
THE PRIMES: INFINITUDE, DENSITY AND SUBSTANCE

PETE L. CLARK

1. There are infinitely many primes

The title of this section is surely, along with the uniqueness of factorization, the
most basic and important fact in number theory. The first recorded proof was
by Euclid, and we gave it at the beginning of the course. There have since been
(very!) many other proofs, many of which have their own merits and drawbacks. It
is entirely natural to look for further proofs: in terms of the arithmetical function
π(n) which counts the number of primes p ≤ n, Euclid’s proof gives that

lim
n→∞

π(n) = ∞.

After the previous section we well know that one can ask for more, namely for
the asymptotic behavior (if any) of π(n). The asymptotic behavior is known – the
celebrated Prime Number Theorem, coming up soon – but it admits no proof
simple enough to be included in this course. So it is of interest to see what kind of
bounds (if any!) we get from some of the proofs of the infinitude of primes we shall
discuss.

1.1. Euclid’s proof. We recall Euclid’s proof. There is at least one prime, namely
p1 = 2, and if p1, . . . , pn are any n primes, then consider

Nn = p1 · · · pn + 1.

This number Nn may or may not be prime, but being at least 3 it is divisible by
some prime number q, and we cannot have q = pi for any i: if so pi|p1 · · · pn and
pi|Nn implies pi|1. Thus q is a new prime, which means that given any set of n
distinct primes we can always find a new prime not in our set: therefore there are
infinitely many primes.

Comments: (i) Euclid’s proof is often said to be “indirect” or “by contradiction”,
but this is unwarranted: given any finite set of primes p1, . . . , pn, it gives a perfectly
definite procedure for constructing a new prime.

(ii) Indeed, if we define E1 = 2, and having defined E1, . . . , En, we define En+1 to
be the smallest prime divisor of E1 · · ·En + 1, we get a sequence of distinct prime
numbers, nowadays called the Euclid sequence (of course we could get a different
sequence by taking p1 to be a prime different from 2). The Euclid sequence begins

2, 3, 7, 43, 13, 53, 5, . . .

Many more terms can be found on the online handbook of integer sequences. The
obvious question – does every prime occur eventually in the Euclid sequence with
p1 = 2 (or in any Euclid sequence?) remains unanswered.

c© Pete L. Clark, 2007.
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(iii) It is certainly a “classic” proof, but it is not “aesthetically perfect” (what-
ever that may mean). Namely, there is a moment when the reader wonders – hey,
why are we multiplying together the known primes and adding one? One can ad-
dress this by pointing out in advance the key fact that gcd(n, n + 1) = 1 for all n.
Therefore if there were only finitely many primes p1, . . . , pr, there would be an inte-
ger divisible by all of them, N = p1 · · · pr, and then the fact that gcd(N,N +1) = 1
leads to a contradiction. I do like this latter version better, but it is really just a
rewording of Euclid’s proof.1

(iv) Euclid’s proof can be used to prove some further results. For instance:

Theorem 1. Fix a positive integer N > 2. Then there are infinitely many primes
p which are not congruent to 1 (mod N).

Proof. Take p1 = 2, which is not congruent to 1 (mod N). Assume that p1, . . . , pn

is a list of n primes, none of which are 1 (mod N). Now consider the product

Pn := Np1 · . . . · pn − 1.

Pn ≥ N − 1 ≥ 2, so it has a prime divisor. Also Pn ≡ −1 (mod N). So if every
prime divisor q of Pn were 1 mod N , then so would Pn be 1 (mod N) – which it
isn’t – therefore Pn has at least one prime divisor q which is not 1 (mod N). As
above, clearly q 6= pi for any i, which completes the proof. �

In fact this argument can be adapted to prove the following generalization.

Theorem 2. Fix a positive integer N > 2, and let H be a proper subgroup of
U(N) = (Z/NZ)×. There are infinitely many primes p such that p (mod N) 6∈ H.

The proof is left as an exercise. (Suggestion: fix a ∈ Z+, 1 < a < N , such that a
(mod N) 6∈ H. Take P0 = 2N − a and for n ≥ 1, Pn = 2N

∏n
i=1 pi − a.)

Remark: If ϕ(N) = 2 – that is, for N = 3, 4, or 6 – then ±1 gives a reduced
residue system modulo N , so that any prime p > N − 1 which is not 1 (mod N) is
necessarily −1 (mod N). Thus the argument shows that there are infinitely many
primes p which are −1 (mod 3), −1 (mod 4) or −1 (mod 6). This is of course a
special case of Dirichlet’s theorem.

Remark: Interestingly, one can also prove without too much trouble that there
are infinitely many primes p ≡ 1 (mod N): the proof uses cyclotomic polynomials.

Theorem 3. For any field F , there are infinitely many irreducible polynomials over
F , i.e., infinitely many irreducible elements in F [T ].

Proof. Euclid’s argument works here: take e.g. p1(t) = t, and having produced
p1(t), . . . , pr(t), consider the irreducible factors of p1(t) · · · pr(t) + 1. �

Note that one can even conclude that there are infinitely many prime ideals in
F [t] – equivalently, there are infinitely many monic irreducible polynomials. When
F is infinite, the monic polynomials t − a for a ∈ F do the trick. When F is

1I have heard this argument attributed to the great 19th century algebraist E. Kummer. For

what little it’s worth, I believe I came up with it myself as an undergraduate. Surely many others
have had similar thoughts.
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finite, we showed there are infinitely many irreducible polynomials, but there are
only #F − 1 different leading coefficients, so there must be infinitely many monic
irreducible polynomials. It is interesting to think about why this argument does
not work in an arbitrary PID.2

1.2. Fermat numbers. Another way to construe Euclid’s proof is that it suffices
to find an infinite sequence ni of pairwise coprime positive integers, because these
integers must be divisible by different primes. The Euclid sequence is such a se-
quence. A more “natural” looking sequence is the following.

Theorem 4. The Fermat numbers Fn = 22n

+ 1 are pairwise coprime.

Proof. We claim that for all n ≥ 1 we have

Fn =
n−1∏
d=0

Fd + 2.

This certainly suffices, since if p is some common prime divisor of Fd (for any d < n)
and Fn then p | Fn−2, hence p | 2, but all the Fermat numbers are odd. The claim
itself can be established by induction; we leave it to the reader. �

1.3. Mersenne numbers. Recall that Fermat believed that all the Fermat num-
bers were prime, and this is not true, since e.g.

F5 = 225
+ 1 = 641 · 6700417,

and in fact there are no larger known prime Fermat numbers. Nevertheless the
previous proof shows that there is something to Fermat’s idea: namely, they are
“almost” prime in the sense that no two of them have a common divisor. One then
wonders whether one can devise a proof of the infinitude of the primes using the
Mersenne numbers 2p − 1, despite the fact that it is unknown whether there are
infinitely many Mersenne primes. This can indeed be done:

Let p be a prime (e.g. p = 2, as usual) and q a prime divisor of 2p − 1. Then
2p ≡ 1 (mod q). In other words, p is a multiple of the order of 2 in the cyclic group
(Z/qZ)×. Since p is prime the order of 2 must be exactly p. But by Lagrange’s the-
orem, the order of an element divides the order of the group, which is ϕ(q) = q− 1,
so p | q − 1 and hence p < q. Thus we have produced a prime larger than the one
we started with.

1.4. Euler’s first proof. It is a remarkable fact that the formal identity∏
p

(1− 1
p
)−1 =

∑
n

1
n

– which amounts to unique factorization – immediately implies the infinitude of
primes. Indeed, on the left hand side we have a possibly infinite product, and on
the right-hand side we have an infinite sum. But the infinite sum is well-known to
be divergent, hence the product must be divergent as well, but if it were a finite
product it would certainly be convergent!

2For there are PID’s with only finitely many prime ideals: e.g. the set of rational numbers
whose reduced denominator is prime to 42 is a PID with exactly three prime ideals.
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Many times in the course we have seen a rather unassuming bit of abstract al-
gebra turned into a mighty number-theoretic weapon. This example shows that
the same can be true of analysis.

1.5. Chaitin’s proof. In his most recent book3 the computer scientist Gregory
Chaitin announces an “algorithmic information theory” proof of the infinitude of
primes. He says: if there were only finitely many primes p1, . . . , pk then every
positive integer N could be written as

N = pa1
1 · · · pak

k ,

which is “too efficient” a way of representing all large integers N . Chaitin compares
his proof with Euclid’s proof and Euler’s proof (with a grandiosity that I confess
I find unjustified and unbecoming). But criticism is cheaper than understanding:
can we at least make sense of his argument?

Let us try to estimate how many integers n, 1 ≤ n ≤ N , could possibly be ex-
pressed in the form pa1

1 · · · pak

k , i.e., as powers of a fixed set of k primes. In order for
this expression to be at most N , every exponent has to be much smaller than N :
precisely we need 0 ≤ ai ≤ logpi

N ; the latter quantity is at most log2 N , so there
are at most log2 N + 1 choices for each exponent, or (log2 N + 1)k choices overall.
But aha – this latter quantity is much smaller than N when N is itself large: it is
indeed the case that the percentage of integers up to N which we can express as a
product of any k primes tends to 0 as N approaches infinity.

So Chaitin’s proof is indeed correct and has a certain admirable directness to it.

1.6. Another important proof. However, the novelty of Chaitin’s proof is less
clear. Indeed, in many standard texts (including Hardy and Wright, which was
first written in 1938), one finds the following argument, which is really a more so-
phisticated version of Chaitin’s proof.

Again, we will fix k and estimate the number of integers 1 ≤ n ≤ N which are
divisible only by the first k primes p1, . . . , pk, but this time we use a clever trick:
recall that n can be written uniquely as uv2 where u is squarefree. The number of
squarefree u’s – however large! – which are divisible only by the first k primes is 2k

(for each pi, we either choose to include it or not). On the other hand, n = uv2 ≤ N

implies that v2 ≤ N and hence v ≤ N
1
2 . Hence the number of n ≤ N divisible only

by the first k primes is at most 2k
√

N . If there are k primes less than or equal to
N , we therefore have

2k
√

N ≥ N

or

k ≥ log2(N)
2

.

3Its title is Meta Math! The Quest for Omega.
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1.7. An algebraic number theory proof. We now sketch a proof due to Lawrence
Washington.

Let R be a PID, with field of fractions F . Suppose K is a finite-degree field
extension of F – in other words, there exists some positive integer d and elements
x1, . . . , xd of K such that every element x of K can be written as α1x1 + . . .+αdxd

for αi ∈ F . In such a situation we can define a subset RL of L, which is the set of
all elements x of L which satisfy a monic polynomial relation with coefficients in
R: that is, for some n ∈ Z+,

xn + rn−1x
n−1 + . . . + r1x + r0 = 0,

and ri ∈ R for all i. It can be shown that RL is a subring of L, called the integral
closure of R in L: see §2 of the Appendix on Integral Elements and Extensions. As
an example, when R = Z and D is a squarefree integer not congruent to 1 (mod 4),
then taking K = Q and L = Q(

√
D), then the integral closure of Z in L is our

friend the quadratic ring Z[
√

D]. Anyway, here is the result:

Theorem 5. Suppose that a PID R, with quotient field K, has only finitely many
prime ideals. Then for any finite-degree field extension L of K, the integral closure
S of R in L is again a PID.

This shows the infinitude of the primes in Z, since we saw that Z[
√
−5] is not a PID!

The proof of Theorem 5 lies further up and further in the realm of algebraic num-
ber theory than we dare to tread in this course. But here is a sketch of a proof
for the “slummers”4: the ring S is a Dedekind domain, so for any nonzero prime
ideal p of R, pS is a nontrivial finite product of powers of prime ideals. The dis-
tinct prime ideals Pi appearing in this factorization are precisely the prime ideals
P lying over p, i.e., such that P ∩ R = p. This shows that the restriction map
P 7→ P ∩R from prime ideals of S to prime ideals of R has finite fibers. Thus, since
by assumption there are only finitely many prime ideals of R, there are only finitely
many prime ideals of S. Finally, a Dedekind domain with only finitely many prime
ideals is necessarily a PID, as can be shown using the Chinese Remainder Theorem.

This is a proof with a moral: we need to have infinitely many primes in order
for number theory to be as complicated as it is.

1.8. Furstenberg’s proof. The last proof we will give is perhaps the most remark-
able one. In the 1955 issue of the American Mathematical Monthly there appeared
the following article by Hillel Furstenberg, which we quote in its entirety:

“In this note we would like to offer an elementary ‘topological’ proof of the in-
finitude of the prime numbers. We introduce a topology into the space of integers
S, by using the arithmetic progressions (from −∞ to +∞) as a basis. It is not
difficult to verify that this actually yields a topological space. In fact under this
topology S may be shown to be normal and hence metrizable. Each arithmetic
progression is closed as well as open, since its complement is the union of other
arithmetic progressions (having the same difference). As a result the union of any
finite number of arithmetic progressions is closed. Consider now the set A = ∪Ap,

4i.e., more advanced readers who are reading these notes
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where Ap consists of all multiples of p, and p runs though the set of primes ≥ 2.
The only numbers not belonging to A are −1 and 1, and since the set {−1, 1} is
clearly not an open set, A cannot be closed. Hence A is not a finite union of closed
sets which proves that there are an infinity of primes.”

Remarks: Furstenberg was born in 1935, so this ranks as one of the leading in-
stances of undergraduate mathematics in the 20th century. He is now one of the
leading mathematicians of our day. What is all the more remarkable is that this
little argument serves as a preview of the rest of his mathematical career, which has
concentrated on applying topological and dynamical methods (“ergodic theory”) to
the study of problems in number theory and combinatorics.

2. Bounds

Let us now go through some of these proofs and see what further information, if
any, they yield on the function π(n).

1. From Euclid’s proof one can deduce that π(n) ≥ C log log n. We omit the
argument, especially since the same bound follows more readily from the Fermat
numbers proof. Of course this is a horrible bound.

2. The Mersenne numbers proof gives, I believe, an even worse (iterated loga-
rithmic) bound. I leave it to the reader to check this.

3. Euler’s first proof does not immediately come with a bound attached to it.
However, as we saw earlier in our study of the φ function, it really shows that

r∏
i=1

(1− 1
pi

)−1 >
r∑

i=1

1
r
≥ C log r.

After some work, one can deduce from this that
n∑

i=1

1
pi
≥ C log log n,

whence the divergence of the prime reciprocals. We will not enter into the details.

4. Chatin’s proof gives a lower bound on π(n) which is between log log n and
log n (but much closer to log n).

5. As we saw, one of the merits of the proof of §1.6 is that one easily deduces
the bound π(n) ≥ log2 n

2 . (Of course, this is still almost a full exponential away
from the truth.)

6. As we mentioned, knowing that the prime reciprocals diverge suggests that π(n)
is at worst only slightly smaller than n itself. It shows that π(n) is not bounded
above by any power function Cnδ for δ < 1.

7. The last two proofs give no bounds whatsoever, not even implicitly. This seems
to make them the worst, but there are situations in which one wants to separate
out the problem of proving the infinitude of a set of numbers from the problem of
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estimating its size, the latter problem being either not of interest or (more often)
hopelessly out of current reach. In some sense all of the arguments except the
last two are implicitly trying to prove too much in that they give lower bounds on
π(n). Trying to prove more than what you really want is often a very good tech-
nique in mathematics, but sometimes, when the problem is really hard, making
sure that you are concentrating your efforts solely on the problem at hand is also a
key idea. At any rate, there are many problems in analytic combinatorics for which
Furstenberg-type existence proofs either were derived long before the explicit lower
bounds (which require much more complicated machinery) or are, at present, the
only proofs which are known.

I confess that I like Furstenberg’s proof the best.

3. The density of the primes

All of the results of the previous section were lower bounds on π(x). It is also of
interest to give an upper bound on π(x) beyond the “trivial” bound π(x) ≤ x. The
following gives such a result.

Theorem 6. As n →∞, we have π(n)
n → 0.

If you like, this result expresses that the probability that a randomly chosen positive
integer is prime is 0. We will come back to this idea after the proof, replacing
“probability” by the more precise term density.

Proof. Let us first observe that there are at most N
2 primes in the interval [1, N ]

since all but one of them must be odd. Similarly, since only one prime is divisible
by 3, every prime p > 6 must be of the form 6k + 1 or 6k + 5, i.e., only 2 of the 6
residue classes mod 6 can contain more than one prime (in fact some of them, like
4, cannot contain any primes, but we don’t need to worry about this), so that of
the integers n ≤ N , at most 2

6N + 6 + 2 are primes.
In fact this simple reasoning can be carried much farther, using what we know

about the ϕ function. Namely, for any positive integer d, if gcd(a, d) > 1 there is
at most one prime p ≡ a (mod d).5 In other words, only ϕ(d) out of d congruence
classes mod d can contain more than one prime, so at most (ϕ(d)

d )N + d + ϕ(d)
of the integers 1 ≤ n ≤ N can possibly be prime. (Here we are adding d once to
take care of the one prime that might exist in each congruence class and adding
d a second time to take care of the fact that since N need not be a multiple of
d, so the “partial congruence class” at the end may contain a higher frequency of
primes than ϕ(d)/d, but of course no more than ϕ(d) of primes overall.) But we
know, thank goodness, that for every ε > 0, there exists a d such that ϕ(d)

d < ε,
and choosing this d we find that the number of primes n ≤ N is at most

π(N)
N

≤ εN + d + ϕ(d)
N

= ε +
d + ϕ(d)

N
.

This approaches ε as N →∞, so is, say, less than 2ε for all sufficiently large N . �

Remark: Reflecting on the proof, something slightly strange has happened: we
showed that ϕ(d)/d got arbitrarily small by evaluating at d = p1 · · · pr, the product

5Recall this is true because if x ≡ a (mod d), gcd(a, d) | d | x − a, and gcd(a, d) | a, so
gcd(a, d)|x.)
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of the first r primes. Thus, in order to show that the primes are relatively sparse,
we used the fact that there are infinitely many of them!

In fact, by similarly elementary reasoning, one can prove a more explicit result,
that π(n) ≤ Cn

log log n . Before moving on to discuss some similar and stronger state-
ments about the order of magnitude of π(n), let us digress a bit on the notion of
density of a set of integers.

Definition: A subset A of the positive integers is said to have density δ(A) = α if

lim
N→∞

#{1 ≤ n ≤ N | n ∈ A}
N

= α.

We have encountered this notion before: recently we claimed (based on something
less than a rigorous proof) that the density of squarefree integers is 6

π2 . Notice
that we have just shown that the primes have density zero. Here are some further
examples:

Example 1: For any positive integers a and N , the density of the set of posi-
tive integers x ≡ a (mod N) is 1

N . In particular, the set of all positive integers
whose last decimal digit is 1 has density 1

10 .

Example 2: Any finite set has density zero.

Example 3: For any k > 1, the set of kth powers nk has density 0.

Example 4: In fact the set of all proper powers, i.e., positive integers of the form
nk with k > 1, has density zero.

Example 5: The set A of all positive integers whose first decimal digit is 1 does
not have a density: that is, the limit does not exist. To see this, let C(N) be
the number of positive integers 1 ≤ n ≤ N with first digit 1. For any k ≥ 1,
C(2 · 10k − 1) ≥ 1

2 (2 · 10k − 1), since all of the integers from 10k to 2 · 10k − 1 begin
with 1, and this is half of all integers less than 2 · 10k − 1. On the other hand, none
of the integers from 2 · 10k to 10k+1 − 1 begin with 1, and this is 8

10 of the integers
less than or equal to 10k+1 − 1, so C(10k+1 − 1) ≤ 2

10 (10k+1 − 1). Thus C(N)/N
does not tend to any limiting value.

Because of this definition it is common to discuss also the upper density δ(A)
and the lower density δ(A): in the above definition replace lim by lim inf (resp.
lim sup), the point being that these two quantities exist for any set, and a set A has
a density if δ = δ. Note that if δ(A) = 0, then necessarily δ(A) exists and equals 0.

Example 6: If A1, . . . , Ak are finitely many sets having densities α1, . . . , αk, re-
spectively, then the upper density of A1 ∪ . . . ∪ Ak is at most α1 + . . . + αk. If
A1, . . . , Ak are pairwise disjoint, then the density of A1 ∪ . . . ∪ Ak exists and is
exactly α1 + . . . + αk. (In fact it is enough if the pairwise intersections Ai ∩Aj all
have density zero.)
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Density versus probability: Why have we backed off from using the word “proba-
bility”? Because ever since the work of the great early twentieth century Russian
mathematician Kolmogorov, mathematicians have been trained to use the word
“probability” only in the measure-theoretic sense, or, in plainer language, for the
following situation: we have a set S (the “sample space”) and a function which as-
sociates to each reasonable subset E (an “event”) a number P (E), 0 ≤ P (E) ≤ 1,
and satisfying the axiom of countable additivity: if {Ei}∞i=1 is a sequence of
events which are strongly mutually exclusive (i.e., Ei ∩ Ej = ∅ for all i 6= j), then

P (
⋃
i

Ei) =
∞∑

i=1

P (Ei).

Our density function δ satisfies finite additivity but not countable additivity: in-
deed, if we took Ai to be the singleton set {i}, then certainly δ(Ai) = 0 for all i
but the union of all the Ai’s are the positive integers themselves, so have density
1. This is the problem: for a probability measure we cannot have (countably!)
infinitely many sets of measure zero adding up to a set of positive measure, but
this happens for densities.

A similar problem occurs in our “proof” that the squarefree integers have density
6

π2 . The set Sp2 of integers which are not multiples of p2 has density 1 − 1
p2 , and

it is indeed true that these sets are “finitely independent” in the sense that the
intersection of any finite number of them has density equal to the product of the
densities of the component sets:

δ(Sp1 ∩ . . . ∩ Spn
) =

n∏
i=1

(1− 1
p2

).

4. Substance

Let us define a subset S of the positive integers to be substantial if
∑

n∈S
1
n = ∞.

Example 0: Obviously a finite set is not substantial.

Example 1: The set Z+ is substantial: the harmonic series diverges.

Example 2: If S and T are two sets with finite symmetric difference – that is,
there are only finitely many elements that are in S and not T or in T but not S –
then S is substantial iff T is substantial.

Example 3: For any subset S of Z+, at least one of S and its complementary
subset S′ = Z+ \ S is substantial, since∑

n∈S

1
n

+
∑
n∈S′

1
n

=
∑

n∈Z+

1
n

= ∞.

So there are “plenty” of substantial subsets. It is certainly possible for both S and
S′ to be substantial: take, e.g. the set of even numbers (or any S with 0 < δ(S) < 1:
see below).
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Example 4: For any fixed k > 1, the set of all perfect kth powers is not sub-
stantial: by (e.g.) the Integral Test,

∑∞
n=1

1
nk < ∞.

Example 5: The set of integers whose first decimal digit is 1 is substantial.

Example 6: Indeed any set S with positive upper density is substantial. This
is elementary but rather tricky to show, and is left as a (harder) exercise.

The converse does not hold. Indeed, we saw above that the primes have zero
density, but we will now establish the following:

Theorem 7. The sum
∑

p
1
p of the prime reciprocals is infinite.

Proof. (Erdős) Seeking a contradiction, we suppose that the series converges: then
there exists an k such that ∑

p>pk

1
p

<
1
2
.

However, the number of integers 1 ≤ n ≤ N which are divisible by pk+1 is at most
N

pk+1
; similarly for pk+2, pk+3, so that overall the number of integers which are

divisible by any p > pk is at most

N

pk+1
+

N

pk+2
+ . . . = N

∑
p>pk

1
p

=
N

2
.

But this says that for any N , at least half of all positive integers are divisible by
one of the first k primes, which the argument of §1.6 showed not to be the case. �

Remarks: Maybe this is the best “elementary” proof of the infinitude of the primes.
Aside from being an elegant and interesting argument, it is a quantum leap beyond
the previous results: since for any k ≥ 2,

∑
n

1
nk converges, it shows that there

are, in some sense, many more primes than perfect squares. In fact it implies that
there is no δ < 1 and constant C such that π(n) ≤ Cnδ for all n, so that if π(n)
is well-behaved enough to have a “true order of magnitude” than its true order is
rather close to n itself.

A striking substance-theoretic result that we will not be able to prove here:

Theorem 8. (Brun) The set T of “twin primes” – i.e., primes p for which at least
one of p− 2 and p + 2 is prime – is insubstantial.

In a sense, this is disappointing, because we do not know whether T is infinite,
whereas if T had turned out to be substantial we would immediately know that
infinitely many twin primes exist! Nevertheless a fair amount of work has been
devoted (for some reason) to calculating Brun’s sum∑

n∈T

1
n
≈ 1.902 . . . .

In particular Tom Nicely has done extensive computations of Brun’s sum. His work
got some unexpected publicity in the mid 1990’s when his calculations led to the
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recognition of the infamous “Pentium bug”, a design flaw in many of the Intel mi-
croprocessors.6

The last word on density versus substance: In 1972 Endre Szemerédi proved –
by elementary combinatorial means – the sensational result that any subset S of
positive upper density contains arbitrarily long arithmetic progressions, a vast gen-
eralization of a famous theorem of van der Waerden (on “colorings”) which was
conjectured by Erdős and Turan in 1936.7 Unfortunately this great theorem does
not apply to the primes, which have zero density.

However, Erdős and Turan made the much more ambitious conjecture that any
substantial subset should contain arbitrarily long arithmetic progressions. Thus,
when Green and Tao proved in 2002 that there are arbitrarily long arithmetic pro-
gressions in the primes, they verified a very special case of this conjecture. Doubt-
less many mathematicians are now reconsidering the Erdős-Turan conjecture with
renewed seriousness.

6The PC I bought in 1994 (my freshman year of college) had such a bug. The Intel corporation
reassured consumers that the bug would be of no practical consequence unless they were doing
substantial floating point arithmetic. Wonderful. . .

7Several other mathematicians have devoted major parts of their career to bringing more

sophisticated technology to bear on this problem, obtaining quantitative improvements of Sze-
merédi’s theorem. Notably Timothy Gowers received the Fields Medal in 1998 for his work in
this area. One must wonder whether the fact that Szemerédi did not receive the Fields Medal
for his spectacular result is an instance of the prejudice against combinatorial mathematics in the

mainstream mathematical community. (The extent of this prejudice also renders the plot of the
movie “Good Will Hunting” somewhat implausible.)


