functional Analysis: page 1.

K-Banach spaces: Let (K, | · |) be a complete (and not discrete) normed field.
In this context we can define the notion of a normed linear space in a way which
directly generalizes the more familiar cases K = R, K = C. Namely:

A normed K-linear space is is a K-vector space V and a map || · || : V → R≥0

such that:

(NLS1) ∀x ∈ V , x = 0 ⇐⇒ ||x|| = 0.
(NLS2) ∀α ∈ K, x ∈ V , ||αx|| = |α|||x||.
(NLS3A) If (K, | · |) is Archimedean, then ∀x, y ∈ V , ||x+ y|| ≤ ||x||+ ||y||.
(NLS3NA) If (K, | · |) is non-Archimedean, then ∀x, y ∈ V , ||x+y|| ≤ max ||x||, ||y||.
Weakening (NLS1) to =⇒ , we get the notion of a seminormed space.

A normed linear space is a normed commutative group under addition. In par-
ticular it has a metric. A K-Banach space is a complete normed K-linear space.

The study of K-Banach spaces (and more general topological vector spaces) for
a non-Archimedean field K is called non-Archimedean functional analysis.
This exists as a mathematical field which has real applications, e.g., to modern
number theory (via spaces of p-adic modular forms). The theory is similar but
not identical to that of functional analysis over R or C. (Explain that the weak
Hahn-Banach theorem only holds for spherically complete fields...)

Two norms || · ||1, || · ||2 on a K-vector space V are equivalent if there exists
α ∈ R>0 such that for all v ∈ V ,

1

α
||v||1 ≤ ||v||2 ≤ α||v||1.

Lemma 1.36. Let || · ||1 and || · ||2 be two norms on the K-linear space V . The
following are equivalent:
(i) The norms || · ||1 and || · ||2 are equivalent.
(ii) The identity map 1V : (V, || · ||1) → (V, || · ||2) is uniformly continous with
uniformly continuous inverse.
(iii) The topology induced by || · ||1 is the same as the topology induced by || · ||2.

Proof. a) (i) =⇒ (ii): If ||x||2 ≤ C||x||1 for all x, then 1V is uniformly
continuous with δ = ε

C . Similarly the other way around.
(ii) =⇒ (iii): In particular 1V is a homeomorphism, so the topoloies are the same.
(iii) =⇒ (i): We show the contrapositive. Suppose the norms are not equivalent;

then, after interchanging them if necessary, we have that ||x||2||x||1 is unbounded above
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as x ranges over nonzero elements of V . Choose α ∈ K such that |α| > 1. Then
for all n ∈ Z+, there is xn ∈ V such that

||xn||1 ≤
1

|α|2n
||xn||2.

Multiplying xn by a suitable power of α we may assume that ||xn||2 ∈ (1, α]. Since

for all nonzero x ∈ V and nonzero α ∈ K we have ||αx||2||αx||1 = ||x||2
||x||1 , we get

||xn||1 ≤
1

|α|2n
||xn||2 ≤ 2−n.

Thus xn converges to zero respect to || · ||1 but not with respect to || · ||2, so the
norms determine different topologies. �

Example 1.37. Let n ∈ Z+. We define a map | · |∞ : Kn → R by

|(x1, . . . , xn)|∞ = max
i
|xi|.

It is easy to check that this gives a norm on Kn. Indeed this is a special case of the
maximum norm on any finite product of metric spaces; it gives a metric and the
induced topology is the product topology.

Theorem 1.38. Let (K, | · |) be a complete normed field, and let (V, || · ||) be a
finite dimensional normed K-vector space.
a) Any two norms on V are equivalent.
b) It follows that any norm on V is complete and the induced topology coincides
with the topology obtained by pulling back the product topology on Kn via any iso-
morphism V

∼→ Kn.

Proof. a) [Cd1] We go by induction on n = dimK V . The case n = 0 is
absolutely trivial. When n = 1 the norm || · || is uniquely determined by its value
on any nonzero element e1 ∈ V because of the scaling relation ||ae1|| = |a|||e1||,
and thus any two norms on V are nonzero scalar multiples of each other. Since
multiplication by a nonzero element of K is a homeomorphism of K, this shows
that any two norms on K are equivalent.

Now suppose that n = dimK V ≥ 2 and that the result holds for all normed
K-vector spaces of dimension n − 1. Fix a K-basis e1, . . . , en for V , and for
(a1, . . . , an) ∈ Kn we put

||a1e1 + . . .+ anen||∞ := max
i
|ai|.

By Example 1.37, || · ||∞ is a norm on V . It suffices to show there are 0 < A ≤ B
such that

(2) ∀v ∈ V, A||v||∞ ≤ ||v|| ≤ B||v||∞,
for this shows that the arbitrary norm || · || is equivalent to || · ||∞. One direction
is easy: put B :=

∑n
i=1 ||ei||. Then for all v = a1e1 + . . .+ anen ∈ V , we have

||v|| = ||a1e1 + . . .+ anen|| ≤
n∑
i=1

||aiei|| =
n∑
i=1

|ai|||ei|| ≤ Bmax |ai| = B||v||∞.

To show the other direction, we argue much less directly: seeking a contradiction,
we suppose that there is no A > 0 so that (2) holds. This means: for all k ∈ Z+

there is vk ∈ V such that ||vk|| < 1
k ||vk||∞.

For v ∈ V and 1 ≤ i ≤ n, write v =
∑n
i=1 ai(v)ei. By definition of ||·||∞ and the
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Pigeonhole Principle, there is some 1 ≤ i ≤ n such that {k ∈ Z+ | ||vk|| = |ai(vk)|}
is infinite. We may assume without loss of generality that i = n. Scaling a vector
vk by an element of K× does not change the inequality ||vk|| < 1

k ||vk||∞, so after
rescaling and passing to a subsequence {vkj}∞j=1 we may assume that for all j ∈ Z+

we have:

(1) ||vkj ||∞ = 1,
(2) an(vkj ) = 1,

(3) ||vkj || < 1
kj
||vkj ||∞ = 1

kj
.

Let W = 〈e1, . . . , en−1〉K , and put

∀j ∈ Z+, wj := vkj − en.

Then wj ∈W and ||wj + en|| = ||vkj || < 1
kj
→ 0. Thus for all j, j′ ∈ Z+ we have

||wj − wj′ || = ||(wj + en)− (wj + en)|| ≤ ||wj + en||+ ||wj′ + en|| → 0

as min(j, j′)→∞. Thus {wj} is a Cauchy sequence in (W, || · ||W ). Since dimW =
n− 1, by induction there are C,C ′ > 0 such that

∀w ∈W, ||w||∞ ≤ C||w||, ||w|| ≤ C ′||w||∞.
Thus {wj} is Cauchy in (W, (|| · ||∞)|W ). This latter space is complete – a finite
product of complete metric spaces with the maximum metric – so there is w ∈ W
such that ||wj − w||∞ → 0. Again, the equivalence gives that ||wj − w|| → 0. But
then as j →∞ we have

||w + en|| = ||(w − wj) + (wj + en)|| ≤ ||w − wj ||+ ||wj + en|| → 0,

so en = −w ∈W , a contradiction.
b) Since (Kn, |·|∞) is complete – a finite product of complete metric spaces endowed
with the maximum metric is always complete – so is (V, | · |). Since the product
topology on Kn is the one induced by the || · ||∞-norm and (as used above) pulling
back || · ||∞ via a K-vector space isomorphism gives a norm on V , the last assertion
follows from part a): all norms on V induce the same topology. �

Exercise 1.56. In particular Theorem 1.38 applies to the complete Archimedean
normed fields (R, || · ||∞) and (C, || · ||∞). This case is indeed found in most basic
treatments of functional analysis.
a) Consult such a text and read the proof of Theorem 1.38 given there. It is (or
should be!) easier than the one given above.
b) Show that the above proof adapts to the case in which (K, | · |) is locally compact.
(This is in fact the case of most interest to us later on.)

Theorem 1.39. Let (K, | · |) be a complete normed field and (V, || · ||) a normed
K-linear space. Let W be a finite-dimensional K-subspace of V . Then W is closed.

Proof. Choose a K-basis w1, . . . , wn of W . By Theorem 1.38 and Lemma
1.36, the metric induced by the norm || · ||W is Lipschitz equivalent to the metric
induced by ||a1w1 + . . .+anwn|| := maxi |ai|. The latter metric is complete since K
is complete, and hence so is the former metric. A complete subspace of any metric
space is closed. �

We shall give alternate proof of Theorems 1.38 and 1.39 that is taken from Neukirch
[N, p. 133]. Let (V, || · ||) be a finite-dimensional normed space over the complete
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field (K, | · |). As in the above proof, choosing a basis e1, . . . , en of V allows us to
define a norm ||a1e1 + . . . + anen||∞ := maxi |ai|. We must show that as v ranges

over nonzero elements of V , the ratio ||v||
||v||∞ is bounded above and below. As we

saw, being bounded above is almost immediate. For the other direction, we again
work by induction on dimV = n. In particular we may assume that all n − 1-
dimensional subspaces of V are complete with the restricted norm, hence closed.
Since translation by v ∈ V is a homeomorphism, it follows that all translates W +v
of n − 1-dimensional subspaces (a.k.a. all affine hyperplanes in V ) are closed. In
particular, for 1 ≤ i ≤ n, let

Wi := 〈ej | j 6= i〉K ,
i.e., the K-span of all standard basis vectors except ei. Then X :=

⋃n
i=1Wi + ei

is closed and does not contain 0, so there is some ρ > 0 such that the open ball of
radius ρ centered at 0 is disjoint from X, or in other words

∀1 ≤ i ≤ n, ∀wi ∈Wi, ||wi + ei|| ≥ ρ.
Now let v = a1e1| . . . + anen be a nonzero vector of V , and let I be such that
max |ai| = |aI | > 0. Then

|| 1
ai
v|| = ||a1

ai
v1 + . . .+ eI + . . .+

an
aI
en|| ≥ ρ,

so

||v|| ≥ ρ|an| = ρ||v||∞.

One one thinks of “Archimedean functional analysis,” Theorems 1.38 and 1.39 are
probably not the first two which come to mind, perhaps because they are not very
interesting! On the other hand, for our purposes these results are crucially useful.
Indeed, they are precisely what is needed to prove the uniqueness in Theorem 1.43,
a topic to which we soon turn.

2.9. Big Ostrowski Revisited.

The goal of this section is to prove the Big Ostrowski Theorem. Our proof fol-
lows an approach taken by David Krumm who was in turn following [N], but with
some modifications. We will prove the following result.

Theorem 1.40. Let (K, |·|) be a complete Archimedean field with Artin contant
2 (i.e., |2| = 2). Then (K, | · |) is isomorphic either to R with its standard absolute
value or to C with its standard absolute value.

Let us first establish that Theorem 1.40 is equivalent to the Big Ostrowski theorem.
First assume Theorem 1.10, and let (K, | · |1) be an Archimedean normed field with
Artin constant 2. Then we have an embedding ι : K ↪→ C such that for all x ∈ K,
|x|1 = |ι(x)|. There is an induced map on completions

ι̂ : (K̂, | · |1)→ (Ĉ, | · |) = (C, | · |).

Thus ι(K̂) is an isometrically embedded complete subfield of C. Since ι(K̂) contains

Q, it contains the topological closure of Q in C, namely R: R ⊂ ι(K̂) ⊂ C. Since
[C : R] = 2, we have little choice: either

(K̂, | ·1 |) ∼= (ι(K̂), | · |) = (R, | · |)
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or
(K̂, | ·1 |) ∼= (ι(K̂)), | · |) = (C, | · |.

Conversely, assume Theorem 1.40, and let (K, | · |) be an Archimedean normed field

with Artin constant 2. Then (K, | · |) is a normed subfield of its completion K̂,
which is isomorphic to either (R, | · |) or to (C, | · |). Either way, (K, | · |) can be
isometrically embedded in (C, | · |).

Now we turn to the proof of Theorem 1.40. First, since (K, | · |) is a complete
Archimedean normed field, it has characteristic zero (Corollary 1.9) and thus con-
tains Q. By Ostrowski’s Lemma (Lemma 1.10) and the computation of the Artin
constant (Theorem 1.11), the restriction of | · | to Q must be the standard absolute
value | · |∞. So (Q, | · |∞) ↪→ (K, | · |) is an isometric embedding of normed fields.
Taking completions, we get an isometric embedding (R, | · |∞) ↪→ (K, | · |). The crux
of the matter is the following claim.

claim The field extension K/R is algebraic.

sufficiency of the claim If K/R is algebraic, then either K = R – and we’re
done – or [K : R] = 2 and K is isomorphic as an R-algebra to C. In this case there
is still something to show,, namely that (K, | · |) is isomorphic to (C, | · |∞) as a
normed field. Happily, the tools needed to show this were developed in the previous
section. Indeed, (K, | · |) is a finite-dimensional normed space over the complete
field R, so the topology induced by the norm is the product topology on R2. We
may use the R-isomorphism of K with C to transport the norm | · | to C. On C
we also have the standard Archimedean norm | · |∞. By the above considerations,
these two norms induce the same topology on C so are equivalent. Moreover they
both have Artin constant 2, so they are equal, whence an isomorphism of normed
fields (K, | · |) ∼→ (C, | · |∞).

proof of the claim We will show that every element of K is the root of a
quadratic polynomial with R-coefficients.

Let α ∈ K \ R. For z ∈ C, put

Pz(t) = t2 − (z + z)t+ zz.

Thus Pz(t) is a quadratic polynomial with R-coefficients whose roots in C are z and
z (a double root, if z ∈ R). Moreover, define a map f : C→ R≥0 by

f(z) = |Pz(α)|.
To say that α is quadratic over R is to say that there is some z ∈ C such that
f(z) = 0. We will prove this by a somewhat sneaky argument mixing algebra and
topology. First, it is easy to see to see that f is continuous and that f(z) tends
to ∞ with |z|∞. Indeed, for |z|∞ sufficiently large, the constant term of Pz(α)
dominates. Thus f attains a minimum value m ∈ R≥0.

Seeking a contradiction, we assume m > 0. Since f is continuous, the level set
Z = f−1(m) is closed; since f tends to infinity Z is also bounded, hence compact.
So there is z1 ∈ C such that f(z1) = m and |z1|∞ is maximal among all z ∈ Z.
If we can produce w1 ∈ C such that |w1|∞ > |z1|∞, we will have attained our
contradiction.



3. EXTENDING NORMS 37

To do so, choose ε ∈ R with 0 < ε < m,, and let w1 ∈ C be a root of the
“perturbed polynomial” Pz1(t) + ε. Since Pz1(t) is a quadratic polynomial with
at most one real root, its discriminant is nonpositive; further, the discriminant of
Pz1(t) is strictly smaller than the discriminant of Pz1(t), hence negative: that is,
w1 ∈ C \ R. Hence

Pz1(t) + ε = (t− z1)(t− z1) + ε = (t− w1)(t− w1) = t2 − (w1 + w1)t+ w1w1.

Comparing constant coefficients gives

|z1|∞ =
√
|w1|2∞ − ε < |w1|infty.

By definition of z1, we must have f(w1) > m. But we claim that also f(w1) ≤ m.
We establish this as follows: let n be an odd positive integer, and define

g(t) = Pz1(t)n + εn.

Factor g(t) over C as

g(t) =

2n∏
i=1

(t− wi).

Note that since n is odd, Pz1(t) + ε divides g(t), so indeed w1 is one of the roots of
g. Also g(t) ∈ R[t], so

g(t) =

2n∏
i=1

(t− wi),

and thus

g(t)2 =

2n∏
i=1

(t− wi)(t− wi) =

2n∏
i=1

(t2 − (wi + wi)t+ wiwi).

It follows that

|g(α)|2 =

2n∏
i=1

|α2 − (wi + wi)α+ wiwi| =
2n∏
i=1

f(wi) ≥ f(w1)m2n−1.

On the other hand,

|g(α)| ≤ |Pz1(α)|n + εn = f(z1)n + εn = mn + εn,

and thus

f(w1) ≤ |g(α)|2

m2n−1
≤ (mn + εn)2

m2n−1
= m

(
1 +

( ε
m

)n)2

.

Since 0 < ε < m, sending n to infinity gives f(w1) ≤ m, contradiction! This
completes the proof of Theorem 1.40.

3. Extending norms

3.1. Introduction and Reorientation.

In this chapter we will study more explicitly the topology on a field induced by
a norm. Especially interesting from this perspective are the (nontrivially) normed
fields which are locally compact with respect to the norm topology.

But we have been studying normed fields for a little while now. Where are we
going? What problems are we trying to solve?
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Problem 1: Local/Global Compatibility. Arguably the most interesting re-
sults in Chapter 1 were the complete classification of all norms on a global field
K, i.e., a finite extension of either Q (a number field) or Fq(t) for some prime power
q (a function field).

We interrupt for two remarks:

Remark 1: Often when dealing with function fields, we will say “Let K/Fq(t)
be a finite separable field extension”. It is not true that every finite degree field

extension of Fq(t) is separable: e.g. Fq(t
1
q )/Fq(t) is an inseparable field extension.

However, the following is true: if ι : Fq(t) ↪→ K is a finite degree field homomor-
phism – don’t forget that this wordier description is the true state of affairs which
is being elided when we speak of “a field extension K/F” – then there is always
another finite degree field homomorphism ι′ : Fq(t) ↪→ K which makes K/ι′(Fq(t))
into a separable field extension: e.g. [Ei, Cor. 16.18].

Remark 2: In the above passage we could of course have replaced Fq(t) by Fp(t).
But the idea here is that for an arbitrary prime power q, the rational function field
Fq(t) is still highly analogous to Q rather than to a more general number field. For
instance, if K is any number field, then at least one prime ramifies in the extension
of Dedekind domains ZK/Z. However, the extension Fq[t]/Fp[t] is everywhere un-
ramified. Moreover, Fq[t] is always a PID.12

For a global field K, we saw that there is always a Dedekind ring R with K as
its fraction field with “sufficiently large spectrum” in the sense that all but finitely
many valuations on K are just the p-adic valuations associated to the nonzero prime
ideals of R. This suggests – correctly!– that much of the arithmetic of K and R
can be expressed in terms of the valuations on K.

A homomorphism of normed fields ι : (K, | · |) → (L, | · |) is a field homo-
morphism ι such that for all x ∈ K, |x| = |ι(x)|. We say that the norm on L
extends the norm on K. When the normed is non-Archimedean, this has an en-
tirely equivalent expression in the language of valuations: a homomorphism of
valued fields ι : (K, v)→ (L,w) is a field homomorphism ι : K ↪→ L such that for
all x ∈ K, v(x) = w(ι(x)). We say that w extends v or that w|K = v. (Later we
will abbreviate this further to w | v.)

Problem 2: The Extension Problem. Let (K, | · |) be a normed field, and
let L/K be a field extension. In how many ways does v extend to a norm on L?

Theorem 1.41. Let (K, | · |) be a normed field and L/K an extension field. If
either of the following holds, then there is a norm on L extending | · |:
(i) L/K is algebraic.
(ii) (K, | · |) is non-Archimedean.

Example 1.42. Let K = Q, | · | = | · |2 and L = R. Then there exists a norm on
R which extends the 2-adic norm on Q. This may seem like a bizarre and artifical

12Somewhat embarrassingly, the question of whether there exist infinitely many number fields
of class number one remains open!
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example, but it isn’t: this is the technical heart of the proof of a beautiful theorem
of Paul Monsky [Mo70]: it is not possible to dissect a square into an odd number
of triangles such that all triangles have the same area. In fact, after 40 years of
further work on this and similar problems, to the best of my knowledge no proof of
Monsky’s theorem is known that does not use this valuation-theoretic fact.

Exercise 1.57. Let (K, | · |) be an Archimedean norm.
a) Suppose that L/K is algebraic. Show that | · | extends to a norm on L.
b) Give an example where L/K is transcendental and the norm on K does extend
to a norm on L.
c) Give an example where L/K is transcendental and the norm on K does not
extend to a norm on L.
Hint for all three parts: use the Big Ostrowski Theorem.

In view of Exercise 1.57, we could restrict our attention to non-Archimedean norms
and thus to valuations. Nevertheless it is interesting and useful to see that the
coming results hold equally well in the Archimedean and non-Archimedean cases.

Theorem 1.41 addresses the existence of an extended norm but not the number
of extensions. We have already seen examples to show that if L/K is transcenden-
tal, the number of extensions of a norm on K to L may well be infinite. The same
can happen for algebraic extensions of infinite degree: e.g., as we will see later, for
any prime p, there are uncountably many extensions of the p-adic norm to Q.

Exercise 1.58. Let K be a field and {Ki}i∈I be a family of subfields of K
such that: (i) for all i, j ∈ I there exists k ∈ I such that Ki ∪ Kj ⊂ Kk and (ii)⋃
iKi = K. (Thus the family of subfields is a directed set under set inclusion,

whose direct limit is simply K.) Suppose that for each i we have a norm | · |i on
Ki, compatibly in the following sense: whenever Ki ⊂ Kj, | · |j extends | · |i. Show
that there is aunique norm | · | on K extending each norm | · | on Ki.

Exercise 1.59. Let (k, | · |) be a non-Archimedean normed field. Let R = k[t]
and K = k(t). For P (t) = ant

n + . . . + a1t + a0 ∈ R, define the Gauss norm
|P | = maxi |ai|. Show that this is indeed a norm on k[t] and thus induces a norm
on the fraction field K = k(t) extending the given norm on k. Otherwise put, this
shows that every valuation on a field k extends to a valuation on k(t).

Exercise 1.60. Let (K, v) be a valued field, and let L/K be a purely tran-
scendental extension, i.e., the fraction field of a polynomial ring over K (in any
number of indeterminates, possibly infinite or uncountable). Use the previous Ex-
ercise to show that v extends to a valuation on L. (Suggestion: this is a case where
a transfinite induction argument is very clean.)

Exercise 1.60 and basic field theory reduces Theorem 1.41 to the case of an algebraic
extension L/K. As we will see, this can be further reduced to the case of finite
extensions. Moreover, when (K, v) is a valued field and L/K is a finite extension,
we wish not only to show that an extension w of v to L exists but to classify (in
particular, to count!) all such extensions. We saw in §1 that this recovers one of the
core problems of algebraic number theory. Somewhat more generally, if v is discrete,
then the valuation ring R is a DVR – in particular a Dedekind domain – and then
its integral closure S in L is again a Dedekind domain, and we are asking how the
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unique nonzero prime ideal p of R splits in S: i.e., pS = Pe11 · · · Perr . With suitable
separability hypotheses, we get the fundamental relation

∑r
i=1 eifi = [L : K].

Theorem 1.43. Let (K, | · |) be a complete normed field and let L/K be alge-
braic.
a) There exists a unique norm | · |L on L such that (K, | · |) → (L, | · |L) is a
homomorphism of normed fields.
b) If L/K is finite, then (L, | · |L) is again complete.

Corollary 1.44. If (K, | · |) is a normed field and L/K is an algebraic exten-
sion, then there is at least one norm on L extending the given norm on K.

Proof. We may as well assume that L = K. The key step is to choose a

field embedding Φ : K ↪→ K̂. This is always possible by basic field theory: any
homomorphism from a field K into an algebraically closed field F can be extended
to any algebraic extension L/K. Since this really is the point, we recall the proof.
Consider the set of all embeddings ιi : Li ↪→ F , where Li is a subextension of
L/K. This set is partially ordered by inclusion. Moreover the union of any chain
of elements in this poset is another element in the poset, so by Zorn’s Lemma we
are entitled to a maximal embedding ιi : Li ↪→ F . If Li = L, we’re done. If not,
there exists an element α ∈ L \Li, but then we could extend ιi to Li[α] by sending
α to any root of its ιi(Li)-minimal polynomial in F . By Theorem 1.43, there is

a unique norm on K̂ extending the given norm on K. Therefore we may define a
norm on L by x 7→ |Φ(x)|. �

Exercise 1.61. Use Corollary 1.44 and some previous exercises to prove The-
orem 1.41.

Theorem 1.45. Let (K, | · |) be a normed field and L/K a finite extension.
Then there is a bijective correspondence between norms on L extending the given
norm on K and prime ideals in the K̂-algebra L⊗K K̂.

There is a beautiful succinctness to the expression of the answer in terms of tensor
products, but let us be sure that we understand what it means in more down-to-
earth terms. Suppose that there exists a primitive element α ∈ L i.e., such that
L = K(α). Recall that this is always the case when L/K is separable or [L : K]
is prime. In fact, the existence of primitive elements is often of mostly psycholog-
ical usefulness: in the general case we can of course write L = K(α1, . . . , αn) and
decompose L/K into a finite tower of extensions, each of which has a primitive
element.

Now let P (t) ∈ K[t] be the minimal polynomial of α over K, so P (t) is irre-
ducible and L ∼= K[t]/(P (t)). In this case, for any field extension F/K, we have
isomorphisms

L⊗K F ∼= K[t]/(P (t))⊗K F ∼= F [t]/(P (t)).

Thus, L ⊗K F is an F -algebra of dimension d = degP = [L : K]. It need not be
a field, but its structure is easy to analyze using the Chinese Remainder Theorem
in the Dedekind ring F [t]. Namely, we factor P (t) into irreducibles: say P (t) =
P e11 · · ·P err . Then CRT gives an isomorphism

L⊗K F ∼= F [t]/(P (t)) ∼=
r⊕
i=1

F [t]/(P eii ).
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Let us put Ai = F [t]/(P eii ). This is a local Artinian F -algebra with unique prime
ideal Pi/P

ei
i . Thus the number of prime ideals in L ⊗K F is r, the number of

distinct irreducible factors of F . Moreover, suppose that L/K is separable. Then
P (t) splits into distinct linear factors in the algebraic closure of K, which implies
that when factored over the extension field F (algebraic or otherwise), it will have
no multiple factors. In particular, if L/K is separable (which it most often will be
for us, in fact, but there seems to be no harm in briefly entertaining the general
case), then all the ei’s are equal to 1 and Ai = F [t]/(Pi) is a finite, separable field
extension of F .

Example: We apply this in the case (K, | · |) is the rational numbers equipped
with the standard Archimedean norm. Then the number of extensions of | | to
L ∼= K[t]/(P (t)) is equal to the number of (necessarily distinct) irreducible factors

of P (t) in R = Q̂. How does a polynomial factor over the real numbers? Every
irreducible factor has degree either 1 – corresponding to a real root – or 2 – corre-
sponding to a conjugate pair of complex roots. Thus L⊗Q R ∼= Rr1 ⊕ Cr2 and the
number of extensions is r1 + r2, as advertised – but not proved! – in the Remark
following Theorem 1.16.

It remains to prove Theorems 1.22, 1.43 and 1.45. Before proving Theorem 1,
we give several short sections of “review” on topics which are probably somewhat
familiar from previous courses but are important enough to revisit from a slightly
more sophisticated perspective. In §2.7 we give the proof of Theorem 1.22.

3.2. Proof of Theorem 1.43 Part I: Uniqueness.

Theorem 1.46. Let (K, |·|) be a complete normed field, let L/K be an extension
of finite degree d, and let | · |L be a norm on L extending | · |. Then for all x ∈ L,

(3) |x|L = |NL/K(x)| 1d .

Proof. Let G = Aut(L/K).
Step 1: We may assume L/K is normal. This reduction is left as an exercise.
Step 2: We suppose moreover that L/K is separable, hence Galois. For σ ∈ G,
the map σ : L→ L is a K-linear automorphism of L, which is a finite-dimensional
vector space over the complete field K, so by Theorem 1.38 it is continuous, and
thus is an automorphism of the normed field (L, | · |L): for all x ∈ L, |σ(x)|L = |x|L.
This is the key observation, for now

|NL/K(x)| = |
∏
σ∈G

σ(x)| =
∏
σ∈G
|x| = |x|d.

Step 3: Now suppose (only) that L/K is normal. Let ds be the separable degree
of L/K, i.e., the number of K-embeddings of L into an algebraic closure of K, and
let di = d

ds
be the inseparable degree. Then for all x ∈ L, we have

NL/K(x) =

(∏
σ∈G

σ(x)

)di
.

The proof now proceeds as in Step 2 above. �

Exercise 1.62. Work out the details of Step 1 of the proof of Theorem 3.
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Corollary 1.47. Let (K, | · |) be complete, and let L/K be an algebraic exten-
sion.
a) There is at most one norm one L extending | · | on K.
b) Suppose that for every finite subextension M of L/K the mapping x ∈ M 7→
|NM/K(x)|

1
[M:K] of (3) is indeed a norm on M . Then the mapping

(4) x ∈ L 7→ |NK[x]/K(x)|
1

[K[x]:K]

is a norm on L.

Exercise 1.63. Prove Corollary 1.47. (Hint: use Exercise 2.2.)

3.3. Theorems of Mazur, Gelfand and Tornheim.

In this section we give a second proof of Big Ostrowski – or rather, the equiva-
lent Theorem 1.40. Let (K, | · |) be a field which is complete with respect to a norm
with Artin constant 2. We want to show that (K, | · |) is isomorphic to (R, | · |∞)
or (C, | · |∞). As in the previous section, Little Ostrowski gives that (K, | · |) has
a normed subfield isomorphic to (R, || · |). The new idea we wish to pursue here
is that this implies that (K, | · |) is a real Banach algebra: that is, an R-vector
spcae A complete with respect to a norm || · || with |1| = 1 and which is (at least)
sub-multiplicative: for all x, y ∈ A, ||xy|| ≤ ||x|||y||.

We will prove the following generalization of Theorem 1.40.

Theorem 1.48. (Gelfand-Tornheim [To52]) Let (K, || · ||) be a real Banach
algebra which is also a field. Then (K, ||·||) is isomorphic to (R, ||·||∞) or (C, ||·||∞).

There is an evident corresponding notion of a complex Banach algebra, and in fact
the theory of complex Banach algebras is much better developed than the theory
of real Banach algebras, so our first step is to reduce to the complex case. This
is done as follows: if K contains a square root of −1, then it contains a subfield
isomorphic to C (even as a normed field, by the uniqueness of the norm on a finite
extension of a complete field): great. If K does not contain a square root of −1,
we would like to replace K by K(

√
−1).

It is natural to try to prove the following result.

Theorem 1.49. Let K be a field of characteristic different from 2 which is
complete with respect to a norm | · |. Let L/K be a quadratic extension. Then

x ∈ L 7→ |NL/K(x)| 12

is a norm on L extending | · |.
Observe that Theorem 1.49 is a very special case of Theorem 3. In particular, the
Archimedean case follows from Big Ostrowski and the non-Archimedean case will
be proved (rather sooner than) later by other methods. In fact there is a direct
proof of Theorem 1.49, but I find it somewhat lengthy and unpleasant. The reader
who wants to see it may consult [BAII, §9.5].

However, in order to prove Theorem 1.48 we can make do with less: it is
enough to endow K(

√
−1) with an R-algebra norm which is submultiplicative: for

all x, y ∈ K(
√
−1), |xy| ≤ |x||y|. But this is easy: for x, y ∈ K, put

|x+
√
−1y| = |x|+ |y|.
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Certainly this endowsK(
√
−1) with the structure of a real Banach space. Moreover,

for z = x+
√
−1y, z′ = x′ +

√
−1y′ in K(

√
−1),

|zz′| = |xx′ − y′′|+ |xy′ + x′y| ≤ |xx′|+ |yy′|+ |xy′|+ |x′y|

≤ |x||x′|+ |y||y′|+ |x||y′|+ |x′||y| = (|x|+ |y|)(|x′|+ |y′|) = |z||z′|.
Putting L = K(

√
−1), we have endowed L with the structure of a complex Banach

algebra. To complete the proof of Theorem 1.48, it is enough to show that the only
field which is a complex Banach algebra is C itself. Again we will prove rather more
than this. First a few preliminaries.

Lemma 1.50. (Neumann) Let (A, || · ||) be a complex Banach algebra, and let
x ∈ A be such that ||x|| < 1. Then 1− x ∈ A×. Explicitly,

1

1− x
=

∞∑
n=0

xn.

Proof. Since ||x|| < 1,
∑∞
n=0 ||xn|| ≤

∑∞
n=0 ||x||n < ∞. That is,

∑∞
n=0 x

n is
absolutely convergent and thus, by completeness, convergent. Denote the sum by
b. It is then easily seen that (1− a)b = b(1− a) = 1. �

Let (A, || · ||) be a complex Banach algebra, and let x ∈ A. We define the spectrum
σ(x) to be the set of all complex numbers z such that z − x ∈ A \ A×. (Note that
when A = MN (C), the spectrum of x is its set of eigenvalues. One may think
of the spectrum as being a generalization of this linear algebra concept.) The
comlementary set C \ σ(x) is the resolvent set of x.

Lemma 1.50 shows A× contains a neighborhood of 1 and is thus open. It follows
that the resolvent set of x is open and thus the spectrum σ(x) is closed. Moreover,
if z ∈ C is such that |z| > ||x||, then ||z−1x|| < 1 and 1−z−1x ∈ A×. Since z ∈ A×,
z − x ∈ A×. Thus the spectrum is bounded and the resolvent set is nonempty.

Lemma 1.51. Let (A, || · ||) be a complex Banach algebra, and let x ∈ A. Let
U be the resolvent set of x. Let ϕ : A→ C be a bounded (equivalently, continuous)
linear functional. Then the map

f : U → C, z 7→ ϕ

(
1

z − x

)
is holomorphic.

Proof. Let z ∈ U . Then

lim
h→0

1

h

(
ϕ

(
1

z + h− x

)
− ϕ

(
1

z − x

))
= lim
h→0

1

h
ϕ

(
1

z + h− x
− 1

z − x

)
= lim
h→0

1

h
ϕ

(
h

(z + h− x)(z − x)

)
= lim
h→0

ϕ

(
1

(z + h− x)(z − x)

)
= ϕ

(
lim
h→0

1

(z + h− x)(z − x)

)
.

Lemma 1.50 implies that x 7→ 1
z−x is continuous on U , so this last limit exists. �

Theorem 1.52. (Gelfand-Mazur) Let (A, || · ||) be a complex Banach division
algebra. Then A = C.
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Proof. claim For all x ∈ A, the spectrum σ(x) is nonempty.
sufficiency of claim Let A be a complex Banach division algebra, and suppose
there exists x ∈ A \C. For all z ∈ C, z−x /∈ C, hence z−x 6= 0, hence z−x ∈ A×:
thus σ(x) = ∅.
proof of claim Seeking a contradiction, suppose σ(x) = ∅, so the resolvent set
U is all of C. Let ϕ : A→ C be a bounded linear functional such that ϕ(−1

x ) 6= 0.

(To see that such a thing exists, choose a C-basis for A in which −1
x is the first

element, and define ϕ by ϕ(−1
x ) = 1 and for every other basis element ei, ϕ(ei) = 0.

Alternatively, this is a special case of the Hahn-Banach Theorem.) Let f : C→ C be

the function z 7→ ϕ
(

1
z−x

)
. By Lemma 1.51, f is holomorphic on C. Let C = ||ϕ||,

i.e., the least number such that for all a ∈ A, |ϕ(a)| ≤ C||a||. For |z| > 2||x||,

|f(z)| = |ϕ
(

1

z − x

)
| = 1

|z|
|ϕ
(

1

1− z−1x

)
|

=
1

|z|
|ϕ

( ∞∑
n=0

(z−1x)n

)
| ≤ 1

|z|

∞∑
n=0

|ϕ((z−1x)n)|

≤ C

|z|

∞∑
n=0

||z−1x||n < C

|z|

∞∑
n=0

1

2n
=

2C

|z|
.

Thus f is a bounded entire function, hence constant by Liouville’s Theorem. More-
over lim|z|→∞ f(z) = 0, so f ≡ 0. But f(0) = ϕ(−1

x ) = 1: contradiction. �

Remark: More generally, the only real Banach division algebras are R, C and H
(the quaternions). For a proof of this, see e.g. [Bou, § VI.6.4].

3.4. Proof of Theorem 1.22: Existence Modulo Hensel-Kürschák.

Let (K, | · |) be a complete normed field and L/K an extension of degree d < ∞.
We have seen that if | · | extends to a norm on L, the extended norm must be

x ∈ L 7→ |x|L = |NL/K(x)| 1d .
In the Archimedean case, Big Ostrowski reduces us to checking that this is indeed
the correct recipe for the norm | · |∞ on C as a quadratic extension of | · |∞ on R,
which is almost immediate. Thus we are left to deal with the non-Archimedean
case. It is no problem to see that | · |L satisfies properties (V1) and (V2) for a norm.
The crux of the matter is to check that it satisfies the non-Archimedean triangle
inequality.

From our study of absolute values in §1, we know that we do not change whether
a mapping is a non-Archimedean norm by raising it to any positive power, so
we may as well look at the mapping x 7→ |NL/K(x)| instead. Moreover, we also
know that the non-Archimedean triangle inequality is equivalent to: for all x ∈ L,
|x|L ≤ 1 =⇒ |x+ 1|L ≤ 1 and thus also to:

(5) ∀x ∈ L, |NL/K(x)| ≤ 1 =⇒ |NL/K(x+ 1)| ≤ 1.

Lemma 1.53. (Hensel-Kürschák) Let (K, | · |) be a complete, non-Archimedean
normed field. Let

P (t) = tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ K[t]
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be an irreducible polynomial with |a0| ≤ 1. Then |ai| ≤ 1 for all 0 ≤ i ≤ n− 1.

We will prove Lemma 1.53 later on (Theorem 1.78). For now we use it to show (5).
Here goes: suppose [L : K] = d and [K[x] : K] = d. Then (see e.g. [C:FT, Prop.
6.2]) we have

NL/K(x) = NK[x]/K(x)
d
m .

Let P (t) be the minimal polynomial of x over K, so P is monic irreducible of degree
m and has constant coefficient a0 = (−1)mNK[α]/K(x). By assumption

1 ≥ |NL/K(x)| = |NK[x]/K(x)n/m| = |a0|n/m,
so |a0| ≤ 1. Thus Lemma 1.53 applies to give that |ai| ≤ 1 for all 0 ≤ i ≤ n− 1.

Observe that K[x+1] = K[x] and the minimal polynomial for x+1 is P (t−1).
Plugging in t = 0 gives

(−1)mNK[x]/K(x+ 1) = P (−1) = (−1)m + am−1(−1)m−1 + . . .+ (−1)a1 + a0.

Thus

|NL/K(x+1)| = |NK[x]/K(x+1)|d/m = |(−1)m+am−1(−1)m−1+. . .+(−1)a1+a0|d/m ≤ 1.

3.5. Proof of Theorem 1.43 Part III: Krull Valuations.

In this optional section we give a proof of the existence statement in Theorem
1.43 using the concept of a Krull valuation and an important (but not terribly dif-
ficult) result from commutative algebra.

Recall that a valuation ring is a domain R such that for every nonzero x in the
fraction field K, at least one of x, x−1 lies in R. A valuation ring is necessarily
local, say with maximal ideal m. Moreover:

Lemma 1.54. A valuation ring is integrally closed.

Proof. Let R be a valuation ring with maximal ideal m and fraction field K.
Let a0, . . . , an−1 ∈ R and let x ∈ K such that xn + an−1x

n−1 + . . .+ a1x+ a0 = 0.
By definition of a valuation ring, if x 6∈ R, then x−1 ∈ m, so 1 = −(an−1x

−1 + . . .+
a0x
−n)) ∈ m, contradiction. �

Remark: A domain R is called a Bézout domain if every finitely generated ideal
is principal. In a valuation domain, every finitely generated ideal is generated by
any element of minimal valuation, so valuation domains are Bézout. For a non-
Noetherian domain, Bézout domains are very nice: e.g. they are integrally closed.
See e.g. [C:CA, §16.4] for more details.

Valuation rings have naturally arisen in our study of normed fields: if (K, | · |)
is a normed field, then R = {x ∈ K | · |x| ≤ 1} is a valuation ring. Equivalently, if
v = − log | · | : K× → R is an associated valuation, then R = {x ∈ K | v(x) ≥ 0}.
However, not every valuation ring comes from a valuation v : K× → R. We can
however get a bijective correspondence by generalizing our concept of valuation to
a map v : K× → Γ, where Γ is an ordered commutative group.

This may sound abstruse, but it is easily motivated, as follows: let R be a do-
main with fraction field K. Consider the relation ≤ on K× of R-divisibility: that
is x ≤ y ⇐⇒ y

x ∈ R. The relation of R-divisibility is immediately seen to be
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reflexive and transitive. Even when R = Z, it is not anti-symmetric: an integer and
its additive inverse divide each other. However, any relation ≤ on a set X which is
reflexive and transitive induces a partial ordering ≤ on the quotient X/ ∼, where
we decree x ∼ y iff x ≤ y and y ≤ x. In the case of R = Z, this amounts essentially
to restricting to positive integers. For R-divisibility in general, it means that we are
identifying associate elements, so the quotient is precisely the group Γ = K×/R×

of principal fractional R-ideals of K.

Proposition 1.55. For an integral domain R with fraction field K and Γ =
K×/R×, the following are equivalent:
(i) The induced partial ordering ≤ on Γ is a total ordering.
(ii) R is a valuation ring.

Proof. (i) =⇒ (ii): For any x ∈ K×, take y = 1: then either y
x = x−1 or

x
y = x lies in R, so that R is a valuation ring.

(ii) =⇒ (i): If R is a valuation ring, let x, y ∈ K×. Then either x
y ∈ R – i.e.,

y ≤ x – or y
x ∈ R – i.e., x ≤ y. �

This motivates the following definition.

Let (Γ,≤) be an ordered commutative group. A Γ-valued valuation on a field
K is a map v : K× → Γ such that for all x, y ∈ K, v(xy) = v(x) + v(y) and
v(x+ y) ≥ min v(x), v(y). As usual, we may formally extend v to 0 by v(0) = +∞.
A Krull valuation on K is a Γ-valued valuation for some ordered commutative
group Γ.

Proposition 1.56. Let (Γ,≤) be an ordered commutative group and v : K → Γ
a Krull valuation. Then Rv = {x ∈ K | v(x) ≥ 0} is a valuation ring.

Thus to a valuation ring R we can associated the Krull valuation v : K× → K×/R×

and conversely to a Krull valuation we can associate a valuation ring. These are
essentially inverse constructions. To be more precise, let (K, v : K → Γ1) and
(L,w : L→ Γ2) be two fields endowed with Krull valuations.

Lemma 1.57. Let (Γ1,≤) and (Γ2,≤) be ordered commutative groups, and let
g : Γ1 → Γ2 be a homomorphism of commutative groups.
a) The following conditions on γ are equivalent:
(i) x1 < x2 =⇒ g(x1) < g(x2).
(ii) x1 ≤ x2 ⇐⇒ g(x1) ≤ g(x2).
b) If the equivalent conditions of part a) hold, then g is injective.
A homomorphism satisfying the equivalent conditions of part a) is said to be a
homomorphism of ordered commutative groups.

Proof. a) Suppose g satisfies (i). Certainly x1 = x2 =⇒ g(x1) = g(x2), so
we have x1 ≤ x2 =⇒ g(x1) ≤ g(x2). Now suppose that g(x1) ≤ g(x2) and that
we do not have x1 ≤ x2. Since the ordering is total, we then have x1 > x2, and
then our assumption gives g(x1) > g(x2), contradiction. Now suppose g satisfies
(ii), and let x1 < x2. If g(x1) = g(x2), then g(x1) ≤ g(x2) and g(x2) ≤ g(x1), so
(ii) implies that x1 = x2, contradiction. Similarly, we cannot have g(x1) ≥ g(x2),
so we must have g(x1) < g(x2).
b) Assume (i) and let x ∈ Γ1 be such that g(x) = 0. If 0 < x, then 0 = g(0) < g(x) =
0, contradiction. Similarly, if x < 0, then 0 = g(x) < g(0) = 0, contradiction. So
x = 0 and thus g is injective. �
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A homomorphism of Krull-valued fields is a pair (ι, g), where ι : K ↪→ L is a
homomorphism of fields and g : Γ1 ↪→ Γ2 is an injective homomorphism of or-
dered commutative groups such that for all x ∈ K, w(ι(x)) = g(v(x)). Then
the correspondences described above take isomorphic valuation rings to isomorphic
Krull-valued fields and isomorphic Krull-valued fields to isomorphic valuation rings.

The value group of a Krull valuation is the image v(K×). A Krull valuation is
said to be trivial if its value group is the trivial group (which has a unique ordering).

In this more general context, a nontrivial Krull valuation v : K → Γ is said
to be rank one if there exists a homomorphism of ordered commutative groups
g : Γ→ R.13

Exercise 1.64. Show that any ordered commutative group Γ can serve as the
value group of a Krull-valued field.
Suggestion: let k be any field, and let R be the group ring k[Γ], i.e., the set of formal
sums x =

∑
γ∈Γ xγ [γ] where xγ ∈ k for all γ and for a fixed x, all but finitely many

xγ ’s are zero. Define v : R\{0} → Γ by letting v(x) be the least γ such that xγ 6= 0.
Show that R is an integral domain, that v extends uniquely to its fraction field K
and defines a valuation on K with value group Γ.

Exercise 1.65. Let Γ be a nontrivial ordered commutative group. Show that
the following are equivalent:
(i) There is a homomorphism of ordered commutative groups g : Γ→ R
(Γ has rank one).
(ii) For all positive elements x, y ∈ Γ, there exists n ∈ Z+ such that nx > y
(Γ is Archimedean).

Combining the previous two exercises one gets many examples of Krull valuations
not of rank one, e.g. with value group Γ = Z× Z ordered lexicographically.

Lemma 1.58. Let Γ be an ordered commutative group and H ⊂ Γ be a finite
index divisible subgroup. Then H = Γ.

Proof. Suppose not, i.e., [Γ : H] = n < ∞. Let x ∈ Γ. Then nx = h ∈ H.
By definition of divisibility, there exists y ∈ H such that ny = h. Therefore
0 = h− h = n(x− y), i.e., x− y ∈ Γ[n]. But an ordered commutative group must
be torsionfree, so x = y ∈ H. �

Lemma 1.59. Let L be a field, v : L× → Γ a Krull valuation on L, and let K
be a subfield of L with [L : K] = n <∞. Then Γ is order isomorphic to a subgroup
of ΓK = v(K×).

Proof. ([BAII, p. 582]) For any nonzero x ∈ L, we have a relation of the

form
∑k
i=1 αix

ni , where αi ∈ K and the ni are integers such that [L : K] = n ≥
n1 > n2 > . . . > nk ≥ 0. If there existed any index j such that for all i 6= j we had

v(αix
ni) > v(αjx

nj ), then ∞ = v(
∑k
i=1 αix

ni) = v(αjx
xj ) and thus αjx

nj = 0, a
contradiction. Thus there exist i > j such that v(αix

ni) = v(αjx
nj ), so

v(x)ni−nj = v(αjα
−1
i ) ∈ ΓK .

13There is a notion of rank of an ordered commutative group: see e.g. [C:CA, §17.2]. We
will not need this here.
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Thus, for x ∈ L×, (n!)v(x) ∈ ΓK . Since Γ is torsionfree, the endomorphism [n!] :
Γ→ Γ (i.e., multiplication by n!) is injective, and thus [n!] : Γ ↪→ [n!]Γ ⊂ ΓK . �

Corollary 1.60. Let (K, v) be a rank one valued field, L/K be a finite degree
extension, and w a Krull valuation on L such that there exists a homomorphsim of
Krull-valued fields (ι, g) : (K, v)→ (L,w). Then w has rank one.

Proof. This is immediate from Lemma 1.59 and the definition of a rank one
valuation as one whose value group is order isomorphic to a subgroup of (R,+). �

Why would one want to use Krull valuations? One might equally well ask what is
the use of general valuation rings, and the latter has a very satisfying answer:

Theorem 1.61. Let R be an integral domain which is not a field, and let L be
a field such that R ⊂ L. Let S be the integral closure of R in L. Then S is equal
to the intersection of all nontrivial valuation rings of L containing R.

Proof. See e.g. [C:CA, Thm. 17.17]. �

Now let (K, | · |) be a complete non-Archimedean normed field and L/K a finite
degree field extension. We know that there is at most one norm on L which extends
|·| on K. We will now give a proof of the existence of this extended norm. Namely,
let v be any rank one valuation corresponding to | · |, and let R be the valuation
ring of K. Let S be the integral closure of R in K. It suffices to show that S is
itself a valuation ring and the corresponding valuation has rank one.

Let S = {Rw} be the set of all nontrivial valuation rings of L which contain R. By
Theorem 1.61, S =

⋂
Rw∈S Rw. For any valuation ring Rw ∈ S, let w : L → Γ be

the corresponding Krull valuation. By Corollary 1.60, w is a rank one valuation,
hence corresponds to an non-Archimedean norm on L which (certainly after rescal-
ing in its equivalence class) restricts to | · | on K. By the uniqueness of extended
norms, it follows that #S = 1, so that S = Rw is a rank one valuation ring.

3.6. Proof of Theorem 5.

We come now to the most technically complicated of the basic extension theorems,
Theorem 1.45. The reader will surely have noticed that we have taken some time
building up suitable tools and basic facts. Now our hard work comes to fruition:
given what we already know, the proof of Theorem 1.45 is rather straightforward
and elegant.

Lemma 1.62. Let (L, | · |) be a normed field, and let K be a subfield of K such

that [L : K] is finite. Let K̂ and L̂ be the corresponding completions. Then

[L̂ : K̂] ≤ [L : K].

Proof. Let n = [L : K] and let e1, . . . , en be a K-basis of L. Let W be the

K̂-subspace of L̂ spanned by e1, . . . , en. Then W is a finite-dimensional normed
K̂-linear space, so it is complete and thus closed in L̂. Moreover W contains
the K-span of e1, . . . , en, which is L, so W id dense in L̂. Thus W = L̂, so
dimK̂ L̂ ≤ n = [L : K]. �
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Lemma 1.63. Let (K, | · |) be a normed field, and let L/K be a finite degree
field extension. Let | · |L be a norm on L that extends | · | on K. Let CK be the

algebraic closure of K̂, with its canonical norm | · |. Then there is a K-algebra
homomorphism σ : L ↪→ CK such that | · |L = σ∗| · |: i.e., for all x ∈ L we have
|x|L = |σ(x)|.

Proof. Let L̂ be the completion of L with respect to | · |L. Let CL be the

algebraic closure of L̂. The norm on L̂ extends to a unique norm on CL that we
continue to denote by | · ||L. By Lemma 1.62 the extension L̂/K̂ is finite and

thus CL is also an algebraic closure of K̂, so there is a K̂-algebra isomorphism
ψ : CL → CK . Consider the two norms | · |L and ψ∗| · | on CL; both restrict to

| · | on K̂, so by uniqueness of norms in algebraic extensions of complete fields we
must have | · |L = ψ∗| · |. Let σ be the restriction of Ψ to L. Then σ : L→ CK is a
K-algebra homomorphism and | · |L = σ∗| · |. �

Let g be the number of norms on L extending | · | on K. The preceding lemma
implies that

1 ≤ g ≤ n = [L : K]

and the problem is to compute g exactly in terms of L/K and | · |.

For 1 ≤ i ≤ g, let | · |i be the ith norm on L extending | · | on K. Let L̂i be
the completion of (L, | · |i).

I claim there is a canonical ring homomorphism

Φ : L⊗K K̂ →
g∏
i=1

L̂i.

Let’s use the universal properties of the direct and tensor products to reduce to a
situation where we can easily guess what the definition shuld be. First, by writing
out Φ in coordinates we have Φ = (Φi)

g
i=1 for Φ : L ⊗K K̂ → L̂i, and thus it

suffices to define each Φ. Moreover, by the universal property ofthe sentor product,
to define Φi we need a K-bilinear map ϕi : L × K̂ → L̂i. What is the “obvious”
map here? OBserve that ιi(L) and K̂ are both subfields of L̂i, so given x ∈ L and

y ∈ K̂, we may use ιi1 to map L into L̂i and then multiply them in L̂i. Explicitly,

ϕi(x, y) = ιi(x) · y.

Thus we define Φ on “simple tensors” as

Φ(x⊗ y) = (ιi(x)y)gi=1

and uniquely extend by linearity to a map on L⊗K K̂.

Here is another perspective on the map Φ : L ⊗K K̂ →
∏g
i=1 L̂i. Both its source

and target are finite-dimensional K̂-algebras, and Φ is a K̂-linear map. Consider
the diagonal map

∆ : L ↪→
g∏
i=1

L̂i, x 7→ (ιi(x)).
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Note that ∆ is K-linear and Φ is the map corresponding to ∆ under the canonical
adjunction isomorphism

HomK(L,
∏
i

L̂i) = HomK̂(L⊗K K̂,
∏
i

L̂i).

Moreover, like any two finite-dimensional K̂-vector spaces, L ⊗K K̂ and
∏g
i=1 L̂i

come with canonical topologies, such that any K̂-linear map between them (like Φ,
for instance!) is continuous.

We are now ready to prove the following important result.

Theorem 1.64. Let Φ : L⊗K K̂ →
∏g
i=1 L̂i be the above homomorphism.

a) The map Φ is surjective.

b) The kernel of Φ is the Jacobson radical of the Artinian ring L ⊗K K̂, i.e., the
intersection of all maximal ideals. More precisely, there are g maximal ideals in
L⊗KK̂; suitably labelled as m1, . . . ,mg, the map Φ can be identified with the Chinese
Remainder Theorem homomorphism

L⊗K K̂ →
g∏
i=1

(L⊗K K̂)/mi.

c) If L/K is separable, Φ is an isomorphism.

Proof. We put A = L⊗K K̂ and W = Φ(A).

a) We wish to show that W =
∏g
i=1 L̂i. Since Φ is K̂-linear, W is a K̂-subspace

of the finite-dimensinal K̂-vector space
∏g
i=1 L̂i. By Theorem 2.15, W is closed.

On the other hand, by Artin-Whaples the image of L under ∆ : L ↪→
∏g
i=1 L̂i is

dense. The relation “is dense in” on subspaces of a topological space is transitive,
so Φ(L) = Φ(L⊗ 1) is dense in

∏g
i=1 L̂i and Φ is surjective.

b) Since A is a finite-dimensional K̂-algebra, it is an Artinian ring and thus has
finitely many maximal (= prime) ideals, say m1, . . . ,mN . Let J be the Jacobson
(=nil) radical ∩Ni=1mi. We have a finite set of pairwise comaximal ideals in a
commutative ring, so the Chinese Remainder Theorem gives an isomorphism

Ψ : A/J
∼→

N∏
j=1

A/mj .

For each i, put L(mi) = A/mi, and notice that L(mi) is a finite field extension of

K̂. Since J is nilpotent and
∏g
i=1 L̂i is reduced, Φ factors through Ψ:

A→ A/J
∼→

N∏
j=1

L(mj)
q→

g∏
i=1

L̂i.

By part a), what we have is one finite product of finite degree field extensions of

K̂ surjecting onto another. A little thought shows that we must have N ≥ g and
that we can relabel the j’s such that for all 1 ≤ j ≥ g, mj = Ker Φj and thus

q :

g∏
j=1

L̂j ⊕
∏
j>g

L(mj)→
g∏
j=1

L̂j

is projection onto the first factor. Now the result of part b) is equivalent to g = N ,
i.e., that the second summand

∏
j>g L(mj) does not in fact appear.
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Each L(mj) is a finite extension of the complete field K̂, so has a unique norm

| · |j extending the norm on K̂, and which restricts to a norm on L. Thus if N > g
thre exists j1 ≤ g and j2 > g such that | · |j1 = | · |j2 as norms on L. Consider the
projection of Ψ onto just these two factors:

Ψj1,j2 : L⊗K K̂ → L̂, | · |j1 × L̂, | · |j2 .
We claim that Ψj1,j2 is not surjective, which will give a contradiction. But this map

is hardly mysterious: it is determined by the images of L and of K̂. In particular,
the restriction of Ψj1,j2 to L is just the diagonal map. Since the two norms are
equivalent on L, their topologies are the same, and thus the image of L is closed in
(L, | · |j1)× (L, | · |j2). Moreover, tensoring this diagonal map with K̂ has the effect
of completing these normed spaces. We have the same topology on both factors,
so the closure of the diagonal is the diagonal of the closure, and thus the image of
A unde Ψj1,j2 has K̂-dimension dimL(mj1) = dimL(mj2) and hence not equal to
dimL(mj1 × L(mj2) = 2 dimL(mj1), contradiction.

c) If L/K is separable, then A = L ⊗K K̂ is a separable K̂-algebra, i.e., a finite
product of finite separable field extensions. To see this, write L = K[t]/(P (t))
with P (t) an irreducible separable polynomial (this is possible by the Primitive
Element Corollary). Separability of a polynomial is unaffected by extension of the

ground field. Thus over K̂, we have a factorization P = p1 · · ·Pg of P into distinct
irreducible polynomials. Thus the ideals {(Pi)}gi=1 are pairwise comaximal, and
CRT gives an isomorphism

A = K̂[t]/(P ) = K̂[t]/(P1 · · ·Pg) ∼=
g∏
i=1

K̂[t]/(Pi) ∼=
g∏
i=1

L̂i. �

4. The Degree in/equality

Let (K, v) be a valued field, with valuation ring R and maximal ideal m. As with
any maximal ideal, the quotient ring R/m is a field, called the residue field of K
and denoted k. (Note that we have switched from k to K for our normed/valued
field so as to allow the introduction of the residue field.) We have a canonical
surjective map R→ k called the reduction map.

Example 1.65. Suppose K is any field and v is the trivial (i.e., identically
zero) valuation. Then R = K, m = 0, so k = K and the reduction map is an
isomorphism. Conversely, if the reduction map is injective, the valuation is trivial.

Example 1.66. Let ordp be the p-adic norm on Q. Then the valuation ring
is the local ring R of all rational numbers of the form a

b with b not divisible by
p. This is of course the localization of Z at the maximal ideal (p). It follows that
R/m ∼= Z/(p) ∼= Fp.

Example 1.67. Let k be a field and R = k[[t]] and K = k((t)). Then the
maximal ideal consists of all formal power series with 0 constant term, and it is
easily seen that R/m ∼= k in such a way that the composite map k ↪→ R→ R/m ∼= k
is the identity. Thus in this case the residue field is also realized as a subfield of K.

Example 1.68. Let k be a field, R = k[t], K = k(t). Let ordt be the valuation
corresponding to the prime element (t). Then again the residue field is isomorphic
to R/(t) ∼= k.
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More generally:

Proposition 1.69. Let R be a Dedekind domain with fraction field K. Let p
be a nonzero prime ideal of R, and let v = ordp be the p-adic valuation. Then the
residue field is naturally isomorphic to R/p.

Exercise 1.66. Prove Proposition 1.69.

Now let (L,w)/(K, v) be an extension of valued fields. Recall that this means that
we have a field homomorphism ι : K ↪→ L such that w◦ ι = v. In such a situation, ι
induces an embedding of valuation rings R ↪→ S and of maximal ideals mR ↪→ mS .
We may therefore pass to the quotient and get a homomorphism

ι : k = R/mR ↪→ S/mS = l,

called the residual extension. The degree [l : k] is called the residual degree
and is also denoted f(L/K).

Again let (K, v) ↪→ (L,w) be a homomorphism of valued fields. Then we have
v(K) ⊂ w(L). We define the ramification index e(L/K) to be [w(L) : v(K)]. In

terms of the associated norms, we have e(L/K) = |L×|
|K×| .

Exercise 1.67. Suppose L/K is algebraic. Show w(L)/v(K) is a torsion group.

Example 1.70. Consider L = Qp(p
1
n ) with the unique valuation w extending

vp on Qp. Of course vp(Qp) = Z with uniformizing element p, so

1 = w(p) = w((p
1
n )n) = nw(p

1
n ),

so that w(p
1
n ) = 1

n . It follows that e(L/Qp) ≥ n. In fact we have e(L/Qp) = n, a
consequence of the following result.

Theorem 1.71 (Degree Inequality I). Let (K, | · |) ↪→ (L, | · |) be an extension
of non-Archimedean normed fields, with [L : K] = n. Then

e(L/K)f(L/K) ≤ n.

Proof. As usual, we let (R,mR) be the valuation ring of (K, | · |) and (S,mS)
the valuation ring of (L, | · |). Let u1, . . . , uf1 be elements of S whose reductions
modulo mS are linearly independent over k = R/mR. (In particular, we have
ui ∈ S× for all i.) Thus given elements a1, . . . , afi ∈ R such that

∑
i aiui ∈ mS ,

we have ai ∈ mS for all i. Let b1, . . . , be1 be elements of L× whose images in
|L×|/|K×| are distinct. It suffices to show that the e1f1 elements uibj of L are
linearly independent over K. Scaling by elements of K× does not disturb this
conclusion, so we may assume WLOG that bj ∈ mS for all j.
Step 1: Suppose that ai ∈ K. Then |

∑
i aiui| ∈ |K|.

Proof: Indeed, if
∑
i aiui 6= 0, then some ai 6= 0; by reordering we may assume

that 0 = |a1| ≥ |ai for all i. Then

|
∑
i

aiui| = |a1||
∑
i

ai
a1
ui|.

Moreover |
∑
i
ai
a1
ui| ≤ 1. If we had |

∑
i
ai
a1
ui| < 1, then

∑
i
ai
a1
ui ∈ mS , and since

| aia1 | ≤ 1, we have ai
a1
∈ R for all i. The relation

∑
i
ai
a1
ui ∈ mS contradicts the

definition of the ui. Hence |
∑
i
ai
a1
ui| = 1, so |

∑
i aiu1| = |a1| ∈ |K|.
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Step 2: Now suppose that there exist aij ∈ K such that
∑
i,j aijuibj = 0. If

there exists j such that
∑
i aijui 6= 0, then

∑
i,j aijuibj = 0 implies the existence

of distinct j, say j = 1 and j = 2, such that |
∑
i ai1uib1| = |

∑
i ai2uib2| 6= 0. Then∑

i ai1ui 6= 0 and
∑
i ai2ui 6= 0, so |

∑
i ai1ui|, |

∑
i ai2ui| ∈ |K×|. Then |b1||K×| =

|b2||K×|, contrary to the choice of the bj ’s. Thus the relation
∑
aijuibj = 0 implies∑

i aijui = 0 for all j. Scaling by a suitable nonzero element of F , we get relations of
the form

∑
i a
′
ijui = 0 with a′ij ∈ R, and unless all aij ’s are 0, we may assume that

one of them does not lie in mS , contradicting the definition of the ui’s. Therefore
the e1f1 elements uibj are linearly independent over K, qed. �

Must we have equality in Theorem 1.71? Of course not! Consider the familiar case
in which R is a Dedekind domain, K is its fraction field, L/K is a finite separable
field extension of degree n, S is the integral closure of R in L, and v = ordp is the
valuation associated to a nonzero prime ideal p of R. Then if pS = Pe11 · · · P

eg
r ,

we have
∑g
i=1 eifi = n. On the other hand, for any 1 ≤ i ≤ g, if we take wi

to be the P〉-adic valuation (renormalized so as to extend ordp), then we have
e(L/K)f(L/K) = eifi. So we cannot have equality when there is more than one
prime of S lying over p.

By now it should be clear what to do: pass to the completion. For one thing, the
invariants e(L/K) and f(L/K) are “local” in the sense that they are unchanged
upon passage to the completion:

Proposition 1.72. Let (K, v) ↪→ (L,w) be a finite degree extension of valued
fields, with [L : K] = n. By functoriality of completion, we get a homomorphism

(K̂, v̂) ↪→ (L̂, ŵ). Then:

a) [L̂ : K̂] ≤ n.

b) v(K) = v̂(K̂) and w(L) = ŵ(L̂) (completion does not change the value group).

c) The homomorphism of residue extensions k ↪→ k̂ induced by K ↪→ K̂ is an
isomorphism.
d) We have f(L/K) = f(L̂/K̂) and e(L/K) = e(L̂/K̂).

Exercise 1.68. Prove Proposition 1.72.

Theorem 1.73 (Degree In/Equality II). Let (K, v) be a nontrivial valued field
with valuation ring R, and L/K an extension of degree n. Let w1, . . . , wg be the
valuations on L extending v on K. For 1 ≤ i ≤ g, put ei(L/K) = e((L,wi)/(K, v)).
Then:
a) We have

(6)

g∑
i=1

e(Li/K)f(Li/K) ≤ [L : K].

b) If v is discrete and the integral closure of R in L is finitely generated as an
R-module, then we have equality in 6.
c) In particular, if v is discrete and L/K is finite and separable, then equality
holds in (6).

Proof. a) Let L̂i be the completion of L with respect to wi, and let ni =

[L̂i : K̂]. By Theorem 1.71 and Propostion 1.72 we have, for all 1 ≤ i ≤ g, that
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eifi ≤ ni. On the other hand, by Theorem 2.19 we have
∑
i ni = dimK̂

∏g
i=1 L̂i ≤

dimK̂ L⊗K K̂ = [L : K]. Thus

g∑
i=1

e(Li/K)f(Li/K) =

g∑
i=1

e(L̂i/K̂)f(L̂i/K̂) ≤
g∑
i=1

ni ≤ [L : K].

b) Suppose S is a finitely generated R-module. Since R and S are both domains,
S is a torsionfree R-module. Then, since R is a DVR and hence a PID, it follows
from the structure theory of finitely generated modules over a PID that S ∼= Rm

for some m ∈ N. Since Kn ∼= L = S ⊗R K ∼= Km, we must have m = n = [L : K].
Moreover S is a Dedekind domain [C:CA, §17]. Therefore we may take p, the
unique nonzero prime ideal of R, and factor the pushforward into prime powers:

pS =

g∏
i=1

Peii .

Applying the Chinese Remainder Theorem, we get (R/p)-module isomorphisms

(R/p)n ∼= Rn/pRn ∼= S/pS = S/(

g∏
i=1

Peii ) ∼=
g∏
i=1

S/Peii .

Since p is a maximal ideal of R, R/p is a vector space, and we may equate R/p-
dimensions of both sides. Clearly dim(R/p)n = n. On the other hand, since
each Pi is a principal ideal (if it weren’t, no problem: since localization commutes
with passage to the quotient, we could make it so by passing the localization),
multiplication by the kth power of a uniformizer of Pi gives an S/Pi-isomorphism

from S/Pi to Pki /P
k+1
i . Therefore

dimR/p S/Peii = ei dimR/p S/Pi = eifi dimS/Pi
S/Pi = eifi,

and we conclude n =
∑g
i=1 eifi.

c) We recall (again!) that if R is an integrally closed Noetherian domain with
fraction field K and L/K is a finite degree separable field extension, then the
integral closure S of R in L is finitely generated as an R-module [C:CA, Thm.
18.1]. �

We will not need them, but here are two further sufficient conditions for equality
in Theorem 1.73:

Theorem 1.74. Maintain the same setup as in Theorem 3.4. Suppose that
either K is complete and discretely valued or the residue field of K has characteristic
0. Then equality holds in (6).

Proof. See [En]. �

If (K, | · |) is a non-Archimedean normed field, a finite degree extension L/K is
called defectless if equality holds in (6). The field K itself is called defectless if
every finite extension is defectless.

It turns out that a field is defectless iff its Henselization is defectless. If K is
Henselian of residual characteristic p > 0, then it is a result of Ostrowski that for
any finite degree extension L/K there is ν ≥ 0 such that

e(L/K)f(L/K)pν = [L : K].
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The quantity ν is called the defect. It turns out to be related to some key issues
in positive characteristic algebraic geometry.f

5. Hensel’s Lemmas

Throughout this section (K, | · |) is a non-Archimedean normed field with corre-
sponding rank one valuation v, valuation ring R, maximal ideal m and residue field
k. We equip K[t] with the Gauss norm:

|antn + . . .+ a1t+ a0| := max
i
|ai|.

A polynomial f ∈ K[t] is primitive if |f | = 1: notice this means that each coeffi-
cient ai lies in R and at least one coefficient does not lie in m.

5.1. Hensel Lifting.

Theorem 1.75 (Hensel Lifting). Suppose K is complete. Let f ∈ R[t] be a
primitive polynomial, and let f ∈ k[t] be its reduction modulo m. Suppose that
f = gh ∈ k[t] with gcd(g, h) = 1. Then there are g, h ∈ R[t] such that f = gh,
deg g = deg g, g ≡ g (mod m), h ≡ h (mod m).

Proof. �

Remark 1.76. In Theorem 1.75, the leading coefficient of f is a unit iff deg f =
deg f iff deg h = deg h. In particular this holds if f is monic, and Theorem 1.75 is
often stated in this special case.

Corollary 1.77 (My First Hensel’s Lemma).
Suppose K is complete, let f ∈ R[t] and let f ∈ k[t] be its reduction modulo m. If

α ∈ k is a simple root of f (i.e., f(α) = 0 and f
′
(α) 6= 0), then there is α ∈ R such

that f(α) = 0 and α ≡ α (mod m).

Proof. The polynomial f must be primitive, for otherwise f is the zero poly-
nomial and there are no simple roots. Having a simple root α is equivalent to a
factorization

f = (t− α)h

with gcd(t − α, h) = 1. Appying Theorem 1.75 there are g, h ∈ R[t] such that
f = gh, g ≡ t − α (mod m), h ≡ h (mod m) and deg g = deg(t − α) = 1. Thus
g = at − b for a, b ∈ R with a ≡ 1 (mod m), so in particular a ∈ R×. Put α := b

a .

Then α = b
a ≡ b ≡ α (mod m). �

5.2. Hensel-Kürschak.

Theorem 1.78 (Hensel-Kürschák). Suppose K is complete. Let f = ant
n +

. . .+ a1t+ a0 ∈ K[t] be irreducible such that a0an 6= 0. Then

|f | = max |a0|, |an|.

Proof. It is harmless to scale f by an element of K×, and after doing so we
may assume |f | = 1, hence in particular that f ∈ R[t]. Let 0 ≤ r ≤ n be the least
index such that |ar| = 1. Thus

f ≡ tr(ar + ar+1t+ . . .+ ant
n−r) (mod m).

If |a0|, |an| were both less than 1 then 0 < r < n, and Hensel’s Lemma applies to
show that f is reducible, a contradiction. �
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5.3. Hensel-Newton.

Theorem 1.79 (Hensel-Newton). Suppose K is complete. Let f ∈ R[t] be a
polynomial, and let α ∈ R be such that

|f(α)| < |f ′(α)|2.
a) There is a unique β ∈ R such that f(β) = 0 and |β − α| < |f ′(α)|.
b) We have

|β − α| =
∣∣∣∣ f(α)

f ′(α)

∣∣∣∣ and |f ′(β)| = |f ′(α)|.

5.4. Multivariate Hensel-Newton.

Theorem 1.80 (Multivariate Hensel-Newton).

Theorem 1.81 (Hensel Smooth Lifting).

5.5. An Application: Selmer’s Equation. For a place v of Q, we denote
the corresponding completion by Qv: thus Qp is as usual and Q∞ = R.

Theorem 1.82. Let f(X,Y, Z) = 3X3 + 4Y 3− 5Z3. Then for every place v of
Q there is a nonzero α ∈ Q3

v such that f(α) = 0.

We will need a result from arithmetic geometry. For now we will state it in a
concrete form, then we will come back and deduce it from more general results.

Proposition 1.83. Let f(X,Y, Z) be a homogeneous cubic polynomial defined

over the finite field Fq. If f is smooth – i.e., if there is no α ∈ Fq
3

such that
∂f
∂x (α) = ∂f

∂y (α) = ∂f
∂z (α) = 0 – then there is a nonzero α ∈ F3

q such that f(α) = 0.

First we dispose of the infinite place of Q: like any polynomial equation of odd
degree, there are nonzero R-points: plugging in arbitrary nonzero values for X and
Y we get a cubic equation in Z that we can solve over R.

Now suppose that p 6= 2, 3, 5 is a prime number. Then f is smooth over Fp: if
∂f
∂x = ∂f

∂y = ∂f
∂z = 0 then 9X2 = 12Y 2 = −15Z3 = 0 in Fp, so (X,Y, Z) = 0. By

Proposition 1.83, there is α ∈ F3
p \ {(0, 0, 0)} such that f(α) ≡ 0 (mod p), and thus

by Theorem 1.81 there is α ∈ Z3
p such that f(α) = 0 and α ≡ α (mod p), so α 6= 0.

Suppose p = 5. In this case the cubic is not smooth over F5: all partial derivatives
of f vanish at (0, 0, 1), so this point cannot be lifted using Hensel’s Lemma. If
we can find α = (X0, Y0, Z0) with X0 6= 0 (mod 5), then we can apply My First
Hensel’s Lemma to f(X,Y0, Z0), with α = X0, since f ′(α) = 9X2

0 6≡ 0 (mod 5).
To find such a point: well, brute force will work. Here is one idea though: the map
x 7→ x3 is a bijection on F5, so we can take Z0 = 0, Y0 = 1 and uniquely solve for
X0, getting (X0, Y0, Z0) = (3, 1, 0).

Suppose p = 2. In this case the cubic is not smooth over F2: all partial derivatives
of f vanish at (0, 1, 0), s othis point cannot be lifted using Hensel’s Lemma. As
above we look for an α = (X0, Y0, Z0) with f(α) = 0 in F2 and X0 6= 0, for then
∂f
∂X (α) 6= 0. Again the map x 7→ x3 is a bijection on F2, so we can take Y0 = 0,
Z0 = 1 and solve for X, getting (X0, Y0, Z0) = (1, 0, 1).
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Finally we suppose p = 3. This case is different: at every point (X0, Y0, Z0) ∈ F3
3, all

partial derivatives of f vanish. In other words, for any α we have ||(∇f)(α)|| ≤ 1
3 .

Thus in order to apply Hensel-Newton we need to go mod 33. It suffices to find
(X0, Y0, Z0) ∈ Z3

3 with Z0 6≡ 0 (mod 3) and f(X0, Y0, Z0) ≡ 0 (mod 33), for then
Newton-Hensel applies to f(X0, Y0, Z) with α = Z0:

|f(X0, Y0, α)| = |f(X0, Y0, Z0)| ≤ 1

27
<

1

9
= | − 15Z2

0 |2 = |f ′(X0, Y0, α)|2.

For this: reduced residues modulo 27 that are cubes are 1, 8, 10, 17, 19, 26. We may
as well try taking X0 = 0 and Y0 = 1. Then we have 5Z3 ≡ 4 (mod 27) or Z3 ≡ 17
(mod 27). So we may take (X0, Y0, Z0) = (0, 1, 5).

Let us now return to Proposition 1.83. I know several proofs, but all use some
ideas from arithmetic geometry that are beyond the scope of these notes to prop-
erly develop. In particular, we use that a smooth homogeneous cubic polynomial
over a field defines a nice (smooth, projective, geometrically integral) curve of genus
one. Then one can use the following celebrated result.

Theorem 1.84 (Weil). Let C/Fq
be a nice curve of genus g defined over a finite

field of order q. Let C(Fq) be the number of Fq-rational points on C. Then we have

|#C(Fq)− (q + 1)| ≤ 2g
√
q.

Exercise 1.69. Maintain the notation of Theorem 1.84.
a) Show that if g = 0 then #C(Fq) = q+1. If you know and care about such things,
deduce that C is Fq-rationally isomorphic to P1.
b) Show that if g = 1 then #C(Fq) ≥ (

√
q − 1)2 ≥ 1. If you know and care about

such things, deduce that C is an elliptic curve.
c) Suppose that g is fixed. Show that for all sufficiently large q, we have #C(Fq) ≥ 1.

In fact one has the following result.

Theorem 1.85. Let K be a number field, and let X/K be a nice variety of
dimension d ≥ 1. For a non-Archimedean place v of K, let Kv be the corresponding
completion. Then, for all but (possibly) finitely many places v, we have X(Kv) 6= ∅.

Proof. By the Bertini Theorem, admits a nice curve C/K as a K-rational
subvariety. (It is intuitively obvious and easy to prove that a variety of dimension
d contains varieties of all smaller dimensions. The problem is to nail down the
nonsingularity condition, and the Bertini Theorem assures this.) Let C be any
model over the ring of integers ZK : in other words, we give C by homogeneous
equations with coefficients in ZK . The non-Archimedean places v correspond to
maximal ideals pv of ZK , and the corresponding residue field is ZK/pv ∼= Fqv . It is
a fact (openness of the smooth locus) that since C/K is smooth, any given model C
over ZK will be smooth over Rv – equivalently, the variety defined by the system of
equations over the residue field Fqv is smooth – for all but (possibly) finitely many
v. Moreover, ZK has only finitely many residue fields of a given characteristic hence
only finitely many residue fields of bounded size. It follows from Exercise 1.69c)
that for all but finitely many v there is a smooth point over kv, so by Theorem 1.81
there is a Kv-rational point. �
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5.6. Henselian Normed Fields. A non-Archimedean normed field (K, | · |)
is Henselian if the norm extends uniquely to any algebraic exetension L/K. As
we have seen above, complete implies Henselian. Remarkably, it turns out that
the class of fields satisfying each of the versions of Hensel’s Lemma stated above is
precisely the Henselian fields.

Theorem 1.86.
For a non-Archimedean normed field (K, | · |), the following are equivalent:
(i) K is Henselian.
(ii) (Hensel-Kürschak) An irreducible polynomial f = ann + . . . + a1t + a0 ∈ K[t]
with ana0 6= 0 has

|f | := max
i
|ai| = max |a0|, |an|.

(iii) (Hensel Lifting) Let f ∈ R[t] be a primitive polynomial. If f factors modulo m
as gh with gcd(g, h) = 1, then there are g, h ∈ R[t] such that f = gh, g mod m = g,
h mod m = h and deg g = deg g.
(iv) (My First Hensel’s Lemma) Let f ∈ R[t], and let f ∈ k[t] be its reduction

modulo m. If there is α ∈ k such that f(α) = 0 and f
′
(α) 6= 0, then there is α ∈ R

such that f(α) = 0 and α (mod m) = α.
(vi) (Hensel-Newton)
(vii) (Multivariate Hensel-Newton)
(viii) (Hensel Smooth Lifting)

5.7. Henselian Local Rings.



CHAPTER 2

Local Fields

1. Remedial number theory I: Dedekind-Kummer

The material of this section comes from [Se:CL, Ch. III].

Proposition 2.1. Let R be a DVR with maximal ideal m and residue field k.
Let f ∈ R[t] be monic of positive degree, and put

S := R[t]/(f).

Then S is a semi-local ring, and its maximal ideals are obtained as follows: let f be
the image of f in k[t], and factor it: f = pe11 · · · perr with p1, . . . , pr ∈ k[t] distinct
monic irreducible polynomials. For each 1 ≤ i ≤ r, choose gi ∈ R[t] that lifts pi
(i.e., so that the reduction of gi modulo m is pi). For 1 ≤ i ≤ r, put

Pi := 〈m, gi〉.
Then MaxSpecS = {P1, . . . ,Pr}.

Proof. For 1 ≤ i ≤ r, we have

S/Pi = R[t]/〈m, f, gi〉 = k[t]/(pi)

is a (finite degree) field extension of k, so Pi is a maximal ideal of S. The ideals
P1, . . . ,Pg are precisely the maximal ideals of S that contain mS. We claim that
these are all the maximal ideals of S. To see this, let P be any maximal ideal of S. If
P did not contain mS, then we would have P+mS = S; since S is finitely generated
as a module over the local ring (R,m), Nakayama’s Lemma implies P = S, a
contradiction. �

Lemma 2.2. Let R be a commutative ring, let f ∈ R[t], and let a ∈ R. There
is a unique g ∈ R[t] such that

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

Proof. By the universal property of polynomial rings, there is a unique R-
algebra homomorphism Ψ : R[t] → R[t] that maps t to t − a. Clearly the unique
homomorphism that maps t to t + a is its inverse, so Ψ is an isomorphism. In
particular, it is an R-module isomorphism, so it carries the R-basis {tn | n ∈ N} to
the R-basis {(t− a)n | n ∈ N}. Thus there unique {bn}∞n=0 in R, all but finitely of
which are zero, such that

f =

∞∑
n=0

bn(t− a)n = b0 + b1(t− a) + (t− a)2
∞∑
n=2

bn(t− a)n−2.

Evaluating at a we find b0 = f(a). Differentiating and then evaluating at a we find
that b1 = f ′(a). Taking g :=

∑∞
n=2 bn(t− a)n−2, we get

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

59
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The polynomial g has to be unique, for if another polynomial h worked in its place
we would have (t − a)2(g(t) − h(t)) = 0, but the monic polynomial (t − a)2 is not
a zero divisor in R[t]. �

Let R be a Dedekind domain with fraction field K, let L/K be a finite degree
field extension, and let S be the integral closure of R in L. We say that S/R is
monogenic if there is α ∈ S such that S = R[α]. (In particular this implies that
S is finitely generated as an R-module, which is always true if L/K is separable
but need not hold in general.) In a “global” context, monogenicity is a sensitive
issue: it is far from guaranteed that e.g. the ring of integers of a number field
is monogenic over Z. (In this classical context, instead of monogenicty one often
speaks in terms of the existence of a power basis.) However, in the local context
monogenicity is much easier: the following result shows in particular that if R is a
complete discrete valuation ring with perfect residue field then S/R is monogenic
for every finite degree separable field extension L/K. In particular, the ring of
integers of every p-adic field is monogenic over Zp.

Theorem 2.3. Let R be a DVR with fraction field K. Let L/K be a separable
finite degree field extension, and let S be the integral closure of R in L. We assume:
(i) S is a DVR; and
(ii) the residual extension l/k is separable.
Then S is monogenic over R.

Proof. Let p be the maximal ideal of R and P be the maximal ideal of S,
and let π be a uniformizer of S. Let e = e(L/K), so pS = (πe). Let k := R/p
and l := S/P, so f = [l : k]. By Theorem 1.73 we have ef = [L : K]. Since l/k
is assumed separable, by the Primitive Element Corollary there is x ∈ l such that
l = k[x]. Let x be a lift of x to S.
Step 1: We claim that {xiπj}0≤i<f, 0≤j<e span S as an R-module.1 By Nakayama’s
Lemma it is enough to show that their images in S/pS span it as an R-module.
Since pS = πeS, it is enough to show that for all 0 ≤ m < e, if the elements span
S/πmS then they span S/πm+1S. For m = 0, we have S/πS = l, so certainly
the elements 1, x, . . . , xf−1 span. Inductively we assume that for 1 ≤ m < e the
elements xiπj with 0 ≤ j < m span S/πmS, and let x ∈ S. Then by assumption
there are ri,j ∈ R and y ∈ S such that

x−
∑
i,j

ri,jx
iπj = πmy.

There are a0, . . . , af−1 ∈ R such that y −
∑
i aix

i ∈ πS. Thus

x−
∑
i,j

ri,jx
iπi −

f−1∑
i=0

aix
iπm ∈ πm+1S.

Step 2: We claim that we may choose x such that there is g ∈ R[t] monic of degree
f such that g(x) is a uniformizer of S.
Proof: Start first with g ∈ R[t] monic that reduces to the minimal polynomial of x
over k. Let w be the normalized valuation on L, so w(g(x)) ≥ 1. If w(g(x)) = 1,

1Since L/K is separable, S is free of rank n as an R-module. By [C:CA, Thm. 3.44], the
claim implies that {xiπj} − 0 ≤ i < f, 0 ≤ j < e in fact form an R-basis of S.
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we have found our g. Otherwise w(g(x)) ≥ 2. Let π be a uniformizer for L. By
Lemma 2.2 there is s ∈ S such that

g(x+ π) = g(x) + πg′(x) + π2s.

Since l/k is separable, we have g′(x) 6= 0, so w(πg′(x)) = 1 and thus w(g(x+π)) = 1.
Thus x+ π is an acceptable choice of x.
Step 3: Choose x as in Step 2 and put π := g(x). By Step 1, the elements
{xig(x)j}0≤i<f, 0≤j<e span S over R. Thus S = R[x]. �

2. Unramified extensions

2.1. Distinguished classes of fields. Following Lang [L-Alg, p. 227], a
class of field extensions C = {L/K} is said to be distinguished if it satisfies the
following two conditions:

(DE1) (Tower condition): if K/F and L/K are both in C, then L/F is in C.
(DE2) (Base change condition): suppose E,F,K are subfields of a common field,
and F ⊂ K, F ⊂ E and K/F ∈ C. Then EK/E ∈ C.

Exercise 2.1. Show that (DE1) and (DE2) imply the following:
(DE3) Suppose K,L1, L2 are subfields of a common field, with K contained in both
L1 and L2 and that L1/K, L2/K ∈ C. Then L1L2/K ∈ C.

Example 2.4. a) The following classes of field extensions are distinguished:
finite extensions, separable extensions; purely inseparable extensions; finitely gen-
erated extensions; purely transcendental extensions.
b) The following classes of field extensions are not distinguished: normal extensions;
Galois extensions: they satisfy (DE2) but not (DE1).

2.2. Unramified extensions.

Suppose K is a complete discretely valued field and L/K is a finite degree extension
with separable residue extension l/k. By the Primitive Element Corollary, we may
write l = k[t]/(f) for a monic irreducible polynomial f . Now lift f to a monic
polynomial f ∈ R[t]. The polynomial f is irreducible in R[t], so by Gauss’s Lemma
it is also irreducible in K[t]. Therefore we may form an extension L′ = K[t]/(f).
It follows from Hensel’s Lemma that L′ is a subextension of L/K. What we would
like to show is that the residual extension l′/k is simply l/k: it follows that L′

is unramified and is the maximal unramified subextension of L/K. The following
consequence of Proposition 2.1 gives this and a bit more.

Proposition 2.5. With the setup of Proposition 2.1, assume that f is irre-
ducible and put L = K[t]/(f), so L is a field extension. Then S := R[t]/(f) is the
integral closure of R in L. It has maximal ideal mS and residual extension k[t]/(f).
In particular, L/K is unramified.

Proof. By Proposition 2.1, the ring S is local with maximal ideal mS and
residue field k[t]/(f). Let π be a generator for m. Since m is principal, so is mS, so
S is a one-dimensional Noetherian local domain with principal maximal ideal, hence
a DVR. In particular (in fact, this is equivalent among one-dimensional Noetherian
local domains) S is integrally closed, so it is the integral closure S of R in L. The
rest follows from Proposition 2.1. �
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Conversely, to every finite degree separable extension l = k[t]/(f) of k, we may lift
to a monic f ∈ R[t] and then the previous proposition shows that L = K[t]/(f) is
an unramified extension of K with residual extension l/k. Thus we get a bijective
correspondence between unramified finite degree extensions of K and separable
finite degree extensions of k. We can therefore also replace both instances of “finite
degree’ by “algebraic.”

Corollary 2.6. The unramified algebraic extensions of a CDVF form a dis-
tinguished class.

Proof. It is immediate that if M/L and L/K are unramified, so is M/K.
Conversely, supposeK is a CDVF field, L/K is unramified and E/K is any algebraic
extension. Then we must show that LE/E is unramified. By the classification of
unramified extensions, an algebraic extension is unramified iff it is generated by the
lifts to the valuation ring of roots of separable polynomials over k. This property
is preserved by base change, so the proof is complete. �

3. Remedial Number Theory II: Schönemann-Eisenstein

Corollary 2.7 (Corollary to Gauss’s Lemma). Let R be a UFD with fraction
field K, and let f ∈ R[t] be a polynomial.
a) The following are equivalent:
(i) f is irreducible in R[t].
(ii) f is primitive and irreducible in K[t].
b) The following are equivalent:
(i) f is reducible in K[t].
(ii) There exist g, h ∈ R[t] such that deg(g),deg(h) < deg(f) and f = gh.

Proof. See e.g. [C:CA, Cor. 15.25]. �

Theorem 2.8. (Schönemann-Eisenstein Criterion) Let R be a domain with
fraction field K, and let f(t) = adt

d + . . . + a1t + a0 ∈ R[t]. Suppose that there
exists a prime ideal p of R such that ad 6∈ p, ai ∈ p for all 0 ≤ i < d and a0 6∈ p2.
a) If f is primitive, then f is irreducible over R[t].
b) If R is a GCD-domain, then f is irreducible over K[t].

Proof. a) Suppose to the contrary that f is primitive and reducible over R[t]:
i.e., there exists a factorization f = gh with g(t) = bmt

m + . . . + b1t + b0, h(t) =
cnt

m+. . .+c1t+c0, deg(g),deg(h) < deg(f) and bmcn 6= 0. Since a0 = b0c0 ∈ p\p2,
it follows that exactly one of b0, c0 lies in p: say it is c0 and not b0. Moreover, since
ad = bmcn 6∈ p, cn 6∈ p. Let k be the least index such that ck 6∈ p, so 0 < k ≤ n.
Then b0ck = ak− (b1ck−1 + . . .+ bkc0) ∈ p. Since p is prime, it follows that at least
one of b0, ck lies in p, a contradiction.
b) If R is a GCD-domain, and suppose for a contradiction that f is reducible
over K[t], then by Corollary 2.7b), we may write f = gh with g, h ∈ R[t] and
deg(g),deg(h) < deg(f). Then the proof of part a) goes through to give a contra-
diction. �

Remark: For our purposes we wish to apply this to the valuation ring R attached
to a (as always rank one, unless otherwise specified) valuation v on the fraction
field K, with p the unique maximal ideal of R. Notice that in this case we may
pass to the completion K̂ and its valuation ring R̂ without disturbing any of the
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hypotheses, so we get an automatic strengthening of Eisenstein’s Criterion: f is
irreducible not merely over K[t] but also over K̂[t].

Remark: In particular, if (R, v) is a DVR with uniformizing element π, then Eisen-
stein’s criterion applied to Pn(t) = tn − π gives rise to a totally ramified extension
of degree n for all n > 1, as we have seen before.

Exercise 2.2. Let (K, v) be a nontrivial rank one valued field, with valuation
ring R and maximal ideal m. Show that the following are equivalent:
(i) m2 ( m.
(ii)

⋂∞
i=1 m

i = {0}.
(iii) R is Noetherian.
(iv) Γ is discrete.

In particular, for a (rank one) valuation ring, Eisenstein’s criterion can only be
successfully applied if the valuation is discrete.

Exercise 2.3. Give an example of a non-Noetherian valuation ring R to which
Eisenstein’s Criterion can be nontrivially applied.

4. Totally ramified extensions

Proposition 2.9. Let R be a DVR with maximal ideal m and residue field k.
f = tn + an−1 + . . . + a1t + a0 ∈ R[t], ai ∈ m, a0 6∈ m2. Then Sf := R[t]/(f) is a
DVR with maximal ideal generated by the image of t and with residue field k. Thus,
if L is the fraction field of Sf , then L/K is totally ramified.

Proof. Upon reducing modulo m, we have f = tn. Proposition 2.1 gives that
Sf is a local ring with maximal ideal 〈m, t〉. Moreover, the hypotheses give us that
a0 is a uniformizer of R. Let us write t for the image of t in the quotient ring
Sf = R[t]/(f). Then we have

−a0 = t
n

+ an−1t
n−1

+ . . .+ a1t,

so a0 ∈ (t). Therefore 〈m, t〉 = 〈a0, t〉 = 〈t〉. That is, Sf is a local ring with a
principal maximal ideal. Since a0 is not nilpotent, neither is t, so Sf is a DVR. The
rest follows immediately. �

We deduce:

Corollary 2.10. An Eisenstein polynomial f(t) is irreducible in K[t], and if
L := K[t]/(f), then Sf := R[t]/(f) is the integral closure of R in L.

Exercise 2.4. Prove Corollary 2.10.

Conversely:

Theorem 2.11. Let R be a DVR with fraction field K, let L/K a degree n
field extension, and let S be the integral closure of R in L. Suppose that S is a
DVR and e(L/K) = n = [L : K]. Let π be a uniformizer of S and let f ∈ K[t] be
the minimal polynomial of π. Then f ∈ R[t] is Eisenstein and the homomorphism

R[t]→ S mapping t 7→ π induces an isomorphism Sf
∼→ S.
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Proof. Since R is integally closed, by [C:CA, Thm. 14.18], we have f ∈ R[t].
Let us write

f = ant
n + an−1t

n−1 + . . .+ a1t+ a0, ai, an = 1 ∈ R.
(The reason for writing out an when it is equal to 1 will become clear shortly.)
Evaluating at π, we get

anπ
n + an−1π

n−1 + . . .+ a0 = 0.

Let w be the normalized discrete valuation assocated to S, i.e., such that w(π) = 1.
Then because of total ramification, we have w(a) ≡ 0 (mod n) for all a ∈ R \ {0}.

Put

r := min
0≤i≤n

w(aiπ
i).

By the Domination Principle, there must be 0 ≤ i < j ≤ n such that

r = w(ai) + i = w(aiπ
i) = w(ajπ

j) = w(aj) + j.

Then

j − i = w(ai)− w(aj) ≡ 0 (mod n).

This forces i = 0, j = n and

n = w(πn) = w(anπ
n) = w(a0).

Let v be the discrete valuation on K, and let p be the maximal ideal of R. Since
e(L/K) = n and w is normalized, we have w|K = nv, so v(a0) = 1 and a0 ∈ p \ p2.
Moreover, for all 1 ≤ i ≤ n− 1 we have

w(ai) + i = w(aiπ
i) ≥ r = n,

so w(ai) ≥ n− i and thus v(ai) > 0, i.e., ai ∈ p. Thus f is indeed Eisenstein. �

5. Higher unit groups

Let K be a field, and let v : K× → Z be a normalized discrete valuation on K.
Let R be the valuation ring, m the maximal ideal, π a uniformizing element, and
k = R/m the residue field.

In this section we will define a natural descending filtration on the group of units
of R. Here it comes: put

U0 := R×,

∀n ∈ Z+, Un := 1 + mn,

so as advertised, we have

R× = U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Un ⊃ . . .
Let rn : R→ R/mn be the usual reduction map. Then by definition we have

Un = Ker rn.

Since R is local, the induced map on unit groups r×n : R× → (R/mn)× is surjective,
so r×1 induces an isomorphism

U0/U1
∼→ k×.

Exercise 2.5. Show
⋂
n≥0 Un = {1}.
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Proposition 2.12. For all n ∈ Z+, we have a canonical isomorphism

Un/Un+1 ∼= (k,+).

Proof. Indeed, consider the map Φ : mn → Un/Un+1 given by x 7→ 1 + x +
Un+1. Since Un = 1 + mn, this map is visibly a surjection. On the other hand,
there is some multiplicative to additive funny business going on here, so that it is
not immediately clear that Φ is a homomorphism! Let’s check it:

Φ(x)Φ(y)Φ(x+ y)−1 =
(1 + x)(1 + y)

1 + x+ y
=

1 + x+ y + xy

1 + x+ y
= 1 +

xy

1 + x+ y
.

Since v(x+ y) ≥ min v(x), v(y) ≥ n, v(1 + x+ y) = 0, so v(xy/(1 + x+ y)) ≥ 2n ≥
n+ 1, so 1 + xy

1+x+y ∈ U
n+1. Thus Φ is a homomorphism. The kernel of Φ is mn+1,

so we get Un/Un+1 ∼= mn/mn+1 ∼= (k,+). �

Theorem 2.13. Let K/Qp be a finite extension with ramification index e. Then
for all sufficiently large positive integers n, there is an isomorphism of topological
groups Φ : (Un, ·)

∼→ (mn,+).

The proof of Theorem 2.13 will be developed in the following exercise.

Exercise 2.6. Consider the following formal power series:

L(t) =

∞∑
n=1

(−1)n+1 (t− 1)n

n
∈ Cp[[t]],

E(t) =

∞∑
n=0

xn

n!
∈ Cp[[t]].

Note that L(t) and E(t) are precisely the usual Taylor series expansions of log(t)
at t = 1 and et at = 0 encountered in real/complex analysis.
a) Consider L(x) and E(x) as functions on, say, Cp. Show that the radius of

convergence of L(x) is 1 and the radius of convergence of E(x) is Rp := p
−1
p−1 .

b) Show that |x− 1| < Rp =⇒ E(L(x)) = x and L(E(x)− 1) = x− 1.
c) Show that for all x, y with |x|, |y| ≤ 1 we have L(xy) = L(x) +L(y) and that for
all x, y with |x|, |y| ≤ Rp we have E(x+ y) = E(x)E(y).
d) Now let K be a p-adic field. Show that there exists a constant C = C([K : Qp], p)
such that for all n ≥ max(1, C), the map x 7→ L(x) induces an isomorphism of
topological groups (Un, ·) → (mn,+). Show in particular that when K = Qp with
p > 2, the isomorphism holds for all n ≥ 1 and that for Q2 it holds for all n ≥ 2.

In positive characteristic, L(x) and E(x) are not even defined as formal power series,
as some of the terms have denominators divisble by p. And indeed the structure of
the unit group is much different in this case:

Exercise 2.7. Let K = Fq((t)). Show that there is no nontrivial group homo-
morphism from (Fq[[t]],+) to U = Fq[[t]]×. (Hint: consider p-torsion.)

6. Locally compact fields

6.1. The classification of nondiscrete locally compact topological fields.
Some of the most important theorems in mathematics give complete classifications
of certain fundamental structures. Examples: the classification of (topological!)
surfaces, the classificaiton of simple Lie algebras, the classification of finite simple
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groups. In this section we discuss a classification theorem which belongs somewhere
in the above pantheon.

Lemma 2.14 (Cohen [Co48]). Let (K, | · ||) be a complete nontrivially normed
field. For a normed K-linear space (V, || · ||) the following are equivalent:
(i) V is locally compact.
(ii) If C > 0 and A ∈ (1,∞) ∩ |K×|, there does not exist an ininite sequence {xn}
in V such that

(7) ∀n ∈ Z+, C ≤ ||xn|| ≤ CA2; ∀m 6= n ∈ Z+, C ≤ ||xm − xn|| ≤ CA2.

(iii) K is locally compact and dimK V is finite. Moreover, if K is non-Archimedean,
then it is discretely valued with finite residue field.

Proof. (i) =⇒ (ii): We first claim that since V is locally compact, it is ball
compact. Indeed, local compactness gives ε > 0 such that the closed ball B≤ε(0) is
compact. Since for all α ∈ K× the map x 7→ αx is a homeomorphism of V , also
the closed balls B≤|α|ε(0) are compact. Since the norm is nontrivial, |α| can be
arbitrarily large, so we get that all closed bounded subsets of V are compact. It
follows that there is no sequence in V satisfying (7), since any such sequence cannot
have a convergent subsequence.
(ii) =⇒ (iii): Let x ∈ V \ {0} and put r := ||x||. Then there is no sequence {an}
in K such that

∀n, C/r ≤ |an| ≤ C/rA2;∀m 6= n, C/r ≤ |am − an| ≤ C/rA2.

In the non-Archimedean case, the valuation on K must therefore be discrete: oth-
erwise the value group is dense in R, so there is a sequence {an} such that |an|
takes distinct values in [C/r,C/rA2], and then

|am − an| = max |am|, |an| ≤ [C/r,C/rA2].

Moreover, in the non-Archimedean case the residue field must be finite, for other-
wise there is a sequence {bn} in K with |bn| = 1 for all n and |bm − bn| = 1 for all
m,n ∈ Z+; there is a ∈ K such that C/r ≤ |a| ≤ C/rA2 and then taking an = abn
gives a contradiction as above.

In the Archimedean case, K must be either R or C by Ostrowski, hence is
locally compact. In the non-Archimedean case, a complete discretely valued field
with finite residue field is locally compact because the valuation ring R is the in-
verse limit of finite discrete spaces R/mn, hence is compact.

It remains to show that V is finite-dimensional. Assuming it isn’t, we will
build a sequence {xn} in V satisfying (7). Suppose we have constructed x1, . . . , xn
satisfying (7), and let W be the K-subspace of V spanned by x1, . . . , xn. Then W
is closed. Let y ∈ V \W , and put

d := inf
x∈W

||y − x||.

We must have d > 0: otherwise there is a sequence of points in W converging to y,
contradicting the closure of W . There is x′ ∈W such that

d ≤ ||y − x′|| ≤ dA.

Replacing y with y − x′, we get

d ≤ ||y|| ≤ dA; ∀x ∈W, ||y − x|| ≥ d.



6. LOCALLY COMPACT FIELDS 67

Choose a ∈ K such that C/d ≤ |a| ≤ C/dA. Then we may take xn+1 := ay.
(iii) =⇒ (i): We know that V is homeomorphic to Kn, and a finite product of
locally compact spaces is locally compact. �

Theorem 2.15. Let (K, | · |) be a nontrivially normed non-Archimedean field,
with valuation ring R and residue field k. The following are equivalent:
(i) K is locally compact.
(ii) K is ball compact.
(iii) R is compact.
(iv) K is complete, discretely valued, and k is finite.
(v) K is a finite extension of Qp or of Fp((t)), for a suitable prime number p.

Proof. Since in a normed field any two closed balls are homeomorphic, such a
field is locally compact iff any closed ball is compact iff every closed ball is compact.
This gives (i) ⇐⇒ (ii) ⇐⇒ (iii).
(i) =⇒ (iv): If K is locally compact, then as above it is ball compact and thus
complete. It follows from Lemma 2.14 that K is discretely valued. Moreover, R is
compact and m is an open subgroup, so k = R/m is on the one hand discrete and
on the other hand compact, being the continuous image of the compact space R.
So k is finite.
(iv) =⇒ (iii): Let R̂ be the completion of the discrete valuation ring R with respect
to the maximal ideal m. By definition this is, as a topological ring, lim

←−n
R/mn. Here,

as above, each quotient R/mn has the discrete topology, and R̂ is given the natural
topology it inherits as a closed subspace of the direct product X =

∏∞
n=1R/m

n. As
we have seen before, the finiteness of k = R/m implies the finiteness of R/mk for all
k. Therefore X is a product of finite discrete spaces, so is compact (by Tychonoff’s

theorem, or alternately by Exercise 2.X.), and R̂ is a closed subspace of X so is also

compact. We have a natural map Φ : R → R̂ in which we send each x ∈ R to the
compatible sequence of cosets (x + mn). The fundamental result, from which our
claim follows immediately, is that Φ is an isomorphism of topological rings. Happily,
this is easy to check: ker(Φ) =

⋂
mn = 0, so Φ is injective. To see surjectivity,

let (xn + mn) be any element of the inverse limit, i.e., we require that xn+1 ≡ xn
(mod )mn. Let us choose a system of coset representatives S = r1, . . . , rq for R/m
in R. Then (by definition) there exists a unique a1 ∈ S such that x1 +m = a1 +m.
Moreover, there exists a unique a2 ∈ S such that x2 + m2 = a1 + a2π + m2.
Continuing in this way, we get a unique sequence of elements a1, . . . , an ∈ S such
that for all n, we have that xn+mn =

∑n−1
i=0 aiπ

n−1. But since anπ
n → 0, the series∑∞

i=1 aiπ
i−1 converges to a unique element, say x, of R, which has the property that

for all n ≥ 0, x+ mn = xn + mn. Thus Φ(x) = (xn + mn) and Φ is surjective, thus
an isomorphism of rings. In each of these topological rings, a neighborhood basis of
0 is given by powers of the maximal ideal mn, so Φ is certainly a homeomorphism
as well. Thus Φ : R

∼→ R̂ (we say that R is an m-adically complete local ring).
(v) =⇒ (i) is immediate: a finite degree extension of a locally compact field is a
locally compact field.
(i) =⇒ (v): Let (K, | · |) be a discretely valued locally compact field. First suppose
that K has characteristic 0. Thus Q ↪→ K and the norm on K restricts to a non-
Archimedean norm on Q. But we have classified all such and know that they are
(up to equivalence, which is harmless here) all of the form | · |p for a unique prime
number p. Therefore the closure of Q inside K is the completion of Q with respect
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to | · |p, i.e., is Qp, so we have embeddings of normed fields

Q ↪→ Qp ↪→ K.

Now we apply Lemma 2.14: since K is a locally compact, normed Qp-vector space,
it is finite dimensional over Qp, which is what we wanted to show.

Now suppose that K has characteristic p > 0, so that we have Fp ⊂ K. Recall
that an algebraic extension of a finite field carries only trivial norms, so in particular
Fp is already complete in K. So we need to introduce a little more: since (i) ⇐⇒
(iv), K is discretely valued. Let t ∈ K be a uniformizing element, i.e., v(t) = 1.
Then, by the above remarks, t is not algebraic over Fp for otherwise we would have
v(t) = 0. Thus the least extension of K containing t is Fp(t), the rational function
field over Fp. Now we are homefree as before: the restriction of v to Fp(t) is a
discrete valuation such that v(t) = 1. There is a unique such valuation, namely the
valuation ordt coming from the irreducible element t in the polynomial ring Fp[t],
so that the closure in K of Fp(t) is nothing else than the Laurent series field Fp((t)).
Arguing as above, we get that K is finite-dimensional over Fp((t)), done. �

Since Ostrowski’s Theorem tells us that the only locally compact Archimedean
fields are R and C, we get the following result.

Corollary 2.16. Every locally compact, nondiscrete, normed field is isomor-
phic to R, C or to a finite extension of Qp or of Fp((t)).

In the latter case, it turns out that one can say much more:

Corollary 2.17. A locally compact normed field of positive characteristic is
isomorphic to Fq((t)) for some prime power q.

Proof. Let K be a locally compact normed field of positive characteristic, so
by Corollary 2.16 K is a finite degree extension of Fp((t)). As the proof of Theorem
2.15 shows, K is discretely valued, and we can choose t to be a uniformizing element
of K. Let K ′ be the maximal unramified subextension of K/Fp((t)), so that K ′ =
Fq((t)), where q = #k, the residue field of K. But then the extension K/Fq((t))
is totally ramified with ramification index 1, since the uniformizer t of K is also
an element (necessarily then a uniformizing element) of Fq((t)). Since the residue
field, Fq, is perfect, it follows that K = Fq((t)). �

Nevertheless K = Fq((t)) has totally ramified extensions of every degree: e.g.

K(t
1
n ). The point is that every totally ramified extension of Fq((t)) is, as an ab-

stract field, isomorphic to Fq((t)). This leads to the following definitions.

Let (K, v) be a locally compact non-Archimedean field, with residue field k = Fq =
Fpf . Then its absolute residual degree is f , and its absolute ramification
index is v(p).

Despite the fact that these definitions are uniform across the two cases of p-adic
fields and Laurent series fields, their implications are quite different:
Let K be a locally compact field of characteristic 0 and residue characteristic p.
Then K is canonically an extension of Qp: indeed, this follows from the proof
above, because Qp is constructed inside K as the closure of Q. Moreover the degree
[K : Qp] is ef . On the other hand, let K be a locally compact field of characteristic
p. Then its absolute ramification index is e = v(p) = v(0) =∞. This may seem like
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a strange definition, but it’s a suggestive one, since for any n, K admits a subfield
F such that e(K/F ) = n. In particular, there is no canonical copy of Fp((t)) inside
K, and certainly no minimal copy.

We remark in passing that one can consider topological fields where the topol-
ogy is not necessarily induced by a norm. It turns out that requiring the topology
to come from a norm does not restrict the class of locally compact fields:

Theorem 2.18. Let L be a locally compact, nondiscrete topological field.
a) Then L is a finite extension of one of the following fields:
(i) K = R.
(ii) K = Qp.
(iii) K = Fp((t)).
b) In case (i) L = R or L = C.
c) In case (ii) the ramification index e(L/Qp) and residual degree f(L/Qp) are
uniquely determined by the abstract field L, and for any given e, f ∈ Z+, the number
of finite extensions L/Qp of ramification index e and residual degree f is finite and
nonempty.
d) In case (iii) the residual degree f is determined by the abstract field L, but the
ramification index is not. Moreover, every totally ramified extension of Fq((t)) is
isomorphic to Fq((t)).

Theorem 2.18 is perhaps most gracefully proved using the Haar measure on a locally
compact topological group. We refer to [Wl] for details.

6.2. An application of compactness. How do you describe Zp to your col-
leagues in other areas of mathematics? Depending upon their background, a discus-
sion of valuations, inverse limits, completions etc. may not be called for. Rather,
one often says that Zp is a domain containing Z such that a system of polynomial
equations over Z has a solution over Zp iff it has congruential solutions modulo pa

for all positive integers a. Or possibly some special case of this: e.g. that an integer
x is a square in Z2 iff it is a square in Z/2aZ for all a ∈ Z+. Is this obvious?

One direction is: ifR is a ring and f1(t1, . . . , tn), . . . , fm(t1, . . . , tn) ∈ R[t1, . . . , tn]
are polynomials, and x = (x1, . . . , xn) ∈ Rn is such that f1(x) = . . . = fm(x) = 0,
then if ϕ : R → R′ is any ring homomorphism, then ϕ(x) = (ϕ(x1), . . . , ϕ(xn)) ∈
(R′)n is a solution to the equations ϕ(f1), . . . , ϕ(fm) ∈ R′[t1, . . . , tn]. Applying this
with ϕ : Zp → Zp/(pa) = Z/paZ shows that having solutions in Zp necessitates
solutions in Z/paZ for all a.

The other direction really is not obvious, nor is it a version of Hensel’s Lemma.
However it is true!

Theorem 2.19. Let (K, | · |) be a locally compact nondiscrete non-Archimedean
normed field, with valuation ring R and maximal ideal m. Let f1(t), . . . , fm(t) ∈
R[t] = R[t1, . . . , tn] be polynomials. The following are equivalent:
(i) There is x ∈ Rn such that f1(x) = . . . = fm(x) = 0.
(ii) For all a ∈ Z+ there is x ∈ Rn such that f1(x) ≡ . . . ≡ 0 (mod ma).

Proof. Let || · || be our favorite norm on Km: ||(y1, . . . , ym)|| := maxj |yj |.
Consider the following function

F : Rn → R, x = (x1, . . . , xn) ∈ Rn 7→ ||(f1(x), . . . , fm(x))||.
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Now here is the key observation: the function F is continuous, and the hypotheses
on K imply that R is compact, and thus F assumes a minimum value m ≥ 0.
Case 1: Suppose m = 0. Then there is x ∈ Rn such that F (x) = 0, i.e., f1(x) =
. . . = fm(x) = 0. Thus (i) holds.
Case 2: Suppose m > 0. Then there is no x ∈ Rn such that f1(x) = . . . = fm(x) =
0, i.e., (i) fails. Let π be a generator for m. Then |π| < 1, so there is A ∈ Z+ such
that |πA| < m. Thus for all x ∈ Rn we have

F (x) = max
j
|fj(x)| > |πA|,

so there is 1 ≤ j ≤ m such that fj(x) /∈ mA. Thus (ii) fails. �

7. Squares in local fields

Proposition 2.20. Let (K, v) be a discretely valued field. Then a choice of
uniformizing element π ∈ K gives rise to an isomorphism of groups (K×, ·) ∼=
(R×, ·)× (Z,+).

Proof. We have the short exact sequence

1→ R× → K×
v→ Z→ 0.

Because Z is a free – hence projective! – Z-module, the sequence splits. To choose
a splitting it is necessary and sufficient to lift the generator 1 ∈ Z to an element in
K×. This is precisely the choice of a uniformizing element. �

Thus for instance the group-theoretic study of K× is reduced to that of R×. In
these kind of considerations, it is traditional to change notation and terminology:
put U := R× and call U the unit group of K. (This is, strictly speaking, an
abuse of terminology, since the unit group of K should just be K×. However, it is
traditional and not very confusing. Anyway, by the previous result, the two groups
are very closely related!)

Proposition 2.21. Let p be an odd prime number, and let u ∈ Z be a quadratic
nonresidue modulo p. Then [Q×p : Q×2

p ] = 4, and a set of coset representatives is
1, p, u, pu.

Exercise 2.8. Prove Proposition 2.21.

Proposition 2.22. We have [Q×2 : Q×2
2 ] = 8. A set of coset representatives is

±1,±2,±5,±10.

Exercise 2.9. Prove Proposition 2.22.

Proposition 2.23. Let q be an odd prime power and let K = Fq((t)). Then
[K× : K×2] = 4. A set of coset representatives is 1, u, t, ut, where u ∈ F×q \ F×2

q .

Exercise 2.10. Prove Proposition 2.23.

Note that for for any field K, K×/K×2 is an elementary abelian 2-group, called
the group of square classes of K. In particular, it is a Z/2Z-vector space. Thus,
instead of listing all of its elements, it would be equivalent but more efficient to
give a basis. In the case of Qp with p odd, a basis is given by p, u. In the case of
Q2, a basis is given by −1, 2, 5.
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Exercise 2.11. a) Let K be a Henselian discrete valuation field with residue
field k of characteristic different from 2. Show that dimF2 K

×/K×2 = dimF2 k
×/k×2+

1.
b) Suppose further that K = k((t)). Let {bi}i∈I be an F2-basis for k×/k×2. Show
that an F2-basis for k((t))×/k((t))×2 is {bi} ∪ {t}.

Exercise 2.12. What can you say about the set of square classes in F2((t))?

Theorem 2.24. (Local Square Theorem) Let K be a Henselian discretely valued
field of characteristic different from 2, with valuation ring R and uniformizer π. For
any α ∈ R, 1 + 4πα ∈ R×2.

Proof. [G, Thm. 3.39] Let f(t) = πt2 + t− α. Then

v(f(α)) = v(πα2) = 1 + 2v(α) ≥ 1 > 0− v(2πα+ 1) = v(f ′(α)),

so by Hensel’s Lemma there exists β ∈ R such that f(β) = 0. Therefore the
discriminant 1 + 4πα of f is a square in K, so 1 + 4πα ∈ K×2 ∩R = R•2. �

8. Quadratic forms over local fields

We begin with a very brief review of the notion of a quadratic form over a
field and some associated invariants. For more information, the reader may consult
[C:QF] or the classic texts of Cassels [Ca:QF] or Lam [Lam].

Let K be a field of characteristic different from 2 but otherwise arbitrary.2 A
quadratic form q over K is a polynomial q(x1, . . . , xn) =

∑
1≤i≤j≤n aijxixj , i.e.,

homogeneous of degree 2. (We say that n is the dimension of q.) We define the
Gram matrix Mq whose (i, i) entry is ai,i and whose (i, j) entry, for i 6= j, is

aij
2

(note that we are using 2 ∈ K× here!). Then if we let x denote the column vector
(x1, . . . , xn), we have the identity

q(x1, . . . , xn) = xTMqx.

We wish to regard two quadratic forms overK as “equivalent” if one can be obtained
from the other by an invertible linear change of variables. More explicitly, for any
P ∈ GLn(K), we define (P • q)(x) = q(Px). Here is one slightly tricky point for
beginners: for any vector x ∈ Kn, we have

(P · q)(x) = xTMP ·qx = (Px)TMqPx = xTPTMqPx,

and it follows that the matrix representative of P • q is PTMqP . In other words,
the induced relation on symmetric matrices is not similarity but the above relation,
classically called congruence of matrices.

Recall that any symmetric matrix M over the real numbers can be not only diago-
nalized but orthogonally diagonalized, i.e., there exists a matrix P with PPT = 1n
such that P−1MP is diagonal. By orthogonality of P , we have P−1MP = PTMP ,
so the result implies that any quadratic form over the real numbers can be diago-
nalized, i.e., after a linear change of variables is given in the diagonal form

〈a1, . . . , an〉 = a1x
2
1 + . . .+ anx

2
n.

2The case of characteristic 2 comes up in at least one exercise, but only as an example of
what can go wrong!
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One of the classical theorems of the subject is a generalization of this: over any
field K of characteristic different from 2 is diagonalizable.

Exercise 2.13. A very special and important quadratic form is qH(x1, x2) =
x1x2, the so-called hyperbolic plane.
a) Let K be any field of characteristic different from 2. Give an explicit change of
variables that diagonalizes qH.
b) Show by brute force that qH cannot be diagonalized over F2.
c) Show that qH cannot be diagonalized over any field of characteristic 2.

A quadratic form is said to be nondegenerate if any of its defining symmetric
matrices are invertible, and otherwise degenerate. It can be shown that any nonde-
generate quadratic form in n variables is GLn(K)-equivalent to a quadratic form in
fewer variables. Applying this observation repeatedly, we may view any degenerate
quadratic form simply as a strangely presented nondegenerate quadratic form in
fewer (possibly 0) variables, so it is harmless to restrict attention to nondegenerate
forms.

A quadratic form q is anisotropic if for all a = (a1, . . . , an) ∈ Kn, q(a) = 0
implies a = (0, . . . , 0). In other words, the quadratic hypersurface q(x) = 0 has
no K-rational points. A nondegenerate quadratic form which is not anisotropic is
called isotropic.

Let n ∈ Z+. A field K is said to have u-invariant n – written u(K) = n – if
every quadratic form over K in more than n variables is isotropic and there exists
at least one n-dimensional anisotropic quadratic form over K. If no such positive
integer exists, we say that u(K) =∞.

Over any field K, the quadratic form q(x) = x2 is anisotropic. Over the com-
plex numbers, any quadratic form in at least 2-variables is isotropic, so u(C) = 1.
Indeed this holds for any algebraically closed field. Moreover, we say a field is
quadratically closed if it admits no nontrivial quadratic extension – equivalently,
K× = K×2. Then:

Exercise 2.14. Let L/K be a degree n field extension. Let b1, . . . , bn be a K-
basis for L. Define a polynomial N(x) by NL/K(x1b1 + . . .+ xnbn) (i.e., the norm
from L down to K).
a) Show that for all 0 6= x ∈ Kn, N(x) 6= 0.
b) Suppose n = 2. Show that the equivalence class of the quadratic form N(x) is
well-defined independent of the chosen basis of L/K.

Exercise 2.15. Let K be any field of characteristic different from 2. Show:
u(K) = 1 iff K is quadratically closed.

Example 2.25. For any n ∈ Z+, the quadratic form q(x) = x2
1 + . . . + x2

n is
anisotropic over R, since it is always strictly positive when evaluated at any nonzero
vector. Thus u(R) =∞. The same holds for any formally real field. (However the
converse is not true, e.g. a rational function field in infinitely many indeterminates
over C has u-invariant ∞.)

Proposition 2.26. The u-invariant of any finite field is 2.
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Proof. Since every finite field admits a quadratic extension, it follows from
Exercise 2.14 that the u-invariant is at least 2. The fact that any quadratic form
in at least 3-variables over a finite field has a nontrivial zero is a special case of the
Chevalley-Warning theorem. �

Lemma 2.27. Let K be a Henselian, discretely valued field with valuation ring
R, uniformizer π, and residue field k of characteristic different from 2. Let n ∈ Z+

and a1, . . . , an ∈ R×, and let 0 ≤ r ≤ n. Consider the quadratic forms

q1(x1, . . . , xr) = a1x
2
1 + . . .+ arx

2
r

q2(xr+1, . . . , xn) = ar+1x
2
r+1 + . . .+ anx

2
n

q(x) = q1(x1, . . . , xr) + πq2(xr+1, . . . , xn).

Then q is isotropic over K iff at least one of q1, q2 is isotropic over K.

Proof. Clearly q2 is isotropic iff πq2 is isotropic. Just as clearly, if a subform
of a quadratic form is isotropic, then so is the quadratic form. Thus certainly
the isotropy of either q1 or q2 implies the isotropy of q, so it suffices to show the
converse: assume q is isotropic. Then by the usual rescaling arguments there exists
a primitive vector x such that q(x) = 0: that is, each coordinate of x lies in R and
at least one coordinate of x is not divisible by π.
Case 1: Suppose there is 1 ≤ i ≤ r with xi 6= 0. Then reducing mod p gives q1 ≡ 0
(mod p) and ∂q0

∂xi
= 2aixi 6= 0 (mod p), so by Hensel’s Lemma q1 is isotropic.

Case 2: Then we have that p | xi for 1 ≤ i ≤ r, so q1(x1, . . . , xr) ≡ 0 (mod p)2.
Therefore reducing modulo p2 and dividing by p, we see that q1(xr+1, . . . , xn) ≡ 0
(mod p). Applying Hensel’s Lemma as in Case 1, we see q2 is isotropic over Qp. �

Theorem 2.28. Let K be a Henselian discretely valued field with residue field
k. We suppose that the characteristic of k is different from 2. Then

u(K) = 2u(k).

In particular, for an odd prime p, u(Qp) = 4.

Proof. Let q = q(x1, . . . , xn) be a nonsingular quadratic form over K with
n > 2u(k). Then q is equivalent (under a linear change of variables) to a form
q = q1 + πq2 as in the statement of Lemma 2.27. By our hypothesis on n, at
least one of q1, q2 has more than u(k) variables, so the reduction modulo (π) is
isotropic by assumption and then the form itself is isotropic by Hensel’s Lemma.
Thus u(K) ≤ 2u(k).

Conversely, if u(k) = r, let q(x1, . . . , xr) be an anisotropic form over k. We
may lift each coefficient of q to an element of R× and thus get a quadratic form
q(x1, . . . , xr). Now q itself is anisotropic over K: indeed, if not, there would exist
a primitive vector x such that q(x) = 0 and then reduction modulo (π) would
show that q is isotropic. It then follows from Lemma 2.27 that the quadratic form
q(x1, . . . , xn) + πq(xn+1, . . . , x2n) is isotropic over K. �

Example 2.29. Suppose that p ≡ 3 (mod 4). Then (−1
p ) = −1, so x2 + y2 is

anisotropic mod p. The above proof shows that x2
1 + x2

2 + px2
3 + px2

4 is anisotropic
over Qp.

Exercise 2.16. Show that for every a ∈ N, there exists a field K with u(K) =
2a.
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Exercise 2.17. a) Show that q(x, y, z) = x2 + y2 + z2 is anistropic over Q2.
b) For a prime p, find a, b, c ∈ Z such that q = ax2 + by2 + cz2 is anisotropic over
Qp.

Exercise 2.18. Show that u(Q2) = 4. (See [Lam] for one approach.)

9. Roots of unity in local fields

For any field F , we denote by µ(F ) the torsion subgroup of F× – or, more
colloquially, the roots of unity in F .

We are interested in the roots of unity of a valued field (K, v). Note that we
certainly have µ(K) ⊂ R×: all roots of unity have valuation 0. As usual, we can
say something in this level of generality, but to get definitive results we will restrict
to p-adic fields and/or Laurent series fields.

We define µ′(K) as follows: if the residue field k has characteristic 0, then µ′(K) =
µ(K). However, if the residue field k has characteristic p > 0, then µ′(K) is, by
definition, the group of all roots of unity of K of order coprime to p.

This somewhat curious definition is justified by the following result.

Proposition 2.30. Let (K, v) be a Henselian valued field. Then the mod m

reduction map induces an isomorphism of groups r′ : µ′(K)
∼→ µ(k).

Proof. As observed above, every root of unity of K lies in the valuation
ring. Moreover, certainly the image of an element of finite order under a group
homomorphism has finite order, so there is no doubt that there is a homomorphism
r : µ(K) → µ(k). Note though that because – when char(k) = p > 0 – k has no
p-power roots of unity, the reduction map restricted to µ[p∞](K) is trivial, so we
may as well restrict our attention to the complementary subgroup µ′(K).
Let x ∈ µ(k) = µ′(k) have order n. Put P (t) = tn − 1; then P ′(x) = nxn−1 6= 0.
By Hensel’s Lemma, there exists x̃ ∈ K reducing to x and such that xn = 1. Since
x̃n = 1, the order of x̃ divides n; since q(x̃) = x, n divides the order of x̃, thus x̃
has exact order n. The surjectivity of r′ follows. But moreover, suppose that the
kernel of ρ′ is nontrivial. Then, being a nontrivial torsion group with no elements
of order p, the kernel contains an element of prime order ` 6= p, i.e., there exists a
primitive `th root of unity x̃ such that r(x̃) = 1 and therefore r(x̃k) = 1 for all k.
But by virtue of being a primitive `th root of unity, we have x̃`−1 + . . .+ x̃+ 1 = 0
and reducing this equation modulo the maximal ideal gives ` = 0, a contradiction.
Therefore r′ is an isomorphism. �

In particular, this shows that the group of roots of unity in Qp of order prime to p is
isomorphic to (Z/pZ)×, hence cyclic of order p− 1. Next we wonder whether there
are any p-power roots of unity in Qp. If there are any such, there are primitive pth
roots of unity, so that the pth cyclotomic polynomial Φp(t) would have a root over
Qp. It is well-known from basic algebraic number theory that Φp(t) is irreducible
over Q, a textbook application of Eisenstein’s criterion. As we now explain, the
same application of Eisenstein’s criterion in fact gives the irreducibility over Qp as
well. Recall: Coming back down to earth, we apply the Eisenstein Criterion to Qp
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and f(t) = Φp(t+ 1). We have

f(t) =
(t+ 1)p − 1

t+ 1− 1
= tp−1 +

(
p

1

)
tp−2 + . . .+

(
p

p− 2

)
t+ p.

Applying the Eisenstein criterion to Zp and p = (p), we conclude that f(t) is
irreducible in Qp[t] hence also Φp(t) = f(t − 1) is irreducible in Qp. Therefore Qp
does not contain a primitive pth root of unity. In conclusion:

Theorem 2.31. For any prime p, µ(Qp) ∼= (Z/pZ)×.

Theorem 2.32. Let K be a locally compact non-Archimedean field. Then the
group µ(K) of roots of unity in K is finite.

Proof. Let R be the valuation ring, m the maximal ideal, and k ∼= Fq be the
residue field of k, of characteristic p. By Proposition 2.30, reduction modulo m
induces an isomorphism

µ′(K)
∼→ µ(Fq) ∼= (Z/(q − 1)Z,+).

Thus it suffices to show that the group µp∞(K) of p-power roots of unity is finite.
Step 1: Suppose K = Qp. For a ∈ Z+, let

Φpa(t) =
tp

a − 1

tpa−1 − 1
= Φp(t

pa−1

).

Thus Φpa is the unique monic polynomial with roots the primitive path roots of
unity. polynomial whose roots are the primitive path roots of unity. As we did
when a = 1 above, we put

g := Φpa(t+ 1).

Then g(0) = Φpa(1) = Φp(1
pa−1

) = p. Moreover,(
(t+ 1)p

a−1

− 1
)
g =

(
(t+ 1)p

a

− 1
)
,

and reducing modulo p gives

tp
a−1

g = tp
a

∈ Fp[t]
or

g = tp
a−pa−1

∈ Fp[t].
Thus all the terms of g except for the leading coefficient are divisible by p, so g is
Eisenstein with respect to the prime ideal (p) in the UFD Zp. It follows that g and
hence also Φpa is irreducible over Qp. Thus if ζpa is a primitive path root of unity

in Qp we get that

[Qp(ζpa) : Qp] = ϕ(pa) = pa − pa−1.

Step 2: Let K be a p-adic field. By Step 1, if K contains a primitive path root of
unity then

[K : Qp] ≥ [Qp(ζpa) : Qp] = ϕ(pa).

Since ϕ(pa) ≥ pa−1, certainly lima→∞ ϕ(pa) =∞ and thus K contains only finitely
many p-power roots of unity. Step 3: Suppose K ∼= Fq((t)). In this case we have,
as for every field of characteristic p > 0, no nontrivial p-power roots of unity. �

Corollary 2.33. Let K/Qp be a p-adic field, with [K : Qp] = e(K/Qp)f(K/Qp).
a) The group of roots of unity of order relatively prime to p is cyclic of order pf−1.
b) If (p− 1) - e(K/Qp), then µp∞(K) = 1.

c) In general #µp∞(K) ≤ pordp(e)+1.
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Exercise 2.19. Prove Corollary 2.33.

10. Nth power classes

Let N ∈ Z+. In this section we will compute [K× : K×N ] for any locally com-
pact field of characteristic not dividing N . The Archimedean case is immediately
disposed of.

Exercise 2.20. Let N ∈ Z+.
a) Show: [C× : C×N ] = 1.

b) Show: [R× : R×N ] =

{
1 N odd

2 N even
.

To state the following result we will use some notation borrowed from the arithmetic
of elliptic curves. Let f : A→ Z be a homomorphism of commutative groups. We
will denote the kernel of f by A[f ]. (In particular, if we consider the multiplication
by n homomorphism from A to itself, then A[n] is the n-torsion subgroup of A.)

Lemma 2.34. Let f : A→ Z be a homomorphism of commutative groups. Let
B be a subgroup of A. Then

[A : B] = [f(A) : f(B)] · [A[f ] : B[f ]].

Proof. Let g be the composite homomorphism A → f(A) → f(A)/f(B).
Then g is surjective and has kernel B +A[f ], so

A/(B +A[f ]) ∼= f(A)/f(B).

Moreover A ⊃ B +A[f ] ⊃ B and hence

(B +A[f ])/B ∼= A[f ]/(A[f ] ∩B) = A[f ]/B[f ].

Therefore

[A[f ] : B[f ]][f(A) : f(B)] = [A : B +A[f ]][B +A[f ] : B] = [A : B]. �

Lemma 2.35. Let (K, v) be a discretely valued field, with valuation ring R and
uniformizing element π. Let x ∈ R. Then for any N, r ∈ Z+ such that char(K) - N
and v(Nπr+1) ≥ π2r, we have

(8) (1 + xπr)N ≡ 1 +Nxπr (mod Nπr+1).

Proof. Let p be the residue characteristic, and writeN = N ′pa with gcd(N ′, p) =
1, so N ′ ∈ R×. Put e = v(p). Thus v(N) = ae, so our assumption is that

ae+ r + 1 = v(Nπr+1) ≤ π2r = 2r,

i.e., that

ae+ 1 ≤ r.
Now the desired conclusion is a congruence modulo (Nπr+1), i.e., modulo πae+r+1.
Thus, by our assumption, it is enough to show that the two sides of (8) are congruent
modulo π2r. And this is easy:

(1 + xπr)N = 1 +

(
N

1

)
xπr +

N∑
j=2

(
N

j

)
xjπrj .

Since j ≥ 2, each term in the sum is divisible by π2r, qed. �
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Theorem 2.36. Let K be a field that is Henselian with respect to a normalized
discrete valuation v and with finite residue field k ∼= Fq. Let R be the valuation
ring, m the maximal ideal, U := R× the unit group. Let N be a positive integer
not divisible by char(K). Let µN (K) denote the group of N th roots of unity in K.
Then:
a) We have

[U : UN ] = qv(N)#µN (K).

b) We have

[K× : K×N ] = Nqv(N)#µN (K).

Proof. a) Put s := v(N), and let π be a uniformizer of K. Let r be a positive
integer that is sufficiently large so that r ≥ s+ 1 and so that the higher unit group
Ur contains no nontrivial Nth roots of unity (cf. Exercise 2.5). The crux of the
matter is the following claim:

(9) UNr = Ur+s.

Step 1: We assume (9) and complete the proof.
Applying Lemma 2.34 with A = U , B = Ur, f(x) = xN . Thus

[U : Ur] = [UN : UNr ]#µN (K) = [UN : Ur+s]#µN (K) =
[U : Ur+s]

[U : UN ]
#µN (K)

so

[U : UN ] =
[U : Ur+s]

[U : Ur]
#µN (K) = [Ur : Ur+s]#µN (K).

By Proposition 2.12 we have

[Ur : Ur+s] = #mr/mr+s = qs = qv(N),

so

[U : UN ] = qv(N)#µN (K).

Step 2: By Lemma 2.35 for all x ∈ R we have

(10) (1 + xπr)N ≡ 1 +Nxπr (mod Nπr+1).

Putting s = v(N), this gives

UNr ⊂ Ur+s.
Step 3: Fix x ∈ R, and put

P (t) := tN − (1 + xπr+s) ∈ R[t].

We have

v(P (1)) = v(xπr+s) ≥ r + s

and

v(P ′(1)) = v(N · 1N−1) = s.

Since r > s we have

v(P (1)) > v(P ′(1))2.

So we may apply Hensel-Newton (Theorem 1.79) with α = 1 to get:

∃β ∈ R such that P (β) = 0 and v(β − 1) = v(P (1))− v(P ′(1)) = r.

Thus βN = 1 + xπr+s and β ∈ Ur. This shows that Ur+s ⊂ UNr .
b) Since the choice of uniformizer yields a decomposition K× = U ×Z, this follows
immediately from part a). �
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In particular, if K is locally compact, the group [K× : K×N ] is finite for all N
not divisible by charK. In [A, p. 209, Thm. 5], Artin proves this result under
the assumption that K contains the Nth roots of unity. In [L-ANT, p. 47, Prop.
6], Lang gives this result when K is a p-adic field. He says he is following [A].
On the one hand, his proof does not use that K has characteristic 0 but only that
charK - N . On the other hand, it seems to me that his proof is incomplete: he
only argues for UNr ⊂ Ur+s. Artin himself gives the other direction via a further
argument using (10) and relying on the completness of K. Since earlier we proved
special cases of this result using Hensel’s Lemma, it is natural to try to use Hensel’s
Lemma, and an interesting aspect of the proof if that it uses the evaluation of |α−β|
that is not a traditional part of the statement of Hensel-Newton but is present in
Conrad’s treatment. Using this argument instead of Artin’s allows us to weaken
“complete” to “Henselian.”

Exercise 2.21. One might wonder where the finiteness of the residue field is
used: e.g. perhaps in the context of Theorem 2.36, if we drop the assumption that
k ∼= Fq we could have

[K× : K×N ] = N(#k)v(N)#µN (K)?

a) Show that for all N ∈ Z+ we have [C((t))× : C((t))×N ] = N . Deduce that the
answer to the above question is “no.”
b) Exactly where was the finiteness of k used in the proof?

Corollary 2.37.
Let (K, v, π, k = Fq) be a locally compact field of characteristic different from 2.
a) If char(k) > 2, there are exactly three quadratic extensions of K.
b) If char(k) = 2, there are exactly 2[K:Qp]+2 − 1 quadratic extensions of K.

Exercise 2.22. Prove Corollary 5.11.

Things are truly different when K = Fpf ((t)) and p | m.

Exercise 2.23. Let K = Fpf ((t)). Show that if p | m, then [K× : K×m] =∞.

11. Krasner’s Lemma and applications

11.1. Krasner’s Lemma.

Theorem 2.38. (Krasner’s Lemma) Let (K, |·|) be a Henselian non-Archimedean
normed field with algebraic closure K. Let α, β ∈ K. Write out the distinct K-
conjugates of α as α = α1, . . . , αn. Suppose that for all i > 1 we have

|α− β| < |α− αi|.
a) Then K(α, β)/K(β) is purely inseparable.
b) If α is separable over K, K(α) ⊂ K(β).

Proof. Part b) immediately follows from part a). As for part a), it suffices
to show the following: for every K(β)-algebra embedding τ of K(α, β) into an
algebraic closure K, τ(α) = α. As we have seen before, the uniqueness of extended
norms implies that we have, for all i > 1,

|τ(α)− β| = |τ(α)− τ(β)| = |α− β| < |α− αi|
and hence

|τ(α)− α| ≤ max |τ(α)− β|, |β − α| < |α− αi|.
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Since this holds for all i > 1 and τ(α) is a conjugate of α, we get τ(α) = α. �

Remark 2.39. In fact a non-Archimedean normed field is “Krasnerian” – i.e.,
satisfies the conclusions of Theorem 2.38 – iff it is Henselian [Ri, p. 141].

11.2. Krasner’s Corollary.

Exercise 2.24. Let (K, | · |) be an algebraically closed normed field.
a) Let n ∈ Z+. Let D(n) be the set of all degree n polynomials with coefficients
in K which have n distinct roots, viewed as a subset of Kn+1 in the evident way.
Show that D(n) is open in (the product topology on) Kn+1.
b) Suppose that K is any algebraically closed field. Show that D(n) is open in Kn+1

in the Zariski topology.
c) Show that the roots are continuous functions of the coefficients in the following
sense: for all ε > 0, there exists δ > 0 such that: for any two polynomials f(t) =∑
n ant

n and g(t) =
∑
n bnt

n with |ai− bi| < δ for all i, there exist orderings of the
roots α1, ..., αn of f and β1, ..., βn of g such that |αi − βi| < ε for all i.
d) Suppose that you restrict to degree n polynomials in D(n). State and prove a
version of part b) which does not involve permuting the roots. (Suggestion: consider
disjoint open disks about each of the roots and argue that under sufficiently small
changes of the coefficients, the roots stay inside the disjoint disks.)

Corollary 2.40 (Krasner’s Corollary). Let K be a Henselian non-Archimedean
normed field. Let f(t) = ant

n + . . .+ a1t+ a0 be an irreducible separable degree n
polynomial, and let α be one of its roots in a fixed algebraic closure K. Then there
exists δ > 0 such that: for all b0, . . . , bn ∈ K with |ai − bi| < δ for all 0 ≤ i ≤ n,
the polynomial g(t) := bnt

n + . . .+ b1t+ b0 is irreducible, separable, and has a root
β such that K(α) = K(β).

Proof. We apply Exercise 2.24 on continuity of roots of a polynomial with
coefficients in a normed field in terms of the coefficients: for any ε > 0, by tak-
ing δ sufficiently small we can ensure that the polynomial g is also separable and
that its roots β1, . . . , βn, in some ordering, each lie within ε of the corresponding
roots α1, . . . , αn of f . Taking ε = mini>1 |α1 − αi| and applying part b) of Kras-
ner’s Lemma to β1, we get that K(α1) ⊂ K(β1). However, since β1 satisfies g, a
polynomial of degree n, we have

n ≥ [K(β1) : K] ≥ [K(α1) : K] = n.

Thus [K(β1) : K] = [K(α1) : K] = n, so g(t) is irreducible and K(α1) = K(β1). �

Theorem 2.41 (Generalized Krasner’s Corollary). Let K be a Henselian non-
Archimedean normed field. Let f = ant

n + . . . + a1t + a0 ∈ K[t] be a separable
polynomial. Then there is δ > 0 such that: for all g = bnt

n + . . .+ b1t+ b0 ∈ K[t]
such that |ai − bi| < δ for all 0 ≤ i ≤ n, we have an isomorphism of K-algebras

K[t]/(f) ∼= K[t]/(g).

Proof. Let f =
∏r
i=1 fi with each fi ∈ K[t] irreducible separable, and such

that (fi) 6= (fj) for i 6= j. Write fi(t) =
∏di
i=1(t − αij) for αij ∈ K. By Exercise

2.24, if δ is small enough, then g is separable and can be factored as
∏r
i=1 gi with

each gi ∈ K[t] and gi(t) =
∏di
i=1(t − βij). Again by taking δ small enough we

can ensure that for all i, j, the root βij is closer to αij than to any other root of
f and, symmetrically, that the root αij is closer to βij than to any other root of
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g. Applying Krasner’s Lemma to f , αij and βij we get that K(αij) ⊂ K(βij).
Similarly, applying it to g, βij and αij we get that K(βij) ⊂ K(αij). Thus for all
i, j we have K(αij) = K(βij). Moreover, since K is Henselian, every element of

gK = Aut(K/K) acts continuously on K, so – after shrinking δ, if necessary – if
σ ∈ gK carries αi1 to αij , then it must carry βi1 to βij . It follows that for all i,
the full set of conjugates of βi1 is βi1, . . . , βidi , where di = deg fi = deg gi. Thus
gi ∈ K[t] and for all i we have K[t]/(fi) ∼= K[t]/(gi). The Chinese Remainder
Theorem gives

K[t]/(f) = K[t]/(f1 · · · fr) ∼=
r∏
i=1

K[t]/(fi) ∼=
r∏
i=1

K[t]/(gi) ∼= K[t]/(g1 · · · gr) = K[t]/(g).

�

Remark 2.42. The above proof was suggested to me by M. Suwama.

11.3. Local extensions come from global extensions.

Corollary 2.43. Let (K, | |) be a non-Archimedean normed field with com-

pletion K̂, and let L/K̂ be a finite separable field extension of degree d. Then there

exists a degree d separable field extension L/K such that L = LK̂.

Proof. By the Primitive Element Corollary, L ∼= K̂[t]/f(t), where f(t) ∈ K̂[t]

is monic, separable of degree d. Since K is dense in K̂, there exists a degree
d polynomial g(t) ∈ K[t] whose coefficients are all δ-close to the corresponding
coefficients of f(t), for any preassigned δ > 0. By Corollary 2.40, for sufficiently
small δ, g(t) is irreducible separable of degree d and there exist roots α1 of f , β1

of g such that K̂(α1) = K̂(β1). It follows that L = LK̂. �

Theorem 2.44. (Finite Local-Global Compatibility for Extensions) Let K be a
field, and let | · |1, . . . , | · |g be inequivalent norms on K. For each 1 ≤ i ≤ g, let

K̂i be the completion of K with respect to | · |i. Fix a positive integer d, and for

each 1 ≤ i ≤ g, let Ai be a degree d separable K̂i-algebra (i.e., a finite product of
finite degree separable field extensions of K, with dimK̂i

Ai = d). Then there is a

separable extension L/K of degree d and, for all 1 ≤ i ≤ g, K̂i-algebra isomorphisms

Φi : L⊗K K̂i
∼→ Ai.

Exercise 2.25. Prove Theorem 2.44.

Here is an application of Theorem 2.44 to number fields. For a field F , we denote by
F ab the maximal extension of F (within a fixed algebraic closure) that is algebraic
and Galois with commutative Galois group.

Exercise 2.26. Let K ) Q be a number field, and let d ≥ 2.
a) Show that there is a degree d extension L/K such that L/Q is not Galois.
(Suggestion: you may use that there are infinitely many prime numbers p that
split completely in K. This is a consequence of the Chebotarev Density Theorem,
although there are much more elementary proofs. Let p1 and p2 be two primes of K
that lie over the same rational prime p. Use Theorem 2.44 to construct L/K such
that the splitting behavior over p1 differs from the splitting behavior over p2.)
b) Show: Kab ) Qab.
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11.4. Cp.

Lemma 2.45. Let (K, |·|) be a separably closed, complete (nontrivially!) normed
field. Then K is algebraically closed.

Proof. In characteristic 0 the notions of separable closure and algebraic clo-
sure coincide, so assume that K has positive characteristic p. It is enough to show
that K is perfect: let a ∈ K, and let α ∈ K be the unique element such that αp = a.
We must show that α ∈ K. Fix c ∈ K× with v(c) > 0. For n ∈ Z+ we consider

Pn(t) := tp − cnt− a ∈ K[t].

Evidently we have
lim
n→∞

Pn = tp − a,

which has α as its unique root. By continuity of the roots of a polynomial as
functions of the coefficients, if for each n ∈ Z+ we choose a root αn of Pn in K,
then we have αn → α. Since each Pn is separable and K is separably closed, we
have that αn ∈ K for all n. Since the sequence {αn}∞n=1 is convergent in K, it is
Cauchy in k, but K is complete, so α = limn→∞ αn lies in K. �

Corollary 2.46. Suppose (K, | · |) is a separably closed normed field. Then

its completion (K̂, | · |) is algebraically closed.

Proof. By Corollary 2.43, the field K̂ is complete and separably closed, so by
Lemma 2.45 it is algebraically closed. �

In particular, defining Cp to be the completion of the algebraic closure of Qp, the
field Cp is complete and algebraically closed.

Corollary 2.43 can be viewed as saying that any one inert local extension of a
NA normed field may be realized as the completion of a global extension. This re-
sult can be generalized in several ways: we can take work with several (but finitely
many!) local extensions at once, each local extension need not be a field but only
a separable algebra, and finally Archimedean places can be admitted. We get the
following result, which has been of use to me in my own work (cf. [Cl09a, Thm.
6] and [CGP17, Thm. 3.2]).

11.5. Multi-complete and multi-Henselian fields.

Define a field K to be multi-complete if it is complete with respect to (at least)
two inequivalent nontrivial norms. This seems like a strong property, and we seek
to classify multi-complete fields.

Example: the complex field C is multi-complete. On the one hand C is com-
plete with respect to the standard Archimedean norm. On the other hand, for any
prime p, let Cp be the completion of the algebraic closure of Qp with the p-adic
norm. By Corollary 2.46, Cp is complete and algebraically closed. It is easy to see
that #Cp = #C. By pure field theory – e.g. [C:FT, Cor. 78] – it follows that we
have an isomorphism of abstract fields C ∼= Cp.

Exercise 2.27. What is the cardinality of the set of pairwise inequivalent
norms on C with respect to which C is complete?
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Exercise 2.28. Suppose that K is a field which is complete with respect to an
Archimedean norm || · ||1 and also an inequivalent norm || · ||2. Show that K ∼= C.

Thus in our study of multi-complete fields we may, and shall, restrict to non-
Archimedean norms, or equivalently, to valuations.

Here is the main theorem for multi-complete fields.

Theorem 2.47. (Schmidt [Sc33]) A multi-complete field is algebraically closed.

From this we can deduce a classification result for multi-complete fields.

Corollary 2.48. (Schmidt) For a field K, the following are equivalent:
(i) K is multi-complete.
(ii) K is algebraically closed and complete with respect to a nontrivial valuation.
(iii) K is algebraically closed and (#K) = (#K)ℵ0 .

Proof. By Theorem 2.47, (i) =⇒ (ii). Recall from Exercise 2.30.5 that a
field which is complete with respect to a nontrivial norm satisfies #K = (#K)ℵ0 ,
so (ii) =⇒ (iii). Conversely, if K is algebraically closed and satisfies the cardinality
condition, thenKv is complete, algebraically closed (cf. Proposition 3.22 below) and
of uncountably cardinality equal to that of K, so Kv

∼= K. Thus (iii) ≡ (ii). Finally,
assume that K is algebraically closed and complete with respect to a nontrivial
valuation v. Let t ∈ K have negative valuation and which is transcendental over the
prime subfield of K. (If every transcendental element t had non-negative valuation,
then for any element of a of K, v(a) = v(t+ a− t) ≥ min v(t+ a,−t) ≥ 0, so every
element of K has non-negative valuation, and thus v is trivial.) By standard field
theory – cf. e.g. the proof of [C:FT, Thm. 80], the automorphim group of the
algebraically closed field K acts transitively on the set of all transcendence bases for
K over its prime subfield. In particular, there exists an automorphism σ such that
σ(t) = 1

t , and such an automorphism is evidently discontinuous for the valuation
topology. Thus σ∗v : x 7→ v(σ(x)) is an inequivalent complete valuation, i.e., K is
multi-complete. �

It remains to prove Theorem 2.47. We will introduce a variant which we claim
is more natural and more penetrating (in particular, it will imply Theorem 2.47).
Namely, we define a field K to be multi-Henselian if it is Henselian with respect
to two inequivalent nontrivial valuations. Here is the main theorem of this section.

Theorem 2.49. (Kaplansky-Schilling [KS]) A multi-Henselian field is separa-
bly closed.

Proof. Let K be a field that is Henselian with respect to inequivalent, non-
trivial valuations v1 and v2. Let L/K be a finite degree separable field extension.
By the Primitive Element Corollary we have L ∼= K[t]/(P1(t)) for a monic, irre-
ducible seaprable P1 ∈ K[t], say of degree d. Our task is to show that d = 1.

By weak approximation the diagonal image of K in Kv1 ×Kv2 is dense.
On the one hand, by Krasner’s Lemma, there exists ε > 0 such that any monic

polynomial Q ∈ Kv1 [t] each of whose coefficients is ε-close to the corresponding
coefficients of P is also irreducible of degree d.

On the other hand, let P2(t) = t(t+1)d−1. Then P2(t) is monic of degree d, and
its reduction modulo v2 is (of course) t(t+ 1)d−1 ∈ kv2 [t]. We may therefore apply
Hensel’s Lemma to P2 to see that it has a root in K. Well, that’s silly – of course it



11. KRASNER’S LEMMA AND APPLICATIONS 83

has a root: P2(0) = 0. But moreover, if Q(t) ∈ K[t] is any polynomial sufficiently
close to P2 such that the coefficients of P2−Q all have positive valuation, then the
reduction of Q modulo the maximal ideal is also equal to t(t + 1)d−1. Therefore
Hensel’s Lemma applies equally well to show that Q has a rational root.

The endgame is thus: by weak approximation, we may choose a monic degree
d polynomial Q which is, at the same time, sufficiently v1-adically close to P1 to be
irreducible and sufficiently v2-adically close to P2 so as to have a rational root. Of
course an irreducible polynomial with a rational root must have degree 1. �

Exercise 2.29. (Kaplansky-Schilling [KS]) Deduce the following strengthening
of Schmidt’s theorem: Let v1 and v2 be inequivalent nontrivial valuations on a field
K. Suppose that K is complete with respect to v1 and Henselian with respect to v2.
Then K is algebraically closed of at least continuum cardinality.

Similarly, we may classify all multi-Henselian fields, and this is simpler in that no
conditions on the cardinality intervene.

Proposition 2.50. Let K be a separably closed field, and let v be a valuation
on K. Then K is Henselian with respect to v.

Proof. By definition of Henselian, we must show that if L/K is a finite degree
field extension, then there is a unique valuation on L extending v. If L = Ln ⊃
Ln−1 ⊃ . . . ⊃ L0 = K is a tower of finite degree purely inseparable extensions, then
if every valuation vi on Li extends uniquely to a valuation on Li+1, then certainly
the valuation v = v0 on K extends uniquely to L. Therefore we may assume that
L/K is purely inseparable and primitive, i.e., generated by a single root of a purely
inseparable polynomial, i.e., L = K[t]/(P ), where P has only one distinct root in
an algebraic closure K of K.

Now recall Theorem 2.5: if (K, v) is a valued field and L/K is a finite degree field
extension, there is a bijective correspondence betweeen valuations on L extending
v and prime ideals in the Artinian Kv-algebra L ⊗K Kv. With our choice of L =
K[t]/(P (t)), with P purely inseparable, we have L ⊗K Kv

∼= Kv[t]/(P (t)). But
since P is purely inseparable, it has only one root in an algebraic closure, hence
also in any field extension. Therefore over Kv(t) we have a factorization P = Qe,
where Q is again irreducible, so L ⊗K Kv

∼= Kv[t]/(Q
e), which is a local algebra

with unique maximal ideal (Q). Therefore the extension of v to L is unique. �

Proposition 2.51. Let K be a separably closed field that is not the algebraic
closure of a finite field. Then K is multi-Henselian: indeed it is Henselian with
respect to infinitely many pairwise inequivalent distinct valuations.

Proof. By Proposition 2.45, K is Henselian with respect to all of its valua-
tions. The remainder is just a rehash of some already proved valuation theory: if K
is an algebraic extension of a finite field, then it admits only the trivial valuation.
Otherwise, K admits at least one nontrivial valuation. Indeed, if K has character-
istic 0 then it contains Q and hence has p-adic valuations for all p, each of which
extends, by Theorem 2.1, to a valuation of K; this gives infinitely many inequiv-
alent valuations. Otherwise K has characteristic p > 0 and thus contains Fp(t), a
field which has infinitely many inequivalent valuations by Theorem 1.14. �

Remark: This is [KS, Theorem 2], except that the need to exclude the algebraic
closure of a finite field is overlooked there.
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Exercise 2.30. Show that a multi-Henselian field is Henselian for uncountably
many pairwise inequivalent valuations!

Exercise 2.31. Give an example of a multi-Henselian field that is not multi-
complete.

Finally, we give an application of these results.

Theorem 2.52. (Continuity of Automorphisms) Let (K, v) be a field which is
Henselian for a nontrivial valuation v. Suppose that either
(i) K is not separably closed, or
(ii) K is complete with respect to v and is not algebraically closed.
Then every automorphism of K is continuous with respect to the valuation topology.

Proof. Let σ be an automorphism of K. By Exercise 2.31, σ is continuous
with respect to the valuation topology iff σ is an automorphism of the valued field
(K, v), i.e., for all x ∈ K, we have σ∗v = v, where σ∗v is the valuation x 7→ v(σ(x)).
It is easy to see that since v is Henselian, so is σ∗v and that v is complete iff σ∗v is
complete (cf. Exercise 2.32). Therefore if σ were not continuous with respect to the
valuation topology, then v and σ∗v would be inequivalent nontrivial valuations on
K, i.e., K is multi-Henselian. Thus by Kaplansky-Schilling, K is separably closed.
Similarly, if K is complete with respect to v, then it is multi-complete and thus, by
Schmidt’s theorem, algebraically closed, qed. �

This immediately implies the following result.

Corollary 2.53. Let K/Qp be a degree d field extension. Then # Aut(K) ≤ d.
In particular, Qp is rigid, i.e., has no nontrivial field automorphisms.

11.6. The number of degree m extensions of a locally compact field.

Theorem 2.54. Let K be a locally compact field, and let m ∈ Z+ be such that
char(K) does not divide m. Then the set of degree m extensions of K inside a fixed
algebraic closure of K is finite.

Proof. We know that there is a unique unramified extension of each degree,
so by an easy dévissage argument we are reduced to proving the result for totally
ramified extensions. For this we use Theorem 2.11: every totally ramified exten-
sion L/K of degree m is separable and of the form K[t]/(P (t)) for an Eisenstein
polynomial P (t) ∈ R[t]: that is,

P (t) = tm + am−1t
m−1 + . . . = a1t+ a0 ∈ R[t], ai ∈ m ∀0 ≤ i ≤ n− 1, a0 /∈ m2.

The mapping P 7→ (a0, . . . , am−1) gives a bijection from the set of all degree m
polynomials with R coefficients to the compact space Rm. Define the Eisenstein
locus Em ⊂ Rm to be the set of all Eisenstein polynomials. Then Em is closed (in
fact also open) in Rm and is thus compact. Moreover, every point of Em corresponds
to an irreducible, separable polynomial of degree n. By Corollary 2.40, to each point
P ∈ Em there is an open disk DP such that for any two roots α and β of any two
polynomials in DP , the field extensions K(α) and K(β) are conjugate. (With more
care, we could choose roots so that they are the same, but since finiteness of the
number of field extensions up to conjugacy certainly implies finiteness of the number
of field extensions, it seems simplest not to worry about this.) Now, by compactness,
Em can be covered by finitely many such disks DP1

, . . . , DPN
, such that on each

disk we get a field extension (up to conjugacy) K(α1), . . . ,K(αN ). It follows that
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every Eisenstein polynomial of degree m generates a field extension conjugate to
K(αi) for some 1 ≤ i ≤ N , so that there are only finitely many degree m totally
ramified extensions of K up to conjugacy, hence only finitely many overall. �

Exercise 2.23 above shows that if q = pa, then K = Fq((t)) has infinitely many ex-
tensions of degree p. Probably you solved this exercise by constructing extensions

of the form K(x
1
p ), i.e., purely inseparable extensions. More surprisingly there are

also infinitely many separable degree p extensions of Fq((t)).

Indeed, let K be any field of characteristic p. Define the Artin-Schreier isogeny ℘p :
K → K, x 7→ xp − x. The point is that this is a homomorphism (K,+) → (K,+)
whose kernel is Fp. By Artin-Schreier theory [C:FT, §9], every separable degree
p extension in characteristic p comes from adjoining the root of an Artin-Schreier
polynomial tp − t− a = 0. The irreducibility of the polynomial is equivalent to its
having a root, i.e., to a being in the image of the Artin-Schreier isogeny. Moreover,
there are infinitely many separable p-extensions iff the quotient K/℘p(K) is infinite.
But this is true for K = k((t)) and any field k of positive characteristic. Indeed,
for n ∈ Z+ and prime to p, the elements 1

tn give rise to distinct cosets of ℘p(K).

Explicitly, if n 6= n′, there does not exist f ∈ k((t)) such that 1
tn −

1
tn′

= fp − f :
exercise!

What about the number of totally ramified degree m extensions of a local field?

Exercise 2.32. Let K be a non-Archimedean local field, and let m ∈ Z+ be
prime to the residue characteristic of K. Show: there are precisely m totally rami-
fied extensions of K of degree m.

Theorem 2.55 (Serre). Let K be non-Archimedean and locally compact, with
residual cardinality q. For m ∈ Z+, let Σm be the set of all totally ramified ex-
tensions of degree n of K contained in a fixed separable closure. For L ∈ Σm,
put

c(L) = d(L)−m+ 1,

where d(L) is the valuation of the discriminant of L/K. Then∑
K∈Σm

1

qc(L)
= n.

Proof. See [Se78]. �

Note that this sum is infinite when n = p = char(K) > 0!

For more recent work on this topic, see [Ke07] and [Bh07].

12. Autoduality of locally compact fields

Let G be a locally compact commutative group. We define its character group
G∨ = Homc(G,S

1), i.e., the group of all continuous homomorphisms from G to
the unit circle S1 (viewed as a subgroup of (C×, ·)). However, we wish G∨ to itself
have the structure of a topological group. Given topological spaces X and Y , there
is a ubiquituous reasonable topology to put on the space C(X,Y ) of all continuous
maps from X to Y . It is defined as follows: for K a compact subset of X and U
an open subset of Y , let [K,U) := {f ∈ C(X,Y ) | f(K) ⊂ U}.
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Exercise 2.33. For x ∈ Qp, let n be the least non-negative integer such that

pnx ∈ Zp. Let r be such that r ≡ pnx (mod pn). Put Ψ(x) = e2πir/pn .
a) Show: Ψ : (Qp,+)→ (S1, ·) is a continuous homomorphism, i.e., Ψ ∈ Q∨p .
b) Show that ker(Ψ) = Zp. In particular, Ψ is nontrivial.

Exercise 2.34. Write x ∈ Fp((t)) as x =
∑∞
n=r ant

n. Define Ψ(x) = e(2πi)a−1/p.
a) Show that Ψ ∈ Fp((t))∨.
b) Compute the kernel of Ψ and thereby show that it is nontrivial.

Exercise 2.35. Let L/K be a finite separable extension of non-Archimedean
local fields. Suppose that ΨK is a nontrivial character of K. Show that x ∈ L 7→
ΨK(TrL/K(x)) defines a nontrivial character of L, say ΨL.

Proposition 2.56. (Classification of characters) Let K be a nondiscrete locally
compact field, and let Ψ be any nontrivial element of K∨, i.e., Ψ is an additive to
multiplicative homomorphism Ψ : (K,+) → (S1, ·) such that Ψ(x) 6= 1 for at least
one x ∈ K.
a) For any a ∈ K, the map χa : K → S1 by x 7→ Ψ(ax) gives a character of K.
b) The character χa is trivial iff a = 0.
c) The mapping a 7→ χa defines a continuous injection Φ : K ↪→ K∨.
d) For all b ∈ K, χa(b) = 1 for all a ∈ K ⇐⇒ b = 0. It follows that Φ(K) is
dense.
e) Φ(K) is a complete, hence closed, subgroup of K.
f) It follows that Φ : K → K∨ is an isomorphism of topological groups.

Exercise 2.36. Prove Proposition 2.56.

13. Structure theory of CDVFs

We now specialize to the following situation: let (K, | · |) be a complete, non-
Archimedean field whose valuation ring R is a DVR and whose residue field k is
perfect. Under these hypotheses we can give a much more penetrating analysis
of the structure of the absolute Galois group gK = Gal(Ksep/K) and also of the
multiplicative group K×.

Recall that a finite extension L/K is unramified if e(L/K) = 1; equivalently,
f(L/K) = [L : K]. (Note that we are using our assumption of the perfection of k
here, for otherwise we would need to add the condition that the residual extension
l/k is unramified.) An algebraic extension L/K is unramified if all of its finite
subextensions are unramified.

A finite extension L/K is totally ramified if e(L/K) = [L : K]; equivalently,
l = k. An algebraic extension L/K is totally ramified if each finite subextension if
totally ramified; equivalently, l = k.

Let p be the characteristic exponent of the residue field k. (In other words, when
k has positive characteristic, we take p to be the characteristic; when k has char-
acteristic 0, we take p = 1.)

Here is a new definition: a finite extension L/K is tamely ramified if e(L/K) is
prime to p. An algebraic extension is tamely ramified if every finite subextension is
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tamely ramified. Note that in particular every unramified extension is tamely ram-
ified, so perhaps more accurate terminology would be “at worst tamely ramified”,
but the terminology we have given is standard. Note also that if char(k) = 0 then
every algebraic extension of K is tamely ramified.

An extension L/K is totally tamely ramified, or TTR, if it is both totally
ramified and tamely ramified.

Both unramified and tamely ramified extensions are distinguished classes of field
extensions in the sense of Lang, as we now explain. A class of field extensions
C = {L/K} is said to be distinguished if it satisfies the following two conditions:

(DE1) (Tower condition): if K/F and L/K are both in C, then L/F is in C.
(DE2) (Base change condition): suppose E,F,K are subfields of a common field,
and F ⊂ K, F ⊂ E and K/F ∈ C. Then EK/E ∈ C.

Exercise 2.37. Show that (DE1) and (DE2) imply the following:
(DE3) Suppose K,L1, L2 are subfields of a common field, with K contained in both
L1 and L2 and that L1/K, L2/K ∈ C. Then L1L2/K ∈ C.

Examples: finite extensions; separable extensions; purely inseparable extensions;
finitely generated extensions; purely transcendental extensions.

Important non-examples: normal extensions, Galois extensions: they satisfy (DE2)
but not (DE1).

Now we state some of the main results we will prove later in this chapter.

Theorem 2.57. Let K be a CDVF with perfect residue field k. Inside the class
of all algebraic extensions of K, we have
a) The class of unramified extensions is a distinguished class.
b) The class of tamely ramified extensions is a distinguished class.

Note that the tower property of unramified and tamely ramified extensions follows
directly from the definition, since ramification indices multiply in towers. The base
change property is less obvious, and for this we will need more explicit information
about the structure of unramified and tamely ramified extensions, coming up soon!

Example: Totally ramified and totally tamely ramified extensions need not form
a distinguished class. For instance, let K = Q((x)), let n ≥ 3, and consider the
Eisenstein polynomial f(t) = tn − x. The extension L = K[t]/(f) is totally tamely
ramified. It is (of course) separable, but it is not normal: rather, the normal closure

is M = K(x
1
n , ζn), which contains the nontrivial unramified extension K(ζn)/K.

Because the unramified extensions form a distinguished class, there is a unique
maximal unramified extension – namely, the compositum of all finite degree to-
tally unramified extensions, Kunr. The residue field of Kunr is k. The extension
Ksep/Kunr is (necessarily) Galois and totally ramified. The extension Kunr/K is
also Galois. Moreover, we have a short exact sequence of Galois groups

1→ gKunr → gK
ρ→ Gal(k/k)→ 1.
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The map ρ is defined as follows: since every element σ ∈ gK is continuous, it pre-
serves the valuation ring R and also the maximal ideal m and therefore induces
an automorphism ρ(σ) of R/m. This short exact sequence follows from passage to
the limit of the special case of the inertia group / decomposition group / residual
extension short exact sequence that we get from a finite Galois extension S/R of
Dedekind domains and primes P|p.

Similarly, because the tamely ramified extensions form a distinguished class, there
is a unique maximal tamely ramified extension, Ktame of K, which is Galois over
K. This gives rise to a short exact sequence of Galois groups

1→ Gal(Ktame/Kunr)→ Gal(Ktame/K)→ Gal(Kunr/K) = gK → 1.

In fact, the group Gal(Ktame/Kunr) is the easiest to understand.

Theorem 2.58. We have Gal(Ktame/Kunr) ∼=
∏
` 6=p Z`.

This will also follow from the structure theory of tamely ramified extensions.

An extension is called wildly ramified if it is not tamely ramified. The remaining
piece of the Galois group Gal(Ksep/Ktame) describes the “purely wildly ramified”
extensions. In general, this is the most complicated and scariest part of the absolute
Galois group of a CDVF, but there is one important fact which comes for free:

13.1. Tamely ramified extensions. Let K be a Henselian discretely valued
field with valuation ring R, normalized valuation v and residue field k of charac-
teristic p ≥ 0. We extend the valuation v to K. A finite degree extension L/K is
tamely ramified if p - e(L/K). We say that L/K is totally tamely ramified if
it is tamely ramified and e(L/K) = [L : K].

Proposition 2.59. Let e be a positive integer not divisible by p. Let a ∈ R\{0},
and let α ∈ K be a root of te − a. Then:
a) The extension K(α)/K is tamely ramified.
b) If gcd(e, v(a)) = 1, then the exension K(α)/K is totally ramified.

Proof. a) Write a = πvu with π a uniformizer of K and u ∈ R×. Let ζe ∈ K
be a primitive eth root of unity, and let u

1
e , π

1
e be eth roots of u and π in K. Then

K(α) ⊂ K(ζe, u
1
e , π

1
e ).

Since p - e, the extension F := K(ζe, u
1
e ) is unramified over K, so π is still a

uniformizer of F . So the polynomial te−π is Eisenstein at the maximal ideal of the
valuation ring of F and thus the exension F (π

1
e )/F is totally ramified of degree d

and thus totally tamely ramified. It follows that

e(K(α)/K) | e(K(ζe, u
1
e , π

1
e )/K) = e,

so K(α)/K is tamely ramified.

b) Since αe = a, we have v(α) = v(a)
e . Thus if gcd(e, v(a)) = 1 then the subgroup

of v(K
×

) = (Q,+) generated by v(α) is 1
eZ. Since [K(α) : K] ≤ e, we must have

that K(α)/K has degree e and is totally ramified. �

Theorem 2.60. Let L/K be totally tamely ramified, with [L : K] = e(L/K) =
e. Then there is a uniformizer π of K and a uniformizer Π of L such that Πe = π.
In particular, L ∼= K[t]/(te − π).
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Proof. Let S be the valuation ring of L and let P be the maximal ideal of
S. Fix a uniformizing element $ of K. Let β a uniformizing elment of L, i.e.,
v(β) = 1

e . We may write
βe = $u

with u ∈ S×. Because L/K is totally ramified, the residual extension is trivial, and
thus there is u0 ∈ R× such that u ≡ u0 (mod P). Put

π := $u0.

Then x := u−u0

u0
∈ P is such that

βe = $u = $u0 + ($u0)
u− u0

u0
= π + πx,

and thus we have
v(βe − π) > v(π) = 1.

Put f := te − π ∈ K[t], and let α1, . . . , αe be its roots. Then
e∑
i=1

v(β − αi) = v(f(β)) = v(βe − π) > v(π) = 1.

On the other hand, for all 1 ≤ i ≤ e we have v(αi) = 1
e . Hence, after relabelling

the roots if necessary we get

v(β − α1) >
1

e
.

On the other hand we have

∀2 ≤ j ≤ n, v(α1 − αj) ≥ min v(α1), v(αj) =
1

e
and

e− 1

e
= (e− 1)v(α1) = v(f ′(α1)) =

e∑
i=2

v(α1 − αi) ≥
e− 1

e
,

and thus
∀2 ≤ j ≤ n, v(α1 − αj) = v(α1).

Krasner’s Lemma now applies to give K[t]/(te − π) ∼= K(α1) ⊂ K(β). Since both
K(α1) and K(β) have degree e over K, we have K(α1) = K(β). �

Corollary 2.61. The tamely ramified extensions of a CDVF form a distin-
guished class.

Proof. Since both unramified extensions and totally tamely ramified exten-
sions have the tower property, so do tamely ramified extensions. It remains to see
that the base change of a tamely ramified extension is tamely ramified. Again, by
splitting a tamely ramified extension into an unramified extension followed by a to-
tally tamely ramified extension, it suffices to show that the base change of a totally
tamely ramified extension is tamely ramified. In view of Theorem 1, we must show
that if E/K is any algebraic extension and π is any uniformizer of K, then for any
e prime to the residue characteristic p (which we may assume to be positive, other-

wise there is nothing to show), the extension E(π
1
e )/E is tamely ramified. Here we

need to be a bit careful: by π
1
e we mean any root of the separable polynomial te−π

in K. In fact it is easier (and sufficient!) to see that the extension E(π
1
e , ζe)/E is

tamely ramified, for this is a Galois extension, namely the splitting field of te − π.
As we have seen, adjoining the eth roots of unity gives an unramified extension,
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and then once we have the eth roots of unity in the ground field, Kummer theory
applies to show that [E(π

1
e , ζe) : E(ζe)] is the order of π in E×/E×e, hence divisible

by e and therefore prime to p. �

Theorem 2.62. Suppose that K is a Henselian DVF with algebraically closed
residue field k of characteristic exponent p. Then there exists, for each positive in-
teger e prime to p, a unique degree e tamely ramified extension Le/K, obtained
by taking the eth root of any uniformizing element of K. Moreover, we have
Ktame =

⋃
e Le and Gal(Ktame/K) ∼=

∏
6̀=p Z`.

Proof. Our assumption k = k implies that K contains all roots of unity of
order prime to p and also that all extensions are totally ramified, so any tamely
ramified extension is totally tamely ramified. Thus Theorem 2.60 applies to show
that every degree e tamely ramified extension L/K is of the form K[π

1
e ] for some

uniformizer π of K. Conversely, for any uniformizer π we certainly do get a degree
e (hence tamely ramified) extension in this way. So what we wish to show is that

for any two uniformizers π and π′ we have K[π
1
e ] = K[π′

1
e ]. By Kummer theory,

this occurs iff π ≡ π′ (mod K×e). However, since k is algebraically closed, every
element of k× is an eth power. The usual Hensel’s Lemma argument now shows
that every unit in the valuation ring of K is an eth power, in particular π/π′ is an

eth power. Now let Le = K[π
1
e ] be the unique degree e extension of K. Again by

basic Kummer theory, we have Gal(Le/K) ∼= Z/eZ. If e | e′ then we have natural
surjections Gal(Le′/K) → Gal(Le/K), and one easily checks that the following
diagram commutes,

Gal(Le′/K)
∼→ Z/e′Z

Gal(Le/K)
∼→ Z/eZ,

where the second vertical map is the usual quotient. It follows that Gal(Ktame/K) ∼=
lim
←−

Z/eZ =
∏
` 6=p Z`. �

Corollary 2.63. Supose that K is a Henselian DVF with perfect residue field
k of characteristic exponent p. Then for each positive integer e that is prime to p,
there is a unique degree e tamely ramified extension Le/K

unr, obtained by taking the
eth root of any uniformizing element of Kunr. Moreover we have Ktame =

⋃
e Le

and Gal(Ktame/Kunr) ∼=
∏
` 6=p Z`.

Exercise 2.38. Prove Corollary 2.63. (This is just a check on your under-
standing of unramified extensions.)

13.2. Wildly ramified extensions.

Theorem 2.64. The wild ramification group Gal(Ksep/Ktame) is a pro-p-group.

Indeed, every finite quotient is purely wildly ramified, therefore has p-power order.

13.3. A Filtration on the absolute Galois group.

To summarize, let K be a Henselian, discretely valued field. Then we have split up
the Galois extension Ksep/K into three pieces by introducing Kunr/K, the max-
imal unramified extension and Ktame/Kunr, the maximal totally tamely ramified
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extension. Corresponding to the tower Ksep/Ktame/Kunr/K we get a filtration
by normal subgroups

1 ⊂ Gal(Ksep/Ktame) ⊂ Gal(Ksep/Kunr)→⊂ Gal(Ksep/K).

There are useful things to say about each of the successive quotients of this filtration.

The bottom piece of the filtration is Gal(Kunr/K). As we showed in §X.X, re-
duction modulo the maximal ideal gives a canonical isomorphism from this group
to the absolute Galois group gk = Gal(ksep/k) of the residue field k. In par-
ticular, if k is finite, then via the Frobenius automorphism we have canonically
Gal(Kunr/K) = Ẑ, a very well understood group.

The middle piece of the filtration is Gal(Ktame/Kunr), which is the maximal tamely
ramified extension of Kunr. As we discussed, we have a noncanonical isomorphism
Gal(Ktame/Kunr) ∼=

∏
6̀=p Z`.

The top piece Gal(Ksep/Ktame) is trivial if char(k) = 0 and is an infinite pro-
p-group if p > 0: indeed for any uniformizer π of K and all n ∈ Z+, the polynomial
tp

n − π is Eisenstein and hence the corresponding extension has ramification index
pn, so the polynomial remains irreducible over Ktame.

We list some immediate consequences of this analysis of the filtration.

Theorem 2.65. The absolute Galois group gK is pro-solvable iff the absolute
Galois group gk of the residue field is pro-solvable. In particular, this occurs when
the residue field k is finite.

Theorem 2.66. Let K = C((t)). Then the algebraic closure of K is the Puiseux

series field
⋃
n∈Z+ K(t

1
n ) and gK ∼= Ẑ.

Proof. Indeed, since the residue field is algebraically closed, Kunr = K. More-
over, since the residue characteristic is zero, there are no wildly ramified extensions:
Ksep = K = Ktame. Therefore Gal(K/K) = Gal(Ktame/Kunr) =

∏
` Z` = Ẑ. �

Now let us go a little deeper and determine the action of gk on
∏
` 6=p Z`. First we

recall the general procedure for obtaining such an action: let A be a commutative
normal subgroup of a group G, with quotient Q:

1→ A→ G
q→ H → 1.

Then we can define a homomorphism ρ : H → Aut(A) as follows: take h ∈ H, lift

to any h̃ in G, and define ρ(h)(a) = h̃ah̃−1. First note that the given element maps
under the quotient map q to hq(a)h−1 = h · 1 · h−1 = 1, so indeed ρ(h)(a) ∈ A.

Second note that it is well-defined indepedent of the choice of lift h̃: indeed, any
other lift would differ by an element of A, and since A is abelian, conjugation by
an element of A is trivial.

Now we identify the gk action on
∏
` 6=p Z`. First we recall that for any n prime to

p, the reduction map identifies the nth roots of unity in Kunr with the nth roots
of unity in ksep, of which there will be precisely n (since n is prime to p). In other
words, the groups µn(Kunr) and µn(ksep) are isomorphic as Galois modules. For
any ` 6= p, let Z`(1) = limn→∞ µ`n(Kunr). As a group, this is isomorphic to Z`, but
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it has a generally nontrivial Gal(Kunr/K) = gk-module structure. We may also
form the Galois module

∏
6̀=p Z` which is the inverse limit over all finite prime to

p roots of unity.

We pause for some important terminology. For any field K of characteristic differ-
ent from p, the Galois action on the inverse limit of `-power roots of unity gives a
homomorphism

gK → Aut(Z`) ∼= Z×` .
This homomorphism is called the (`-adic) cyclotomic character and often de-
noted χ`. It is the first nontrivial example of a Galois representation. When K has
characteristic 0, it is traditional to compile all the `-adic characters together to get
one representation

χ : gK → Aut(
∏
`

Z`) = Aut(Ẑ) = Ẑ×,

again called the cyclotomic character. A more down to earth description of this
character is as follows: for any n ∈ Z+, its image in (Z/nZ)× may be calculated by
choosing a primitive nth root of unity ζn and writing

σ(ζn) = ζχ(σ)
n .

Theorem 2.67. In the extension

1→ Gal(Ktame/Kunr)→ Gal(Ktame/K)→ gk → 1,

the action of gk on Gal(Ktame/Kunr) ∼=
∏
` 6=p Z` is precisely as the prime to p

cyclotomic character. We indicate this by writing Gal(Ktame/Ksep) =
∏
` 6=p Z`(1).

Moreover, this extension splits (noncanonically) as a semidirect product:

Ktame =
∏
` 6=p

Z`(1) oχ gk.

Exercise 2.39. Prove Theorem 2.67.
(Hint for the splitting:3 choose a uniformizer π and a compatible system of eth roots
of π.)

Here is an application of these ideas.

Theorem 2.68. Let K = C((t1))((t2)). Then gK ∼= Ẑ× Ẑ.

Proof. Since the residue characteristic is 0, we have Ksep = Ktame hence a
short exact sequence

1→
∏
`

Z`(1)→ gK → Ẑ→ 1.

By Corollary X.X, the sequence splits and gK = ẐnẐ. But moreover the semidirect
product is given by a homomorphism ρ : Ẑ → Aut(Ẑ) which is nothing else than
the cyclotomic character on the Galois group of the residue field C((t1)). But the
residue field contains C and hence all roots of unity, and therefore the cyclotomic
character is trivial, ρ is trivial, and the product is direct. �

Remark: An easy induction argument gives that the absolute Galois group of an
iterated Laurent series field in n variables over C (or any algebraically closed field

of characteristic 0) is isomorphic to Ẑn.

3Thanks to Brian Conrad.
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Corollary 2.69. When K = Qp, the Galois group Gal(Ktame/K is isomor-
phic to the profinite completion of the discrete group

T = 〈σ, τ | ϕ, τ | ϕτϕ−1 = τp〉.

Exercise 2.40. Prove Corollary 2.69.

Corollary 2.70. Suppose that gK ∼= Ẑ. Then the extension

1→ gKunr → gK → gk → 1

splits (noncanonically) as a semidirect product. Equivalently, there exists a (nonunique!)
extension L/K such that (i) L/K is totally ramified and (ii) Ksep/L is unramified.

Proof. This is the profinite analogue of the fact that a short exact sequence

1→ A→ G→ Z→ 1

splits, because to get a splitting we need a section ι : Z→ G, and since Z is a free
group, there are no relations to satisfy: a section ι is determined simply by choosing
any lift of 1 ∈ Z to G. In the profinite case, we lift any topological generator of Ẑ
to get a map ι : Z → Gal(Ksep/K) and then ι extends uniquely to a continuous

homomorphism on Ẑ. We leave to the reader the task of checking this carefully and
also verifying that the splitting of the sequence is equivalent to the existence of a
totally ramified extension L/K such that Ksep/L is unramified. �

Remark: More generally, a profinite group H for which any short exact sequence

1→ N → G→ H → 1

of profinite groups splits as a semidirect product is called projective. A profinite
group is projective iff its Sylow p-subgroups are free pro-p-groups. Most profinite
groups are not projective. So far as I know, in general the short exact sequence

1→ gKunr → gK → gk → 1

need not split. It would be nice to know a specific example!

Exercise 2.41. This exercise requires background in arithmetic geometry.

Suppose that K is a Henselian discrete valuation field with residue field k,
and assume that the short exact sequence

1→ gKunr → gK → gk → 1

splits: there is a totally ramified extension L/K such that Ksep/L is unramified.
a) (Serre-Tate [ST68]) Let A/K be an abelian variety with potentially good reduc-
tion. Show: there is a totally ramified extension L/K such that A/L has good
reduction.
b) (Clark-Xarles [CX08]) Deduce that there exists an injection A(K)[tors′] ↪→
A(k)[tors′], where for a commutative group G, G[tors′] means the subgroup of ele-
ments of order prime to the residue characteristic.





CHAPTER 3

Adeles

1. Introducing the Adeles

1.1. What should the adeles do?

We have now come to what is probably the most important topic in our course:
the systematic study of global fields using their locally compact completions.

Let K be a global field – we call that this means that K is either a finite ex-
tension of Q (a number field) or a finite separable extension of Fq(t) (a function
field).

In the case of a locally compact field K, the additive group (K,+) and the mul-
tiplicative group (K×, ·) play key roles in the theory. Each is a locally compact
commutative group, hence amenable to the methods of Fourier analysis. Moreover,
the additive group is self-Pontrjagin dual, and the multiplicative group K× is a
target group for class field theory on K: that is, there is a bijective correspondence
between the finite abelian extensions L/K and the finite index open subgroups HL

of K× such that K×/HL
∼= Gal(L/K).

We seek global analogues of all of these facts. That is, for K a global field, we
will define a commutative topological ring AK , the adele ring, which is locally
compact and self-Pontrjagin dual. (This allows us to do harmonic analysis on
global fields, as was first done in John Tate’s 1950 Princeton thesis. We will not
actually do this in our course, but it is an all-important topic in modern number
theory, and I wish to be aware of it and be prepared to learn it!) Moreover, the
group of units, suitably topologized, is called the idele group IK . It is again a
locally compact commutative group.

There are further important topological properties that we do not see in the
local case: namely, we will have canonical embeddings K ↪→ AK and K× ↪→ IK .
In the additive case, K is discrete (hence closed) as a subgroup of the adele ring,
and the quotient AK is compact. In the multiplicative case, K× is again a discrete
subgroup of IK ; the quotient group is denoted C(K). C(K) need not be compact,
but it is again a target group for class field theory on K.

1.2. The adele ring.

For each place v of K, the completion Kv is a locally compact field, so it seems
natural not to proceed merely by analogy but actually to use the fields Kv in the
construction of our putative AK . The first idea is simply to take the product of all
the completions:

∏
vKv. However, this will not work:

95
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Exercise 3.1. Let {Xi}i∈I be an indexed family of nonempty topological spaces.
Show that the following are equivalent:
(i) X =

∏
i∈I Xi is locally compact.

(ii) Each Xi is locally compact, and {i ∈ I | Xi is not compact} is finite.

So the next try is cut down by taking only compact groups except in finitely many
places. In our case this makes sense: all but finitely many places v (all of them
in the function field case!) are non-Archimedean, so that we have the valuation
ring Rv of Kv, a compact subgroup (subring, even) of Kv. Thus the product∏
vArchKv ×

∏
vNARv is a locally compact commutative group having something

to do with the global field K. But not enough: we would like to have an embedding
K ↪→ AK and this is clearly not the case with the above product. For instance, tak-
ing K = Q we see that an element x ∈ K lies in the direct product iff ordp(x) ≥ 0
for all primes p, i.e., iff x ∈ Z. So this is a reasonable “global completion” of Z:
indeed it is precisely Ẑ×R, i.e., the direct product of the usual profinite completion
of Z with R.

Suppose we wanted to make an analogous construction that included the nonzero
rational number x

y . Then y is divisible only by a finite set of primes, say S. Thus
x
y naturally lives in R×

∏
`∈S Q` ×

∏
` 6∈S Z`, which is still a locally compact group

since it has only finitely many noncompact factors. Of course the finite set S that
we need to take depends on x

y : indeed, to get all possible denominators we will

need to use all the groups

AQ(S) = R×
∏
`∈S

Q` ×
∏
` 6∈S

Z`.

But can we get one locally compact commutative group out of this family of locally
compact groups indexed by the finite subsets S of non-Archimedean places of Q?
Indeed yes! Observe that these locally compact groups naturally form a directed
system: if S ⊂ S′, then AQ(S) ↪→ AQ(S′) embeds as an open subgroup. Therefore
we may define

AQ = lim
S

AQ(S).

Thus, as a set, AQ is the subset of R×
∏
`Q` consisting of sequences (r, x`) such that

x` ∈ Z` for all but finitely many primes `. (Note that this is strongly reminiscent
of a direct sum, except that instead of requiring all but finitely many components
to be zero, we require that they lie in a fixed compact subgroup.)

How do we topologize AQ? Well, how do we topologize a direct limit of topo-
logical spaces? There is a standard recipe for this. More generally, suppose we
have a directed system of topological spaces {Xi}i∈I – i.e., I is a directed set and
for each pair of indices with i ≤ j we have continuous maps ϕ(i, j) : Xi → Xj such
that ϕ(i, k) = ϕ(j, k) ◦ ϕ(i, j) when i ≤ j ≤ k – a set X, and maps fi : Xi → X
which are compatible in the sense that i ≤ j implies fi = fj ◦ ϕ(i, j). Then the
canonical topology to put on X is the final topology, i.e., the finest topology
which makes all the maps fi continuous. (To see that such a topology exists, note
that the trivial topology on X makes all the maps continuous and given any family
of topologies which makes all the maps continuous, their union is such a topology.)
This topology can also be characterized by a universal mapping property. To make
use of this, the following exercise is critical.
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Exercise 3.2. a) Show that the final topology can be characterized as follows:
a subset U ⊂ X is open in the final topology iff for all i ∈ I, f−1

i (U) is open in U .
b) Deduce that for each finite subset S of prime numbers, AQ(S) is an open, locally
compact subring of AQ, and therefore that AQ is a locally compact topological ring.

We want the same sort of construction with Q replaced by an arbitrary global field
K. In fact, we may as well develop things in “proper generality” (it costs nothing
extra): the key concept is that of the restricted direct product.

Suppose we are given the following data: (i) a nonempty index set I, (ii) for all
i ∈ I, a topological group Gi, (iii) for all i ∈ I an subgroup Hi of Gi. Then we
define the restricted direct product G =

∏′
Gi to be the subset of

∏
Gi con-

sisting of tuples (xi) such that xi ∈ Hi for all but finitely many i’s. For each finite
subset J ⊂ I, let GJ =

∏
i∈J Gi ×

∏
i 6∈J Hi. Then G = limJ G

J , and we give it the
final topology.

Exercise 3.3. Is it true that the direct limit topology on G is the same topology
as it inherits as a subset of the direct product

∏
i∈I Gi?

Exercise 3.4. Show: G is compact iff each Gi is compact.

Exercise 3.5. Show that G is locally compact iff: each Gi is locally compact
and all but finitely many Hi’s are compact.

We now give a more technical discussion of the relation of Haar measure on each
of a family {Gi} of locally compact commutative groups and the Haar measure on
the restricted direct product. This will be used (only) in the proof of the Adelic
Blichfeldt-Minkowski Lemma.

We place ourselves in the following situation: we are given a family {Gi}i∈I of
commutative topological groups together with, on the complement of some finite
subset I∞ of I, a compact open subgroup Hi of Gi. Let G =

∏′
Gi be the restricted

direct product of the Gi’s with respect to the Hi’s. Then, for each i ∈ I, there is
a Haar measure mui on Gi. Moreover, for each i ∈ I \ I∞, we can normalize µi
by decreeing µi(Hi) = 1. We define a product measure on G to be a measure
whose σ-algebra is generated by cylindrical sets

∏
iMi such that each Mi ⊂ Gi

is µi measurable and has µi(Mi) < ∞ and such that Mi = Gi for all but finitely
many i. There is a unique measure µ on G such that µ(

∏
iMi) =

∏
i µi(Mi). Note

that the restriction of µ to any subgroup GS =
∏
i∈S Gi ×

∏
i∈I\S Hi is the usual

product measure, a Haar measure.

Definition: Let K be any global field. We define the adele ring AK as the re-
stricted direct product of the topological fields Gv := Kv as v ranges over all places
of K and with the following chosen subgroups: if v is Archimedean, we put Hv = Kv

(no restriction), and if v is non-Archimedean, we put Hv = Rv, the valuation ring,
a compact subring. Thus AK is a locally compact ring.

Notation: Despite some misgivings, we introduce the following notation. For a
global field K, we let ΣK denote the set of all places of K, i.e., equivalence classes
of nontrivial norms on K. (Recall that at this point we have associated a canon-
ical normalized Artin absolute value to each place in K.) Further we write ΣNA

K

for the subset of non-Archimeden places of K, and let ΣArch
K denote the subset of
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Archimedean places of K, which is nonempty iff K is a number field.

For each finite S with ΣArch
K ⊂ S ⊂ ΣK , let AK(S) =

∏
v∈S Kv ×

∏
v 6∈S Rv be

the ring of S-adeles.

Exercise 3.6. a) Show that AK(S) is both open and closed in AK .
b) Let ι : K →

∏
vKv be the natural embedding. Show that ι(K) ⊂ AK .

Exercise 3.7. a) Show that the adele ring AK is not an integral domain.
b) Compute SpecAK .1

1.3. Basic results on the topology of the adeles.

Lemma 3.1. Let L/K be a finite separable extension of global fields. Then we
have a canonical isomorphism of topological rings AL = AK ⊗K L.

Proof. The main idea of the proof is the following familiar fact: for every place
v of K we have an isomorphism of topological Kv-algebras L⊗K Kv

∼=
∏
w | v Lw.

Compiling these local isomorphisms gives the global isomorphism. For the topolog-
ical isomorphism, we check that both sides are topologized by the same restricted
direct product topology. Details are left to the reader as a good exercise. �

Corollary 3.2. Maintain the notation of the previous lemma. Then, as ad-
ditive groups, (AL,+) ∼= (AK ,+)[L:K].

Proof. We use the topological group isomorphism AK ⊗K L ∼= A[L:K]
K . �

Theorem 3.3. Let K be a global field. As a subspace of AK , K is discrete.
Moreover, the quotient AK/K is compact.

Proof. By Corollary 3.2, we may assume that K = Q or K = Fq(t). In
the number field case, we let ∞ denote the Archimedean place, whereas in the
function field case, we let (as usual) ∞ denote the place at infinity, for which 1

t is
a uniformizer. Let R = Z or Fq[t], accordingly.
Let us show the discreteness of K in AK . Because we are in a topological group, it
is enough to find a neighborhood of zero U ⊂ AK such that U ∩K = {0}. Let U be
the set of adeles x with |x∞|∞ < 1 and |xp|p ≤ 1 for all finite places p. Certainly U
is an open set. When K = Q the intersection U ∩K consists of rational numbers
which are integral at all places – i.e., integers – and have standard absolute value
strictly less than 1. Clearly this intersection is 0. Similarly, in the function field
case, the integrality conditions force x ∈ K ∩U =⇒ x ∈ R, i.e., x is a polynomial,
whereas |x|∞ < 1 means that x is, if not zero, a rational function of negative degree.
So x = 0. This proves the discreteness in both cases.

Let W ⊂ AK be the compact subset defined by |x∞|∞ ≤ 1, |xv|v ≤ 1 for all
finite places v. We claim that every adele y can be written in the form b+ x, with
b ∈ K, x ∈ W . When K = Q this is an easy but enlightening exercise using the
Chinese Remainder Theorem that we leave to the reader. For the sake of variety
let’s do the K = Fq(t) case instead. Let x ∈ AK , and let S be the finite set of
finite places v for which |xv|v > 1. We realize each such v as a monic irreducible

1Hint/Warning: This involves ultrafilters and such.
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polynomial v(t) ∈ Fq[t], and let n(v) ∈ Z+ be such that |vn(v)xv|v = 1. For v ∈ S,
put

uv :=
∏

w∈S\{v}

wn(w),

so |uv|v = 1. By the Chinese Remainder Theorem, there is y′ ∈ Fq[t] such that for

all v ∈ S, y′ ≡ uvvn(v)xv (mod vn(v)). We put

y =
y′∏

v∈S v
n(v)

.

Thus for all v ∈ S we have |xv − y|v ≤ 1, and for all finite v /∈ S we have |xv|v ≤ 1
and |y|v ≤ 1, so certainly |xv − y|v ≤ 1.

Finally we must deal with the place v = ∞. If we add to y any polynomial
f(t) ∈ Fq[t] we do not disturb anything that we have already done. If deg(x−y) ≤ 0,
then |x − y|∞ ≤ 1 and we need not do anything. If deg(x − y) ≥ 1, then by
polynomial long division we may write x − y = f + r

s with f, r, s ∈ Fq[t] and
deg r < deg s. Thus replacing y by y − f preseserves all our finite integrality
conditions and attains integrality at the infinite place.

So the quotient map A→ A/K restricted to W is surjective: we’re done. �

Lemma 3.4. (Adelic Blichfeldt-Minkowski Lemma) Let K be a global field.
There is a constant C = C(K) such that: if x = {xv} ∈ AK is such that |xv|v = 1
for almost every v and

∏
v |xv|v > C, then there is a nonzero y ∈ K such that for

all v ∈ ΣK , we have |y|v ≤ |xv|v.

Proof. This proof uses the product measure µ on AK defined above. More-
over, since K is countable and AK/K is compact, it has a finite, positive, total
measure c0 with respect to the Haar measure – in other words, this is the measure
of a fundamental region for the coset space AK/K in K. Let c1 be the measure of
the subset of AK defined by the inequalities |xv|v ≤ 1

10 at the Archimedean places
and |xv|v ≤ 1 at the non-Archimedean places. It is easy to see that 0 < c1 < ∞.
We show that we may take C = c0

c1
.

Now fix an adele α = (αv) such that |αv|v = 1 for almost every v and∏
v |αv|v > C. Let T be the set of adeles (xv) with |xv|v ≤ 1

10 |αv|v at Archimedean
places and |xv|v ≤ |αv|v at non-Archimedean places. The set T has measure
c1
∏
v |αv| > c1C = c0, hence there must exist distinct elements of T with the

same image in the quotient AK/K, say τ ′ and τ ′′ so that β := τ ′ − τ ′′ is a nonzero
element of K such that |β|v = |τ ′v − τ ′′v | ≤ |αv|v, qed. �

Exercise 3.8. What was the point of inserting the factor 1
10 at the Archimedean

places?

Remark: For a statement of the classical Blichfeldt Lemma, see e.g. Theorem 5 of
http://math.uga.edu/∼pete/4400Minkowski.pdf.

For future reference, a constant C as in the statement of Lemma 3.4 will be called
an adelic Blichfeldt constant.

Corollary 3.5. Let v0 be a normalized valuation on K. Choose a sequence
{δv}v 6=v0 such that δv > 0 for all v and δv = 1 for all but finitely many v. Then
there exists x ∈ K× such that |x|v ≤ δv for all v 6= v0.
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Proof. Choose αv ∈ Kv with 0 < |αv| ≤ δv and |αv|v = 1 if δv = 1. Choose
αv0 ∈ Kv0 such that

∏
v |αv|v > C. Apply the Lemma. �

Theorem 3.6. (Strong Approximation) Fix any valuation v0 of the global field
K. Define Av0K to be the restricted direct product of the Kv’s (with v 6= v0) with
respect to the subrings Rv for the non-Archimedean places. Then the natural em-
bedding K ↪→ Av0K has dense image.

Proof. The theorem is equivalent to the following statement: suppose we are
given (i) a finite set S of valuations v 6= v0, (ii) elements αv ∈ Kv for all v ∈ S
and (iii) ε > 0. Then there exists β ∈ K such that |β − αv|v ≤ ε for all v ∈ S
and |β|v ≤ 1 for all v 6= v0. By the proof of Theorem 3.3, there exists W ⊂ AK
defined by inequalities |αv|v ≤ δv for all v, δv = 1 for all but finitely many v, such
that every adele α ∈ AK is of the form α = y + w, y ∈ K, w ∈ W . By Corollary
3.5, there exists x ∈ K× such that |x|v < δ−1

v ε for all v ∈ S and |x|v ≤ δ−1
v for all

v 6= v0. Let α be any adele. Write x−1α = y+w with y ∈ K, w ∈W , and multiply
by x to get α = xy + xw. Finally, choose α to be the adele with v component the
given αv for all v ∈ S and 0 elsewhere. Then we may take β = xy. �

Exercise 3.9. Give a hands-on proof of Theorem 3.6 when K = Q, v0 =∞.

1.4. Ideles.

Let R be a topological ring. Then the group of units R× need not be a topo-
logical group under the induced topology: the problem is that inversion need not
be continuous.

It will be helpful to use the following snippet from the theory of topological groups:
a paratopological group is a group G endowed with a topology with respect
to which the group law is “jointly continuous”, i.e., · : G × G → G is contin-
uous. A semitopological group is a group endowed with a topology with re-
spect to which the group law is “separately continuous”: for all y ∈ G, the maps
y• : G → G, x 7→ yx and •y : G → G, x 7→ xy are continuous. Thus a topologi-
cal group is precisely paratopological group in which the inversion map x 7→ x−1

is continuous, and every paratopological group is a semitopological group but not
necessarily conversely.

Theorem 3.7. (Ellis)
a) Every locally compact paratopological group is a topological group [El57a].
b) Every locally compact semitopological group is a topological group [El57b].

Exercise 3.10. a) Suppose R is a locally compact topological ring in which R×

is open. Show that R× is a topological group: i.e., x 7→ x−1 is a homeomorphism
of R× under the subspace topology.
b)2 Take on Q the topology τT for which a neighborhood base at x ∈ Q is given by
{x + nZ}∞n=1. Show that τT is Hausdorff, so in particular Q× = Q \ {0} is open.
Show that inversion on Q× is not continuous.

There is a general method for endowing R× with the structure of a topological
group. Namely, we think of R× as a subset of R×R via the injection x 7→ (x, x−1).
Let us call this the multiplicative topology.

2I received this example from T. Trimble, who took it from [Wa, p. 113].
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Proposition 3.8. Let R be a Hausdorff topological ring.
a) Show that the multiplicative topology on R× is at least as fine as the subspace
topology.
b) Show that if we endow R× with the multiplicative topology, it is a Hausdorff
topological group.

Exercise 3.11. Prove Proposition 3.8.

Of course the case we have in mind is R = AK , the adele ring of a global field K.
We define the idele group IK to be the unit group of the adele ring.

Proposition 3.9. Let IK = A×K be the idele group.
a) IK is the set of all adeles (xv)v with xv 6= 0 for all v and xv ∈ R×v for almost
all v.
b) The idele group IK is not an open subgroup of AK .
c) The multiplicative topology on IK is strictly finer than the subspace topology.
d) The multiplicative topology on IK makes it into a locally compact (Hausdorff)
topological group. In fact, it is nothing else than the restricted direct product of
the spaces K×v with respect to the compact subgroups R×v (and the locally compact
subgroups K×v at the Archimedean places, if any).

Exercise 3.12. Prove Proposition 3.9.

Exercise 3.13. For finite S, ΣArch
K ⊂ S ⊂ ΣK , define the group of S-ideles

IK(S) =
∏
v∈S

K×v ×
∏
v 6∈S

R×v .

a) Show that each IK(S) is open and closed as a subgroup of IK .
b) Show that the natural (diagonal) map from K× to IK(S) is an injection. Hence-
forth we identify K× with its image in IK or IK(S) for some S.

Lemma 3.10. K× is discrete in IK .

Proof. By the definition of the topology on the adeles, it is enough to show
that discreteness of K× as embedded in AK×AK via x 7→ (x, x−1). But this follows
immediately from the discreteness of K in AK and the easy fact that a product of
two discrete spaces is discrete. �

Exercise 3.14. a) Give a direct proof of Lemma 3.10 when K = Q or Fp(t):
i.e., exhibit a compact neighborhood U of 1 in IK such that U ∩K× = {1}.
b) Let K/K0 be a separable extension of global fields. Can you deduce the discrete-
ness of K× in IK from the discreteness of K×0 in AK as we did in the additive
case?

Stop for a moment and think what should be coming next. The natural question
is – isn’t it? – whether K× is cocompact in IK as was the case for K and AK .
The answer is no, and this is a fundamental difference between the ideles and the
adeles. To see this, we will construct a continuous map from the idele class group
C(K) = IK/K× to a noncompact subgroup of R×, a kind of “norm map”.

Normalized valuations: let K0 be Q or Fp(t), the prime global field. For v a
place of K, we choose a particular norm as follows: say v | v0 a place of K0, let
| · |v0 be the standard norm on the (K0)v0– i.e. which gives a uniformizer norm 1

p –



102 3. ADELES

and define || · ||v by ||x||v = |NK/K0
(x)|. (This coincides with the canonical norm

given by the Haar measure.)

Theorem 3.11. (Product formula) Let x ∈ K×. Then∏
v

||x||v = 1.

Proof. Step 1: Suppose K = Q or Fp(t). In this case it is straightforward to
verify the product formula directly. Indeed, in both cases it takes the special form
that the norm at the infinite place is exactly the reciprocal of the product of the
norms at all the finite places. This verification was done in class with the help of
the students, and we leave it to you, the reader, now.
Step 2: Let L/K be a finite degree separable field extension. We wish to reduce
the product formula for L to the product formula for K, a task which involves little
more than careful bookkeeping. First we recall the following appealing formula for
the normalized Artin absolute values. Let Lw/Kv be a finite exension of locally
compact fields. Then for all x ∈ Lw, we have

||x||Lw = |NL/K(x)|Kv .

Thus, for x ∈ L, we have

||x|| =
∏
v∈ΣK

∏
w | v

||x||w =
∏
v∈ΣK

∏
w | v

|NLw/Kv
x|v.

On the other hand, we have

L⊗K Kv
∼=
∏
w | v

Lw,

and thus ∏
w | v

NLw/Kv
(x) = NL/K(x).

Using this identity, we get

||x|| =
∏
v∈ΣK

|NL/K(x)| = 1

by Step 1. �

We define a norm map | · | : IK → R>0 by x ∈ IK 7→ |x| =
∏
v |xv|v. It is immediate

that this is a group homomorphism.

Exercise 3.15. Show that the norm map || · || : IK → R>0 is continuous.

Since our normalized Artin absolute values on R and C are both surjective onto
R>0, if K is a number field, looking only at ideles which have component 1 except
at one fixed Archimedean place shows that the norm map is surjective. If K has
characteristic p > 0, then the image of the norm map lies somewhere in between pZ

and pQ: i.e., it is not surjective, but its image is an unbounded – hence noncompact
– subset of R×. Thus we have shown:

Lemma 3.12. The idele class group C(K) = IK/K× is not compact.

We also include, for future use, the following result to the effect that the disparity
between the subspace and multiplicative topologies is eliminated by passage to
norm one ideles:
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Lemma 3.13. The norm one ideles I1K are closed as a subset of the adele ring
AK . Moreover, the topology that I1K inherits from AK is the same as the topology
it inherits from IK .

Proof. First we show that I1K is closed in AK . So let α ∈ AK \ I1K . We must,
of course, find a neighborhood W of α that does not meet I1K .
Case 1:

∏
v |αv|v < 1. Let S ⊂ σK be a finite set containing all places v with

|αv|v > 1 and such that
∏
v∈S |αv|v < 1. Let Wε be the set of all β ∈ AK such that

|βv − αv|v < ε for all v ∈ S and |βv|v ≤ 1 for all other v. Then Wε does the job for
all sufficiently small ε.
Case 2:

∏
v |αv|v = C > 1. Then there is a finite set S of places v containing each

place v with |αv|v > 1 and if v 6∈ S then |βv|v < 1 =⇒ C
2 . (For instance, in the

number field case we may take S to contain all Archimedean places and all finite
places of residue characteristic p ≤ 2C. Similarly, in the function field case we may
take S to contain all places extending places of K0 = Fp(t) with residue cardinality
at most 2C.) Then defining Wε as above does the job for all sufficiently small ε.

Now we show that the adelic and idelic topologies on I1K coincide. Fix α ∈
I1K . Let W ⊂ I1K be an adelic neighborhood of α. Then it contains an adelic
neighborhood of type Wε(S) above, for some finite subset S. The corresponding
set W ′ε(S) defined by β such that |βv − αv|v < ε for all v ∈ S and |βv|v = 1 for
all other v, is an idelic neighborhood of α and W ′ε(S) ⊂ Wε(S). Conversely, let
H ⊂ I1K be an idelic neighborhood. Then it contains a neighborhood of type Wε(S)
where S contains all Archimedean places and all v such that |αv|v 6= 1. Since by
assumption

∏
v |αv|v = 1, by taking ε sufficiently small we get

∏
v |βv|v < 2. Then

Wε(S) ∩ I1K = W ′ε(S) ∩ I1K , qed. �

It is natural to try to “fix” the noncompactness of C(K) by passing to the kernel
of the norm map. So we make another key definition: put C1(K) = ker(| · | :
IK/K× → R>0), the norm one idele class group.

Theorem 3.14. The norm one idele class group C1(K) is compact.

Proof. Using Lemma 3.13, it suffices to find a compact subset W ⊂ AK such
that the map W ∩I1K → I1K/K× is surjective. Let C be an adelic Blichfeldt constant
for K; let α = (αv) be an idele with ||α|| > C, and let W be the set of adeles β such
that for all places v of K, |βv|v ≤ |αv|v. W is easily seen to be compact. Now let
β ∈ I1K . Then, by the adelic Blichfeldt-Minkowski Lemma, there is x ∈ K× such
that for all places v, |x|v ≤ |β−1

v αv|v. Then xβ ∈W . �

2. The Adelic Approach to Class Groups and Unit Groups

2.1. Rings of S-integers.

Despite some misgivings, we introduce the following notation. For a global field K,
we let ΣK denote the set of all places of K, i.e., equivalence classes of nontrivial
norms on K. (Recall that at this point we have associated a canonical normalized
Artin absolute value to each place in K.) Further we write ΣNA

K for the subset
of non-Archimedean places of K, and let ΣArch

K denote the subset of Archimedean
places of K, which is nonempty iff K is a number field.

Now let S ⊂ ΣK be a finite set such that S ⊃ ΣArch
K . We define the ring RS

of S-integers of K to be the set of x ∈ K such that v(x) ≥ 0 for all v ∈ ΣNA
K \ S.
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Example 3.15. a) Let K be a number field, and let S = ΣArch
K . Then

RS = {x ∈ K | vp(x) ≥ 0 ∀p ∈ MaxSpecZK} = ZK .
b) Let K = Q and let S = {∞, p1, . . . , pr} be any finite subset containing the infinite
place. Then

RS = Z[
1

p1 · · · pr
].

c) Let K = Fq(t), and let S = {∞}. Then RS = Fq[t].

Exercise 3.16.
a) If K is a function field and S = ∅, show: RS is the maximal finite subfield of K
(or, in other words, the “algebraic closure of Fp in K”.)
b) Show: if S 6= ∅, then RS is a Dedekind domain that is not a field.

Exercise 3.17. Suppose that S ⊂ T are finite subsets of ΣK with ΣArch
K ⊂ S.

a) Show: RS ⊂ RT .
b) Suppose RS is a PID. Show: there are prime elements p1, . . . , pr of RS such that

RT = RS [
1

p1 · · · pr
].

c)* Show: in general RT is a localization of RS.3

2.2. Finiteness of the S-class groups.

Like any Dedekind domain, RS has an interesting invariant: its ideal class group.
Let us review the construction in more generality.

Let R be a domain with fraction field K. A fractional R-ideal is a nonzero
R-submodule I ⊂ K for which there is a ∈ R \ {0} such that aI ⊂ R. Let FracR
denote the set of all fractional R-ideals. For I, J ∈ FracR we define the prod-
uct IJ to be the R-submodule of K generated by all the pairwise products xy for
x ∈ I, y ∈ J . Then IJ is again a fractional ideal, and this operation endows FracR
with the structure of a commutative monoid (that is, the operation is associative
and has a multiplicative identity – the fractional ideal R – but elements need not
have multiplicative inverses). A fractional ideal I is invertible if there is a frac-
tional ideal J such that IJ = R. We denote the set of invertible fractional ideals of
R by InvR: this is indeed nothing else than the group of units of the monoid FracR.

A fractional ideal I is principal if it is monogenic as an R-module: in other words,
there is x ∈ K× such that

I = (x) := {rx | r ∈ R}.
The inverse of the principal fractional ideal (x) is the principal fractional ideal
(x−1), so the set PrinR of principal fractional ideals forms a subgroup of InvR.
We define the Picard group of R to be the quotient

PicR := Frac(R)/Prin(R).

This is a rather general definition. The generality is indeed useful in number theory
– e.g. for the case of a non-maximal order in a number field. However, for Dedekind
domains things simplify:

3I don’t see how to do this without using the finiteness of the class group of RS , coming up
soon.
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Theorem 3.16. For a domain R, the following are equivalent:
(i) R is a Dedekind domain.
(ii) Every fractional R-ideal is invertible: FracR = InvR.

Proof. See [C:CA, Thm. 20.1]. �

Thus in a Dedekind domain, PicR is simply the group of all fractional ideals modulo
principal ideals. It is a basic fact that for a Dedekind domain R we have

PicR is trivial ⇐⇒ R is a UFD ⇐⇒ is a PID,

and thus the nontriviality of PicR is the obstruction to unique factorization of
elements in R. When R is understood to be a Dedekind domain, we will write ClR
in place of PicR and call it the class group.4

Exercise 3.18. a) Let k be a field, and let (E,O)/k be an elliptic curve. Let
k[E◦] be the standard affine coordinate ring of E: this is the ring of all rational
functions f ∈ k(E) that are regular away from the neutral point O. Let k(E) be the
group of k-rational points of E. Show that there is a canonical isomorphism

Cl k[E◦]
∼→ E(k),

where E(k) is the group of k-rational points of E.
b) By taking k = C, deduce that there is a Dedekind domain whose class group is
uncountably finite and not a torsion group.

The preceding exercise suggests there are no obvious restrictions on the class group
of a Dedekind domain other than commutativity. Indeed there are none!

Theorem 3.17. (Claborn [Cl66]) For every commutative group A, there is a
Dedekind domain R such that ClR ∼= A.

Theorem 3.18. Let K be a global field and S ⊂ ΣK a finite set containing all
the Archimedean places. Then the ideal class group Cl(RS) = Frac(K)/Prin(K) is
a finite commutative group.

Especially in the number field case, the group ClRS is sometimes called the S-class
group of K. It is closely related to the general concept of overrings of a Dedekind
domain, which again we explain briefly in somewhat more generality.

If R is a domain with fraction field K, then by an overring of R we mean a
ring T with R ⊂ T ⊂ K. In particular every localization is an overring, but in gen-
eral this does not yield all possible overrings. Suppose now that R is a Dedekind
domain, and let T be an overring of R. For each p ∈ MaxSpecR, the localization
Rp is a DVR with fraction field K – these are precisely the maximal overrings of
R, and we have

R =
⋂

p∈MaxSpecR

Rp.

The following result completely classifies the overrings of a Dedekind domain as
“generalized S-integer rings.”

4For a general domain R one can also define a divisor class group ClR: see e.g. [C:CA,
§19.4]. The class of domains on which the divisor class group and the Picard group coincides

includes all Dedekind domains, so with Dedekind domains there is no need to be so fastidious.
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Theorem 3.19. Let R be a Dedekind domain. For every subset W ⊂ MaxSpecR,
let

RW =
⋂

p∈MaxSpecR\W

Rp.

a) Then RW is a Dedekind domain.
b) Let T be an overring of R, and put

W (T ) := {p ∈ MaxSpecR | pT = p}.
Then T = RW (T ).

Proof. See [C:CA, Thm. 23.3]. �

An elliptic Dedekind domain is an overring of a Dedekind domain of the form
k[E◦] for an elliptic curve (E,O) defined over a field k. The following result gives
a new proof of Theorem 3.17 that builds on earlier work of Rosen [Ro76].

Theorem 3.20. (Clark [Cl09b]) Let A be a commutative group. Then there is
an elliptic Dedekind domain R with ClR ∼= A.

Exercise 3.19. Let R be a Dedekind domain and let T = RW be an overring
of R. The map ι : R ↪→ T induces a map on ideal class groups, ι∗ : Cl(R)→ Cl(T ),
simply by pushing forward ideals: I 7→ IT . Show that ι∗ is surjective with kernel
the subgroup of PicR generated by W , i.e., by the classes of prime ideals p of R
with pT = T . In particular, if Cl(R) is finite, then so is Cl(S).

Now we give the proof of Theorem 3.18 in the number field case, so let K be a
number field and S a finite set of places of K containing all Archimedean places.
Note that we may naturally view MaxSpecRS as ΣK \ S. We define a group
homomorphism

V : IK → Frac(RS)

by associating to the idele (xv) the sequence of valuations v(xv) as v ranges over
elements of ΣK \ S (here we are identifying a non-Archimedean place on K with
its corresponding Z-valued valuation) and then putting

V ((xv)) :=
∏

p∈MaxSpecRS

pv(xv)
v .

This map is well-defined because v(xv) = 0 for almost every v. It is plainly surjec-
tive. If x ∈ K×, then V (x) = (x), so V descends to a surjective homomorphism

V : C(K)→ Cl(RS).

We claim that V remains surjective when restricted to C1(K): indeed, as K is a
number field we have at least one Archimedean place, and at each Archimedean
place the local norm map surjects onto R>0, so by modifying the idele at a sin-
gle Archimedean place we can make the norm one without changing V . Now we
observe that the kernel of V contains the open subgroup

∏
v R
×
v , so the image is

discrete in the natural (quotient space) topology. Thus in the quotient topology,
Cl(RS) is both discrete and compact, and therefore finite!

What about the function field case? The setup, including the definition of the
map V : IK → FracRS , is identical to the above. There is just one change: S
no longer contains any Archimedean places. If S = ∅, then RS is a finite field
so ClRS is trivial. Otherwise what we can assume about S is that it contains a
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non-Archimedean place v, and then if K has characteristic p > 0, there is some
positive integer power q of p such that |K×v |v = qZ. Since this is true for every
v ∈ ΣK , the norm of any idele lies in pZ. Thus we cannot necessarily adjust the vth
component of an idele in order to make the norm be 1, so V restricted to C1(K)
need not be surjective. But if q = pf , this shows that ClRS is the image of the
elements of C(K) with norm lying in [1, q], and this is still a compact space. This
completes the proof in the function field case.

2.3. Structure of the S-unit groups.

With K and S as above, we now wish to study the structure of the unit group
US = R×S . Again, in the number field case this is often called the S-unit group.
We will give a generalization of the celebrated Dirichlet unit theorem to S-class
groups of either number fields or function fields.

Lemma 3.21. Let 0 < c < C. Then the set S = S(S, c, C) of S-units x with
c ≤ |x|v ≤ C for all v ∈ S is finite.

Proof. The set W of ideles x = (xv) with |xv|v = 1 for all v 6∈ S and
c ≤ |xv|v ≤ C for all s ∈ S is visibly compact. We have S = W ∩ K×, so S is
compact and discrete, thus finite. �

Lemma 3.22. The set of elements x ∈ K such that |x|v = 1 for all places v of
K is precisely the group of roots of unity of K, which is a finite commutative group.

Proof. Let µ(K) be the group of roots of unity of K and let T be the subgroup
of elements of K× which have norm one at every place v of K. By Exercise 1.3a),
µ(K) ⊂ T . Applying Lemma 3.21 (with any fnite set S containing ΣArch

K ) and
c = C = 1 shows that T is finite. In particular, each element of T has finite order,
so T ⊂ µ(K). Thus T = µ(K) is finite. �

Remark: In fact, it follows from our work on locally compact fields that in any
locally compact field except C, the group of roots of unity is finite. This is obvious
for R. For a non-Archimedean locally compact field, this is Theorem 2.32.

Lemma 3.23. Let r, s ∈ Z with s ≥ r ≥ 0, and let G = Rr × Zs+1−r. Let
λ : G→ (R,+) be a nontrivial homomorphism of topological groups. Moreover:
• When r = 0, we assume that λ(Zs+1−r) ∼= (Z,+)
•, When r > 0, we assume that λ|Rr ∼= (R,+).
Let K = Ker(λ) and let Γ be any discrete, cocompact subgroup of K. Then Γ ∼= Zs.

Proof. Write λ = λ1 + λ2, where λ1 = λ|Rr and λ2 = λ|Zs+1−r .
Case 1: r = 0. Then λ1 = 0, so (by assumption!) Zs+1/K ∼= Z and thus K ∼= Zs.
In this case every subgroup of K is discrete and is cocompact iff it has maximal
rank, so indeed Γ ∼= Zs.
Case 2: λ2 = 0. Then K = ker(λ1) ⊕ Zs+1−r ∼= Rr−1 ⊕ Zs+1−r. A discrete
cocompact subgroup of this is obtained by choosing a rank r − 1 lattice of Rr−1

together with Zs+1−r, hence is isomorphic to Zs.
Case 3: Finally, we assume that λ1 and λ2 are both nontrivial. Then the image of
λ2 is isomorphic to Zt for some 1 ≤ t ≤ s+ 1− r. Then

K0 := {(x, y) ∈ G | λ1(x) = λ2(x) = 0}
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is a subgroup of K and K/K0
∼= Zt. Explicitly, K0

∼= Rr−1 × Zs+1−r−t, and thus
K ∼= Rr−1×Zs−r+1, so again a discrete cocompact subgroup must have rank s. �

We now give the following attractive generalization of Dirichlet’s Unit Theorem,
the third basic finiteness theorem in algebraic number theory.

Theorem 3.24. Let K be a global field, S a finite nonempty set of places of K
containing all Archimedean places (if any). Let US be the group of S-units. Then
US is a finitely generated commutative group. More precisely, its torsion subgroup
is the finite group of roots of unity in K, and its rank is #S − 1.

Proof. (Ramakrishnan-Valenza [RV]) Step 1: For v ∈ ΣK , let Cv = {x ∈
Kv | · |x|v = 1}. This is a compact subgroup of K×v . Therefore, by Tychonoff,
C :=

∏
v Cv is a compact subgroup of IK(S), the “adelic circle group”. We have a

short exact sequence of topological groups

1→ C → IK(S)→
∏
v∈S

K×v /Cv → 1.

Now K×v /Cv is isomorphic to R>0 ∼= (R,+) if v is Archimedean and isomorphic to
Z if v is non-Archimedean. If we put s = #S−1, r = #ΣArch

K , then we may rewrite
the exact sequence as

1→ C → IK(S)→ Rr ⊕ Zs+1−r → 0.

We wish to first restrict this sequence of norm one S-ideles and then further to
elements of K× ∩ I1K(S).

Step 2: Consider the norm map restricted to the subgroup of S-ideles: || · || :
IK(S)→ R>0. The circle group C lies in the kernel of λ, so the norm map factors

through a homomorphism Rr1 ⊕ Zr2 → R>0 log→ (R,+), which we will call λ. We
claim that λ satisfies the hypotheses of Lemma 3.23. Indeed, if r = 0 then we are in
the function field case, so the image of the norm map is an infinite cyclic subgroup
of R>0, whereas if r > 0 then we are in the number field case and the norm map
is surjective. It follows that any discrete, cocompact subgroup of K = ker(λ) is
isomorphic to Zs ∼= Z#S−1.

Step 3: Now consider the S-unit group R×S = K ∩ IS(K). By Lemma 3.22,

R×S ∩C = µ(K), the finite group of roots of unity in K. Therefore we may define Γ

to be the image of R×S in G ∼= Rr1 ⊕Zr2 ; note that Γ ∼= R×S /µ(K). Moreover, since

K× is discrete and cocompact in I1K and IK(S) is closed in IK , R×S = K× ∩ IK(S)
is discrete and cocompact in I1K(S) = I1K ∩ IK(S). Therefore we may apply Lemma
3.23 to Γ := R×S /µ(K), getting the desired result. �

Let us now admit that in the number field case, it is easy to deduce the S-Unit
Theorem from the Dirchlet Unit Theorem.

Exercise 3.20. Let K be a number field, and let S be a finite set of finite places
of K (here we can ignore the infinite places). The injection ZK → ZK,S induces
an injection on unit groups Z×K → Z×K,S, and to prove the S-Unit Theorem modulo

the Dirichlet Unit Theorem it suffices to show that Z×K,S/Z
×
K is free commutative
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of rank #S.
a) Write S = {p1, . . . , ps}. Consider the map

V : Z×K,S → Zs, x 7→ (ordp1(x), . . . , ordps(x)).

Show:

Z×K,S ∼= Z×K × V (Z×K,S),

so it suffices to show that V (Z×K,S) ∼= Zs; equivalently, that Zs/V (Z×K,S) is finite.

b) Let h = # ClK be the class number of K. Show: V (Z×K,S) ⊃ hZs and thus

[Zs : V (Z×K,S)] ≤ hs.

2.4. A geometric approach.

In this section we discuss a less elementary, but more penetrating, approach to
the S-class groups and S-unit groups in the function field case. For some of what
we do we can work in more generality, namely for one variable function fields over
an arbitrary ground field. Let k be any field. A field extension K/k is called a
function field in one variable over k if K/k is finitely generated, of transcen-
dence degree 1, and inside a fixed algebraic closure K of k we have that K and k
are linearly disjoint over k. This latter condition implies that if l is a subextension
of K/k such that l/k is algebraic then l = k – “k is algebraically closed in K” –
and in characteristic 0 these conditions are equivalent. It also implies that the ring
K ⊗k k is a domain: the latter condition is called “geometric integrality.”

We define the divisor group Div(K) to be the free commutative group on the
places of K. Again, we have a notion of principal divisors: for any f ∈ K×,
we send f to its valuation vector (v(f)). And we may define the class group
Cl(K) = Div(K)/Prin(K) exactly as above. However, this class group Cl(K) will
in fact be infinite in all cases for a rather shallow reason: every divisor D ∈ Div(K)
has a degree D ∈ Z, the set of all degrees of divisors is a nontrivial subgroup IZ
of Z, and every principal divisor has degree 0.

For example, consider K = Fp(t). For each n ∈ Z+ let Dn = n[∞], where [∞]
is the point at infinity. I claim that the Dn’s are all distinct elements of Cl(K),
which is therefore infinite. To see this, suppose not. Then there exist m < n and
a nonzero rational function f ∈ Fp(t) such that f = (n −m)[∞]. But a rational
function which is integral away from the place at ∞ is a polynomial, whereas the
fact that v∞(f) = n−m > 0 means that f has negative degree: contradiction!

Those who have studied even a little algebraic geometry or Riemann surface theory
will know a more convincing explanation: for any f ∈ K×, the principal divisor
(f) has, in a natural sense, exactly as many zeros as it has poles. More precisely
it has degree zero, whereas there are divisors on Fp(t) of any integer degree, so
Cl(Fp(t)) must contain a copy of Z.

Our task now is to define the degree map. To preserve the analogy with Rie-
mann surface theory, we might as well work in a little more generality: in place of
Fp we will take an arbitary field k as our constant field, and we will let K be a
finite, separable extension of k(t). For each place v of K which is trivial on k, the
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residue field kv = Rv/mv is a finite extension of k; let fv be the residual degree.
Then for an element D =

∑
nv[v] of the divisor group, we define its degree

deg(D) =
∑
v

nvfv ∈ Z.

As usual, we note that this sum is a finite sum because by definition nv = 0 for all
but finitely many places v.

Proposition 3.25. For any f ∈ K×, deg(f) = 0.

Proof. First we address the case of a general ground field k. For a complete
proof, see e.g. [St, Th. 1.4.11]. We will however give a sketch (that is less ele-
mentary than Stichtenoth’s). A nonconstant function f ∈ K is equivalent to finite
map of algebraic curves π : C → P1. For any closed point x ∈ P1, one can define
the preimage of π∗(x): as a divisor it is

∑
y→x e(y)[y], where valuation theoreti-

cally y runs through the places of K lying over the place corresponding to x on
P1 and e(y) and f(y) are the usual ramification index. Theorem 1.71 implies that
deg π∗(x) ≤ [k(C) : k(t)]. We claim that in fact equality holds using Theorem
1.73b): here R is the discrete valuation ring of functions on P1 that are regular
at x. For this we need to know that the integral closure of R in k(C) is finitely
generated as an R-module (even if k(C)/k(t) is not separable, which it need not
be), and this follows from [C:CA, Thm. 18.4]. Now the divisor of f is equal to
π∗(0)− π∗(∞), so it has degree 0.

Second we restrict our attention to the case in which k = Fq. In this case
we leave it to the reader to check that deg(f) = 0 is manifestly equivalent to the
product formula. �

Let I be the gcd of all degrees of divisors on K. Let Div0(K) be the subgroup of
degree zero divisors and PrinK be the principal divisors, so PrinK ⊂ Div0(K),
and we put Cl0(K) = Div0(K)/PrinK. Then we get an induced map

deg : Cl(K)/Cl0(K)
∼→ IZ ∼= Z,

so Cl(K) is infinite.

Remark: In fact, if k is a finite field, we have I(K) = 1 always, i.e., the de-
gree map is surjective. This was first proved by F.K. Schmidt around 1915 using
(what would later be called!) the Hasse-Weil zeta function. For those who know
some algebraic geometry, it should not be hard to use the Riemann hypothesis for
curves over finite fields (proven by Weil) to show that for any smooth, projective
curve X/Fq

, for all sufficiently large n, X has degree n rational points. In particular,
for some n it has a degree n rational point and also a degree n+ 1 rational point,
and hence it has a divisor of degree 1. (But we will not use this result in the sequel.)

Because of Proposition 3.25, we may define Div0(K) = Ker(deg), the kernel of the
degree map and then Prin(K) ⊂ Div0(K). Thus finally we may define Cl0(K) =
Div0(K)/Prin(K), the degree 0 divisor class group.

Theorem 3.26. For any finite separable extension K/Fp(t), the degree zero

divisor class group Cl0(K) is a finite commutative group.

Proof. If we look back at the proof of the number field case, we see imme-
diately what needs to be modified: because we do not have Archimedean places,
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it is not clear that the norm one idele class group surjects onto Cl(K). However,
let D =

∑
v nv[v] ∈ Div(K). We define an idele xD as follows: for each v with

nv 6= 0, let xv ∈ K×v be such that v(xv) = nv; as above, for every place v with
nv = 0, we define xv = 1. Then |x| = p

∑
fvnv , whereas degD =

∑
fvnv. Thus

deg(D) = 0 ⇐⇒ |xD| = 1. It follows that C1(K) surjects onto Cl0(K), and the
remainder of the proof proceeds as above. �

Theorem 3.27. (Rosen [Ro73]) Let CS := C \ S be a nonsingular, geometri-
cally integral affine curve over a field k, and let RS = k[CS ] be the affine coordinate
ring. Let D0(S) be the subgroup of Div0K of degree 0 divisors supported on S, and
let P (S) = Prin(K) ∩D0(S) be the principal divisors supported on S. Let d be the
least positive degree of a divisor supported on S (so d = 1 if S contains a k-rational
point), and let i be the least positive degree of a divisor on C. Then there are exact
sequences

(11) 1→ k× → R×S → P (S)→ 0

and

(12) 0→ D0(S)/P (S)
ι→ Cl0(K)

α→ ClRS
β→ C(d/i)→ 0,

, where C(d/i) is a finite cyclic group of order d/i.

Proof. The homomorphism R×S → P (S) is the restriction to R×S of the map
that associates to a nonzero rational function its associated divisor. That is is well-
defined and surjective follows immediately from the definitions, and its kernel is
the set of rational functions without zeros or poles, i.e., k×. This establishes (11).

The map ι is induced by mapping a degree zero divisor supported on S to its
class in Cl0K = Div0 /Prin(K); the kernel of this map is PrinK ∩ D0(S), so ι
is injective. The map α is induced by the map Div0K → FracRS in which we
simply remove the components of the divisor at places corresponding to S. Under
this map, the divisor of a rational function f gets sent to the principal fractional
ideal generated by f , hence we get a well-defined map Cl0K → ClRS . Under this
map, a degree zero divisor class represented by D maps to 0 iff there is a rational
function f such that D− (f) is supported on S, so the kernel of α is the image of ι.

The map β is the most interesting. We claim that an element of ClRS has a
degree that is well-defined up to a multiple of d. Indeed, let I represent an element
of ClRS . Then if D ∈ DivK is any divisor that maps to I and X is any divisor
supported on S, then also D +X is a divisor that maps to I. (Modifying I within
its equivalence class does not change the degree, since the degree of any principal
divisor is 0.) Since the degree of every divisor supported on S is a multiple of d, there
is a well-defined homomorphism ClRS → Z/dZ. The kernel of this homomorphism
consists of divisors whose degree is a multiple of d, and thus the divisor X supported
on S can be suitable chosen so that deg(X + S) = 0 and thus I lies in the image
of α. Conversely, any divisor lying in the image of α has degree a multiple of d, so
the kernel of β is the image of α. The image of β is the set of all multiples of the
least positive degree of a divisor on C, i.e., i. Thus the map β may be viewed as a
surjection onto a finite cyclic group of order d

i , completing the proof. �

Exercise 3.21. Suppose S = P for some P ∈ C(k). Show that the exact
sequence reduces to an isomorphism Pic0(C)→ Pic(C◦). Now prove this directly.



112 3. ADELES

Let K be a function field over k, and let S ⊂ ΣK be a finite set of places. It is
natural to ask about the structure of the unit group

R×S = {f ∈ K | vP (f) = 0 ∀P ∈ ΣK \ S}

but unreasonable to expect it to be finitely generated: indeed we always have
k× ⊂ R×S (with equality if S = ∅) and the unit group of a field is rarely finitely
generated – indeed it could have any infinite cardinality. So it is natural to consider
the “relative unit group” R×S /k

×. Let us say that the function field K is Dirichlet
if for all finite subsets S ⊂ ΣK , we have

R×S /k
× ∼= Z#S−1.

When k is finite, we have k× = µ(K), and thus the assertion that K is Dirichlet is
precisely the S-Unit Theorem in the function field case.

Theorem 3.28. (Rosen [Ro73]) For a function field K/k, the following are
equivalent:
(i) The field K is Dirichlet.
(ii) The degree zero divisor class group Cl0K is torsion.

Proof. Let S be a nonempty finite set of places ofK containing the Archimedean
places, and let s = #S. By (11) we have

R×S /k
× = P (S),

the group of principal divisors supported on S. Since the group of divisors sup-
ported on S is free commutative of rank s and D0(S) is the kernel of a surjective
homomorphism to Z, we have D0(S) ∼= Zs−1. Since P (S) is a subgroup of D0(S)
we have P (S) ∼= Zr for some r ≤ s− 1, with equality iff D0(S)/P (S) is torsion.

By (12), if Cl0(K) is torsion then so is D0(S)/P (S), so K is Dirichlet. Now
suppose that K is Dirichlet, and let D ∈ Div0K. Then D ∈ D0(S) for some finite S
and the class of D in Cl0K lies in the image of D0(S)/P (S), so has finite order. �

Notice that when k is finite, this deduces the S-Unit Theorem from the finiteness
of the class number.

2.5. An algebraic approach. In this section we offer a commutative alge-
braic variant of Theorems 3.24 and 3.28. We need the following result on the class
group of an overring of a Dedekind domain.

Theorem 3.29. Let R be a Dedekind domain, and let W ⊂ MaxSpecR. As
above, we put

RW :=
⋂

p∈MaxSpecR\W

Rp.

Also let FracW R :=
⊕

p∈W Z be the subgroup of fractional R-ideals supported on
W . There is an exact sequence

1→ R× → R×W → FracW R→ PicR→ PicRW → 1.

Proof. See e.g. [C:CA, Thm. 23.7]. �
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Corollary 3.30. Let R be a Dedekind domain, and let W ⊂ MaxSpecR.
a) The relative unit group R×W /R

× is free commutative of rank at most #W .
b) Suppose ClR is a torsion group. Then

R×W
∼= R× ×

⊕
p∈W

Z.

c) Let K be a global field. Then

K× ∼= µ(K)×
∞⊕
n=1

Z,

where µ(K) is the group of roots of unity in K, which is finite.

Exercise 3.22. Prove Corollary 3.30.

In fact the class of fields K such that K×/µ(K) is free commutative is much larger,
containing for instance every field that is finitely generated over its prime subfield.
See e.g. [Ma80].

3. Ray Class Groups and Ray Class Fields

3.1. Intro.

We wish to explain our earlier claim that the idele class group C(K) is, as a topolog-
ical group, a “target group” for global class field theory: i.e., its profinite completion
is canonically isomorphic to the Galois group Gal(Kab/K).

Note first that the statement that C(K) is such a target group is equivalent to
the statement that C1(K) is such a target group: namely, we have in the number
field case a short exact sequence

1→ C1(K)→ C(K)→ R>0 → 1

which shows that the inclusion C1(K) ↪→ C(K) induces an isomorphism on the
profinite completions.

Exercise 3.23. What happens in the function field case?

It may therefore be worth mentioning that the object C(K) is for many purposes
“more fundamental”, whereas the subgroup C1(K) was – by virtue of being com-
pact – technically more convenient to establish the two finiteness theorems of the
previous section.

3.2. Moduli and ray class fields.

N.B.: On a first reading, I suggest that the reader make her task a little easier
by: (i) restricting to the number field case, and (ii) ignoring – or mostly ignoring –
the infinite part of the modulus.

What we can do is define a certain family {K(m)} of abelian extensions which
are parameterized solely by some arithmetic data m from K (you are not yet sup-
posed to know what this means; don’t worry). These field K(m) are called ray
class fields of K. It is too much to hope for that every finite abelian extension of
K is a ray class field, but what turns out to be true is that every abelian extension
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L is contained in some ray class field – in fact, in infinitely many ray class fields,
but there will be a unique smallest ray class field containing L. The Galois the-
ory of subextensions of abelian extensions behaves beautifully – in particular every
subextension is Galois – so that if we know all the ray class fields, we have a good
chance at understanding all the finite abelian extensions.

Let me now describe the objects m by which ray class fields are parameterized.

Recall that if K/Q is a number field of degree d, say given as Q[t]/(P (t)), then
the embeddings of K into R correspond precisely to the real roots of P (t): in par-
ticular there is somewhere between 0 and [K : Q] such embeddings. Let us label
these embeddings ∞1,∞2, . . . ,∞r. We call such embeddings “real places.”

The function field case is simpler: there are no real embeddings to worry about.

Now a modulus m is a formal product of two different quantities: the first, fi-
nite part m0, is precisely a nonzero integral ideal of R, which we further view as
a formal product

∏
v v

m0v . Note that in the number field case, this is simply a
nonzero ideal of the ring of integers ZK . In the function field case, this is viewed
purely formally, as an element of the divisor group DivK.

In the function field case we put m = m0. If K is a number field which has
real places, then there is also an infinite part m∞, which you can think of as a
subset of the real places but which we write formally as a product.

For a prime p of R and a modulus m, define ordp m just to be ordp(m0).

Example: When K = Q, a modulus is either the ideal generated by a positive
integer (n), or (n) · ∞.

By Frac(K), we mean the free commutative group generated by the non-Archimedean
places of K. Note that when K is a number field, this is the usual group of frac-
tional ZK-ideals, where ZK is the ring of integers of K. In the function field case,
this is the commutative group that we formerly called DivK, the divisor group ofK.

Let m be a modulus. We define two groups, I(m) and P (m), as follows:

Let I(m) be the free commutative group generated by finite places of K which
do not divide m. Note that I(m) = I(m0), i.e., this definition depends only on the
finite part of the modulus. In particular I(1) = Frac(K). Moroever, if m divides m′,
then viewing both as subgroups of Frac(K) gives a natural inclusion I(m)→ I(m′).

Next, we define P (m) to be the subgroup generated by principal fractional ideals
(α) with a generator α satisfying:

(i) for all finite places v | m, ordp(x− 1) ≥ mv, and
(ii) For all ∞i ∈ m∞, ∞i(α) > 0.
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It is easy to see that P (m) is a subgroup of I(m), so we may form the quotient:
Clm(K) = I(m)/P (m), the m-ray class group. In the function field case, we also
define Cl0m(K) = I0(m)/P (m): then we have a short exact sequence

0→ Cl0m(K)→ Clm(K)→ Z→ 0,

so, unlike Clm(K), the group Cl0m(K) has a fighting chance of being finite.

Example 3.31. Again let K = Q. If m = (n), then P (m) just consists of
principal ideals I which can be expressed in the form (x) with x ≡ 1 (mod n). Note
that the “expressed” is important here; since every nonzero ideal of Z has precisely
two generators – x and −x – what this really says is that I is generated by something
which is ±1 (mod n).

Exercise 3.24. Show: I(n)/P (n) ∼= (Z/nZ)×/(±1).

The other kind of modulus is m = (n)∞. Then P (m) consists of principal ideals I
which can be expressed in the form (x) with x > 0 and x ≡ 1 (mod n).

Exercise 3.25. a) Show that for n > 2, [P ((n)) : P ((n)∞)] = 2.
b) Show that I((n)∞)/P ((n)∞) ∼= (Z/nZ)×.

Exercise 3.26. Let K be a global function field, and let m be a modulus on K.
a) Define a natural degree map (e.g. use the injection I(m)→ Div(K)) to Z.
b)* Show that the degree map is surjective. (Hint: feel free to use the Weil bounds
for curves over finite fields.)
c) Define I0(m) to be the kernel of the degree map. Show that P (m) ⊂ I0(m).
d) Suppose that K = Fq(t) is a rational function field. Show that I0(1) = P (1).
e) Suppose that K = Fq(t), and let v be any one place of K, viewed as a modulus
on K. Compute I0(v)/P (v).

There is a fairly evident notion of divisibility of moduli: we say that m | m′ if the
finite part of m divides the finite part of m′ in the usual sense of ideal division and
if the set of real places in m is a subset of the set of real places in m′. So e.g. for
K = Q we have (2) | (12) | (60∞).

Exercise 3.27. Let K be a global field and m, m′ be two moduli on K, with
m | m′. In this case there is a natural inclusion map ι : I(m′) → I(m): note well
that ι is injective and not surjective. The map ι sends principal ideals congruent to
1 modulo m′ to principal ideals congruent to 1 modulo m. Thus there is an induced
homomorphism of ray class groups ι : Clm′(K)→ Clm(K).
a) Show that ι is surjective. (Hint: weak approximation).
b) Show that in the function field case we also have a surjective map on degree 0
ray class groups.

If L/K is a finite extension and ∞i is a real place of K, we say that it is unram-
ified in L if every extension of ∞i to an embedding ι : L ↪→ C has ι(L) ⊂ R.
Otherwise we say that it ramifies. For example, the place ∞ of Q ramifies in an
imaginary quadratic field but not in a real quadratic field. More generally, if K is
a number field, then K/Q is unramified at ∞ if for every embedding ι : K ↪→ C we
have ι(K) ⊂ R. Such number fields are called totally real. (When [K : Q] > 2
this is a stronger condition than just saying that K can be embedded into R.)

At last we can describe the ray class fields K(m), at least indirectly.
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For each modulus m, there exists an abelian extension K(m)/K, called the m-
ray class field of K, with the following properties:

(RC0) In the number field case, K(m)/K is finite. In the function field case,
K(m) contains the maximal constant extension Fq, so is certainly infinite. But it

is “otherwise finite”, i.e., K(m)/KFq is finite.

(RC1) p | ∆(K(m)/K) =⇒ p |m; also if an infinite place ∞i of K ramifies in
K(m) then ∞i | m.

In other words, the extension is only ramified at primes (including “infinite primes”)
dividing the modulus.

In view of (RC1), we may restrict the Artin map to have domain I(m):

r : I(m)→ Gal(K(m)/K).

(Chebotarev tells us that this restricted map is still surjective.)

(RC2) The kernel of the restricted Artin map is precisely the subgroup P (m).

Therefore there is a canonical isomorphism

r : I(m)/P (m)
∼→ Gal(K(m)/K).

(RC3) If m | m′, K(m) ⊆ K(m′).

The divisbility relation endows the moduli with the structure of a directed set
(a partially ordered set in which any pair of elements is less than or equal to some
third element). Therefore by (RC3) the ray class fields form a directed system of
fields.

(RC4) lim
→m

K(m) = Kab, the maximal abelian extension of K.

Passing to Galois groups, the immediate consequence is:

Corollary 3.32. In the number field case, we have an isomorphism Gal(Kab/K) ∼=
lim
←−m

Clm(K).

In the function field case, the extension KFq/K has Galois group Ẑ, so the correct
analogue is that we have a (necessarily split) short exact sequence

0→ lim
←−m

Cl0m(K)→ Gal(Kab/K)→ Ẑ→ 0.

(RC4) itself is a slightly fancy way of saying that every finite abelian extension is
contained in some ray class field. In fact we can be much more precise than this:

For a finite abelian extension L/K, put

Γ(L) = Ker(r : I(∆(L/K))→ Gal(L/K)).
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(RC5) There exists a unique smallest modulus c such that L ⊂ K(m). Moreover,
for this minimal c: the finite part of c is divisible only by primes dividing ∆(L/K);
the infinite part of c includes no unramified inifnite places; and P (c) ⊂ Γ(L), so
that we have a short exact sequence

1→ Γ(L)/P (c)→ I(c)/P (c)→ Gal(L/K)→ 1

exhibiting the Galois group of an arbitrary finite abelian extension L/K as a quo-
tient of a certain ray class group.

The minimal modulus c for L/K of (RC5) is called the conductor of L/K.

The main result of global class field theory is that there is indeed a unique family of
fields satisfying all of these properties. In the number field case, this was first shown
by Artin, drawing partly on Chebotarev’s proof of his density theorem.5 There is
no way we are going to discuss the proof here. All known proofs extremely long
and difficult. What is worse, they are not really enlightening. The essential point is
that although the proof of the theorem involves “constructing” the ray class fields
in the sense of showing their existence, this construction is in general very far from
being constructive or explicit. One of the great open problems in algebraic number
theory is to give a reasonable explicit construction of the class fields of a given
number field K. There are only two cases which are completely understood: the
case of Q, which we will give as an example below, and the case of an imaginary
quadratic field, for which see Cox’s book [Cox] and the notes for the 8430 course.

3.3. The Hilbert Class Field.

In this section we assume that K is a number field. (Again, there is a function
field analogue which is not too hard to work out; we leave the correct statement to
the interested reader.) Let us note the following extremely important special case:
take m = 1, i.e., the “empty modulus.”

Theorem 3.33. Concerning the ray class field K(1)/K:
a) It is the maximal everywhere unramified abelian extension of K.

b) The map r induces a canonical isomorphism I(1)/P (1) = Pic(R)
∼→ Gal(K(1)/K).

c) A prime ideal p of R splits completely in K(1) iff it is a principal ideal of R.

Proof. (RC1) says that K(1) cannot be ramified anywhere (not even at the
real places, if any). Moreover, (RC5) implies that any finite everywhere unramified
abelian extension L is contained in K(1), establishing a). By definition the Picard
group of the Dedekind ring R is the fractional ideals modulo the principal fractional
ideals, i.e., I(1)/P (1), so b) follows from (RC2). Similarly part c) follows because
a prime splits completely iff its Frobenius element is trivial iff it lies in the kernel
P (1) of the Artin map, i.e., is principal. �

Definition: The extension K(1)/K is called the Hilbert class field of K.

5Unfortunately I do not know who first showed it in the function field case – it is even
conceivable to me that this was also due to Artin, who certainly thought deeply about function

fields.
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As Theorem 3.33 shows, the Hilbert class field has some remarkable (and use-
ful!) properties. In particular, the theorem implies that the maximal everywhere
unramified abelian extension of K is finite, which is certainly not obvious.

3.4. An exact sequence for Clm(K). In this section we assume (for now?)
that K is a number field. For a modulus m = m0m∞ of K, we know that there is
a surjective group homomorphism Clm(K) → ClK. In this section we explicitly
determine the kernel, following [Coh, Ch. 3].

We define
(ZK/m)× := (ZK/m0)× ⊕ (Z/2Z)#m∞ .

That is, (ZK/m)× is the direct product of the usual unit group of the residue ring
modulo the ideal m0 with an elementary 2-group whose F2-rank is equal to the
number of real places in m∞. We put

ϕ(m) := #(ZK/m)× = 2#m∞ϕ(m0).

Exercise 3.28. Let m0 = pa11 · · · parr be the prime power factorization, and

suppose that N(pi) = #ZK/pi = pfii for (not necessarily distinct) prime numbers
pi and positive integers fi. Show:

ϕ(m0) =

r∏
i=1

N(pi)
ai−1(N(pi)− 1).

We put
K×m := {x ∈ K× | x ≡ 1 (mod m)},
U(K) = Z×K , Um(K) = U(K) ∩K×m .

Theorem 3.34. We have an exact sequence

1→ Um(K)→ U(K)
ρ→ (ZK/m)×

ψ→ Clm(K)
φ→ ClK → 1.

Proof. The map Um(K)→ U(K) is inclusion and the map Clm(K)→ Cl(K)
is the aforementioned quotient map. Also the quotient map ZK → ZK/m0 induces
a homomorphism on unit groups ρ1 : U(K) → (ZK/m0)×. The map ρ2 : U(K) →
(Z/2Z)#m∞ maps a unit u to its “signature,” i.e., for each real place∞i ∈ m∞, the
ith component of ρ2(u) is 1 if ∞i(u) is positive and −1 if ∞i(u) is negative. Then
we put ρ = ρ1 × ρ2.

To define the map ρ, first we observe that the map ρ : ZK → (ZK/m0)× ×
(Z/2Z)m∞ is surjective by Strong Approximation (cf. [Coh, p. 4]). We define the
map ψ by mapping ρ(α) ∈ (ZK/m)× to the class of αZK in Clm(K). We need to
check that this is well-defined: if ρ(α) = ρ(β), then α and β are coprime to m0, we
have α ≡ β (mod m0) and sgn(∞i(α)) = sgn(∞i(β)) for all ∞i ∈ m∞. It follows
that α

β ≡ 1 (mod m), so the ideals αZK and βZK determine the same element of

Clm(K).
That the kernel of ρ is Um(K) is really the definition of Um(K). Moreover,

we have ψ(ρ(α)) = 1 iff αZK ∈ Pm(K), i.e., there is β ≡ 1 (mod m) such that
αZK = βZK , and thus u := α

β ∈ U(K). Since β ≡ 1 (mod m) the images of u

and α in (ZK/m)× agree and thus the kernel of ψ is contained in the image of ρ.
Conversely, starting with any u ∈ Z×K we get the class of the ideal uZK = 1ZK in
Clm(K), which is certainly trivial.

If an ideal class [a] ∈ ClmK is mapped to the trivial element of ClK, then
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a = αZK is a principal fractional ideal coprime to m0, hence α is coprime to m0, so
[a] lies in the image of ψ.

The surjectivity of φ follows from the fact every ideal class in a Dedekind
domain has a representative that is prime to m0, which is itself an easy consequence
of Artin-Whaples approximation. �

The following useful consequence is immediate.

Corollary 3.35. We have a short exact sequence

1→ (ZK/m)×/ Image(U(K))→ Clm(K)→ Cl(K)→ 1,

and thus

# Clm(K) = # Cl(K)
ϕ(m)

[U(K) : Um(K)]
.

Exercise 3.29. Use Corollary 3.35 to deduce that for n ≤ 2 we have

Q((n)) = Q((n)∞) = Q
and that for n ≥ 3 we have

[Q((n)) : Q] =
ϕ(n)

2
, [Q((n)∞) : Q] = ϕ(n).

Exercise 3.30. Let K be an imaginary quadratic field. Since we have no real
places, for any modulus m we have m = m0.
a) Suppose K 6= Q(

√
−1), Q(

√
−3). Show:

[K(m) : K] =

{
ϕ(m) m | (2)
ϕ(m)

2 m - (2)
.

b) Suppose K = Q(
√
−1). Show:

[K(m) : K] =


ϕ(m) m | (1 + i)
ϕ(m)

2 m - (1 + i) and m | (2)
ϕ(m)

4 m - 2

.

c) Suppose K = Q(
√
−3). Show:

K(m) : K] =


1 m = (1)
ϕ(m)

2 m 6= (1) and m | (ζ3 − 1)
ϕ(m)

3 m = (2)
ϕ(m)

6 otherwise

.

3.5. Remarks on real places, narrow class groups, et cetera.

Let K be a number field, and v a real place of K, i.e., an Archimedean norm
on K with completion Kv = R. Let L be a finite extension of K. As we know,
the norms on L extending v on K correspond to the maximal ideals in the alge-
bra L ⊗K R, which is a finite dimensional, separable R-algebra, hence isomorphic
to Rs1 ⊕ Cs2 , where s1 + 2s2 = [L : K]. If w is a norm on L extending the real
norm v, we say that w|v is ramified if Lw ∼= C and otherwise that w|v is unramified.

Now let m be a modulus on K. If the real place v does not appear in m, then
the corresponding ray class field K(m) is unramified over v: i.e., every place w of



120 3. ADELES

K(m) dividing v is unramified.

Now one case worth examining explicitly is the case of ray class fields corresponding
to moduli m whose finite part m0 is 1 but for which ramification at real places is
allowed. For this, let us define the modulus ∞ simply to include all real infinite
places, and to avoid trivialities we assume that K is not totally imaginary, i.e., that
it has at least one real place.

Now consider the ray class group Cl∞(K): explicitly, this is the group of all frac-
tional R = ZK-ideals modulo principal ideals with totally positive generators. This
is often called the narrow class group of K. For distinction, the usual ideal class
group Cl(K) is then sometimes called the wide class group.

Just for brevity, let us define q∞ = # Cl∞(K)
# Cl(K) . This is a positive integer.

If K has r1 real places, it is clear that q∞ | 2r1 .

Exercise 3.31. Show that in fact q∞ | 2r1−1 and that the kernel of the map
Cl∞(K)→ Cl(K) is a 2-torsion group (aka an “elementary 2-group”).

More explicitly, the discrepancy between the wide and narrow ideal class groups
may be interpreted in terms of the possible signatures of units in K.

For example, let K = Q(
√
d) be a real quadratic field.

Exercise 3.32. a) For K a real quadratic field, show that the following are
equivalent:
(i) The groups Cl∞(K) and Cl(K) coincide.
(ii) The fundamental unit of K has norm −1.
(iii) There exist units in ZK of all four possible signatures (+,+), (+,−), (−,+),
(−,−) with respect to the pair of real places (∞1,∞2) of K.

(iv) The period length of the contiinued fraction expansion of
√
d is odd.6

b) If the equivalent conditions of part a) do not hold, then [Cl∞(K) : Cl(K)] = 2.

In practice, when dealing with real quadratic fields (and more generally totally
real fields), things often become simpler when we assume that the narrow class
number is one, rather than the usual class number. Thus “narrow class number
one” appears as a technical hypothesis in many theorems in algebraic number theory
and arithmetic geometry.

Exercise 3.33. Consider the real quadratic fields Q(
√
d) for d = 2, 3, 5, 6, 7, 10.

a) Compute the ideal class groups.
b) Compute the narrow class groups.

In particular, it is certainly possible for Cl∞(K) = 1. (Thus the conductor of the
∞-ray class field can be equal to 1.) Moreover, it has been conjectured at least
since Gauss’s time that there are infinitely many real quadratic fields of narrow class
number one. Indeed, heuristics predict that when real quadratic fields are ordered
by discriminant, a positive proportion of them will have narrow class number one.
This is one of the great open problems of algebraic number theory!

6Note that the equivalence of (ii), (iii) and (iv) is part of the classical theory of quadratic
fields and is often discussed in elementary texts udner the name Pell equation.
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3.6. A word about class field towers.

In this section we restrict to the case of number fields.

The Hilbert class field is one of the most remarkable (and also useful) construc-
tions in all of algebraic number theory. Even the fact that the maximal everywhere
unramified abelian extension of a number field is finite is deep and surprising. We
wish to drive this point home by examining what happens when the word “abelian”
is removed.

When K = Q, one does not have to appeal to class field theory to see that the
maximal everywhere unramified abelian extension of Q is simply Q. Indeed, in
a first course in algebraic number theory one learns the stronger fact that every
proper finite extension L/Q is unramified at at least one finite place, which follows
from Minkowski’s lower bound on the discriminant of a number field: see e.g. [Bak,
Cor. 3.14]. However, for an algebraic number field K 6= Q, there may very well be
an infinite degree everywhere unramified extension L/K. (Note that if there exists
such an extension, its normal closure remains everywhere unramified, hence there
exists an infinite degree everywhere unramified Galois extension M/K.) Indeed –
quite remarkably – the Hilbert class field is an essential tool in such constructions!

The idea is this: suppose that K is a number field. Then we can take its Hilbert
class field which, for reasons which will shortly become apparent, we will write
in this section (only) as K1. We know that K1/K is finite, but we can certainly
ensure – e.g. using imaginary quadratic fields, by the aid of genus theory – that
K1 6= K. Now we have a new number field, and we can take its Hilbert class field,
say K2. Proceeding in this way, we get an increasing sequence of number fields Kn.
Put K∞ =

⋃
nK

n. Note that K∞ is everywhere unramified over K (equivalently,
every finite subextension is everywhere unramified over K). Indeed, this follows
immediately from the tower property of unramified extensions.

Now a basic dichotomy occurs:

Case 1: After some point, we reach a field KN which has class number one, so
that KN = KN+1 = KN+2 = . . .. Thus K∞ = KN has finite degree over K.

Case 2: For all n, Kn ( Kn+1, and thus K∞ has infinite degree over K.

Evidently if we are in Case 2, we get an infinite degree everywhere unramified
(even solvable) extension K∞/K.

The sequence of number fields KN attached to K is usually called the class field
tower of K. Thus the question is: is there a number field K whose class field tower
is strictly increasing? This problem was posed by Fürtwangler and considered by
Hasse in 1926. However, it was not solved until 1964, when Golod and Shafarevich
gave examples in which the class field tower was infinite. Explicitly, one may take
K = Q(

√
−2 · 3 · 5 · 7 · 11 · 13) = Q(

√
−30030).
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To the best of my knowledge, if one is given a number field K, it is a difficult
problem to decide whether its class field tower is infinite. Certainly class field
towers remain an active topic of contemporary research. For more information, I
recommend the excellent survey article by P. Roquette in [CF].

3.7. Class field theory over Q.

But first let us look at the one case where it is easy to at least state what the
class fields are: K = Q. Recall that we computed above that if m = n, the m-ray
class group is isomorphic to (Z/nZ)×/±1, whereas if m = n∞, the m-ray class
group is isomorphic to (Z/nZ)×.

So we would like to find – or at least to correctly guess – for every positive integer
n an abelian extension Q(n)/Q whose Galois group is (Z/nZ)×/±1 and another
abelian extension Q(n∞)/Q with Galois group (Z/nZ)×.

If we have made it this far, we would have to guess that Q(n∞) = Q(ζn), wouldn’t
we? It has the right Galois group and the right ramification properties: the only
finite primes at which if ramifies are those dividing n = m, in accordance with
(RC1). In fact in a previous exercise we computed the Artin map in this case, so
we can verify that these are the (n∞)-ray class fields: I leave it to you to do so.

What about the moduli m = n? The point here is that we have not included
∞, so that by (RC1) the ray class field Q(n) is not allowed to ramify at ∞: in
other words, it must be totally real.

Exercise 3.34. Deduce from the axioms for ray class fields that Q(n) = Q(ζn+
ζ−1
n ).

Applying (RC4) we get a very important result:

Theorem 3.36. (Kronecker-Weber) A finite extension K/Q is abelian iff it
is a subfield of some cyclotomic field Q(ζn). Equivalently, the maximal abelian
extension Qab of Q is the (infinite algebraic) extension obtained by adjoining to Q
all roots of unity.

In particular, we have a single transcendental function, namely e(t) := e2πit which
maps R/Z isomorphically to the unit circle in the complex plane. Then for all n,
the n∞-ray class field of Q is obtained by adjoining to Q the value of the function
e at the n-torsion points of the one-dimensional torus R/Z, namely at 1

n , . . . ,
n−1
n

(or also at just 1
n , of course). Wouldn’t it be amazing if all (or a cofinal set) of class

fields for any number field K could be obtained just by adjoining special values of
a nice transcendental function? This was Kronecker’s Jugendtraum (“youthful
dream.”) We will see later that this dream comes true when K is an imaginary
quadratic field.7

Exercise 3.35. a) Notice that Q(1) = Q(∞), which shows that the association
of a ray class field to a modulus need not be injective.

7Much of the work on automorphic functions in number theory in the last 50 years has been

motivated by a desire to extend this Jugendtraum to other fields. There are indeed some results
in this direction, but it is remarkable how much more complicated any other case is – even for

e.g. a real quadratic field there is not to my knowledge a complete, satisfactory answer.
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b) Find all moduli m such that Q(m) = Q.
c) Show that if n is odd, then Q(n · ∞) = Q(2n · ∞).
d) Find all pairs m 6= m′ such that Q(m) = Q(m′).

This exercise implies that the conductor of the m-ray class field K(m) may be
strictly smaller than m, unlike what virtually everyone expects at first!

Exercise 3.36. Let p be an odd prime. Certainly Q(
√
p)/Q and Q(

√
−p) are

an abelian extension. What are their conductors? (And what can you say about the

conductor of an arbitrary quadratic extension Q(
√
D)?)

Exercise 3.37. Use class field theory to prove the quadratic reciprocity law.

3.8. Idelic interpretation. The goal here is to define each ray class group
G(m) as a discrete quotient of the idele class group C. That is, we wish to find for
each m an open finite-index subgroup of C(K) whose quotient is G(m) – compatibly
with inclusions – and also to see that these open subgroups are cofinal in the set of
all open finite index subgroups of C(K), so that the profinite completion of C(K)
is isomorphic to the inverse limit of the ray class groups, i.e., to the Galois group
of the maximal abelian extension of K.

It seems best to begin with the ideal class group, which we wish to be attached
to the modulus m = 1. As we saw, this can be viewed as a quotient of C(K) via
the valuation map v : IK → Frac(K) which sends an idele (xv)v to its sequence of
valuations at finite places (v(xv)). The kernel of this map is

U(1) :=
∏
NAv

Uv ×
∏
v | ∞

K×v .

Therefore after passage to the quotient we get an isomorphism

K×\IK/U(1)
∼→ Cl(K).

Now let m be a modulus on K. For all places v dividing m, we define Wm(v).
Namely, if v is non-Archimedean, we put Wm(v) = 1 + pmv

v Rv = Umv
v , the mvth

higher unit group, whereas if v is real Archimedean, we put Wm(v) = R>0.
Also put

Im =

∏
v-m

K×v ×
∏
v | m

Wm(v)

 ∩ I.

Proposition 3.37. We have:

P (m) = K× ∩
∏
v | m

Wm(v) = K× ∩ Im.

Exercise 3.38. Prove Proposition 3.37.

Now we put

U(m) :=
∏
v - ∞

Umv
v ×

∏
v | ∞

Kv(mv).

Exercise 3.39. a) Show that U(m) is a finite index open subgroup of U(1).
b) Deduce that the quotient group K×\IK/U(m) is finite.
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We define a map v : Im → I(m) in the familiar way: we send the idele (xv)v to its
vector of valuations v(xv) for xv lying outside m0. This is evidently a surjective
homomorphism.

Lemma 3.38. (Kernel-Cokernel Sequence) Let A
f→ B

g

→ C be a pair of homo-
morphisms of commutative groups. Then there is an exact

sequence

0→ Ker f → Ker(g ◦ f)
f→ Ker g → Coker f → Coker(g ◦ f)→ Coker g → 0.

Proof. See [Mil, Appendix A]. �

Proposition 3.39. a) The homomorphism v induces an isomorphism

P (m)\Im/U(m)
∼→ Clm(K).

b) The inclusion Im ↪→ I induces an isomorphism

Im/P (m)
∼→ I×/K×.

Proof. The map P (m)→ Im is an injection, and the map Φ : Im → I(m) is a
surjection with kernel U(m). The ”kernel-cokernel sequence” of this pair of maps
is therefore

U(m)→ Im/P (m)→ C(m)→ 1,

which proves part a). As for part b), the kernel of Im → I/K× is K× ∩ Im which,

by Proposition 8.10, is equal to P (m). Therefore the map Im/P (m)
∼→ I×/K× is an

injection. That is a surjection follows from a weak approximation argument very
similar to that of Exercise 3.27. Details are left to the reader as a useful (and not
difficult) exercise. �

Putting these results together, we get:

Theorem 3.40. We have a canonical isomorphism

K×\IK/U(m)
∼→ I(m)/P (m).

Exercise 3.40. a) If K is a number field, deduce that every ray class group
Clm(K) is finite.
b) If K is a function field, deduce that every ray class group Cl0m(K) is finite.

Exercise 3.41. a) Let K be a number field. Show that every finite index
open subgroup of C(K) = K×\IK contains K×U(m) for some modulus m. In
particular, the profinite completion of C(K) is isomorphic to the inverse limit
lim
←−m

K×\IK/U(m).

b) State and prove an appropriate analogue of part a) in the function field case.

Exercise 3.42. Deduce from Exercise 8.14 and Corollary 3.32 that the idele
class group C(K) is a target group for global class field theory: i.e., its profinite
completion is isomorphic to Gal(Kab/K).

Please remember that Corollary 3.32 is merely a group-theoretic restatement of
property (RC4) of ray class fields, i.e., that they are cofinal in all finite abelian
extensions L/K and that we have by no means proved this property (or any of
the four other properties of ray class fields). Conversely, it is not so hard to de-
duce the ideal-theoretic properties of ray class groups and fields from this idelic
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description. It is indeed possible to prove these results (and other ones that we
have not even stated) of global class field theory either using the classical ideal-
theoretic approach (which involves some quite intricate counting arguments) or
via the idele-theoretic formulation. Most contemporary mathematicians prefer this
latter approach – among other things, it can be made to match up formally with
the proofs of the main results of local class field theory. The key ingredient for
the “modern” proofs both locally and globally is Galois cohomology of K× and
of C(K), and specifically the formalism of class formations. These notions are
beyond the scope of this course. In my opinion the most careful, complete and read-
able treatment of the local and global cases is to be found in Milne’s book-length
set of lecture notes on Class Field Theory [Mil].





CHAPTER 4

Complements and Applications

1. Mahler series

In this section we follow [Ro, Chapter 4].

1.1. Introduction.

One of the great theorems of classical analysis is the Weierstrass Approximation
Theorem: every continuous function f : [a, b]→ R is a uniform limit of polynomial
functions. More generally, one has the Stone-Weierstrass Theorem: Let X be a
compact metric space, and let A be an algebra of continuous real-valued functions
on X that separates points – for all x 6= y ∈ X there is f ∈ A with f(x) 6= f(y) –
and vanishes at no point: for all x ∈ X, there is f ∈ A with f(x) 6= 0. Then ev-
ery continuous function f : X → R is a uniform limit of a sequence of functions inA.

It is natural to inquire about p-adic analogues of these results. The p-adic ana-
logue of [a, b] is a closed ball. Just as in R by making an affine linear change of
variables we may as well consider [0, 1], in Qp by an affine linear change of variables
we may consider Zp. Notice that Zp is again a compact metric space, so Stone-
Weierstrass applies. In fact, since Zp is compact, totally disconnected, metrizable,
and containing more than a single point, it is isomorphic to the classical Cantor
set, so there is a topological embedding ι : Zp ↪→ R. Let R[ι] be the subalgebra of
real-valued functions on Zp generated by 1Zp

and ι: these are precisely the polyno-
mial functions in ι, which explains the notation. We need look no further than 1
and ι to see that R[ι] separates points of Zp and vanishes at no point of Zp, hence
by Stone-Weierstrass, every continuous function f : Zp → R is a uniform limit of
polynomials in ι. If we want to think of Zp as being embedded inside of R then
this is a close cousin of the classical Weierstrass Theorem. The entire discussion
applies verbatim with Zp replaced by any compact DVR.

However this is not a very satisfying p-adic analogue of Weierstrass approxi-
mation, since the function ι does not have an intrinsic meaning in terms of Zp. A
better p-adic analogue would consider not continuous functions f : Zp → R but
continuous functions f : Zp → Qp, or more generally with values in some complete
ultrametric field containing Qp. In fact, observing that polynomials p(t) ∈ Qp[t]
give continuous functions from Zp to Qp, we can ask a better question.

Question 4.1. Is every continuous function f : Zp → Qp a uniform limit of
polynomial functions pn(t) ∈ Qp[t]?

Kurt Mahler gave a positive answer to this question. But in fact he did much more.
In the setting of the classical Weierstrass Approximation Theorem, for a general
continuous function f : [0, 1]→ R there are many different sequences of polynomial

127
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functions converging uniformly to f , there is not in any useful sense a canonical
such sequence. However, Mahler constructed a class of series of polynomials such
that every continuous function f : Zp → Qp is represented by a unique such series,
which moreover has a useful connection to p-adic interpolation.

Let us motivate this last part. The standard representation of Zp as a series∑
n anp

n with an ∈ {0, . . . , p−1} shows that N is dense in Zp. Thus any continuous
function f : Zp → Qp is entirely determined by its restriction to N. Conversely,
suppose f : N→ Qp. When does f extend continuously to Zp?

Exercise: Let X be a metric space, Z be a complete metric space, Y ⊂ X a
dense subspace, and let f : Y → Z be a function. Show:
a) There is at most one extension of f to a continuous function on X.
b) If f is uniformly continuous, then it extends continuously to X.
c) If X is compact and f extends continuously to X, then it is uniformly continuous.

Thus a function f : N→ Qp extends continuously to Zp if and only if it is uniformly
continuous for the p-adic metric. This latter condition has a pleasing natural enun-
ciation in terms of preservation of p-adic congruences: for every E ∈ Z+ there is a
D ∈ Z+ such that if m ≡ n (mod pD) then f(m) ≡ f(n) (mod pE).

In order to state Mahler’s Theorem we first make the following definition. Let
M be a Z-module, and let f : N→M be a function. Then we define the discrete
derivative (or forward difference) ∇f : N→M as follows:

∇f : n 7→ f(n+ 1)− f(n).

We view ∇ as a Z-linear operator on the Z-module MN of functions from N to M .

Theorem 4.2. (Mahler’s Theorem) Let f : Zp → Cp be a continuous function.
For n ∈ N, put an := (∇nf)(0). Then:
a) We have limn→∞ an = 0.
b) The series

∑∞
n=0 an

(
x
n

)
converges uniformly to f on Zp.

c) Let ||f || = supx∈Zp
|f(x)|. Then ||f || = supn |an|.

Here
(
x
n

)
is the usual binomial coefficient x(x−1)···(x−n+1)

n! . It is a polynomial func-
tion with coefficients in Q. Thus the equation

(13) ∀x ∈ Zp, f(x) =

∞∑
n=0

(∇nf)(0)

(
x

n

)
gives a canonical representation of every continuous function f : Zp → Cp as a
uniform limit of polynomials with coefficients in Cp. Moreover, if K ⊂ Cp is any
complete subfield such that f(N) ⊂ K, then f(Zp) ⊂ K and (13) exhibits f as a
uniform limit of polynomials with coefficients in K.

Let us give a preliminary discussion of Mahler series. For any x, n ∈ N, let Pn ∈ Q[t]
be the polynomial

(
t
n

)
. For all x ∈ N, Pn(x) is the number of n element subsets of

an x element set, so certainly Pn(x) ∈ N. Since Pn defines a continuous function
from Zp to Cp and N is dense in Zp, it follows that

Pn(Zp) = Pn(N) ⊂ Pn(N) ⊂ N = Zp.
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Otherwise put, for all x ∈ Zp and n ∈ N, we have |
(
x
n

)
| ≤ 1.

Lemma 4.3. Let {an}∞n=0 be a sequence in Cp, and consider the series of func-
tions

∑∞
n=0 an

(
x
n

)
. a) The following are equivalent:

(i) The series converges uniformly on Zp.
(ii) The series converges pointwise on Zp.
(iii) We have limn→∞ an = 0.
When these equivalent conditions hold, we call

∑∞
n=0 an

(
x
n

)
a Mahler series.

b) Any Mahler series is a continuous function from Zp to Cp.

Proof. a) (i) =⇒ (ii) is clear. (ii) =⇒ (iii): Suppose the series converges
pointwise on Zp, and plug in x = −1. Then

∑
n an

(−1
n

)
converges, so an

(−1
n

)
=

(−1)nan → 0, so an → 0.
(iii) =⇒ (i). In a complete ultrametric normed field, a series of functions

∑
n fn

converges uniformly iff ||fn|| → 0. If an → 0, then ||an
(
x
n

)
|| ≤ |an| → 0.

b) A Mahler series has the form
∑
n fn, where fn = an

(
x
n

)
. Thus each fn : Zp → Cp

is a polynomial, hence continuous. The usual “ε/3 argument” from undergraduate
analysis shows that if X and Y are metric spaces and fn : X → Y is a sequence
of continuous functions that converges uniformly to f : X → Y , then the limit
function f is continuous. �

In many ways the Mahler series is a close analogue of a power series, even though a
function defined by a Mahler series need not be differentiable. In particular, there
is a uniqueness theorem for power series: if f =

∑
n anx

n is a power series with a

positive radius of convergence, then repeated differentiation shows that an = f(n)(0)
n! .

As we will now show, there is an analogue for Mahler series.

Exercise 4.1.
a) Let {fn : Zp → C} be a sequence of functions converging uniformly to f : Zp →
C. Show that the squence ∇fn converges uniformly on Zp to ∇f .
b) Let n ∈ Z+. Show: ∆

(
x
n

)
=
(
x

n−1

)
.

c) Let f =
∑∞
n=0 an

(
x
n

)
be a Mahler series. Show: ∆f =

∑∞
n=1 an

(
x

n−1

)
.

So let f =
∑∞
n=0 an

(
x
n

)
be a Mahler series. Evaluating at 0 we get a0 = f(0). Ap-

plying ∇, we get ∇f =
∑∞
n=1 an

(
x

n−1

)
, and evaluating at 0 we get a1 = (∇f)(0).

And so forth: repeating this procedure we find that an = (∇nf)(0) for all n.1

Before proving Mahler’s Theorem we need some preliminaries on discrete calcu-
lus. Under the terminology “the calculus of finite differences,” this material is very
classical. However, it was not very fashionable and most contemporary mathemati-
cians barely know this subject exists. As we will see, this is unfortunate, since these
simple ideas have important applications in algebra and number theory.

1.2. Newton Expansions.

1This argument is essentially identical to the way one proves that every convergent power se-
ries is its own Taylor series. On the other hand, justifying the term-by-term discrete differentiation

of Mahler series is easier than the term-by-term differentation of power series.
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Lemma 4.4. Let M be a Z-module and f : N → M a function. Then for all
n ∈ N we have

(14) (∇nf)(0) =

n∑
i=0

(−1)i
(
n

i

)
f(n− i).

Exercise 4.2. a) Prove Lemma 4.4. (Suggestion: by induction on n.)
b) Use Lemma (14) to prove the following exponential generating function identity:
for all f : N → C, we have

∞∑
n=0

(∇nf)(0)
xn

n!
= e−x

∞∑
n=0

f(n)
xn

n!
.

Theorem 4.5. (Newton Expansion) Let M be a Z-module, and let f : N→M
be a function. Then there is a unique squence {an} in M such that:

∀x ∈ N, f(x) =

∞∑
n=0

an

(
x

n

)
=

x∑
n=0

an

(
x

n

)
.

Moreover, for all n ∈ N we have an = (∇nf)(0).

Proof. For all i, j ∈ N we have

∇i
(
x

j

)∣∣∣∣
x=0

=

(
0

j − i

)
= δ(i, j).

Thus successively applying ∇ and evaluating at 0 to
∑∞
n=0 an

(
x
n

)
, we find that

an = (∇nf)(0) for all n ∈ N, establishing uniqueness. As for existence, let

ϕ : N→M, x 7→ f(x)−
∞∑
n=0

(∇nf)(0).

By Lemma 4.4, for all n ∈ N we have

0 = (∇nϕ)(0) =

n−1∑
i=0

(−1)i
(
n

i

)
ϕ(n− i).

Certainly we have ϕ(0) = 0, so the result follows by induction. �

A function f : N → M is periodic of period N if for all x ∈ N we have f(x) =
f(x+N). It is periodic if it is periodic of period N for some N ∈ Z+. We make
the same definitions for functions f : Z→M and observe that a periodic function
f : N →M extends uniquely to a periodic function f : Z→M and this extension
has the same minimial period. In turn a function f : Z→ M is periodic of period
N iff it factors through a map f : Z/NZ→M .

Proposition 4.6. Let p be a prime number and t ∈ Z+.
a) For all 0 ≤ n < pt, the function

( ·
n

)
: N → Z/pZ is periodic of period pt

and accordingly may be viewed as an element of the Z/pZ-vector space V (p, t) :=

(Z/pZ)Z/p
tZ of all maps from Z/ptZ to Z/pZ.

b) The functions {
(·
i

)
}0≤i<pt form an Fp-basis for V (p, t).

Proof. a) For x ∈ N, we have

(1 + u)x =

x∑
n=0

(
x

n

)
un.
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Thus

(1 + u)x+pt = (1 + u)x(1 + u)p
t

≡ (1 + u)x · (1 + up
t

) (mod p).

It follows that for n < pt the coefficient of un in (1 + u)x+pt is congruent modulo p
to the coefficient of un in (1 + u)x, i.e.,

∀0 ≤ n < pt,

(
x+ pt

n

)
≡
(
x

n

)
(mod p).

We define a Z/pZ-linear map

Φ : V (p, t)→ (Z/pZ)p
t

, f 7→ ((∇nf)(0))0≤i<pt .

If Φ(f) = 0, then by (14) we have f(n) = 0 for all 0 ≤ n < pt, i.e., f = 0, so

Φ is injective. Both the source and target of Φ are sets of size pp
t

, so Φ is an
isomorphism. Moreover, for all 0 ≤ n < pt, then as we’ve seen, Φ(

( ·
n

)
) is the

element of (Z/pZ)p
t

whose nth coordinate is 1 and all other coordinates are 0, i.e.,
the nth standard basis element. Thus {

(·
i

)
}0≤i<pt is a Z/pZ-basis for V (p, t). �

Theorem 4.7. Let M be a vector space over Z/pZ, and let f : N → M be
a function that is periodic of period pt for some t ∈ Z+. Then there are unique
m0, . . . ,mpt−1 ∈M such that

(15) ∀x ∈ Z, f(x) =
∑

0≤n<pt

(
x

n

)
mn.

Proof. By Theorem 4.5, for all 0 ≤ x < pt we have

f(x) =
∑

0≤n<pt
(∇nf)(0)

(
x

n

)
.

The function f is periodic of period pt. By Proposition 4.6 so is
∑

0≤n<pt(∇nf)(0)
( ·
n

)
,

so (15) holds for all x ∈ N. The uniqueness is by the usual argument of discretely
differentiating and evaluating at 0. �

1.3. Proof of Mahler’s Theorem.

Let f : Zp → Cp be continuous. Certainly Theorem 4.2 holds if f is identically
zero, so we may assume otherwise. We may replace f by 1

||f ||f and thus assume

that ||f || = 1. In particular the image f(Zp) lies in the valuation ring Rp of Cp.
Let ϕ be the composition of f with the natural map Rp → Rp/pRp. Then

ϕ : Zp → Rp/pRp

is a continuous map from a compact space to a discrete space, so it is locally
constant and finitely valued. The nonempty fibers of the map give a finite partition
of Zp into open subsets, and thus the map is constant on cosets of ptZp for some
t1 ∈ Z+, i.e., the restriction to N is periodic with period pt1 . Applying Theorem
4.7 we get that there are unique a0

0, . . . , a
0
pt1−1 ∈ Rp, unique modulo pRp such that

for all x ∈ N,

f(x)−
∑

0≤n<pt1
a0
n

(
x

n

)
∈ pRp.
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Because ||f || = 1 and |p| < 1, we must have max |a0
n| = 1. Put

f1 := f −
∑

0≤n<pt1
a0
n

(
·
n

)
,

so r1 := ||f1|| ≤ |p|. If r1 = 0, we’re done; otherwise we repeat the procedure with
f1 in place of f , with t2 > t1 and with pRp/p

2Rp in place of Rp/pRp. Defining
a0
n = 0 for all n ≥ pt1 we get

f2 := f1 −
∑

0≤n<pt2
a1
n

(
·
n

)
= f −

∑
0≤n<pt2

(a0
n + a1

n)

(
·
n

)
∈ p2Rp.

Continuing in this manner, we produce for all k ∈ N a sequence akn ∈ Cp such that
|akn| ≤ |pk|, and thus a convergent series

an =

∞∑
k=0

akn ∈ Cp, |akn| ≤ |pk| → 0.

Since ||f −
∑∞
n=0(a0

n + . . . + akn)
( ·
n

)
|| ≤ |pk| for all k ∈ N, the series

∑∞
n=0 an

( ·
n

)
converges uniformly to f on Zp. Also, |an| ≤ 1 for all 0 ≤ n < pt1 and |an| ≤ |pn|
for all ptn ≤ n < ptn+1 . Since |a0

n| = 1 for some 0 ≤ n < pt1 , it follows that

||f || = 1 = max
n
|an|,

attained for at least one 0 ≤ n < pt1 and for no n > pt1 . This completes the proof
of Mahler’s Theorem.

Corollary 4.8. Let f : N→ Cp be a function. For n ∈ N, let an = (∇nf)(0).
The following are equivalent:
(i) We have limn→∞ an = 0.
(ii) The function f extends continuously to Zp.
(iii) The function f is uniformly continuous for the p-adic topology on N.
(iv) We have limk→∞ ||∇kf || → 0.

Proof. (i) =⇒ (ii): If an → 0, then by §4.1.1 the series F (x) =
∑∞
n=0 an

( ·
n

)
converges uniformly on Zp to a continuous function and F (x) = f(x) for all x ∈ N.
(ii) =⇒ (iii): By assumption, f extends to a continuous function on Zp. Since Zp
is a compact metric space, f is uniformly continuous on Zp and thus is uniformly
continuous on N.
(iii) =⇒ (ii): A uniformly continuous function from a metric space to a complete
metric space always admits a continuous extension to the completion.
(ii) =⇒ (iv): By Mahler’s Theorem, we have f =

∑∞
n=0 an

( ·
n

)
. We may discretely

differentiate termwise, getting the Mahler series

∇kf =
∑
n≥k

ak

(
·

n− k

)
.

Applying Mahler’s Theorem again, we get ||∇kf || = supn≥k |an| → 0.
(iv) =⇒ (i) is immediate. �
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1.4. Work of de Shalit. Let R be a CDVR with finite residue field Fq,
fraction field K, maximal ideal m, and let π be a uniformizing element. Let

Int(R,R) = {f ∈ K[t] | f(R) ⊂ R}
be the ring of integer-valued polynomialsm, and let

Intn(R,R) = {f ∈ Int(R,R) | deg(f) ≤ n}.
Let an be the set of leading coeffiicients of elements of Intn(R,R); then an is a
fractional R-ideal that is – like every fractional ideal over a DVR – principal. If
an = 〈fn〉R, then

Intn(R,R) = Intn−1(R,R)⊕Rfn.
Let {fn}∞n=0 be a sequence in Intn(R,R) such that for all n ∈ N, fn generates an.
Then {fn} is a basis for Int(R,R) as an R-module, called a Mahler basis. We
note that fn is not unique; however, it is unique up to multiplication by an element
of R× and addition of an R-linear combination of f0, . . . , fn−1.

For n ∈ Z+, put

wq(n) =

∞∑
i=1

⌊
n

qi

⌋
.

Exercise 4.3. a) Show: wq(q
m) = qm−1

q−1 .

b) Let n ∈ Z+ have base q expansion n =
∑m−1
i=0 biq

i; thus 0 ≤ bi < q for all i.
Show:

wq(n) =

m−1∑
i=0

biwq(q
i).

Proposition 4.9. For all n ∈ Z+, we have

an = π−wq(n)R.

Proof. For now, see Cahen-Chabert, “Old problems and new questions around
integer-valued polynomials and factorial sequences,” in Multiplicative ideal theory
in commutative algebra, Springer, New York, 2006, 89–108. �

Exercise 4.4. Let T be the set of Teichmüller representatives of Fq in R –
that is, T consists of the (q − 1)-st roots of unity together with 0. Put R0 := 0; for
m ∈ Z+, put

Rm := {
m−1∑
i=0

aiπ
i | ai ∈ T }

and put

R :=
⋃
m

Rm.

Then Rm is a system of coset representatives for R/πmR in R. Put g0(t) := 1.
For m ∈ Z+, put

gqm(t) := π−
(qm−1)
(q−1)

∏
r∈Rm

(t− r);

if n =
∑m−1
i=0 biq

i is the base q expansion of n, put

gn(t) :=

m−1∏
i=0

gbiqi .
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Exercise 4.5. a) Show that for all n ∈ Z+, gn(t) ∈ Int(R,R).
b) Show: {gn(t)}∞n=0 is a Mahler basis. (Hint: use Proposition 4.9.)

Let q : R→ R/m ∼= Fq be the quotient map. For a function f : R→ R, let

q := q ◦ f : R→ Fq.

Theorem 4.10. (de Shalit) Let {fn}∞n=0 be a Mahler basis for Int(R,R).
a) The sequence {fn}∞n=0 forms an Fq-basis for the space C(R,Fq) of locally constant
functions f : R→ Fq.

b) The functions f0, . . . , fqm−1 forms an Fq-basis for the space C(R/πmR,Fq) of
functions f : R→ Fq that are constant on cosets of πmR.
c) For every continuous function f : R→ K, there is a unique sequence {an} in K
such that we have a uniformly convergent series

f =

∞∑
n=0

anfn

with an → 0 and ||f || = max |an|. Conversely, if {an} is a sequence in K with
an → 0, then

∑∞
n=0 anfn converges uniformly to a continuous function.

Corollary 4.11. For a Mahler basis {fn} and k ∈ Z+, let fn,k be the com-
posite of fn : R → R with the quotient map qk : R → R/πkR. Then {fn,k}∞n=0

is an R/πkR-basis for the space C(R,R/πkR) of locally constant R/πkR-valued
functions on R.

Let
R′m \ Rm \ Rm−1.

For r ∈ R we define its length `(r) to be the unique m such that r ∈ R′m. For
r ∈ R, let χr be the characteristic function of the disk

Dr := r + π`(r)R.

Then {χr}r∈R is an orthonormal basis for C(R,K) in the ultrametric Banach sense.
On the other hand, the K-vector space S(R,K) spanned by the χr’s in the algebraic
sense are precisely the locally constant function. The largest length `(f) of a χr
appearing in the expansion of f ∈ S(R,K) is the smallest ` ≥ 0 such that f is
constant on cosets of π`R. We call it the level of f and denote it by `(f). Thus
`(χr) = `(r). All of the above results continue to hold if K is replaced by any
commutative ring.

2. Monsky’s theorem

2.1. Statement of the Theorem.

In 1970 P. Monsky gave a startling application of valuation theory to the solu-
tion of a problem in elementary plane geometry. By a polygonal region we mean
a bounded subset R of the Euclidean plane R2 with boundary a simple polygon. If
R and T1, . . . , Tn are polygonal regions, we say that {Ti}ni=1 is a dissection of R if⋃n
i=1 Ti = R and for each i 6= j, Ti∩Tj ⊂ ∂Ti∪∂Tj . A triangular dissection is a

dissection in which each Ti is (the region bounded by) a triangle. A triangulation
is a triangular dissection in which for each i 6= j, ∂Ti and ∂Tj are either disjoint or
consists of an entire common edge.
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For a polygonal region R, we denote by µ(R) its area (Lebesgue measure).

The aim of this section is to give a complete proof of the following result.

Theorem 4.12. (Monsky’s theorem) Let T1, . . . , Tn be a triangular dissection
of the unit square S = [0, 1]2.
a) There is a polynomial f ∈ Z[t1, . . . , tn] such that f(µ(T1), . . . , µ(Tn)) = 1

2 .
b) In particular if µ(T1) = . . . = µ(Tn) then n is even.

Exercise 4.6. Deduce part b) of Monsky’s theorem from part a).

2.2. Sperner’s Lemma.

We begin by establishing several forms of Sperner’s Lemma, a 1928 result of
E. Sperner [Sp28].

Theorem 4.13. (Polygonal Sperner Lemma) Consider a triangulation T1, . . . , Tn
of the polygonal region R. Consider a tricoloring of the set of vertices of the tri-
angles, i.e., a partition of this set into three parts A, B, C. Let A be the number
of complete triangles, i.e., triangles with all vertices given different colors. Let
B be the number of edges on the boundary ∂R of R which contain a vertex from A
and a vertex from B. Then

A ≡ B (mod 2).

Proof. (M. Xu) Place a dot on each side of each AB segment. We will count
the total number of dots in R in two different ways. On the one hand, each
interior segment contributes either 2 or 0 dots in R, while each boundary segment
contributes either 1 or 0 dot according (in either case) to whether it is an AB
segment or not. Thus the number of dots in R is congruent to B modulo 2. On
the other hand, each complete triangle contributes one dot to R whereas each
incomplete triangle contributes two dots (if its vertex set is contained in A∪B) or
0 dots (otherwise). Thus the number of dots in R is congruent to A modulo 2. �

Corollary 4.14. (Sperner’s Lemma) Suppose we are given a triangle ABC
and a triangulation T of the triangle. A Sperner coloring is a map from the
vertex set of the triangulation to {0, 1, 2} such that:
• A, B and C are colored 0, 1 and 2 respectively.
• Each vertex on an edge of ABC is colored with one of the two colors of the ends
of its edge.
Then any Sperner coloring of T contains an odd number of complete triangles.

Exercise 4.7. Show that the Polygonal Sperner Lemma implies Sperner’s
Lemma.

So far as I know, in most applications of Sperner’s Lemma it suffices to know that
under the given hypotheses there is at least one complete triangle. For this there is
the following amazing proof, first shown to me by K. Nyman. We begin by observ-
ing that the number of 01-segments on the boundary must be odd: they can only
occur along the full edge from A to B, and since every vertex on that edge is colored
0 or 1, to get from 0 to 1 the number of “color changes” must be odd. Now we view
the triangle ABC as a house, each triangle in the triangulation as a room, and each
01-edge as a door. Note that a room has two doors if the corresponding triangle
is not complete and one door if the corresponding triangle is complete. Thus if we
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enter the house via a door on the boundary and never backtrack through a door we
already used, then we have a unique path which either takes us through the house
to exit via another boundary door, or we get stuck in a room corresponding to a
complete triangle. Since each path which leaves the house uses two boundary doors
and the number of boundary doors is odd, there must be at least one path which
gets stuck inside the house...and thus there must be at least one complete triangle.

Perhaps you think that Sperner’s Lemma is a piece of recreational mathematics.
The following proof is meant to disabuse you of that idea (and is included only
to illustrate the content of Sperner’s Lemma; it has nothing to do with Monsky’s
theorem).

Theorem 4.15. (Brouwer’s Theorem) Every continuous function f : [0, 1]2 →
[0, 1]2 has a fixed point.

Proof. We may replace f by any homeomorphic space. We choose

∆0 = {(x, y, z) ∈ R3 | 0 ≤ x, y, z, x+ y + z = 1},
the “standard 2-simplex”. Let f : ∆0 → ∆0; seeking a contradiction, we suppose
f has no fixed point. Then T = {T1, . . . , Tn} be a triangulation of ∆. We may
tricolor the vertex set of the triangulation using the ordered set {1, 2, 3} as follows:
for a vertex v, we give v the color i if i is the least index such that the ith coordinate
of f(v)− v is negative: since f(v) 6= v but the sum of the coordinates of f(v) and v
are each equal to 1, there must be at least one such coordinate. Let v0,0 = (1, 0, 0),
v0,1 = (0, 1, 0) and v0,2 = (0, 0, 1). Then each vi gets colored i. Further, any vertex
lying on the boundary of ∆ must be colored with one of the two colors of the
complete edge eiej on which it lies since every point on eiej has k-coordinate 0.
Thus we have given a Sperner coloring, so by Sperner’s Lemma we must have one
triangle ∆1 which is colored with all three colors.

We may now triangulate ∆1 and apply the argument of the previous paragraph.
Since we get to pick the triangulation, in this way we can get a nested sequence
{∆n}∞n=0 of complete triangles with diameters going to zero. By (e.g.) the Cantor
Interection Theorem there is a unique point P = (x, y, z) ∈

⋂∞
n=0 ∆n. Since vn,0 →

x and f(P )0 < vn,0 for all n, f(P )0 ≤ x. Similarly f(P )1 ≤ y and f(P )2 ≤ z.
Since x+ y+ z = 1 = f(P )0 + f(P )1 + f(P )2, we must have f(P )0 = x, f(P )y = y
and f(P )z = z, i.e., f(P ) = P and P is a fixed point for f . �

Exercise 4.8. Theorem 4.15 is frequently deduced as a consequence of the No
Retraction Theorem: there is no continuous map f from the closed unit disk in
R2 to its boundary S1 such that f(P ) = P for all P ∈ S1. Prove the No Retraction
Theorem using Sperner’s Lemma.

A solution to Exercise 4.8 can be found in [Iv09]. This note further clarifies the
relationship between these theorems and their more traditional homological proofs
by recasting the combinatorial proof of Sperner’s Lemma in terms of cohomology.

Since Monsky’s theorem concerns triangular dissections and not merely triangu-
lations,2 we need another variant of Sperner’s Lemma. Given a tricoloring of the

2Or at least, that is the way Monsky stated it. The special case involving triangulations is
still interesting, and some expositions of Monsky’s theorem restrict (usually without comment)
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set of vertices of a triangular dissection, we say that a segment joining two vertices
is of type AB if one of its vertices if of type A and the other is of type B. A full
edge of R is a maximal line segment on the boundary of R.

Lemma 4.16. (Monsky’s Sperner Lemma) Consider a triangular dissection
T1, . . . , Tn of the polygonal region R and a partition of the vertex set into three
parts A, B, C. We suppose moreover no full edge of R or any Ti contains vertices
of all three types. Let A be the number of complete triangles, i.e., triangles with
all vertices given different colors. Let B be the number of full edges of ∂R of type
AB. Then

A ≡ B (mod 2).

Proof. The condition that no full edge of any triangle has vertices of all three
types implies that each complete triangle Ti contributes an odd number of edges of
type AB whereas each incomplete triangle contributes an even number of edges of
type AB. Thus summing from i equals 1 to n the number of AB edges in Ti gives
a number which is congruent modulo 2 to A. Since this summation counts each
interior edge twice and each boundary edge once, A is congruent modulo 2 to the
number of edges of type AB on the boundary of R. Similarly, the condition that
no full edge of ∂R has vertices of all three types implies that each boundary full
edge of type AB contains an odd number of AB edges and each boundary full edge
not of type AB contains an even number of AB edges. Thus A ≡ B (mod 2). �

2.3. Monsky’s theorem, part b).

Although part b) of Theorem 4.12 is an immediate consequence of part a), we
will (following [Mo70]) give the proof of part b) first.

The first step is the most dramatic. We choose an extension of the 2-adic norm | · |
on Q to the real numbers R. This exists by Theorem X.X. Thus | · | : R → R≥0 is
an ultrametric norm with |2| < 1. Now we tripartition R2 as follows:

Put
A = {(x, y) ∈ R2 | |x|, |y| < 1},

B = {(x, y) ∈ R2 | |x| ≥ 1, |x| ≥ |y|},
C = {(x, y) ∈ R2 | |y| ≥ 1, |x| < |y|}.

Ttwo points in R2 which both lie in any one of A, B and C are of the same type.

Lemma 4.17. Let P = (x, y), P ′ = (x′, y′) ∈ R2.
a) If P ∈ B and P ′ ∈ C then |xy′| > |x′y| and |xy′ − x′y| = |xy′|.

b) If P ′ − P ∈ A, then P and P ′ are of the same type.
c) No line ` in R2 contains points of all three types.
d) If T is a complete triangle then |µ(T )| > 1.

Proof. a) Left to the reader as an easy exercise.
b) • Let P ∈ A. Then |x′| ≤ max |x|, |x′ − x| < 1 and |y′| ≤ max |y|, |y′ − x| < 1,
so P ∈ A.
• Let P ∈ B. Then |x′| = |x| ≥ 1 and |y′| ≤ max |y|, |y′ − y| ≤ max |y|, 1 ≤ |x′|, so

to that special case. On a first reading, you may want to do that, in which case the Polygonal
Sperner Lemma is all you need and you can skip to the next section now.
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P ∈ B.
• Let P ∈ C. Then |y′| = |y| ≥ 1 and |x′| ≤ max |x|, |x′ − x| < |y| = |y′|, so P ∈ C.
c) Step 1: If ` contains a point Q of type A, then for all P ∈ `, Q = P−(P−Q) ∈ A,
so by part b) P and P −Q have the same type. So we may assume 0 ∈ `.
Step 2: Let P = (x, y) ∈ ` be of type B and P ′ = (x′, y′) ∈ ` be of type C. Then
|x| ≥ |y| and |x′| < |y′|, so |xy′| > |x′y|, contradicting the fact that xy′ = x′y since
P and P ′ lie on the same line through the origin.
d) Again we may translate T and thus assume that (0, 0) ∈ T ∩ A. Let (x, y) be
the vertex of type B and (x′, y′) be the vertex of type C. Then again we have
|xy′| > |x′y|, and since µ(T ) = ± 1

2 (xy′ − x′y),

|µ(T )| = |1
2
||xy′ − x′y| = |1

2
||xy′| = 2|x||y′| ≥ 2 > 1. �

Consider a triangular dissection {Ti}ni=1 of the square R = [0, 1]2 with µ(T1) =
. . . = µ(Tn) and thus µ(Ti) = 1

n for all i. Then on ∂R type A vertices occur only
on the left and bottom edges of R, type B vertices cannot occur on the left edge
of R, and type C vertices cannot occur on the bottom edge of R. Thus AB edges
can occur only on the bottom edge of R, on this bottom edge every vertex is of
type A or B, the lower left corner is of type A and the lower right corner is of type
B. It follows that the number of AB edges in the triangulation of R is odd. By
Lemma 4.17c) and Monsky’s Sperner Lemma, the number of complete triangles in
the dissection is odd: in particular there is at least one complete triangle Ti. By
Lemma 4.17d) we have |µ(Ti)| = | 1n | > 1. It follows that n is even!

2.4. Monsky’s theorem, part a).

Let T1, . . . , Tn be a triangular dissection of the polygonal region R; for 1 ≤ i ≤ n
put ai = µ(Ti). Let R = Z[a1, . . . , an] be the subring of R generated by the ai’s.
Every element of R is obtained from f ∈ Z[t1, . . . , tn] by evaluating at a1, . . . , an.

Case 1: Suppose 2 ∈ R×. Then there is an element f(a1, . . . , an) ∈ R such that
2f(a1, . . . , an) = 1, i.e., f(a1, . . . , an) = 1

2 .

Case 2: Suppose 2 /∈ R×. Let p be a minimal prime ideal containing 2. Since
2 6= 0 ∈ R and R is a domain, p has height at least one. Since R is Noetherian (it
is a quotient of Z[t1, . . . , tn], which is Noetherian by the Hilbert Basis Theorem),
by Krull’s Hauptidealsatz p has height at most 1: thus p has height one. By the
Krull-Akizuki Theorem, the integral closure R̃ of Rp is a DVR. The valuation v

yields a non-Archimedean norm | · | on the fraction field K of R̃, a subfield of R.
Since v is R-regular, |ai| ≤ 1 for all 1; since 2 ∈ p it lies also in the maximal ideal of

R̃ and thus |2| < 1. We extend this norm to R and tripartition R2 as in the proof
of part b) above. Also as in the proof of part b) above there must be a complete
triangle Ti and thus |ai| > 1, a contradiction. So Case 1 must hold.

Remark: Although one can find many expositions of part b) of Monsky’s theo-
rem (including some which are essentially identical to ours; we include this result
because it is a striking application of valuation theory, not because we have any-
thing new to say), most of them neglect part a). Similarly, although there there
have been further results “of Monsky type” (one of which is given in the next
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section) I am not aware of any further work on the polynomial relation of part
a) of Monsky’s Theorem...until very recently. The polynomial relation is explored
in detail in the preprint [AP14]. The first author, A. Abrams, introduced me to
Monsky’s Theorem in 2006; the second author, J. Pommersheim, introduced me to
number theory in 1992. I am happy to recommend their paper to you!

2.5. Mead’s theorem.

It is remarkable that the first published proof of the innocuous Theorem 4.12 uses
valuation theory. What is much more remarkable is that in the last forty-something
years no other proof of Monsky’s Theorem has been found.

On the other hand the technique behind Monsky’s theorem has been used to
prove several other results in “equidissection theory”. We restrict ourselves to what
is probably the most direct generalization, a 1979 result of D.G. Mead [Me79]. For
other results with a similar flavor, see [Ka89], [Mo90] and [Pr02]. Let R be a
polytope in Rd. A simplicial dissection is a decomposition of R is given by a
collection S1, . . . , Sn of d-simplices such that R =

⋃n
i=1 Si and Si∩Sj ⊂ ∂Si∪∂Sj .

A simplicialization is a simplicial dissection such that if a vertex V of one simplex
Si lies on the boundary of another simplex Sj then V is a vertex of Sj .

We write µ for the d-dimensional Lebesgue measure on Rd.

Theorem 4.18. (Mead) Let R = [0, 1]d ⊂ Rd. Let S1, . . . , Sn be a simplicial
dissection of R with µ(Si) = µ(Sj) for all j. Then d! | n.

We begin by discussing Sperner’s Lemma in d-dimensions. Again there are three
versions: the classical version (still established by Sperner in [Sp28]), a version for
simplicializations of polytopes, and a version for simplicial dissections of polytopes.

If k ≤ d, we consider k-simplices in Rd and colorings from {0, . . . , d}. Such a
coloring is complete if it contains every element from {0, . . . , k}.

Theorem 4.19. (Polytopal Sperner’s Lemma) Consider a simplicialization of
a polytope R in Rd in which each vertex is colored with an element of {0, . . . , d}.
Then the number of complete d-simplices is congruent modulo 2 to the number of
complete (d− 1)-simplices in ∂R.

Exercise 4.9. Prove Lemma 4.20.

Theorem 4.20. (Sperner’s Lemma) Consider a simplicialization of the stan-
dard simplex ∆ in Rd+1. A Sperner coloring is a map from the vertex set into
{0, . . . , d} such that:
(i) The vertex ei = (0, . . . , 1, . . . , 0) of ∆ gets colored i.
(ii) Every vertex appearing on any k-dimensional facet F of ∆ is colored with the
color of one of the vertices of F .
Then the number of complete simplices – i.e., simplices colored with all n + 1
colors – is odd.

Exercise 4.10. Show: Theorem 4.19 implies Theorem 4.20.

Exercise 4.11. Show: Theorem 4.20 implies the full Brouwer Fixed Point
Theorem: every continuous map from the closed unit ball in Rd to itself has a fixed
point.
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Exercise 4.12. Show that Theorem 4.20 implies the d-dimensional No Retrac-
tion Theorem: there is no continuous map from the closed unit ball B in Rd to itself
which restricts to the identity on ∂B.

Lemma 4.21. (Mead’s Sperner Lemma) Let S1, . . . , Sn be a simplicialization of
a polytope R in Rd. Consider an n+ 1-coloring of the vertices of the simplices with
“colors” {0, . . . , d}. We suppose that every k-dimensional affine subspace which
contains vertices labelled 0, . . . , k contains no vertex labelled i > k. Then the number
of d-simplices colored with every element of {0, . . . , d} is congruent modulo 2 to the
number of d− 1-simplices on ∂R colored with every element of {0, . . . , d− 1}.

The following exercise is challenging. For help, see [Me79].

Exercise 4.13. a) Prove Lemma 4.21.
b) Use Lemma 4.21 to prove Theorem 4.18.

3. Linear groups over locally compact fields

The topological groups GLn(R) and GLn(C) have an inexhaustibly rich structure
and importance in all parts of modern mathematics: analysis, geometry, topology,
representation theory, number theory....The serious study of these groups was al-
ready begun in the 19th century by Lie and his contemporaries.

Somewhat more recently (say, about 1950) it has been realized that for a non-
Archimedean locally compact field K, the groups GLn(K) also have a rich and
useful structure.

We will give some of this structure theory here: namely, we will classify the maxi-
mal compact subgroups of GLn(K) for K a nondiscrete locally compact field. This
has immediate applications to the structure of finite subgroups of GLn(Q), which
are of intrinsic interest and are quite useful in areas like representation theory and
modular and automorphic forms. Moreover, this material (actually, a small piece of
it suffices) can be combined with a beautiful embedding theorem of J.W.S. Cassels
to deduce a celebrated 1960 theorem of A. Selberg: for any field K of characteristic
0, a finitely generated subgroup of GLn(K) is virtually torsionfree: i.e., has a finite
index subgroup without any nontrivial elements of finite order.

3.1. GLn(K) is a locally compact group. Let K be a nondiscrete locally
compact field, and let n be a positive integer. We consider the group GLn(K) of
invertible n × n matrices with coefficients in K. We wish to endow GLn(K) with
a natural locally compact topology. There are in fact two natural ways to do this,
which, happily, lead to the same result.

For any n ∈ Z+, we endow the Cartesian product Kn with the product topology,
which of course makes it a locally compact topological group. We will sometimes
refer to this topology on Kn and other topologies induced from it as the analytic
topology, to distinguish it from the Zariski topology. (However, the reader need
not know what the Zariski topology is in order to read these notes.)

Let Mn(K) be the ring of n× n matrices with entries in K. As a K-vector space,

Mn(K) ∼= Kn2

, and we give it the topology pulled back from the analytic topology
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on Kn2

via the isomorphism. (Easy exercise: the topology we get on Mn(K) is
independent of the chosen basis.)

Now GLn(K) is a subset of Mn(K). We claim that in the induced (subspace)
topology it is locally compact, and indeed this is foisted off on the reader in the
form of the following straightforward exercises.

Exercise 4.14. Let P (t1, . . . , tn) ∈ K[t1, . . . , tn] be a polynomial, thought of
as an algebraic object. Then P induces a function P : Kn → K in the usual way:
(x1, . . . , xn) 7→ P (x1, . . . , xn). Show that P is continuous for the analytic topologies
on Kn and K.

Exercise 4.15. Deduce: GLn(K) is an open subset of Mn(K).

Exercise 4.16. A subset A of a topological space X is locally closed if it can
be written in the form U ∩ V , where U is open and V is closed.
a) Show that A is locally closed iff A is open in its closure A.
b) Suppose that X is a locally compact Hausdorff space and A is a locally closed
subset of X. Show that A is locally compact in the subspace topology.
c) Does the converse of part b) hold?

So GLn(K), being an open subset of a locally compact space, is locally compact.

Now we give a second definition of the topology which is closely related to the “mul-
tiplicative” topology on the unit group of a topological ring. (Indeed, GLn(K) is
the group of units of the noncommutative topological ring Mn(K), but never mind.)
This definition realizes GLn(K) as a closed subset of a K-vector space of one higher

dimension. Namely, consider the subset of Kn2+1 given as the zero locus of the
single polynomial D(t1, . . . , tn2)tn2+1 − 1 = 0, where D is the degree n polynomial
giving the discriminant of an n× n matrix. There is a bijection between this locus
and GLn(K) as follows: write the entries of a matrix M ∈ GLn(K) in linear order,

say, m1, . . . ,mn2 ; then to M we associate the point (m1, . . . ,mn2 , 1
detM ) ∈ Kn2+1.

Then we may endow GLn(K) with the subspace topology; being a closed subspace

of the locally compact space Kn2+1, it is locally compact.

Exercise 4.17. Show: the two topologies defined on GLn(K) coincide.

3.2. The orthogonal group of a quadratic form.

We suppose that the characteristic of K is not 2 and q(x) = a1x
2
1 + . . . + anx

2
n

is a nonsingular quadratic form. There is an associated bilinear form 〈x, y〉 =
1
2 (q(x+ y)− q(x)− q(y)) and thus an associated orthogonal group

O(q) = {M ∈ GLn(K) | ∀x, y ∈ Kn, 〈Mx,My〉 = 〈x, y〉}.

Equivalently, in terms of the natural action of GLn(K) on symmetric matrices by
conjugation – i.e., P 7→ GPGT – the orthogonal group of q is precisely the stabilizer
of the Gram matrix of q. Either way, O(q) is clearly defined by the satisfaction of
a finite system of polynomial equations, so is a linear algebraic group. Note that
when q = x2

1 + . . .+ x2
n we recover the “standard orthogonal group”

O(n) = {M ∈ GLn(K) | MMT = 1}.
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The structure of O(q) is quite different depending upon whether the quadratic form
q is isotropic or anisotropic. Indeed, there is the following general result.

Theorem 4.22. Let K be a nondiscrete locally compact field, and q a nonsin-
gular quadratic form. The following are equivalent:
(i) The orthogonal group O(q) is compact.
(ii) The quadratic form q is anisotropic.

First we will prove the implication (i) =⇒ (ii) of Theorem 4.22, assuming some
quadratic form theory. In particular, let qH(xy) = xy be the hyperbolic plane.
We will use the following fact:

Theorem 4.23. (Witt Decomposition [Lam, Thm. I.4.1])
Let q(x1, . . . , xn) ∈ K[x1, . . . , xn] be a quadratic form over a field K of charac-
teristic different from 2. Then there is h ∈ Z≥0 and an orthogonal direct sum
decomposition

q ∼= q0 ⊕
h⊕
i=1

qH ⊕ qa

where q0 is totally isotropic (i.e., the assocated function is identically zero) and qa
is anisotropic. Thus q is nondegenerate iff q0 = 0 and is aniostropic iff q0 = 0 and
h = 0.

Exercise 4.18. Let K be a field of characteristic different from 2.

a) Show that K× acts effectively by isometries on qH via a ∈ K× 7→
[
a 0
0 1

a

]
. To

be fancy, we will write Gm for K×.
b) Show that in fact SO(qH) = Gm: that is, Gm is the subgroup of O(qH) consisting
of matrices of determinant 1.

c) Show: τ :=

[
0 1
1 0

]
is an element of O(qH) of determinant −1.

d) Show: O(qH) = Gm o 〈τ〉.
(Hint for parts b) through d): the space (K2, qH) has exactly two isotropic lines:
e1 = (1, 0) and e2 = (0, 1). An element of the orthogonal group of qH must therefore
either fix both lines or exchange them.)

Exercise 4.19. Let q1 and q2 be quadratic forms over a field K of characteristic
different from 2.
a) Show: there is an injective group homomorphism O(q1)×O(q2) ↪→ O(q1 ⊕ q2).
b) Show: if q(x1, . . . , xn) is totally isotropic, then O(q) = GLn(K).

Exercise 4.20. Let K be a locally compact nondiscrete field of characteristic
different from 2. Let q(x1, . . . , xn) ∈ K[x1, . . . , xn] be a quadratic form. Show: if
O(q) is compact, then q is anisotropic.

Exercise 4.21.
a) Let K be a field of characteristic different from 2. Show: O(x2) = {±1}.
b) Let q be an n-ary quadratic form over C. Show: O(q) is compact iff n = 1.

Now we will prove the implication (ii) =⇒ (i) of Theorem 4.22, following Speyer
[Sp12]. Let q(x1, . . . , xn) be an anisotropic n-ary quadratic form with coefficients
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in the locally compact field K. As usual, we endow Kn with the norm

|(x1, . . . , xn)|∞ := max
1≤i≤n

|xi|.

Then

B∞ := {X ∈ Kn | |x|∞ ≤ 1} and S∞ := {x ∈ Kn | |x|∞ = 1}
are both compact. Since f is anisotropic, the continuous function

F : S∞ → R, x 7→ |f(x)|

is strictly positive, so by compactness of S∞ there is ε > 0 such that F (x) ≥ ε for
all x ∈ S∞. Let r ∈ |K×|. We claim that

(16) F (x) ≤ r =⇒ |x|∞ ≤
√
r

ε
.

Clearly we may assume x 6= 0. Put s = |x|∞; then s ∈ |K×|, so there is α ∈ K
with |α| = s. Then | 1αx|∞ = 1, so

ε ≤ F (
1

α
x) = |f(

1

α
x1, . . . ,

1

α
xn)| = | 1

α2
f(x1, . . . , xn)| = 1

s2
F (x) ≤ r

s2
,

and thus s ≤
√

r
ε .

Now let R := max1≤i≤n F (ei). If M ∈ O(q), then we have

F (Mei) = |q(Mei)| = |q(ei)| = F (ei) ≤ R,

so by (16) we have |Mei|∞ ≤
√

R
ε . Thus we have shown: if M ∈ O(q) then every

entry of M has norm at most
√

R
ε , so O(q) is a bounded subset of Mn(K). If G is

the Gram matrix for q in the standard basis, then the elements M ∈ O(q) satisfy
the equation MGMT = G, which makes clear that O(q) is closed in Mn(K). Since
Mn(K) is ball compact, this implies that O(q) is compact.

3.3. Maximal compact subgroups of GLn(R): orthogonal groups. In
the case of K = R, a bilinear form 〈, 〉 on Rn is said to be an inner product if it
is positive-definite: for all x ∈ Rn, 〈x, x〉 ≥ 0, with equality iff x = 0. Note that
any two quadratic forms giving inner products are equivalent under the action of
GLn(K) (also called “isometric”, but the formulation in terms of group actions will
be convenient for us here), i.e., all inner products are conjugate to the standard
inner product 〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . .+ xnyn coming from the sum
of squares form q(x1, . . . , xn) = x2

1 + . . .+ x2
n.

Exercise 4.22. a) Let G be a group acting on a set X. For x ∈ X, let Gx =
{g ∈ G | gx = x} be the stabilizer of x. Show that for any g ∈ G, Ggx = gGxg

−1.
b) Deduce from part a) that in a transitive group action, all point stabilizers are
conjugate subgroups of G.

Exercise 4.23. a) Let O(n) be the standard real orthogonal group, i.e., the
orthogonal group associated to the standard inner product. Show that it is a compact
subgroup GLn(R).
b) Deduce from Exercise 9.5 that any orthogonal group associated to a positive
definite quadratic form on R is conjugate to the standard orthogonal group O(n).
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Exercise 4.24. a) If q is a quadratic form and α ∈ K×, let αq be the quadratic
form with coefficients scaled by α.3 Show that O(αq) = O(q).
b) Conclude that the orthogonal group of any negative definite real quadratic form
is also conjugate to O(n), hence also compact.

Exercise 4.25. For a, b ∈ N with a+ b = n, let qa,b be the diagonal quadratic
form with a coefficients of +1 and b coefficients of −1. Let O(a, b) be the orthogonal
group of qa,b.
a) Show: the orthogonal group of any nonsingular real quadratic form is conjugate
to a unique O(a, b) with a ≥ b.
b) Show: if a ≥ b > 0, O(a, b) is not compact.

Proposition 4.24. A compact subgroup of GLn(R) admits an invariant inner
product.

Proof. (Weyl) Start with any inner product 〈, 〉, say the standard one. It
need not be G-invariant, but we can make it G-invariant by “averaging” over the
action of G. Namely, define a new inner product 〈, 〉G by

〈x, y〉G :=

∫
G

〈gx, gy〉dµ(g),

where µ(g) is the unit Haar measure on the compact group G. We leave it to the
reader to check that this gives a G-invariant inner product. �

Remark: Some readers may remember this argument from courses in representation
theory and/or functional analysis. It applies equally well to infinite-dimensional
representations V of G and shows that they are all orthogonalizable. (More com-
mon is to consider complex representations and then the term unitarizable is more
familiar. More on this coming up.) It follows from this that any G-invariant
subspace W of V has a G-invariant complement, namely W⊥ and thus any repre-
sentation of a compact group is completely reducible. Note that in the case of a
finite group this is known as Maschke’s Theorem, and in this case the integral is
just the usual sum over all values divided by #G.

Theorem 4.25. (Maximal compact subgroups of GLn(R)) Every compact sub-
group is contained in the orthogonal group of a definite quadratic form. It follows
that the maximal compact subgroups of GLn(R) are precisely these definite orthog-
onal groups, that all maximal compact subgroups are conjugate, and that every
compact subgroup is contained in a maximal compact subgroup.

Proof. The first sentence is a restatement of Proposition 4.24. By Exercise
4.23, all definite orthogonal groups are conjugate. The rest follows immediately. �

3.4. Maximal compact subgroups of GLn(C): unitary groups.

Consider now the case of GLn(C). If n ≥ 2, then by Exercise 4.21 for no qua-
dratic form q(x1, . . . , xn) ∈ C[x1, . . . , xn] is the orthogonal group O(q) compact.

However, from linear algebra we learn that the appropriate analogue of a bilinear
form over C is a Hermitian form, i.e., an R-bilinear form on Cn which is C-linear

3Note: this not the same as acting on q by the scalar matrix αIn: the latter gives α2q, which
is equivalent to q, whereas αq need not be.
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in the first variables and conjugate linear in the second variable. The standard
sesqulinear form is

〈x, y〉 = x1y1 + . . .+ xnyn,

and this is positive definite in the sense that 〈x, x〉 ≥ 0 for all x ∈ Cn and is zero
only if x = 0. To a Hermitian form H we associate its unitary group

U(H) = {g ∈ GLn(C) | ∀x, y ∈ CnH(gx, gy) = H(x, y)}.

The unitary group associated to the standard Hermitian form is denoted U(n).

Exercise 4.26. The unitary group of a Hermitian form is compact iff the form
is positive definite.

The analogy to the real case should now be clear. We leave to the reader the proofs
of the following results.

Proposition 4.26. Any compact subgroup G of GLn(C) admits a G-invariant
positive definite Hermitian form.

Theorem 4.27. (Maximal compact subgroups of GLn(C)) Every compact sub-
group is contained in the unitary group of a definite Hermitian form. It follows
that the maximal compact subgroups of GLn(C) are precisely these definite unitary
groups, that all maximal compact subgroups are conjugate, and that every compact
subgroup is contained in a maximal compact subgroup.

3.5. Maximal compact subgroups of GLn(K): lattice stabilizers.

We now turn to the case of a non-Archimedean locally compact field K. In this
case the maximal compact subgroups of GLn(K) look quite different from the
Archimedean case. This can be seen already in the case n = 1, i.e., K×.

• The maximal compact subgroup of R× is {±1} = O(1).
• The maximal compact subgroup of C× is S1 = U(1).

In each of these cases, the maximal compact subgroup is closed (of course!) but
not open, and thus of smaller dimension than GLn(K) itself. However, K× admits
open compact subgroups, namely R×. Although we have not developed a theory of
non-Archimedean analytic manifolds and their dimensions, in some intuitive sense
it is clear that both K× and R× have dimension one. (And indeed, this can be for-
malized.) In general, in the non-Archimedean case we have the following procedure
for producing compact subgroups:

Theorem 4.28. Let K be a NA locally compact field with valuation ring R.
For any closed subgroup G of GLn(K), define G(R) := G ∩ GLn(R). Then G(R)
is compact and open in G.

Proof. Since G is closed in GLn(K), G(R) = G∩GLn(R) is closed in GLn(R).
Thus it is enough to show that GLn(R) is compact and open. Recall that we may

view GLn(K) as the closed subset of Kn2+1 of all pairs (M,α) ∈ Mn(K) × K
satisfying det(M)α = 1. Under this interpretation, clearly GLn(R) is the closed

subset of Rn
2+1 of all pairs in Mn(R)×R satisfying the same relation. Since Rn

2+1

is compact, so is GLn(R). �
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Now we momentarily work in a slightly more general setting: let R be a PID with
fraction field K. We are interested in finding sufficient condition for a subgroup
G of GLn(K) to be conjugate to a subgroup of GLn(R). The next few results are
taken from [Se:Lie].

Lemma 4.29. Let n ∈ Z+, and let M be an R-submodule of Kn. The following
are equivalent:
(i) M is a finitely generated R-module and M generates Kn as a K-module.
(ii) M ∼= Rn.

Proof. (i) =⇒ (ii). Since M is an R-submodule of Kn, it is torsion free. A
finitely generated module over a PID is free, say M ∼= Rm. There is a natural map
M ⊗R K → Kn, which is surjective since M generates Kn as a K-module: thus
m ≥ n. On the other hand, a basis for M is an R-linearly independent set, hence
also K-linearly independent (clear denominators), so by linear algebra m ≤ n. (ii)
=⇒ (i): if M ∼= Rn, then evidently M is finitely generated. If M did not generate
Kn as a K-module, then the elements e1, . . . , en of a basis for R form a K-linearly
independent subset of Kn which does not span, contradicting linear algebra. �

An R-module M satisfying the equivalent conditions of Lemma 4.29 will be called
a lattice in Kn. (Note that this usage is roughly analogous but not identical to
that of a Z-lattice in Rn.)

Lemma 4.30. For lattices M1, . . . ,Mk in Kn, M = 〈M1, . . . ,Mk〉R is also a
lattice.

Proof. M is a finitely generatedR-module whoseK-span isKn, so this follows
immediately from Lemma 4.29. �

Fix n ∈ Z+, and let L denote the set of all R-lattices in Kn. Any element Λ ∈ L can
be represented as 〈v1, . . . , vn〉R, where (v1, . . . , vn) is a K-basis for Kn. The natural
(simply transitive) action of GLn(K) on ordered bases of Kn induces a transitive
action on L. We claim that the stabilizer of the standard lattice Rn ⊂ Kn is pre-
cisely the subgroup GLn(R). Indeed, it is immediate that each element of GLn(R)
preserves Rn, and conversely, if M ∈ GLn(K) preserves Rn then for all 1 ≤ i ≤ n,
Me1 ∈ Rn, so M ∈Mn(R). The same holds for M−1, so M ∈ GLn(R).

Therefore:

Proposition 4.31.
a) We have an isomorphism of GLn(K)-sets GLn(K)/GLn(R) ∼= L.
b) For every Λ ∈ L, the stabilizer GΛ of Λ in GLn(K) is of the form gGLn(R)g−1

for some g ∈ GLn(K).

Exercise 4.27. Prove Proposition 9.9.

Proposition 4.32. Let G be a subgroup of GLn(K) with the following property:
(LF) There exists a lattice Λ1 ∈ L such that the orbit G.Λ1 is finite.
Then G is conjugate to a subgroup of GLn(R).

Proof. By hypothesis, G.Λ1 is a finite set, say {Λ1, . . . ,Λm}. Put Λ =
〈Λ1, . . . ,Λm〉R. By Lemma 4.30, Λ is again a lattice. By construction, for any
g ∈ G and x ∈ Λ, gx ∈ Λ, i.e., gΛ ⊂ Λ. Applying this with g−1 as well gives
gΛ = Λ, Thus G stabilizes Λ, so G ⊂ GΛ, which is conjugate to GLn(R). �
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Certainly hypothesis (LF) is satisfied if G is finite, and we conclude:

Corollary 4.33. Let R be a PID with fraction field K. Then any finite
subgroup of GLn(K) is conjugate to a subgroup of GLn(R).

Already the case R = Z is interesting and useful, as we shall see shortly.

Finally, we return to the case in which K is a non-Archimedean locally compact
field and R is its valuation ring. In this case, the group GLn(R) is compact and
open in GLn(K). By Proposition 4.31, the same holds for the stabilizer GΛ of every
lattice in Kn.

Theorem 4.34. Let H be a compact subgroup of GLn(K). Then there exists
Λ ∈ L such that gΛ = Λ for all g ∈ H. Equivalently, H ⊂ GΛ.

Proof. By Proposition 4.32 it will suffice to show that a compact subgroup
has property (LF). Begin with any lattice Λ1. Then HΛ1 := H∩GΛ1 is the subgroup
of H consisting of elements preserving Λ1. Since GΛ1

is open in GLn(K), HΛ1
is

open in H. Since the cosets of HΛ1
in H give an open covering of the compact

group H, we must have [H : HΛ1
] < ∞. It follows that the orbit H.Λ1 is finite,

qed. �

4. Cassels’s embedding theorem

4.1. Statement of the Theorem.

Theorem 4.35. (Cassels [Ca76]) Let K be a finitely generated field of charac-
teristic 0, and let x1, . . . , xn ∈ K×. Then there exist infinitely many prime numbers
p such that there is a field embedding ιp : K ↪→ Qp such that for all 1 ≤ i ≤ n,
|ιp(xi)|p = 1.

4.2. Three Lemmas.

Lemma 4.36. Let R be an infinite integral domain, and let f1, . . . , fm ∈ R[t1, . . . , tn]
be nonzero polynomials. Then there exist (a1, . . . , an) ∈ Zn such that for all
1 ≤ i ≤ m, fi(a1, . . . , an) 6= 0.

Proof. We go by induction on n. The case of n = 1 is trivial, since a nonzero
univariate polynomial over a domain has only finitely many roots, so we may select
any element a of R in the complement of a finite set. Assume the result holds for
all polynomials in n− 1 variables. Put S = R[t1] – an infinite integral domain – so
that R[t1, . . . , tn] = S[t2, . . . , tn]. By induction, there exist a2(t1), . . . , am(t1) ∈ S
such that for all i, fi(t1, a2(t1), . . . , an(t1)) 6= 0. Now we apply the n = 1 case. �

Lemma 4.37. Let f(t) ∈ Z[t] be a nonconstant polynomial. Then there exist
infinitely many prime numbers p such that the reduction mod p of f has a Z/pZ-
rational root.

Proof. We give two proofs. First, we may plainly assume that f is irreducible
over Q[t]. Put K = Q[t]/(f) and let L be its normal closure. Then, by the
Cebotarev Density Theorem, the set of prime numbers p which split completely
in L has positive density, and for such primes the mod p reduction of f splits
completely.

However, it is possible to give a completely elementary argument. Namely,
write f(t) = ant

n + . . .+ a1t+ a0. Clearly we may assume that a0 6= 0, otherwise
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0 is a root of every mod p reduction. Suppose for the sake of contradiction that
there exists a finite set S of prime numbers such that if p is a prime not lying in
S, then the mod p reduction of f has no Fp-rational root. Let c ∈ Z be an integer
divisible by all primes in S. Then

f(ca0) = a0r(c) = a0(ana
n−1
0 cn + an−1a

n−2
0 cn−1 + . . .+ 1).

Since f is nonconstant, we may choose c such that r(c) 6= ±1; do so, and let ` be
prime dividing r(c). Since r(c) ≡ 1 (mod p) for all p ∈ S, ` is a prime outside of S
such that f has a rational root modulo `. �

Lemma 4.38. For any prime p, the transcendence degree of Qp over Q is un-
countable.

Proof. Indeed, since Qp has continuum cardinality, this is clear. (But since
we are following Cassels’ proof so closely, we did not want to meddle with his
auspicious number of preliminary lemmas.) �

4.3. The proof of the Cassels Embedding Theorem.

Let K be a finitely generated field of characteristic zero, and let S be a finite
set of nonzero elements of K. At the cost of replacing S with a larger finite set, we
may assume that C is closed under inversion, i.e., s ∈ S =⇒ s−1 ∈ S, and then
it suffices to find, for infinitely many primes p, embeddings ιp : K ↪→ Qp such that
for all s ∈ S, ιp(s) ∈ Zp.

The case in which K is algebraic over Q is easy: then K ∼= Q[t]/(f(t)) is a number
field, and applying Lemma 4.37 to f(t), we get infinitely many primes p such that
there exists a degree one prime ideal p of K lying over p, and thus K ↪→ Kp

∼= Qp.
Moreover, any element of K is a p-adic integer except at finitely many prime ideals
of ZK , so we need only exclude this finite set of primes.

Therefore we may assume that the transcendence degree of K over Q is posi-
tive, say n, and let x1, . . . , xn be a transcendence basis for K/Q, i.e., such that
K/Q(x1, . . . , xn) is finite. Since we are in characteristic 0, the primitive element
theorem applies, and there exists y ∈ K such that K = Q(x1, . . . , xn, y). Therefore
each element c of C may be written in the form

c =
Uc(y, x1, . . . , xn)

Vc(x1, . . . , xn)

for nonzero polynomials Uc ∈ Z[t, x1, . . . , xn], Vc ∈ Z[x1, . . . , xn]. Moreover, a
simple denominator-clearing argument shows there is a polynomial

H(t) = H(t, x1, . . . , xn) ∈ Z[t, x1, . . . , xn]

which is irreducible over Q(x1, . . . , xn) and such that g(y) = 0. We write

H(t) = hs(x1, . . . , xn)ts+ . . .+h1(x1, . . . , xn)t+h0(x1, . . . , xn), hi ∈ Z[x1, . . . , xn],

with hs 6= 0. Let ∆ = ∆(x1, . . . , xn) be the discriminant of H(t), which is a nonzero
element of Z[x1, . . . , xn].
Now we begin! By Lemma 4.36, we may choose integers a1, . . . , an such that

∆(a1, . . . , an) 6= 0
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hs(a1, . . . , an) 6= 0

and

∀c ∈ C, Vc(a1, . . . , an) 6= 0.

Apply Lemma 4.37 to the polynomial H(t, a1, . . . , an) ∈ Z[t]: there exist infinitely
many primes p and integers bp such that

(17) H(bp, a1, . . . , an) ≡ 0 (mod p).

By excluding finitely many primes, we may also assume that none of ∆(a1, . . . , an)
and Vc(a1, . . . , an) are congruent to 0 mod p. For each such prime number p, we
will construct the desired embedding ιp.

Now by Lemma 4.38, let θ1, . . . , θn be elements of Qp which are algebraically inde-
pendent over Q. By replacing each θi by pmθi if necessary (this certainly does not
disturb the algebraic independence), we may assume that 0 < |θi|p < 1 for all i.
For all i, put

ξi = θi + ai.

Thus the ξi’s are algebraically independent over Q such that for all i,

(18) |ξi − ai|p < 1.

By (17) and (18) we have

|H(bp, ξ1, . . . , ξn)|p < 1.

Since the discriminant of H is a p-adic unit, it has distinct roots modulo p, and
Hensel’s Lemma applies to show that there exists η ∈ Zp such that

H(η, ξ1, . . . , ξn) = 0.

It follows that for all c ∈ C,

Uc(η, ξ1, . . . , ξn), Vc(η, ξ1, . . . , ξn) ∈ Zp
and

|Vc(η, ξ1, . . . , ξn)|p = 1.

So we may define an embedding ιp : K ↪→ Qp by:

∀i, ιp : xi 7→ ξi,

and

ιp : y 7→ η.

Moreover, for all c ∈ C,

|ιp(c)|p = |Uc(η, ξ1, . . . , ξn)/Vc(η, ξ1, . . . , ξn))|p = |Uc(η, ξ1, . . . , ξn)|p ≤ 1,

QED.

See [DSS15] for a recent “explicit” form of Theorem 4.35.

One might hope for the positive characteristic of Cassels’s Embedding Theorem.

Theorem? 4.39. Let K be a finitely generated field of characteristic p > 0, with
constant subfield Fq. (I.e., let Fq be the algebraic closure of Fp in K.) Let C be a
finite set of nonzero elements of K. Then there is a field embedding ι : K ↪→ Fq((t))
such that for all c ∈ C, we have ι(c) ∈ Fq[[t]]×.
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Exercise 4.28.
a) Show4 “Theorem 4.39” is false by taking K = Fq(x) and C = {x, xq − x}.
b) Can the result be salvaged somehow?

5. Finite matrix groups

A group G is said to be torsionfree if the only element of finite order is the identity.
A group is virtually torsionfree if it has a finite index torsionfree subgroup. Some
easy properties are established in the following exercise.

Exercise 4.29. a) Show: every subgroup of a torsionfree group is torsionfree.
b) Show: every finite group is virtually torsionfree.
c) Give an example of a group that is not virtually torsionfree.
d) Let G be a finitely generated virtually torsionfree group. Show: G has a finite
index normal subgroup that is torsion free. (Hint: a finitely generated groups has
only finitely many subgroups of any given index.)

One reason to be interested to be interested in whether a group is virtually torsion-
free is the following simple result.

Proposition 4.40. Suppose that a group G has a torsionfree subgroup of finite
index n. Then the order of any finite subgroup of G divides n.

Exercise 4.30. Prove Proposition 4.40.

Exercise 4.31. Suppose that a group G has a torsionfree subgroup of index
dividing n <∞. Show that the same holds for each subgroup of G.

An important class of examples of virtually torsionfree groups are the groups
GLn(Zp). In view of Proposition 4.40, it is useful to have an explicit upper bound
on the index of a torsionfree subgroup, and the following result achieves this.

Theorem 4.41. Let p be a prime number.
a) For p > 2, GLn(Zp) has a torsionfree normal subgroup of index

∏n
i=1(pn−pi−1).

b) GLn(Z2) has a torsionfree normal subgroup of index 2n
2 ∏n

i=1(2n − 2i−1).

Proof. a) Suppose p is odd, and consider the subgroup U1 of GLn(Zp) con-
sisting of matrices of the form 1 + pMn(Zp) – i.e., the kernel of the reduction map
r : GLn(Zp)→ GLn(Z/pZ).5 Evidently U1 is normal and of finite index. We claim
that U1 has no elements of finite order. Indeed, assuming to the contrary it would
have some element of prime order ` (` = p is allowed). But for B ∈Mn(Zp)•,

(1 + pB)` = 1 + `pB +

(
`

2

)
p2B2 + . . .+ p`B`.

Now apply the principle of domination: the least p-adic valuation of an entry of `pB
is strictly smaller than the p-adic valuation of every entry of every matrix

(
`
i

)
piBi

for 2 ≤ i ≤ n: when ` = p we are using that p |
(
`
2

)
, which is valid since p > 2.

Therefore

(1 + pB)` − 1 =
∑̀
i=1

(
`

i

)
piBi 6= 0,

4This observation is due to Qun Li and Haiyang Wang, who took the Spring 2019 version of

the course on which these notes are based.
5Note that when n = 1, this is indeed the first higher unit group considered in Chapter 5.
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contradiction.
b) When p = 2, the above argument does not go through. To remedy it, we need
to use U2 instead, the kernel of the reduction map r : GLn(Z2) → GLn(Z/22Z).
We leave it to the reader to check that U2 has no nontrivial elements of finite
order by modifying the above argument. Moreover, we have [GLn(Z2) : U2] =
# GLn(Z/4Z). To compute the latter quantity, we use the short exact sequence

1→ 1 + (2)Mn(Z/4Z)→ GLn(Z/4Z)→ GLn(Z/2Z)→ 1,

noting that #(1 + (2)Mn(Z/4Z) = 2n
2

. �

Theorem 4.42. (Selberg [Se60]) Let K be a field of characteristic zero, n ∈
Z+, and let G be a finitely generated subgroup of GLn(K). Then G is virtually
torsionfree.

Proof. Let S be a finite, symmetric set of generators of G, i.e., if x ∈ S, then
x−1 ∈ S. The subfield K ′ obtained by adjoining to Q all the matrix entries of the
elements of S is finitely generated, and since S is a generating set for G, we have
G ⊂ GLn(K ′). By Theorem 4.35, there exists a prime number p and an embedding
ι : K ′ → Qp such that every entry of each matrix in S gets mapped into Zp. Thus ι
induces an embedding ι : Mn(K ′) ↪→ Mn(Qp) such thatι(G) ⊂ Mn(Zp), and since
ι(G) is a group we must have ι(G) ⊂ GLn(Zp). By Theorem 4.41, GLn(Zp) is
virtually torsionfree, hence by Exercise 9.14 so is G ∼= ι(G). �

Theorem 4.42 is false without the hypothesis that K has characteristic 0 [Wh, p.
57]. However, Wehrfritz showed [Wh70, Prop. 3.2] that for any field K and any
finitely generated subgroup G of GLn(K), there is a finite index normal subgroup
N of G such that every finite order element g of N is unipotent: i.e., the only
eigenvalue over K is 1; equivalently, there is n ∈ Z+ such that (g − 1)n = 0. An
understanding of these phenomena may be helpful to those trying to state and
prove a true version of Theorem 4.39.

Exercise 4.32. Show that Wehrfritz’s Theorem implies Selberg’s Theorem.

Let n ∈ Z+, and let G be a finite subgroup of GLn(Q). By Corollary 4.33, G is
conjugate to a subgroup of GLn(Z) and hence to a finite subgroup of GLn(Zp) for
all primes p. Combining Proposition 4.40, Exercise 9.14 and Theorem 4.41, we get:

#G | gcd((2n
2
n∏
i=1

(2n − 2i−1), {
n∏
i=1

(pn − pi−1)}p>2).

In practice, this gcd is attained by looking only at very small odd primes. For
example, when n = 2, it is easy to see that the gcd is equal to 48, which is also
# GL2(Z/3Z): all the other orders are proper multiplies of 48, eg. # GL2(Z/4Z) =
96, # GL2(Z/5Z) = 480.

Is this upper bound sharp, i.e., is 48 indeed the least common multiple of all orders
of finite subgroups of GL2(Q) (or equivalently, GL2(Z))? Close, but not quite.
There are well-known matrices of order 4 and 6 in SL2(Z), namely

A =

[
0 −1
1 0

]
, B =

[
0 −1
1 1

]
.
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Moreover, put

S =

[
0 1
1 0

]
,

so that S has determinant −1 and order 2. Then we have

SAS−1 = A−1, SBS−1 = B−1,

so that as subgroups of GL2(Z) we have

〈A,S〉 ∼= D4, 〈B,S〉 ∼= D6,

of orders 8 and 12 respectively. Thus the lcm of all orders of finite subgroups of
GL2(Z) is a multiple of 24.

To show that 24 is sharp, we will use information coming from the Archimedean
place of Q! Namely, we can also embed GL2(Q) ↪→ GL2(R), so that by Theorem
4.25 every finite (hence compact) subgroup of GL2(Q) is conjugate to a subgroup
of the standard orthogonal group O(2). But O(2) has a very agreeable structure:
the determinant map induces a short exact sequence

1→ SO(2)→ O(2)
det→ {±1} → 1,

where the special orthogonal group SO(2) of all orthogonal matrices of determinant
one is just the circle group:

SO(2) = S1 = {
[

cos θ − sin θ
sin θ cos θ

]
| θ ∈ R}.

At first sight this seems unhelpful, because of course SO(2) contains finite sub-
groups of all orders, namely the nth roots of unity. Conversely, it is easy to see
that any finite subgroup of SO(2) is generated by any element of minimal argu-
ment θ, so that the cyclic groups Cn generated by the nth roots of unity are the
only finite subgroups of SO(2). However, very few of the groups Cn have rational
entries: indeed, Cn contains the matrix[

cos( 2π
n ) − sin( 2π

n )
sin( 2π

n ) cos( 2π
n )

]
of trace 2 cos( 2π

n ) = ζn + ζ−1
n , which generates the real subfield of the nth cyclo-

tomic field so for all n > 2 has degree ϕ(n)
2 . Thus this is rational iff ϕ(n) = 2 iff

n = 3, 4, 6. Thus, up to conjugacy, the only matrices in GL2(R) with finite order
and rational trace are ±1, A and B. This shows that the least common multiple of
all orders of finite subgroups of SL2(Q) is 12 and thus that of SL2(Q) is 24.

If we put M(n) to be the least common multiple of all orders of finite subgroups of
GLn(Q), the above work gives an explicit upper bound on M(n) for a given n. In
fact, the exact value of M(n) for all n was computed by Minkowski.

Theorem 4.43. (Minkowksi, 1887) For all n ∈ Z+,

M(n) =
∏
`

`
b n
`−1 c+b

n
`(`−1)

c+b n
`2(`−1)

c+...
,

where the product extends over all prime numbers `.
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Remarkably, the efficacy of the argument of looking at the completion at an Archimedean
place and restricting to matrices with rational trace also holds for all n ≥ 2, as the
following theorem shows:

Theorem 4.44. (Schur, 1905) Let G ⊂ GLn(C) be a finite subgroup of matrices
such that Tr(g) ∈ Q for all g ∈ G. Then #G | M(n).

For modern (and novel) proofs of Theorems 4.42 and 4.43, we heartily recommend
the recent paper of Guralnick and Lorenz [GL06].

For fixed n, it is also interesting to ask for the maximum order of a finite subgroup
of GLn(Q), say m(n). Evidently m(n) | M(n). E.g. we found that m(2) = 12.
This is achieved by the following remarkable theorem of Walter Feit.

Theorem 4.45. (Feit, 1998) Let n be a positive integer, n 6= 2, 4, 6, 7, 8, 9, 10.
a) Then m(n) = 2nn!
b) Let G ⊂ GLn(Q) be a subgroup of order 2nn!. Then G is conjugate to the
subgroup of signed permutation matrices, i.e., the subgroup generated by all permu-
tation matrices and all diagonal matrices with diagonal entries ±1.

Exercise 4.33. Show: for all n ≥ 1, the group of signed permutation matrices
is On(Z) := On(R) ∩GLn(Z).

Feit’s theorem relies upon a 1984 manuscript of B. Weisfeiler [We84]. Weisfeiler’s
manuscript is remarkable in that it uses the classification of finite simple groups,
one of the first to do so in an essential way to derive a significant theorem.

However, there is an even more remarkable, and sad, story concerning Weisfeiler
himself. Boris Weisfeiler has been “missing” in Chile since January 4, 1985. In
March of 1985 the local Chilean court ruled that Weisfeiler had died by accidental
drowning. However, it has long been suspected that Weisfeiler was a desaparecido,
i.e., that his death was one of the secret murders committed by the Pinochet regime.
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