
QUADRATIC RECIPROCITY I

PETE L. CLARK

We now come to the most important result in our course: the law of quadratic
reciprocity, or, as Gauss called it, the aureum theorema (“golden theorem”).

Many beginning students of number theory have a hard time appreciating this
golden theorem. I find this quite understandable, as many first courses do not prop-
erly prepare for the result by discussing enough of the earlier work which makes
quadratic reciprocity an inevitable discovery and its proof a cause for celebration.
Happily, our study of quadratic rings and the quadratic form x2 − Dy2 has pro-
vided excellent motivation. There are also other motivations, involving (what we
call here) the direct and inverse problems regarding the Legendre symbol.

A faithful historical description of the QR law is especially complicated and will
not be attempted here; we confine ourselves to the following remarks. The first
traces of QR can be found in Fermat’s Lemma that −1 is a square modulo an odd
prime p iff p ≡ 1 (mod 4), so date back to the mid 1600’s. Euler was the first to
make conjectures equivalent to the QR law, in 1744. He was unable to prove most
of his conjectures despite a steady effort over a period of about 40 years. Adrien-
Marie Legendre was the first to make a serious attempt at a proof of the QR law, in
the late 1700’s. His proofs are incomplete but contain much valuable mathematics.
He also introduced the Legendre symbol in 1798, which as we will see, is a magical
piece of notation with advantages akin to Leibniz’s dx in the study of differential
calculus and its generalizations. Karl Friedrich Gauss gave the first complete proof
of the QR law in 1797, at the age of 19(!). His argument used mathematical induc-
tion(!!). The proof appears in his groundbreaking work Disquisitiones Arithmeticae
which was written in 1798 and first published in 1801.

The circle of ideas surrounding quadratic reciprocity is so rich that I have found
it difficult to “linearize” it into one written presentation. (In any classroom presen-
tation I have found it useful to begin each class on the subject with an inscription
of the QR Law on a side board.) In the present notes, the ordering is as follows.
In §1 we give a statement of the quadratic reciprocity law and its two supplements
in elementary language. Then in §2 we discuss the Legendre symbol, restate QR
in terms of it, and discuss (with proof) some algebraic properties of the Legendre
symbol which are so important that they should be considered part of the quadratic
reciprocity package. In §3 we return to our “unfinished theorems” about represen-
tation of primes by |x2 −Dy2| when Z[

√
D] is a PID: using quadratic reciprocity,

we can state and prove three bonus theorems which complement Fermat’s Two
Squares Theorem. In §4 we define and discuss the “direct and inverse problems”
for the Legendre symbol and show how quadratic reciprocity is useful for both of
these, in particular for rapid computation of Legendre symbols. More precisely, the
computation would be rapid if we could somehow avoid having to factor numbers

Thanks to Laura Nunley for pointing out a typo.
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quickly, and §5 explains how we can indeed avoid this by using an extension of the
Legendre symbol due to Jacobi.

1. Statement of Quadratic Reciprocity

Notational comment: when we write something like p ≡ a, b, c (mod n), what we
mean is that p ≡ a (mod n) or p ≡ b (mod n) or p ≡ c (mod n). (I don’t see any
other vaguely plausible interpretation, but it doesn’t hurt to be careful.)

Theorem 1. (Quadratic Reciprocity Law) Let p 6= q be odd primes. Then:
(i) If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), p is a square mod q iff q is a square mod p.
(ii) If p ≡ q ≡ 3 (mod 4), p is a square mod q iff q is not a square mod p.

Theorem 2. (First Supplement to the Quadratic Reciprocity Law) If p is an odd
prime, then −1 is a square modulo p iff p ≡ 1 (mod 4).

Theorem 3. (Second Supplement to the Quadratic Reciprocity Law) If p is an odd
prime, then 2 is a square modulo p iff p ≡ 1, 7 (mod 8).

2. The Legendre Symbol

2.1. Defining the Legendre Symbol. We now define a piece of notation intro-
duced by Adrien-Marie Legendre in 1798. There is no new idea here; it is “merely
notation”, but is an example of how incredibly useful well-chosen notation can be.

For n an integer and p an odd prime, we define the Legendre symbol(
n

p

)
:=

 0, if n ≡ 0 (mod p)
1, if n mod p is a nonzero square
−1, if n mod p is nonzero and not a square

We must of course distinguish the Legendre symbol
(

n
p

)
from the rational number

n
p . To help with this, I recommend that (n

p ) be read “n on p”.1

Example 1: To compute (12
5 ), we must first observe that 5 does not divide 12 and

then determine whether 12 is a nonzero square modulo 5. Since 12 ≡ 2 (mod 5)
and the squares modulo 5 are 1, 4, the answer to the question “Is 12 a nonzero
square modulo 5?” is negative, so ( 12

5 ) = −1.

Example 2: To compute ( 101
97 ) – note that 97 is prime! – we observe that 97

does not divide 101. Since 101 ≡ 4 ≡ 22 (mod 97), the answer to the question “Is
101 a nonzero square modulo 97?” is positive, so ( 101

97 ) = 1.

Example 3: To compute ( 97
101 ) – note that 101 is prime! – we observe that 101 cer-

tainly does not divide 97. However, at the moment we do not have a very efficient
way to determine whether 97 is a square modulo 101: our only method is to compute
all of the squares modulo 101. Some calculation reveals that 400 = 202 = 3 ·101+7,
so 202 ≡ 97 (mod 101). Thus 97 is indeed a square modulo 101, so ( 97

101 ) = 1.

1There is in fact some relationship with “n divided by p”, since if we divide n by p with
remainder, getting n = qp + r with 0 ≤ r < p, then the Legendre symbols (n

p
) and ( r

p
) are equal.



QUADRATIC RECIPROCITY I 3

2.2. Restatement of Quadratic Reciprocity Using the Legendre Symbol.

Theorem 4. (Quadratic Reciprocity Restated) Let p and q be distinct odd primes.
a)

(
p
q

) (
q
p

)
= (−1)

(p−1)(q−1)
4 .

b)
(
−1
p

)
= (−1)

p−1
2 .

c)
(

2
p

)
= (−1)

p2−1
8 .

2.3. Some elementary group theory related to the Legendre symbol.

Let p be an odd prime, and consider the group U(p) = (Z/pZ)×; since p is prime,
this is precisely the multiplicative group of nonzero elements of Z/pZ under multi-
plication: in particular, it is a finite commutative group of even order p− 1.

In fact U(p) is a cyclic group: there exists some element g ∈ U(p) such that
every element x ∈ U(p) is of the form gi for a unique 0 ≤ i < p. In classical
number-theoretic language the element g (often viewed as an integer, 0 < g < p)
is a primitive root modulo p. This is nontrivial to prove. We do in fact give
the proof elsewhere in these notes, but in at least one version of the course, we are
covering quadratic reciprocity before the material on the Euler ϕ function which we
use in our proof of this fact. So we would like to give a more elementary discussion
of some weaker properties of U(p) that suffice for our needs here.

Let (G, ·) be a commutative group, and let n be a positive integer. The map

[n] : G → G, x 7→ xn

which sends each element to its nth power, is a homomorphism. We denote the
kernel of the map by G[n]; this is the subgroup of all elements of order dividing
n, often called the n-torsion subgroup of G. We put Gn = [n](G), the image of
the homomorphism, which is the subgroup of elements of G which are nth powers.
There is thus a canonical isomorphism

[n] : G/G[n] ∼→ Gn.

Now further suppose that G is finite. Then

#Gn =
#G

#G[n]
.

Consider for a moment the case gcd(n, #G) = 1. Suppose g ∈ G[n]. Then the
order of g divides n, whereas by Lagrange’s theorem, the order of g divides #G, so
the order of G divides gcd(n, #G) = 1: so g = 1 and G[n] = {1}. Thus #Gn = #G
so Gn = G. So in this case every element of G is an nth power.

We remark in passing that the converse is also true: if gcd(n, #G) > 1, then
G[n] is nontrivial, so the subgroup Gn of nth powers is proper in G. We do not
need this general result, so we do not prove it here, but mention only that it can
be deduce from the classification theorem for finite commutative groups.

Now we specialize to the case G = U(p) = (Z/pZ)× and n = 2. Then

G[2] = {x ∈ Z/pZ \ {0} | x2 = 1}.
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We claim that G[2] = {±1}. First, note that since p is odd, 1 6≡ −1 (mod p), i.e.,
+1 and −1 are distinct elements in Z/pZ, and they clearly both square to 1, so
that G[2] contains at least the two element subgroup {±1}. Conversely, as above
every element of G[2] is a root of the quadratic polynomial t2− 1 in the field Z/pZ.
But a polynomial of degree d over any field (or integral domain) can have at most d
distinct roots: whenever p(a) = 0, applying the division algorithm to p(t) and t−a
gives p(t) = q(t)(t−a)+ c, where c is a constant, and plugging in t = a gives c = 0.
Thus we can factor out t− a and the degree decreases by 1. Therefore #G[2] ≤ 2,
and since we have already found two elements, we must have G[2] = {±1}.

So G2 is an index two subgroup of G and the quotient G/G2 has order two. Like any
group of order 2, it is uniquely isomorphic to the group {±1} under multiplication.
Thus we have defined a surjective group homomorphism

L : U(p) → {±1},

namely we take x ∈ U(p) to the coset xU(p)2. So, L(x) = 1 if x is a square in
(Z/pZ)× and L(x) = −1 otherwise. But this means that for all x ∈ Z/pZ \ {0},
L(x) = (x

p ). Thus we have recovered the Legendre symbol in terms of purely
algebraic considerations and also shown that

∀x, y ∈ U(p),
(

xy

p

)
=

(
x

p

) (
y

p

)
.

In fact we can give a (useful!) second description of the Legendre symbol using
power maps. To see this, consier the map

[
p− 1

2
] : U(p) → U(p).

We claim that the kernel of this map is again the subgroup U(p)2 of squares, of order
p−1
2 . On the one hand, observe that U(p)2 ⊂ U(p)[p−1

2 ]: indeed (x2)
p−1
2 = xp−1 = 1

by Lagrange’s Theorem. Conversely, the elements of U(p)[p−1
2 ] are roots of the

polynomial t
p−1
2 − 1 in the field Z/pZ, so there are at most p−1

2 of them. Thus
U(p)2 = U(p)[p−1

2 ]. By similar reasoning we have U(p)
p−1
2 ⊂ {±1}, hence we can

view [p−1
2 ] as a homomorphism

L′ = [
p− 1

2
] : U(p) → {±1}.

Since the kernel of L′ is precisely the subgroup U(p)2 and there are only two pos-
sible values, it must be the case that L′(x) = −1 for all x ∈ U(p) \U(p)2. In other
words, we have L′(x) = (x

p ).

The following result is essentially a summary of the above work. We strongly
recommend that the reader take time out to convince herself of this.

Proposition 5. The following hold for any a, b ∈ Z and any odd prime p.
a)

(
a
p

)
depends only on the residue class of a modulo p.

b) (Euler)
(

a
p

)
≡ a

p−1
2 (mod p).

c)
(

ab
p

)
=

(
a
p

) (
b
p

)
.
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Note that by taking a = −1 in Proposition 5b), we get(
−1
p

)
= (−1)

p−1
2 .

This is precisely the First Supplement to the quadratic reciprocity law, which we
have now proved twice (in the handout on Pythagorean triples we called it Fer-
mat’s Lemma and proved it using Wilson’s theorem).

2.4. A faster proof using the cyclicity of U(p).

If we happen to know that the unit group U(p) = (Z/pZ)× is cyclic, we can give a
much more streamlined proof of Proposition 5. First note that part a) is obvious
from the definition. Moreover, if we assume part b), part c) follows immediately:(

ab

p

)
= (ab)

p−1
2 = a

p−1
2 b

p−1
2 =

(
a

p

) (
b

p

)
.

So it remains to prove part b). But now suppose that g is a generator for the group
U(p), so that we can write a = gi. Then a

p−1
2 = g

i(p−1)
2 .

Case i: i is even. Then on the one hand a = (g
i
2 )2 is a square in U(p). On the

other hand p− 1 | ip−1
2 , so that g

i(p−1)
2 = 1 by Lagrange’s theorem.

Case 2: i is odd. Then on the on the one hand a = gi is not a square in U(p): for
instance, we know that the subgroup of squares has exactly p−1

2 elements, and we
found p−1

2 distinct elements in Case 1 above: {g2k | 0 ≤ k < p−1
2 }. On the other

hand, since i is odd, p− 1 - ip−1
2 , so that a

p−1
2 = g

i(p−1)
2 6= 1. Since its square is 1,

it must therefore be equal to −1.

3. Motivating Quadratic Reciprocity I: Bonus Theorems

3.1. Some unfinished theorems.

An excellent motivation for the quadratic reciprocity law is provided by our previous
study of the equation x2 −Dy2 = p. Recall we have proved:

Theorem 6. Let D be squarefree integer different from 0 and 1. Assume that the
ring Z[

√
D] is a UFD. Then, for a prime number p, TFAE:

(i) There exist x, y ∈ Z such that p = |x2 −Dy2|.
(ii) There exists x ∈ Z such that D ≡ x2 (mod p).

Moreover we know that Z[
√

D] is a UFD when D ∈ {−1,±2, 3}. The case D = −1
yielded Fermat’s two squares theorem given the additional knowledge that −1 is a
square modulo an odd prime p iff p ≡ 1 (mod 4). To complete our “bonus theo-
rems” we need answers to the following questions:

• For which odd primes p is it the case that −2 is a square modulo p?
• For which odd primes p is it the case that 2 is a square modulo p?
• For which odd primes p is it the case that 3 is a square modulo p?

Comparing with the answer for D = −1, one might hope that the answer is in
terms of some congruence condition on p. Let’s look at some data:



6 PETE L. CLARK

The odd primes p < 200 for which −2 is a square modulo p are:

3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193.

Notice that these are precisely the primes p < 200 with p ≡ 1, 3 (mod 8).

For D = 2, 3 we will give some data and allow you a chance to find the pattern.

The odd primes p < 200 for which 2 is a square modulo p are:

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199.

The odd primes p < 200 for which 3 is a square modulo p are:

3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193.

While we are at it, why not a bit more data?

The odd primes p < 200 for which 5 is a square modulo p are:

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199.

The odd primes p < 200 for which 7 is a square modulo p are:

3, 7, 19, 29, 31, 37, 47, 53, 59, 83, 103, 109, 113, 131, 137, 139, 149, 167, 193, 197, 199.

3.2. With the help of quadratic reciprocity.

We already know that a prime p is of the form |x2 − 2y2| iff ( 2
p ) = 1, and the

second supplement tells us that this latter conditions holds iff p ≡ 1, 7 (mod 8).
While we are here, let’s deal with the absolute value: it happens that Z[

√
2] contains

an element of norm −1, namely 1−
√

2:

N(1−
√

2) = (1−
√

2)(1 +
√

2) = 12 − 2 · 12 = −1.

From this and the multiplicaitivity of the norm map, it follows that if we can rep-
resent any integer n in the form x2 − 2y2, we can also represent it in the form
−(x2 − 2y2), and conversely. From this it follows that the absolute value is super-
fluous and we get the following result.

Theorem 7. (First Bonus Theorem) A prime number p is of the form x2− 2y2 iff
p = 2 of p ≡ 1, 7 (mod 8).

Now let’s look at the case of D = −2, i.e., the form x2 +2y2. Since 2 = 02 +2 ·12, 2
is of of the form x2 + 2y2. Now assume that p is odd. We know that an odd prime
p is of the form x2 + 2y2 iff (−2

p ) = 1. We don’t have a single law for this, but the
multiplicativity of the Legendre symbol comes to our rescue. Indeed,(

−2
p

)
=

(
−1
p

) (
2
p

)
,

so (
−2
p

)
= 1 ⇐⇒

(
−1
p

)
=

(
2
p

)
.

Case 1: (−1
p ) = ( 2

p ) = 1. By the first and second supplements, this occurs iff p ≡ 1
(mod 4) and p ≡ 1, 7 (mod 8), so iff p ≡ 1 (mod 8).
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Case 2: (−1
p ) = ( 2

p ) = −1. By the first and second supplements, this occurs iff
p ≡ 3 (mod 4) and p ≡ 3, 5 (mod 8), so iff p ≡ 3 (mod 8). Thus:

Theorem 8. (Second Bonus Theorem) A prime number p is of the form x2 + 2y2

iff p = 2 or p ≡ 1, 3 (mod 8).

Now let’s look at the case of D = 3, i.e., the form |x2−3y2|. We know that a prime
p is of this form iff ( 3

p ) = 1. Now we use QR itself, and there are two cases:
Case 1: If p ≡ 1 (mod 4), then ( 3

p ) = 1 iff p ≡ 1 (mod 3).
Case 2: If p ≡ 3 (mod 4), then ( 3

p ) = 1 iff p ≡ −1 (mod 3).

The congruence conditions can be consolidated by going mod 12. We get that
( 3

p ) = 1 iff p ≡ 1, 11 (mod 12). Again we can ask what happens when we try to
remove the absolute value. This time things work out somewhat differently.

Theorem 9. (Third Bonus Theorem) For a prime p, the equation x2−3y2 = p has
an integral solution iff p ≡ 1 (mod 12). The equation 3y2 − x2 = p has an integral
solution iff p = 2, p = 3 or p ≡ 11 (mod 12).

Proof. First we deal with the two exceptional cases. Suppose p = 2: reducing
x2 − 3y2 = 2 modulo 3, we get x2 ≡ 2 (mod 3), which we know has no solution.
Note that on the other hand 3(1)2 − 12 = 2, so 2 is of the form 3y2 − x2. Now
suppose p = 3: reducing x2 − 3y2 = 3 modulo 4, we get x2 − 3y2 ≡ x2 + y2 ≡ 3
(mod 4), which (as we have seen before) has no integral solution. On the other
hand, 3 = 3(1)2 − 02, so 3 is of the form 3y2 − x2.

Now suppose that p > 3. Since Z[
√

3] is a PID, we know that p is of the form
p = |x2 − 3y2| iff 3 is a square modulo p, i.e., iff p = 3 or ( 3

p ) = 1. By quadratic
reciprocity, this last condition can be expressed as a congruence modulo 4 · 3 = 12,
specifically p ≡ ±1 (mod 12). So if p ≡ 1, 11 (mod 12) then at least one of the
following holds:

(1) p = x2 − 3y2

or

(2) p = 3y2 − x2.

It turns out that for any prime p, exactly one of the two equations (1), (2) holds,
which is extremely convenient: it means that we can always show that one of the
equations holds by showing that the other one does not hold!

Indeed, if we reduce the equation p = x2−3y2 modulo 3: we get p ≡ x2 (mod 3),
i.e., (p

3 ) = 1, so p ≡ 1 (mod 3). So if p ≡ 11 (mod 12) then p is not of the form
x2 − 3y2 so must be of the form 3y2 − x2. Simiarly, if we reduce the equation
p = 3y2 − x2 modulo 3, we get p ≡ −x2 ≡ −1 (mod 3), so if p ≡ 1 (mod 3) then 2
has no solution, so it must be that p = x2 − 3y2 does have a solution. �

A very similar argument establishes the following more general result.

Theorem 10. Suppose q ≡ 3 (mod 4) is a prime such that Z[
√

q] is a PID. Then
the equation x2 − qy2 = p has a solution iff p ≡ 1 (mod 4) and (p

q ) = 1.
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3.3. Auxiliary congruences.

The restriction to q ≡ 3 (mod 4) in Theorem 10 may appear artificial. But those
who have done their homework know better: in fact if Z[

√
q] is a PID, then we must

have q = 2 (which we have already discussed) or q ≡ 3 (mod 4). (Otherwise Z[
√

q]
is not integrally closed.) A closer look reveals that the distinction between primes
which are 1 (mod 4) and primes which are 3 (mod 4) is a central, albeit somewhat
mysterious part, of the natural behavior of quadratic forms.

One way to see this is in terms of what I shall call auxiliary congruences. Namely,
in our initial study of the equation |x2 −Dy2| = p, we did not consider all possible
congruence obstructions (as e.g. in Legendre’s Theorem) but only condition that
we got upon reducing modulo p: namely that D is a square modulo p. Notice that
we could also reduce modulo D to get some further conditions: more on this in
a moment. But why didn’t we reduce modulo D before? The simple but strange
answer is that we simply didn’t need to: it happened that when Z[

√
D] is a PID,

we were able to prove that the necessary condition that D be a square modulo p
was also sufficient for p to be of the form |x2 −Dy2| = p.

But this is rather surprising. Let’s look closer, and to fix ideas let us take p and q
distinct odd primes, and look at the equation

x2 + qy2 = p.

Then reducing modulo p gives (−q
p ) = 1, whereas reducing modulo q gives (p

q ) = 1.
How do these two conditions interact with each other? Let’s examine the cases:

Case 1: p ≡ 1 (mod 4). Then (−q
p ) = (−1

p )( q
p ) = ( q

p ) = (p
q ). So the condi-

tions are redundant.

Example: Take q = 5. Then the congruence conditions tell us that if p ≡ 1
(mod 4) is of the form x2 + 5y2, we must have (p

5 ) = 1, i.e., p ≡ 1, 4 (mod 5).
Thus, every prime p ≡ 1 (mod 4) which is represented by x2 +5y2 lies in one of the
two congruence classes p ≡ 1, 9 (mod 2)0. As we know, Z[

√
−5] is not a PID, so

nothing we have proved tells us anything about the converse, but the examples in
section §X.X above show that for all p < 200, p ≡ 1, 9 (mod 20) =⇒ p = x2+5y2.
It is easy to extend the compuations to check this for all primes up to say 106. In
fact it is true, although we do not have the right techniques to prove it.

Example: Take q = 3. Then the congruence conditions tell us that if p ≡ 1
(mod 4) is of the form x2 + 3y2, then p ≡ 1 (mod 3). Again computations support
that every prime p ≡ 1 (mod 1)2 is of the form x2 + 3y2.

Case 2: p ≡ 3 (mod 4). Then (−q
p ) = (−1

p )( q
p ) = −( q

p ). To compare this to
the condition (p

q ) = 1, we need to consider further cases.
Case 2a) Suppose also q ≡ 1 (mod 4). Then 1 = (−q

p ) = −( q
p ) = −(p

q ), i.e.,
(p

q ) = −1. This is inconsistent with (p
q ) = 1, so we deduce that when q ≡ 1

(mod 4), p = x2 + qy2 =⇒ p ≡ 1 (mod 4).
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This is a new phenomenon for us. Note that when q = 5, in conjunction with
the above (unproved) result, we get the following

Theorem 11. An odd prime p is of the form x2 + 5y2 iff p ≡ 1, 9 (mod 2)0.

Case 2b): Suppose also q ≡ 3 (mod 4). Then 1 = (−q
p ) = −( q

p ) = (p
q ). Thus the

two congruence conditions are consistent in this case.

Example: Let’s reconsider q = 3. Nothing in our analysis ruled out a prime p ≡ 3
(mod 4) (except p = 3) being of the form x2 + 3y2: the only congruence condition
we found is the main one 1 = (−3

p ) = p
3 , i.e., p ≡ 1 (mod 3). In this case com-

putations suggest that an odd prime p is of the form x2 + 3y2 iff p ≡ 1 (mod 3).
Note that this is exactly the result that we would have gotten if Z[

√
3] were a UFD

except that then 2 would also be of the form x2 + 3y2, which was exactly what we
used to see that Z[

√
3] isn’t a UFD! It turns out that we can prove this result with

the techniques we have: an argument is sketched in the exercises.

These considerations have turned up more questions than answers. Our point is
that the distinction between primes p ≡ 1 (mod 4) and p ≡ 3 (mod 4) is something
that is embedded quite deeply into the behavior of quadratic rings and quadratic
equations. A proper understanding of this phenomenon goes under the heading
genus theory, which was treated by Gauss in his Disquisitiones Arithmeticae and
is intimately related to contemporary issues in number theory.

4. Motivating Quadratic Reciprocity II: Direct and Inverse Problems

4.1. The direct and inverse problems.

We wish to discuss “reciprocal” problems concerning quadratic residues, which can
be phrased in terms of whether we regard the Legendre symbol

(
n
p

)
as a function

of its numerator or as a function of its denominator.

Direct problems: Fix an odd prime p.
direct problem A: Determine all integers which are squares modulo p.
direct problm B: Determine whether a given integer n is a square modulo p.

By Proposition 5a), the answer only depends upon n modulo p, so for fixed p
it is a finite problem: we know that exactly half of the elements of F×p are squares,
so for instance to compute all of them we could simply calculate 12, 22, . . . , (p− 1)2

modulo p.2 However if p is large this will take a long time, and it is natural to
wonder whether there is a faster way of computing

(
n
p

)
for some specific n.

inverse problem: Fix n ∈ Z. For which odd primes p is
(

n
p

)
= 1?

Example: The case n = −1 was needed to prove the two squares theorem. We
found that (−1

p ) = 1 iff p ≡ 1 (mod 4). Note that, although our original proof was

2In fact this gives every square twice; we will get every square once by computing the squares

up to ( p−1
2

)2, as we saw in the Handout on Sums of Two Squares.
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more elementary, this follows immediately from Proposition 5b): (−1
p ) = (−1)

p−1
2 .

In contrast to the direct problems, the inverse problem is apparently an infinite
problem. Moreover, the inverse problem comes up naturally in applications: in-
deed solving the inverse problem for n = ±2, 3 was exactly what we did in the last
section in order to complete our study of the forms x2 − ny2.

4.2. With the help of quadratic reciprocity.

We now make two key observations. First: The Quadratic Reciprocity Law
allows us to reduce the inverse problem to the direct problem A.

Example: Take n = 5. For which odd primes p is 5 a square modulo p?

Answer: Since 5 is 1 (mod 4),
(

5
p

)
=

(
p
5

)
, and we know what the squares are

mod 5: ±1. Thus the answer is that 5 is a square modulo p iff p ≡ ±1 (mod 5).

Example: Take n = 7. For which odd primes p is 7 a square modulo p?

Answer: Since 7 is 3 (mod 4), we need to distinguish two cases: p ≡ 1 (mod 4)
and p ≡ −1 (mod 4). If p ≡ 1 (mod 4), then

(
7
p

)
=

(
p
7

)
, so we just want p to be

a square modulo 7. The squares mod 7 are 12 ≡ 1, 22 ≡ 4 and 32 ≡ 2. We now
have both a congruence condition mod 7 and a congruence condition mod 4: by
the Chinese Remainder theorem, these conditions can be expressed by congruence
conditions mod 28: namely we want p ≡ 1, 9, 25 (mod 28).

Next we consider the case p ≡ −1 (mod 4). This time since p and 7 are both
−1 mod 4, QR tells us that

(
7
p

)
= −1

(
p
7

)
, so we want the nonsquares modulo 7,

or 3, 5, 6. Again we may combine these with the congruence p ≡ −1 (mod 4) by
going mod 28, to get p ≡ 3, 19, 27. So 7 is a square modulo p iff

p ≡ 1, 3, 9, 19, 25, or 27 (mod 28).

The QR law leads to the following general solution of the inverse problem:

Corollary 12. Let q be any odd prime.
a) If q ≡ 1 (mod 4), then

(
q
p

)
= 1 iff p is congruent to a square modulo q (so lies

in one of q−1
2 residue classes modulo q).

b) If q ≡ −1 (mod 4), then
(

q
p

)
= 1 iff p ≡ ±x2 (mod 4q) (so lies in one of q − 1

out of the 2(q − 1) reduced residue classes modulo 4q).

Corollary 12 was first conjectured by Euler and is in fact equivalent to the QR law.
As we will not be using Corollary 12 in the sequel, we leave the proof as an exercise.

So much for the first observation. Here is the second:

The QR law yields an efficient algorithm for Direct Problem B.

This is best explained by way of examples.
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Example: Suppose we want to compute
(

7
19

)
. Using QR we can “invert” the

Legendre symbol, tacking on an extra factor of −1 because 7 ≡ 19 ≡ −1 (mod 4):(
7
19

)
= −

(
19
7

)
= −

(
5
7

)
= −

(
7
5

)
= −

(
2
5

)
.

We have reduced to a problem we know: 2 is not a square mod 5, so the final answer
is

(
7
19

)
= −(−1) = 1.

Example: (
41
103

)
=

(
103
41

)
=

(
21
41

)
=

(
3
41

) (
7
41

)
=

(
41
3

) (
41
7

)
=

(
−1
3

) (
−1
7

)
= −1 · −1 = 1.

Example: (
79
101

)
=

(
101
79

)
=

(
22
79

)
=

(
2
79

) (
11
79

)
=

1 ·
(

11
79

)
= −

(
79
11

)
= −

(
2
11

)
= −(−1) = 1.

Let us now stop and make an important observation: the quadratic reciprocity
law along with its first and second supplements, together with parts a) and c) of
Proposition 5, allows for a computation of the Legendre symbol

(
n
p

)
in all cases.

Indeed, it is multiplicative in the numerator, so we may factor n as follows:

n = (−1)ε2apbp1 · · · pr ·m2,

where ε = ±1, the primes p1, . . . , pr are distinct and prime to p, and m is prime to
p. If b > 0 then the symbol evaluates to 0. Otherwise we have(

n

p

)
=

(
−1
p

)ε (
2
p

)a ∏
i

(
pi

p

)
.

5. The Jacobi symbol

Computing Legendre symbols via the method of the previous section is, for mod-
erately small values of n and p, much faster and more pleasant to do by hand than
computing the list of all p−1

2 quadratic residues mod p. However, when the num-
bers get larger a “hidden cost” of the previous calculation becomes important: the
calculation requires us to do several factorizations, and factorization is the ne plus
ultra of time-consuming number-theoretic calculations.

In fact it is not necessary to do any factorization at all, except to factor out the
largest power of 2, which is computationally trivial (especially if the number is
stored in binary form!). One can use a generalization of the Legendre symbol in-
troduced in 1837 by Carl Gustav Jacob Jacobi (1804-1851).

For a an integer and b an odd positive integer, we define the Jacobi symbol(a

b

)
=

(
a

p1

)
· · ·

(
a

pr

)
,
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where b = p1 · · · pr is the factorization of b into (not necessarily distinct!) primes.

Warning: If a is a square modulo b, then
(

a
b

)
= 1, but the converse does not

hold (you are asked to supply a counterexample in the homework). The Jacobi
symbol is instead a “formal” generalization of the Legendre symbol, as is summa-
rized by the following two results:

Proposition 13. Let a, a1, a2 be integers and b, b1, b2 be odd positive integers.
a)

(
a1
b

)
=

(
a2
b

)
if a1 ≡ a2 (mod b).

b)
(

a1a2
b

)
=

(
a1
b

) (
a2
b

)
.

c)
(

a
b1b2

)
=

(
a
b1

) (
a
b2

)
.

Theorem 14. (QR Law for the Jacobi Symbol) Let a be an integer and b an odd
positive integer.
a)

(−1
b

)
= (−1)

b−1
2 .

b)
(

2
b

)
= (−1)

b2−1
8 .

c) If a is also odd and positive then(a

b

) (
b

a

)
= (−1)

a−1
2

b−1
2 .

The point is that the Jacobi symbol equals the Legendre symbol when the denom-
inator is a prime, and is moreover completely determined by Proposition 13a) and
Theorem 14. Therefore one can compute Legendre symbols by a process of re-
peated inversion and reduction of the numerator modulo the denominator, without
worrying about whether the numerator or denominator is prime.

If a and b each have no more than k digits, then computing the Jacobi symbol(
a
b

)
using the QR law requires no more than a constant times k2 steps, or more

succinctly, can be done in time O(k2).3 In particular, when b = p is prime, the
algorithm takes O(log2 p) steps so is polynomial time (in the number of digits of
p), whereas computing all p−1

2 quadratic residues takes time O(p).

Using the Euler relation (a
p ) ≡ a

p−1
2 (mod p) to compute (a

p ) is also rather effi-
cient, as one can takie advantage of a powering algorithm to rapidly compute
exponents modulo p (the basic idea being simply to not compute the integer a

p−1
2

at all but rather to alternate raising a to successively larger powers and reducing
the result modulo p): this can be done in time O(log3 p). For more information on
this and many other topics related to number-theoretic algorithms, we recommend
Henri Cohen’s A Course in Computational Algebraic Number Theory.

6. A Reminder

Remember that we have not yet proved the Quadratic Reciprocity Law, nor the
Second Supplement which computes ( 2

p ). We are, however, heavily invested in it,
which makes us eager to see a proof, even if it will not be easy.

3The notation O(f(x)) is used in algorithmic complexity theory and also in analytic number
theory to indicate a quantity which is bounded above by a constant times f(x).


