
GAUSS’ CIRCLE PROBLEM

1. Gauss’ circle problem

We begin with a very classical problem: how many lattice points lie on or inside
the circle centered at the origin and with radius r? (In keeping with the classical
terminology, we will in this section speak of lattice points “in the circle” rather
than the more careful modern terminology “in the closed disk of radius r”.) Let
L(r) be the number of such points.

If one gathers a bit of data, it becomes apparent that L(r) grows quadratically
with r, which leads to consideration of the function L(r)/r2. Here a little bit of
data makes the conclusion inescapable:

R(10)/102 = 3.17.

R(100)/1002 = 3.1417.

R(1000)/10002 = 3.141549.

R(104)/108 = 3.14159053.

Thus the result we want is surely the following:

Theorem 1. As r →∞, we have L(r) ∼ πr2.

In fact, if we did not guess this result before, we may feel a little sheepish: πr2 is
of course the area of the region bounded by the circle x2 + y2 = r2, and it stands
to reason that the area of a circle is a good approximation to the number of lattice
points it contains. (Why? A picture would surely help. The key is to associate to
each lattice point the unit square with that lattice point as the southwestern corner.)

But how to prove it? If we are in a “calculus mood,” our first thought is that
the area of the circle of radius r is obtained as a Riemann integral, i.e., by inte-
grating 1 over the interior of the circle. This involves integration over a region
with curved sides. An equivalent but technically easier approach is to integrate the
characteristic function χ(r) of the disk of radius r over the entire plane, or say, over
the square [−r, r]2 = [−r, r]× [−r, r]. Recall that this function χ is by definition 1
at a point (x, y) inside the disk – so with x2 + y2 ≤ r2 – and 0 otherwise.

Another nice trick is to take seriously the rescaling L(r) 7→ L(r)/r2. Namely,
counting the number of standard lattice points inside the circle x2 + y2 = r2 is
equivalent to counting the number of points (x, y) inside the unit disk x2 + y2 = 1
such that rx, ry ∈ Z (i.e., rational numbers whose denominators divide r). Namely,
we would like to see that the number of these “ 1

r -lattice points” divided by r2 ap-
proaches π as r →∞. But now consider that we can divide the square [−1, 1] into
(2r)2 = 4r2 subsquares of width 1

r . Consider the sum Σ(r) of the form
∑

i,j

ε(i, j)
1
r2

,

1



2 GAUSS’ CIRCLE PROBLEM

where −r ≤ i, j < r so the sum ranges over the subsquares, and we will put
ε(i, j) = 1 if the southwestern corner of the subsquare is on or inside the unit
circle and zero otherwise. On the one hand we have Σ(r) = L(r)−2

r2 , since each
( 1

r )-lattice point inside the circle is the southwestern corner of a unique subsquare
of [−1, 1]2 except the right-most point (0, 1) and the top-most point (1, 0). This
little discrepancy hardly matters, because of course

lim
r→∞

Σ(r) = lim
r→∞

L(r)
r2

− lim
r→∞

2
r2

= lim L(r)r2 − 0 = lim
r→∞

L(r)
r2

;

where the first limit exists iff the last limit does. But indeed limr→∞ Σ(r) does
exist, since Σ(r) can be interpreted as a sequence of Riemann sums for the inte-
gral

∫ 1

−1

∫ 1

−1
χ(1)dxdy corresponding to the partition of [−1, 1]2 into r2 subsquares.

Since the mesh of this sequence of partitions approaches zero, the sums approach
the integral of the characteristic function χ(1) of the unit circle, namely π.

This completes the proof of the theorem, except perhaps that we ought to reflect a
little (now, if not in the multivariable calculus class when the characteristic function
device was first introduced to us) on the Riemann integrability of the characteristic
function χ(1) of the unit disk. It is a bounded function, but it is not everywhere
continuous: indeed it is discontinuous precisely along its boundary, the unit circle
x2 + y2 = 1. Now it is a famous (and not so easy) result from advanced calculus
that a bounded function is Riemann-integrable iff the set S of its discontinuities
has measure zero in the sense that for every ε > 0 there is a (possibly infinite)
union of open disks Bri covering S such that the sum of the areas of all the disks
is at most ε. It is also well-known (and much easier to check) that any piecewise
smooth curve has measure zero.

Remark: We can take further advantage of the flexibility of choice of a sample
point in the Riemann sum to see that if we counted either (i) the number of unit
squares lying entirely inside x2 + y2 = r2 or (ii) the number of unit squares any
portion of which lies inside x2 + y2 = r2, then these quantities are also asymptotic
to πr2. Just use lower sums in the first case and upper sums in the second case.

In fact the argument proves something much more general: in place of the unit
circle, we could take any subset S of [−1, 1] whose boundary ∂S has measure zero
in the above sense – a Jordan set. For instance, take S to be a region bounded by
a piecewise smooth simple closed curve.1 Then the argument shows that as r →∞
the number Ls(r) of ( 1

r )-lattice points inside S divided by r2 approaches the area
A(S) of S: here A(S) is defined to be equal to the integral of the characteristic
function of S.2

To get a result analogous to Theorem 1, we scale back: for any subset S of
the plane and α a positive real number, let αS = {(αx, αy) | (x, y) ∈ S} be the

1In fact we could take a much more rugged “fractal” set – say, the interior of the Koch snowflake
– and the result would still hold!

2There is one small change: rather than there being 2 1
r
-squares whose SW corners lie in S

even though the squares do not lie in [−1, 1]2, we may now have as many such subsquares as fill
the entire northern and eastern corners of [−1, 1]2, namely 2(2r + 1)− 1 = 4r + 1. This still goes
to zero when divides by r2, so no matter.
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“α-dilate” of S. Moreover define LS(r) to be the number of standard lattice points
inside rS, the r-dilate of S. Then we have shown:

Theorem 2. Suppose that S ⊂ [−1, 1] is a Jordan subset (i.e., with Riemann-
integrable characteristic function). Then as r →∞,

LS(r) ∼ Area(S) · r2.

Let us now come back to the circle problem. Can we use Theorem 1 to compute
π? Well, yes and no: taking larger and larger r we will get a sequence of values,
L(r)/r2, which approach π, but in order to compute π to a certain number of
decimal places we need to have an estimate on the error term E(r), where

E(r) = |N(r)− πr2|.
Theorem 3. For all r ≥ 8, E(r) ≤ 10r.

Proof: Let P = (x, y) be a lattice point with x2 + y2 ≤ r2. As above, consider
the unit square S(P ) = [x, x + 1] × [y, y + 1] uniquely associated to P . Since the
diameter of the unit square is

√
2, although S(P ) may or may not lie entirely inside

the circle of radius r, it necessarily lies entirely on or inside the circle of radius
r +

√
2. Thus we get

N(r) ≤ π(r +
√

2)2 = πr2 + 2π
√

2r + 2π.

Similarly, suppose (x, y) is any point in the plane with
√

x2 + y2 ≤ r −√2. Then
the entire unit square ([x], [x]+1)× ([y], [y]+1) lies on or inside the circle of radius
r, which gives the estimate

N(r) ≥ π(r −
√

2) = πr2 − 2π
√

2r + 2π.

Thus
|N(r)− πr2| ≤ 2π + 2

√
2πr ≤ 7 + 9r < 10r,

the last inequality holding for all r ≥ 8.

Corollary 4. For any r ≥ 8,

|π − L(r)
r2

| ≤ 10
r

.

Thus one can really compute π by counting lattice points in circles! However, the
bound of the preceding corollary makes for an excruciatingly slow computation:
if we take r = 1000 then the Corollary guarantees (roughly) 2 decimal places of
accuracy. In fact, looking at the above value of L(r)/r2, we see that we in fact have
4-place accuracy, and in general the accuracy seems noticeably better than what
our bounds guarantee.

2. Connections to average values

Recall that were interested in the arithmetical function r2(n), which counts the
number of pairs of integers (x, y) such that n = x2 + y2. We did not (at least
not officially) give an exact formula for r2(n), but we will see now that it is much
easier to compute the function “on average”. Indeed, this is essentially what we’ve
already done.
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For f an arithmetical function, we define

fave(n) =
1
n

(f(1) + f(2) + . . . + f(n)),

i.e., fave at n is simply the average (“arithmetic mean”) of the first n values of f .
The idea here is that fave is roughly of the same size of f but is, at least in many
cases, “more regular.”3 In other words, many classical arithmetical functions f have
distinct lower and upper orders, but there is often a simple asymptotic expression
for fave.

A trivial but useful remark is that in practice one often passes between fave and
simply the function which is the sum of the first n values of f , n 7→ ∑n

i=1 f(i). It is
tempting to denote this summatory function by F , in analogy to the antiderivative,
but of course we have already used this notation for the sum over (only) the divisors
of n. So let us call it instead S(f), a rather awkward notation that we hope not to
have to use too frequently. In particular, if we know fave ∼ g then S(f)(n) ∼ n · g,
and conversely.

Theorem 5. If f(n) = r2(n), then fave(n) ∼ π.

Proof: Note first that r2(1) + . . . + r2(n) counts the number of solutions to the
inequality x2 + y2 ≤ n. So for n = r2 this is precisely the number L(r), and we get
that

S(f)(r2) ∼ πr2.

We would like to have this with r instead of r2. For this, we leave it to the reader
to go back and verify that in the work of last section, we didn’t need to consider
merely integer dilates of the unit circle (or of any set S). Defining, as we did, the
α dilate αS for any α ∈ R>0, one can modify the proofs to show that

lim
α→∞

LS(α)
α2

= Area(S).

(We remark that the second proof goes through with no change whatsoever and
gives the same error bound. If α is not an integer, it is no longer literally possible
to divide the square [−1, 1]2 into α2 equally sized subsquares, but a bit of thought
shows that this is close enough to being true to make the argument go through.)
Thus we have the desired

S(f)(n) ∼ πn,

and dividing through by n, we get that

fave(n) =
1
n

(r2(1) + . . . + r2(n)) ∼ π.

Note that since for every nonsquare n (and hence “most n”), if r2(n) > 0 then
r2(n) ≥ 4, since if x2 + y2 = n is one representation, (−x)2 + y2, x2 + (−y)2 and
(−x)2 +(−y)2 are three more representations. From this it follows that there must
be a lot of values of n for which r2(n) = 0. Ironically, since π is slightly larger than
3, we cannot quite conclude from this that the proportion of n for which r2(n) is at
least 1

4 , although we know this to be the case (since we know that r2(4k + 3) = 0).
However, looking a bit more carefully we see that if n is also not of the form 2m2

3This must be taken cum grano salis; in the Exercises you will look at f(n) = n.
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(which is still “zero percent of all numbers”) then also by switching the roles of x
and y we see that r2(n) > 0 implies r2(n) ≥ 8, and this implies for instance that at
r2(n) = 0 at least 60% of the time – the average value of a non-negative quantity
which is at least 8 at least 40% of the time is at least .4 ∗ 8 = 3.2 > π.

In fact this only hints at the truth: truthfully, r2(n) is equal to 0 most of the
time. In other words, if we pick a very large number N and choose at random
an element 1 ≤ n ≤ N , then the probability that n is a sum of 2 squares goes
to 0 as N → ∞. This exposes one of the weaknesses of the arithmetic mean:
without further assumptions it is unwarranted to assume that the average value is
a “typical” value of the function in any reasonable sense. To better capture this
typicality one can import further statistical methods and study the normal order
of an arithmetical function. With regret, we shall have to pass this concept over
entirely as being too delicate for our first course.

3. The prospect of improved error bounds

Suppose we are given a nice region S in the plane (say connected, compact,
convex, equal to the closure of its interior and with boundary a piecewise smooth
curve), and consider the function L(r) which counts the number of lattice points
in the rth dilate rS of S, as above. By the Riemann sum argument, we know that
L(r) ∼ A(S)r2, and we saw that we could do somewhat better in the case of a unit
circle: the error

E(r) = |L(r)−A(S)r2|
was bounded by a constant times r. Let us look for further improvements.

First, since the boundary of S is a piecewise smooth curve, it is “one-dimensional”,
and this makes it geometrically clear that the number of unit squares intersecting
the boundary of rS is less than a constant times r. Thus it should be true that
E(r) ≤ Cr in all cases. This observation was first made by Gauss. It is indeed
true, but we will not attempt a rigorous proof here.

The next observation to make is that in the above level of generality one can-
not do any better. Namely, suppose S is the square [−1, 1] × [−1, 1], so that
rS = [−r, r] × [−r, r]. In this case we can compute both L(r) and A(rS) exactly,
getting

L(r) = (2r + 1)2 = 4r2 + 4r + 1

and

A(r) = (2r)2 = 4r2,

so

E(r) = 4r + 1.

In other words, the number of lattice points always exceeds the area by a linear func-
tion. Further experimentation with convex lattice polygons – i.e., convex polygons
all of whose vertices are lattice points – reveals that this is a general phenomenon.
However, in this case there is a beautiful exact formula. The key observation is
that the excess comes from the lattice points on the boundary:
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Theorem 6. (Pick) Let S be a convex lattice polygon together with its interior.
Let ∂(S) be the number of lattice points on the perimeter of S. Then

L(r) = Area(S)r2 +
∂(S)

2
r + 1.

An equivalent – and more common – formulation is that the area of a lattice poly-
gon is equal to the number of interior lattice points plus half of the boundary lattice
points minus 1. We leave the proof of Pick’s Theorem as an exercise; the internet
is replete with sketched proofs.

Note that the function L(r) turns out just to be a quadratic polynomial with
rational coefficients!

There is a beautiful generalization of this to lattice polytopes in higher-dimensional
Euclidean spaces, due to Ehrhart, which unfortunately lies outside the scope of our
course.

Let us now return to the case of the unit circle. Recall that it seemed from our
(admittedly meager) data that one could do better than E(r) ≤ Cr. In fact im-
proving the error is (or was) an industry unto itself. The bound E(r) ≤ Cr

2
3 was

attained by Sierpinski in 1906. Various incremental improvements on the exponent
have been made over the years. For a while the best known exponent has been
46
73 ≈ .63, due to Huxley in 1990. On the other hand, it is a result of Hardy and
Landau that there is not a positive constant C such that E(r) ≤ Cr

1
2 , so for a long

time the standard conjecture has been the following:

Conjecture 7. For every ε > 0, there exists a number C (depending on ε such that

E(r) ≤ Cr
1
2+ε.

We mention that a recent (February 2007) preprint due to Cappell and Shaneson
claims a full proof of this conjecture. As of this writing, their paper has not yet
been sufficiently checked by the experts (I am not one).

There are yet further results on regions of other shapes: for instance, for any
set other than the circle, one can rotate S and get a different set, and if by some
unlucky accident we have “too many” lattice points on the boundary, it is plau-
sible that a small rotation will improve the situation. Moreover, one can pursue
the problem in higher-dimensions. For instance, the analogous argument involving
lattice points on or inside the sphere of radius r in R3 gives:

Theorem 8. The number of integer solutions (x, y, z) to x2 + y2 + z2 ≤ r2 is
asymptotic to 4

3πr3, with the error being bounded by (e.g.!) Cr2.

Corollary 9. The average value of the function r3(n) which counts representations
by sums of three squares is asymptotic to 4

3π
√

n.

We can similarly compute nice asymptotic expressions for the average value of rk(n)
for k ≥ 4 provided only we know a formula for the volume of the unit ball in Rk.
Of course such formulas are known (internet exercise: look them up!); alternately
it might be fun to guess them by actually counting ( 1

r )-lattice points.


