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CHAPTER 1

The Fundamental Theorem and Some Applications

1. Foundations

What is number theory?

This is a difficult question: number theory is an area, or collection of areas, of
pure mathematics that has been studied for over two thousand years. As such, it
means different things to different people. Nevertheless the question is not nearly
as subjective as “What is truth?” or “What is beauty?”: all of the things various
people call number theory are related, in fact deeply and increasingly so over time.

If you think about it, it is hard to give a satisfactory definition of any area of
mathematics that would make much sense to someone who has not taken one or
more courses in it. One might say that analysis is the study of limiting processes,
especially summation, differentiation and integration; that algebra is the study of
algebraic structures like groups, rings and fields; and that topology is the study
of topological spaces and continuous maps between them. But these descriptions
function more by way of dramatis personae than actual explanations; less preten-
tiously, they indicate (some of) the objects studied in each of these fields, but they
do not really tell us which properties of these objects are of most interest and which
questions we are trying to answer about them. Such motivation is hard to provide
in the abstract – much easier, and more fruitful, is to give examples of the types of
problems that mathematicians in these areas are or were working on. For instance,
in algebra one can point to the classification of finite simple groups, and in topology
the Poincaré conjecture. Both of these are problems that had been open for long
periods of time and have been solved relatively recently, so one may reasonably
infer that these topics have been central to their respective subjects for some time.

What are the “objects” of number theory analogous to the above description? A
good one sentence answer is that number theory is the study of the integers, i.e.,
the whole numbers and their negatives.

Of course this is not really satisfactory: astrology, accounting and computer sci-
ence, for instance, could plausibly be described in the same way. What properties
of the integers are we interested in?

The most succinct response seems to be that we are interested in the integers as a
ring : namely, as endowed with the two fundamental operations of addition + and
multiplication · and – especially – the interactions between these two operations.

7



8 1. THE FUNDAMENTAL THEOREM AND SOME APPLICATIONS

Let us elaborate. Consider first the non-negative integers – which, as is tradi-
tional, we will denote by N – endowed with the operation +. This is a very simple
structure: we start with 0, the additive identity, and get every positive integer by
repeatedly adding 1.1 In some sense the natural numbers under addition are the
simplest nontrivial algebraic structure.

Note that subtraction is not in general defined on the natural numbers: we
would like to define a − b = c in case a = b + c, but of course there is not always
such a natural number c – consider e.g. 3− 5.

As you well know, there are two different responses to this: the first is to for-
mally extend the natural numbers so that additive inverses always exist. In other
words, for every positive integer n, we formally introduce a corresponding “number”
−n with the property that n+ (−n) = 0. Although it is not a priori obvious that
such a construction works – rather, the details and meaning of this construction
were a point of confusion even among leading mathematicians for a few thousand
years – nowadays we understand that it works to give a consistent structure: the
integers Z, endowed with an associative addition operation +, which has an identity
0 and for which each integer n has a unique additive inverse −n.

The second response is to record the relation between two natural numbers a
and b such that b − a exists as a natural number. Of course this relation is just
that a ≤ b. This is quite a simple relation on N: indeed, for any pair of integers,
we have either a ≤ b or b ≤ a, and we have both exactly when a = b.2

Now for comparison consider the positive integers

Z+ = 1, 2, 3, . . .

under the operation of multiplication. This is a richer structure: whereas addi-
tively, there is a single building block: namely 1, the multiplicative building blocks
are the prime numbers 2, 3, 5, 7, . . .. Of course the primes are familiar objects,
but the precise analogy with the additive case may not be as familiar, so let us
spell it out carefully: just as subtraction is not in general defined on N, division
is not in general defined on Z+. On the one hand we can “formally complete” Z+

by adjoining multiplicative inverses, getting this time the positive rational numbers
Q+. However, again one can view the fact that a/b is not always a positive integer
as being intriguing rather than problematic, and we again consider the relation be-
tween two positive integers a and b that b/a be a positive integer: in other words,
that there exist a positive integer c such that b = a × c. In such a circumstance
we say that a divides b, and write it as a|b.3 The relation of divisibility is more
complicated than the relation ≤ since divisibility is not a total ordering: e.g. 4 6 | 15
and also 15 6 | 4. What are we to make of this divisibility relation?

First, on a case-by-case basis, we do know how to determine whether a | b.
Proposition 1.1. (Division Theorem) For any positive integers n and d, there

exist unique non-negative integers q and r with 0 ≤ r < d and n = qd+ r.

1Here I am alluding to the fact that in the natural numbers, addition can be defined in terms

of the “successor” operation s(n) = n+ 1, as was done by the 19th century mathematical logician
Giuseppe Peano. No worries if you have never heard of the Peano axioms – their importance lies

in the realm of mathematical logic rather than arithmetic itself.
2That is to say, the relation ≤ on N is a linear, or total, ordering.
3Careful: a|b ⇐⇒ b

a
is an integer.
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This is a very useful tool, but it does not tell us the structure of Z+ under the
divisibility relation. To address this, the primes inevitably come into play: there
is a unique minimal element of Z+ under divisibility, namely 1 (in other words, 1
divides every positive integer and is the only positive integer with this property): it
therefore plays the analogous role to 0 under ≤ on N. In N \ 0, the unique smallest
element is 1. In Z+ \1 the smallest elements with respect to the divisibility ordering
are the primes p. Given that the definition of a prime is precisely an integer greater
than one divisible only by one and itself, this is clear. The analogue to repeatedly
adding 1 is taking repeated powers of a single prime: e.g., 2, 22, 23, . . .. However,
we certainly have more than one prime – in fact, as you probably know and we will
recall soon enough, there are infinitely many primes – and this makes things more
complicated. This suggests that maybe we should consider the divisibility relation
one prime at a time.

So, for any prime p, let us define a |p b to mean that b
a is a rational number which,

when written in lowest terms, has denominator not divisible by p. For instance,
3 |2 5, since 5

3 , while not an integer, doesn’t have a 2 in the denominator. For that
matter, 3 |p 5 for all primes p different from 3, and this suggests the following:

Proposition 1.2. For any a, b ∈ Z+, a|b ⇐⇒ a |p b for all primes p.

Proof. Certainly if a|b, then a |p b for all primes p. For the converse, write
b
a in lowest terms, say as B

A . Then a |p b iff A is not divisible by p. But the only
positive integer which is not divisible by any primes is 1. �

In summary, we find that the multiplicative structure of Z+ is similar to the additive
structure of N, except that instead of there being one “generator” – namely 1 –
such that every element can be obtained as some power of that generator, we
have infinitely many generators – the primes – and every element can be obtained
(uniquely, as we shall see!) by taking each prime a non-negative integer number of
times (which must be zero for all but finitely many primes). This switch from one
generator to infinitely many does not in itself cause much trouble: given

a = pa11 · · · pann · · ·

and

b = pb11 · · · pbnn · · ·
we find that a | b iff a |pb for all p iff ai ≤ bi for all i. Similarly, it is no problem to
multiply the two integers: we just have

ab = pa1+b1
1 · · · pan+bn

n · · · .

Thus we can treat positive integers under multiplication as vectors with infinitely
many components, which are not fundamentally more complicated than vectors
with a single component.

The “trouble” begins when we mix the additive and multiplicative structures. If
we write integers in standard decimal notation, it is easy to add them, and if we
write integers in the above “vector” factored form, it is easy to multiply them.
But what is the prime factorization of 2137 + 3173? In practice, the problem of
given an integer n, finding its prime power factorization (1) is extremely computa-
tionally difficult, to the extent that most present-day security rests on this difficulty.
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It is remarkable how quickly we can find ourselves in very deep waters by ask-
ing apparently innocuous questions that mix additive and multiplicative structure.
For instance, although in the multiplicative structure, each of the primes just rests
“on its own axis” as a generator, in the additive structure we can ask where the
primes occur with respect to the relation ≤. We do not have anything approaching
a formula for pn, and the task of describing the distribution of the pn’s inside N is
a branch of number theory in and of itself (we will see a taste of it later on). For
instance, consider the quantity g(n) = pn+1 − pn, the “nth prime gap.” For n > 1,
the primes are all odd, so g(n) ≥ 2. Computationally one finds lots of instances
when g(n) is exactly 2, e.g. 5, 7, 11, 13, and so forth: an instance of g(n) = 2 –
equivalently, of a prime p such that p + 2 is also a prime – is called a twin prime
pair. The trouble is that knowing the factorization of p tells us nothing4 about the
factorization of p + 2. Whether or not there are infinitely many twin primes is a
big open problem in number theory.

(However it is not as open as when these notes were first written in 2007! At
that time, for all that we knew it could have been the case that limn→∞ g(n) =∞,
i.e., for each constant C and all sufficiently large n, we have g(n) = pn+1− pn > C.
This distressing possibility was disproved by Yitang Zhang in 2013: he showed that
there are infinitely many n such that g(n) < 70, 000, 000. Later in 2013, James
Maynard showed that g(n) ≤ 600 for infinitely many n. Notice that if the 600
could be replaced with 2 we would have infinitely many twin primes. But we still
don’t know how to do that.)

It goes on like this: suppose we ask to represent numbers as a sum of two odd
primes. Then such a number must be even and at least 6, and experimenting, one
soon is led to guess that every even number at least 6 is a sum of two odd primes:
this is known as Goldbach’s Conjecture, and is about 400 years old. It remains
unsolved.

(But again, there has been exciting recent progress. The Weak Goldbach Con-
jecture is that every odd integer n ≥ 9 is the sum of three odd primes. It is easy to
see that “Goldbach” implies “Weak Goldbach.” In 1937 I.M. Vinogradov showed
that every sufficiently large odd integer is the sum of three odd primes. In 2013
Harald Helfgott proved the Weak Goldbach Conjecture.)

There are many, many such easily stated unsolved problems which mix primes
and addition: for instance, how many primes p are of the form n2 + 1? Again, it
is a standard conjecture that there are infinitely many, and it is wide open. Note
that if we asked instead how many primes were of the form n2, we would have no
trouble answering – the innocent addition of 1 gives us terrible problems.

Lest you think we are just torturing ourselves by asking such questions, let me
mention some amazing positive results:

Theorem 1.3. (Fermat, 12/25/1640) A prime p > 2 is of the form x2 + y2 iff
it is of the form 4k + 1.

4Well, nothing except that p+ 2 is not divisible by 2 for all p > 2.
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This is, to my mind, the first beautiful theorem of number theory. It says that
to check whether an odd prime satisfies the very complicated condition of being a
sum of two (integer, of course!) squares, all we need to do is divide it by four: if
its remainder is 1, then it is a sum of two squares; otherwise its remainder will be
3 and it will not be a sum of two squares.

Theorem 1.4. (Lagrange, 1770) Every positive integer is of the form x2 +y2 +
z2 + w2.

Theorem 1.5. (Dirichlet, 1837) Suppose a and b are coprime positive integers
(i.e., they are not both divisible by any integer n > 1). Then there are infinitely
many primes of the form an+ b.

Remark 1.6. Taking a = 4, b = 1, see that there are infinitely many primes
of the form 4k + 1, so in particular there are infinitely many primes which are a
sum of two squares.

Theorem 1.7. (Green-Tao [GT08]) The primes contain arbitrarily long arith-
metic progressions. That is: for any k ∈ Z+ there is a prime number p and a
positive integer d such that

p, p+ d, p+ 2d, . . . , p+ (k − 1)d

are all prime numbers.

We will see proofs of Theorems 1.3 and 1.4 in this course. To be more precise, we
will give two different proofs of Theorem 1.3. The first theorem uses the observation
that x2 + y2 can be factored in the ring Z[i] of Gaussian integers as (x+ iy)(x− iy)
and will be our jumping off point to the use of algebraic methods. There is an
analogous proof of Theorem 1.4 using a noncommutative ring of “integral quater-
nions”. This proof however has some technical complications which make it less
appealing for in-class presentation, so we do not discuss it in these notes.5 On the
other hand, we will give parallel proofs of Theorems 1.3 and 1.4 using geometric
methods. The proof of Theorem 1.5 is of a different degree of sophistication than
any other proofs in this course. We do present a complete proof at the end of these
notes, but one cannot pretend that this is undergraduate level material.

The proof of Theorem 1.7 is beyond the scope of this course.

Admission: In fact there is a branch of number theory which studies only the
addition operation on subsets of N: if A and B are two subsets of natural numbers,
then by A+B we mean the set of all numbers of the form a+b for a ∈ A and b ∈ B.
For a positive integer h, by hA we mean the set of all h-fold sums a1 + . . . + ah
of elements of A (repetitions allowed). There are plenty of interesting theorems
concerning these operations, and this is a branch of mathematics called additive
number theory. We will see a little bit of it towards the end of the course.

In fact Theorem 1.7 belongs to the subject of additive combinatorics. There is
some irony that perhaps the single most celebrated result of that subject involves
the multiplicative structure of Z, but the practitioners of the field are well aware
of this to say the least. We will say more about the issues here later when we talk
about “density” and “substance” of integer sets.

5It was, in fact, the subject of a student project in the 2007 course.
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2. The Fundamental Theorem (in Z)

2.1. Existence of prime factorizations.

We had better pay our debts by giving a proof of the uniqueness of the prime
power factorization. This is justly called the Fundamental Theorem of Arithmetic.

Let us first nail down the existence of a prime power factorization, although as
mentioned above this is almost obvious:

Proposition 1.8. Every integer n ≥ 2 is a product of primes p1 · · · pr.

Proof. By induction on n. The base case, n = 2 is clear: n = p1 is a prime.
Suppose n > 2 and the result holds for all 2 ≤ m < n. Among all divisors d > 1 of
n, the least is necessarily a prime, say p. So n = pm and apply the result inductively
to m. �

Remark 1.9. If you are okay with the “empty product” – i.e., what we get by
multiplying together 0 numbers – being 1, then the result extends also to n = 1.
We will often find it superficially helpful to state things in this way, but there is
certainly no content in it.

Remark 1.10. Poposition 1.8 seemed obvious, and we proved it by induction.
Formally speaking, just about any statement about the integers contain an appeal
to induction at some point, since induction – or equivalently, the well-ordering
principle that any nonempty subset of integers has a smallest element – is (along
with a few much more straightforward axioms) their characteristic property. But
induction proofs can be straightforward, tedious, or both. Often I will let you fill in
such induction proofs; I will either just say “by induction” or, according to taste,
present the argument in less formal noninductive terms. To be sure, sometimes an
induction argument is nontrivial, and those will be given in detail.

In the above representation n = p1 · · · pr the same prime may of course occur more
than once. Sometimes it is convenient to reorganize things: a standard form
factorization of n ≥ 2 is a factorization

n = pa11 · · · parr
with p1 < . . . < pr primes and a1, . . . , ar positive integers. Any prime factorization
yields a standard form prime factorization.

2.2. The fundamental theorem and Euclid’s Lemma.

Theorem 1.11. The standard form factorization of a positive integer is unique.

This is just a mildly laundered version of the more common statement: the factor-
ization of a positive integer into primes is unique up to the order of the factors.

Theorem 1.11 was first stated and proved by Gauss in his Disquisitiones Arith-
meticae. However, it is generally agreed that the result is “essentially” due to the
ancient (circa 300 BC) Greek mathematician Euclid of Alexandria. Euclid proved:

Theorem 1.12. (Euclid’s Lemma) Suppose p is prime, a, b ∈ Z+ and p | ab.
Then p | a or p | b.
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Exercise 1.1. Let p be a prime number, and let a1, . . . , an ∈ Z. Show: if
p | a1 · · · an, then p | ai for at least one 1 ≤ i ≤ n.

Assuming the very easy Proposition 1.8, Theorems 1.11 and 1.12 are equivalent.
From a strictly logical point of view two assertions are equivalent if they are both
true or both false – or, if they range over a set of possible parameters then they
are true for exactly the same values of those parameters. Since a theorem in math-
ematics is a true assertion, strictly speaking any two theorems are equivalent. But
in common use the statement “Theorem A is equivalent to Theorem B” carries the
connotation that it is much easier to deduce the truth of each theorem from the
other than to prove either theorem. This is the case here.

Theorem 1.11 =⇒ Theorem 1.12: Suppose for a contradiction that p | ab but

p does not divide either a or b. Writing out a =
∏
i p
ai
i and b =

∏
j q

bj
j , our as-

sumptions are equivalent to pi 6= p 6= qj for all i, j. But then ab =
∏
paii q

aj
j , and

collecting this into standard form we get that no positive power of the prime p ap-
pears in the standard form factorization of ab. On the other hand, by assumption
p | ab so ab = p ·m, and then factoring m into primes we will get a standard form
factorization of ab in which p does apear to some positive power, contradicting the
uniqueness of the standard form prime factorization.

Exercise 1.2. Show that Theorem 1.11 implies the Generalized Euclid’s Lemma:
let a, b, c ∈ Z. Suppose a | bc and that no prime divides both a and b. Show: a | c.

Theorem 1.12 =⇒ Theorem 1.11: Suppose p1 · · · pr = q1 · · · qs are two prime
factorizations of the same n ≥ 2. Then pr | q1 · · · qs, so by Euclid’s Lemma we have
pr = qj for some 1 ≤ j ≤ s. After relabelling the q’s if necessary we may assume
that pr = qs and cancel, getting

p1 · · · pr−1 = q1 · · · qs−1.

Now we repeat the argument, cancelling pr−1 with (after relabelling if necessary)
qs1 . Eventually we get

1 = q1 · · · qs−r.
But this means we have no more primes q, so r = s and each pi was equal to some qj .

Therefore one way to prove Theorem 1.11 is to give Euclid’s proof of Theorem
1.12. Euclid’s proof goes by way of giving an explicit – and efficient – algorithm
for finding the greatest common divisor of a pair of positive integers. This Eu-
clidean algorithm can be put to a variety of uses in elementary number theory,
so Euclid’s proof is generally the one given in introductory courses. By making use
of algebraic ideas it is possible to streamline Euclid’s proof of Theorem 1.12 in a
way which bypasses the algorithm: the idea is to show that the ring of integers has
the property of being a Principal Ideal Domain, which is for a general ring a
stronger result than the uniqueness of factorization into primes. In fact there is a
third strategy, which directly proves Theorem 12.1. This proof, due to Lindemann
[Li33] and Zermelo [Z34], is not sufficiently widely known. It is a nice instance of
bypassing seemingly “necessary” machinery by sheer cleverness.

2.3. The Lindemann-Zermelo proof of the Fundamental Theorem.
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We claim that the standard form factorization of a positive integer is unique. As-
sume not; then the set of positive integers which have at least two different standard
form factorizations is nonempty, so has a least elment, say n, where:

(1) n = p1 · · · pr = q1 · · · qs.
Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However,we must have p1 6= qj for any j. Indeed, if we had such an equality, then
after relabelling the qj ’s we could assume p1 = q1 and then divide through by
p1 = q1 to get a smaller positive integer n

p1
. By the assumed minimality of n, the

prime factorization of n
p1

must be unique: i.e., r − 1 = s − 1 and pi = qi for all

2 ≤ i ≤ r. But then multiplying back by p1 = q1 we see that we didn’t have two
different factorizations after all. (In fact this shows that for all i, j, pi 6= qj .)

In particular p1 6= q1. Without loss of generality, assume p1 < q1. Then, if we
subtract p1q2 · · · qs from both sides of (1), we get

(2) m := n− p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs) = (q1 − p1)(q2 · · · qs).
Evidently 0 < m < n, so by minimality of n, the prime factorization of m must be
unique. However, (2) gives two different factorizations of m, and we can use these
to get a contradiction. Specifically, m = p1(p2 · · · pr − q2 · · · qs) shows that p1 | m.
Therefore, when we factor m = (q1 − p1)(q2 · · · qs) into primes, at least one of the
prime factors must be p1. But q2, . . . , qj are already primes which are different from
p1, so the only way we could get a p1 factor is if p1 | (q1 − p1). But this implies
p1 | q1, and since q1 is also prime this implies p1 = q1. Contradiction!

T

2.4. Proof using ideals.

Now we turn things around by giving a direct proof of Euclid’s Lemma. We (still!)
do not follow Euclid’s original proof, which employs the Euclidean algorithm,
but rather a modernized version using ideals.

An ideal of Z is a nonempty subset I of Z such that a, b ∈ I implies a+ b ∈ I and
a ∈ I, c ∈ Z implies ca ∈ I.6

For any integer d, the set (d) = {nd | n ∈ Z} of all multiples of d is an ideal.

Proposition 1.13. Any nonzero ideal I of Z is of the form (d), where d is the
least positive element of I.

Proof. Suppose not: then there exists an element n which is not a multiple
of d. Applying the Division Theorem (Proposition B.11), we may write n = qd+ r
with 0 < r < d. Since d ∈ I, qd ∈ I and hence r = n − qd ∈ I. But r is positive
and smaller than d, a contradiction. �

Existence of gcd’s: Let a and b be two nonzero integers. An integer d is said to be
a greatest common divisor of a and b if

(GCD1) d | a and d | b.
(GCD2) If e | a and e | b then e | d.

6We hope that the reader recognizes this as a special case of an ideal in a commutative ring.
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Note well that this is (at least apparently) different from the definition of greatest
common divisor one learns in school: in the set of all common divisors of a and b,
d is defined to be a divisor which is divisible by every other divisor, not a divisor
which is numerically largest. In particular, unlike the school definition, it is not
obvious that greatest common divisors exist! However:

Proposition 1.14. For a, b ∈ Z, not both zero, the set Ia,b = {xa+ yb | x, y ∈
Z} is a nonzero ideal. Its positive generator d has the following property:

(3) e|a & e|b ⇐⇒ e|d,

and is therefore a greatest common divisor of a and b.

Proof. It is easy to see that the set Ia,b is closed under addition and under
multiplication by all integers, so it is an ideal. By the previous result, it is generated
by its smallest positive element, say d = Xa+ Y b.

Now, suppose e|d. Then, since a ∈ (d), (a) ⊂ (d) and thus d|a (to contain is to
divide) and by transitivity e|a; similarly e|b. (In fact we made a bigger production
of this than was necessary: we could have said that d is a multiple of e, and a
and b are multiples of d, so of course a and b are multiples of e. This is the easy
direction.) Conversely, suppose that e|a and e|b (so e is a common divisor of a and
b). Then e | Xa + Y b = d. (Since d could be smaller than a and b – e.g. a = 17,
b = 1010, d = 1, this is the nontrivial implication.) �

Corollary 1.15. If a and b are integers, not both zero, then for any integer
m there exist integers x and y such that

xa+ yb = m gcd(a, b).

Proof. This follows immediately from the equality of ideals Ia,b = (gcd(a, b)):
the left hand side is an arbitrary element of Ia,b and the right hand side is an
arbitrary element of (gcd(a, b)). �

An important special case is when gcd(a, b) = 1 – we say a and b are relatively
prime. The corollary then asserts that for any integer m, we can find integers x
and y such that xa+ yb = m.

Indeed we can use this to prove Euclid’s Lemma (Theorem ??): if p | ab and p
does not divide a, then the greatest common divisor of p and a must be 1. Thus
there are integers x and y such that xa+ yp = 1. Multiplying through by b we get
xab + ypb = b. Since p | xab and p | ypb, we conclude p | b. This completes the
proof of the Fundamental Theorem of Arithmetic.

3. Some examples of failure of unique factorization

The train of thought involved in proving the fundamental theorem is quite subtle.
The first time one sees it, it is hard to believe that such complications are necessary:
is it not “obvious” that the factorization of integers into primes is unique?

It is not obvious, but rather familiar and true. The best way to perceive the
non-obviousness is to consider new and different contexts.
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Example: let E denote the set of even integers.7 Because this is otherwise known
as the ideal (2) = 2Z, it has a lot of structure: it forms a group under addition,
and there is a well-defined multiplication operation satisfying all the properties of
a ring except one: namely, there is no 1, or multiplicative identity. (A ring with-
out identity is sometimes wryly called a rng, so the title of this section is not a typo.)

Let us consider factorization in E: in general, an element x of some structure should
be prime if every factorization x = yz is “trivial” in some sense. However, in E,
since there is no 1, there are no trivial factorizations, and we can define an element
x of E to be prime if it cannot be written as the product of two other elements of E.
Of course this is a new notion of prime: 2 is a conventional prime and also a prime
of E, but clearly none of the other conventional primes are E-prime. Moreover there
are E-primes which are not prime in the usual sense: e.g., 6 is E-prime. Indeed, it is
not hard to see that an element of E is an E-prime iff it is divisible by 2 but not by 4.

Now consider

36 = 2 · 18 = 6 · 6.
Since 2, 18 and 6 are all divisible by 2 and not 4, they are E-primes, so 36 has two
different factorizations into E-primes.

This example begins to arouse our skepticism about unique factorization: it is
not, for instance, inherent in the nature of factorization that factorization into
primes must be unique. On the other hand, the rng E is quite artificial: it is an
inconveniently small substructure of a better behaved ring Z. Later we will see
more distressing examples.

Example 2: Let R◦ = R[cos θ, sin θ] be the ring of real trigonometric polynomi-
als: i.e., the ring whose elements are polynomial expressions in sin θ and cos θ with
real coefficients. We view the elements as functions from R to R and add and mul-
tiply them pointwise.

Of course this ring is not isomorphic to the polynomial ring R[x, y], since we
have the Pythagorean identity cos2 θ+sin2 θ = 1. It is certainly plausible – and can
be shown to be true – that all polynomial relations between the sine and cosine are
consequences of this one relation, in the sense that R◦ is isomorphic to the quotient
ring R[x, y]/(x2 + y2 − 1).

Now consider the basic trigonometric identity

(4) (cos θ)(cos θ) = (1 + sin θ)(1− sin θ).

It turns out that cos θ, 1 + sin θ and 1 − sin θ are all irreducible elements in the
ring R◦.

8 Moreover, if f, g ∈ R◦ are associates – i.e., there is an invertible element
u ∈ R such that g = uf , then u does not vanish at any point on the unit cricle, and
thus the subsets of the unit circle on which f and g vanish are the same. But the
subsets of the unit circle on which cos θ, 1 + sin θ and 1 − sin θ vanish are {±π2 },
{π} and {0}, repsectively, so so all three of these elements are nonassociate, and
therefore (34) exhibits two different factorizations into irreducible elements! Thus,

7This example is taken from Silverman’s book. In turn Silverman took it, I think, from

Harold Stark’s introductory number theory text. Maybe it is actually due to Stark...
8To be sure, this claim requires proof, which is being omitted here!
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in a sense, the failure of unique factorization in R◦ is the explanation for the subject
of trigonometric identities!

To see how subtle the issue of unique factorization can be, consider now the ring

C◦ = C[cos θ, sin θ]

of trigonometric polynomials with complex coefficients. But the classic “Euler
identity”

eiθ = cos θ + i sin θ

shows that eiθ is an element of C◦, and conversely, both the sine and cosine functions
are expressible in terms of eiθ:

cos θ =
1

2

(
eiθ +

1

eiθ

)
,

sin θ =
1

2i

(
eiθ − 1

eiθ

)
.

Thus C◦ = C[eiθ, 1
eiθ

]. Now the ring C[eit] is isomorphic to the polynomial ring

C[T ], so C◦ is, up to isomorphism, obtained from C[T ] by adjoining T−1. Recall
that C[t] is a principal ideal domain (PID). Finally, if R is any PID with fraction
field K, and S is any ring such that R ⊂ S ⊂ K – i.e., any ring obtained by
adjoining to R the multiplicative inverses of each of some set of nonzero elements
of R – then it can be shown that S is also a PID, hence in particular a unique
factorization domain.

The foregoing discussion has been quite brief, with no pretense of presenting a
complete argument. For a more detailed discussion, I highly recommend [Tr88]. A
more sophisticated presentation can be found in [Cl09, Thm. 12].

4. Consequences of the fundamental theorem

The second proof of the fundamental theorem develops material which is very useful
in its own right. Let us look at some of it in more detail:

4.1. Applications of the prime power factorization.

There are certain functions of n which are most easily defined in terms of the
prime power factorization. This includes many so-called arithmetic functions
that we will discuss a bit later in the course. But here let us give some basic
examples. First, let us write the prime power factorization as

n =
∏
i

paii ,

where pi denotes the ith prime in sequence, and ai is a non-negative integer. This
looks like an infinite product, but we impose the condition that ai = 0 for all but
finitely many i,9 so that past a certain point we are just multiplying by 1. The
convenience of this is that we do not need different notation for the primes dividing
some other integer.

9In fact, this representation is precisely analogous to the expression of (Z,·) = (N,+)∞ of
problem G1).
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Now suppose we have two such factored positive integers

a =
∏
i

paii ,

b =
∏
i

pbii .

Then we can give a simple and useful formula for the gcd and the lcm. Namely,
the greatest common divisor of a and b is

gcd(a, b) =
∏
i

p
min(ai,bi)
i ,

where min(c, d) just gives the smaller of the two integers c and d (and, of course, the
common value c = d when they are equal). More generally, we have that, writing
out two integers a and b in factored form above, we have that a | b ⇐⇒ ai ≤ bi
for all i. In fact this is exactly the statement that a|b ⇐⇒ a|pb for all p that we
expressed earlier.

We often (e.g. now) find ourselves wanting to make reference to the ai in the
prime power factorization of an integer a. The ai is the highest power of pi that
divides a. One often says that paii exactly divides a, meaning that paii |a and pai+1

i

does not. So let us define, for any prime p, ordp(a) to be the highest power of p
that divides a: equivalently:

n =
∏
i

p
ordpi (n)

i .

Notice that ordp is reminiscent of a logarithm to the base p: in fact, that’s exactly
what it is when n = pa is a power of p only: ordp(p

a) = a. However, for integers
n divisible by some prime q 6= p, logp(n) is nothing nice – in fact, it is an irra-
tional number – whereas ordp(n) is by definition always a non-negative integer. In
some sense, the beauty of the functions ordp is that they allow us to “localize” our
attention at one prime at a time: every integer n can be written as pr · m with
gcd(m, p) = 1, and the ordp just politely ignores the m: ordp(p

r ·m) = ordp(p
r) = r.

This is really just notation, but it is quite useful: for instance, we can easily see
that for all p,

ordp(gcd(a, b)) = min(ordp(a), ordp(b));

this just says that the power of p which divides the gcd of a and b should be the
largest power of p which divides both a and b. And then a positive integer n is
determined by all of its ordp(n)’s via the above equation.

Similarly, define the least common multiple lcm(a, b) of positive integers a and
b to be a positive integer m with the property that a|e & b|e =⇒ m|e. Then
essentially the same reasoning gives us that

ordp(lcm(a, b)) = max(ordp(a), ordp(b)),

and then that

lcm(a, b) =
∏
p

pmax(ordp(a),ordp(b)).
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We can equally well define ordp on a negative integer n: it is again the largest
power i of p such that pi|n. Since multiplying by −1 doesn’t change divisibility in
any way, we have that ordp(n) = ordp(−n). Note however that ordp(0) is slightly
problematic – every pi divides 0: 0 · pi = 0 – so if we are going to define this at all
it would make sense to put ordp(0) =∞.

We do lose something by extending the ord functions to negative integers: namely,
since for all p, ordp(n) = ordp(−n), the ord functions do not allow us to distinguish
between n and −n. From a more abstract algebraic perspective, this is because
n and −n generate the same ideal (are associates; more on this later), and we
make peace with the fact that different generators of the same ideal are more or
less equivalent when it comes to divisibility. However, in Z we do have a remedy:
we could define a map ord−1 : Z \ {0} → ±1 such that ord−1(n) = +1 if n > 0 and
−1 if n < 0. Then −1 acts as a “prime of order 2,” in contrast to the other “infinite
order primes,” and we get a corresponding unique factorization statement.10 But
although there is some sense to this, we will not adopt it formally here.

Proposition 1.16. For p a prime and m and n integers, we have:
a) ordp(mn) = ordp(m) + ordp(n).
b) ordp(m+ n) ≥ min(ordp(m), ordp(n)).
c) If ordp(m) 6= ordp(n), ordp(m+ n) = min(ordp(m), ordp(n)).

We leave these as exercises: suitably decoded, they are familiar facts about divisi-
bility. Note that part a) says that ordp is some sort of homomorphism from Z \{0}
to Z. However, Z \ {0} under multiplication is not our favorite kind of algebraic
structure: it lacks inverses, so is a monoid rather than a group. This perhaps sug-
gests that we should try to extend it to a map on the nonzero rational numbers
Q× (which, if you did problem G1), you will recognize as the group completion of
Z \ {0}; if not, no matter), and this is no sooner said than done:

For a nonzero rational number a
b , we define

ordp(
a

b
) = ordp(a)− ordp(b).

In other words, powers of p dividing the numerator count positively; powers of
p dividing the denominator count negatively. There is something to check here,
namely that the definition does not depend upon the choice of representative of a

b .
But it clearly doesn’t:

ordp(
ac

bc
) = ordp(ac)− ordp(bc)

= ordp(a) + ordp(c)− ordp(b)− ordp(c) = ordp(a)− ordp(b) = ordp(
a

b
).

So we get a map
ordp : Q× → Z

which has all sorts of uses: among other things, we can use it to recognize whether
a rational number x is an integer: it will be iff ordp(x) ≥ 0 for all primes p.

Example: Let us look at the partial sums Si of the harmonic series
∑∞
n=1

1
n . The

first partial sum S1 = 1 – that’s a whole number. The second one is S2 = 1+ 1
2 = 3

2

10This perspective is due to J.H. Conway.
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which is not. Then S3 = 1 + 1
2 + 1

3 = 11
6 is not an integer either; neither is

S4 = 1 + 1
2 + 1

3 + 1
4 = 25

12 .
It is natural to ask whether any partial sum Sn for n ≥ 1 is an integer. Indeed,

this is a standard question in honors math classes because...well, frankly, because
it’s rather hard.11 But using properties of the ord function we can give a simple
proof. The first step is to look carefully at the data and see if we can find a pattern.
(This is, of course, something to do whenever you are presented with a problem
whose solution you do not immediately know. Modern presentations of mathemat-
ics – including, alas, these notes, to a large extent – often hide this experimentation
and discovery process.) What we see in the small partial sums is that not only are
they not integers, they are all not integers for “the same reason”: there is always a
power of 2 in the denominator.

So what we’d like to show is that for all n ≥ 1, ord2(Sn) < 0. It is true for
n = 2; moreover we don’t have to do the calculation for n = 3: since ord2( 1

3 ) =

0 6= ord2(S2), we must have ord2(S2 + 1
3 ) = min(ord2(S2), ord2(S3)) = −1. And

then we get 1
4 , which 2-order −2, which is different from ord2(S3), so again, using

that when we add two rational numbers with different 2-orders, the 2-order of the
sum is the smaller of the 2 2-orders, we get that ord2(S4) = −2. Excitedly testing
a few more values, we see that this pattern continues: ord2(Sn) and ord2( 1

n+1 ) are
always different; if only we can show that this always holds, this will prove the
result. In fact one can say even more: one can precisely what ord2(Sn) is as a
function of n and thus see in particular that it is always negative. I will leave the
final observation and proof to you – why should I steal your fun?

4.2. Linear Diophantine equations.

Recall that one of the two main things we agreed that number theory is about
was solving Diophantine equations, i.e., looking for solutions over Z and/or over
Q to polynomial equations. Certainly we saw some primes in the previous section;
now we solve the simplest class of Diophantine equations, namely the linear ones.

Historical remark: as I said before, nowadays when someone says Diophantine
equation, they mean that we are interested either in solutions over Z or solutions
over Q, or both. Diophantus himself considered positive rational solutions. Nowa-
days the restriction to positive numbers seems quite artificial (and I must wonder
whether Diophantus massaged his equations so as to get positive rather than neg-
ative solutions); it also makes things quite a bit more difficult: it stands to reason
that since equations become easier to solve if we allow ourselves to divide numbers,
correspondingly they become more difficult if we do not allow subtraction!

This also means that the term “Linear Diophantine equation” is, strictly speak-
ing, an anachronism. If you want to solve any number of linear equations with
coefficients in Q, then – since Q is a field – you are just doing linear algebra, which
works equally well over Q as it does over R or C. For instance, suppose we want to

11When I first got assigned this problem (my very first semester at college), I found – or

looked up? – some quite elaborate solution which used, in particular, Bertrand’s Postulate

that for n > 1 there is always a prime p with n < p < 2n. (This was proven in the latter half of
the 19th century by Cebyshev. One of Paul Erdős’ early mathematical triumphs was an elegant

new proof of this result.)
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solve the equation

ax+ by = c

in rational numbers, where a and b are nonzero rational numbers and c is any
rational number. Well, it’s not much fun, is it? Let x be any rational number at
all, and solve for y:

y =
c− ax
b

.

Speaking more geometrically, any line y = mx+ b in the plane passing through one
rational point and with rational slope – roughly speaking, with m and b rational –
will have lots of rational solutions: one for every rational choice of x.

So for Diophantus, the first interesting example was quadratic polynomial equa-
tions. Indeed, after this section, the quadratic case will occupy our interest for
perhaps the majority of the course.

However, over Z things are never so easy: for instance, the equation

3x+ 3y = 1

clearly does not have an integer solution, since no matter what integers x and y we
choose, 3x + 3y will be divisible by y. More generally, if a and b have a common
divisor d > 1, then it is hopeless to try to solve

ax+ by = 1.

But this is the only restriction, and indeed we saw this before: en route to proving
the fundamental theorem, we showed that for any integers a and b, not both zero,
then gcd(a, b) generates the ideal {xa+yb | x, y ∈ Z}, meaning that for any integer
m, the equation

ax+ by = m gcd(a, b)

has solutions in x and y. In other words, we can solve

ax+ by = n

if n is a multiple of the gcd of a and b. By the above, it is also true that we can only
solve the equation if n is a multiple of the gcd of x and y – the succinct statement
is the equality of ideals Ia,b = (gcd(a, b)) – so we have (and already had, really) the
following important result.

Theorem 1.17. For fixed a, b ∈ Z, not both zero, and any m ∈ Z, the equation

ax+ by = m

has a solution in integers (x, y) iff gcd(a, b) | m.

In particular, if gcd(a, b) = 1, then we can solve the equation for any integer m.
The fundamental case is to solve

ax+ by = 1,

because if we can find such x and y, then just by multiplying through by m we can
solve the general equation.

This is a nice result, but it raises two further questions. First, we found one
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solution. Now what can we say about all solutions?12 Second, given that we know
that solutions exist, how do we actually find them?

Example 1.18. We are claiming that 3x + 7y = 1 has an integer solution.
What could it be? Well, a little experimentation yields x = −2, y = 1. Is this
the only solution? Indeed not: we could add 7 to x and the sum would increase by
21, and then subtract 3 from y and the sum would decrease by 21. This leads us
to write down the family of solutions xn = −2 + 7n, yn = 1 − 3n. Are there any
more? Well, we have found one integral solutions whose x-coordinates are evenly
spaced, 7 units apart from each other. If there is any other solution 3X + 7Y = 1,
there must be some n such that 0 < X − xn < 7. This would give a solution
3(X − xn) = −7(Y − yn) with 0 < X − xn < 7. But this is absurd: the left hand
side would therefore be prime to 7, whereas the right hand side is divisible by 7. So
we evidently found the general solution.

The above argument does not, of course, use any special properties of 3 and 7: with
purely notational changes it carries over to a proof of the following result.

Theorem 1.19. For a and b coprime positive integers, the general integral
solution to xa+ yb = 1 is xn = x0 + nb, yn = y0 − na, where x0a+ y0b = 1 is any
particular solution guaranteed to exist by Theorem 1.17.

However, let us take the opportunity to give a slightly different reformulation and
reproof of Theorem 1.19. We will work in slightly more generality: for fixed, rela-
tively prime nonzero integers a and b and a variable integer N , consider all integral
solutions of the equation

(5) ax+ by = N

To borrow terminology from other areas of mathematics,13 (5) is linear and inho-
mogeneous in x and y. What this means is that the left hand side is an expression
which is linear in x and y but the right-hand side is nonzero. There is an associated
homogeneous linear equation:

(6) ax+ by = 0

Here we are saying something quite basic in a fancy way: the real solutions of (6)
form a line through the origin in R2, with slope m = −a

b . But the set of integer
solutions to (6) also has a nice algebraic structure: if (x1, y1), (x2, y2) are any two
integer solutions and C is any integer, then since

a(x1 + x2) + b(y1 + y2) = (ax1 + by1) + (ax2 + by2) = 0 + 0 = 0,

a(Cx1) + b(Cy2) = C(ax1 + by1) = C · 0 = 0,

both the sum (x1, y1)+(x2, y2) and the integer multiple C(x1, y1) are solutions. To
be algebraically precise about it, the set of integer solutions to (6) forms a subgroup
of the additive group of the one-dimensional R-vector space of all real solutions.

Now we claim that it is easy to solve the homogeneous equation directly. The
Q-solutions are clearly {(x, −ab x) | x ∈ Q}. And, since a and b are relatively prime,

in order for x and −a
b x to both be integers, it is necessary and sufficient that x

12Diophantus was for the most part content with finding a single solution. The more pene-

trating inquiry into the set of all solutions was apparently first made by Fermat.
13Especially, from the elementary theory of differential equations.
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itself be an integer and that it moreover be divisible by b. Therefore the general
integral solution to the homogeneous equation is {(nb,−na) | n ∈ Z}.

Now we make the fundamental observation about solving inhomogeneous linear
equations in terms of the associated homogeneous linear equation. We claim that
if (x0, y0) is any one solution to the inhomogeneous equation (5) and (xn, yn) =
(nb,−na) is the general solution to the associated homogeneous equation (6), then
the general solution to the inhomogeneous equation is (x0, y0) + (xn, yn). Let’s
check this. On the one hand, we have

a(x0 + xn) + b(y0 + yn) = (ax0 + by0) + (axn + byn) = N + 0 = N,

so these are indeed solutions to the inhomogeneous equation. On the other hand,
if (x, y) and (x′, y′) are any two solutions to the inhomogeneous equation, then,
by a very similar computation, their difference (x − x′, y − y′) is a solution to the
homogeneous equation.

In other words the set of all solutions to the inhomogeneous equation is simply
a translate of the abelian group of all solutions to the homogeneous equation.
Thus, since the solutions to the homogeneous equation are simply a set of points
along the line with distance

√
a2 + b2 between consecutive solutions, the same holds

for all the inhomogeneous equations, independent of N .

Remark aside: At the cost of introducing some further fancy terminology, the
discussion can be summarized by saying that the solution set to the inhomoge-
neous equation is a principal homogeneous space for the commutative group
of solutions to the homogeneous equation. The general meaning of this is in terms
of group actions on sets: let G be a group, X a set, and • : G×X → X an action
of G on X. (We are assuming familiarity with this algebraic concept only to make
the present digression. It will not be needed in the rest of the course.) Then we say
that X is a principal homogeneous space for G if the action is simply transitivie:
for all x, y ∈ X, there exists a unique element g of G such that g · x = y.

To look back this homogeneous/inohomogeneous argument, what it doesn’t give
us is any particular solution to the inhomogeneous equation. (Indeed, so far as
this abtract reasoning goes, such a solution might not exist: according to the def-
inition we gave for principal homogeneous space, taking X = ∅ gives a principal
homogeneous space under any group G!) To get this in any given case we can
use Euclid’s algorithm, but in thinking about things in general it is useful to ac-
knowledge a certain amount of fuzziness in the picture: we can only say where any
particular solution will be located on the line to within an accuracy of d =

√
a2 + b2.

What is interesting is that we can use these seemingly very primitive geometric
ideas to extract useful information about a more difficult problem. Namely, let us
now suppose that a, b,N are all positive integers, and we seek to solve the linear
Diophantine equation

ax+ by = N

in positive integers (x, y). Then the geometric picture shows right away that we
are interested in the intersection of the infinite family of all integral solutions with
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the first quadrant of R2. More precisely, we have a line segment LN which joins
(0, Nb ) to (Na , 0), and we are asking whether there are integer solutions on LN .

Notice that the length of LN is

`N =

√(
N

a

)2

+

(
N

b

)2

= N

√
1

a2
+

1

b2
= N

√
a2 + b2

ab
=

(
d

ab

)
N.

Thus when N is small, LN is a very small line segment, and since consecutive
integral solutions on the line are spaced d units apart, it is by no means guaranteed
that there are any integral solutions on LN . For instance, since ax+by ≥ a+b ≥ 2,
there is no positive integral solution to ax + by = 1. But since LN grows linearly
with N and d is independent of N , when N is sufficiently large we must have some
integral points on LN . In fact this must happen as soon as `N > d.14 By similar
reasoning, the number of solutions must be extremely close to `n

d = N
ab . Precisely:

Theorem 1.20. Let a, b ∈ Z+ be relatively prime, and let N ∈ Z+.
a) If N > ab, then there exist positive integers x, y such that ax+ by = N .
b) Let NN be the number of positive integral solutions (x, y) to ax+ by = N . Then

bN
ab
c − 1 ≤ NN ≤ b

N

ab
c+ 1.

We leave the details of the proof of Theorem 1.20 to the interested reader.

It turns out that the lower bound on N in part a) is of the right order of mag-
nitude, but is never sharp: for instance, if a = 2, b = 3, then the theorem asserts
2x+ 3y = N has a positive integral solution if N > 6, whereas pure thought shows
that it suffices to take N ≥ 2. The sharp lower bound is known (in terms of a and
b, of course) and is a result of J.J. Sylvester [Sy84].

5. Some Irrational Numbers

Proposition 1.21. The square root of 2 is irrational.

Proof. Suppose not: then there exist integers a and b 6= 0 such that
√

2 = a
b ,

meaning that 2 = a2

b2 . We may assume that a and b have no common divisor – if
they do, divide it out – and in particular that a and b are not both even.

Now clear denominators:
a2 = 2b2.

So 2 | a2. It follows that 2 | a. Notice that this is a direct consequence of Euclid’s
Lemma – if p | a2, p | a or p | a. On the other hand, we can simply prove the
contrapositive: if a is odd, then a2 is odd. By the Division Theorem, a number
is odd iff we can represent it as a = 2k + 1, and then we just check: (2k + 1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is indeed again odd. So a = 2A, say. Plugging this
into the equation we get

(2A)2 = 4A2 = 2b2, b2 = 2A2,

so 2 | b2 and, as above, 2 | b. Thus 2 divides both a and b: contradiction. �

14To understand the reasoning here, imagine that you know that a certain bus comes once

every hour at a fixed time – i.e., at a certain number of minutes past each hour – but you don’t
know exactly what that fixed time is. Nevertheless, if you wait for any full hour, you will be able

to catch the bus.
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Comment: This is a truly “classical” proof. In G.H. Hardy’s A Mathematician’s
Apology, an extended rumination on the nature and beauty of pure mathematics,
he gives just two examples of theorems: this theorem, and Euclid’s proof of the
infinitude of primes. As he says, this is inevitably a proof by contradiction (unlike
Euclid’s proof, which constructs new primes in a perfectly explicit way). The orig-
inal statement is logically more complicated than what we actually prove in that
it takes for granted that there is some real number

√
2 – characterized by being

positive and having square equal to 2 – and then shows a “property” of this real
number, namely it not being a fraction. But the essence of the matter is that a
certain mathematical object does not exist – namely a rational number a

b such that

(ab )2 = 2. This was the first “impossibility proof” in mathematics.
This is also one of the most historically important theorems in mathematics.

History tells us that the result was discovered by Pythagoras, or at least someone in
his school, and it was quite a shocking development (some sources say that the un-
named discoverer was fêted, others that he was cast into the sea). It caused Greek
mathematicians to believe that geometric reasoning was more reliable than numer-
ical, or quantitative reasoning, so that geometry became extremely well-developed
in Greek mathematics at the expense of algebra.

Can we prove that
√

3 is irrational in the same way(s)? The Euclid’s Lemma
argument gives the irrationality of

√
p for any prime p: write

√
p = a

b in lowest

terms, square and simplify to get pb2 = a2; then p|a2 so p|a, so a = pA, and then
substituting we get pb2 = p2A2, b2 = pA2, so p | b2 and finally p | b: contradiction.

It is interesting to notice that even without Euclid’s Lemma we can prove the
result “by hand” for any fixed prime p. For instance, with p = 3 we would like to
prove: 3 | a2 =⇒ 3 | a. The contrapositive is that if a is not divisible by 3, neither
is a2. Since any number which is not divisible by 3 is of the form 3k + 1 or 3k + 2,
we need only calculate:

(3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1,

(3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1,

so in neither case did we get, upon squaring, a multiple of three. For any prime
p, then, we can show p|a2 =⇒ p|a “by hand” by squaring each of the expressions
pk + i, 0 < i < p and checking that we never get a multiple of p.

One can also look at this key step as a property of the ring Zp of integers modulo p:
if 0 6= a ∈ Zp then 0 6= a2 ∈ Zp. But – aha! – this is just saying that we don’t want
any nonzero elements in our ring Zp which square to 0, so it will be true when Zp
is reduced (remember, this means that there are no nilpotent elements). When p is
prime Zp is an integral domain (even a field) so there are not even any zero divisors,
but referring back to the algebra handout we proved more than this: for any n, Zn
is reduced iff n is squarefree. Thus, although the full strength of p | ab =⇒ p | a
or p | b holds only for primes, the special case p | a2 =⇒ p | a is true not just for
primes but for any squarefree integer p. (Stop and think about this for a moment;
you can see it directly.) Thus the same argument in fact gives:

Proposition 1.22. For any squarefree integer n > 1,
√
n is irrational.

What about the case of general n? Well, of course
√
n2 is not only rational but is

an integer, namely n. Moreover, an arbitrary positive integer n can be factored to
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get one of these two limiting cases: namely, any n can be uniquely decomposed as

n = sN2,

where s is squarefree. (Prove it!) Since
√
sN2 = N

√
s, we have that

√
n is rational

iff
√
s is rational; by the above result, this only occurs if s = 1. Thus:

Theorem 1.23. For n ∈ Z+,
√
n is rational iff n = N2 is a perfect square.

Another way of stating this result is that
√
n is either an integer or is irrational.

What about cube roots and so forth? We can prove that 3
√

2 is irrational using
a similar argument: suppose 3

√
2 = a

b , with gcd(a, b) = 1. Then we get

2b3 = a3,

so 2 | a3, thus 2 | a. Put a = 2A, so b3 = 22A3 and 2 | b3. Thus 2 | b: contradiction.

Any integer can be written as the product of a cube-free integer15 and a perfect
cube; with this one can prove that the 3

√
n is irrational unless n = N3. For the sake

of variety, we prove the general result in a different way.

Theorem 1.24. Let k > 2 be a positive integer. Then k
√
n is irrational unless

n = Nk is a perfect kth power.

Proof. Suppose n is not a perfect kth power. Then there is a prime p | n such
that ordp(n) is not divisible by k. We use this prime to get a contradiction:

ak

bk
= n, ak = nbk.

Take ordp of both sides:

k ordp(a) = ordp(a
k) = ordp(nb

k) = k ordp(b) + ordp(n),

so ordp(n) = k(ordp(a)− ordp(b)) and k | ordp(n): contradiction. �

From a more algebraic perspective, there is yet a further generalization to be made.
A complex number α is an algebraic number if there exists a polynomial

P (t) = ant
n + . . .+ a1t+ a0

with ai ∈ Z, an 6= 0, such that P (α) = 0. Similarly, α is an algebraic integer if
there exists such a polynomial P with an = 1 (a monic polynomial). We write
Q for the set of algebraic numbers and Z for the set of algebraic integers.

Example 1.25. α = 1
2 ∈ Q because α satisfies the polynomial 2t − 1; β =

5
√

2 ∈ Z because β satisfies the polynomial t5 − 2. However there are also algebraic
integers that “do not look like integers” in some naive sense: e.g. the golden ratio

ϕ = 1+
√

5
2 satisfies the polynomial t2 − t− 1 so is an algebraic integer.

Theorem 1.26. If α ∈ Q ∩ Z, then α ∈ Z.

Proof. Let α = a
b with gcd(a, b) = 1; suppose α satisfies a monic polynomial:(a

b

)n
+ cn−1

(a
b

)n−1

+ . . .+ c1

(a
b

)
+ c0 = 0, ci ∈ Z.

15I.e., an integer n with ordp(n) ≤ 2 for all primes p.
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We can clear denominators by multiplying through by bn to get

an + bcn−1 · an−1 + . . .+ bn−1c1 · a+ bnc0 = 0,

or

(7) an = b
(
−cn−1 · an−1 − . . .− bn−2c1 · a− bn−1c0

)
.

If b > 1, then some prime p divides b and then, since p divides the right hand
side of (34), it must divide the left hand side: p | an, so p | a. But, as usual, this
contradicts the fact that a and b were chosen to be relatively prime. �

We can deduce Theorem 4 from Theorem 5 by noticing that for any k and n,
k
√
n is a root of the polynomial tk − n so lies in Z. On the other hand, evidently

k
√
n is an integer iff n is a perfect kth power, so when n is not a perfect kth power,

k
√
n ∈ Z \ Z, so by Theorem 1.26, k

√
n 6∈ Q.

In fact Theorem 1.26 is a special case of a familiar result from high school algebra.

Theorem 1.27. (Rational Roots Theorem) If

P (x) = anX + . . .+ a1x+ a0

is a polynomial with integral coefficients, then the only possible rational roots are
those of the form ± c

d , where c | a0, d | an.

We leave the proof as an exercise. (It is similar to that of Theorem 1.26.)

6. Primitive Roots

Let N be a positive integer. An integer g is said to be a primitive root modulo
N if every element x of (Z/NZ)× is of the form gi for some positive integer i.
Equivalently, the finite group (Z/NZ)× is cyclic and g (mod N) is a generator.

We’d like to find primitive roots mod N , if possible. There are really two problems:

Question 1. For which N does there exist a primitive root modulo N?

Question 2. Assuming there does exist a primitive root modulo N , how do we
find one? How do we find all of them?

We can and shall give a complete answer to Question 1. We already know that the
group of units of a finite field is finite, and we know that Z/NZ is a field if (and
only if) N is prime. Thus primitive roots exist modulo N when N is prime.

When N is not prime we might as well ask a more general question: what is the
structure of the unit group (Z/NZ)×? From our work on the Chinese Remainder
theorem, we know that if N = pa11 · · · parr , there is an isomorphism of unit groups

(Z/NZ)× = Z/(pa11 · · · parr Z)× ∼=
r∏
i=1

(Z/paii Z)×.

Thus it is enough to figure out the group structure when N = pa is a prime power.

Theorem 1.28. The finite abelian group (Z/paZ)× is cyclic whenever p is an
odd prime, or when p = 2 and a is 1 or 2. For a ≥ 3, we have

(Z/2aZ)× ∼= Z2 × Z2a−2 .
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Before proving Theorem 1.28, let us nail down the answer it gives to Question 1.

Corollary 1.29. Primitive roots exist modulo N in precisely the following
cases:
(i) N = 1, 2 or 4.
(ii) N = pa is an odd prime power.
(iii) N = 2pa is twice an odd prime power.

Proof. Theorem 1.28 gives primitive roots in cases (i) and (ii). If p is odd,
then

(Z/2paZ)× ∼= (Z/2Z)× × (Z/paZ)× ∼= (Z/paZ)×

since (Z/2Z)× is the trivial group. Conversely, if N is not of the form (i), (ii) or
(iii) then N is divisible either by 8 or by two distinct odd primes p and q. In the
first case, write N = 2a ·M with (2,M) = 1 and a ≥ 3. Then

(Z/NZ)× ∼= (Z/2aZ)× × (Z/MZ)×,

and (Z/NZ)×, having the noncylic subgroup (Z/2aZ)×, cannot itself be cyclic
[Handout A2.5, Corollary 6]. In the second case write N = paqbM ; then

(Z/NZ)× ∼= (Z/paZ)× × (Z/qbZ)× × (Z/MZ)×.

Both (Z/paZ)× and (Z/qaZ)× have even order, hence their orders are not relatively
prime and the product group cannot be cyclic [Handout A2.5, Corollary 10]. �

Proof of Theorem 1.28: The idea – for odd p – is as follows: if g is a primitive
root mod p, then [Handout A2.5, Corollary 2] the order of g mod pa is divisible by

p − 1, hence of the form pk · (p − 1) for some k ≤ a − 1. Therefore g′ = gp
k

has
order p − 1 [Handout A2.5, Proposition 7]. We claim z = 1 + p has order pa−1;
since gcd(pa−1, p− 1) = 1, g′z has order pa−1(p− 1) [Handout A2.5, Example 4].

Lemma 1.30. Let p be an odd prime and z ∈ Z, z ≡ 1 (mod p).
a) We have ordp(z

p − 1) = ordp(z − 1) + 1.

b) For all k ∈ Z+, ordp(z
pk − 1) = ordp(z − 1) + k.

Proof. Write z = 1 + xp for some x ∈ Z, so ordp(z − 1) = 1 + ordp(x). Then

(8) zp−1 = (1+xp)p−1 =

(
p

1

)
(xp)+

(
p

2

)
(xp)2 + . . .+

(
p

p− 1

)
(xp)p−1 +(xp)p.

For the first term on the right hand side of (8), we have

ordp(

(
p

1

)
xp) = 2 + ordp(x) = ordp(z − 1) + 1.

The remaining terms have larger p-orders, so the p-order of zp−1 is ordp(z−1)+1,

whence part a). Since zp
k − 1 = (zp

k−1

)p − 1, part b) follows by induction. �

Applying Lemma 1.30 to z = 1 + p gives ordp(z
pk−1 − 1) = k for all k ∈ Z+. So

zp
a−2 6= 1 (mod pa) and zp

a−1 ≡ 1 (mod pa): z has order exactly pa−1 in (Z/paZ)×.
Therefore, with notation as above, g′z has order pa−1(p− 1) = #(Z/paZ)×, so is a
primitive root mod pa.

Now for p = 2. Note that (Z/2Z)× and (Z/4Z)× have orders 1 and 2 respec-
tively so are certainly cyclic, and we may take a ≥ 3. We claim that the subgroup
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of (Z/2aZ)× generated by 5 has order 2a−2 and is disjoint from the subgroup gen-
erated by −1, of order 2. It follows that the group is isomorphic to Z2 × Z2a−2 .

When p = 2, Lemma 1.30 breaks down because the right hand side of (8) be-
comes just 4x+ 4x2 = 4x(x+ 1), whose 2-order is at least 3 + ord2(x) if x is odd.
So instead we take x even. In fact we may just take x = 2, so z = 1 + 2x = 5,

ord2(z2 − 1) = ord2(z− 1) + ord2(z+ 1) = ord2(z− 1) + ord2(6) = ord2(z− 1) + 1.

Again, inductively, we get

ord2(z2k − 1) = ord2(z − 1) + k,

or ord2(52k − 1) = k + 2. Thus for a ≥ 2, 5 has order 2a−2 in (Z/2aZ)×. Moreover
5k + 1 ≡ 2 (mod 4) for all k, so 5k 6= −1 (mod 2a), so the subgroups generated
by the classes of 5 and of −1 are disjoint. This completes the proof of Theorem 1.28.

Question 2 remains: when there is a primitive root, then (ZNZ)× is a cyclic
group, so has ϕ(n) generators, where n is its order. Since the order of (Z/NZ)×

is n = ϕ(N), if there is one primitive root there are in fact exactly ϕ(ϕ(N)) of
them, which is interesting. When N = p is a prime, we get that there are ϕ(p− 1)
primitive roots. But how many is that?? We will turn to questions like this shortly.

Suppose now that N = p is prime, so we know that there are a fair number of
primitive roots modulo p, but how do we find one? This is a much deeper ques-
tion. Suppose for instance we ask whether 2 is a primitive root modulo p. Well, it
depends on p. Among odd primes less than 100, 2 is a primitive root modulo

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83

and is not a primitive root modulo

7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97.

Extending the list, one finds that the “chance” that 2 is a primitive root modulo p
seems to dip below 1

2 and approach a number closer to 37%. E. Artin conjectured
that for any prime number a, a is a primitive root modulo (100C)% of the primes,
with

C =
∏
p

(
1− 1

p(p− 1)

)
= 0.3739558136 . . . ,

and in particular that a is a primitive root modulo infinitely many primes.

Work of Gupta-Murty16 [GM84] and Heath-Brown17 [HB86], shows that there
are at most two “bad” prime numbers a such that a is a primitive root modulo
only finitely many primes p. So, for instance, if 2 is not a primitive root modulo
infinitely many primes and 3 is not either, than we can be sure that 5 is a primitive
root modulo infinitely many primes!

16Two people: Rajiv Gupta and M.(aruti) Ram Murty.
17One person: D.(avid) Roger Heath-Brown.
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There are further concrete questions of great interest: for instance, what can be
said about the smallest primitive root mod p? Or, suppose we are given p and
want to find a primitive root of p very quickly: what do we do? An extremely large
literature exists on such matters.



CHAPTER 2

Pythagorean Triples

1. Parameterization of Pythagorean Triples

1.1. Introduction to Pythagorean triples.

By a Pythagorean triple we mean an ordered triple (x, y, z) ∈ Z3 such that

x2 + y2 = z2.

The name comes from elementary geometry: if a right triangle has leg lengths x
and y and hypotenuse length z, then x2 + y2 = z2. Of course here x, y, z are posi-
tive real numbers. For most integer values of x and y, the integer x2 + y2 will not

be a perfect square, so the positive real number
√
x2 + y2 will be irrational: e.g.

x = y = 1 =⇒ z =
√

2. However, a few integer solutions to x2 + y2 = z2 are
familiar from high school algebra (and the SATs): e.g. (3, 4, 5), (5, 12, 13).

Remark: As soon as we have one solution, like (3, 4, 5), we can find infinitely many
more, however in a somewhat unsatisfying way. Namely, if (x, y, z) is a Pythagorean
triple and a is any integer, then also (ax, ay, az) is a Pythagorean triple:

(ax)2 + (ay)2 = a2(x2 + y2) = a2z2 = (az)2.

This property of invariance under scaling is a characteristic feature of solutions
(x1, . . . , xn) to homogeneous polynomials P (t1, . . . , tn) in n-variables. We recall
what this means: a monomial is an expression of the form cta11 · · · tann , and the degree
of the monomial is defined to be a1 + . . .+ +an, i.e., the sum of the exponents. A
polynomial is said to be homogeneous of degree d if each of its monomial terms
has degree d, and simply homogeneous if it is homogeneous of some degree d. For
instance, the polynomial P (x, y, z) = x2 + y2 − z2 is homogeneous of degree 2, and
indeed for any N the Fermat polynomial

PN (x, y, z) = xN + yN − zN

is homogeneous of degree N . Moreover, every (nonconstant) homogeneous polyno-
mial P (t1, . . . , tn) has zero constant term, hence P (0, . . . , 0) = 0. So (0, . . . , 0) is a
solution to any homogeneous polynomial, called the trivial solution.

Coming back to Pythagorean triples, these considerations show that for all a ∈ Z,
(3a, 4a, 5a) is a Pythagorean triple (again, familiar to anyone who has studied for
the SATs). For many purposes it is convenient to regard these rescaled solutions as
being equivalent to each other. To this end we define a Pythagorean triple (a, b, c)
to be primitive if gcd(a, b, c) = 1. Then every nontrivial triple (a, b, c) is a positive
integer multiple of a unique primitive triple, namely (ad ,

b
d ,

c
d ) where d = gcd(a, b, c).

31
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Our goal is to find all primitive Pythagorean triples. There are many ways to
do so. We prefer the following method, both for its simplicity and because it moti-
vates the study of not just integral but rational solutions of polynomial equations.

Namely, consider the algebraic curve x2 + y2 = 1 in R2: i.e., the unit circle. Why?
Well, suppose (a, b, c) is a nontrivial Pythagorean triple, so a2 + b2 = c2 with c 6= 0
(if c = 0, then a2 + b2 = 0 =⇒ a = b = 0). So we may divide through by c, getting(a

c

)2

+

(
b

c

)2

= 1.

Thus (ac ,
b
c ) is a rational point on the unit circle. Moreover, the process can be

essentially reversed: suppose that (r, s) ∈ Q2 is such that r2 + s2 = 1. Then,
writing r = a

c and s = b
d (so cd 6= 0), we have(a

c

)2

+

(
b

d

)2

= 1.

Multiplying through by (cd)2, we get

(da)2 + (bc)2 = (bd)2,

so that (da, bc, bd) is a nontrivial Pythagorean triple. If we start with a primitive
Pythagorean triple (a, b, c), pass to the rational solution (ac ,

b
c ) and then clear de-

nominators using the above formula, we get (ca, cb, c2). This is not the primitive
triple that we started with, but it is simply a rescaling: no big deal. At the end we
will find the correct scaling that gives primitive triples on the nose.

1.2. Rational parameterization of the unit circle.

Fix any one rational point P• = (x•, y•) on the unit circle. The argument that
we are about to make works for any choice of P• – e.g. ( 3

5 ,
4
5 ) – but let me pass

along the wisdom of hindsight: the computations will be especially simple and clean
if we take P• = (−1, 0). So let us do so.

Now suppose P = (xP , yP ) is any other rational point on the unit circle. Then
there is a unique line ` joining P• to P , which of course has rational coefficients:

` : y − yP =
yP − y•
xP − x•

(x− xP ) .

In particular, the slope of this line

mP =
yP − y•
xP − x•

,

is a rational number. This already places a limitation on the rational solutions,
since “most” lines passing through the fixed point P• have irrational slope. More
interesting is the converse: for any m ∈ Q, let

`m : y = (y − y•) = m(x− x•) = m(x+ 1),

be the line passing through P• = (−1, 0) with slope m. We claim that this line
intersects the unit circle in precisely one additional point Pm, and that this point
Pm also has rational coordinates. That is, we claim that the rational points on the
unit circle are precisely the point P• = (−1, 0) together with the set of points Pm
as m ranges through the rational numbers.
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Why is this so? With a bit of thought, we can argue for this “in advance”. Briefly,
we plug the linear equation `m into the quadratic x2 + y2 = 1 thereby getting a
quadratic equation in x with rational coefficients. Because we know that this equa-
tion has at least one rational solution – namely −1, the coordinate of P• – the other
solution must be rational as well, as follows from contemplation of the quadratic
formula. On the other hand, such forethought is not really necessary in this case,
because we want to find the solutions explicitly anyway. In other words, let’s do it!

We have the system of equations

(9) x2 + y2 = 1

(10) y = m(x+ 1).

Substituting (40) into (34) gives

x2 +m2(x+ 1)2 = 1,

or

(1 +m2)x2 + 2m2x+m2 − 1 = 0.

Applying the quadratic formula, we get

x =
−2m2 ±

√
4m4 − 4(1 +m2)(m2 − 1)

2(1 +m2)
.

Under the radical sign we have

4m4 − 4(m2 + 1)(m2 − 1) = 4(m4 − (m4 − 1)) = 4,

so that “luckily”1
√

4m2 − 4(1 +m2)(m2 − 1) = 2, and

x =
−2m2 ± 2

2(1 +m2)
=
−m2 ± 1

1 +m2
.

Notice that by taking the minus sign, we get the solution x = −m2−1
1+m2 = −1. That’s

great, because −1 is the x-coordinate of P•, so that it had better be a solution.
The other solution is the one we really want:

xm =
1−m2

1 +m2
,

and then we get

ym = m(1 + xm) = m

(
1 +

1−m2

1 +m2

)
=

2m

m2 + 1
,

so that finally

Pm =

(
1−m2

1 +m2
,

2m

1 +m2

)
.

1Not really, of course: see the last paragraph above.
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This is exactly what we wanted. Before returning to the problem of Pythagorean
triples, however, let us make one further observation:

lim
m→±∞

Pm =

(
lim

m→±∞

1−m2

1 +m2
, lim
m→±∞

2m

1 +m2

)
= (−1, 0) = P•.

The geometric interpretation of this is simple: the tangent line to the unit circle
at (−1, 0) is vertical, so as the slope of the line `m approaches either +∞ or −∞,
the second intersection point Pm approaches P• and the secant lines approach
the tangent line. So in fact it is true that the rational points on the unit circle
correspond precisely to the set of all rational lines through P•: here we get P• itself
as the double intersection point of the tangent line. Thus, instead of P•, a more
appropriate name would be P∞, although we do not insist on this in the sequel.

1.3. Scaling to get primitive solutions.

We wish to explicitly write down all primitive Pythagorean triples (a, b, c). As
above, this is accomplished up to scaling by clearing denominators in the general
rational solution Pm = (xm, ym). Namely, put m = u

v with gcd(u, v) = 1, so

Pm =

(
1− u2/v2

1 + u2/v2
,

2u/v

1 + u2/v2

)
=

(
v2 − u2

v2 + u2
,

2uv

v2 + u2

)
.

Thus, multiplying through by v2 + u2, we get a family of integral solutions

(v2 − u2, 2uv, v2 + u2).

Are these solutions primitive? In other words, is gcd(v2 − u2, 2uv, v2 + u2) = 1?

Suppose that an odd prime p divides v2 − u2 and v2 + u2. Then p also divides
(v2 − u2) + (v2 + u2) = 2v2 and (v2 + u2)− (v2 − u2) = 2u2. Since p is odd, we get
p | u2 and p | v2 which implies p | u and p | v, contradiction. Similarly, if 4 | v2−u2

and 4 | v2 + u2, then 4 | 2v2 and 4 | 2u2, so 2 | v2 and 2 | u2, so 2 divides both u
and v. Thus gcd(v2 − u2, 2uv, v2 + u2) is either 1 or 2.

Case 1: v and u have opposite parity. Then v2 − u2 is odd, so the gcd is 1. Notice
that in this case, the first coordinate v2 − u2 is odd and the second coordinate 2uv
is even, so this can’t be the complete list of all primitive Pythagorean triples: that
set is symmetric under interchanging x and y!
Case 2: u and v are both odd. Then v2 − u2, 2uv, v2 + u2 are all even, so the gcd

is 2. In this case (v
2−u2

2 , uv, v
2+u2

2 ) is the primitive integral solution we seek.

This is the answer,2 but let’s touch it up a bit. If x = 2k + 1 is odd, then
x2 = 4k2 + 4k + 1 ≡ 1 (mod 4). Thus, if u and v are both odd, not only is

v2 − u2 even, it is congruent to v2 − u2 ≡ 1− 1 = 0 (mod 4), so v2−u2

2 is even and
uv is odd. Thus all the primitive triples arising in Case 2 are obtained by switching
the first and second coordinates of a primitive triple in Case 1. To sum up:

Theorem 2.1. (Classification of Pythagorean Triples)

a) The rational solutions to x2 + y2 = 1 are {(−1, 0) ∪
(

1−m2

1+m2 ,
2m

1+m2

)
| m ∈ Q}.

b) (0, 0, 0) is a Pythagorean triple, called trivial. Every nontrivial Pythagorean

2Note that there is no Case 3: we assumed gcd(u, v) = 1, so they can’t both be even.
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triple is of the form (da, db, dc) for some d ∈ Z+, where (a, b, c) is a Pythagorean
triple with gcd(a, b, c) = 1, called primitive.
c) In every primitive Pythagorean triple (a, b, c), exactly one of a and b are even
integers. Every primitive triple with a odd is of the form (v2 − u2, 2uv, v2 + u2)
where u, v ∈ Z are relatively prime integers of opposite parity. Conversely, all such
pairs u, v yield a primitive Pythagorean triple with first coordinate odd.

2. An Application: Fermat’s Last Theorem for N = 4

In this section we will prove Fermat’s Last Theorem for N = 4. In fact, following
Fermat, we establish something stronger, from which FLT(4) immediately follows.

Theorem 2.2. (Fermat) X4+Y 4 = Z2 has no solutions with X,Y, Z ∈ Z\{0}.

Proof. Step 1: Let (x, y, z) be a positive integral solution to X4 + Y 4 = Z2.
We claim there is a positive integral solution (x′, y′, z′) with gcd(x′, y′) = 1 and
z′ ≤ z. Indeed, if x and y are not relatively prime, they are both divisible by some
prime number p. Then p4 | X4 + Y 4 = Z2, so p2 | Z. Therefore x

p ,
y
p ,

z
p2 ∈ Z+ and(

x

p

)4

+

(
y

p

)4

=
1

p4
(x4 + y4) =

1

p4
(z2) =

(
z

p2

)2

,

so (xp ,
y
p ,

z
p2 ) is another positive integral solution, with z-coordinate smaller than

the one we started with. Therefore the process can be repeated, and since the
z-coordinate gets strictly smaller each time, it must eventually terminate with a
solution (x′, y′, z′) as in the statement.
Step 2: Given a positive integral solution (x, y, z) to X4 +Y 4 = Z2 with gcd(x, y) =
1, we will produce another positive integral solution (u, v, w) with w < z.

First, we may assume without loss of generality that x is odd and y is even.
They cannot both be even, since they are relatively prime; if instead x is even and
y is odd, then we can switch x and y; so what we need to check is that x and y
cannot both be odd. But then considering x4 + y4 = z2 modulo 4, we find 2 ∼= z2

(mod 4), which is impossible: 02 ≡ 22 ≡ 0 (mod 4), 12 ≡ 32 ≡ 1 (mod 4).
Now we bring in our complete solution of Pythagorean triples: since (x2)2 +

(y2)2 = z2 and x and y are relatively prime, (x, y, z2) is a primitive Pythagorean
triple with first coordinate odd. Therefore by Theorem 2.1 there exist relatively
prime integers m and n of opposite parity such that

(11) x2 = m2 − n2

y2 = 2mn

z = m2 + n2.

Now rewrite (27) as n2 + x2 = m2. Since gcd(m,n) = 1, this is again a primitive
Pythagorean triple. Moreover, since x is odd, n must be even. So we can use our
parameterization again (!!) to write

x = r2 − s2,

n = 2rs,

m = r2 + s2,

for coprime integers r, s of oposite parity. Now observe

m
(n

2

)
=

2mn

4
=
y2

4
=
(y

2

)2

.
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Since m and n
2 are coprime integers whose product is a perfect square, they must

both be perfect squares. Similarly,

rs =
2rs

2
=
n

2
= �,

so r and s must both be squares. Let us put r = u2, s = v2,m = w2, and substitute
these quantities into m = r2 + s2 to get

u4 + v4 = w2.

Here w ≥ 1, so
w ≤ w4 < w4 + n2 = m2 + n2 = z,

so that as promised, we found a new positive integral solution (u, v, w) with w < z.
Step 3: Steps 1 and 2 together lead to a contradiction, as follows: if we have any
positive integral solution (x, y, z) to X4 + Y 4 = Z2, then by Step 1 we have one
(x′, y′, z′) with z′ ≤ z with gcd(x′, y′) = 1. Then by Step 2 we have another positive
integral solution (u, v, w) with w < z′ ≤ z. Then by Step 1 we have another positive
integral solution (u′, v′, w′) with w′ ≤ w < z′ ≤ z with gcd(u′, v′) = 1, and then
by Step 2 we get another solution whose final coordinate is strictly smaller than
w. And so on. In other words, the assumption that there are any positive integer
solutions at all leads to the construction of an infinite sequence of positive integer
solutions (xn, yn, zn) with zn+1 < zn for all n. But that’s impossible: there are no
infinite strictly decreasing sequences of positive integers. Contradiction! �

Lemma 2.3. Let A and B be coprime integers. Then:
a) If A and B have the same parity, gcd(A+B,A−B) = 2.
b) If A and B have opposite parity, gcd(A+B,A−B) = 1.

Exercise: Prove Lemma 2.3.

Here is a second proof, communicated to us by Barry Powell.

Proof. Seeking a contradiction, suppose the equation X4 + Y 4 = Z2 has
solutions (x, y, z) with z 6= 0. Among all such solutions, choose one with z2 minimal.
For such a minimal solution we must have gcd(x, y) = 1: indeed, if a prime p divided
both x and y, then p4 | z2 so p2 |z and we may take x = px′, y = py′, z = p2z′

to get a solution (x′, y′, z′) with (z′)2 < z2. Moreover x and y must have opposite
parity: being coprime they cannot both be even; if both were odd then reducing
modulo 4 gives a contradiction. It is no loss of generality to assume that x is odd
and y is even, and it follows that z is odd.

We claim that gcd(z+y2, z−y2) = 1. Indeed, let d = gcd(z+y2, z−y2). Since y
is even and z is odd, z+y2 is odd, hence d is odd. Suppose p is an odd prime dividing
d. Then p | (z+y2)+(z−y2) = 2z, so p | z; moreover, p | (z+y2)− (z−y2) = 2y2,
so p | y. Since x4 = z2 − y4, it follows that p | x, contradicting gcd(x, y) = 1.

By uniqueness of factorization there are coprime integers r and s such that

(12) z − y2 = r4, z + y2 = s4.

So (s2 +r2)(s2−r2) = s4−r4 = 2y2 with y even, hence r and s are both odd. Since
s2, r2 are coprime integers of the same parity, by Lemma 2.3, gcd(s2 +r2, s2−r2) =

2. Since r, s are odd, so is s2+r2

2 , so gcd( s
2+r2

2 , s2−r2) = 1, and then by uniqueness
of factorization there are coprime integers a, b with

r2 + s2 = 2b2, (r + s)(r − s) = r2 − s2 = a2.
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Again by Lemma 2.3, gcd(r + s, r − s) = 2, so gcd( r+s2 , r−s2 ) = 1 and thus there
are coprime integers u, v with

s− r = 2u2, s+ r = 2v2.

It follows that

4(u4 + v4) = (s− r)2 + (s+ r)2 = 2(s2 + r2) = 4b2,

and thus
u4 + v4 = b2.

Since x is odd, hence nonzero, and x4 + y4 = z2, y2 ≤ y4 < z2, so

2b2 = s2 + r2 ≤ (s2 + r2)(s2 − r2) = 2y2 < 2z2.

Note also that b 6= 0, since otherwise u = v = 0, contradicting the fact that they
are coprime. Therefore we have found a solution (u, v, b) to X4 + Y 4 = Z2 with
0 < b2 < z2, contradicting the minimality of z2. �

Corollary 2.4. X4 + Y 4 = Z4 has no solutions with X,Y, Z ∈ Z \ {0}.

Proof. Suppose there are x, y, z ∈ Z \ {0} such that x4 + y4 = z4. We may
assume x, y, z are all positive. Then, since Z4 = (Z2)2, the triple (x, y, z2) is a
positive integer solution to X4 + Y 4 = Z2, contradicting Theorem 2.2. �

The strategy of the above proof is known as infinite descent. Over the centuries
it has been refined and developed, and the modern theory of descent is one of
the mainstays of contemporary Diophantine geometry.

3. Rational Points on Conics

The method of drawing lines that we used to find all rational points on the unit
circle has further applicability. Namely, we consider an arbitrary conic curve

(13) aX2 + bY 2 = cZ2,

for a, b, c ∈ Q \ {0}.

Remark: More generally, one calls a plane conic any curve given by an equation

aX2 + bXY + cXZ + dY 2 + eY Z + fZ2 = 0.

for a, b, c, d, e, f ∈ Q, not all zero. But as one learns in linear algebra, by making
a linear change of variables, new coordinates can be found in which the equation
is diagonal, i.e., in the form (13), and one can easily relate integral/rational points
on one curve to those on the other. So by considering only diagonalized conics, we
are not losing out on any generality.

Now, as in the case a = b = c = 1, we have a bijective correspondence between
primitive integral solutions to aX2 + bY 2 = cZ2 and rational points on

(14) ax2 + by2 = c.

If we can find any one rational point P• = (x•, y•) on (14) then our previous method
works: taking the set of all lines through P• with rational slope, together with the
vertical line x = x• and intersecting with the conic (14), we get all rational solutions.

In the exercises the reader is invited to try this in certain cases where there are
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“obvious” rational solutions. For instance, if a = c then an obvious rational solu-
tion is (1, 0). The reader is asked to carry this out in a particular case – and also
to investigate the structure of the primitive integral solutions – in the exercises.

But there need not be any rational solutions at all! An easy example of this is

x2 + y2 = −1,

where indeed there are clearly no R-solutions. But this is not the only obstruction.
Consider for instance

3x2 + 3y2 = 1,

whose real solutions form a circle of radius 1√
3
. We claim that there are however

no rational points on this circle. Equivalently, there are no integral solutions to
3X2 + 3Y 2 = Z2 with gcd(x, y, z) = 1. For suppose there is such a primitive
integral solution (x, y, z). Then, since 3 | 3x2 + 3y2 = z2, we have 3 | z. So we may
put z = 3z′, getting 3x2 + 3y2 = 9(z′)2, or

x2 + y2 = 3z2.

Now reducing mod 3, we get

x2 + y2 ≡ 0 (mod 3).

Since the squares mod 3 are 0 and 1, the only solution mod 3 is x ≡ y ≡ 0 (mod 3),
but this means 3 | x, 3 | y, so that the solution (x, y, z) is not primitive after all: 3
is a common divisor.

This argument can be made to go through with 3 replaced by any prime p with p ≡ 3
(mod 4). Arguing as above, it suffices to show that the congruence x2 + y2 = 0
(mod p) has only the zero solution. But if it has a solution with, say, x 6= 0,

then x is a unit modulo p and then
(
y
x

)2
= −1 (mod p). We will see later that

for an odd prime p, the equation a2 ≡ −1 (mod p) has a solution iff p ≡ 1 (mod 4).

In fact, for an odd prime p ≡ 1 (mod 4), the curve

px2 + py2 = 1

does always have rational solutions, although this is certainly not obvious. Overall
we need a method to decide whether the conic aX2 + bY 2 = cZ2 has any nontrivial
integral solutions. This is provided by the following elegant theorem of Legendre.

Theorem 2.5. Let a, b, c be nonzero squarefree integers, relatively prime in
pairs, and neither all positive nor all negative. Then

ax2 + by2 + cz2 = 0

has a solution in nonzero integers (x, y, z) iff all of the following hold:
(i) There exists x ∈ Z such that −ab ≡ x2 (mod |c|).
(ii) There exists y ∈ Z such that −bc ≡ y2 (mod |a|).
(iii) there exists z ∈ Z such that −ca ≡ z2 (mod |b|).
In particular, since we can compute all of the squares modulo any integer n by a
direct, finite calculation, we can easily program a computer to determine whether
or not the equation has any nonzero integer solutions. Once we know whether
there are any integral solutions, we can search by brute force until we find one.
The following result of Holzer puts an explicit upper bound on our search:
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Theorem 2.6. If the equation ax2 +by2 +cz2 = 0 has any solutions in nonzero
integers, it has such a solution (x, y, z) with |x| ≤

√
bc, |y| ≤

√
ac, |z| ≤

√
ab.

A short and elementary proof of Theorem 2.6 was given by L.J. Mordell [Mo69].
Mordell’s proof was somewhat terse in places, leading to certain claims of a gap in
his argument. In her final project for the 2009 course, Laura Nunley closely exam-
ined [Mo69] and found that it is complete and correct. A more discursive writeup
of the argument appears in her 2010 UGA master’s thesis [Nu10]. Nunley’s thesis
also contains a detailed treatment of a beautiful generalization of Theorem 2.6 due
to Cochrane and Mitchell, which we will discuss later on.

Thus the study of homogeneous quadratic equations over Z (or, what comes to
the same, over Q) is admirably complete. The same cannot be said for polynomial
equations of higher degree, as we will soon see.





CHAPTER 3

Quadratic Rings

1. Quadratic Fields and Quadratic Rings

Let D be a squarefree integer not equal to 0 or 1. Then
√
D is irrational, and

Q[
√
D], the subring of C obtained by adjoining

√
D to Q, is a field.

From an abstract algebraic perspective, an explanation for this can be given as
follows: since

√
D is irrational, the polynomial t2 −D is irreducible over Q. Since

the ring Q[t] is a PID, the irreducible element t2 − D generates a maximal ideal

(t2−D), so that the quotient Q[t]/(t2−D) is a field. Moreover, the map Q[
√
D]→

Q[t]/(t2 −D) which is the identity on Q and sends
√
D 7→ t is an isomorphism of

rings, so Q[
√
D] is also a field. We may write Q[

√
D] = {a + b

√
D | a, b ∈ Q},

so that a basis for Q[
√
D] as a Q-vector space is 1,

√
D. In particular Q[

√
D] is

two-dimensional as a Q-vector space: we accordingly say it is a quadratic field.

It is also easy to check by hand that the ring Q[
√
D] is a field. For this and

for many other things to come, the key identity is

(a+ b
√
D)(a− b

√
D) = a2 −Db2.

For rational numbers a and b which are not both zero, the rational number a2−Db2
is also nonzero: equivalently there are no solutions to D = a2

b2 , because
√
D is

irrational. It follows that – again, for a, b not both 0 – we have(
a+ b

√
D
)
·
(

a

a2 −Db2
− b

a2 −Db2
√
D

)
= 1,

which gives a multiplicative inverse for a+ b
√
D in Q[

√
D].

We wish also to consider quadratic rings, certain integral domains whose frac-
tion field is a quadratic field Q(

√
D). Eventually we will want a more precise and

inclusive definition, but for now we consider Z[
√
D] = {a+ b

√
D | a, b ∈ Z}.1

2. Fermat’s Two Squares Theorem

The rings Z[
√
D] occur naturally when we study Diophantine equations. E.g:

1This equality is a fact which is not difficult to check; it is not the definition of Z[
√
D].

By way of comparison, we recommend that the reader check that the ring Z[
√
D
2

] is not of the

form Zα+ Zβ for any two fixed elements α, β of Z[
√
D
2

]. In fact its additive group is not finitely

generated as an abelian group.

41
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Question 3. Which prime numbers p can be expressed as a sum of two squares?
More precisely, for for which prime numbers p are there integers x and y such that

(15) x2 + y2 = p?

Evidently 2 is a sum of squares: 12 + 12 = 2. Henceforth we assume p > 2.

At the moment we have exactly one general technique2 for studying Diophantine
equations: congruences. So let’s try to apply it here.

• If we reduce x2 + y2 = p modulo 4, we get that p is a sum of two squares
modulo 4. Since 02 ≡ 22 ≡ 0 (mod 4) and 12 ≡ 32 ≡ 1 (mod 4), the squares
modulo 4 are {0, 1}, and thus – please stop and do the calculation yourself! – the
sums of two squares modulo 4 are {0, 1, 2}. Especially, 3 is not a sum of two squares
modulo 4. We deduce:

Lemma 3.1. If an odd prime p is a sum of two squares, then p ≡ 1 (mod 4).

• Suppose x2 + y2 = p. Reducing modulo p we get x2 + y2 ≡ 0 (mod p). If y ≡ 0
(mod p), then x2 ≡ 0 − y2 ≡ 0 (mod p) and thus also x ≡ 0 (mod p), so we may
take x = pX, y = pY to get

p = x2 + y2 = p2(X2 + Y 2)

and thus p2 | p, a contradiction. So y ∈ (Z/pZ)× and we may divide through by
y2, getting (

x

y

)2

≡ −1 (mod p).

That is, a necessary condition for (34) to have solutions is that −1 be a square
modulo p. It turns out though that this is not new information.

Proposition 3.2. Let p be an odd prime, and let x ∈ U(p) = (Z/pZ)×. Then:

a) x is a square in U(p) iff x
p−1
2 = 1.

b) In particular, −1 is a square modulo p iff p ≡ 1 (mod 4).

Proof. a) Write U(p) = (Z/pZ)×, and consider the map

Φ : U(p)→ U(p), x 7→ x
p−1
2 .

Let U(p)2 = {x2 | x ∈ U(p)} be the subgroup of squares. The assertion of part
a) is equivalent to: Ker Φ = U(p)2. We now demonstrate this: since x 7→ x2 is a
homomorphism from the group U(p) of order p − 1 to itself with kernel {±1} of

order 2, we have #U(p)2 = p−1
2 . Further, for x ∈ U(p), (x2)

p−1
2 = xp−1 = 1 by

Lagrange’s Little Theorem, so U(p)2 ⊂ Ker Φ. On the other hand, every x ∈ Ker Φ

satisfies x
p−1
2 − 1 = 0, and a polynomial over a field cannot have more roots than

its degree, so # Ker Φ ≤ p−1
2 . Therefore U(p)2 = Ker Φ.

b) Take x = −1 in part a): (−1)
p−1
2 ≡ 1 (mod p) iff p−1

2 is even iff p ≡ 1 (mod 4).
�

2By a “general technique”, we mean a technique that can always be applied, not one that is
guaranteed always to succeed. In that stronger sense there are provably no general technique for

Diophantine equations!
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Most of the point of the above proof is that it does not use the cyclicity of U(p);
however it still uses a good working familiarity with basic group theory.

Exercise 3.1. Use the cyclicity of U(p) to give a quicker proof of Proposition
3.2.

As it happens, in order to determine which primes are a sum of 2 squares we only
need half of the above result, and that half has a more elementary proof.

Lemma 3.3. (Fermat’s Lemma) For a prime p ≡ 1 (mod 4), there is an integer
x such that p | x2 + 1. Equivalently, −1 is a square modulo p.

Proof. A reduced residue system modulo p is a set S of p−1 integers such
that the reduction S of S modulo p is precisely the set (Z/pZ)× of nonzero residues.
By Wilson’s Theorem, for any reduced residue system S, we have

∏
x∈S x ≡ −1

(mod p). The most obvious choice of a reduced residue system modulo p is of
course {1, . . . , p − 1}. To prove this result we will use the second most obvious
choice, namely

S = {−(p− 1)

2
,
−(p− 1)

2
+ 1, . . . ,−1, 1, . . . ,

(p− 1)

2
}.

Then

−1 ≡
∏
x∈S

x ≡ (−1)
p−1
2 (

(
p− 1

2

)
!)2 (mod p).

If p ≡ 1 (mod 4), then p−1
2 is even, (−1)

p−1
2 = 1, and −1 is a square modulo p. �

It follows from Fermat’s Lemma that (15) has no Z-solutions unless p ≡ 1 (mod 4).
What about the converse: if p ≡ 1 (mod 4), must p be a sum of two squares?

By Fermat’s Lemma, there is x ∈ Z such that x2 ≡ −1 (mod p), i.e., there ex-
ists n ∈ Z such that pn = x2 + 1. Now factor the right hand side over Z[

√
−1]:

pn = (x+
√
−1)(x−

√
−1).

Suppose that p is prime as an element of Z[
√
−1]. Then it satisfies Euclid’s Lemma:

if p | αβ, then p | α or p | β. Here, if p is prime in Z[
√
−1], then we get p | x± i.

But this is absurd: what this means is that the quotient x±i
p = x

p ±
1
p i is an element

of Z[
√
−1], i.e., that both x

p and 1
p are integers. But obviously 1

p is not an integer.

Therefore p is not prime, so3 there exists a nontrivial factorization

(16) p = αβ,

where α = a + b
√
−1, β = c + d

√
−1 ∈ Z[

√
−1] are nonunit elements. Taking

complex conjugates of the above equation, we get

(17) p = p = αβ = αβ.

Multiplying (40) and (27) we get

(18) p2 = (αα)(ββ) = (a2 + b2)(c2 + d2).

Now, since α and β are evidently nonzero, we have a2 + b2, c2 + d2 > 0. We
claim that indeed a2 + b2 6= 1 and c2 + d2 6= 1. Indeed, if a + b

√
−1 ∈ Z[

√
−1]

3A gap occurs in the argument here. It has been deliberately inserted for pedagogical reasons.
Please keep reading at least until the beginning of the next section!
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with a2 + b2 = 1, then its multiplicative inverse in Q[
√
−1] is a

a2+b2 −
b

a2+b2

√
−1 =

a − b
√
−1 which again lies in Z[

√
−1]. In other words, a2 + b2 = 1 implies that

a+ b
√
−1 is a unit in Z[

√
−1], contrary to our assumption. Having ruled out that

either a2 + b2 = 1 or c2 + d2 = 1, (28) now immediately implies

a2 + b2 = c2 + d2 = p.

But that is what we wanted: p is a sum of two squares! Thus we have (appar-
ently...please read on!) proved the following theorem.

Theorem 3.4. (Fermat’s Two Squares Theorem) A prime number p can be
expressed as the sum of two integer squares if and only if p = 2 or p ≡ 1 (mod 4).

3. Fermat’s Two Squares Theorem Lost

The above proof of Theorem 3.4 was surprisingly quick and easy, especially com-
pared to Fermat’s original one: not having the notion of factorization in domains
other than the integers, Fermat’s uses (as is typical of him) a more intricate argu-
ment by descent. In fact, the way we have presented the above argument, it is too
easy: there is a gap in the proof. The gap is rather subtle, and is analogous to a
notorious mistake made by the early 19th century mathematician Lamé. Rather
than expose it directly, let us try to squeeze more out of it and see what goes wrong.

Namely, instead of just working with x2 + y2 = p and the corresponding quadratic
ring Z[

√
−1], let us consider the equation

(19) x2 −Dy2 = p,

where p is still a prime and D is a squarefree integer different from 0 or 1. We can
mimic the above argument in two steps as follows:

Step 1: By reducing modulo p, we get exactly as before that the existence of
an integral solution to (19) implies that D is a square modulo p.

Step 2: Conversely, assume that D is a square modulo p, i.e., there exists x ∈ Z
such that D ≡ x2 (mod p). Again this leads means there exists n ∈ Z such that

pn = x2 −D,

and thus leads to a factorization in Z[
√
D], namely

pn = (x+
√
D)(x−

√
D).

Now if p were a prime element in Z[
√
D] it would satisfy Euclid’s Lemma, and

therefore since it divides the product (x+
√
D)(x−

√
D), it must divide one of the

factors: p | x±
√
D. But since x

p ±
1
p

√
D is still not in Z[

√
D], this is absurd: p is

not a prime element in Z[
√
D]. So it factors nontrivially: p = αβ, for α, β nonunits

in Z[
√
D]. Let us now define, for any α = a + b

√
D ∈ Q(

√
D), α = a − b

√
D.

When −D < 0 this is the usual complex conjugation. When −D > 0 it is the
conjugate in the sense of high school algebra (and also in Galois theory). It is
entirely straightforward to verify the identity

αβ = αβ
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in either case, so that again by taking conjugates we get also

p = p = αβ,

and multiplying the two equations we get

p2 = (αα)(ββ) = (a2 −Db2)(c2 −Db2).

As above, if a2 −Db2 = ±1, then the inverse of α lies in Z[
√
D], so α is a unit in

Z[
√
D], which we assumed it not to be. This time, the conclusion we get is

p = ±(a2 −Db2).

In particular, if D < 0, the conclusion we get is that p is of the form a2 + |D|b2 if
and only if −D is a square mod p.

Unfortunately we can easily see that this conclusion is very often wrong. Namely,
suppose D ≤ −3 and take p = 2.4 Then the condition that −D is a square modulo
2 is quite vacuous: the only elements of Z/2Z are 0 = 02 and 1 = 12, so every
integer is congruent to a square modulo 2. Thus the above argument implies there
are integers x and y such that

2 = x2 + |D|y2.

But this is absurd: if y = 0 it tells us that 2 is a square; whereas if y ≥ 1,
x2 + |D|y2 ≥ |D| ≥ 3. In other words, 2 is certainly not of the form x2 + |D|y2.

So what went wrong?!?

4. Fermat’s Two Squares Theorem (and More!) Regained

It is time to come clean. We have been equivocating over the definition of a prime
element in an integral domain. Recall that we did not actually define such a thing.
Rather, we defined an irreducible element in R to be a nonzero nonunit f such
that f = xy implies x or y is a unit. Then in the integers we proved Euclid’s
Lemma: if an irreducible element f of Z divides ab, then either f divides a or f
divides b. Of course this was not obvious: rather, it was all but equivalent to the
fundamental theorem of arithmetic.

Let us now review how this is the case. By definition, a domain R is a unique
factorization domain if it satisfies two properties: first, that every nonzero nonunit
factor into irreducible elements, and second that this factorization be unique, up
to ordering of factors and associate elements.

Suppose R is a UFD. We claim that if f is an irreducible element of R, and f | ab,
then f | a or f | b. We already proved this for R = Z and the general argument
is the same: we leave to the reader the very important exercise of looking back at
the argument for R = Z and adapting it to the context of R a UFD.

We define a prime element in a domain R to be a nonzero nonunit p which
satisfies the conclusion of Euclid’s Lemma: if p | ab, then p | a or p | b.

4Taking p = 2 should always raise alarm bells in your head: it is often said that “2 is the
oddest prime.” In this case, please do look back the above argument to see that p = 2 was not –

and did not need to be – excluded from consideration.
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Proposition 3.5. Let R be an integral domain.
a) Any prime element is irreducible.
b) R is a UFD if and only if it is a factorization domain in which every irreducible
element is prime.

Because this is pure algebra, we prefer to not discuss the proof here. It is a good
exercise for the reader. See also
http://www.math.uga.edu/∼pete/factorization.pdf
for a careful treatment of the theory of factorization in integral domains.

We can now recast the results of the previous two sections as follows. First, the
“proof” which we gave assumed that either p is a prime element of Z[

√
D] or that p

is not an irreducible element: i.e., it factors as p = αβ with α, β nonunit elements of
Z[
√
D]. What was missing was the third possibility: p is an irreducible element of

Z[
√
D] which is not prime. Because of Proposition 3.5, this third possibility cannot

occur if Z[
√
D] is a UFD, so what we actually proved was:

Theorem 3.6. Let D be a squarefree integer different from 0 and 1. We as-
sume that the ring Z[

√
D] is a UFD. Then, for a prime number p, TFAE:

(i) There exist x, y ∈ Z such that p = |x2 −Dy2|.
(ii) There exists x ∈ Z such that D ≡ x2 (mod p).

Moreover, simply by noticing that for D < −2 we had that D is a square mod 2
but 2 is not of the form |x2 −Dy2|, we also deduce:

Corollary 3.7. For no D < −2 is the ring Z[
√
D] a UFD.

To complete the proof of Theorem 3.4 it suffices to show that at least Z[
√
−1] is a

UFD. Fortunately for us, it is. We show this in a way which is again a generalization
of one of our proofs of the fundamental theorem of arithmetic: namely, by showing
that we can perform, in a certain appropriate sense, division with remainder in
Z[
√
−1]. The formalism for this is developed in the next section.

4.1. Euclidean norms.

A norm N : R → N is called Euclidean if it satisfies the following property:
for all a ∈ R, b ∈ R\{0}, there exist q, r ∈ R such that a = qb+r and N(r) < N(b).

First let us see that this suffices: we claim that any domain R endowed with a
Euclidean norm function is a principal ideal domain. Indeed, let I be any nonzero
ideal of such a domain R, and let a be any element of minimal nonzero norm. We
claim that in fact I = (b) = {rb | r ∈ R}. The proof is the same as for integers:
suppose that a ∈ I and apply the Euclidean property: there exist q, r ∈ R such
that a = qb + r with N(r) < N(b). But r = a − qb and a, b ∈ I, so r ∈ I. If
r 6= 0 then N(r) 6= 0 and we have found an element with nonzero norm smaller
than N(a), contradiction. So we must have r = 0, i.e., a = qb ∈ (b).

Side remark: Note that in our terminology a “norm” N : R→ N is multiplicative,
and indeed in our present application we are working with such norms. However,
the multiplicativity property was not used in the proof. If R is a domain, let us
define a generalized Euclidean norm on R to be a function N : R → N such
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that N(r) = 0 ⇐⇒ r = 0 and such that for all a ∈ R, b ∈ R \ {0}, there exist
q, r ∈ R with a = qb + r and N(r) < N(b). Then what we have actually shown is
that any domain which admits a generalized Euclidean norm is a PID.5

4.2. PIDs and UFDs.

One also knows that any PID is a UFD. This is true in general, but in the gen-
eral case it is somewhat tricky to establish the existence of a factorization into
irreducibles. In the presence of a multiplicative norm function N : R → N –
i.e., a function such that N(x) = 0 ⇐⇒ x = 0, N(x) = 1 ⇐⇒ x ∈ R×,
N(xy) = N(x)N(y)∀x, y ∈ R – this part of the argument becomes much easier to
establish, since for any nontrivial factorization x = yz we have N(y), N(z) < N(x).
Complete details are available in loc. cit.

4.3. Some Euclidean quadratic rings.

Finally, we will show that our norm function on Z[
√
−1] is Euclidean. At this

point it costs nothing extra, and indeed is rather enlightening, to consider the more
general case of Z[

√
D] endowed with the norm function N(a+ b

√
D) = |a2 −Db2|.

According to the characterization of (multiplicative) Euclidean norms in the previ-

ous subsection, what we must show is: for all α ∈ Q(
√
D), there exists β ∈ Z[

√
D]

with N(α − β) < 1. A general element of α is of the form r + s
√
D with r, s ∈ Q,

and we are trying to approximate it by an element x+ y
√
D with x, y ∈ Z.

Let us try something easy: take x (resp. y) to be an integer nearest to r (resp. s).
If z is any real number, there exists an integer n with |z − n| ≤ 1

2 , and this bound

is sharp, attained for all real numbers with fractional part 1
2 .6 So let x, y ∈ Z be

such that |r − x|, |s− y| ≤ 1
2 . Is then β = x+ y

√
D a good enough approximation

to α = r + s
√
D? Consider the following quick and dirty estimate:

(20) N(α− β) = |(r − x)2 −D(s− y)2| ≤ |r − x|2 + |D||s− y|2 ≤ |D|+ 1

4
.

Evidently |D|+1
4 < 1 iff |D| < 3.

So D = −1 works – i.e., the norm N on Z[
√
−1] is Euclidean, so Z[

√
−1] is a

UFD, which fills in the gap in our proof of Theorem 3.4.

Also D = 2 and D = −2 work: the rings Z[
√
−2] and Z[

√
2] are UFDs.

It is natural to wonder whether the quick and dirty estimate can be improved.
We have already seen that it cannot be for D < −2, since we already know that
for such D, Z[

√
D] is not a UFD. This can be confirmed as follows: when D < 0,

N(a + b
√
D) = a2 + Dy2 = ||a +

√
|D|i||2; that is, our norm function is simply

5In fact further generalization is possible: in order for this simple argument to go through

it is not necessary for the codomain of the norm function to be the natural numbers, but only a
well-ordered set!

6Moreover when |z − n| < 1
2

, the nearest integer is unique, whereas for half-integral real
numbers there are evidently two nearest integers. This does not matter to us: in this case take
either nearest integer, i.e., either z − 1

2
or z + 1

2
.
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the square of the usual Euclidean length function evaluated on the complex num-
ber a +

√
|D|i. Moreover, in this case the ring Z[

√
D] lives naturally inside C as

a lattice, whose fundamental parallelogram is simply a rectangle with sides 1 and√
D. The problem now is to find, for a given point z = a + bi ∈ C with a, b ∈ Q,

the closest lattice point. But it is geometrically clear that the points which are
furthest away from lattice points are precisely those which lie at the center of the
corresponding rectangles, e.g. 1

2 + 1
2 |D|i. This shows that nothing was lost in our

quick and dirty estimate.

The situation D < 0 is quite different, most of all because the geometric pic-
ture is different: Z[

√
D] now lives inside R, but unlike in the previous case, it is

not discrete. Rather, (Exercise X.X) it is dense: any interval (a, b) in R with a < b

contains some point α ∈ Z[
√
D]. So it is not clear that the above “coordinatewise

nearest integer approximation” is the best possible approximation.

But even keeping the same approximating element β as above, we lose ground
in the estimate |( 1

2 )2 −D( 1
2 )2| = | 14 −

D
4 | ≤

D+1
4 . Rather, we want | 14 −

D
4 | < 1, or

|D − 1| < 4, so D = 3 also works. Thus, Z[
√

3] has a Euclidean norm, hence is a
UFD. In summary, we get the following “bonus theorem”:

Theorem 3.8. a) A prime p is of the form x2 + 2y2 iff −2 is a square modulo
p.
b) A prime p is of the form |x2 − 2y2| iff 2 is a square modulo p.
c) A prime p is of the ofrm |x2 − 3y2| iff 3 is a square modulo p.

Of course this brings attention to the fact that for an integer D, we do not know
how to characterize the set of primes p such that D is a square mod p, except in the
(easiest) case D = −1. The desire to answer this question is an excellent motivation
for the quadratic reciprocity law, coming up shortly.

5. Composites of the Form x2 −Dy2

Now that we have determined which primes are of the form x2 + y2, it is natural
to attempt to determine all nonzero integers which are sums of two squares.

An honest approach to this problem would begin by accumulating data and consid-
ering various special cases. Here we must unfortunately be somewhat more succinct.

Somewhat more generally, fix D a squarefree integer as before, and put

SD = {n ∈ Z \ {0} | ∃x, y ∈ Z, n = x2 −Dy2},

the set of all nonzero integers of the form x2−Dy2. Because of the multiplicativity
of the norm function – or more precisely, the function x+ y

√
D 7→ x2−Dy2, which

takes on negative values when D > 0 – the subset SD is closed under multiplication.

Remark: Certainly 1 ∈ SD: 1 = 12 − D · 02. Therefore the multiplicative prop-
erty can be rephrased by saying that SD is a submonoid of the monoid (Z\{0}, ·).

Now we know that the following positive integers are all sums of two squares:
1, 2, and prime p ≡ 1 (mod 4), and n2 for any integer n: n2 = (n)2 + 02. Now let
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n be any positive integer, and write p1, . . . , pr for the distinct prime divisors of n
which are congruent to 1 modulo 4, and q1, . . . , qs for the distinct prime divisors of
n which are congruent to −1 modulo 4, so that

n = 2apm1
1 · · · pmrr qn1

1 · · · qnss ,

for a,m1, . . . ,mr, n1, . . . , ns ∈ N. It follows that so long as n1, . . . , ns are all even,
n is a product of sums of two squares and therefore itself a sum of two squares.

Finally, we wish to show that we have found all positive integers which are a sum
of two squares.7 Specifically, what we wish to show is that if n ∈ Z+ is a sum of
two squares, then for any prime number p ≡ −1 (mod 4), then ordp(n) is even. For
this it suffices to show the following

Lemma 3.9. Let p ≡ −1 (mod 4) be a prime number, and suppose that there
exist x, y ∈ Z such that p | x2 + y2, then p | x and p | y.

Before proving Lemma 3.9 let us show how it helps us. Indeed, suppose that a
positive integer n is a sum of two squares: n = x2 +y2. Let p be any prime congru-
ent to −1 (mod 4), and assume that p | n (otherwise ordp(n) = 0, which is even).
Then by Lemma 3.9 p | x and p | y, so that n

p2 = (xp )2 + (yp )2 expresses n
p2 as a sum

of two integral squares. But now we can repeat this process of repeated division by
p2 until we get an integer n

p2k
which is not divisible by p. Thus ordp(n) = 2k is even.

Proof of Lemma 3.9: It follows from the proof of the Two Squares Theorem that if
p ≡ −1 (mod 4) is a prime number, then it remains irreducible in Z[

√
−1]. Let us

recall why: otherwise p = αβ with N(α), N(β) > 1, and then taking norms gives

p2 = N(p) = N(αβ) = N(α)N(β),

and thus N(α) = N(β) = p. Writing α = a + b
√
−1, we get p = N(α) = a2 + b2,

so p is a sum of two squares, contrary to Fermat’s Lemma.
Since Z[

√
−1] is a UFD, the irreducible element p is a prime element, hence

Euclid’s Lemma applies. We have p | x2 + y2 = (x + y
√
−1)(x − y

√
−1), so that

p | x+ y
√
−1 or p | x− y

√
−1. This implies that x

p ,
y
p ∈ Z, i.e., p | x and p | y.

In summary, we have shown:

Theorem 3.10. (Full Two Squares Theorem) A positive integer n is a sum of
two squares iff ordp(n) is even for all primes p ≡ −1 (mod 4).

In that Lemma 3.9 uses (only) that Z[
√
−1] is a UFD, similar reasoning applies to

other Euclidean quadratic rings Z[
√
D]. In particular, there is a direct analogue of

Theorem 3.10 for x2 + 2y2, which we will postpone until we determine for which
primes p −2 is a square modulo p. When D is positive, the distinction between
αα = a2 −Db2 and N(α) = |a2 −Db2| becomes important: for instance as above
we obviously have 1 ∈ SD, but whether −1 ∈ SD is a surprisingly difficult problem:
to this day there is not a completely satisfactory solution.

In contrast, if Z[
√
D] is not a UFD, then even if we know which primes are of

the form x2 − Dy2, we cannot use the above considerations to determine the set

7Why would we think this? Again, trial and error experimentation is the honest answer.
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SD. For example take D = −5. Certainly 2 6= x2 + 5y2 and 3 6= x2 + 5y2, but
2 · 3 = 12 + 5 · 12.



CHAPTER 4

Quadratic Reciprocity

We now come to the most important result in our course: the law of quadratic
reciprocity, or, as Gauss called it, the aureum theorema (“golden theorem”).

Many beginning students of number theory have a hard time appreciating this
golden theorem. I find this quite understandable, as many first courses do not
properly prepare for the result by discussing enough of the earlier work which makes
quadratic reciprocity an inevitable discovery and its proof a cause for celebration.
Happily, our study of quadratic rings and the quadratic form x2−Dy2 has provided
excellent motivation. There are also other motivations, involving (what we call here)
the direct and inverse problems regarding the Legendre symbol.

A faithful historical description of the QR law is especially complicated and
will not be attempted here; we confine ourselves to the following remarks. The
first traces of QR can be found in Fermat’s Lemma that −1 is a square modulo
an odd prime p iff p ≡ 1 (mod 4), so date back to the mid 1600’s. Euler was
the first to make conjectures equivalent to the QR law, in 1744. He was unable
to prove most of his conjectures despite a steady effort over a period of about 40
years. Adrien-Marie Legendre was the first to make a serious attempt at a proof
of the QR law, in the late 1700’s. His proofs are incomplete but contain much
valuable mathematics. He also introduced the Legendre symbol in 1798, which as
we will see, is a magical piece of notation with advantages akin to Leibniz’s dx in
the study of differential calculus and its generalizations. Karl Friedrich Gauss gave
the first complete proof of the QR law in 1797, at the age of 19(!). His argument
used mathematical induction(!!). The proof appears in his groundbreaking work
Disquisitiones Arithmeticae which was written in 1798 and first published in 1801.

The circle of ideas surrounding quadratic reciprocity is so rich that I have
found it difficult to “linearize” it into one written presentation. (In any classroom
presentation I have found it useful to begin each class on the subject with an
inscription of the QR Law on a side board.) In the present notes, the ordering is
as follows. In §1 we give a statement of the quadratic reciprocity law and its two
supplements in elementary language. Then in §2 we discuss the Legendre symbol,
restate QR in terms of it, and discuss (with proof) some algebraic properties of the
Legendre symbol which are so important that they should be considered part of the
quadratic reciprocity package. In §3 we return to our “unfinished theorems” about
representation of primes by |x2 − Dy2| when Z[

√
D] is a PID: using quadratic

reciprocity, we can state and prove three bonus theorems which complement
Fermat’s Two Squares Theorem. In §4 we define and discuss the “direct and inverse
problems” for the Legendre symbol and show how quadratic reciprocity is useful
for both of these, in particular for rapid computation of Legendre symbols. More
precisely, the computation would be rapid if we could somehow avoid having to

51
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factor numbers quickly, and §5 explains how we can indeed avoid this by using an
extension of the Legendre symbol due to Jacobi.

1. Statement of Quadratic Reciprocity

Notational comment: when we write something like p ≡ a, b, c (mod n), what we
mean is that p ≡ a (mod n) or p ≡ b (mod n) or p ≡ c (mod n). (I don’t see any
other vaguely plausible interpretation, but it doesn’t hurt to be careful.)

Theorem 4.1. (Quadratic Reciprocity Law) Let p 6= q be odd primes. Then:
(i) If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), p is a square mod q iff q is a square mod p.
(ii) If p ≡ q ≡ 3 (mod 4), p is a square mod q iff q is not a square mod p.

Theorem 4.2. (First Supplement to the Quadratic Reciprocity Law) If p is an
odd prime, then −1 is a square modulo p iff p ≡ 1 (mod 4).

Theorem 4.3. (Second Supplement to the Quadratic Reciprocity Law) If p is
an odd prime, then 2 is a square modulo p iff p ≡ 1, 7 (mod 8).

2. The Legendre Symbol

2.1. Defining the Legendre Symbol.

We now introduce a piece of notation created by Adrien-Marie Legendre in 1798.
There is no new idea here; it is “merely notation”, but is an example of how in-
credibly useful well-chosen notation can be.

For n an integer and p an odd prime, we define the Legendre symbol(
n

p

)
:=

 0, if n ≡ 0 (mod p)
1, if n mod p is a nonzero square
−1, if n mod p is nonzero and not a square

We must of course distinguish the Legendre symbol
(
n
p

)
from the rational number

n
p . To help with this, I recommend that (np ) be read “n on p”.1

Example 1: To compute ( 12
5 ), we must first observe that 5 does not divide 12 and

then determine whether 12 is a nonzero square modulo 5. Since 12 ≡ 2 (mod 5)
and the squares modulo 5 are 1, 4, the answer to the question “Is 12 a nonzero
square modulo 5?” is negative, so ( 12

5 ) = −1.

Example 2: To compute ( 101
97 ) – note that 97 is prime! – we observe that 97

does not divide 101. Since 101 ≡ 4 ≡ 22 (mod 97), the answer to the question “Is
101 a nonzero square modulo 97?” is positive, so ( 101

97 ) = 1.

Example 3: To compute ( 97
101 ) – note that 101 is prime! – we observe that 101 cer-

tainly does not divide 97. However, at the moment we do not have a very efficient
way to determine whether 97 is a square modulo 101: our only method is to compute
all of the squares modulo 101. Some calculation reveals that 400 = 202 = 3·101+97,
so 202 ≡ 97 (mod 101). Thus 97 is indeed a square modulo 101, so ( 97

101 ) = 1.

1There is in fact some relationship with “n divided by p”: if we divide n by p, getting

n = qp+ r with 0 ≤ r < p, then the Legendre symbols (n
p

) and ( r
p

) are equal.
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2.2. Restatement of Quadratic Reciprocity.

Theorem 4.4. (Quadratic Reciprocity) Let p and q be distinct odd primes.

a)
(
p
q

)(
q
p

)
= (−1)

(p−1)(q−1)
4 .

b)
(
−1
p

)
= (−1)

p−1
2 .

c)
(

2
p

)
= (−1)

p2−1
8 .

2.3. Some elementary group theory related to the Legendre symbol.

Let p be an odd prime, and consider the group U(p) = (Z/pZ)×; since p is prime,
this is precisely the multiplicative group of nonzero elements of Z/pZ under multi-
plication: in particular, it is a finite commutative group of even order p− 1.

In fact U(p) is a cyclic group: there exists some element g ∈ U(p) such that
every element x ∈ U(p) is of the form gi for a unique 0 ≤ i < p. In classical
number-theoretic language the element g (often viewed as an integer, 0 < g < p)
is a primitive root modulo p. This is nontrivial to prove. We do in fact give
the proof elsewhere in these notes, but in at least one version of the course, we are
covering quadratic reciprocity before the material on the Euler ϕ function which we
use in our proof of this fact. So we would like to give a more elementary discussion
of some weaker properties of U(p) that suffice for our needs here.

Let (G, ·) be a commutative group, and let n be a positive integer. The map

[n] : G→ G, x 7→ xn

which sends each element to its nth power, is a homomorphism. We denote the
kernel of the map by G[n]; this is the subgroup of all elements of order dividing
n, often called the n-torsion subgroup of G. We put Gn = [n](G), the image of
the homomorphism, which is the subgroup of elements of G which are nth powers.
There is thus a canonical isomorphism

[n] : G/G[n]
∼→ Gn.

Now further suppose that G is finite. Then

#Gn =
#G

#G[n]
.

Consider for a moment the case gcd(n,#G) = 1. Suppose g ∈ G[n]. Then the
order of g divides n, whereas by Lagrange’s theorem, the order of g divides #G, so
the order of G divides gcd(n,#G) = 1: so g = 1 and G[n] = {1}. Thus #Gn = #G
so Gn = G. So in this case every element of G is an nth power.

We remark in passing that the converse is also true: if gcd(n,#G) > 1, then
G[n] is nontrivial, so the subgroup Gn of nth powers is proper in G. We do not
need this general result, so we do not prove it here, but mention only that it can
be deduce from the classification theorem for finite commutative groups.

Now we specialize to the case G = U(p) = (Z/pZ)× and n = 2. Then

G[2] = {x ∈ Z/pZ \ {0} | x2 = 1}.
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We claim that G[2] = {±1}. First, note that since p is odd, 1 6≡ −1 (mod p), i.e.,
+1 and −1 are distinct elements in Z/pZ, and they clearly both square to 1, so
that G[2] contains at least the two element subgroup {±1}. Conversely, as above
every element of G[2] is a root of the quadratic polynomial t2− 1 in the field Z/pZ.
But a polynomial of degree d over any field (or integral domain) can have at most d
distinct roots: whenever p(a) = 0, applying the division algorithm to p(t) and t−a
gives p(t) = q(t)(t−a) + c, where c is a constant, and plugging in t = a gives c = 0.
Thus we can factor out t− a and the degree decreases by 1. Therefore #G[2] ≤ 2,
and since we have already found two elements, we must have G[2] = {±1}.

So G2 is an index two subgroup of G and the quotient G/G2 has order two. Like any
group of order 2, it is uniquely isomorphic to the group {±1} under multiplication.
Thus we have defined a surjective group homomorphism

L : U(p)→ {±1},
namely we take x ∈ U(p) to the coset xU(p)2. So, L(x) = 1 if x is a square in
(Z/pZ)× and L(x) = −1 otherwise. But this means that for all x ∈ Z/pZ \ {0},
L(x) = (xp ). Thus we have recovered the Legendre symbol in terms of purely

algebraic considerations and also shown that

∀x, y ∈ U(p),

(
xy

p

)
=

(
x

p

)(
y

p

)
.

In fact we can give a (useful!) second description of the Legendre symbol using
power maps. (This discussion repeats the proof of Proposition 3.2, but we are
happy to do so.) To see this, consider the map

[
p− 1

2
] : U(p)→ U(p).

We claim that the kernel of this map is again the subgroup U(p)2 of squares, of order
p−1

2 . On the one hand, observe that U(p)2 ⊂ U(p)[p−1
2 ]: indeed (x2)

p−1
2 = xp−1 = 1

by Lagrange’s Theorem. Conversely, the elements of U(p)[p−1
2 ] are roots of the

polynomial t
p−1
2 − 1 in the field Z/pZ, so there are at most p−1

2 of them. Thus

U(p)2 = U(p)[p−1
2 ]. By similar reasoning we have U(p)

p−1
2 ⊂ {±1}, hence we can

view [p−1
2 ] as a homomorphism

L′ = [
p− 1

2
] : U(p)→ {±1}.

Since the kernel of L′ is precisely the subgroup U(p)2 and there are only two pos-
sible values, it must be the case that L′(x) = −1 for all x ∈ U(p) \U(p)2. In other
words, we have L′(x) = (xp ).

The following result is essentially a summary of the above work. We strongly
recommend that the reader take time out to convince herself of this.

Proposition 4.5. The following hold for any a, b ∈ Z and any odd prime p.

a)
(
a
p

)
depends only on the residue class of a modulo p.

b) (Euler)
(
a
p

)
≡ a

p−1
2 (mod p).

c)
(
ab
p

)
=
(
a
p

)(
b
p

)
.
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Note that by taking a = −1 in Proposition 4.5b), we get(
−1

p

)
= (−1)

p−1
2 .

This is precisely the First Supplement to the quadratic reciprocity law, which we
have now proved twice (in the handout on Pythagorean triples we called it Fer-
mat’s Lemma and proved it using Wilson’s theorem).

2.4. A faster proof using the cyclicity of U(p).

If we happen to know that the unit group U(p) = (Z/pZ)× is cyclic, we can give a
much more streamlined proof of Proposition 4.5. First note that part a) is obvious
from the definition. Moreover, if we assume part b), part c) follows immediately:(

ab

p

)
= (ab)

p−1
2 = a

p−1
2 b

p−1
2 =

(
a

p

)(
b

p

)
.

So it remains to prove part b). But now suppose that g is a generator for the group

U(p), so that we can write a = gi. Then a
p−1
2 = g

i(p−1)
2 .

Case i: i is even. Then on the one hand a = (g
i
2 )2 is a square in U(p). On the

other hand p− 1 | ip−1
2 , so that g

i(p−1)
2 = 1 by Lagrange’s theorem.

Case 2: i is odd. Then on the on the one hand a = gi is not a square in U(p): for
instance, we know that the subgroup of squares has exactly p−1

2 elements, and we

found p−1
2 distinct elements in Case 1 above: {g2k | 0 ≤ k < p−1

2 }. On the other

hand, since i is odd, p− 1 - ip−1
2 , so that a

p−1
2 = g

i(p−1)
2 6= 1. Since its square is 1,

it must therefore be equal to −1.

3. Motivating Quadratic Reciprocity I: Bonus Theorems

3.1. Some unfinished theorems.

An excellent motivation for the quadratic reciprocity law is provided by our previous
study of the equation x2 −Dy2 = p. Recall we have proved:

Theorem 4.6. Let D be squarefree integer different from 0 and 1. Assume that
the ring Z[

√
D] is a UFD. Then, for a prime number p, TFAE:

(i) There exist x, y ∈ Z such that p = |x2 −Dy2|.
(ii) There exists x ∈ Z such that D ≡ x2 (mod p).

Moreover we know that Z[
√
D] is a UFD when D ∈ {−1,±2, 3}. The case D = −1

yielded Fermat’s two squares theorem given the additional knowledge that −1 is a
square modulo an odd prime p iff p ≡ 1 (mod 4). To complete our “bonus theo-
rems” we need answers to the following questions:

• For which odd primes p is it the case that −2 is a square modulo p?
• For which odd primes p is it the case that 2 is a square modulo p?
• For which odd primes p is it the case that 3 is a square modulo p?

Comparing with the answer for D = −1, one might hope that the answer is in
terms of some congruence condition on p. Let’s look at some data:
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The odd primes p < 200 for which −2 is a square modulo p are:

3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193.

Notice that these are precisely the primes p < 200 with p ≡ 1, 3 (mod 8).

For D = 2, 3 we will give some data and allow you a chance to find the pattern.

The odd primes p < 200 for which 2 is a square modulo p are:

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199.

The odd primes p < 200 for which 3 is a square modulo p are:

3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193.

While we are at it, why not a bit more data?

The odd primes p < 200 for which 5 is a square modulo p are:

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199.

The odd primes p < 200 for which 7 is a square modulo p are:

3, 7, 19, 29, 31, 37, 47, 53, 59, 83, 103, 109, 113, 131, 137, 139, 149, 167, 193, 197, 199.

3.2. With the help of quadratic reciprocity.

We already know that a prime p is of the form |x2 − 2y2| iff ( 2
p ) = 1, and the

second supplement tells us that this latter conditions holds iff p ≡ 1, 7 (mod 8).

While we are here, let’s deal with the absolute value: it happens that Z[
√

2] contains

an element of norm −1, namely 1−
√

2:

N(1−
√

2) = (1−
√

2)(1 +
√

2) = 12 − 2 · 12 = −1.

From this and the multiplicaitivity of the norm map, it follows that if we can rep-
resent any integer n in the form x2 − 2y2, we can also represent it in the form
−(x2 − 2y2), and conversely. From this it follows that the absolute value is super-
fluous and we get the following result.

Theorem 4.7. (First Bonus Theorem) A prime number p is of the form x2−2y2

iff p = 2 of p ≡ 1, 7 (mod 8).

Now let’s look at the case of D = −2, i.e., the form x2 +2y2. Since 2 = 02 +2 ·12, 2
is of of the form x2 + 2y2. Now assume that p is odd. We know that an odd prime
p is of the form x2 + 2y2 iff (−2

p ) = 1. We don’t have a single law for this, but the

multiplicativity of the Legendre symbol comes to our rescue. Indeed,(
−2

p

)
=

(
−1

p

)(
2

p

)
,

so (
−2

p

)
= 1 ⇐⇒

(
−1

p

)
=

(
2

p

)
.

Case 1: (−1
p ) = ( 2

p ) = 1. By the first and second supplements, this occurs iff p ≡ 1

(mod 4) and p ≡ 1, 7 (mod 8), so iff p ≡ 1 (mod 8).
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Case 2: (−1
p ) = ( 2

p ) = −1. By the first and second supplements, this occurs iff

p ≡ 3 (mod 4) and p ≡ 3, 5 (mod 8), so iff p ≡ 3 (mod 8). Thus:

Theorem 4.8. (Second Bonus Theorem) A prime number p is of the form
x2 + 2y2 iff p = 2 or p ≡ 1, 3 (mod 8).

Now let’s look at the case of D = 3, i.e., the form |x2−3y2|. We know that a prime
p is of this form iff ( 3

p ) = 1. Now we use QR itself, and there are two cases:

Case 1: If p ≡ 1 (mod 4), then ( 3
p ) = 1 iff p ≡ 1 (mod 3).

Case 2: If p ≡ 3 (mod 4), then ( 3
p ) = 1 iff p ≡ −1 (mod 3).

The congruence conditions can be consolidated by going mod 12. We get that
( 3
p ) = 1 iff p ≡ 1, 11 (mod 12). Again we can ask what happens when we try to

remove the absolute value. This time things work out somewhat differently.

Theorem 4.9. (Third Bonus Theorem) For a prime p, the equation x2−3y2 =
p has an integral solution iff p ≡ 1 (mod 12). The equation 3y2 − x2 = p has an
integral solution iff p = 2, p = 3 or p ≡ 11 (mod 12).

Proof. First we deal with the two exceptional cases. Suppose p = 2: reducing
x2 − 3y2 = 2 modulo 3, we get x2 ≡ 2 (mod 3), which we know has no solution.
Note that on the other hand 3(1)2 − 12 = 2, so 2 is of the form 3y2 − x2. Now
suppose p = 3: reducing x2 − 3y2 = 3 modulo 4, we get x2 − 3y2 ≡ x2 + y2 ≡ 3
(mod 4), which (as we have seen before) has no integral solution. On the other
hand, 3 = 3(1)2 − 02, so 3 is of the form 3y2 − x2.

Now suppose that p > 3. Since Z[
√

3] is a PID, we know that p is of the form
p = |x2 − 3y2| iff 3 is a square modulo p, i.e., iff p = 3 or ( 3

p ) = 1. By quadratic

reciprocity, this last condition can be expressed as a congruence modulo 4 · 3 = 12,
specifically p ≡ ±1 (mod 12). So if p ≡ 1, 11 (mod 12) then at least one of the
following holds:

(21) p = x2 − 3y2

or

(22) p = 3y2 − x2.

It turns out that for any prime p, exactly one of the two equations (21), (22) holds,
which is extremely convenient: it means that we can always show that one of the
equations holds by showing that the other one does not hold!

Indeed, if we reduce the equation p = x2 − 3y2 modulo 3: we get p ≡ x2

(mod 3), i.e., (p3 ) = 1, so p ≡ 1 (mod 3). So if p ≡ 11 (mod 12) then p is not of the

form x2 − 3y2 so must be of the form 3y2 − x2. Simiarly, if we reduce the equation
p = 3y2 − x2 modulo 3, we get p ≡ −x2 ≡ −1 (mod 3), so if p ≡ 1 (mod 3) then
22 has no solution, so it must be that p = x2 − 3y2 does have a solution. �

A very similar argument establishes the following more general result.

Theorem 4.10. Suppose q ≡ 3 (mod 4) is a prime such that Z[
√
q] is a PID.

Then the equation x2 − qy2 = p has a solution iff p ≡ 1 (mod 4) and (pq ) = 1.
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3.3. Auxiliary congruences.

The restriction to q ≡ 3 (mod 4) in Theorem 4.10 may appear artificial. But
those who have done their homework know better: in fact if Z[

√
q] is a PID, then

we must have q = 2 (which we have already discussed) or q ≡ 3 (mod 4). (Oth-
erwise Z[

√
q] is not integrally closed.) A closer look reveals that the distinction

between primes which are 1 (mod 4) and primes which are 3 (mod 4) is a central,
albeit somewhat mysterious part, of the natural behavior of quadratic forms.

One way to see this is in terms of what I shall call auxiliary congruences. Namely,
in our initial study of the equation |x2 −Dy2| = p, we did not consider all possible
congruence obstructions (as e.g. in Legendre’s Theorem) but only condition that
we got upon reducing modulo p: namely that D is a square modulo p. Notice that
we could also reduce modulo D to get some further conditions: more on this in
a moment. But why didn’t we reduce modulo D before? The simple but strange
answer is that we simply didn’t need to: it happened that when Z[

√
D] is a PID,

we were able to prove that the necessary condition that D be a square modulo p
was also sufficient for p to be of the form |x2 −Dy2| = p.

But this is rather surprising. Let’s look closer, and to fix ideas let us take p and q
distinct odd primes, and look at the equation

x2 + qy2 = p.

Then reducing modulo p gives (−qp ) = 1, whereas reducing modulo q gives (pq ) = 1.

How do these two conditions interact with each other? Let’s examine the cases:

Case 1: p ≡ 1 (mod 4). Then (−qp ) = (−1
p )( qp ) = ( qp ) = (pq ). So the conditions are

redundant.

Example 4.11. Take q = 5. Then the congruence conditions tell us that if
p ≡ 1 (mod 4) is of the form x2 + 5y2, we must have (p5 ) = 1, i.e., p ≡ 1, 4

(mod 5). Thus, every prime p ≡ 1 (mod 4) which is represented by x2 + 5y2 lies
in one of the two congruence classes p ≡ 1, 9 (mod 20). As we know, Z[

√
−5] is

not a PID, so nothing we have proved tells us anything about the converse, but
the above computations show that for all p < 200 we have: p ≡ 1, 9 (mod 20)
=⇒ p = x2 +5y2. It is easy to extend the computations to check this for all primes
up to say 106. In fact it is true, although the proof requires techniques that we have
not developed.

Example 4.12. Take q = 3. Then the congruence conditions tell us that if
p ≡ 1 (mod 4) is of the form x2 + 3y2, then p ≡ 1 (mod 3). Again computations
support that every prime p ≡ 1 (mod 1)2 is of the form x2 + 3y2.

Case 2: p ≡ 3 (mod 4). Then (−qp ) = (−1
p )( qp ) = −( qp ). To compare this to the

condition (pq ) = 1, we need to consider further cases.

Case 2a) Suppose also q ≡ 1 (mod 4). Then 1 = (−qp ) = −( qp ) = −(pq ), i.e.,

(pq ) = −1. This is inconsistent with (pq ) = 1, so we deduce that when q ≡ 1

(mod 4), p = x2 + qy2 =⇒ p ≡ 1 (mod 4).
This is a new phenomenon for us. Note that when q = 5, in conjunction with

the above (unproved) result, we get the following
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Theorem 4.13. An odd prime p is of the form x2 + 5y2 iff p ≡ 1, 9 (mod 20).

Case 2b): Suppose also q ≡ 3 (mod 4). Then 1 = (−qp ) = −( qp ) = (pq ). Thus the

two congruence conditions are consistent in this case.

Example 4.14. Let’s reconsider q = 3. Nothing in our analysis ruled out a
prime p ≡ 3 (mod 4) (except p = 3) being of the form x2 +3y2: the only congruence
condition we found is the main one 1 = (−3

p ) = p
3 , i.e., p ≡ 1 (mod 3). In this case

computations suggest that an odd prime p is of the form x2 +3y2 iff p ≡ 1 (mod 3).

Note that this is exactly the result that we would have gotten if Z[
√

3] were a UFD
except that then 2 would also be of the form x2 + 3y2, which was exactly what we
used to see that Z[

√
3] isn’t a UFD! It turns out that we can prove this result with

the techniques we have: an argument is sketched in the exercises.

These considerations have turned up more questions than answers. Our point is
that the distinction between primes p ≡ 1 (mod 4) and p ≡ 3 (mod 4) is something
that is embedded quite deeply into the behavior of quadratic rings and quadratic
equations. A proper understanding of this phenomenon goes under the heading
genus theory, which was treated by Gauss in his Disquisitiones Arithmeticae and
is intimately related to contemporary issues in number theory.

4. Motivating Quadratic Reciprocity II: Direct and Inverse Problems

4.1. The direct and inverse problems.

We wish to discuss “reciprocal” problems concerning quadratic residues, which can

be phrased in terms of whether we regard the Legendre symbol
(
n
p

)
as a function

of its numerator or as a function of its denominator.

Direct problems: Fix an odd prime p.
direct problem A: Determine all integers which are squares modulo p.
direct problm B: Determine whether a given integer n is a square modulo p.

By Proposition 4.5a), the answer only depends upon n modulo p, so for fixed p
it is a finite problem: we know that exactly half of the elements of F×p are squares,

so for instance to compute all of them we could simply calculate 12, 22, . . . , (p− 1)2

modulo p.2 However if p is large this will take a long time, and it is natural to

wonder whether there is a faster way of computing
(
n
p

)
for some specific n.

inverse problem: Fix n ∈ Z. For which odd primes p is
(
n
p

)
= 1?

Example: The case n = −1 was needed to prove the two squares theorem. We
found that (−1

p ) = 1 iff p ≡ 1 (mod 4). Note that, although our original proof was

more elementary, this follows immediately from Proposition 4.5b): (−1
p ) = (−1)

p−1
2 .

In contrast to the direct problems, the inverse problem is apparently an infinite

2In fact this gives every square twice; we will get every square once by computing the squares

up to ( p−1
2

)2, as we saw in the Handout on Sums of Two Squares.
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problem. Moreover, the inverse problem comes up naturally in applications: in-
deed solving the inverse problem for n = ±2, 3 was exactly what we did in the last
section in order to complete our study of the forms x2 − ny2.

4.2. With the help of quadratic reciprocity.

We now make two key observations. First: The Quadratic Reciprocity Law
allows us to reduce the inverse problem to the direct problem A.

Example: Take n = 5. For which odd primes p is 5 a square modulo p?

Answer: Since 5 is 1 (mod 4),
(

5
p

)
=
(
p
5

)
, and we know what the squares are

mod 5: ±1. Thus the answer is that 5 is a square modulo p iff p ≡ ±1 (mod 5).

Example: Take n = 7. For which odd primes p is 7 a square modulo p?

Answer: Since 7 is 3 (mod 4), we need to distinguish two cases: p ≡ 1 (mod 4)

and p ≡ −1 (mod 4). If p ≡ 1 (mod 4), then
(

7
p

)
=
(
p
7

)
, so we just want p to be

a square modulo 7. The squares mod 7 are 12 ≡ 1, 22 ≡ 4 and 32 ≡ 2. We now
have both a congruence condition mod 7 and a congruence condition mod 4: by
the Chinese Remainder theorem, these conditions can be expressed by congruence
conditions mod 28: namely we want p ≡ 1, 9, 25 (mod 28).

Next we consider the case p ≡ −1 (mod 4). This time since p and 7 are both

−1 mod 4, QR tells us that
(

7
p

)
= −1

(
p
7

)
, so we want the nonsquares modulo 7,

or 3, 5, 6. Again we may combine these with the congruence p ≡ −1 (mod 4) by
going mod 28, to get p ≡ 3, 19, 27. So 7 is a square modulo p iff

p ≡ 1, 3, 9, 19, 25, or 27 (mod 28).

The QR law leads to the following general solution of the inverse problem:

Corollary 4.15. Let q be any odd prime.

a) If q ≡ 1 (mod 4), then
(
q
p

)
= 1 iff p is congruent to a square modulo q (so lies

in one of q−1
2 residue classes modulo q).

b) If q ≡ −1 (mod 4), then
(
q
p

)
= 1 iff p ≡ ±x2 (mod 4q) (so lies in one of q − 1

out of the 2(q − 1) reduced residue classes modulo 4q).

Corollary 4.15 was first conjectured by Euler and is in fact equivalent to the QR
law. As we will not be using Corollary 4.15 in the sequel, we leave the proof as an
exercise.

So much for the first observation. Here is the second:

The QR law yields an efficient algorithm for Direct Problem B.

This is best explained by way of examples.

Example: Suppose we want to compute
(

7
19

)
. Using QR we can “invert” the
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Legendre symbol, tacking on an extra factor of −1 because 7 ≡ 19 ≡ −1 (mod 4):(
7

19

)
= −

(
19

7

)
= −

(
5

7

)
= −

(
7

5

)
= −

(
2

5

)
.

We have reduced to a problem we know: 2 is not a square mod 5, so the final answer
is
(

7
19

)
= −(−1) = 1.

Example: (
41

103

)
=

(
103

41

)
=

(
21

41

)
=

(
3

41

)(
7

41

)
=

(
41

3

)(
41

7

)
=

(
−1

3

)(
−1

7

)
= −1 · −1 = 1.

Example: (
79

101

)
=

(
101

79

)
=

(
22

79

)
=

(
2

79

)(
11

79

)
=

1 ·
(

11

79

)
= −

(
79

11

)
= −

(
2

11

)
= −(−1) = 1.

Let us now stop and make an important observation: the quadratic reciprocity
law along with its first and second supplements, together with parts a) and c) of

Proposition 4.5, allows for a computation of the Legendre symbol
(
n
p

)
in all cases.

Indeed, it is multiplicative in the numerator, so we may factor n as follows:

n = (−1)ε2apbp1 · · · pr ·m2,

where ε = ±1, the primes p1, . . . , pr are distinct and prime to p, and m is prime to
p. If b > 0 then the symbol evaluates to 0. Otherwise we have(

n

p

)
=

(
−1

p

)ε(
2

p

)a∏
i

(
pi
p

)
.

5. The Jacobi Symbol

Computing Legendre symbols via the method of the previous section is, for mod-
erately small values of n and p, much faster and more pleasant to do by hand than
computing the list of all p−1

2 quadratic residues mod p. However, when the num-
bers get larger a “hidden cost” of the previous calculation becomes important: the
calculation requires us to do several factorizations, and factorization is the ne plus
ultra of time-consuming number-theoretic calculations.

In fact it is not necessary to do any factorization at all, except to factor out the
largest power of 2, which is computationally trivial (especially if the number is
stored in binary form!). One can use a generalization of the Legendre symbol in-
troduced in 1837 by Carl Gustav Jacob Jacobi (1804-1851).

For a an integer and b an odd positive integer, we define the Jacobi symbol(a
b

)
=

(
a

p1

)
· · ·
(
a

pr

)
,
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where b = p1 · · · pr is the factorization of b into (not necessarily distinct!) primes.

Warning: If a is a square modulo b, then
(
a
b

)
= 1, but the converse does not

hold (you are asked to supply a counterexample in the homework). The Jacobi
symbol is instead a “formal” generalization of the Legendre symbol, as is summa-
rized by the following two results:

Proposition 4.16. Let a, a1, a2 be integers and b, b1, b2 be odd positive in-
tegers.
a)
(
a1
b

)
=
(
a2
b

)
if a1 ≡ a2 (mod b).

b)
(
a1a2
b

)
=
(
a1
b

) (
a2
b

)
.

c)
(

a
b1b2

)
=
(
a
b1

)(
a
b2

)
.

Theorem 4.17. (QR Law for the Jacobi Symbol) Let a be an integer and b an
odd positive integer.

a)
(−1
b

)
= (−1)

b−1
2 .

b)
(

2
b

)
= (−1)

b2−1
8 .

c) If a is also odd and positive then(a
b

)( b
a

)
= (−1)

a−1
2

b−1
2 .

The point is that the Jacobi symbol equals the Legendre symbol when the denomi-
nator is a prime, and is moreover completely determined by Proposition 4.16a) and
Theorem 4.17. Therefore one can compute Legendre symbols by a process of re-
peated inversion and reduction of the numerator modulo the denominator, without
worrying about whether the numerator or denominator is prime.

If a and b each have no more than k digits, then computing the Jacobi symbol(
a
b

)
using the QR law requires no more than a constant times k2 steps, or more

succinctly, can be done in time O(k2).3 In particular, when b = p is prime, the
algorithm takes O(log2 p) steps so is polynomial time (in the number of digits of
p), whereas computing all p−1

2 quadratic residues takes time O(p).

Using the Euler relation (ap ) ≡ a
p−1
2 (mod p) to compute (ap ) is also rather effi-

cient, as one can takie advantage of a powering algorithm to rapidly compute

exponents modulo p (the basic idea being simply to not compute the integer a
p−1
2

at all but rather to alternate raising a to successively larger powers and reducing
the result modulo p): this can be done in time O(log3 p). For more information on
this and many other topics related to number-theoretic algorithms, we recommend
Henri Cohen’s A Course in Computational Algebraic Number Theory.

6. Preliminaries on Congruences in Cyclotomic Rings

For a positive integer n, let ζn = e
2πi
n be a primitive nth root of unity, and let

Rn = Z[ζn] = {a0 + a1ζn + . . .+ an−1ζ
n−1
n | ai ∈ Z}.

3The notation O(f(x)) is used in algorithmic complexity theory and also in analytic number
theory to indicate a quantity which is bounded above by a constant times f(x).



7. PROOF OF THE SECOND SUPPLEMENT 63

Recall that an algebraic integer is a complex number α which satisfies a monic
polynomial relation with Z-coefficients: there exist n and a0, . . . , an−1 such that

αn + an−1α
n−1 + . . .+ a1α+ a0.

We need the following purely algebraic fact:

Proposition 4.18. a) Every element of Rn is an algebraic integer.
b) Rn ∩Q = Z.

Proof. a) [F, Prop. 7.2] Let z ∈ Rn. For 0 ≤ i ≤ n− 1, zζin is an element of
Rn hence may be written as

zζin =

n−1∑
j=0

aijζ
j
n

for some aij ∈ Z. Altogether we get an n × n matrix A = (aij)0≤i,j≤n−1 with
integer coefficients. Let P (t) = det(tI − A) be the characteristic polynomial of
A. Since A has integer entries, P (t) is monic with Z-coefficients. Now, if we put
v = (1, ζn, ζ

2
n, . . . , ζ

n−1
n )T – i.e., we are viewing v as an n × 1 matrix, or “column

vector” – then the above equations are equivalent to the one matrix equation

Av = zv.

Thus the complex number z is an eigenvalue of the integer matrix A. Hence, by
basic linear algebra, P (z) = 0, so z is an algebraic integer.
b) By Theorem 1.26, an algebraic integer which is also a rational number is an
ordinary integer. �

Let p be a prime number; for x, y ∈ Rn, we will write x ≡ y (mod p) to mean that
there exists a z ∈ Rn such that x − y = pz. Otherwise put, this is congruence
modulo the principal ideal pRn of Rn.

Since Z ⊂ Rn, if x and y are ordinary integers, the notation x ≡ y (mod p)
is ambiguous: interpreting it as a usual congruence in the integers, it means that
there exists an integer n such that x− y = pn; and interpreting it as a congruence
in Rn, it means that x− y = pz for some z ∈ Rn. The key technical point is that
these two notions of congruence are in fact the same:

Corollary 4.19. If x, y ∈ Z and z ∈ Rn are such that x−y = pz, then z ∈ Z.

Proof. Indeed z = x−y
p ∈ Rn ∩Q = Z. �

To prove the second supplement we will take n = 8. To prove the QR law we will
take n = p an odd prime. These choices will be constant throughout each of the
proofs so we will abbreviate ζ = ζ8 (resp. ζp) and R = R8 (resp. Rp).

7. Proof of the Second Supplement

Put ζ = ζ8, a primitive eighth root of unity and R = R8 = Z[ζ8]. We have:

0 = ζ8 − 1 = (ζ4 + 1)(ζ4 − 1).

Since ζ4 6= 1 (primitivity), we must have ζ4 + 1 = 0. Multiplying by ζ−2 we get

ζ2 + ζ−2 = 0.

So

(ζ + ζ−1)2 = ζ2 + ζ−2 + 2 = 2.
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Putting τ = ζ + ζ−1, we have τ2 = 2. Now we calculate

τp−1 = (τ2)
p−1
2 = 2

p−1
2 ≡

(
2

p

)
(mod pR).

The “≡” is by Euler’s relation. Multiplying through by τ , we get:

(23) τp ≡
(

2

p

)
τ (mod p).

Lemma 4.20. (“Schoolboy binomial theorem”)
Let R be a commutative ring, p a prime number and x, y ∈ R. We have

(x+ y)p ≡ xp + yp (mod pR).

Proof. The binomial formula asserts that

(x+ y)p = xp +

(
p

1

)
xp−1y +

(
p

2

)
xp−2y2 + . . .+

(
p

p− 1

)
x1yp−1 + yp,

where
(
p
i

)
= p!

i!(p−i)! . Now suppose 0 < i < p. Since p is prime, p! is divisible by p

and i! and (p− i)!, being a product of positive integers all less than p, are not. So
each of the binomial coefficients is divisible by p except the first and the last. �

Therefore

τp = (ζ + ζ−1)p ≡ ζp + ζ−p (mod pR).

Case 1: p ≡ 1 (mod 8). Then ζp = ζ, and hence ζ−p = ζ−1, so

τp ≡ ζp + ζ−p ≡ ζ + ζ−1 = τ (mod pR)

so (23) becomes

τ ≡
(

2

p

)
τ (mod pR).

It is tempting to cancel the τ ’s, but we must be careful: pR need not be a prime
ideal of the ring R.4 But, sneakily, instead of dividing we multiply by τ , getting

2 ≡ τ2 ≡ 2

(
2

p

)
(mod pR),

which by Lemma 2 means that

2 ≡ 2

(
2

p

)
(mod p)

in the usual sense. Since 2 is a unit in Z/pZ, dividing both sides by 2 is permissible.
We do so, getting the desired conclusion in this case:(

2

p

)
≡ 1 (mod p).

Case 2: p ≡ −1 (mod 8) is very similar: this time ζp = ζ−1, but still τp ≡
ζp + ζ−p ≡ ζ−1 + ζ = τ (mod pR). The remainder of the argument is the same, in

particular the conclusion:
(

2
p

)
≡ 1 (mod p).

4In fact, it can be shown not to be prime in the case p ≡ 1 (mod 8).
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Case 3: p ≡ 3 (mod 8). Now we have

τp ≡ ζp + ζ−p ≡ ζ3 + ζ−3 ≡ ζ4ζ−1 + ζ−4ζ ≡ −(ζ + ζ−1) ≡ −τ (mod pR).

Thus we get this time

−τ ≡
(

2

p

)
τ (mod pR),

and again we multiply by τ to get a congruence modulo p and conclude(
2

p

)
= −1.

Case 4: p ≡ 5 (mod 8): Exercise (Case 4 is to Case 3 as Case 2 is to Case 1.)

8. Proof of the Quadratic Reciprocity Law Modulo. . .

The above proof is due in spirit to Euler. It is very ingenious, but how do we adapt
it to prove the Quadratic Reciprocity Law: e.g., what should play the role of τ?

Let us now take p to be an odd prime, ζ = e
2πi
p to be a primitive pth root of unity,

and R = Z[ζ]. A good start would be to find an explicit element τ of R with τ2 = p.

This would mean in particular that Q(
√
p) ⊂ Q(ζ), which is far from obvious.

Indeed, it need not even be quite true. Take p = 3: since ζ3 = e
2πi
3 = ( 1−

√
−3

2 ), the

cyclotomic field Q(ζ3) is the same as the imaginary quadratic field Q(
√
−3). There

is an element τ ∈ Z[ζ3] with τ2 = −3 but not one with τ2 = 3.
But take heart: finding a square root of p in Q(ζp) isn’t exactly what we wanted

anyway. Recall that a strange factor of ±1 according to whether p ≡ ±1 (mod 4)
is the hallmark of quadratic reiciprocity. So actually we are on the right track.

Now, like a deus ex machina comes the Gauss sum:5

τ :=

p−1∑
t=0

(
t

p

)
ζt.

In other words, we sum up all the pth roots of unity, but we insert ±1 signs in front
of them according to a very particular recipe. This looks a bit like a random walk
in the complex plane with p steps of unit length. A probabilist would guess that
the magnitude of the complex number τ is roughly

√
p.6 Well, it is our lucky day:

Theorem 4.21. (Gauss)

τ2 = (−1)
p−1
2 p.

That is, |τ | = √p on the nose! The extra factor of (−1)
p−1
2 is more than welcome,

since it appears in the quadratic reciprocity law. In fact, we define p∗ = (−1)
p−1
2 p,

and then it is entirely straightforward to check the following

5We make the convention that from now until the end of the handout, all sums extend over

0 ≤ i ≤ p− 1.
6Much more on this, the philosophy of almost square root error, can be found in the

analytic number theory part of these notes.
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Lemma 4.22. The quadratic reciprocity law is equivalent to the fact that for
distinct odd primes p and q, we have(

q

p

)
=

(
p∗

q

)
.

Proof. Exercise. �

Remarkably, we can now push through a proof as in the last section:

τ q−1 = (τ2)
q−1
2 = (p∗)

q−1
2 ≡

(
p∗

q

)
(mod q),

and suddenly our way is clear: multiply by τ to get

(24) τ q ≡
(
p∗

q

)
τ (mod q).

On the other hand, we have

τ q ≡

(∑
t

(
t

p

)
ζt

)q
≡
∑
t

(
t

p

)
ζqt (mod q).

Now, since q is prime to p and hence to the order of ζ, the elements ζqt still run
through all distinct pth roots of unity as t runs from 0 to p− 1. In other words, we
can make the change of variable t 7→ q−1t and then the sum becomes∑

t

(
q−1t

p

)
ζt =

(
q−1

p

)∑
t

(
t

p

)
ζt =

(
q

p

)
τ.

So we win: substituting this into (24) we get(
q

p

)
τ ≡

(
p∗

q

)
τ (mod q),

and multiplying through by τ we get an ordinary congruence(
q

p

)
p∗ ≡

(
p∗

q

)
p∗ (mod q);

since p∗ is prime to q, we may cancel to get(
q

p

)
≡
(
p∗

q

)
(mod q),

and finally that (
q

p

)
=

(
p∗

q

)
.

9. . . . the Computation of the Gauss Sum

Of course, it remains to prove Theorem 4.21. We wish to show that if

τ =
∑
t

(
t

p

)
ζt,

then

τ2 = p∗ = (−1)
p−1
2 p.
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We do this by introducing a slightly more general sum: for any integer a, we define

τa :=
∑
t

(
t

p

)
ζat.

If a ≡ 0 (mod p), then

τa =
∑
t

(
t

p

)
ζap =

∑
t

(
t

p

)
.

Notice that τq came up in the proof of the quadratic reciprocity law and we quickly
rewrote it in terms of τ . That argument still works here, to give:

τa =

(
a

p

)
τ.

Now we will evaluate the sum
∑
a τaτ−a in two different ways. First, if a 6= 0, then

τaτ−a =

(
a

p

)(
−a
p

)
τ2 =

(
−1

p

)
τ2 = (−1)

p−1
2 τ2.

On the other hand

τ0 =
∑
t

(
t

p

)
ζ0t =

∑
t

(
t

p

)
= 0,

since each nonzero quadratic residue mod p contributes +1, each quadratic non-
residue contributes −1, and we have an equal number of each. It follows that∑

a

τaτ−a = (−1)
p−1
2 (p− 1)τ2.

We also have

τaτ−a =
∑
x

∑
y

(
x

p

)(
y

p

)
ζa(x−y).

Lemma 4.23.
a) If a ≡ 0 (mod p), then

∑
t ζ
at = p;

b) Otherwise
∑
t ζ
at = 0.

The proof is easy. So interchanging the summations we get∑
a

τaτ−a =
∑
x

∑
y

(
x

p

)(
y

p

)∑
a

ζa(x−y).

The inner sum is 0 for all x 6= y, and the outer sum is 0 when x = y = 0. For each
of the remaining p− 1 values of x = y, we get a contribution to the sum of p, so∑

a

τaτ−a = (p− 1)p.

Equating our two expressions for
∑
a τaτ−a gives

(p− 1)p = (−1)
p−1
2 (p− 1)τ2,

which gives the desired result:

τ2 = (−1)
p−1
2 p = p∗.
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10. Comments

Working through this proof feels a little bit like being an accountant who has been
assigned to carefully document a miracle. Nevertheless, every proof of QR I know
feels this way, sometimes to an even greater extent. At least in this proof the mira-
cle can be “bottled”: there are many fruitful generalizations of Gauss sums, which
can be used to prove an amazing variety of results in mathematics, from number
theory to partial differential equations (really!).

The proof just given is a modern formulation of Gauss’ sixth and last proof, in
which his polynomial identities have been replaced by more explicit reference to
algebraic integers. In particular I took the proof from the wonderful text of Ireland
and Rosen, with only very minor expository modifications. In addition to being no
harder than any other proof of QR that I have ever seen, it has other merits: first,
it shows that the cyclotomic field Q(ζp) contains the quadratic field Q(

√
p∗) – in

fact, Galois theory shows that this is the unique quadratic field contained in Q – a
fact which comes up again and again in algebraic number theory. Second, the proof
can be adapted with relative ease to prove certain generalizations of the quadratic
reciprocity law to cubic and biquadratic residues (for this see Ireland and Rosen
again). These higher reciprocity laws were much sought by Gauss but found only
by his student Eisenstein (not the filmmaker).

Finally, the Gauss sum can be rewritten to look more like the “Gaussians” one
studies in continuous mathematics: you are asked in the homework to show that

τ =
∑
t

e
2πit2

p .

11. The proof of Jacobian Quadratic Reciprocity

We proved quadratic reciprocity for the Legendre symbol but used quadratic reci-
procity for the Jacobi symbol. Of course this is a logical gap. One may well wonder
why “Jacobian quadratic reciprocity” gets such short shrift. Namely, more than
200 years after Gauss’s Disquisitiones Arithmeticae, why do we not simply state
and prove quadratic reciprocity for the Jacobi symbol? Is it possible to do so?

The answer is yes. A direct proof of Jacobian quadratic reciprocity is given,
for instance, in [BC12, §3.1]. This proof seems (in my rather biased opinion!) to
be natural and appealing – in particular it gives some further insight into why the
Jacobi symbol is defined as it is, whereas in our present treatment it seems to sim-
ply be a clever way to compute Legendre symbols without factorization. We give
an account of this “Zolotarev-Frobenius” approach to quadratic reciprocity in the
next (quite ancillary) chapter.

However, the emphasis on “Gaussian quadratic reciprocity” is justified by the fact
that Jacobian Quadratic Reciprocity can be deduced from the “vanilla” version by
arguments which are – in comparison with every known proof of Gaussian quadratic
reciprocity – rather banal. We give such a deduction now.
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Lemma 4.24. Let n ≥ 1, and let a1, . . . , an be odd integers.
a) We have

a1 · · · an − 1

2
≡

n∑
i=1

ai − 1

2
(mod 2).

b) We have

(a1 · · · an)2 − 1

8
≡

n∑
i=1

a2
i − 1

8
(mod 2).

Proof. a) We proceed by induction on n. The case n = 1 is trivial. The “real
base case” is n = 2, which we establish by direct calculation:

a1a2 − 1

2
−
(
a1 − 1

2
+
a2 − 1

2

)
=

(a1 − 1)(a2 − 1)

2
≡ 0 (mod 2)

since a1−1 and a2−1 are both even. Now we suppose the result holds for n−1 ≥ 1
and establish it for n. We have

a1 · · · an − 1

2
=

(a1 · · · an−1)an − 1

2
≡ a1 · · · an−1 − 1

2
+
an − 1

2
(mod 2),

and by induction the right hand side is congruent modulo 2 to(
n−1∑
i=1

ai − 1

2

)
+
an − 1

2
≡

n∑
i=1

ai − 1

2
(mod 2).

b) This is quite similar: n = 1 is trivial, and the crucial case n = 2 is a calculation:

(a1a2)2 − 1

8
−
(
a2

1 − 1

8
+
a2

2 − 1

8

)
=

(a2
1 − 1)(a2

2 − 1)

8
≡ 0 (mod 2)

since a2
1 − 1 and a2

2 − 2 are both divisible by 8. Now suppose the result holds for
n− 1 ≥ 1 and establish it for n. We have

(a1 · · · an)2 − 1

8
=

(a1 · · · an−1)an)2 − 1

8
≡ (a1 · · · an−1)2 − 1

8
+
a2
n − 1

8
(mod 2),

and by induction the right hand side is congruent modulo 2 to(
n−1∑
i=1

a2
i − 1

8

)
+
a2
n − 1

8
≡

n∑
i=1

a2
i − 1

8
(mod 2). �

Now we prove Jacobian quadratic reciprocity. Let a and b be odd positive integers,
with prime factorizations

a = p1 · · · pm, b = q1 · · · qn.
Step 1: Using the first supplement to Quadratic Reciprocity and Lemma 4.24a),
we get (

−1

b

)
=

n∏
j=1

(
−1

qj

)
=

n∏
j=1

(−1)
qj−1

2

= (−1)
∑n
j=1

qj−1

2 = (−1)q1···qn−12 = (−1)
b−1
2 .

Step 2: Similarly, using the second supplement to Quadratic Reciprocity and
Lemma 4.24b), we get (

2

b

)
=

n∏
j=1

(
2

qj

)
=

n∏
j=1

(−1)
q2j−1

8
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= (−1)
∑n
j=1

q2j−1

8 = (−1)
(q1···qn)2−1

8 = (−1)
b2−1

8 .

Step 3: Put

S :=
∑

1≤i≤m, 1≤j≤n

pi − 1

2

qj − 1

2
.

Then using Lemma 4.24a) twice, we get

S =
∑

1≤j≤n

 ∑
1≤i≤m

pi − 1

2

 qj − 1

2
≡

∑
1≤j≤n

(
a− 1

2

)
qj − 1

2

≡
(
a− 1

2

) ∑
1≤j≤n

qj − 1

2
≡ a− 1

2

b− 1

2
(mod 2),

and thus (a
b

)( b
a

)
=

∏
1≤i≤m, 1≤j≤n

(
pi
qj

)(
qj
pi

)
=

∏
1≤i≤m, 1≤j≤n

(−1)
pi−1

2

qj−1

2 = (−1)S = (−1)
a−1
2

b−1
2 .



CHAPTER 5

More Quadratic Reciprocity: from Zolotarev to
Duke-Hopkins

1. Quadratic Reciprocity in a Finite Quotient Domain

An FQ-domain is a commutative domain R with the property that for every
x ∈ R•, R/(x) is finite. Evidently any field is an FQ-domain, and conversely any fi-
nite domain is a field. Here we will be interested in FQ-domains which are not fields.

Let R be a finite quotient domain, and let x ∈ R•. We define the norm |x| :=
#R/(x), and put |0| = 0. We claim that for x, y ∈ R•, |xy| = |x||y|: indeed, this
follows from the short exact sequence

0→ (x)

(xy)
→ R/(xy)→ R/(x)→ 0

and the fact that multiplication by x gives an isomorphism R/(y)
∼→ (x)/(xy).

Example: If R is a domain with additive group isomorphic to Zn for some n ≥ 1,
then R is an FQ-domain. In particular, for any number field K, the ring of integers
ZK is an FQ-domain.

Example: Let C/Fq be an integral, normal affine algebraic curve. Then the co-
ordinate ring Fq[C] is an FQ-domain. In particular, the univariate polynomial ring
Fq[t] is an FQ-domain.

As usual, a prime (or prime element) in R is a nonzero element p such that
pR is a prime ideal. In a finite quotient domain, if p is a prime element, then R/(p)
is a finite field: in particular the ideal (p) is maximal.

Remark: A theorem of Kaplansky states that a domain R is a UFD iff every
nonzero prime ideal p of R contains a prime element. It is also known that a do-
main is a PID iff every prime ideal is principal. From these two results it follows
that an FQ-domain is a UFD iff it is a PID.

We say that a nonzero, nonunit x ∈ R is factorable if there exist primes p1, ·, pr
such that x = p1 · · · pr. An FQ-domain is a UFD iff every nonzero nonunit is fac-
torable, but even if R is not a UFD, then factorization of an element into primes
(as opposed to merely irreducibles) is necessarily unique up to associates.

We say x ∈ R• is odd if |x| is an odd integer. Note that if 2 ∈ R× then ev-
ery nonzero x is odd, whereas if 2 = 0 in R then no element of x is odd.

71
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Let I be a nonzero ideal of the FQ-domain R. Then I contains a nonzero ele-
ment x, we have a natural surjection R/(x)→ R/I, and since R/(x) is finite, so is
R/I. We may therefore extend the “norm map” to nonzero ideals by |I| = #R/I
and also put |(0)| = 0. Note that this generalizes the previous norm map in that
for all x ∈ R• we have |(x)| = |x|. As above, we say an ideal I is odd if |I| is odd.
A nonzero proper ideal b of R is factorable if there exist prime ideals p1, . . . , pr
of R such that b =

∏r
i=1 pi. Note that if the element b is factorable, then so is

the principal ideal (b), but in general the converse does not hold. Because of this
we say that an element b is I-factorable if the ideal (p) factors into a product of
prime ideals.

For a ∈ R and an odd prime ideal p, we define the Legendre symbol
(
a
p

)
:

it is 0 if a ∈ p, 1 if a /∈ p and a ≡ x2 (mod p), and −1 if a /∈ p and a 6≡ x2 (mod p).
For an odd factorable ideal b = p1 · · · pr of R we define the Jacobi symbol(a

b

)
=

r∏
i=1

(a
b

)
.

Let r be a ring, and let a ∈ r×. Then the map ma : r→ r by x 7→ xa is a bijection
(its inverse is •a−1).

Now suppose moreover r is finite, of order n, so upon choosing a bijection of R
with {1, . . . , n}, we may identify •a with an element of the symmetric group Sn, and
in particular •a has a well-defined sign [ar ] ∈ {±1} The sign map ε : Sn → {±1} is

a homorphism into a commutative group, so for all σ, τ ∈ Sn, ε(τστ−1) = ε(σ). In

particular [ar ] is independent of the choice of bijection r
∼→ {1, . . . , n}.)

These two constructions are related, as follows: letR be an FQ-domain, b = p1 · · · pr
a nonzero, proper factorable odd ideal of R, and a an element of R which is rela-
tively prime to b in the sense that (a) + b = R. Then (the image of) a is a unit

in the finite ring R/(b) so that
[

a
R/b

]
is well-defined.

Theorem 5.1. (Zolotarev’s First Lemma) Let R be an abstract number ring,
b an odd factorable ideal of R, and a an element of R which is relatively prime to
b. Then [

a

R/b

]
=
(a
b

)
.

Proof. . . . �

1.1. The Zolotarev Symbol.

Now let a and b be two relatively prime odd elements of the FQ-domain R. We will
define three permutations ζ, α, β of the finite set R/(a)×R/(b).

Theorem 5.2. (Zolotarev’s Second Lemma)

a) We have ε(α) =
[

a
R/(b)

]
=
(
a
b

)
.

b) We have ε(β) =
[

b
R/(a)

]
=
(
b
a

)
.

c) We have ε(ζ) = ε(α) · ε(β).
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For coprime odd a, b ∈ R, we define the Zolotarev symbol

Z(a, b) = ε(ζ) ∈ {±1}.

Theorem 5.3. (Abstract Quadratic Reciprocity) Let a, b be relatively prime,
odd I-factorable elements of an FQ-domain R. Then(a

b

)( b
a

)
= Z(a, b).

2. The Kronecker Symbol

The Jacobi symbol ( an ) is an extension of the Legendre symbol (ap ) which is

defined for any positive odd integer n by (a1 ) = 1 for all a ∈ Z; if n =
∏r
i=1 pi, then(a

n

)
=

r∏
i=1

(
a

pi

)
.

For an integer a, define(a
2

)
=

 0 a ≡ 0 (mod 2)
1 a ≡ 1, 7 (mod 8)
−1 a ≡ 3, 5 (mod 8)

 ,

(
a

−1

)
=

 0 a = 0
1 a > 0
−1 a < 0

 ,

(a
0

)
=

{
0 a 6= 1
1 a = 1

}
.

With these additional rules there is a unique extension of the Jacobi symbol to
a symbol (na ) defined for any n, a ∈ Z such that for all integers n, a, b, we have

( nab ) = (na )(nb ). One also has (abn ) = ( an )( bn ), i.e., the symbol is bi-multiplicative.
This extension of the Jacobi symbol is known as the Kronecker symbol.

When n is not odd and positive, some authors (e.g. [DH05]) define ( an ) only
when a ≡ 0, 1 (mod 4). It is not worth our time to discuss these two conventions,
but we note that all of our results involve only this“restricted” Kronecker symbol.

For odd n ∈ Z+, define n∗ = (−1)
n−1
2 n. Full quadratic reciprocity – i.e.,

the usual QR law together with its First and Second Supplements – is equivalent
to one elegant identity: for a ∈ Z and an odd positive n ∈ Z,

(25)
(a
n

)
=

(
n∗

a

)
.

3. The Duke-Hopkins Reciprocity Law

Let G be a finite commutative group (written multiplicatively) of order n. We
define an action of (Z/nZ)× on G, by

(a mod n) • g := ga.

By Lagrange’s Theorem, gn = 1, so that ga = ga
′

if a ≡ a′ (mod n) and a• is
well defined. It is immediate that each a• gives a homomorphism from G to G;



74 5. MORE QUADRATIC RECIPROCITY: FROM ZOLOTAREV TO DUKE-HOPKINS

moreover, since a ∈ (Z/nZ)×, there exists b ∈ (Z/nZ)× such that ab ≡ 1 (mod n),
and then a• ◦ b • = b • ◦ a• = IdG, so that each a• is an automorphism of G.

As for any group action on a set, this determines a homomorphism from (Z/nZ)×

to the group Sym(G) of permutations of G, the latter group being isomorphic to Sn,
the symmetric group on n elements. Recall that there is a unique homomorphism
from Sn to the cyclic group Z2 given by the sign of the permutation. Therefore we
have a composite homomorphism

(Z/nZ)× → Sym(G)→ Z2

which we will denote by

a (mod n) 7→
( a
G

)
.

Example 2.1 (Zolotarev): Let p be an odd prime and G = Zp is the cyclic group

of order p. The mapping (Z/pZ)× → Z2 given by a 7→
(
a
Zp

)
is nothing else than

the usual Legendre symbol a 7→ (ap ). Indeed, the group (Z/pZ)× is cyclic of even

order, so admits a unique surjective homomorphism to the group Z2 = {±1}: if
g is a primitive root mod p, we send g to −1 and hence every odd power of g to
−1 and every even power of g to +1. This precisely describes the Legendre symbol

a 7→ (ap ). Thus it suffices to see that for some a ∈ (Z/pZ)× we have
(
a
Zp

)
= −1,

i.e., the sign of the permutation n ∈ Zp 7→ na is −1. To see this, switch to additive
notation, viewing Zp as the isomorphic group (Z/pZ,+); the action in question is
now just multiplication by a nonzero element a. If g is a primitive root modulo p,
multiplication by g fixes 0 and cyclically permutes all p− 1 nonzero elements, so is
a cycle of even order and hence an odd permutation: thus ( g

Zp
) = −1.

The next result shows that the symbol ( aG ) is also bi-multiplicative.

Proposition 5.4. For i = 1, 2 let Gi be a finite commutative group of order
ni and a ∈ (Z/n1n2Z)×. Then(

a

G1 ×G2

)
=

(
a (mod n1)

G1

)(
a (mod n2)

G2

)
.

Proof. If a ∈ (Z/n1n2Z)×, then

a • (g1, g2) = (ga1 , g
a
2 ) = (g

a (mod n1)
1 , g

a (mod n2)
2 ).

After identifying G1 (resp. G2) with the subset G1×eG2 (resp. eG1×G2) of G1×G2,
the permutation that a induces on G1×G2 is the product of the permutation that a
(mod n)1 induces on G1 with the permutation that a (mod n)2 induces on G2. �

Let us now consider the action of −1 on Sym(G). Let r1 be the number of fixed
points of −1•. More concretely, −1 • g = g−1 = g iff g has order 1 or 2. Note
that r1 ≥ 1 because of the identity element. The n− r1 other elements of G are all
distinct from their multiplicative inverses, so there exists a positive integer r2 such
that n− r1 = 2r2.

Definition: We put G∗ = (−1)r2 |G|r1 = (−1)r2nr1 .

Lemma 5.5. For any finite commutative group G, we have G∗ ≡ 0 or 1
(mod 4).
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Proof. Let n = |G|. If n is odd, then by Lagrange the only g with g−1 = g is

the identity, so that r1 = 1 and r2 = n−1
2 . In this case G∗ = |G|∗ = (−1)

n−1
2 n ≡ 1

(mod 4). If n is even, then n− r1 = 2r2 ≡ 0 (mod 2), so r1 is even and hence is at
least 2, so G∗ = (−1)r2nr1 ≡ 0 (mod 4). �

So the Kronecker symbol
(
G∗

a

)
is always defined (even in the “restricted” sense).

Theorem 5.6. (Duke-Hopkins Reciprocity Law) For a finite commutative group
G and an integer a, we have ( a

G

)
=

(
G∗

a

)
.

The proof will be given in the next section.

Corollary 5.7. a) Suppose G has odd order n. Then for any a ∈ (Z/nZ)×,
we have ( a

G

)
=

(
n∗

a

)
.

b) Taking G = Zn we recover (34).
c) We have ( aG ) = 1 for all a ∈ (Z/nZ)× iff n is a square.

Proof of Corollary 5.7: In the proof of Lemma 5.5 we saw that G∗ = n∗; part a)
then follows immediately from the reciprocity law. By part a), the symbol ( aG ) can
be computed using any group of order n, so factor n into a product p1 · · · pr of not
necessarily distinct primes and apply Example 2.1: we get ( aG ) =

∏r
i=1( api ) = ( an ).

This gives part b). Finally, using the Chinese Remainder Theorem it is easy to see
that there is some a such that ( an ) = −1 iff n is not a square.

4. The Proof

Enumerate the elements of G as g1, . . . , gn and the characters of G as χ1, . . . , χn.
Let M be the n× n matrix whose (i, j) entry is χi(gj).

Since any character χ ∈ X(G) has values on the unit circle in C, we have χ−1 = χ.
Therefore the number r1 of fixed points of −1 on G is the same as the number
of characters χ such that χ = χ, i.e., real-valued characters. Thus the effect of
complex conjugation on the character matrix M is to fix each row corresponding to
a real-valued character and to otherwise swap the ith row with the jth row where
χj = χi. In all r2 pairs of rows get swapped, so

det(M) = det(M) · (−1)r2 .

Moreover, with M∗ = (M)t, we have

MM∗ = nIn,

so that

det(M) det(M) = nn,

so

(26) det(M)2 = (−1)r2nn = (−1)r2nr1n2r2 = `2G∗,
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where ` = nr2 . (In particular det(M)2 is a positive integer. Note that det(M) itself

lies in Q(
√
G∗), and is not rational if n is odd.) So for any a ∈ Z, we have

(27)

(
det(M)2

a

)
=

(
G∗

a

)
.

The character matrix M has values in the cyclotomic field Q(ζn), which is a Galois
extension of Q, with Galois group isomorphic to (what a concidence!) (Z/nZ)×, an
explicit isomorphism being given by making a ∈ (Z/nZ)× correspond to the unique
automorphism σa of Q(ζn) satisfying σa(ζn) = ζan. (All of this is elementary Galois
theory except for the more number-theoretic fact that the cyclotomic polynomial Φn
is irreducible over Q.) In particular the group (Z/nZ)× also acts by permutations
on the character group X(G), and indeed in exactly the same way it acts on G:

∀ g ∈ G, (a • χ)(g) = χ(ga) = (χ(g))a = χa(g),

so a • χ = χa. This has the following beautiful consequence:

For a ∈ (Z/nZ)×, applying the Galois automorphism σa to the character matrix
M induces a permutation of the rows which is “the same” as the permutation •a
of G. In particular the signs are the same, so

(28) det(σaM) = det(M) ·
( a
G

)
.

Combining (40) and (28), we get that for all a ∈ (Z/nZ)×,

σa(
√
G∗) =

( a
G

)√
G∗.

Now, by the multiplicativity on both sides it is enough to prove Theorem 5.6 when
a = p is a prime not dividing n and when a = −1.

Proposition 5.8. Let p be a prime not dividing n. TFAE:
a) σp(

√
G∗) =

√
G∗.

b) p splits in Q(
√
G∗).

c) (G
∗

p ) = 1.

The proof of this – a standard result in algebraic number theory – is omitted for now.

We deduce that (
G∗

p

)
=
( p
G

)
.

Finally, when a = −1, σ−1 is simply complex conjugation, so(
−1

G

)√
G∗ = σ−1(

√
G∗) =

{ √
G∗ G∗ > 0

−
√
G∗ G∗ < 0

}
=

(
G∗

−1

)√
G∗,

so (
−1

G

)
=

(
G∗

−1

)
.

This completes the proof of Theorem 5.6.



5. IN FACT... 77

5. In Fact...

...the “real” Duke-Hopkins reciprocity law is an assertion about a group G of order
n which is not necessarily commutative. In this case, the map g 7→ ga need not be
an automorphism of G, so a more sophisticated approach is needed. Rather, one
considers the action of (Z/nZ)× on the conjugacy classes {C1, . . . , Cm} of G: if
g = xhx−1 then ga = xhax−1, so this makes sense. We further define r1 to be the
number of “real” conjugacy classes C = C−1 – and assume that in our labelling
C1, . . . , Cr1 are all real – and define r2 by the equation m = r1 +2r2. Then in place
of our G∗ (notation which is not used in [DH05]), one has the discriminant

d(G) = (−1)r2nr1
r1∏
j=1

|Cj |−1.

The Duke-Hopkins reciprocity law asserts that for a ∈ (Z/nZ)×,( a
G

)
=

(
d(G)

a

)
.

The proof is very similar, except the group X(G) of one-dimensional characters
gets replaced by the set {χ1, . . . , χm} of characters (i.e., trace functions) of the
irreducible complex representations of G. Perhaps surprisingly, the only part of
the proof which looks truly deeper is the claim that d(G) ≡ 0, 1 (mod 4) which is

required, according to the conventions of [DH05], for the Kronecker symbol (d(G)
a )

can be defined. Duke and Hopkins suggest this as an analogue of Stickelberger’s
theorem in algebraic number theory which asserts that the discriminant of any
number field is an integer which is 0 or 1 modulo 4; moreover they adapt a 1928
proof of that theorem due to Issai Schur.





CHAPTER 6

The Mordell Equation

1. The Coprime Powers Trick in Z

We have by now seen several ways in which the fundamental theorem of arithmetic
can be used to solve Diophantine equations, and that suitably generalized, these
techniques often apply to more general unique factorization domains.

We will now consider another such technique, the coprime powers trick. In
the interest of linear exposition, we present the technique first and then give an
application. However, the reader might prefer to skip ahead and see how it is used.

Proposition 6.1. (Coprime Powers Trick, v. 1)
Let n ∈ Z+, let x, y, z ∈ Z be such that gcd(x, y) = 1 and xy = zn.

a) There exist a, b ∈ Z such that x = ±an, y = ±bn.
b) If n is odd, then there exist a, b ∈ Z such that x = an, y = bn.

Proof. If x, y ∈ Z, then x = ±y iff ordp(x) = ordp(y) for all prime numbers
p. We exploit this as follows: for any prime p, take ordp of both sides of xy = zn

to get

ordp(x) + ordp(y) = n ordp(z).

Since x and y are relatively prime, at least one of ordp(x), ordp(y) is equal to 0,
and therefore they are both divisible by n. Now define a, b ∈ Z+ as follows:

a =
∏
p

p
ordp(x)

n , b =
∏
p

p
ordp(y)

n .

Then for all primes p, ordp(a
n) = n ordp(a) = ordp(x) and ordp(b

n) = n ordp(b) =
ordp(y). We conclude x = ±an, y = ±bn, establishing part a). Part b) follows upon
noticing that if n is odd, (−1)n = −1, so we may write x = (±a)n, y = (±b)n. �

1.1. An application.

Theorem 6.2. The only integral solutions to

(29) y2 − y = x3

are (0, 0) and (0, 1).

Proof. Suppose (x, y) ∈ Z2 satisfy equation (29), i.e., y(y − 1) = x3. As for
any two consecutive integers, y and y − 1 are relatively prime. We can therefore
apply Proposition 6.1b) to conclude that there exist a, b ∈ Z such that

y = a3, y − 1 = b3.

This gives

1 = y − (y − 1) = a3 − b3 = (a− b)(a2 + ab+ b2),

79
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and the only way this can happen is for

a− b = a2 + ab+ b2 = ±1.

Suppose first that a− b = 1, so b = a− 1; then

1 = a2 + ab+ b2 = a2 + a(a− 1) + (a− 1)2 = 3a2 − 3a+ 1,

or

3a2 − 3a = 0.

The solutions of this quadratic are a = 0 and a = 1. If a = 0, then y = a3 = 0, and
x3 = 02 − 0 = 0: we get the solution (x, y) = (0, 0) to (29). If a = 1, then y = 1
and x3 = 12 − 1 = 0: we get the solution (x, y) = (0, 1).
Next suppose that a− b = −1, so b = a+ 1; then

−1 = a2 + ab+ b2 = a2 + a(a+ 1) + (a+ 1)2 = 3a2 + 3a+ 1,

or

3a2 + 3a+ 2 = 0,

a quadratic equation with discriminant 32 − 4 · 3 · 2 = −13 < 0; thus there are no
real solutions. �

2. The Mordell Equation

We now turn to a family of Diophantine equations which has received persistent
attention over the centuries and remains of interest to this day. Namely, fix an
integer k and consider

(30) y2 + k = x3.

We wish to find all integral solutions. If k = 0 we get the “degenerate” equation
y2 = x3. A moment’s thought shows that this equation has solution set {(x, y) =
(a2, a3) | a ∈ N}. In particular there are infinitely many solutions. The great
Philadelphian mathematician Louis J. Mordell showed that conversely, for each
nonzero k, (30) has only finitely many integer solutions. Because of this and other
results over the course of his long career, (30) is often called the Mordell Equation,
despite the fact that other distinguished mathematicians also worked on it. In
particular, the case of k = −2 was considered by Claude-Gaspar Bachet and Fermat
in the seventeenth century, and the following result is attributed to Fermat.

Theorem 6.3. (Fermat) The only integral solutions to

(31) y2 + 2 = x3

are (3, 5) and (3,−5).

Proof. We wish to argue similarly to the previous result, but here the only
factorization in sight takes place over the quadratic ring Z[

√
−2], namely:

x3 = (y +
√
−2)(y −

√
−2).

Looking back at the previous argument, it seems that what we would like to say is
that there are elements α = a+ b

√
−2, β = c+ d

√
−2 ∈ Z[

√
−2] such that

y +
√
−2 = α3, y −

√
−2 = β3.

The justification for this will be a version of the coprime powers trick in the ring
Z[
√
−2], but let us assume it just for a moment and see what comes of it.
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By expanding out α3 we get

y +
√
−2 = (a+ b

√
−2)3 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2,

and this means that
y = a3 − 6ab2 = a(a3 − 6b2),

1 = 3a2b− 2b3 = b(3a2 − 2b2).

Again this very much limits our options: we must have

b = 3a2 − 2b2 = 1

or
b = 3a2 − 2b2 = −1.

Taking the first option – b = 1 – gives 3a2 = 2b2 + 1 = 3, so a = ±1. Taking
(a, b) = (1, 1) leads to y = 1(13 − 6 · 12) = −5, so x3 = y2 + 2 = 52 + 2 = 27,
so x = 3: we get the solution (x, y) = (3, 5). Taking (a, b) = (−1, 1) leads to
y = −1((−1)3 − 6 · 12) = 7, so x3 = y2 + 2 = 72 + 2 = 51, which has no integral
solutions since 51 is not a perfect cube.

The second option – b = −1 – gives 3a2 = 2b2 + 1 = 3, so again a = ±1.
Taking (a, b) = (1,−1) leads to y = 1(13 − 6 · (−1)2) = −5, and as above we
get x = 3 and the solution (x, y) = (3,−5). Taking (a, b) = (−1,−1) leads to
y = −1((−1)3 − 6 · (−1)2) = 7, which as above yields no solution. �

The time has come to justify our assumption that there exist elements α, β as
above. The justification is in two parts: first, we need a version of the coprime
powers trick that applies to the domain Z[

√
−2]; and second we need to verify that

the hypotheses are justified in our particular case: in particular, that the elements
y ±
√
−2 of Z[

√
−2] are indeed coprime!

3. The Coprime Powers Trick in a UFD

3.1. Ord functions and coprime powers.

Let R be a UFD and x, y ∈ R. We say x, y are coprime if z | x, | z | y im-
plies z ∈ R×: equivalently, there is no prime element which divides both of them.

Proposition 6.4. (Coprime powers trick, v. 2) Let R be a UFD, n ∈ Z+, and
let x, y, z ∈ R be coprime elements such that xy = zn.
a) There exist α, β ∈ R and units u, v ∈ R× such that

x = uαn, y = vβn.

b) If every unit in R is an nth power, then there exist α, β ∈ R such that

x = αn, y = βn.

In other words, if in a UFD the product of two relatively prime elements is a perfect
nth power, then each of them is a perfect nth power, up to a unit.

Before giving the proof, we set up a more general notion of “ord functions”. We
work in the context of an integral domain R which satisfies the ascending chain
condition on principal ideals (ACCP). In plainer terms we assume that there is no
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infinite sequence {xi}∞i=1 of elements of R such that xi+1 properly divides1 xi for
all i. This is a very mild condition: it is satisfied by any Noetherian ring and by
any UFD: c.f. [Factorization in Integral Domains].

Now let π be a nonzero prime element of R, and let x ∈ R \ {0}. (ACCP) ensures
that there exists a largest non-negative integer n such that πn | x, for otherwise
πn | x for all n and { xπn } is an infinite sequence in which each element properly
divides the previous one. We put ordπ(x) to be this largest integer n. In other
words, ordπ(x) = n iff πn | x and πn+1 - x. We formally set ordπ(0) = +∞, and
we extend ordπ to a function on the fraction field K of R by multiplicativity:

ordπ

(
x

y

)
:= ordπ(x)− ordπ(y).

This generalizes the functions ordp on Z and Q, and the same properties hold.

Proposition 6.5. Let R be an (ACCP) domain with fraction field K. Let π
be a nonzero prime element of R and x, y ∈ K \ {0}. Then:
a) ordπ(xy) = ordπ(x) + ordπ(y).
b) ordπ(x+ y) ≥ min(ordπ(x), ordπ(y)).
c) Equality holds in part b) if ordπ(x) 6= ordπ(y).

Proof. We will suppose for simplicity that x, y ∈ R \ {0}. The general case
follows by clearing denominators as usual. Put a = ordπ(x), b = ordπ(y). By
hypothesis, there exists x′, y′ such that x = πax′, y = πby′ and π - x′, y′.
a) xy = πa+b(x′y′). Thus ordπ(xy) ≥ a+ b. Conversely, suppose that πa+b+1 | xy.
Then π | x′y′, and, since π is a prime element, this implis π | x′ or π | y′, contra-
diction. Thus ordπ(xy) = a+ b = ordπ(x) + ordπ(y).
b) Let c = min a, b, so x + y = πc(πa−cx′ + πb−cy′, and thus πc | x + y and
ordπ(x+ y) ≥ c = min(ordπ(x), ordπ(y)).
c) Suppose without loss of generality that a < b, and write x+y = πa(x′+πb−ay′).
If πa+1 | x + y = πax′ + πby′, then π | x′ + πb−ay′. Since b − a > 0, we have
π | (x′ + πb−ay′)− (πb−ay′) = x′, contradiction. �

Suppose that π and π′ are associate nonzero prime elements, i.e., there exists a unit
u ∈ R such that π′ = uπ. Then a moment’s thought shows that the ord functions
ordπ and ordπ′ coincide. This means that ordπ depends only on the principal ideal
p = (π) that the prime element π generates. We could therefore redefine the ord
function as ordp for a nonzero principal prime ideal p = (π) of R, but for our pur-
poses it is convenient to just choose one generator π of each such ideal p. Let P
be a maximal set of mutually nonassociate nonzero prime elements, i.e., such that
each nonzero prime ideal p contains exactly one element of P.

Now suppose that R is a UFD, and x ∈ R\{0} is an element such that ordπ(x) = 0
for all π ∈ P. Then x is not divisible by any irreducible elements, so is necessarily
a unit. In fact the same holds for elements x ∈ K \ {0}, since we can express x = a

b
with a and b not both divisible by any prime element. (In other words, in a UFD we
can reduce fractions to lowest terms!) It follows that any x ∈ K \{0} is determined

1We say that a properly divides b if a | b but a is not associate to b.
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up to a unit by the integers ordπ(x) as π ranges over elements of P. Indeed, put

y =
∏
π∈P

πordπ x.

Then we have ordπ(xy ) = 0 for all π ∈ P, so that x
y = u is a unit in R, and x = yu.

After these preparations, the proof of Proposition 6.4 is straightforward: we have
xy = zn. For any prime element p, take ordp of both sides to get

ordp(x) + ordp(y) = n ordp(z).

But since x and y are assumed coprime, for any fixed prime p, we have either
ordp(x) = 0 or ordp(y) = 0. Either way we get that n | ordp(x) and n | ordp(y)
(since n | 0 for all n). So the following are well-defined elements of R:

x′ =
∏
p∈P

p
ordp(x)

n ,

y′ =
∏
p∈P

p
ordp(y)

n ,

where the product extends over a maximal set of pairwise nonassociate nonzero

prime elements ofR. By construction, we have ordp((x
′)n) = n ordp(x

′) = n
ordp(x)

n =
ordp(x) for all p ∈ P, so the elements x and (x′)n are associate: i.e., there exists
a unit u in R such that x = u(x′)n. Exactly the same applies to y and y′: there
exists a unit v ∈ R such that y = v(y′)n.

3.2. Application to the Bachet-Fermat Equation.

To complete the proof of Theorem 6.3 we need to verify that the hypotheses of
Proposition 6.4b) apply: namely, that every unit in Z[

√
−2] is a cube and that the

elements y +
√
−2, y −

√
−2 are indeed relatively prime. For the former, we are

fortunate in that, as for Z, the only units in R = Z[
√
−2] are ±1, both of which

are indeed cubes in R.
For the latter, we suppose that d ∈ R is a common divisor of y +

√
−2 and

y −
√
−2. Then also d | (y +

√
−2)− (y −

√
−2) = 2

√
−2, i.e., there exists d′ ∈ R

with dd′ = 2
√
−2. Taking norms of both sides we get

N(d)N(d′) = N(2
√
−2) = 8,

so N(d) | 8. Moreover, there exists α ∈ R such that dα = y +
√
−2, hence

N(d)N(α) = N(dα) = N(y +
√

2) = y2 + 2 = x3,

so N(d) | x3. We claim that x must be odd. For if not, then reducing the equation
x3 = y2 + 2 mod 8 gives y2 ≡ 6 (mod 8), but the only squares mod 8 are 0, 1, 4.
Thus x3 is odd and N(d) | gcd(x3, 8) = 1 so d = ±1 is a unit in R.

3.3. Application to the Mordell Equation with k = 1.

Theorem 6.6. The only integer solution to y2 + 1 = x3 is (1, 0).

Proof. This time we factor the left hand side over the UFD R = Z[
√
−1]:

(y +
√
−1)(y −

√
−1) = x3.
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If a nonunit d in R divides both y+
√
−1 and y−

√
−1, then it divides (y+

√
−1)−

(y −
√
−1) = 2

√
−1 = (1 +

√
−1)2

√
−1. The element 1 +

√
−1, having norm

N(1 +
√
−1) = 2 a prime number, must be an irreducible (hence prime) element of

R. So 1 + i is the only possible common prime divisor. We compute

y ±
√
−1

1 +
√
−1
· 1−

√
−1

1−
√
−1

=
y ± 1 + (y ± 1)

√
−1

2
,

which is an element of R iff y is odd. But consider the equation y2 +1 = x3 modulo
4: if y is odd, then y2 + 1 ≡ 2 (mod 4), but 2 is not a cube modulo 4. Therefore we
must have that y is even, so that y±

√
−1 are indeed coprime. Moreover, although

the unit group of R is slightly larger in this case – it is {±1,±
√
−1} – it is easily

checked that every unit is a cube in R. So Proposition 6.4b) applies here, giving
α, β ∈ R such that

y +
√
−1 = α3, y −

√
−1 = β3.

Again we will put α = a+ b
√
−1 and expand out α3, getting

y +
√
−1 = a3 − 3b2a+ (3a2b− b3)

√
−1,

or

y = a(a2 − 3b2), 1 = b(3a2 − b2).

So we have either 1 = b = 3a2 − b2, which leads to 3a2 = 2, which has no integral
solution, or −1 = b = 3a2 − b2, which leads to a = 0, so α = −

√
−1, y =

(−
√
−1)3 −

√
−1 = 0, x = 1 and thus to (x, y) = (1, 0). �

4. Beyond UFDs

The situation here is somewhat analogous to our study of the equations x2+Dy = p,
where the assumption that he quadratic ring Z[

√
−D] is a UFD leads to a complete

solution of the problem. However there are also some differences. First, whereas in
the present situation we are using the assumption that Z[

√
−k] is a UFD in order

to show that y2 + k = x3 has very few solutions, earlier we used the assumption
that Z[

√
D] is a UFD to show that the family of equations x2 +Dy2 = p had many

solutions, namely for all primes p for which −D is a square mod p.
A more significant difference is that the assumption Z[

√
D] was necessary as

well as sufficient for our argument to go through: we saw that whenever D < −3 2
is not of the form x2+Dy2. On the other hand, suppose Z[

√
−k] is not a UFD: must

the coprime powers trick fail? It is not obvious, so let us study it more carefully.

We would like to axiomatize the coprime powers trick. There is an agreed upon
definition of coprimality of two elements x and y in a general domain R: if d | x
and d | y then d is a unit. However it turns out to be convenient to require a
stronger property than this, namely that the ideal 〈x, y〉 = {rx + sy | r, s ∈ R}
generated by x and y be the unit ideal R. More generally, for two ideals I, J of a
ring, the sum I + J = {i + j | i ∈ I, j ∈ J} is an ideal, and we say that I and J
are comaximal if I + J = R; equivalently, the only ideal which contains both I
and J is the “improper” ideal R. Since every proper ideal in a ring is contained in
a maximal, hence prime, ideal, the comaximality can be further reexpressed as the
property that there is no prime ideal p containing both I and J . (This will be the
formulation which is most convenient for our application.)

Notice that the condition that x and y be coprime can be rephrased as saying
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that the only principal ideal (d) containing both x and y is the improper ideal
R = (1). So the notions of coprime and comaximal elements coincide in a principal
domain, but not in general.

Now, for a positive positive integer n, say that an integral domain R has prop-
erty CM(n) if the comaximal powers trick is valid in degree n: namely, for all
x, y, z ∈ R with 〈x, y〉 = R and xy = zn, then there exist elements a, b ∈ R and
units u, v ∈ R such that x = uan, y = vbn. Exactly as above, if we also have
(R×)n = (R×) – i.e., every unit in R is an nth power – then the units u and v can
be omitted. Now consider the following

Theorem 6.7. Let k ∈ Z+ be squarefree with k ≡ 1, 2 (mod 4). Suppose that
the ring Z[

√
−k] has property CM(3). Then:

a) If there exists an integer a such that k = 3a2± 1, then the only integer solutions
to the Mordell equation y2 + k = x3 are (a2 + k,±a(a2 − 3k)).
b) If there is no integer a as in part a), the Mordell equation y2 + k = x3 has no
integral solutions.

Proof. [IR, Prop. 17.10.2] Suppose (x, y) is an integral solution to y2+k = x3.
Reduction mod 4 shows that x is odd. Also gcd(k, x) = 1: otherwise there exists a
prime p dividing both k and x, so p |x3 − k = y2 and p | y2 =⇒ p2 | x3 − y2 = k,
contradicting the squarefreeness of k. Now consider

(y +
√
−k)(y −

√
−k) = x3.

We wish to show that 〈y +
√
−k, y −

√
−k〉 = R. If not, there exists a prime ideal

p of R with y ±
√
−k ∈ p. Then (y +

√
−k) − (y −

√
−k) = 2

√
−k ∈ p, hence

also −(2
√
−k)2 = 4k ∈ p. Moreover p contains y2 + k = x3 and since it is prime,

it contains x. But since x is odd and gcd(x, k) = 1, also gcd(x, 4k) = 1, so that
there exist m,n ∈ Z with 1 = xm + 4kn and thus 1 ∈ p. Moreover, either k = 1
(a case which we have already treated) or k > 1 and the only units of Z[

√
−k] are

±1. Therefore there exists α = a+ b
√
−k ∈ R such that

y +
√
−k = α3 = (a+ b

√
−k)3 = a(a2 − 3kb2) + b(3a2 − kb2)

√
−k.

So b = ±1 and k = db2 = 3a2 ± 1. The integer a determined by this equation is
unique up to sign. So y = ±a(a2 − 3k), and one easily computes x = a2 + k. �

Since property CM(3) holds in the PIDs Z[
√
−1] and Z[

√
−2], whatever else The-

orem 6.7 may be good for, it immediately implies Theorems 6.3 and 6.6. Moreover
its proof was shorter than the proofs of either of these theorems! The economy was
gained by consideration of not necessarily principal ideals.

Thus, if for a given k as in the statement of Theorem 6.7 we can find more so-
lutions to the Mordell Equation than the ones enumerated in the conclusion of the
theorem we know that Z[

√
−k] does not satisfy property CM(3). In the following

examples we simply made a brute force search over all x and y with |x| ≤ 106.
(There is, of course, no guarantee that we will find all solutions this way!)

Example: The equation y2 + 26 = x3 has solutions (x, y) = (3,±1), (35,±207), so
Z[
√
−26] does not have property CM(3).
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Example: The equation y2 + 53 = x3 has solutions (x, y) = (9,±26), (29,±156),
so Z[

√
−53] does not have CM(3).

Example: The equation y2 + 109 = x3 has solutions (x, y) = (5,±4), (145,±1746).
It is not trivial to find the solution (145,±1746) by hand, so perhaps it is easier to
observe that 5 is not of the form a2 +109, Z[

√
−109], so by Theorem 6.7, Z[

√
−109]

does not have property CM(3).

In fact, whether a ring Z[
√
−k] (here we keep the assumptions on k of Theorem 6.7,

so in particular Z[
√
−k] is the full ring of algebraic integers of the quadratic field

Q(
√
−k); this would not be the case if k ≡ 3 (mod 4)) has property CM(k) can

be determined algorithmically. It depends on an all-important numerical invariant
called the class number of Z[

√
−k].

For any integral domain R, we can define an equivalence relation on the nonzero
ideals of R. Namely, we decree that I ∼ J iff there exist a, b ∈ R \ {0} such that
(a)I = (b)J . Roughly speaking, we regard two ideals as being principal if and only
if they differ multiplicatively from a principal ideal. When there are only finitely
many equivalence classes, we define the class number of R to be the number of
equivalence classes.2 For example, if every ideal of R is principal, then the class
number is equal to 1. Conversely, if the class number of R is equal to 1 and I is any
nonzero ideal of R, then there exist a, b such that aI = bR. Then b = b · 1 ∈ aI, so
for some x ∈ I, ax = b. In particular a | b, and it is then easy to see that I = ( ba )R.
Thus the domains with class number one are precisely the principal ideal domains.

Now let K be a number field, and let ZK be the ring of integers in K. In par-
ticular this includes Z[

√
−k] for k as above.

Theorem 6.8. Let ZK be the ring of integers in a number field K. Then:
a) There are only finitely many equivalence classes of ideals of ZK , so there is a
well-defined class number, denoted h(K).
b) The ring ZK is a PID iff it is a UFD iff h(K) = 1.
c) Let n ∈ Z+. If gcd(n, h(K)) = 1, then ZK has property CM(n).

At several points in this course we have flirted with crossing the border into the
land of algebraic number theory, but that no such passport is required is one of our
ground rules. Because of this it is simply not possible to prove Theorem 6.8 here.
We can only say that the study of such properties of the ring ZK is a central topic
in the classical theory of algebraic numbers.

Moreover, algorithms for computing the class number have been a very active part
of algebraic number theory for more than one hundred years. Such algorithms are
available – indeed, they have been implemented in many software packages – the
question is only of the speed and memory needed to do the job. The case of (imagi-
nary) quadratic fields is especially classical and relates to (positive definite) binary
quadratic forms. So the following table of class numbers of Q(

√
−k) for squarefree

2As we have stated it, the definition makes sense for arbitrary domains and is equivalent to
the usual definition for number rings ZK . For more general domains – and even some quadratic

rings – there is another (less elementary) definition which is more useful.
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k, 1 ≤ k ≤ 200 is more than two hundred years old:

h(Q(
√
−k)) =

1 for k = 1, 2, 3, 7, 11, 19, 43, 67, 163
2 for k = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187
3 for k = 23, 31, 59, 83, 107, 139
4 for k = 14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97, 102, 130,
133, 142, 155, 177, 190, 193, 195
5 for k = 47, 79, 103, 127, 131, 179
6 for k = 26, 29, 38, 53, 61, 87, 106, 109, 118, 157
7 for k = 71, 151
8 for k = 41, 62, 65, 66, 69, 77, 94, 98, 105, 113, 114, 137, 138, 141, 145, 154, 158, 165, 178
9 for k = 199
10 for k = 74, 86, 122, 166, 181, 197 11 for k = 167
12 for k = 89, 110, 129, 170, 174, 182, 186
13 for k = 191
14 for k = 101, 134, 149, 173
16 for k = 146, 161, 185
20 for k = 194

So Theorem 6.7 applies to give a complete solution to the Mordell equation y2 +k =
x3 for the following values of k:

1, 2, 5, 6, 10, 13, 14, 17, 21, 22, 30, 33, 34, 37, 41, 42, 46, 57, 58, 62, 65, 69, 70, 73, 74, 77, 78,

82, 85, 86, 93, 94, 97, 98, 101, 102, 106, 113, 114, 122, 130, 133, 134, 137, 138,

141, 142, 145, 146, 149, 154, 158, 161, 165, 166, 177, 178, 181, 185, 190, 193, 194, 197.

Example: The equation y2+47 = x3 has solutions (x, y) = (6,±13), (12,±41), (63,±500).
On the other hand Z[

√
−47] has class number 5 so does have property CM(3). Note

that 47 ≡ 3 (mod 4).

Example: Z[
√
−29] has class number 6, but nevertheless y2 + 29 = x3 has no inte-

gral solutions.3 Thus there is (much) more to this story than the coprime powers
trick. For more details, we can do no better than recommend [M, Ch. 26].

5. Remarks and Acknowledgements

Our first inspiration for this material was the expository note [Conr-A]. Conrad
proves Theorems 6.2 and 6.3 as an application of unique factorization in Z and
Z[
√
−2]. Many more examples of successful (and one unsuccessful!) solution of

Mordell’s equation for various values of k are given in [Conr-B]. A range of tech-
niques is showcased, including the coprime powers trick but also: elementary (but
somewhat intricate) congruence arguments and quadratic reciprocity.

Also useful for us were lecture notes of P. Stevenhagen [St-ANT]. Stevenhagen’s
treatment is analogous our discussion of quadratic rings. In particular, he first

3How do we know? For instance, we can look it up on the internet:
http://www.research.att.com/∼njas/sequences/A054504
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proves Theorem 6.6. He then assumes that Z[
√
−19] satisfies CM(3) and deduces

that y2 +19 = x3 has no integral solutions; finally he points out (x, y) = (18, 7). We
did not discuss this example in the text because it depends critically on the fact that

Z[
√
−19] is not the full ring of integers in K = Q(

√
−19): rather ZK = Z[ 1+

√
−19

2 ].

For rings like Z[
√
−19] the definition we gave of the class number is not the correct

one: we should count only equivalence classes of invertible ideals – i.e., nonzero
ideals I for which there exists J such that IJ is principal. In this amended sense
the class number of Z[

√
−19] is 3.

A generalization of Theorem 6.7 appears in §5.3 of lecture notes of Franz Lem-
mermeyer:

http://www.fen.bilkent.edu.tr/∼franz/ant/ant1-7.pdf

Lemmermeyer finds all integer solutions to the equation y2 + k = x3 whenever
3 - h(Q(

√
−k) and k 6≡ 7 (mod 8). Again we have avoided this case so as not to

have to deal with the case where Z[
√
−k]is not the full ring of integers.

It is interesting to look at the work which has been done on the Mordell equa-
tion since Mordell’s death in 1972. In 1973, London and Finkelstein [LF73] found
all solutions to Mordell’s equation for |k| ≤ 102. The current state of the art is
another story entirely: a 1998 work of Gebel, Pethö and Zimmer [GPZ98] solves
the Mordell equation for |k| ≤ 104 and for about 90% of integers k with |k| ≤ 105.



CHAPTER 7

The Pell Equation

1. Introduction

Let D be a nonzero integer. We wish to find all integer solutions (x, y) to

(32) x2 −Dy2 = 1.

1.1. History.

Leonhard Euler called (32) Pell’s Equation after the English mathematician John
Pell (1611-1685). This terminology has persisted to the present day, despite the
fact that it is well known to be mistaken: Pell’s only contribution to the subject
was the publication of some partial results of Wallis and Brouncker. In fact the
correct names are the usual ones: the problem of solving the equation was first
considered by Fermat, and a complete solution was given by Lagrange.

By any name, the equation is an important one for several reasons – only some
of which will be touched upon here – and its solution furnishes an ideal introduction
to an entire branch of number theory, Diophantine Approximation.

1.2. First remarks on Pell’s equation.

We call a solution (x, y) to (32) trivial if xy = 0. We always have at least two
trivial solutions: (x, y) = (±1, 0), which we shall call trivial. As for any plane
conic curve, as soon as there is one solution there are infinitely many rational solu-
tions (x, y) ∈ Q2, and all arise as follows: draw all lines through a single point, say
(−1, 0), with rational slope r, and calculate the second intersection point (xr, yr)
of this line with the quadratic equation (32).

The above procedure generates all rational solutions and thus contains all in-
teger solutions, but figuring out which of the rational solutions are integral is not
straightforward. This is a case where the question of integral solutions is essentially
different, and more interesting, than the question of rational solutions. Henceforth
when we speak of ‘solutions” (x, y) to (32) we shall mean integral solutions.

Let us quickly dispose of some uninteresting cases.

Proposition 7.1. If the Pell equation x2 −Dy2 = 1 has nontrivial solutions,
then D is positive and not a perfect square.

Proof. • (D = −1): The equation x2 + y2 = 1 has four trivial solutions:
(±1, 0), (0,±1).
• (D < −1): Then x 6= 0 =⇒ x2 − dy2 ≥ 2, so (32) has only the solutions (±1, 0).
• (D = N2): Then x2−Dy2 = (x+Ny)(x−Ny) = 1, and this necessitates either:

x+Ny = x−Ny = 1

89
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in which case x = 1, y = 0; or

x+Ny = x−Ny = −1,

in which case x = −1, y = 0: there are only trivial solutions. �

From now on we assume that D is positive and not a perfect square.

Now observe that nontrivial solutions come in quadruples: if (x, y) is any one
solution, so is (−x, y), (x,−y) and (−x,−y). We describe these solutions by a pair
of signs: (+,+), (+,−), (−,+), (−,−).

2. Example: The equation x2 − 2y2 = 1

Let us take D = 2. The equation x2 − 2y2 = 1 can be rewritten as

y2 =
x2 − 1

2
.

In other words, we are looking for positive integers x for which x2−1
2 is an integer

square. First of all x2 − 1 must be even, so x must be odd. Trying x = 1 gives, of
course, the trivial solution (1, 0). Trying x = 3 we get

32 − 1

2
= 4 = 22,

so (3, 2) is a (+,+) solution. Trying successively x = 5, 7, 9 and so forth we find that

it is rare for x2−1
2 to be a square: the first few values are 12, 24, 40, 60, 69, 112

and then finally with x = 17 we are in luck:

172 − 1

2
= 144 = 122,

so (17, 12) is another (+,+) solution. Searching for further solutions is a task more
suitable for a computer. My laptop has no trouble finding some more solutions:
the next few are (99, 70), (577, 408), and (3363, 2378). Further study suggests that
(i) the equation x2 − 2y2 has infinitely many integral solutions, and (ii) the size of
the solutions is growing rapidly, perhaps even exponentially.

2.1. Return of abstract algebra. Hopefully we have not forgotten the con-
nection between x2 − Dy2 and the quadratic ring Z[

√
D]. Namely, we have the

conjugation operation

α = x+ y
√
D 7→ α = x− y

√
D

and

N(α) = N(x+ y
√
D) = (x+ y

√
D)(x− y

√
D) = x2 −Dy2.

Thus the solutions to the Pell equation x2−Dy2 = 1 are the precisely the elements
of norm 1 in the quadratic ring. These are all units of the ring Z[

√
D]. (By taking

D = 2 and D = 3, we saw that there may or may not also be units of norm −1.
Thus the “negative Pell equation” x2 − Dy2 = −1 is also interesting....in fact it
turns out to be more interesting and difficult than the Pell equation itself. We
will make a few remarks about it at the end of the chapter.) When D < 0 it was

an easy exercise to find all (finitely many) units in Z[
√
D]. The case of D > 0 is

considerably more interesting!
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2.2. The solution for D = 2.

In any ring R, the units R× form a group under multiplication. Moreover, by
the multiplicativity of the norm map, the units of norm one form a subgroup of the
entire unit group Z[

√
D]×.1 This is really a key observation, because it allows us

to multiply solutions to the Pell equation: if x2
1 −Dy2

1 = 1 and x2
2 −Dy2

2 = 1, then

1 = 1 · 1 = N(x1 + y1

√
D)N(x2 + y2

√
D) = N((x1 + y1

√
D)(x2 + y2

√
D))

= N(x1x2 −Dy1y2 + (x1y2 + x2y1)
√
D) = (x1x2 −Dy1y2)2 −D(x1y2 + x2y1)2.

Let us try out this formula in the case D = 2 for (x1, y1) = (x2, y2) = (3, 2). Our
new solution is (3 · 3 + 2 · 2 · 2, 2 · 3 + 3 · 2) = (17, 12), nothing else than the second
smallest positive solution! If we now apply the formula with (x1, y1) = (17, 12) and
(x2, y2) = (3, 2), we get the next smallest solution (99, 70).

Indeed, for any positive integer n, we may write the nth power (3 + 2
√

2)n as

xn + yn
√

2 and know that (xn, yn) is a solution to the Pell equation. One can
see from the formula for the product that it is a positive solution. Moreover, the
solutions are all different because the real numbers (3 + 2

√
2)n are all distinct.

We get the trivial solution (1, 0) by taking the 0th power of 3 + 2
√

2. Moreover,

(3 + 2
√

2)−1 = 3 − 2
√

2 is a “half-positive” solution, and taking negative integral

powers of 3 + 2
√

2 we get infinitely many more such solutions.

In total, every solution to x2− 2y2 = 1 that we have found is of the form ±(xn, yn)

where xn + yn
√

2 = (3 + 2
√

2)n for some n ∈ Z.
Let us try to prove that these are all the integral solutions. It is enough to

show that every (+,+) solution is of the form (xn, yn) for some positive integer n,

since every norm one element x+ y
√
d is obtained from an element with x, y ∈ Z+

by multiplying by −1 and/or taking the reciprocal.

Lemma 7.2. Let (x, y) be a nontrivial integral solution to x2−Dy2 = 1. Then:

a) We have x > 0 and y > 0 ⇐⇒ x+ y
√
d > 1.

b) We have x > 0 and y < 0 ⇐⇒ 0 < x+ y
√
d < 1.

c) We have x < 0 and y > 0 ⇐⇒ −1 < x+ y
√
d < 0.

d) We have x and y are both negative ⇐⇒ x+ y
√
d < −1.

Proof. Exercise. �

For any real M > 1, we observe that there can only be finitely many pairs (x, y) ∈
Z+ such that x + y

√
D ≤ M . Indeed, if x + y

√
D ≤ M then we must have

1 ≤ x, y ≤M , so there are at most M2 possibilities. We have 3 + 2
√

2 ≤ 6; check-
ing the 36 integers x, y ∈ [1, 6] we find that 3 + 2

√
2 is the smallest (+,+) solution.

Let x, y ∈ Z+ be such that x2 − 2y2 = 1. There is a largest n ∈ N such that

x+ y
√

2 ≥ (3 + 2
√

2)n.

Put
α := (x+ y

√
2)(3 + 2

√
2)−n.

1It is easy to see that the norm one subgroup has index 2 if there exists a unit of norm −1
and is equal to the unit group otherwise.
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Then
N(α) = N(x+ y

√
2)N(3 + 2

√
2)−n = 1.

By our choice of n, we have α ≥ 1. But moreover we have α < 3 + 2
√

2, since if

α ≥ 3 + 2
√

2 then α
3+2
√

2
≥ 1 and thus (x+ y

√
2) ≥ (3 + 2

√
2
n+1

, contradicting our

definition of n. Put α = x′ + y′
√
D If α > 1, then (x′, y′) is a (+,+) solution to

the Pell equation with x′ + y′
√

2 < 3 + 2
√

2, contradicting what we showed above.
So it must be that α = 1 and thus

(x+ y
√

2 = (3 + 2
√

2)n.

This completes the proof.

Thus we have “solved the Pell equation” for D = 2. To add icing, we can give
explicit formulas for the solutions. Namely, we know that every (+,+) solution
(x, y) is of the form

xn + yn
√

2 = (3 + 2
√

2)n

for n ∈ Z+. If we apply conjugation to this equation, then using the fact that it is
a field homomorphism, we get

xn − yn
√

2 = (3− 2
√

2)n.

dding the two equations and dividing by 2, we get

xn =
(3 + 2

√
2)n + (3− 2

√
2)n

2
,

and similarly we solve for yn, getting

yn =
(3 + 2

√
2)n + (3− 2

√
2
n

2
√

2
.

But wait, thre’s more! Since 3 − 2
√

2 = 0.17157 . . ., for all n ∈ Z+ the terms
(3−2

√
2)n

2 and (3−2
√

2)n

2
√

2
in xn and yn are exponentially decaying to 0 and are always

less than 1
2 . For a real number α such that α − 1

2 /∈ Z, there is a unique nearest
integer to α that we denote by bαe. By what we said above, we can neglect the
exponentially small terms simply by rounding to the nearest integer, getting the
following result.

Theorem 7.3. Every solution to x2 − 2y2 = 1 with x, y ∈ Z+ is of the form

xn = b (3 + 2
√

2)n

2
e,

yn = b (3 + 2
√

2)n

2
√

2
e

for some n ∈ Z+.

Among other things, this explains why it was not so easy to find solutions by hand:
the size of both the x and y coordinates grow exponentially! The reader is invited
to plug in a value of n for herself: for e.g. n = 17 it is remarkable how close the
irrational numbers u17/2 and u17/(2

√
2) are to integers:

u17/2 = 5168247530882.999999999999949;

u17/(2
√

2) = 3654502875938.000000000000032.
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A bit of reflection reveals that this has a lot to do with the fact that xn
yn

is necessarily

very close to
√

2. Indeed, by turning this observation on its head we shall solve the
Pell equation for general nonsquare d.

3. A result of Dirichlet

Lemma 7.4. (Dirichlet) For any irrational (real) number α, there are infinitely
many rational numbers x

y (with gcd(x, y) = 1) such that

|α− x

y
| < 1

y2
.

Proof. Since the lowest-term denominator of any rational number x
y is un-

changed by subtracting any integer n, by subtracting the integer part [α] of α we
may assume α ∈ [0, 1). Now divide the half-open interval [0, 1) into n equal pieces:
[0, 1

n )∪ [ 1
n ,

2
n ) . . .∪ [n−1

n , 1). Consider the fractional parts of 0, α, 2α, . . . , nα. Since
we have n + 1 numbers in [0, 1) and only n subintervals, by the pigeonhole prin-
ciple some two of them must lie in the same subinterval. That is, there exist
0 ≤ j < k ≤ n such that

|kα− [kα]− (jα− [jα])| < 1

n
.

Now take y = k − j, x = [kα]− [jα], so that the previous inequality becomes

|yα− x| < 1

n
.

We may assume that gcd(x, y) = 1, since were there a common factor, we could
divide through by it and that would only improve the inequality. Moreover, since
0 < y ≤ n, we have

|α− x

y
| < 1

ny
<

1

y2
.

This exhibits one solution. To see that there are infinitely many, observe that since
α is irrational, the quantity |α− x

y | is always strictly greater than 0. But by choosing

n sufficiently large we can apply the argument to find a rational number x′

y′ such

that

|α− x′

y′
| < |α− x

y
|,

and hence there are infinitely many. �

Remark: The preceding argument is perhaps the single most famous application of
the pigeonhole principle. Indeed, in certain circles, the pigeonhole principle goes
by the name “Dirichlet’s box principle”2 because of its use in this argument.

4. Existence of Nontrivial Solutions

We are now ready to prove that for all positive nonsquare integers D, the Pell
equation x2 −Dy2 = 1 has a nontrivial solution. Well, almost. First we prove an
“approximation” to this result and then use it to prove the result itself.

Proposition 7.5. For some real number M , there exist infinitely many pairs
of coprime positive integers (x, y) such that |x2 −Dy2| < M .

2And in other circles, by the name “Schubfachprinzip.”
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Proof. Applying Lemma 7.4 to α =
√
D, we get an infinite sequence of co-

prime positive (since
√
D is positive) integers (x, y) with |xy −

√
D| < 1

y2 . Multi-

plying through by y, the inequality is equivalent to

|x− y
√
D| < 1

y
.

Since

|x2 −Dy2| = |x− y
√
D||x+ y

√
D|,

in order to bound the left hand side we also need a bound on |x+ y
√
D|. There is

no reason to expect that it is especially small, but using the triangle inequality we
can get the following:

|x+
√
Dy| = |x−

√
Dy + 2

√
Dy| ≤ |x−

√
Dy|+ 2

√
Dy <

1

y
+ 2
√
Dy.

Thus

|x2 −Dy2| < (
1

y
)(

1

y
+ 2
√
Dy) =

1

y2
+ 2
√
D ≤ 1 + 2

√
D = M.

�

Theorem 7.6. For any positive nonsquare integer D, the equation x2−Dy2 = 1
has a nontrivial integral solution (x, y).

Proof. We begin by further exploiting the pigeonhole principle. Namely, since
we have infinitely many solutions (x, y) to |x2 −Dy2| < M , there must exist some
integer m, |m| < M for which we have infinitely many solutions to the equality
x2 −Dy2 = m. Observe that we cannot have m = 0, since x2 −Dy2 = 0 implies

that D = x2

y2 is a perfect square. And now one more pigeonholing: we must have two

different solutions, say (X1, Y1) and (X2, Y2) with X1 ≡ X2 (mod |m|) and Y1 ≡ Y2

(mod |m|) (since there are only m2 different options altogether for (x (mod |m|), y
(mod |m|)) and infinitely many solutions). Let us write

α = X1 + Y1

√
S

and

β = X2 + Y2

√
D;

we have N(α) = N(β) = m. A first thought is to divide α by β to get an element

of norm 1; however, α/β ∈ Q(
√
D) but does not necessarily have integral x and y

coordinates. However, it works after a small trick: consider instead

αβ = X + Y
√
D.

I claim that both X and Y are divisible by m. Indeed we just calculate, keeping in
mind that modulo m we can replace X2 with X1 and Y2 with Y1:

X = X1X2 − dY1Y2 ≡ X2
1 − dY 2

1 ≡ 0 (mod |m|),

Y = X1Y2 −X2Y1 ≡ X1Y1 −X1Y1 ≡ 0 (mod |m|).
Thus αβ = m(x+ y

√
D) with x, y ∈ Z. Taking norms we get

m2 = N(α)N(β) = N(αβ) = N(m(x+ y
√
D)) = m2(x2 −Dy2).

Since m 6= 0, this gives

x2 −Dy2 = 1.
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Moreover y 6= 0: if y = 0 then the irrational part of Y , namely X1Y2−X2Y1, would
be zero, i.e., X1

Y1
= X2

Y2
, but this is impossible since (X1, Y1) 6= (X2, Y2) are both

coprime pairs: they cannot define the same rational number. We are done. �

5. The Main Theorem

Now we find all solutions of the Pell equation.

Theorem 7.7. Let D be a positive, nonsquare integer. Then:
a) There are unique x1, y1 ∈ Z+ such that x2

1−Dy2
1 = 1 and x1 +y1

√
D is minimal.

Put u := x1 + y1

√
D. Then every positive integral solution is of the form

(xn, yn) =

(
un + (u′)n

2
,
un − (u′)n

2
√
D

)
=

(
bu

n

2
e, b un

2
√
D
e
)

for a unique n ∈ Z+.
b) Every solution to the Pell equation is of the form ±(xn, yn) for n ∈ Z.

Proof. Above we showed the existence of a nontrivial solution (x, y) and thus
a (+,+) solution. It is easy to see that for any M > 0 there are only finitely many

pairs of positive integers such that x+ y
√
D ≤M , so among all positive solutions,

there must exist one with x+y
√
D least. By taking positive integral powers of this

fundamental solution x1 + y1

√
D we get infinitely many positive solutions, whose

x and y coordinates can be found explicitly as in §2. Moreover, the argument of §2
– given there for D = 2 – works generally to show that every positive solution is of
this form. The reader is invited to look back over the details. �

6. A Caveat

It is time to admit that “solving the Pell equation” is generally taken to mean
explicitly finding the fundamental solution x1 + y1

√
D. As usual in this course, we

have concentrated on existence and not considered the question of how difficult it
would be in practice to find the solution. Knowing that it exists we can, in princi-
ple, find it by trying all pairs (x, y) in order of increasing size. When D = 2 this
is immediate. If we try other values ofD we see that sometimes it is no trouble at all:

For D = 3, the fundamental solution is (2, 1). For D = 6, it is (5, 2). Simi-
larly the fundamental solution can be found by hand for D ≤ 12; it is no worse
than (19, 6) for d = 10. However, for D = 13 it is (649, 180): a big jump!

If we continue to search we find that the size of the fundamental solution seems to
obey no reasonable law: it does not grow in a steady way with D – e.g. for D = 42
it is the tiny (13, 2) – but sometimes it is very large: for D = 46 it is (24335, 3588),
and – hold on to your hat! – for D = 61 the fundamental solution is

(1766319049, 226153980).

And things get worse from here on in: one cannot count on a brute-force search for
D even of modest size (e.g. five digits).

There are known algorithms which find the fundamental solution relatively effi-
ciently. The most famous and elementary of them is as follows: one can find the
fundamental solution as a convergent in the continued fraction expansion of

√
D,
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and this is relatively fast – it depends upon the period length. Alas, we shall not
touch the theory of continued fractions in this course.

Continued fractions are not the last word on solving the Pell Equation, however.
When D is truly large, other methods are required. Amazingly, a test case for this
can be found in the mathematics of antiquity: the so-called cattle problem of
Archimedes. Archimedes composed a lengthy poem (“twenty-two Greek elegiac
distichs”) which is in essence the hardest word problem in human history. The
first part, upon careful study, reduces to solving a linear Diophantine equation (in
several variables), which is essentially just linear algebra, and it turns out that
there is a positive integer solution. However, to get this far is “merely competent”,
according to Archimedes. The second part of the problem poses a further con-
straint which boils down to solving a Pell equation with D = 410286423278424. In
1867 C.F. Meyer set out to solve the problem using continued fractions. However,
he computed 240 steps of the continued fraction expansion of

√
410286423278424,

whereas the period length is in fact 203254. Only in 1880 was the problem solved,
by A. Amthor. (The gap between the problem and the solution – 2000 years and
change – makes the case of Fermat’s Last Theorem look fast!) Amthor used a dif-
ferent method. All of this and much more is discussed in a recent article by Hendrik
Lenstra [Le02].

7. Some Further Comments

There is much more to be said on the subject. Just to further scratch the surface:

It is a purely algebraic consequence of our main result that the unit group of the
ring Z[

√
D] (for D positive and nonsquare, as usual) is isomorphic to Z × Z/2Z.

Indeed, in solving the Pell equation, we found that the group of all norm one units
is of this form, and it remains to account for units of norm −1. Sometimes there
are none – e.g. when d is a prime which is 3 (mod 4) – and in this case the result is

clear. But in any case the map N : Z[
√
D]× → {±1} has as its kernel the solutions

to the Pell equation, so if there are also units of norm −1 the units of norm 1 form
an index 2 subgroup. On the other hand units of finite order are necessarily roots
of unity, of which there are no more than ±1 in all of R, let alone Q(

√
D). The re-

sult follows from these considerations; the proof of this is left as an optional exercise.

This is a special case of an extremely important and general result in algebraic
number theory. Namely, one can consider any algebraic number field – a finite de-
gree field extension K of Q – and then the ring OK of all algebraic integers of K –
that is, elements α of K which satisfy a monic polynomial with Z coefficients. We
have been looking at the case K = Q(

√
d), a real quadratic field. Other relatively

familiar examples are the cyclotomic fields Q(ζN ) obtained by adjoining an Nth
root of unity: one can show that this field has degree ϕ(N) over Q (equivalently,
the cyclotomic polynomial ΦN is irreducible over Q).

Dirichlet’s unit theorem asserts that the units O×K form a finitely generated abelian
group, i.e., are isomorphic to Za × F , where F is a finite group (which is in fact
the group of roots of unity of F ). Noting that the unit group is finite for imaginary
quadratic fields and infinite for real quadratic fields, one sees that the rank a must
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depend upon more than just the degree d = [K : Q] of the number field: somehow
it depends upon “how real” the field is. More precisely, let r be the number of field
homomorphisms from K into R. Alternately, one can show that K is obtained by
adjoining a single algebraic number α, i.e., K = Q[t]/(P (t)), where P is a poly-
nomial of degree d = [K : Q]. Then r is nothing else than the number of real
roots of the defining (“minimal”) polynomial P (t). In particular r ≤ d, and d− r,
the number of complex roots, is even. Then the precise form of Dirichlet’s Unit
Theorem asserts that a = r + d−r

2 − 1, a quantity which is positive in every case
except for K = Q and K an imaginary quadratic field! However the proof in the
general case requires different techniques.

However, the argument that we used to find the general solution to the Pell equa-
tion is fascinating and important. On the face of it, it is very hard to believe that
the problem of finding good rational approximations to an irrational number (a
problem which is, let’s face it, not initially so fascinating) can be used to solve
Diophantine equations: we managed to use a result involving real numbers and
inequalities to prove a result involving equalities and integers! This is nothing less
than an entirely new tool, lying close to the border between algebraic and analytic
number theory (and therefore helping to ensure a steady commerce between them).
This subject is notoriously difficult – but here is one easy result. Define

L =

∞∑
n=0

10−k!.

We have a decimal expansion in which each lonely 1 is followed by a very long
succession of zeros. The rational numbers afforded by the partial sums pN

qN
=∑N

n=0 10−k! give excellent approximations: for any A,B > 0, one has

|L − pN
qN
| < A

qBN
for all sufficiently large N . On the other hand, Liouville proved the following:

Theorem 7.8. Suppose α satisfies a polynomial equation adx
d + . . .+a1x+a0

with Z-coefficients. Then there is A > 0 such that for all integers p and 0 6= q,

|α− p

q
| > A

qd
.

That is, being algebraic of degree d imposes an upper limit on the goodness of
the approximation by rational numbers. An immediate and striking consequence is
that Liouville’s number L cannot satisfy an algebraic equation of any degree: that
is, it is a transcendental number. In fact, by this argument Liouville established
the existence of transcendental numbers for the first time!

Liouville’s theorem was improved by many mathematicians, including Thue and
Siegel, and culminating in the following theorem of Klaus Roth:

Theorem 7.9. (Roth, 1955) Let α be an algebraic real number, and let ε > 0
be given. Then there are at most finitely many rational numbers p

q satisfying

|α− p

q
| < 1

q2+ε
.

For this result Roth won the Fields Medal in 1958.





CHAPTER 8

Arithmetic Functions

1. Introduction

Definition: An arithmetic function is a function f : Z+ → C.

Truth be told, this definition is a bit embarrassing. It would mean that taking any
function from calculus whose domain contains [1,+∞) and restricting it to positive

integer values, we get an arithmetic function. For instance, e−3x

cos2 x+(17 log(x+1)) is

an arithmetic function according to this definition, although it is, at best, dubious
whether this function holds any significance in number theory.

If we were honest, the definition we would like to make is that an arithmetic function
is a real or complex-valued function defined for positive integer arguments which is
of some arithmetic significance, but of course this is not a formal definition at all.
Probably it is best to give examples:

Example 8.1. The prime counting function n 7→ π(n), the number of prime
numbers p, 1 ≤ p ≤ n.

This is the example par excellence of an arithmetic function: approximately half
of number theory is devoted to understanding its behavior. This function really
deserves a whole unit all to itself, and it will get one: we put it aside for now and
consider some other examples.

Example 8.2. The function ω(n), which counts the number of distinct prime
divisors of n.

Example 8.3. The function ϕ(n), which counts the number of integers k, 1 ≤
k ≤ n, with gcd(k, n) = 1. Properly speaking this function is called the totient
function, but its fame inevitably precedes it and modern times it is usually called
just “the phi function” or “Euler’s phi function.” Since a congruence class k modulo
n is invertible in the ring Z/nZ iff its representative k is relatively prime to n, an
equivalent definition is

ϕ(n) := #(Z/nZ)×,

the cardinality of the unit group of the finite ring Z/nZ.

Example 8.4. The function n 7→ d(n), the number of positive divisors of n.

Example 8.5. For any integer k, the function σk(n), defined as

σk(n) =
∑
d | n

dk,

the sum of the kth powers of the positive divisors of n. Note that σ0(n) = d(n).

99
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Example 8.6. The Möbius function µ(n), defined as follows: µ(1) = 1, µ(n) =
0 if n is not squarefree; µ(p1 · · · pr) = (−1)r, when p1, . . . , pr are distinct primes.

Example 8.7. For a positive integer k, the function rk(n) which counts the
number of representations of n as a sum of k integral squares:

rk(n) = #{(a1, . . . , ak) | a2
1 + . . .+ a2

k = n}.
These examples already suggest many others. Notably, most of our examples

are special cases of the following general construction: if we have on hand, for
any positive integer n, a finite set Sn of arithmetic objects, then we can define an
arithmetic function by defining n 7→ #Sn. This shows the link between number
theory and combinatorics. In fact the Möbius function µ is a yet more purely
combinatorial gadget, whose purpose we shall learn presently. In general we have
lots of choices as to what sets Sn we want to count: the first few examples are
“elementary” in the sense that the sets counted are defined directly in terms of
such things as divisibility, primality, and coprimality: as we shall, see, they are
also elementary in the sense that we can write down exact formulas for them.
The example rk(n) is more fundamentally Diophantine in character: we have a
polynomial in several variables – here P (x1, . . . , xk) = x2

1 + . . .+x2
k, and the sets we

are conunting are just the number of times the value n is taken by this polynomial.
This could clearly be much generalized, with the obvious proviso that there should
be some suitable restrictions so as to make the number of solutions finite in number
(e.g. we would not want to count the number of integer solutions to ax+ by = N ,
for that is infinite; however we could restrict x and y to taking non-negative values).
Ideally we would like to express these “Diophantine” arithmetic functions like rk
in terms of more elementary arithmetic functions like the divisor sum functions σk.
Very roughly, this is the arithmetic analogue of the analytical problem expressing
a real-valued function f(x) as a combination of simple functions like xk or cos(nx),
sin(nx). Of course in analysis most interesting functions are not just polynomials
(or trigonometric polynomials), at least not exactly: rather, one either needs to
consider approximations to f by elementary functions, or to express f as some sort
of limit (e.g. an infinite sum) of elementary functions (or both, of course). A similar
philosophy applies here, with a notable exception: even the “elementary” functions
like d(n) and ϕ(n) are not really so elementary as they first appear!

2. Multiplicative Functions

2.1. Definition and basic properties.

An important property shared by many “arithmetically significant” functions is
multiplicativity.

Definition: An arithmetic function f is said to be multiplicative if:
(M1) f(1) 6= 0.
(M2) For all relatively prime positive integers n1, n2, f(n1n2) = f(n1) · f(n2).

Lemma 8.8. If f is multiplicative, then f(1) = 1.

Proof. Taking n1 = n2 = 1, we have, using (M2)

f(1) = f(1 · 1) = f(1) · f(1) = f(1)2.

Now by (M1), f(1) 6= 0, so that we may cancel f(1)’s to get f(1) = 1. �
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Exercise: Suppose an arithmetic function f satisfies (M2) but not (M1). Show that
f ≡ 0: i.e., f(n) = 0 for all n ∈ Z+.

The following is a nice characterization of multiplicative functions:

Proposition 8.9. For an arithmetic function f , the following are equivalent:
a) f is multiplicative;
b) f is not identically zero, and for all n = pa11 · · · p

ak
k (the standard form factor-

ization of n), we have f(n) =
∏k
i=1 f(paii ).

Remark: Here we are using the convention that for n = 1, k = 0, and a product
extending over zero terms is automatically equal to 1 (just as a sum extending over
zero terms is automatically equal to 0). (If this is not to your taste, just insert in
part b) the condition that f(1) = 1!)

Proof. Exercise. �

In other words, a multiplicative function f is completely determined by the values
it takes on all prime powers pk. Thus, in trying to understand a function known
to be multiplicative, one needs only to “see what it is” on prime power values of
n. Note that, conversely, any function f defined only on prime powers pk – and
satisfying f(1) = 1 – extends to a unique multiplicative function.

2.2. Completely multiplicative functions. If you have never seen this def-
inition before, then something has been bothering you the whole time, and I will
now respond to this worry. Namely, wouldn’t it make more sense to say that a
function f is multiplicative if f(n1 · · ·n2) = f(n1) · f(n2) for all integers n1 and
n2?

In a purely algebraic sense the answer is yes: the stronger condition (together with
f(1) 6= 0) says precisely that f is a homomorphism from the monoid Z+ to the
monoid C×. This is certainly a very nice property for f to have, and it has a name
as well: complete multiplicativity. But in practice complete multiplicativity is
too nice: only very special functions satisfy this property, whereas the class of mul-
tiplicative functions is large enough to contain many of our “arithmeticly significant
functions.” For instance, neither σk (for any k) nor ϕ is completely multiplicative,
but, as we are about to see, all of these functions are multiplicative.

2.3. Multiplicativity of the σk’s.

Theorem 8.10. The functions σk (for all k ∈ N) are multiplicative.

Proof. It is almost obvious that the Möbius function is multiplicative. Indeed
its value at a prime power pa is: 1 if a = 0, −1 if a = 1, and 0 if a ≥ 2. Now there
is a unique multiplicative function with these values, and it is easy to see that µ is
that function: we have µ(pa11 · · · p

ak
k ) = 0 unless ai = 1 for all i – as we should – and

otherwise µ(p1 · · · pk) = (−1)k = µ(p1) · · ·µ(pk). In other words, µ is essentially
multiplicative by construction.

Now let us see that σk is multiplicative. Observe that – since gcd(n1, n2) = 1!
– every divisor d of n1 · n2 can be expressed uniquely as a product d1 · d2 with
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di | ni. So

σk(n1n2) =
∑

d | n1n2

dk =
∑

d1 | n1, d2 | n2

(d1d2)k = (
∑

d1 | n1

dk1)(
∑

d2 | n2

dk2) = σk(n1)σk(n2).

�

2.4. CRT and the multiplicativity of the totient. The multiplicativity
of ϕ is closely connected to the Chinese Remainder Theorem, as we now review.
Namely, for coprime n1 and n2, consider the map Φ : Z/(n1n2)→ Z/(n1)×Z/(n2)
given by

k (mod n1n2) 7→ (k (mod n1), k (mod n2)).

This map is a well-defined homomorphism of rings, since if k1 ≡ k2 (mod n)i,
then k1 ≡ k2 (mod n)1n2. Because the source and target have the same, finite,
cardinality n1n2, in order for it to be an isomorphism it suffices to show either
that it is injective or that it is surjective. Note that the standard, elementary
form of the Chinese Remainder Theorem addresses the surjectivity: given any pair
of congruence classes i (mod n1)and j (mod n2) the standard proof provides an
explicit formula for a class p(i, j) (mod n1n2) which maps via Φ onto this pair of
classes. However, writing down this formula requires at least a certain amount of
cleverness, whereas it is trivial to show the injectivity: as usual, we need only show
that the kernel is 0. Well, if Φ(k) = 0, then k is 0 mod n1 and 0 mod n2, meaning
that n1 | k and n2 | k. In other words, k is a common multiple of n1 and n2, so, as
we’ve shown, k is a multiple of the least common multiple of n1 and n2. Since n1

and n2 are coprime, this means that n1n2 | k, i.e., that k ≡ 0 (mod n1n2)!

Theorem 8.11. There is a canonical isomorphism of groups

(Z/(n1n2))× → (Z/(n1))× × (Z/(n2))×.

Proof. This follows from the isomorphism of rings discussed above, together
with two almost immediate facts of pure algebra. First, if Φ : R → S is an
isomorphism of rings, then the restriction of Φ to the unit group R× of R is an
isomorphism onto the unit group S× of S. Second, if S = S1 × S2 is a product of
rings, then S× = S×1 ×S

×
2 , i.e., the units of the product is the product of the units.

We leave it to the reader to verify these two facts. �

Corollary 8.12. The function ϕ is multiplicative.

Proof. Since ϕ(n) = #(Z/(n))×, this follows immediately. �

Now let us use the “philosophy of multiplicativity” to give exact formulas for σk(n)
and ϕ(n). In other words, we have reduced to the case of evaluating at prime
power values of n, but this is much easier. Indeed, the positive divisors of pa are
1, p, . . . , pa, so the sum of the kth powers of these divisors is a + 1 when k = 0
and is otherwise

σk(pa) = 1 + pk + p2k + . . .+ pak =
1− (pk)a+1

1− pk
=

1− p(a+1)k

1− pk
.

Similarly, the only numbers 1 ≤ i ≤ pa which are not coprime to pa are the multiples
of p, of which there are pa−1: 1 · p, 2 · p, . . . pa−1p = pa. So

ϕ(pa) = pa − pa−1 = pa−1(p− 1) = pa(1− 1

p
).
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Corollary 8.13. Suppose n = pa11 · · · p
ak
k . Then:

a) d(n) =
∏k
i=1(ai + 1).

b) For k > 0, σk(n) =
∏k
i=1

1−p(a+1)k

1−pk .

c) ϕ(n) =
∏k
i=1 p

a−1(p− 1).

The last formula is often rewritten as

(33)
ϕ(n)

n
=
∏
p | n

(1− 1

p
).

While we are here, we quote the following more general form of the CRT, which is
often useful:

Theorem 8.14. (Generalized Chinese Remainder Theorem) Let n1, . . . , nr be
any r positive integers. Consider the natural map

Φ : Z→ Z/n1Z× Z/n2Z× . . .× Z/nrZ

which sends an integer k to (k (mod n1), . . . , k (mod nr)).
a) The kernel of Φ is the ideal (lcm(n1, . . . , nr)).
b) The following are equivalent:
(i) Φ is surjective;
(ii) lcm(n1, . . . , nr) = n1 · · ·nr.
(iii) The integers n1, . . . , nr are pairwise relatively prime.

The proof is a good exercise. In fact the result holds essentially verbatim for
elements x1, . . . , xr in a PID R, and, in some form, in more general commutative
rings.

2.5. Additive functions. The function ω is not multiplicative: e.g. ω(1) = 0
and ω(2) = 1. However it satisfies a property which is “just as good” as multi-
plicativity: ω(n1n2) = ω(n1) + ω(n2) when gcd(n1, n2) = 1. Such functions are
called additive. Finally, we have the notion of complete additivity: f(n1n2) =
f(n1) + f(n2) for all n1, n2 ∈ Z+; i.e., f is a homomorphism from the positive
integers under multiplication to the complex numbers under addition. We have
seen some completely additive functions, namely, ordp for a prime p.

Proposition 8.15. Fix any real number a > 1 (e.g. a = e, a = 2). A function
f is additive (respectively, completely additive) iff af is multiplicative (respectively,
completely multiplicative).

Proof. Exercise. �

2.6. Sums of squares. The functions rk are not multiplicative: to represent
1 as a sum of k squares we must take all but one of the xi equal to 0 and the other
equal to ±1. This amounts to rk(1) = 2k > 1. However, we should not give up so
easily! Put r′k = rk

2k . We can now quote a beautiful theorem, parts of which may
be proved later.

Theorem 8.16. The function r′k is multiplicative iff k = 1, 2, 4 or 8.
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2.7. Perfect numbers. The ancient Greeks regarded a positive integer n
as perfect if it is equal to the sum of its proper divisors (“aliquot parts”). They
knew some examples, e.g. 6, 28, 496, 8128.

In modern language a perfect number is a solution n of the equation σ(n)−n = n,
or σ(n) = 2n. Aha, but we have an exact formula for the σ function: perhaps we
can use it to write down all perfect numbers? The answer is a resounding “sort of.”

Best, as usual, is to examine some data to try to figure out what is going on.
Since our formula for σ takes into account the standard form factorization of n, we
should probably look at these factorizations of our sample perfect numbers. We
find:

6 = 2 · 3
28 = 22 · 7

496 = 24 · 31

8128 = 26 · 127.

As exercises in pattern recognition go, this is a pretty easy one. We have a power of
2 multiplied by an odd prime. But not just any odd prime, mind you, an odd prime
which happens to be exactly one less than a power of 2. And not just any power of
2...anyway, we soon guess the pattern 2n−1 ·2n−1. But we’re still not done: in our
first four examples, n was 2, 3, 5, 7, all primes. Finally we have a precise conjecture
that our knowledge of σ can help us prove:

Proposition 8.17. (Euclid) Let p be a prime such that 2p − 1 is also prime.
Then Np = 2p−1(2p − 1) is a perfect number.

Proof. Since 2p − 1 is odd, it is coprime to 2p−1. So

σ(Np) = σ(2p−1(2p − 1)) = σ(2p−1)σ(2p − 1).

But these are both prime power arguments, so are easy to evaluate, as above. We
get σ(2p−1) = 2p−1 and σ(2p−1) = 2p, so overall σ(Np) = 2p · (2p−1) = 2Np. �

This is a nice little calculation, but it raises more questions than it answers. The
first question is: are there infinitely many primes p such that 2p− 1 is prime? Such
primes are called Mersenne primes after Father Marin Mersenne, a penpal of
Fermat. It would be appropriate to make any number of historical remarks about
Mersenne and/or his primes, but we refer the reader to Wikipedia for this. Suffice it
to say that, in theory, it is a wide open problem to show that there exist infinitely
many Mersenne primes, but in practice, we do keep finding successively larger
Mersenne primes (at a rate of several a year), meaning that new and ridiculously
large perfect numbers are being discovered all the time.

Ah, but the second question: is every perfect number of the form Np for a
Mersenne prime p? Euler was able to show that every even perfect number is of
this form. The argument is a well-known one (and is found in Silverman’s book) so
we omit it here. Whether or not there exist any odd perfect numbers is one of the
notorious open problems of number theory. At least you should not go searching for
odd perfect numbers by hand: it is known that there are no odd perfect numbers
N < 10300, and that any odd perfect number must satisfy a slew of restrictive
conditions (e.g. on the shape of its standard form factorization).
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3. Divisor Sums, Convolution and Möbius Inversion

The proof of the multiplicativity of the functions σk, easy though it was, actu-
ally establishes a more general result. Namely, suppose that f is a multiplicative
function, and define a new function F =

∑
d f as

F (n) =
∑
d | n

F (d).

For instance, if we start with the function f(n) = nk, then F = σk. Note that
f(n) = nk is (in fact completely) multiplicative. The generalization of the proof is
then the following

Proposition 8.18. If f is a multiplicative function, then so is F (n) =
∑
d | n f(d).

Proof. If n1 and n2 are coprime, then F (n1n2) =
∑
d|n1n2

F (d) =∑
d1|n1, d2|n2

f(d1d2) =
∑

d1|n1, d2|n2

f(d1)f(d2) = (
∑
d1|n1

f(d1))(
∑
d2|n2

f(d2)) = F (n1)F (n2).

�

Exercise: Show by example that f completely multiplicative need not imply F
completely multiplicative.

It turns out that the operation f 7→ F is of general interest; it gives rise to a
certain kind of “duality” among arithmetic functions. Slightly less vaguely, some-
times f is simple and F is more complicated, but sometimes the reverse takes place.

Definition: Define the function δ by δ(1) = 1 and δ(n) = 0 for all n > 1. Note that
δ is multiplicative. Also write ι for the function n 7→ n.

Proposition 8.19. a) For all n > 1,
∑
d | n µ(d) = 0.

b) For all n ∈ Z+,
∑
d | n ϕ(n) = n.

In other words, the sum over the divisors of the Möbius function is δ, and the sum
over the divisors of ϕ is ι.

Proof. a) Write n = pa11 · · · parr . Then
∑
d | µ(n) =

∑
(ε1,...,εr) µ(pε11 · · · pεrr ),

where the εi are 0 or 1. Thus∑
d | n

µ(d) = 1− r +

(
r

2

)
−
(
r

3

)
+ . . .+ (−1)r

(
r

r

)
= (1− 1)r = 0.

For part b) we take advantage of the fact that since ϕ is multiplicative, so is the
sum over its divisors. Therefore it is enough to verify the identity for a prime power
pa, and as usual this is significantly easier:∑

d | pa
ϕ(pa) =

a∑
i=0

ϕ(pi) = 1 +

a∑
i=1

(pi − pi−1) = 1 + (pa − 1) = pa,

where we have cancelled out a telescoping sum. �

This indicates that the Möbius function is of some interest. We can go further by
asking the question: suppose that F =

∑
d f is multiplicative; must f be multi-

plicative?
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Well, the first question is to what extent f is determined by its divisor sum func-
tion: if F =

∑
d f =

∑
d g = G, must f = g? If so, is there a nice formula which

gives f in terms of F?

Some calculations:

f(1) = F (1);

for any prime p, F (p) = f(1) + f(p), so f(p) = F (p)− F (1);

F (p2) = f(1) + f(p) + f(p2) = F (p) + f(p2), so f(p) = F (p2)− F (p); indeed

f(pn) = F (pn)− F (pn−1).

For distinct primes p1, p2, we have F (p1p2) = f(1) + f(p1) + f(p2) + f(p1p2)
= F (1) + F (p1)− F (1) + F (p2)− F (1) + f(p1p2), so

f(p1p2) = F (p1p2)− F (p1)− F (p2) + F (1).

This is an enlightening calculation on several accounts; on the one hand, there is
some sort of inclusion-exclusion principle at work. On the other hand, and easier
to enunciate, we are recovering f in terms of F and µ:

Theorem 8.20. (Möbius Inversion Formula) For any arithmetic function f ,
let F (n) =

∑
d|n f(d). Then for all n,

f(n) =
∑
d|n

F (d)µ(n/d).

It is a good exercise to give a direct proof of this. However, playing on a familiar
theme, we will introduce a little more algebra to get an easier proof. Namely, we
can usefully generalize the construction f 7→

∑
d f = F as follows:

Definition: For arithmetic functions f and g, we define their convolution, or
Dirichlet product, as

(f ∗ g)(n) =
∑
d | n

f(d)g(
n

d
).

Why is this relevant? Well, define 1 as the function 1(n) = 1 for all n;1 then
F = f ∗ 1. We have also seen that

(34) µ ∗ 1 = ι,

and the inversion formula we want is

(f ∗ 1) ∗ µ = f.

1We now have three similar-looking but different functions floating around: δ, ι and 1. It may
help the reader to keep on hand a short “cheat sheet” with the definitions of all three functions.
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Thus we see that if only it is permissible to rewrite (f ∗1)∗µ = f ∗ (1∗µ), then the
inversion formula is an immediate consequence of Equation (34). In other words,
we need to show that convolution is associative. In fact we can prove more:

Proposition 8.21. The arithmetic functions form a commutative ring under
pointwise addition – i.e., (f + g)(n) = f(n) + g(n) – and convolution. The multi-
plicative identity is the function δ.

Proof. In other words, we are making the following assertions: for all arith-
metic functions f , g, h:
(i) f ∗ g = g ∗ f .
(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h).
(iii) f ∗ δ = f .
(iv) f ∗ (g + h) = f ∗ g + f ∗ h.

To show both (i) and (ii) it is convenient to rewrite the convolution in symmetric
form:

f ∗ g(n) =
∑

d1d2=n

f(d1)g(d2).

The sum extends over all pairs of positive integers d1, d2 whose product is n. This
already makes the commutativity clear. As for the associativity, writing things out
one finds that both (f ∗ g) ∗ h and f ∗ (g ∗ h) are equal to∑

d1d2d3=n

f(d1)g(d2)h(d3),

and hence they are equal to each other! For (iii), we have

(f ∗ δ)(n) =
∑

d1d2=n

f(d1)δ(d2);

δ(d2) = 0 unless d2 = 1, so the sum reduces to f(n)δ(1) = f(n). The distributivity
is easy and left to the reader. �

We can now show that F =
∑
d f multiplicative implies f is multiplicative. Indeed,

this follows from f = F ∗ µ, the multiplicativity of µ and the following:

Proposition 8.22. If f and g are multiplicative, so is f ∗ g.

Proof. Just do it: for coprime m and n, (f ∗ g)(m)(f ∗ g)(n) =

(
∑

a1a2=m

f(a1)g(a2))(
∑

b1b2=n

f(b1)g(b2)) =
∑

a1a2b1b2=mn

f(a1)f(b1)g(a2)g(b2) =

∑
xy=mn

f(x)g(y) = (f ∗ g)(mn).

�

4. Some Applications of Möbius Inversion

4.1. Application: another proof of the multiplicativity of the totient.
Our first application of Möbius inversion is to give a proof of the multiplicativity
of ϕ which is independent of the Chinese Remainder Theorem. To do this, we will



108 8. ARITHMETIC FUNCTIONS

give a direct proof of the identity
∑
d|n ϕ(d) = n. Note that it is equivalent to write

the left hand side as ∑
d|n

ϕ(
n

d
),

since as d runs through all the divisors of n, so does n
d .2 Now let us classify elements

of {1, . . . , n} according to their greatest common divisor with n. The greatest com-
mon divisor of any such element k is a divisor d of n, and these are exactly the
elements k such that k

d is relatively prime to n
d , or, in yet other words, the elements

d·l with 1 ≤ l ≤ n
d and gcd(l, nd ) = 1, of which there are ϕ(nd ). This proves the iden-

tity! Now, we can apply Möbius inversion to conclude that ϕ = ι·µ is multiplicative.

Here is a closely related approach. Consider the additive group of Z/nZ, a cyclic
group of order n. For a given positive integer d, how many order d elements does it
have? Well, by Lagrange’s Theorem we need d|n. An easier question is how many
elements there are of order dividing a given d (itself a divisor of n): these are just the
elements x ∈ Z/nZ for which dx = 0, i.e., the multiples of n/d, of which there are
clearly d. But Möbius Inversion lets us pass from the easier question to the harder
question: indeed, define f(k) to be the number of elements of order k in Z/nZ; then
F (k) =

∑
d|k f(d) is the number of elements of order dividing k, so we just saw

that F (k) = k. Applying Möbius inversion, we get that f(k) = (I ∗ µ)(k) = ϕ(k).
On the other hand, it is not hard to see directly that f(k) = 0 if k does not divide
n and otherwise equals ϕ(k) – e.g., using the fact that there is a unique subgroup
of order k for all k | n – and this gives another proof that ϕ ∗ 1 = ι.

4.2. A formula for the cyclotomic polynomials. For a positive integer d,
let Φd(x) be the monic polynomial whose roots are the primitive dth roots of unity,
i.e., those complex numbers which have exact order d in the multiplicative group
C× (meaning that zd = 1 and zn 6= 1 for any integer 0 < n < d). These primitive
roots are contained in the group of all dth roots of unity, which is cyclic of order
d, so by the above discussion there are exactly ϕ(d) of them: in other words, the
degree of the polynomial Φd is ϕ(d).3 It turns out that these important polynomials
have entirely integer coefficients, although without a somewhat more sophisticated
algebraic background this may well not be so obvious. One might think that to
write down formulas for the Φd one would have to do a lot of arithmetic with
complex numbers, but that is not at all the case. Very much in the spirit of the
group-theoretical interpretation of

∑
d|n ϕ(d) = n, we have∏

d|n

Φd(x) = xn − 1,

since, both the left and right-hand sides are monic polynomials whose roots consist
of each nth root of unity exactly once.

In fact it follows from this formula, by induction, that the Φd’s have integral
coefficients. But Möbius inversion gives us an explicit formula. The trick here is to
convert the divisor product into a divisor sum by taking logarithms:

log
∏
d|n

Φd(x) =
∑
d|n

log Φd(x) = log(xn − 1).

2Alternately, this just says that f ∗ 1 = 1 ∗ f .
3For once, the ancients who fixed the notation have planned ahead!
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Now applying Möbius inversion, we get

log Φn(x) =
∑
d|n

log(xd − 1)µ(
n

d
)

= log

∏
d|n

(xd − 1)µ(n/d)

 ,

so exponentiating back we get a formula which at first looks too good to be true:

Φn(x) =
∏
d|n

(xd − 1)µ(n/d).

But it is absolutely correct, and, as advertised, reduces the computation of the
cyclotomic polynomials to arithmetic (including division!) of polynomials with in-
teger coefficients.

Remark: Our trick of taking logs was done without much worry about rigor. It is
not literally true that log(xn−1) is an arithmetic function, since it is not defined for
x = 1. We can justify what we have done as follows: for fixed n, since the Φd’s and
xn − 1 are a finite set of monic polynomials with integer coefficients, there exists a
large positive integer N such that for all d dividing n and all x ∈ Z+, Φd(x+N) ≥ 1,
so that log(Φd(x+N)) and log(x+N)d − 1 are well-defined arithmetic functions,
to which we apply MIF. This gives us the desired identity with x + N in place of
x, but being an identity of polynomials, we can substitute x−N for x to get back
to the desired identity.

On the other hand, such ad hockery is not so aesthetically pleasing. The formula
we obtained suggests that MIF may be valid for functions f defined on Z+ but
with more general codomains than C. If R is a commutative ring, then the state-
ment and proof of MIF go through verbatim for “R-valued arithmetic functions”
f : Z+ → R. But this is not the right generalization for the present example: we
want a MIF for functions with values in the multiplicative group C(x) of nonzero
rational functions. In fact, for any commutative group A – whose group law we
will write as addition, even though in our application it is called multiplication – if
one considers A-valued arithmetic functions f : Z+ → A, then there is in general
no convolution product (since we can’t multiply elements of A), but nevertheless
F (n) =

∑
d|n f(d) makes sense, as does

∑
d|n F (d)µ(n/d), where for a ∈ A we in-

terpret 0 · a as being the additive identity element 0A, 1 · a as a and −1 · a as the
additive inverse −a of a. Then one can check that

∑
d|n F (d)µ(n/d) = f(n) for all

f , just as before. We leave the proof as an exercise.

4.3. Finite subgroups of unit groups of fields are cyclic.

Theorem 8.23. Let F be a field and G ⊂ F× a finite subgroup of the multi-
plicative group of units of F . Then G is cyclic.

Proof. Suppose G has order n. Then, by Lagrange’s theorem, we at least
know that every element of G has order dividing n, and what we would like to
know is that it has an element of order exactly n. We recognize this as an MIF
situation, but this time MIF serves more as inspiration than a tool.

Namely, for any divisor d of n, let us define Gd to be the set of elements of
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G of order dividing d. Gd is easily seen to be a subgroup of G, and subgroups of
cyclic groups are cyclic, so if what we are trying to prove is true then Gd is a cyclic
group of order d. Certainly this is true for d = 1! So assume by induction that this
is true for all proper divisors d of n.

Now let f(d) be the number of elements of order d in G. We know f(d) = 0
unless d is a divisor of n. We also know that for any d there are at most d elements
in all of F× of order d: the polynomial xd − 1 can have at most d roots. Now
suppose d is a proper divisor of n: our induction hypothesis implies that there
are exactly d roots, namely the elements of Gd; moreover, since we are assuming
that Gd is cyclic, of these d elements, exactly ϕ(d) of them have exact order d.
So f(d) = ϕ(d) for all proper divisors d of n. But this means that the number of
elements of G whose order is a proper divisor of n is

∑
d|n ϕ(d)−ϕ(n) = n−ϕ(n),

which leaves us with n− (n−ϕ(n)) = ϕ(n) of elements of a group of order n whose
order is not any proper divisor of n. The only possibility is that these elements all
have order n, which is what we wanted to show. �

4.4. Counting irreducible polynomials.

Here is a truly classic application of Möbius Inversion.

Theorem 8.24. For any prime number p and any n ∈ Z+, the number of
polynomials P (x) ∈ Z/pZ[x] which are irreducible of degree n is

I(Z/pZ, n) =
1

n

∑
d|n

pdµ
(n
d

) .

The proof of Theorem 8.24 requires some preliminaries on polynomials over finite
fields. We give a complete treatment in Appendix C.

5. A Bigger Möbius Inversion Formula

Our point of departure for the entire text was the relationship between arithmetic
structure and order structure. We now revisit these concepts at a deeper level,
obtaining a generalization of Möbius Inversion in suitable partially ordered sets.
As a byproduct, we clarify the relationship between Möbius Inversion and the com-
binatorial principle of inclusion-exclusion. Our treatment follows [BG75] and [St].

5.1. Some Inversion Problems.

We begin with several examples that illustrate the notion of an “inversion problem.”

Example 8.25. We begin with the Möbius Inversion that we already have: for
a function f : Z+ → C, if we put

F : Z+ → C, F (n) :=
∑
d|n

f(d),

then

∀n ∈ Z+, f(n) =
∑
d|n

F (d)µ(n/d).
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Example 8.26. (Calculus of Finite Differences) For a function f : N→ C, we
define the summatory function

F : N→ C, F (n) := f(0) + f(1) + . . .+ f(n).

Question: Can we recover f from F?
Answer: Yes, quite easily: we have

f(0) = F (0),

∀n ≥ 1, f(n) = F (n)− F (n− 1).

(If we take the convention that F (−1) = 0, then f(0) = F (0)− F (−1).)
The operator ∆ that takes a function g to the function (∆g) : n 7→ g(n)− g(n− 1)
is called the difference operator. The operator that takes a function g to the
function Σg : n 7→

∑n
i=0 g(n) is called the summation operator. Above we

verified that for any g : N→ C, the relation

∆(Σ(g)) = g.

It is similarly easy to verify the relation

Σ(∆(g)) = g :

indeed, recalling our convention that g(−1) = 0, we get

Σ(∆(g)) = (g(0)−g(−1))+(g(1)−g(0))+. . .+(g(n−1)−g(n−2))+(g(n)−g(n−1)) = g(n).

One can take the perspective that the operator ∆ is the discrete analogue of the de-
rivative and that the operator Σ is the discrete analogue of the antiderivative. (Since
antiderivatives are only unique up to constant, it is morally but not literally true
that differentiation and anti-differentiation are mutually inverse operators. Here it
is literally true.) This may not seem so auspicious, but in fact it is the jumping off
point for a useful subfield of mathematics, the calculus of finite differences.

Example 8.27. (Inclusion-Exclusion, v1) We begin with the most classical
statement of Inclusion-Exclusion. Let X be a finite set, and let {Pi}ni=1 be a family
of subsets of X such that

⋃n
i=1 Pi = X. Then there is a formula for the size of X

in terms of the sizes of the Pi’s and their intersections – namely,

(35) #X =

n∑
i=1

#Pi −
∑
i 6=j

#(Pi ∩ Pj) +
∑

distinct i,j,k

#(Pi ∩ Pj ∩ Pj)− . . . ,

namely, the kth term is (−1)k times the sum of the cardinalities of all the k-fold
intersections of the sets P1, . . . , Pn. This well known result can be proved by careful
book-keeping; we urge the reader who has never seen this extremely useful formula
before to give it a try. Let us first reformulate this as an inversion problem and
then give a proof.

Example 8.28. (Inclusion-Exclusion, v2) As above, let X be a finite set, and
let {Pi}ni=1 be a family of subsets of X. For each subset T ⊂ {1, . . . , n}, we put

N+(T ) := #
⋂
i∈T

Pi

and

N=(T ) := #
⋂
i∈T

Pi ∩
⋂

i∈{1,...,n}\T

(X \ Pi).
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Let us give an interpretation: we may view each Pi as a “property” that an element
of X may or may not have. Then N+(T ) counts the nunmber of elements of X
that have at least the properties in the subset T (and possibly others), while N=(T )
counts the number of elements of X that have exactly the properties in T . In many
practical applications, N+(T ) is easier to compute while N=(T ) is of more interest.
Clearly we have

N+(T ) =
∑
S⊃T

N=(S),

so now we have an inversion problem: how to recover N= from N+? The following
formula does the trick:

(36) N=(T ) =
∑
−S ⊃ T (−1)#(S\T )N+(S).

In particular, taking T = ∅, we get a formula for the nunmber of elements of X
that have “none of the properties”:

(37) N=∅ =
∑

S⊂{1,...,n}

(−1)#SN+(S).

In (37), the first term on the right hand side is (−1)#∅N+(∅). This is the number
of elements of X that have “at least none” of the properties, so it is #X. Rear-
ranging, we get

#X −N=(∅) =
∑
S 6=∅

(−1)#S+1N+(S).

But # −N=(∅) is precisely the set of elements of X that have at least one of the
properties, so we get

#

n⋃
i=1

Pi =
∑

∅ 6=S⊂{1,...,n}

(−1)#S+1#
⋂
i∈S

Pi.

If we now add back the assumption that
⋃n
i=1 Pi = X as in the previous example,

we recover (35).
Let us now give a proof of (36) – again, just using careful bookkeeping. Let

K = #({1, . . . , n}\T ), and for 0 ≤ i ≤ K, let Ni be the set of elements x ∈ N+(T )
such that #{k ∈ {1, . . . , n} \ T | x ∈ Pk} = i – in other words, that in addition to
all the properties in T , x possesses precisely i further properties. Thus

N+(T ) =

K∐
i=0

#Ni and #N0 = N=(T ).

Suppose zeroth that x ∈ N0. Then x contributes 1 to N+(T ) and nothing to N+(T )
for all S ) T , so the total contribution to the right hand side of (37) from elements
of N0 is #N0 = N=(T ).
Suppose first that x ∈ N1. Thus there is a unique i ∈ {1, . . . , n}\S such that x ∈ Pi.
Such an x contributes 1 to N+(S) and 1 to N+(S ∪ {i}), so its total contribution
to the right hand side is 1− 1 = 0.
Suppose second that x ∈ N2. Thus there are exactly two elements i, j ∈ {1, . . . , n}\S
such that x ∈ Pi and x ∈ Pj. Such an x contributes 1 to N+(S), 1 to each of
N+(S ∪ {i}) and N+(S ∪ {j}) and 1 to N+(S ∪ {i, j}). The total contribution to
the right hand side is 1− 2 + 1 = 0.
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Now let 1 ≤ i ≤ K. Then if x ∈ Si it lies in precisely i elements of {1, . . . , n} \ T ,
so its total contribution to the right hand side of (37) is(

K

1

)
−
(
K

2

)
+ . . .+ (−1)K

(
K

K

)
= (1− 1)K = 0.

At this point we have precisely accounted for all the terms on the right hand side,
so it evaluates to #N0 + 0 + 0 + . . .+ 0−#N0 = N=(S).

Example 8.29. Let q be a prime power, let n ∈ Z+ and consider Fnq as an
n-dimensional vector space over the finite field Fq of order q. For any Fq-linear
subspace U ⊂ Fnq , let N=(U) be the number of subsets S ⊂ Fnq whose span is U .
Also let N≤(U) be the number of subsets S ⊂ Fnq whose span is contained in U .
Then we have

(38) N≤(U) =
∑
V⊂U

N=(V ),

where the sum ranges over all subspaces V of U . But actually N≤(U) is trivial to
compute: a subset S of a vector space has span lying in that subspace iff the set lies
in the subspace, so N≤(U) is just 2#U , the number of subsets of U . Writing dimU
for the dimension of U , we have #U = qdimU and thus

N≤(U) = 2q
dimU

.

The quantity N=(U) is a bit more interesting, so we would like to somehow “invert”
(38) to get a formula for the N=’s in terms of the N≤’s. This time we leave the
problem unsolved for now and turn to the development of the general theory.

5.2. The Möbius Function on a Locally Finite Poset.

The above examples fit into a common framework. Recall that a partially ordered
set, or “poset,” is a set X equipped with a binary operation ≤ that is reflexive,
symmetric and transitive. A poset is totally ordered (or linearly ordered, or
a chain) if for all x, y ∈ X, either x ≤ y or y ≤ x. A bottom element of a
poset is an element B such that B ≤ x for all x in X. A top element of a poset
is an element T such that x ≤ T for all x in X. (A poset has either one bottom
element or none at all; the same goes for top elements.) For every poset (X,≤) we
define the dual poset X∨: it has the same underlying set and the transposed order
relation: that is,

x ≤∨ y ⇐⇒ y ≤ x.
Certain properties of a poset pair off via passage to the dual poset; we call such
properties “dual.” For instance, a top element is dual to a bottom element.

For x ≤ y in a poset X, we define the inverval

[x, y] := {z ∈ X | x ≤ z ≤ y}.

We also define

(x, y] := [x, y] \ {x}, [x, y) := [x, y] \ {y}.
For x ≤ y in X, we say that y covers x if [x, y] = {x, y}; in other words, if x < y
and there is no z with x < z < y.

A poset is locally finite if all its intervals are finite.
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Exercise 8.1. Let (X,≤) be a poset. A linear extension of X is a total
order relation ≤′ on X such that ≤⊂≤′: that is, for all x, y ∈ X, if x ≤ y then also
x ≤′ y.
a) Show: every finite poset admits at least one linear extension.
(Suggestion: if X is a finite poset that is not totally ordered, there are elements x
and y such that x 6≤ y and y 6≤ x. Enlarge the relation to ≤1 by putting x ≤1 y.
Then ≤1 need not be a partial ordering, but its transitive closure is. Repeat until
you get a total ordering.)
b) Show: every poset admits at least one linear extnesion.
(Suggestion: use Zorn’s Lemma.)

Exercise 8.2. Let (X,≤) be a poset, and let x ≤ y be elements of X. A
covering chain from x to y is a finite sequence {z0, . . . , zn} of elements of X
such that zi+1 covers zi for all 0 ≤ i ≤ n − 1, z0 = x and zn = y. Show: if X is
locally finite, then whenever x ≤ y there is a covering chain from x to y. Is the
converse true?

Exercise 8.3.
a) Let (X,≤) be a poset and let Y be a subset of X. Then Y becomes a poset just
by restricting the relation ≤. Show: if X is locally finite, then so is Y .
b) Show: a finite poset is locally finite.
c) Show: the integers Z under the usual ordering is locally finite.
d) Show: the positive integers Z+ under the divisibility ordering is locally finite.
e) If X is a set and {Yi}i∈I is a family of subsets of X, inclusion gives a partial
ordering on the index set I: we put Yi ≤ Yj iff Yi ⊂ Yj . An important special case
is the family 2X of all subsets of X. Show: 2X is locally finite iff X is finite.
f) Let V be a vector space over a field F , and let Sub(V ) be the family of all
F -linear subspaces of V , partially ordered by inclusion. Show: Sub(V ) is locally
finite iff either dimV ≤ 1 or F and dimV are both finite.

Exercise 8.4. A poset is downward finite if for all y ∈ X, the set D(y) :=
{x ∈ X | x ≤ y} is finite. Dually, a poset is upward finite if for all y ∈ X, the set
U(y) := {x ≤ X | x ≥ y} is finite. Show: if X has a bottom element and is locally
finite, then it is downward finite, and (dually) that if X has a top element and is
locally finite, then it is upward finite.

Let (X,≤) be a locally finite poset. We claim there is a unique function µ : X×X →
Z satisfying the following properties:
• µ(x, y) = 0 unless x ≤ y.
• µ(x, x) = 1 for all x ∈ X.
• if x < y, then µ(x, y) = −

∑
z∈[x,y) µ(x, z).

To see this we argue by induction on the maximal length of a covering chain from
x to y. If this length is 1 – i.e., if y covers x – we get µ(x, y) = −µ(x, x) = −1.
Assuming that we have defined µ(x, y) when all covering chains from x to y have
length at most L, suppose that the maximal length of a covering chain from x to
y is L + 1. Then for all z ∈ [x, y), every covering chain from x to z has length at
most L, so µ(x, z) is already defined. So the formula µ(x, y) = −

∑
z∈[x,y) µ(x, z)

defines µ(x, y).
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An easy but important remark: for elements x ≤ y in a locally finite poset, the
value µ(x, y) depends only on the interval [x, y], which is a finite poset.

Example 8.30. We compute the Möbius function on Z. In fact for all n ∈ Z
we have µ(n, n) = 1 and µ(n, n + 1) = −1, and we have µ(m,n) = 0 unless
n−m ∈ {0, 1}. If m < n, then [m,n] is isomorphic as a poset to [0, n−m], so we
may as well look at the finite chain 0 < 1 < . . . < N , and in this case the result is
virtually immediate, as we leave to the reader to verify.

Exercise 8.5. Let X be a nonempty locally finite totally ordered set. Show: if
X is finite then it is order isomorphic to the interval [0,#X−1] in the integers. If X
is infinite, then it is isomorphic to either the non-negative integers, the non-positive
integers, or the integers.

Example 8.31. We compute the Möbius function on Z+ with the divisibility
ordering. Let m,n ∈ Z+ with m | n. Then the interval [m,n] is order isomorphic
to the interval [1, nm ], so µ(m,n) = µ(1, nm ). We claim that in fact µ(1, N) = µ(N)
– where on the left hand side we have our new 2-variable Möbius function and on
the right hand side we have the arithmetic function; this has the consequence that

µ(m,n) = µ(
n

m
).

This is easy to see by induction on N : we have µ(1, 1) = 1 = µ(1); now let N ≥ 2
and suppose that µ(1,m) = µ(m) for all 1 ≤ m < N . Then we have

µ(1, N) = −
∑

y∈[1,N)

µ(1, y)
IH
= −

∑
y|N, y<N

µ(y) =

−∑
y|N

µ(y)

+ µ(N) = µ(N).

We want to comput the Möbius function on 2[1,n], the set of all subsets of an n-
element set. For this we want to make use of a “product structure.” For posets
(X1,≤1) and (X2,≤2 we define a new poset as follows: the underlying set X is the
Cartesian product X1 ×X2, and for x = (x1, x2), y = (y1, y2) ∈ X, we put

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≤ y2.

This is natural and useful: e.g. it is a good way of producing non-total orders.

Exercise 8.6. Let X1, X2 be nonempty posets, and let X = X1×X2 with the
product ordering. Show that X is totally ordered iff X1 and X2 are both totally
ordered and (#X1 = 1 or #X2 = 1).

Exercise 8.7. Let X1, X2 be posets. For x1 ≤ y1 ∈ X1 and x2 ≤ y2 ∈ X2, put
x = (x1, x2), y = (y1, y2) ∈ X1 ×X2.
a) Show: We have [x, y] = [x1, y1]× [x2, y2].
b) Deduce: if X1 and X2 are locally finite, so is X1 ×X2.

We can immediately extend this notion to an n-fold product (and in fact to the
product of any indexed family of posets). Now we observe that the poset 2[1,n]

is order isomorphic to the poset
∏n
i=1[0, 1] of length n binary strings. (Here one

binary string is less than or equal to another if the ith digit of the first string is less
than or equal to the ith digit of the second string for all 1 ≤ i ≤ n.) Namely, to a
subset A ⊂ [1, n] we attach the “indicator string” iA whose ith digit is 1 if i ∈ A
and 0 otherwise. This is an order-preserving bijection.

The point is that there is a simple expression for the Möbius function of a product.
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Theorem 8.32. (Product Theorem) Let X1, X2 be locally finite posets, and put
X = X1 ×X2 with the product ordering. Then we have

µX = µX1×µX2 : ∀(x1, x2), (y1, y2) ∈ X, µX((x1, x2), (y1, y2)) = µX1(x1, y1)µX2(x2, y2).

Proof. Let x = (x1, x2) and y = (y1, y2). PutM(x, y) := µX1
(x1, y1)µX2

(x2, y2).
We will show that M satisfies the three defining properties of the Möbius function.
• If x 6≤ y then x1 6≤ y1 – so µX1(x1, y1) = 0 – or x2 6≤ y2 – so µX2(x2, y2) = 0.
Either way we have M(x, y) = µX1

(x1, y1)µX2
(x2, y2) = 0.

• If x = y then M(x, y) = µX1
(x1, x1)µX2

(x2, x2) = 1 · 1 = 1.
• Let x < y. Then∑

z∈[x,y]

M(x, z) =
∑

(x1,x2)≤(z1,z2)≤(y1,y2)

µX1
(x1, z1)µX2

(x2, z2)

=

 ∑
z1∈[x1,y1]

µX1
(x1, z1)

 ∑
z2∈[x2,y2]

µX2
(x2, z2)

 .

Since x < y, either x1 < y1 – in which case the first factor above is zero – or x2 < y2

– in which case the second factor above is zero. Either way the product is zero. �

Example 8.33. We return to 2[1,n] ∼= {0, 1}n. The Möbius function on {0, 1}
is certainly known to us: we have

µ(0, 0) = µ(1, 1) = 1, µ(0, 1) = −1, µ(1, 0) = 0,

and thus for subsets A ⊂ B ⊂ [1, n], we get

µ(A,B) = (−1)#B−#A.

Example 8.34. With the Product Theorem in hand, we revisit the ordinary
Möbius function µ : Z+ → Z. Let n = pa11 · · · parr ∈ Z+. Let D(n) be the set of
positive divisors of n, partially ordered by divisibility. Then we have

D(n) ∼=
r∏
i=1

D(paii ),

and thus

µ(n) = µ(1, n) =

n∏
i=1

µ(1, paii ).

Since we have already computed the Möbius function on a totally ordered set, we

know that µ(1, pai) =

{
−1 ai = 1

0 ai ≥ 2
. We conclude that µ(n) is 0 unless n is square-

free in which case it is (−1)r. Thus we get an interpretation of our definition of the
classical Möbius function in terms of properties of the 2-variable Möbius function
of a locally finite poset.

5.3. The Inversion Formula.

Theorem 8.35. (Möbius Inversion) Let X be a locally finite poset.
a) Assume moreover that X is downward finite (this holds if X has a bottom ele-
ment). For a function f : X → C, we define

F : X → C, x 7→
∑
y≤x

f(y).
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Then

∀x ∈ X, f(x) =
∑
y≤x

f(y)µ(y, x).

b) Assume moreover that X is upward finite (this holds if X has a top element).
For a function f : X → C, we define

F : X → C, x 7→
∑
y≥x

f(y).

Then

∀x ∈ X, f(x) =
∑
y≥x

f(y)µ(x, y).

The two parts of Theorem 8.35 are duals: applying part a) to X∨, we get part b).

We proved classical Möbius Inversion by introducing a convolution product on
arithmetic functions and identiying the Möbius function as the inverse to the con-
stant function 1. We will do something broadly similar here, but there must be
some differences because in the context of Theorem 8.35 our Möbius function is not
a function on X but rather on X ×X – or, if we like, on the set Int(X) of intervals
in X. So we are looking for a product operation on

I(X,C) := {functions f : Int(X)→ C},
which makes it into a C-algebra. Observe that I(X,C) is naturally a C-vector
space under pointwise addition and scalar multiplication. The following is the
desired product: for f, g : Int(X)→ C, we put

f ∗ g : [x, y] 7→
∑

x≤z≤y

f([x, z])g([z, y]).

A nice way to think of this product is defined by thinking of I(X,C) as the set of
all infinite formal C-linear combinations

∑
[x,y] f(x, y)[x, y]. We then put

[x, y] ∗ [z, w] =

{
[x,w] y = z

0 otherwise

and we extend by bilinearity (allowing infinite linear combinations). The unit
element for this product is

δ :

{
[x, x]→ 1 ∀x ∈ X
[x, y]→ 0 ∀x < y ∈ X.

Both (f ∗ g) ∗ h and f ∗ (g ∗ h) take [x, y] to
∑
x≤z≤w≤y f([x, z])g([z, w])h([w, y]),

and thus the algebra is associative.

In the case that X is finite of cardinality n, there is a particularly concrete repre-
sentation of I(X,C), as follows: choose a linear extension of X; equivalently, write
X = {x1, . . . , xn} so that xi ≤ xj if i ≤ j. Then I(X,C) can be identified with the
subring of n × n complex matrices M = (mij) such that mij = 0 unless xi ≤ xj :
namely we map f([xi, xj ]) to mij . This provides another way of showing the as-
sociativity in this case. Moreover it shows that I(X,C) can be non-commutative:
e.g. when n ≥ 2 and X is totally ordered, then I(X,C) can be identified with the
ring of all upper triangular n× n matrices.
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Proposition 8.36. For f ∈ I(X,C), the following are equivalent:
(i) f has a left inverse.
(ii) f has a right inverse.
(iiii) f has a two-sided inverse.
(iv) We have f([x, x]) 6= 0 for all x ∈ X.

Proof. We have fg = δ iff for all x, y ∈ X we have
(39)

f([x, x])g([x, x]) = 1, g([x, y]) = −f([x, x])−1
∑

z∈(x,y]

f([x, z])g([z, y]) if x < y.

This shows that f has a right inverse iff f([x, x]) 6= 0 for all x ∈ X. Exactly the
same reasoning shows that f has a right inverse iff f([x, x]) 6= 0 for all x ∈ X, so if
f([x, x]) 6= 0 for all x ∈ X then there is g1 such that f ∗ g1 = δ and g2 such that
g2 ∗ f = δ. But then

g1 = δ ∗ g1 = (g2 ∗ f) ∗ g1 = g2 ∗ (f ∗ g1) = g2 ∗ δ = g2,

so we have a two-sided inverse. �

Now we define the zeta function ζ : Int(X)→ C by

ζ([x, y]) = 1 ∀x ≤ y ∈ X.

This is the analogue of the function 1 in the classical case.

Exercise 8.8. a) Show: ζ2([x, y]) = #[x, y].
b) Show: for k ∈ Z+, ζk([x, y]) =

∑
x=x0≤x1≤...≤xk=y 1.

By Proposition 8.36, the zeta function ζ has an inverse in I(X,C). And, as expected,
we have µ = ζ−1: indeed if we apply (39) with f = ζ, we see that g obeys the
defining relations for the Möbius function. To write them in a more symmetric
form, they are:

µ([x, x]) = 1 ∀x ∈ X,
∑

x≤z≤y

µ([x, z]) = 1 ∀x < y ∈ X.

The Möbius algebra I(X,C) has a natural representation on the C-vector space
CX = {f : X → C} by: for f ∈ CX and E ∈ I(X,C), put

(f ◦ E)(x) =
∑
y≤x

f(y)E([y, x]).

Here by “representation” we mean the fact that

((f ◦ E1) ◦ E2)(x) =
∑
y≤x

(f ◦ E1)(y)E2([y, x]) =
∑
y≤x

∑
z≤y

f(z)E1[z, y]E2[y, x]

=
∑
z≤x

f(z)(E1 ∗ E2)[z, x] = f ◦ (E1 ∗ E2).

Thus, for f, F ∈ CX , we have

F = f ◦ ζ ⇐⇒ f = F ◦ µ :

this is Theorem 8.35a).
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Exercise 8.9. Let (G,+) be a commutative group, and let (X,≤) be a down-
ward finite poset. For a function f : X → G, define

F : x 7→
∑
y≤x

f(y).

Show: for all x ∈ X, we have

f(x) =
∑
y≤x

F (y)µ([y, x]).

(Suggestion: define the Möbius ring I(X,Z) to be as for I(X,C) but with C replaced
by Z. Show that we have µ and ζ in I(X,Z) exactly as above. Moreover, show that
I(X,C) acts by Z-linear endomorphisms of ZG = {f : G→ Z} and thereby deduce
Möbius inversion exactly as above.





CHAPTER 9

Asymptotics of Arithmetic Functions

1. Introduction

Having entertained ourselves with some of the more elementary and then the more
combinatorial/algebraic aspects of arithmetic functions, we now grapple with what
is fundamentally an analytic number theory problem: for a given arithmetic func-
tion f , approximately how large is f(n) as a function of n?

It may at first be surprising that this is a reasonable – and, in fact, vital – ques-
tion to ask even for the “elementary” functions f for which we have found exact
formulas, e.g. d(n), σ(n), ϕ(n), µ(n) (and also r2(n), which we have not yet taken
the time to write down a formula for but could have based upon our study of the
Gaussian integers). What we are running up against is nothing less than the multi-
plicative/additive dichotomy that we introduced at the beginning of the course: for
simple multiplicative functions f like d and ϕ, we found exact formulas. But these
formulas were not directly in terms of n, but rather made reference to the standard
form factorization pa11 · · · parr . It is easy to see that the behavior of, say, ϕ(n) as a
function of “n alone” cannot be so simple. For instance, suppose N = 2p − 1 is a
Mersenne prime. Then

ϕ(N) = N − 1.

But

ϕ(N + 1) = ϕ(2p) = 2p − 2p−1 = 2p−1 =
N + 1

2
.

This is a bit disconcerting: N + 1 is the tiniest bit larger than N , but ϕ(N + 1) is
half the size of ϕ(N)!

Still we would like to say something about the size of ϕ(N) for large N . For
instance, we saw that for a prime p there are precisely ϕ(p − 1) primitive roots
modulo p, and we would like to know something about how many this is.

Ideal in such a situation would be to have an asymptotic formula for ϕ: that is, a

simple function g : Z+ → (0,∞) such that limn→∞
ϕ(n)
g(n) = 1. (In such a situation

we would write ϕ ∼ g.) But it is easy to see that this is too much to ask. Indeed,
as above we have ϕ(p) = p− 1, so that restricted to prime values ϕ(p) ∼ p; on the
other hand, restricted to even values of n, ϕ(n) ≤ n

2 , so there is too much variation
in ϕ for there to be a simple asymptotic expression.

This is typical for the classical arithmetic functions; indeed, some of them, like
the divisor function, have even worse behavior than ϕ. In other words, ϕ has more
than one kind of limiting behavior, and there is more than one relevant question to
ask. We may begin with the following:

121
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Question 4. a) Does ϕ(n) grow arbitrarily large as n does?
b) How small can ϕ(n)/n be for large n?

Part a) asks about the size of ϕ in an absolute sense, whereas part b) is asking
about ϕ in a relative sense. In particular, since there are ϕ(p) = p− 1 elements of

(Z/pZ)×, the quantity ϕ(p−1)
p−1 measures the chance that a randomly chosen nonzero

residue class is a primitive root modulo p. Note we ask “how small” because we

know how large ϕ(n)
n can be: arbitrarily close to 1, when n is a large prime.

2. Lower bounds on Euler’s totient function

Anyone who works long enough with the ϕ function (for instance, in computing all
n such that ϕ(n) ≤ 10) will guess the following result:

Proposition 9.1. We have limn→∞ ϕ(n) =∞.

Equivalently: for any L ∈ Z+, there are only finitely many n such that ϕ(n) ≤ L.

The idea of the proof is a simple and sensible one: if a positive integer n is “large”,
it is either divisible by a large prime p, or it is divisible by a large power a of a prime,
or both. To formalize this a bit, consider the set S(A,B) of positive integers n which
are divisible only by primes p ≤ A and such that ordp(n) ≤ B for all primes p. Then
S(A,B) is a finite set: indeed it has at most (B + 1)A elements. (Also its largest
element is at most

∏
p≤A p

B ≤ (A!)B , which is, unfortunately, pretty darned large.)

So if we assume that n is sufficiently large – say larger than (L!)L – then n is
divisible either by a prime p > L or by pL+1 for some prime p. It is easy to show
that if m | n, ϕ(m)|ϕ(n) – and thus ϕ(m) ≤ ϕ(n). So in the first case we have

ϕ(n) ≥ ϕ(p) = p− 1 ≥ L,
and in the second case we have

ϕ(n) ≥ ϕ(pL+1) = pL(p− 1) ≥ pL > L.

So we’ve shown that if n > (L!)L, then ϕ(n) ≥ L, which proves the result.

It was nice to get an explicit lower bound on ϕ, but the bound we got is com-
pletely useless in practice: to compute all n for which ϕ(n) ≤ 5 above argument
tells us that it suffices to look at n up to 1205 = 24883200000. But this is ridiculous:
ad hoc arguments do much better. For instance, if n is divisible by a prime p ≥ 7,
then ϕ(n) is divisible by p − 1 ≥ 6, so we must have n = 2a3b5c. If c ≥ 2, then
25 | n so 20 = ϕ(25) ≤ ϕ(n). Similarly, if b ≥ 2, then 9 | n so 6 = ϕ(9) ≤ ϕ(n), and
if a ≥ 4, then 16 | n so 8 = ϕ(16) ≤ ϕ(n). So, if n = 5m, then ϕ(n) = 4ϕ(m) so
ϕ(m) = 1 and thus m = 1 or 2. If n = 3m, then ϕ(n) = 2ϕ(m), so ϕ(m) = 1 or 2,
so n = 3 · 1, 3 · 2, 3 · 4. Otherwise n is not divisible by 9 or by any prime p ≤ 5, so
that b ≤ 1 and a ≤ 3. This yields the possibilities n = 1, 2, 4, 8, 3, 6. In summary,
ϕ(n) ≤ 5 iff

n = 1, 2, 3, 4, 5, 6, 8, 10, 12.

More practical lower bounds are coming up later.

However, it is interesting to note that essentially the same idea allows us to give
us a much better asymptotic lower bound on ϕ. Namely, we have the following
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pretty result which once again underscores the importance of keeping an eye out
for multiplicativity:

Theorem 9.2. Suppose f is a multiplicative arithmetic function such that
f(pa)→ 0 as pa →∞. Then f(n)→ 0 as n→∞.

In other words if f is a multiplicative function such that for every ε > 0, |f(pm)| < ε
for all sufficiently large prime powers, it follows that |f(n)| < ε for all sufficiently
large n, prime power or otherwise.

Remark: As long as our multiplicative function f is never 0, an equivalent state-
ment is that if f(pn) → ∞ for all prime powers than f(n) → ∞ for all n. (Just
apply the theorem to g = 1

f , which is multiplicative iff f is.) So assuming the

theorem, we can just look at

ϕ(pa) = pa−1(p− 1) ≥ max(p− 1, a− 1),

and if pa is large, at least one of p and a is large. But actually we get more:

Corollary 9.3. For any fixed δ, 0 < δ < 1, we have ϕ(n)/nδ →∞.

Proof. We wish to show that f(n) := nδ

ϕ(n) → 0 as n → ∞. Since both nδ

and ϕ(n) are multiplicative, so is their quotient f , so by the theorem it suffices to
show that f approaches zero along prime powers. No problem:

f(pn) =
pnδ

pn−1(p− 1)
=

p

p− 1
· (pδ−1)n.

Here δ − 1 < 0, so as p → ∞ the first factor approaches 1 and the second factor
approaches 0 (just as xα → 0 as x → ∞ for negative α). On the other hand, if p
stays bounded and n→∞ then the expression tends to 0 exponentially fast. �

Now let us prove Theorem 9.2. We again use the idea that for any L > 0, there
exists N = N(L) such that n > N implies N is divisible by a prime power pa > L.

First let’s set things up: since f(pm)→ 0 we have that f is bounded on prime
powers, say |f(pm)| ≤ C. Moreover, there exists a b such that |f(pm)| ≤ 1 for all
pm ≥ b; and finally, for every ε > 0 there exists L(ε) such that pm > L(ε) implies
|f(pm)| < ε. Now write n = pa11 · · · parr , so that

f(n) = f(pa11 ) · · · f(parr ).

Since there are at most b indices i such that paii ≤ B, there are at most b factors in
the product which are at least 1 in absolute value, so that the product over these
“bad” indices has absolute value at most Cb. Every other factor has absolute value
at most 1. Moreover, if n is sufficiently large with respect to L(ε) (explicitly, if
n > L(ε)!L(ε), as above), then the largest prime power divisor parr of n is greater
than L(ε) and hence |f(parr )| < ε. This gives

|f(n)| = |f(pa11 · · · parr )| ≤ Cb · ε.

Since C and b are fixed and ε is arbitrary, this shows that f(n)→ 0 as n→∞.

A nice feature of Theorem 9.2 is that it can be applied to other multiplicative
functions. For instance, it allows for a quick proof of the following useful upper
bound on the divisor function:
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Theorem 9.4. For every fixed δ > 0, we have

lim
n→∞

d(n)

nδ
= 0.

Proof. Exercise. �

Note that Corollary 9.3 is equivalent to the following statement: for every 0 < δ < 1,
there exists a positive constant C(δ) such that for all n,

ϕ(n) ≥ C(δ)nδ.

Still equivalent would be to have such a statement for all n ≥ N0. This would
be very useful provided we actually knew an acceptable value of C(δ) for some δ,
possibly with an explicitly given and reasonably small N0(δ) of excluded values.
We quote without proof the following convenient result for δ = 1

2 :

Theorem 9.5. For all n > 6, ϕ(n) ≥
√
n.

So in other words, to find all n for which ϕ(n) ≤ 10, according to this result we need
only look at n up to 100, which is fairly reasonable. Of course if you are interested
in very large values of ϕ you will want even stronger bounds. The “truth” is coming
up later: there is a remarkable explicit lower bound on ϕ(n).

3. Upper bounds on Euler’s ϕ function

Proposition 9.6. For any ε > 0, there is an n such that ϕ(n)/n ≤ ε.

Proof. Recall that one of our formulas for ϕ(n), or rather for ϕ(pa11 · · · parr ),
is really a formula for ϕ(n)/n:

ϕ(n)/n =

r∏
i=1

(1− 1

pi
).

Just for fun, let’s flip this over:

n

ϕ(n)
=

r∏
i=1

(1− 1

pi
);

now what we need to show is that for any L > 0, we can choose primes p1, . . . , pr
such that

∏r
i=1(pi−1

pi
)−1 > L.

Well, at the moment we (sadly for us) don’t know much more about the sequence
of primes except that it is infinite, so why don’t we just take n to be the product
of the first r primes p1 = 2, . . . , pr? And time for a dirty trick: for any i, 1 ≤ i ≤ r,
we can view 1

1− 1
pi

as the sum of a geometric series with ratio r = 1
pi

. This gives

n

ϕ(n)
=

r∏
i=1

(1− 1

pi
)−1 =

r∏
i=1

(1 + p−1
i + p−2

i + . . .).

The point here is that if we formally extended this product over all primes:
∞∏
i=1

(1 + p−1
i + p−2

i + p−3
i + . . .)

and multiplied it all out, what would we get? A moment’s reflection reveals a
beautiful surprise: the uniqueness of the prime power factorization is precisely
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equivalent to the statement that multiplying out this infinite product we get the
infinite series

∑∞
n=1

1
n , i.e., the harmonic series! Well, except that the harmonic

series is divergent. That’s actually a good thing; but first let’s just realize that
if we multiply out the finite product

∏r
i=(1 − 1

pi
)−1 we get exactly the sum of

the reciprocals of the integers n which are divisible only by the first r primes. In
particular – since of course pr ≥ r, this sum contains the reciprocal of the first r
integers, so: with n = p1 · · · pr,

n

ϕ(n)
≥

r∑
n=1

1

n
.

But now we’re done, since as we said before the harmonic series diverges – re-
call that a very good approximation to the rth partial sum is log r, and certainly
limr→∞ log r =∞. This proves the result. �

To summarize, if we want to make ϕ(n)/n arbitrarily small, we can do so by taking
n to be divisible by sufficiently many primes. On the other hand ϕ(n)/n doesn’t
have to be small: ϕ(p)/p = p−1

p = 1− 1
p , and of course this quantity approaches 1

as p→∞. Thus the relative size of ϕ(n) compared to n depends quite a lot on the
shape of the prime power factorization of n.

Contemplation of this proof shows that we had to take n to be pretty darned
large in order for ϕ(n) to be significantly smaller than n. In fact this is not far from
the truth.

4. The Truth About Euler’s ϕ Function

It is the following:

Theorem 9.7. a) For any ε > 0 and all sufficiently large n, one has

ϕ(n) log log n

n
≥ e−γ − ε.

b) There exists a sequence of distinct positive integers nk such that

lim
k→∞

ϕ(nk) log log nk
nj

= e−γ .

Comments: (a) Here γ is our friend the Euler-Mascheroni constant, i.e.,

lim
n→∞

n∑
k=1

(
1

k
)− log n ≈ 0.5772.

(b) What the result is really saying is that n/ϕ(n) can be, for arbitrarily large n,
as large as a constant times log log n, but no larger.

In stating the result in two parts we have just spelled out a fundamental concept
from real analysis (which however is notoriously difficult for beginning students to
understand): namely, if for any function f : Z+ → R we have a number L with the
property: for every ε > 0, then
(i) for all sufficiently large n one has

f(n) > L− ε,
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and (ii) for all L′ < L there are only finitely many n such that f(n) < L′, then one
says that L is the lower limit (or limit inferior) of f(n), written

lim inf
n→∞

f(n) = L.

There is a similar definition of the upper limit (or limit superior) of a function:
it is the largest L such that for any ε > 0, for all but finitely many n we have
f(n) < L + ε. A function which is unbounded below (i.e., takes arbitrarily small
values) has no lower limit according to our definition, so instead one generally says
that lim inf f = −∞, and similarly we put lim sup f = +∞ when f is unbounded
above. With these provisos, the merit of the upper and lower limits is that they
always exist; moreover one has

lim inf f ≤ lim sup f

always, and equality occurs iff limn→∞ f exists (or is ±∞). Using this terminology
we can summarize the previous results much more crisply:

Since ϕ(p) = p− 1, we certainly have

lim supϕ(n)/n = 1,

so we are only interested in how small ϕ(n) can be for large n. We first showed
that limn→∞ ϕ(n) = +∞, and indeed that for any δ < 1,

lim
n→∞

ϕ(n)/nδ =∞.

However, for δ = 1,

lim inf
n→∞

ϕ(n)/n = 0.

Thus the “lower order” of ϕ(n) lies somewhere between nδ for δ < 1 (i.e., ϕ is larger
than this for all sufficiently large n) and n (i.e., ϕ is smaller than this for infinitely
many n). In general, one might say that an arithmetic function f has lower order
g : Z+ → (0,∞) (where g is presumably some relatively simple function) if

lim inf
n→∞

f

g
= 1.

So the truth is that the lower order of ϕ is eγn
log logn . We will not prove this here.

Remark: all statements about limits, lim inf’s lim sup’s and so on of a function
f , by their nature are independent of the behavior of f on any fixed finite set of
values: if we took any arithmetic function and defined it completely randomly for

the first 101010

values, then we would not change its lower/upper order. However in
practice we would like inequalities which are true for all values of the function, or
at least are true for an explicitly excluded and reasonably small finite set of values.
In the jargon of the subject one describes the latter, better, sort of estimate as an
effective bound. You can always ask the question “Is it effective?” at the end of
any analytic number theory talk and the speaker will either get very happy or very
defensive according to the answer. So here we can ask if there is an effective lower
bound for ϕ of the right order of magnitude, and the answer is a resounding yes.
Here is a nuclear-powered lower bound for the totient function:
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Theorem 9.8. For all n > 2 we have

ϕ(n) >
n

eγ log logn+ 3
log logn

.

Proof. See [RS62, Thm. 15]. �

5. Other Functions

5.1. The sum of divisors function σ. The story for the function σ is quite
similar to that of ϕ. In fact there is a very close relationship between the size of σ
and the size of ϕ coming from the following beautiful double inequality.

Proposition 9.9. For all n, we have

1

ζ(2)
<
σ(n)ϕ(n)

n2
< 1.

Proof. Indeed, if n =
∏
i p
ai
i , then

σ(n) =
∏
i

pai+1
i − 1

pi − 1
= n

∏
i

1− p−ai−1

1− p−1
i

,

whereas
ϕ(n) = n

∏
i

(1− p−1
i ),

so
σ(n)ϕ(n)

n2
=
∏
i

(1− p−ai−1
i ).

We have a product of terms in which each factor is less than one; therefore the
product is at most 1. Conversely, each of the exponents is less than or equal to −2,
so the product is at least as large as the product

∏
p(1− p−2). Now in general, for

s > 1 we have∏
p

(1− p−s)−1 =
∏
p

(1 + p−s + p−2s + . . .) =

∞∑
n=1

1

ns
= ζ(s),

so the last product is equal to 1
ζ(2) . �

Remark: Recall that ζ(2) = π2

6 , so that 1
ζ(2) = 6

π2 .

From this result and the corresponding results for ϕ we immediately deduce:

Theorem 9.10. For every δ > 0, σ(n)
n1+δ → 0.

In fact we can prove this directly, the same way as for the ϕ function.

The “truth” about the lower order of ϕ dualizes to give the true upper order of σ,
up to an ambiguity in the multiplicative constant, which will be somewhere between
ζ(2)−1e−γ and e−γ . In fact the latter is correct:

Theorem 9.11.

lim sup
n→∞

e−γσ(n)

n log log n
= 1.

And again, because σ(p) = p + 1 ∼ p for primes, we find that the lower order of
σ(n) is just n.
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5.2. The divisor function. The divisor function d(n) is yet more irregularly
behaved than ϕ and σ, as is clear because d(p) = 2 for all primes 2, but of course
d takes on arbitrarily large values. In particular the lower order of d is just the
constant function 2. As regards the upper order, we limit ourselves to the following
two estimates, which you are asked to establish in the homework:

Theorem 9.12. For any δ > 0, limn→∞
d(n)
nδ

= 0.

In other words, for large n, the number of divisors of n is less than any prearranged
power of n. This makes us wonder whether its upper order is logarithmic or smaller,
but in fact this is not the case either.

Proposition 9.13. For any k ∈ Z+ and any real number C, there exists an n
such that d(n) > C(log n)k.

Thus the upper order of d(n) is something greater than logarithmic and something
less than any power function. We leave the matter there, although much more
could be said.

6. Average orders

If we take the perspective that we are interested in the distribution of values of an
arithmetic function like ϕ (or d or σ or . . .) in a statistical sense, then we ought
to worry that just knowing the upper and lower orders is telling us a very small
piece of the story. As a very rough comparison, suppose we tried to study the
American educational system by looking at its best and worst students, not in the
sense of best or worst ever, but were concerned with what sort of education the top
0.1% and the bottom 0.1% of Americans get, durably over time. The first task is
certainly of some interest – for instance, we all wonder how our upper echelon com-
pares to the creme de la creme of the educational systems of other nations and other
times; are we producing more or less scientific geniuses and so forth – and the latter
task is profoundly depressing, but probably no one will be deluded into believing
that we are studying anything like what the “typical” or “average” American learns.

It may interest you to know that the rich range of statistical techniques that can
be so fruitfully applied to studying distributions of real-world populations can be
equally well applied to study the distribution of values of arithmetic functions. In-
deed, this is a flourishing subbranch of analytic number theory: statistical num-
ber theory. Here we have time only to sample some of the main developments
of analytic number theory. And, what is yet more sad, we cannot assume that we
know enough about these statistical tools to apply them in all their glory.1 But
probably we are all familiar with the notion of an average.

The idea here is that if f(n) is irregularly behaved, we can “smooth it out” by
considering its successive averages, say

fa(n) =
1

n

n∑
k=1

f(k).

1This is one case where by “we” I mean “me”; maybe your knowledge of statistics is equal
to the task, but I must confess that mine is not.
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We have every right to expect for fa to be better behaved than f itself, and we
say that the average order of f is some (presumably simpler) function g if fa ∼ g.

As a sample we give the following classic result:

Theorem 9.14. The average order of the totient function is g(n) = 1
2ζ(2)n =

3
π2n.

Thus “in some sense” the typical value of ϕ(n)/n is about .304. It would be nice to
interpret this as saying that if we pick an n at random, then with large probability
ϕ(n)/n is close to .304, but of course we well know that the average – i.e., the
arithmetic mean – does not work that way. Just because the average score on an
exam is 78 does not mean that most students got a grade close to 78. (Perhaps
2/3 of the course got A grades and the other third failed; these things do happen.)
Nevertheless it is an interesting result, and to prove it we will derive a very inter-
esting consequence.

First however it is nice to have a “harder analysis” analogue of Theorem 9.14. That
is, the theorem at the moment asserts that 1

n

∑n
k=1 ϕ(k) ∼ 3

π2n, or equivalently

lim
n→∞

∑n
k=1 ϕ(k)

3
π2n2

= 1.

This in turn means that if we define “the error term” E(n) =
∑n
k=1 ϕ(k)− ( 3

π2 )n2,

so that
∑n
k=1 ϕ(k) = 3

π2n
2 + E(n), then the error term is small compared to the

main term: namely it is equivalent to

lim
n→∞

E(n)

(3/π2)n2
= 0.

So far we are just pushing around the definitions. But a fundamentally better
thing to do would be to give an upper bound on the error E(n), i.e., to find a

nice, simple function h(n) such that E(n) ≤ h(n) and h(n)
(3/π2)n2 → 0 In fact we do

not need E(n) ≤ h(n) quite: if E(n) were less than 100h(n) that would be just as
good, because if h(n) divided by (3/π2)n2 approaches zero, the same would hold
for 100h(n). This motivates the following notation:

We say that f(n) = O(g(n)) if there exists a constant C such that for all n,
f(n) ≤ Cg(n). So it would be enough to show that E(n) = O(h(n)) for some func-
tion h which approaches zero when divided by 3

π2n
2, or in more colloquial language,

for any function grows less than quadratically. So for instance a stronger statement
would be that E(n) = O(nδ) for any δ < 2. In fact one can do a bit better than
this:

Theorem 9.15.
n∑
k=1

ϕ(k) =
3

π2
n2 +O(n log n).

Or again, dividing through by n, this theorem asserts that that the average over the
first n values of the φ function is very nearly 3

π2n, and the precise sense in which
this is true is that the difference between the two is bounded by a constant times
log n. Note that it would be best of all to know an actual acceptable value of such
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a constant – that would be a “completely effective” version of the statement, but
we do not go into this here (or need to).

Now we can give a very nice application, which we can first state in geometric
language. It concerns the lattice points in the plane, i.e., the numbers (x, y) ∈ R2

with both x and y integers (so, if you like, the Gaussian integers, although this ex-
tra structure is not relevant here). Suppose we are some lord of the lattice points,
sitting at the origin (0, 0) and surveying our entire domain. What do we see? Well
– assuming a truly 2-dimensional situation – we can see some of our loyal subjects
but not others. For instance we can certainly see the point (1, 1), but we cannot
see (2, 2), (3, 3) or any n(1, 1) with n > 1 since the point (1, 1) itself obscures our
view.

Thus we can define a lattice point (x, y) to be visible (from the origin) if the
line segment from (0, 0) to (x, y) contains no lattice points on its interior. Supp-
pose we start coloring the lattice, coloring a lattice point red if we can see it and
black if we cannot see it. Try it yourself: this gives a very interesting pattern. It is
natural to ask: how many of the lattice points can we see?

Well, the first observation is that a lattice point (x, y) is visible iff gcd(x, y) = 1:
an obstructed view comes precisely from a nontrivial common divisor of x and y.
From this it follows that the answer is “infinitely many”: for instance we can see
(1, n) for all integers n, and many more besides. Well, let us change our question
a bit. Suppose that each of the lattice points is supposed to pay a flat tax to our
lordship, and if we see a lattice point then we can see whether or not it has paid
its taxes. What percentage of our revenue are we collecting if we only worry about
the lattice points we can see?

Now to formalize the question. If we ask about the entire lattice at once, the
answer to most of our questions is always going to be “infinity,” and moreover an
actual king (even a two-dimensional one) probably rules over a finite kingdom. So
for a positive integer N , let us write L(N) for the number of lattice points (x, y)
with |x|, |y| ≤ N – that is, the lattice points lying in the square centered at the
origin with length (and width) equal to 2N . Well, this number is (2N + 1)2: there
are 2N + 1 possible values for both x and y. But now define V (N) to be the num-
ber of visible lattice points, and our question is: when N is large, what can we say

about V (N)
L(N) ?

Theorem 9.16. We have limN→∞
V (N)
L(N) = 6

π2 .

Before we prove the result, we can state it in a slightly different but equally striking
way. We are asking after all for the number of ordered pairs of integers (x, y) each
of absolute value at most N , with x and y relatively prime. So, with a bit of poetic
license perhaps, we are asking: what is the probability that two randomly chosen
integers are relatively prime? If we lay down the ground rules that we are ran-
domly choosing x and y among all integers of size at most N , then the astonishing
answer is that we can make the probability as close to 6

π2 as we wish by taking N
sufficiently large.
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Now let us prove the result, or at any rate deduce it from Theorem 9.14. First
we observe that the eight lattice points immediately nearest the origin – i.e., those
with max(|x|, |y|) ≤ 1 – are all visible. Indeed there is an eightfold symmetry in
the situation: the total number of visible lattice points in the square |x|, |y| ≤ N
will then be these 8 plus 8 times the number of lattice points with 2 ≤ x ≤ N ,
1 ≤ y ≤ x (i.e., the ones whose angular coordinate θ satisfy 0 < θ ≤ π

2 . But now
we have

V (N) = 8 +
∑

2≤n≤N

∑
1≤m≤n,(m,n)=1

1 = 8
∑

1≤n≤N

ϕ(N).

Aha: we know that
∑

1≤n≤N ϕ(N) = 3
π2N

2 +O(N logN), so

|
V (N)− 24

π2N
2

L(N)
| ≤ CN logN

L(N)
.

But now L(N) = (2N + 1)2, and C N logN
N2 → 0 as N →∞, so we find that

0 = lim
N→∞

V (N)− 24
π2N

2

(2N + 1)2
,

or

lim
N→∞

V (N)

L(N)
= lim
N→∞

24
π2

(2 + 1
N )2

=
6

π2
.

Having given a formal proof of this result based upon the unproved Theorem 9.14
(trust me that this theorem is not especially difficult to prove; it just requires a
bit more patience than we have at the moment), let us now give a proof which
is not rigorous but is extremely interesting and enlightening. Namely, what does
it “really mean” for two integers x and y to be relatively prime? It means that
there is no prime number p which simultaneously divides both x and y. Remark-
ably, this observation leads directly to the result. Namely, the chance that x is
divisible by a prime p is evidently 1

p , so the chance that x and y are both divisible

by p is 1
p2 . Therefore the chance that x and y are not both divisible by a prime

p is (1 − p−2). Now we think of being divisible by different primes as being “in-
dependent” events: if I tell you that an integer is divisible by 3, not divisible by
5 and divisible by 7, and ask you what are the odds it’s divisible by 11, then we
still think the chance is 1

11 . Now the probability that each of a set of independent
events all occur is the product of the probabilities that each of them occur, so the
probability that x and y are not simultaneously divisible by any prime p ought to
be (1−2−2) · (1−3−2 · . . . (1−p−2) · · · , but we saw earlier that this infinite product
is nothing else than the reciprocal of

∑∞
n=1

1
n2 = ζ(2). Thus the answer should be

1
ζ(2) = 6

π2 !

The argument was not rigorous because the integers are not really a probability
space: there is nothing random about whether, say, 4509814091046 is divisible by
103; either it is or it isn’t. Instead of probability one should rather work with the
notion of the “density” of a set of integers (or of a set of pairs of integers) – a notion
which we shall introduce rather soon – and then all is well until we pass from sets
defined by divisibility conditions on finitely many primes to divisibility conditions
on all (infinitely many) primes. This is not to say that such a “probability-inspired
proof” cannot be pushed through – it absolutely can. Moreover, the fact that the
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probabilistic argument gives an answer which can be proven to be the correct an-
swer via conventional means is perhaps most interesting of all.

Finally, we note that probabilistic reasoning gives the same answer to a closely
related question: what is the probability that a large positive integer n is square-
free? This time we want, for each prime p “independently”, n not to be divisible
by p2, of which 1 − p−2 percent of all integers are. Therefore we predict that the
probability that n is squarefree is also 6

π2 , and this too can be proved by similar
(although not identical) means to the proof of Theorem 9.14.

6.1. The average order of the Möbius function. We are interested in the
behavior of

µa(n) =
1

n

n∑
k=1

µ(k).

This is a horse of a completely different color, as we are summing up the values
0 and ±1. We just saw that µ is nonzero a positive proportion, namely 6

π , of the
time. Looking at values of the Möbius function on squarefree integers one finds
that it is indeed +1 about as often as it is −1, which means that there ought to
be a lot of cancellation in the sum. If every single term in the sum were 1 then
µa(n) would still only be equal to 1, and similarly if every single term were −1 the
average order would be −1, so the answer (if the limit exists!) is clearly somewhere
in between. The only sensible guess turns out to be true:

Theorem 9.17. The average order of the Möbius function is zero:

lim
n→∞

∑n
k=1 µ(k)

n
= 0.

However, this turns out to be a formidably deep result. Namely, it has been known
for almost two hundred years that this statement is logically equivalent to the single
greatest result in analytic number theory: the prime number theorem (coming up!).
However the prime number theorem has only been known to be true for a bit over
one hundred years.

In fact one can ask for more: the statement that the average order of µ is zero
is equivalent to the statement that the sum

∑n
k=1 µ(k) is of smaller order than n

itself, i.e., we need just enough cancellation to beat the trivial bound. But if you
do some computations you will see that these partial sums seem in practice to be
quite a bit smaller than n, and to say exactly how large they should be turns out
to be a much deeper problem yet: it is equivalent to the Riemann hypothesis. I
hope to return to this later, but for now I leave you with the question: suppose you
believed that the nonzero values of the Möbius function were truly random: i.e.,
for every n we flip a coin and bet on heads: if we win, we add 1 to the sum, and if
we lose, we subtract 1 from the sum. It is then clearly ridiculous to expect to win
or lose all the games or anything close to this: after n games we should indeed be
much closer to even than to having won or lost n dollars. But how close to even
should we expect to be?



CHAPTER 10

The Primes: Infinitude, Density and Substance

1. The Infinitude of the Primes

The title of this section is surely, along with the uniqueness of factorization, the
most basic and important fact in number theory. The first recorded proof was
by Euclid, and we gave it at the beginning of the course. There have since been
(very!) many other proofs, many of which have their own merits and drawbacks. It
is entirely natural to look for further proofs: in terms of the arithmetical function
π(n) which counts the number of primes p ≤ n, Euclid’s proof gives that

lim
n→∞

π(n) =∞.

After the previous section we well know that one can ask for more, namely for
the asymptotic behavior (if any) of π(n). The asymptotic behavior is known – the
celebrated Prime Number Theorem, coming up soon – but it admits no proof
simple enough to be included in this course. So it is of interest to see what kind of
bounds (if any!) we get from some of the proofs of the infinitude of primes we shall
discuss.

1.1. Euclid’s proof. We recall Euclid’s proof. There is at least one prime,
namely p1 = 2, and if p1, . . . , pn are any n primes, then consider

Nn = p1 · · · pn + 1.

This number Nn may or may not be prime, but being at least 3 it is divisible by
some prime number q, and we cannot have q = pi for any i: if so pi|p1 · · · pn and
pi|Nn implies pi|1. Thus q is a new prime, which means that given any set of n
distinct primes we can always find a new prime not in our set: therefore there are
infinitely many primes.

Comments: (i) Euclid’s proof is often said to be “indirect” or “by contradiction”,
but this is unwarranted: given any finite set of primes p1, . . . , pn, it gives a perfectly
definite procedure for constructing a new prime.

(ii) Indeed, if we define E1 = 2, and having defined E1, . . . , En, we define En+1 to
be the smallest prime divisor of E1 · · ·En + 1, we get a sequence of distinct prime
numbers, nowadays called the Euclid sequence (of course we could get a different
sequence by taking p1 to be a prime different from 2). The Euclid sequence begins

2, 3, 7, 43, 13, 53, 5, . . .

Many more terms can be found on the online handbook of integer sequences. The
obvious question – does every prime occur eventually in the Euclid sequence with
p1 = 2 (or in any Euclid sequence?) remains unanswered.

133
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(iii) It is certainly a “classic” proof, but it is not “aesthetically perfect” (what-
ever that may mean). Namely, there is a moment when the reader wonders – hey,
why are we multiplying together the known primes and adding one? One can ad-
dress this by pointing out in advance the key fact that gcd(n, n+ 1) = 1 for all n.
Therefore if there were only finitely many primes p1, . . . , pr, there would be an inte-
ger divisible by all of them, N = p1 · · · pr, and then the fact that gcd(N,N +1) = 1
leads to a contradiction. I do like this latter version better, but it is really just a
rewording of Euclid’s proof.1

(iv) Euclid’s proof can be used to prove some further results. For instance:

Theorem 10.1. Fix a positive integer N > 2. Then there are infinitely many
primes p which are not congruent to 1 (mod N).

Proof. Take p1 = 2, which is not congruent to 1 (mod N). Assume that
p1, . . . , pn is a list of n primes, none of which are 1 (mod N). Now consider the
product

Pn := Np1 · . . . · pn − 1.

Pn ≥ N − 1 ≥ 2, so it has a prime divisor. Also Pn ≡ −1 (mod N). So if every
prime divisor q of Pn were 1 mod N , then so would Pn be 1 (mod N) – which it
isn’t – therefore Pn has at least one prime divisor q which is not 1 (mod N). As
above, clearly q 6= pi for any i, which completes the proof. �

In fact this argument can be adapted to prove the following generalization.

Theorem 10.2. Fix a positive integer N > 2, and let H be a proper subgroup of
U(N) = (Z/NZ)×. There are infinitely many primes p such that p (mod N) 6∈ H.

The proof is left as an exercise. (Suggestion: fix a ∈ Z+, 1 < a < N , such that a
(mod N) 6∈ H. Take P0 = 2N + a and for n ≥ 1, Pn = (2N

∏n
i=1 pi) + a.)

Remark: If ϕ(N) = 2 – that is, for N = 3, 4, or 6 – then ±1 gives a reduced
residue system modulo N , so that any prime p > N − 1 which is not 1 (mod N) is
necessarily −1 (mod N). Thus the argument shows that there are infinitely many
primes p which are −1 (mod 3), −1 (mod 4) or −1 (mod 6).

Remark: Interestingly, one can also prove without too much trouble that there
are infinitely many primes p ≡ 1 (mod N): the proof uses cyclotomic polynomials.

Theorem 10.3. For any field F , there are infinitely many irreducible polyno-
mials over F , i.e., infinitely many irreducible elements in F [T ].

Proof. Euclid’s argument works here: take e.g. p1(t) = t, and having pro-
duced p1(t), . . . , pr(t), consider the irreducible factors of p1(t) · · · pr(t) + 1. �

Note that one can even conclude that there are infinitely many prime ideals in
F [t] – equivalently, there are infinitely many monic irreducible polynomials. When
F is infinite, the monic polynomials t − a for a ∈ F do the trick. When F is

1I have heard this argument attributed to the great 19th century algebraist E. Kummer. For
what little it’s worth, I believe I came up with it myself as an undergraduate. Surely many others

have had similar thoughts.
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finite, we showed there are infinitely many irreducible polynomials, but there are
only #F − 1 different leading coefficients, so there must be infinitely many monic
irreducible polynomials. It is interesting to think about why this argument does
not work in an arbitrary PID.2

1.2. Fermat numbers. Another way to construe Euclid’s proof is that it
suffices to find an infinite sequence ni of pairwise coprime positive integers, because
these integers must be divisible by different primes. The Euclid sequence is such a
sequence. A more “natural” looking sequence is the following.

Theorem 10.4. The Fermat numbers Fn = 22n + 1 are pairwise coprime.

Proof. We claim that for all n ≥ 1 we have

Fn =

n−1∏
d=0

Fd + 2.

This certainly suffices, since if p is some common prime divisor of Fd (for any d < n)
and Fn then p | Fn−2, hence p | 2, but all the Fermat numbers are odd. The claim
itself can be established by induction; we leave it to the reader. �

1.3. Mersenne numbers. Recall that Fermat believed that all the Fermat
numbers were prime, and this is not true, since e.g.

F5 = 225

+ 1 = 641 · 6700417,

and in fact there are no larger known prime Fermat numbers. Nevertheless the
previous proof shows that there is something to Fermat’s idea: namely, they are
“almost” prime in the sense that no two of them have a common divisor. One then
wonders whether one can devise a proof of the infinitude of the primes using the
Mersenne numbers 2p − 1, despite the fact that it is unknown whether there are
infinitely many Mersenne primes. This can indeed be done:

Let p be a prime (e.g. p = 2, as usual) and q a prime divisor of 2p − 1. Then
2p ≡ 1 (mod q). In other words, p is a multiple of the order of 2 in the cyclic group
(Z/qZ)×. Since p is prime the order of 2 must be exactly p. But by Lagrange’s the-
orem, the order of an element divides the order of the group, which is ϕ(q) = q− 1,
so p | q − 1 and hence p < q. Thus we have produced a prime larger than the one
we started with.

1.4. Euler’s first proof. It is a remarkable fact that the formal identity∏
p

(1− 1

p
)−1 =

∑
n

1

n

– which amounts to unique factorization – immediately implies the infinitude of
primes. Indeed, on the left hand side we have a possibly infinite product, and on
the right-hand side we have an infinite sum. But the infinite sum is well-known to
be divergent, hence the product must be divergent as well, but if it were a finite
product it would certainly be convergent!

2For there are PID’s with only finitely many prime ideals: e.g. the set of rational numbers
whose reduced denominator is prime to 42 is a PID with exactly three prime ideals.
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Many times in the course we have seen a rather unassuming bit of abstract al-
gebra turned into a mighty number-theoretic weapon. This example shows that
the same can be true of analysis.

1.5. Chaitin’s proof. In his most recent book3 the computer scientist Gre-
gory Chaitin announces an “algorithmic information theory” proof of the infinitude
of primes. He says: if there were only finitely many primes p1, . . . , pk then every
positive integer N could be written as

N = pa11 · · · p
ak
k ,

which is “too efficient” a way of representing all large integers N . Chaitin compares
his proof with Euclid’s proof and Euler’s proof (with a grandiosity that I confess
I find unjustified and unbecoming). But criticism is cheaper than understanding:
can we at least make sense of his argument?

Let us try to estimate how many integers n, 1 ≤ n ≤ N , could possibly be ex-
pressed in the form pa11 · · · p

ak
k , i.e., as powers of a fixed set of k primes. In order for

this expression to be at most N , every exponent has to be much smaller than N :
precisely we need 0 ≤ ai ≤ logpi N ; the latter quantity is at most log2N , so there

are at most log2N + 1 choices for each exponent, or (log2N + 1)k choices overall.
But aha – this latter quantity is much smaller than N when N is itself large: it is
indeed the case that the percentage of integers up to N which we can express as a
product of any k primes tends to 0 as N approaches infinity.

So Chaitin’s proof is indeed correct and has a certain admirable directness to it.

1.6. Another important proof. However, the novelty of Chaitin’s proof is
less clear. Indeed, in many standard texts (including [HW], which was first writ-
ten in 1938), one finds the following argument, which is really a more sophisticated
version of Chaitin’s proof.

Again, we will fix k and estimate the number of integers 1 ≤ n ≤ N which are
divisible only by the first k primes p1, . . . , pk, but this time we use a clever trick:
recall that n can be written uniquely as uv2 where u is squarefree. The number of
squarefree u’s – however large! – which are divisible only by the first k primes is 2k

(for each pi, we either choose to include it or not). On the other hand, n = uv2 ≤ N
implies that v2 ≤ N and hence v ≤ N 1

2 . Hence the number of n ≤ N divisible only
by the first k primes is at most 2k

√
N . If there are k primes less than or equal to

N , we therefore have

2k
√
N ≥ N

or

k ≥ log2(N)

2
.

3Its title is Meta Math! The Quest for Omega.
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1.7. An algebraic number theory proof. We now sketch a proof due to
Lawrence Washington.

Let R be a PID, with field of fractions F . Suppose K is a finite-degree field
extension of F – in other words, there exists some positive integer d and elements
x1, . . . , xd of K such that every element x of K can be written as α1x1 + . . .+αdxd
for αi ∈ F . In such a situation we can define a subset RL of L, which is the set of
all elements x of L which satisfy a monic polynomial relation with coefficients in
R: that is, for some n ∈ Z+,

xn + rn−1x
n−1 + . . .+ r1x+ r0 = 0,

and ri ∈ R for all i. It can be shown that RL is a subring of L, called the integral
closure of R in L. As an example, when R = Z and D is a squarefree integer not
congruent to 1 (mod 4), then taking K = Q and L = Q(

√
D), then the integral

closure of Z in L is our friend the quadratic ring Z[
√
D]. Anyway, here is the result:

Theorem 10.5. Suppose that a PID R, with quotient field K, has only finitely
many prime ideals. Then for any finite-degree field extension L of K, the integral
closure S of R in L is again a PID.

This shows the infinitude of the primes in Z, since we saw that Z[
√
−5] is not a PID!

The proof of Theorem 10.5 lies further up and further in the realm of algebraic
number theory than we dare to tread in this course. But here is a sketch of a proof
for the “slummers”4: the ring S is a Dedekind domain, so for any nonzero prime
ideal p of R, pS is a nontrivial finite product of powers of prime ideals. The dis-
tinct prime ideals Pi appearing in this factorization are precisely the prime ideals
P lying over p, i.e., such that P ∩ R = p. This shows that the restriction map
P 7→ P ∩R from prime ideals of S to prime ideals of R has finite fibers. Thus, since
by assumption there are only finitely many prime ideals of R, there are only finitely
many prime ideals of S. Finally, a Dedekind domain with only finitely many prime
ideals is necessarily a PID, as can be shown using the Chinese Remainder Theorem.

This is a proof with a moral: we need to have infinitely many primes in order
for number theory to be as complicated as it is.

1.8. Furstenberg’s proof. The last proof we will give is perhaps the most
remarkable one. In the 1955 issue of the American Mathematical Monthly there
appeared the following article by Hillel Furstenberg, which we quote in its entirety:

“In this note we would like to offer an elementary ‘topological’ proof of the in-
finitude of the prime numbers. We introduce a topology into the space of integers
S, by using the arithmetic progressions (from −∞ to +∞) as a basis. It is not
difficult to verify that this actually yields a topological space. In fact under this
topology S may be shown to be normal and hence metrizable. Each arithmetic
progression is closed as well as open, since its complement is the union of other
arithmetic progressions (having the same difference). As a result the union of any
finite number of arithmetic progressions is closed. Consider now the set A = ∪Ap,
where Ap consists of all multiples of p, and p runs though the set of primes ≥ 2.

4i.e., more advanced readers who are reading these notes
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The only numbers not belonging to A are −1 and 1, and since the set {−1, 1} is
clearly not an open set, A cannot be closed. Hence A is not a finite union of closed
sets which proves that there are an infinity of primes.”

Remarks: Furstenberg was born in 1935, so this ranks as one of the leading in-
stances of undergraduate mathematics in the 20th century. He is now one of the
leading mathematicians of our day. What is all the more remarkable is that this
little argument serves as a preview of the rest of his mathematical career, which has
concentrated on applying topological and dynamical methods (“ergodic theory”) to
the study of problems in number theory and combinatorics.

2. Bounds

Let us now go through some of these proofs and see what further information, if
any, they yield on the function π(n).

1. From Euclid’s proof one can deduce that π(n) ≥ C log log n. We omit the
argument, especially since the same bound follows more readily from the Fermat
numbers proof. Of course this is a horrible bound.

2. The Mersenne numbers proof gives, I believe, an even worse (iterated loga-
rithmic) bound. I leave it to the reader to check this.

3. Euler’s first proof does not immediately come with a bound attached to it.
However, as we saw earlier in our study of the φ function, it really shows that

r∏
i=1

(1− 1

pi
)−1 >

r∑
i=1

1

r
≥ C log r.

After some work, one can deduce from this that
n∑
i=1

1

pi
≥ C log log n,

whence the divergence of the prime reciprocals. We will not enter into the details.

4. Chatin’s proof gives a lower bound on π(n) which is between log log n and
log n (but much closer to log n).

5. As we saw, one of the merits of the proof of §1.6 is that one easily deduces

the bound π(n) ≥ log2 n
2 . (Of course, this is still almost a full exponential away

from the truth.)

6. As we mentioned, knowing that the prime reciprocals diverge suggests that π(n)
is at worst only slightly smaller than n itself. It shows that π(n) is not bounded
above by any power function Cnδ for δ < 1.

7. The last two proofs give no bounds whatsoever, not even implicitly. This seems
to make them the worst, but there are situations in which one wants to separate
out the problem of proving the infinitude of a set of numbers from the problem of
estimating its size, the latter problem being either not of interest or (more often)
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hopelessly out of current reach. In some sense all of the arguments except the
last two are implicitly trying to prove too much in that they give lower bounds on
π(n). Trying to prove more than what you really want is often a very good tech-
nique in mathematics, but sometimes, when the problem is really hard, making
sure that you are concentrating your efforts solely on the problem at hand is also a
key idea. At any rate, there are many problems in analytic combinatorics for which
Furstenberg-type existence proofs either were derived long before the explicit lower
bounds (which require much more complicated machinery) or are, at present, the
only proofs which are known.

3. The Density of the Primes

All of the results of the previous section were lower bounds on π(x). It is also of
interest to give an upper bound on π(x) beyond the “trivial” bound π(x) ≤ x. The
following gives such a result.

Theorem 10.6. As n→∞, we have π(n)
n → 0.

If you like, this result expresses that the probability that a randomly chosen positive
integer is prime is 0. We will come back to this idea after the proof, replacing
“probability” by the more precise term density.

Proof. Let us first observe that there are at most N
2 primes in the interval

[1, N ] since all but one of them must be odd. Similarly, since only one prime is
divisible by 3, every prime p > 6 must be of the form 6k + 1 or 6k + 5, i.e., only
2 of the 6 residue classes mod 6 can contain more than one prime (in fact some of
them, like 4, cannot contain any primes, but we don’t need to worry about this),
so that of the integers n ≤ N , at most 2

6N + 6 + 2 are primes.
In fact this simple reasoning can be carried much farther, using what we know

about the ϕ function. Namely, for any positive integer d, if gcd(a, d) > 1 there is
at most one prime p ≡ a (mod d).5 In other words, only ϕ(d) out of d congruence

classes mod d can contain more than one prime, so at most (ϕ(d)
d )N + d + ϕ(d)

of the integers 1 ≤ n ≤ N can possibly be prime. (Here we are adding d once to
take care of the one prime that might exist in each congruence class and adding
d a second time to take care of the fact that since N need not be a multiple of
d, so the “partial congruence class” at the end may contain a higher frequency of
primes than ϕ(d)/d, but of course no more than ϕ(d) of primes overall.) But we

know, thank goodness, that for every ε > 0, there exists a d such that ϕ(d)
d < ε,

and choosing this d we find that the number of primes n ≤ N is at most

π(N)

N
≤ εN + d+ ϕ(d)

N
= ε+

d+ ϕ(d)

N
.

This approaches ε as N →∞, so is, say, less than 2ε for all sufficiently large N . �

Remark: Reflecting on the proof, something slightly strange has happened: we
showed that ϕ(d)/d got arbitrarily small by evaluating at d = p1 · · · pr, the product
of the first r primes. Thus, in order to show that the primes are relatively sparse,
we used the fact that there are infinitely many of them!

5Recall this is true because if x ≡ a (mod d), gcd(a, d) | d | x − a, and gcd(a, d) | a, so
gcd(a, d)|x.)
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In fact, by similarly elementary reasoning, one can prove a more explicit result,
that π(n) ≤ Cn

log logn . Before moving on to discuss some similar and stronger state-

ments about the order of magnitude of π(n), let us digress a bit on the notion of
density of a set of integers.

Definition: A subset A of the positive integers is said to have density δ(A) = α if

lim
N→∞

#{1 ≤ n ≤ N | n ∈ A}
N

= α.

We have encountered this notion before: recently we claimed (based on something
less than a rigorous proof) that the density of squarefree integers is 6

π2 . Notice
that we have just shown that the primes have density zero. Here are some further
examples:

Example 1: For any positive integers a and N , the density of the set of posi-
tive integers x ≡ a (mod N) is 1

N . In particular, the set of all positive integers

whose last decimal digit is 1 has density 1
10 .

Example 2: Any finite set has density zero.

Example 3: For any k > 1, the set of kth powers nk has density 0.

Example 4: In fact the set of all proper powers, i.e., positive integers of the form
nk with k > 1, has density zero.

Example 5: The set A of all positive integers whose first decimal digit is 1 does
not have a density: that is, the limit does not exist. To see this, let C(N) be
the number of positive integers 1 ≤ n ≤ N with first digit 1. For any k ≥ 1,
C(2 · 10k − 1) ≥ 1

2 (2 · 10k − 1), since all of the integers from 10k to 2 · 10k − 1 begin

with 1, and this is half of all integers less than 2 · 10k− 1. On the other hand, none
of the integers from 2 · 10k to 10k+1 − 1 begin with 1, and this is 8

10 of the integers

less than or equal to 10k+1 − 1, so C(10k+1 − 1) ≤ 2
10 (10k+1 − 1). Thus C(N)/N

does not tend to any limiting value.

Because of this definition it is common to discuss also the upper density δ(A)
and the lower density δ(A): in the above definition replace lim by lim inf (resp.
lim sup), the point being that these two quantities exist for any set, and a set A has
a density if δ = δ. Note that if δ(A) = 0, then necessarily δ(A) exists and equals 0.

Example 6: If A1, . . . , Ak are finitely many sets having densities α1, . . . , αk, re-
spectively, then the upper density of A1 ∪ . . . ∪ Ak is at most α1 + . . . + αk. If
A1, . . . , Ak are pairwise disjoint, then the density of A1 ∪ . . . ∪ Ak exists and is
exactly α1 + . . .+ αk. (In fact it is enough if the pairwise intersections Ai ∩Aj all
have density zero.)

Density versus probability: Why have we backed off from using the word “proba-
bility”? Because ever since the work of the great early twentieth century Russian
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mathematician Kolmogorov, mathematicians have been trained to use the word
“probability” only in the measure-theoretic sense, or, in plainer language, for the
following situation: we have a set S (the “sample space”) and a function which as-
sociates to each reasonable subset E (an “event”) a number P (E), 0 ≤ P (E) ≤ 1,
and satisfying the axiom of countable additivity: if {Ei}∞i=1 is a sequence of
events which are strongly mutually exclusive (i.e., Ei ∩ Ej = ∅ for all i 6= j), then

P (
⋃
i

Ei) =

∞∑
i=1

P (Ei).

Our density function δ satisfies finite additivity but not countable additivity: in-
deed, if we took Ai to be the singleton set {i}, then certainly δ(Ai) = 0 for all i
but the union of all the Ai’s are the positive integers themselves, so have density
1. This is the problem: for a probability measure we cannot have (countably!)
infinitely many sets of measure zero adding up to a set of positive measure, but
this happens for densities.

A similar problem occurs in our “proof” that the squarefree integers have den-
sity 6

π2 . The set Sp2 of integers which are not multiples of p2 has density 1 − 1
p2 ,

and it is indeed true that these sets are “finitely independent” in the sense that the
intersection of any finite number of them has density equal to the product of the
densities of the component sets:

δ(Sp1 ∩ . . . ∩ Spn) =

n∏
i=1

(1− 1

p2
).

4. Substance

Let us define a subset S of the positive integers to be substantial if
∑
n∈S

1
n =∞.

Example 0: Obviously a finite set is not substantial.

Example 1: The set Z+ is substantial: the harmonic series diverges.

Example 2: If S and T are two sets with finite symmetric difference – that is,
there are only finitely many elements that are in S and not T or in T but not S –
then S is substantial iff T is substantial.

Example 3: For any subset S of Z+, at least one of S and its complementary
subset S′ = Z+ \ S is substantial, since∑

n∈S

1

n
+
∑
n∈S′

1

n
=
∑
n∈Z+

1

n
=∞.

So there are “plenty” of substantial subsets. It is certainly possible for both S and
S′ to be substantial: take, e.g. the set of even numbers (or any S with 0 < δ(S) < 1:
see below).

Example 4: For any fixed k > 1, the set of all perfect kth powers is not sub-
stantial: by (e.g.) the Integral Test,

∑∞
n=1

1
nk

<∞.

Example 5: The set of integers whose first decimal digit is 1 is substantial.
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Example 6: Indeed any set S with positive upper density is substantial. This
is elementary but rather tricky to show, and is left as a (harder) exercise.

The converse does not hold. Indeed, we saw above that the primes have zero
density, but we will now establish the following:

Theorem 10.7. The sum
∑
p

1
p of the prime reciprocals is infinite.

Proof. (Erdős) Seeking a contradiction, we suppose that the series converges:
then there exists an k such that ∑

p>pk

1

p
<

1

2
.

However, the number of integers 1 ≤ n ≤ N which are divisible by pk+1 is at most
N
pk+1

; similarly for pk+2, pk+3, so that overall the number of integers which are

divisible by any p > pk is at most

N

pk+1
+

N

pk+2
+ . . . = N

∑
p>pk

1

p
=
N

2
.

But this says that for any N , at least half of all positive integers are divisible by
one of the first k primes, which the argument of §1.6 showed not to be the case. �

Remarks: Maybe this is the best “elementary” proof of the infinitude of the primes.
Aside from being an elegant and interesting argument, it is a quantum leap beyond
the previous results: since for any k ≥ 2,

∑
n

1
nk

converges, it shows that there
are, in some sense, many more primes than perfect squares. In fact it implies that
there is no δ < 1 and constant C such that π(n) ≤ Cnδ for all n, so that if π(n)
is well-behaved enough to have a “true order of magnitude” than its true order is
rather close to n itself.

A striking substance-theoretic result that we will not be able to prove here:

Theorem 10.8. (Brun) The set T of “twin primes” – i.e., primes p for which
at least one of p− 2 and p+ 2 is prime – is insubstantial.

In a sense, this is disappointing, because we do not know whether T is infinite,
whereas if T had turned out to be substantial we would immediately know that
infinitely many twin primes exist! Nevertheless a fair amount of work has been
devoted (for some reason) to calculating Brun’s sum∑

n∈T

1

n
≈ 1.902 . . . .

In particular Tom Nicely has done extensive computations of Brun’s sum. His work
got some unexpected publicity in the mid 1990’s when his calculations led to the
recognition of the infamous “Pentium bug”, a design flaw in many of the Intel mi-
croprocessors.6

6The PC I bought in 1994 (my freshman year of college) had such a bug. The Intel corporation
reassured consumers that the bug would be of no practical consequence unless they were doing

substantial floating point arithmetic. Wonderful. . .
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The last word on density versus substance: In 1972 Endre Szemerédi proved –
by elementary combinatorial means – the sensational result that any subset S of
positive upper density contains arbitrarily long arithmetic progressions, a vast gen-
eralization of a famous theorem of van der Waerden (on “colorings”) which was
conjectured by Erdős and Turan in 1936.7 Unfortunately this great theorem does
not apply to the primes, which have zero density.

However, Erdős and Turan made the much more ambitious conjecture that any
substantial subset should contain arbitrarily long arithmetic progressions. Thus,
when Green and Tao proved in 2002 that there are arbitrarily long arithmetic pro-
gressions in the primes, they verified a very special case of this conjecture. Doubt-
less many mathematicians are now reconsidering the Erdős-Turan conjecture with
renewed seriousness.

5. Euclid-Mullin Sequences

Let c ∈ Z+, a ∈ Z•, and let q1 be a prime number, such that

gcd(a, cq1) = 1, a+ cq1 ≥ 2.

Fn ∈ Z+, having chosen primes q1, . . . , qn, we take qn+1 to be a prime divisor of

a+ cq1 · · · qn.
Note first that a+ cq1 · · · qn ≥ a+ cq1 ≥ 2, so such a prime divisor exists. Moreover
we assume by induction that gcd(a, cq1 · · · qn) = 1. Then if qn+1 = qi for some
1 ≤ i ≤ n then since qi = qn+1 | a + cq1 · · · qn, we have qi | a: contradiction.
So gcd(q1 · · · qn, qn+1) = 1. Thus if qn+1 | a, then qn+1 | c, contradiction. So
gcd(a, cq1 · · · qn+1) = 1.

For example, take (q1, c, a) = (2, 1, 1). Then

a+ cq1 = 1 + 1 · 2 = 3, so q2 = 3.

a+ cq1q2 = 1 + 1 · 2 · 3 = 7, so q3 = 7.

a+ cq1q2q3 = 1 + 1 · 2 · 3 · 7 = 43, soq4 = 43.

But:
a+ cq1q2q3q4 = 1 + 2 · 3 · 7 · 43 = 13 · 139,

and now we see that our above procedure is valid but not completely determinate:
we could follow it by taking either q5 = 13 or q5 = 139. In 1963 the American
Mathematical Monthly published Research Problems, including one by A.A. Mullin.
Still in the case (q1, c, a) = (2, 1, 1), Mullin suggested two recipes for resolving the
indeterminacy: in his first sequence, we take qn+1 to be the least prime divisor
of a + cq1 · · · qn, and in his second sequence we take qn+1 to be the greatest
prime divisor of a+ cq1 · · · qn. Later authors have spoken of the first and second
Euclid-Mullin sequences. These definitions carry over immediately to the case
of general (q1, c, a): taking the least prime divisor we define a sequence of distinct

7Several other mathematicians have devoted major parts of their career to bringing more

sophisticated technology to bear on this problem, obtaining quantitative improvements of Sze-
merédi’s theorem. Notably Timothy Gowers received the Fields Medal in 1998 for his work in

this area. One must wonder whether the fact that Szemerédi did not receive the Fields Medal

for his spectacular result is an instance of the prejudice against combinatorial mathematics in the
mainstream mathematical community. (The extent of this prejudice also renders the plot of the

movie “Good Will Hunting” somewhat implausible.)
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primes EML1(q1, c, a), and taking the greatest prime divisor we define a sequence
of distinct primes EML2(q1, c, a).

Example 10.9. a) The known terms of EML1(2, 1, 1) are8

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003,

30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227,

643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19,

577, 223, 139703, 457, 9649, 61, 4357,

227432689108589532754984915075774848386671439568260420754414940780761245893,

59, 31, 211

The last four terms were computed in 2012. The sequence behaves very irregularly,
and determining when or even whether a given prime occurs in the sequence appears
to be very difficult. For instance, only in 2012 did we learn that 31 appears in
EML1(2, 1, 1, ), and at the time of this writing it is not known whether 41 appears
in the sequence.
b) The known terms of EML2(2, 1, 1) are ...

8courtesy of https://oeis.org/A000945 and http://www.mersenneforum.org/showpost.

php?p=311145&postcount=52



CHAPTER 11

The Prime Number Theorem and the Riemann
Hypothesis

1. Some History of the Prime Number Theorem

Recall we have defined, for positive real x,

π(x) = # {primes p ≤ x}.
The following is probably the single most important result in number theory.

Theorem 11.1. (Prime Number Theorem) We have π(x) ∼ x
log x ; i.e.,

lim
x→∞

π(x) log x

x
= 1.

1.1. Gauss at 15. The prime number theorem (affectionately called “PNT”)
was apparently first conjectured in the late 18th century, by Legendre and Gauss
(independently). In particular, Gauss conjectured an equivalent – but more ap-
pealing – form of the PNT in 1792, at the age of 15 (!!!).

Namely, he looked at the frequency of primes in intervals of lengths 1000:

∆(x) =
π(x)− π(x− 1000)

1000
.

Computing by hand, Gauss observed that ∆(x) seemed to tend to 0, however very
slowly. To see how slowly he computed the reciprocal, and found

1

∆(x)
≈ log x,

meaning that

∆(x) ≈ 1

log x
.

Evidently 15 year old Gauss knew both differential and integral calculus, because
he realized that ∆(x) was a slope of the secant line to the graph of y = π(x). When
x is large, this suggests that the slope of the tangent line to π(x) is close to 1

log x ,

and hence he guessed that the function

Li(x) :=

∫ x

2

dt

log t

was a good approximation to π(x).

Proposition 11.2. We have

Li(x) ∼ x

log x
.
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Proof. A calculus exercise (L’Hôpital’s rule!). �

Thus PNT is equivalent to π(x) ∼ Li(x). The function Li(x) – called the logarith-
mic integral – is not elementary, but has a simple enough power series expansion
(see for yourself). Nowadays we have lots of data, and one can see that the error
|π(x)−Li(x)| is in general much smaller than |π(x)− x

log x |, so the dilogarithm gives

a “better” asymptotic expansion. (How good? Read on.)

1.2. A partial result. As far as I know, there was no real progress for more
than fifty years, until the Russian mathematician Pafnuty Chebyshev proved the
following two impressive results.

Theorem 11.3. (Chebyshev, 1848, 1850)
a) There exist explicitly computable positive constants C1, C2 such that for all x,

C1x

log x
< π(x) <

C2x

log x
.

b) If limx→∞
π(x)

x/(log x) exists, it necessarily equals 1.

Remarks:

(i) For instance, one version of the proof gives C1 = 0.92 and C2 = 1.7.
(But I don’t know what values Chebyshev himself derived.)

(ii) The first part shows that π(x) is of “order of magnitude” x
log x , and the second

shows that if it is “regular enough” to have an asymptotic value at all, then it must
be asymptotic to x

log x . Thus the additional trouble in proving PNT is establishing

this regularity in the distribution of the primes, a quite subtle matter. (We have
seen that other arithmetical functions, like ϕ and d are far less regular than this –
their upper and lower orders differ by more than a multiplicative constant, so the
fact that this regularity should exist for π(x) is by no means assured.)

(iii) Chebyshev’s proof is quite elementary: it uses less machinery than some of
the other topics in this course. However we will not give the time to prove it here:
blame it on your instructor’s failure to “understand” the proof.

1.3. A complex approach.

The next step was taken by Riemann in 1859. We have seen the zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

and its relation to the primes (e.g. obtaining a proof that π(x) → ∞ by the
above factorization). However, Riemann considered ζ(s) as a function of a complex
variable: s = σ + it (indeed he used these rather strange names for the real and
imaginary parts in his 1859 paper, and we have kept them ever since), so

ns = nσ+it = nσnit.

Here nσ is a real number and nit = ei(logn)t is a point on the unit circle, so in
modulus we have |ns| = nσ. From this we get that ζ(s) is absolutely convergent for
σ = <(s) > 1. Using standard results from analysis, one sees that it indeed defines
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an analytic function in the half-plane σ > 1. Riemann got the zeta function named
after him by observing the following:

Fact: ζ(s) extends (“meromorphically”) to the entire complex plane and is an-
alytic everywhere except for a simple pole at s = 1.

We recall in passing, for those with some familiarity with complex variable the-
ory, that the extension of an analytic function defined in one (connected) domain
in the complex plane to a larger (connected) domain is unique if it exists at all: this
is the principle of analytic continuation. So the zeta function is well-defined. The
continuation can be shown to exist via an integral representation valid for σ > 0
and a functional equation relating the values of ζ(s) to that of ζ(1 − s). (Note
that the line σ = 1

2 is fixed under the s 7→ 1− s.) Riemann conjectured, but could
not prove, certain simple (to state!) analytic properties of ζ(s), which he saw had
profound implications on the distribution of the primes.

1.4. A nonvanishing theorem.

It is a testament to the difficulty of the subject that even after this epochal paper
the proof of PNT did not come for almost 40 years. In 1896, Jacques Hadamard
and Charles de la Vallée-Poussin proved PNT, independently, but by rather similar
methods. The key point in both of their proofs (which Riemann could not estab-
lish) was that ζ(s) 6= 0 for any s = 1 + it, i.e., along the line with σ = 1.

Their proof does come with an explicit error estimate, albeit an ugly one.

Theorem 11.4. There exist positive constants C and a such that

|π(x)− Li(x)| ≤ Cxe−a
√

log x.

It is not completely obvious that this is indeed an error bound, i.e., that

lim
x→∞

e−a
√

log x

Li(x)
= 0.

This is left as another calculus exercise.

1.5. An elementary proof is prized.

Much was made of the fact that the proof of PNT, a theorem of number theory,
used nontrivial results from complex analysis (which by the end of the 19th century
had been developed to a large degree of sophistication). Many people speculated on
the existence of an “elementary” proof, a yearning that to my knowledge was never
formalized precisely. Roughly speaking it means a proof that uses no extraneous
concepts from higher analysis (such as complex analytic functions) but only the
notion of a limit and the definition of a prime. It thus caused quite a stir when Atle
Selberg and Paul Erdős (not independently, but not quite collaboratively either –
the story is a controversial one!) gave what all agreed to be an elementary proof of
PNT in 1949. In 1950 Selberg (but not Erdős) received the Fields Medal.

In recent times the excitement about the elementary proof has dimmed: most
experts agree that it is less illuminating and less natural than the proof via Rie-
mann’s zeta function. Moreover the elementary proof remains quite intricate: ironi-
cally, more so than the analytic proof for those with some familiarity with functions
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of a complex variable. For those who do not, the time taken to learn some complex
analysis will probably turn out to be time well spent.

1.6. Equivalents of PNT.

Many statements are “equivalent” to PNT: i.e., it is much easier to show that
they imply and are implied by PNT than to prove them. Here’s one:

Theorem 11.5. Let pn be the nth prime. Then

pn ∼ n log n.

Note that this result implies (by the integral test) that
∑
p≤n

1
p ∼ log logn; strangely

this consequence is much easier to prove than PNT itself.

Far more intriguing is that that PNT is equivalent to an asymptotic formula for
the average value of the Möbius function:

Theorem 11.6.

lim
N→∞

∑N
n=1 µ(n)

N
= 0.

Recall that the Möbius function is 0 if n is not squarefree (which we know occurs
with density 1 − 6

π2 ) and is (−1)r if n is a product of r distinct primes. We also
saw that the set of all positive integers divisible by only a bounded number, say
k, of primes is equal to zero, so most integers 1 ≤ n ≤ N are divisible by lots of
primes, and by adding up the values of µ we are recording +1 if this large number
is even and −1 if this large number is odd. It is very tempting to view this parity
as being essentially random, similar to what would happen if we flipped a coin for
each (squarefree) n and gave ourselves +1 if we got heads and −1 if we got tails.

With this “randomness” idea planted in our mind, the above theorem seems to
assert that if we flip a large number N of coins then (with large probability) the
number of heads minus the number of tails is small compared to the total number
of coin flips. But now it seems absolutely crazy that this result is equivalent to
PNT since – under the (as yet completely unjustified) assumption of randomness –
it is far too weak: doesn’t probability theory tell us that the running total of heads
minus tails will be likely to be on the order of the square root of the number of
coin flips? Almost, but not quite. And is this probabilistic model justified? Well,
that is the $ 1 million dollar question.

2. Coin-Flipping and the Riemann Hypothesis

Let us define the Mertens function

M(N) =

N∑
n=1

µ(n).

The goal of this lecture is to discuss the following seemingly innocuous question.

Question 5. What is the upper order of M(N)?

Among other incentives for studying this question there is a large financial one: if
the answer is close to what we think it is, then proving it will earn you $ 1 million!
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Recall µ(n) takes on only the values ±1 and 0, so the “trivial bound” is

M(N) ≤ N.
In fact we can do better, since we know that µ(n) = 0 iff n is not squarefree, and
we know, asymptotically, how often this happens. This leads to an asymptotic
expression for the “absolute sum”:

N∑
n=1

|µ(n)| = #{squarefree n ≤ N} ∼ 6

π2
N.

However, in the last lecture we asserted that M(N)
N → 0, which we interpreted

as saying that the average order of µ is asymptotically 0. Thus the problem is
one of cancellation in a series whose terms are sometimes positive and sometimes
negative. Stop for a second and recall how much more complicated the theory of
“conditional” convergence of such series is than the theory of convergence of series
with positive terms. It turns out that the problem of how much cancellation to
expect in a series whose terms are sometimes positive and sometimes negative (or
a complex series in which the arguments of the terms are spread around on the
unit circle) is absolutely a fundamental one in analysis and number theory. Indeed
in such matters we can draw fundamental inspiration (if not proofs, directly) from
probability theory, and to do so – i.e., to make heuristic probabilistic reasoning
even in apparently “deterministic” situations – is an important theme in modern
mathematics ever since the work of Erdős and Kac in the mid 20th century.

But our story starts before the 20th century. In the 1890’s Mertens1 conjectured:

(MC1) M(N) ≤
√
N for all sufficiently large N .

This is quite bold. As we have seen, in studying orders of magnitude, it is safer to
hedge one’s bets by at least allowing a multiplicative constant, leading to the weaker

(MC2) M(N) ≤ C
√
N for all N .

The noted Dutch mathematician Stieltjes claimed a proof of (MC2) in 1885. But
his proof was never published and was not found among his papers after his death.

It would be interesting to know why Mertens believed (MC1). He did check the
inequality for all N up to N = 104: this is an amusingly small search by contem-
porary standards. The problem is not as computationally tractable as one might
wish, because computing the Möbius function requires factorization of n: that’s
hard! Nevertheless we now know that (MC1) holds for all N ≤ 1014.

These are hard problems: while experts have been dubious about (MC1) and
(MC2) for over a century, (MC1) was disproved only in 1985.

Theorem 11.7. (Odlyzko-te Riele [OlR85]) There are explicit constants C1 >
1, C2 < −1 such that

lim sup
N

M(N)√
N
≥ C1,

1Franz Mertens, 1840–1927
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lim inf
N

M(N)√
N
≤ C2.

In plainer terms, each of the inequalities −N ≤ M(N) and M(N) ≤ N fails for
infinitely many N . The Odlyzko-te Riele proof doesnot supply a concrete value of N
for whichM(N) >

√
N , but soon after J. Pintz showed [Pi87] thatM(N) >

√
N for

some N < e3.21·1064 ≈ 101.4·1064

(note the double exponential: this is an enormous
number!). Recent work of Saouter and te Riele [SatR14] shows that this inequality

holds for some N < e1.004·1033

. Yet more recently Best and Trudgian have shown
that in Theorem 11.7 one may take C1 = 1.6383 C2 = −1.6383 [BTxx].

Remark 11.8. An earlier draft contained the claim that M(N) >
√
N for some

N < 10154. I thank Tim Trudgian for bringing this to my attention. Not only is
a counterexample to (MC1) for such a “small” value of N not known, in fact it
seems quite unlikely that there is a counterexample at anything close to this order
of magnitude. Trudgian recommends a work of Kotnik and van de Lune [KvdL04]
which contains experimental data and conjectures on M(N). In particular they give
a conjecture which suggests that the first counterexample to (MC1) should occur

at roughly N ≈ 102.3·1023

: i.e., much smaller than the known counterexamples and
much larger than 10154. It should be emphasized that such conjectures are rather
speculative, and the literature contains several incompatible such conjectures.

We still do not know whether (MC2) holds – so conceivably Stieltjes was right all
along and the victim of some terrible mix up – although I am about to spin a tale
to try to persuade you that (MC2) should be almost, but not quite, true.

But first, what about the million dollars?

In the last section we mentioned two interesting “equivalents” of PNT. The fol-
lowing theorem takes things to another level:

Theorem 11.9. The following (unknown!) assertions are equivalent:

a) For all ε > 0, there exists a constant Cε such that |M(N)| ≤ CεN
1
2 +ε.

b) |π(x)− Li(x)| ≤ 1
8π

√
x log x for all x ≥ 2657.

c) Suppose ζ(s0) = 0 for some s0 with real part 0 < <(s0) < 1. Then <(s0) = 1
2 .

We note that the somewhat abstruse part c) – which refers to the behavior of the
zeta function in a region which it is not obvious how it is defined – is the Riemann
hypothesis (RH). Thus we care about RH (for instance) because it is equivalent
to a wonderful error bound in the Prime Number Theorem.

In 2000 the Clay Math Institute set the Riemann Hypothesis as one of seven $ 1
million prize problems. If you don’t know complex analysis, no problem: just prove
part a) about the order of magnitude of the partial sums of the Möbius function.

Note that (MC1) (which is false!) =⇒ (MC2) =⇒ condition a) of the theo-
rem, so in announcing a proof of (MC2) Stieltjes was announcing a stronger result
than the Riemann hypothesis, which did not have a million dollar purse in his day
but was no less a mathematical holy grail then than now. (So you can decide how
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likely it is that Stieltjes’s paper got lost in the mail and never found.)

But why should we believe in the Riemann hypothesis anyway? There is some
experimental evidence for it – in any rectangle |t| ≤ N , 0 < σ < 1 the zeta function
can have only finitely many zeros (this holds for any function meromorphic on C),
so one can “find all the zeros” up to a certain imaginary part, and the fact that all of
these zeros lie on the critical line – i.e., have real part 1

2 – has been experimentally
confirmed in a certain range of t. It is also known that there are infinitely many
zeros lying on the critical line (Hardy) and that even a positive proportion of them
as we go up lie on the critical line (Selberg – as I said, a great mathematician). For
various reasons this evidence is rather less than completely convincing.

So let us go back to randomness – suppose µ really were a random variable. What
would it do, in all probability?

We can consider instead the random walk on the integers, where we start at 0
and at time i, step to the right with probability 1

2 and step to the left with prob-

ability 1
2 . Formally speaking, our walk is given by an infinite sequence {εi}∞i=1,

each εi = ±1. The set of all such sign sequences, {±1}∞ forms in a natural way a
probability space (meaning it has a natural measure – but don’t worry about the
details; just hold on for the ride). Then we define a random variable

S(N) = ε1 + . . .+ εn,

meaning a function that we can evaluate on any sign sequence, and it tells us where
we end up on the integers after N steps. Now the miracle of modern probability
theory is that it makes perfect sense to ask what the lim sup of SN is.

If you’ve had a course in probability theory (good for you. . .) you will probably

remember that SN should be no larger than
√
N , more or less. But this seems

disappointing, because that is (MC1) (or maybe (MC2)), which feels quite dubious
for the partial sums of the Möbius function. But in between Mertens’ day and ours
probability theory grew up, and we now know that

√
N is not exactly the correct

upper bound. Rather, it is given by the following spectacular theorem:

Theorem 11.10. (Kolmogorov) With probability 1, we have

lim sup
N→∞

SN√
2N log logN

= 1.

Thus if you flip a fair coin N times, then in all probability there will be infinitely
many moments in time when your running tally of heads minus tails is larger than
any constant times the square root of the number of flips. (Similarly, and symmet-
rically, the limit infimum is −1.) So true randomness predicts that (MC2) is false.
On the other hand, it predicts that the Riemann Hypothesis is true, since indeed
for all ε > 0 there exists a constant Cε such that

√
2 log logN < CεN

ε.

So if we believed in the “true randomness” of µ, we would believe the following

Conjecture 11.11. (Good-Churchhouse [GC68])

lim sup
N→∞

M(N)√
N log logN

<∞.
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lim inf
N→∞

M(N)√
N log logN

> −∞.

Later mathematicians have extended these calculations and suggested refinements
of Conjecture 11.11. Based in part on numerical experimentation, Kotnik and van
de Lune [KvdL04] instead conjecture

lim sup
N→∞

M(N)√
N log log logN

∈ (0,∞).

This slower growth informs their estimate of the smallest counterexample to (MC1)).

Just to make sure, this conjecture is still significantly more precise than the |M(N)| ≤
CεN

1
2 +ε which is equivalent to the Riemann Hypothesis, making it unclear exactly

how much we should pay the person who can prove it: $ 2 million? Or more??

Kolmogorov’s “law of the iterated logarithm,” and hence Conjecture 11.11, does
not seem to be very well-known outside of probabilistic circles.2 In searching the
literature I found a paper from the 1960’s predicting such a “logarithm law” for
M(N). More recently I have seen another paper suggesting that perhaps it should
be
√

log log logN instead of
√

log logN . To be sure, the Möbius function is clearly
not random, so one should certainly be provisional in one’s beliefs about the pre-
cise form of the upper bounds on M(N). The game is really to decide whether the
Möbius function is “random enough” to make the Riemann hypothesis true.

Nevertheless the philosophy expressed here is a surprisingly broad and deep one:
whenever one meets a sum SN of N things, each of absolute value 1, and varying
in sign (or in argument in the case of complex numbers), one wants to know how
much cancellation there is, i.e., how far one can improve upon the trivial bound
of |SN | ≤ N . The mantra here is that if there is really no extra structure in

the summands – i.e., “randomness” – then one should expect SN ≈
√
N , more or

less! More accurately the philosophy has two parts, and the part that expresses
that |SN | should be no smaller than

√
N unless there is hidden structure is an

extremely reliable one. An example of hidden structure is an = e
2πi
N , when in fact

n∑
n=1

an = 0.

But here we have chosen to sum over all of the Nth roots of unity in the complex
plane, a special situation. The second part of the philosophy allows us to hope that
SN is not too much larger than

√
N . In various contexts, any of C

√
N ,
√
N logN ,

N
1
2 +ε, or even N1−δ for some δ > 0, may count as being “not too much larger.” So

in truth our philosophy of almost squareroot error is a little bit vague. But
it can be, and has been, a shining light in a dark place,3 and we will see further
instances of such illumination.

2I learned about Kolmogorov’s theorem from a talk at Harvard given by W. Russell Mann.
3When all other lights go out?



CHAPTER 12

The Gauss Circle Problem and the Lattice Point
Enumerator

1. Introduction

We wish to study a very classical problem: how many lattice points lie on or inside
the circle x2 + y2 = r2? Equivalently, for how many pairs (x, y) ∈ Z2 do we have
x2 + y2 ≤ r2? Let L(r) denote the number of such pairs.

Upon gathering a bit of data, it becomes apparent that L(r) grows quadratically

with r, which leads to consideration of L(r)
r2 . Now:

L(10)/102 = 3.17.

L(100)/1002 = 3.1417.

L(1000)/10002 = 3.141549.

L(104)/108 = 3.14159053.

The pattern is pretty clear!

Theorem 12.1. As r →∞, we have L(r) ∼ πr2. Explicitly,

lim
r→∞

L(r)

πr2
= 1.

Once stated, this result is quite plausible geometrically: suppose that you have to
tile an enormous circular bathroom with square tiles of side length 1 cm. The total
number of tiles required is going to be very close to the area of the floor in square
centimeters. Indeed, starting somewhere in the middle you can do the vast major-
ity of the job without even worrying about the shape of the floor. Only when you
come within 1 cm of the boundary do you have to worry about pieces of tiles and
so forth. But the number of tiles required to cover the boundary is something like a
constant times the perimeter of the region in centimeters – so something like Cπr –
whereas the number of tiles in the interior is close to πr2. Thus the contribution to
the boundary is neglible: precisely, when divided by r2, b it approaches 0 as r →∞.

I myself find this heuristic convincing but not quite rigorous. More precisely, I
believe it for a circular region and become more concerned as the boundary of the
region becomes more irregularly shaped, but the heuristic doesn’t single out exactly
what nice properties of the circle are being used. Moreover the “error” bound is
fuzzy: it would be useful to know an explicit value of C.

To be more quantitative about it, we define the error

E(r) = |L(r)− πr2|,

153



154 12. THE GAUSS CIRCLE PROBLEM AND THE LATTICE POINT ENUMERATOR

so that Theorem 12.1 is equivalent to the statement

lim
r→∞

E(r)

r2
= 0.

The above heuristic suggests that E(r) should be bounded above by a linear func-
tion of r. The following elementary result was proved by Gauss in 1837.

Theorem 12.2. For all r ≥ 7, E(r) ≤ 10r.

Proof. Let P = (x, y) ∈ Z2 be such that x2 + y2 ≤ r2. To P we associate the
square S(P ) = [x, x+ 1]× [y, y + 1], i.e., the unit square in the plane which has P
as its lower left corner. Note that the diameter of S(P ) – i.e., the greatest distance

between any two points of S(P ) – is
√

2. So, while P lies within the circle of radius

r, S(P ) may not, but it certainly lies within the circle of radius r +
√

2. It follows
that the total area of all the squares S(P ) – which is nothing else than the number

L(r) of lattice points – is at most the area of the circle of radius r +
√

2, i.e.,

L(r) ≤ π(r +
√

2)2 = πr2 + 2
√

2πr + 2π.

A similar argument gives a lower bound for L(r). Namely, if (x, y) is any point

with distance from the origin at most r −
√

2, then the entire square (bxc, bx +
1c)× (byc, by + 1c) lies within the circle of radius r. Thus the union of all the unit
squares S(P ) attached to lattice points on or inside x2 + y2 = r covers the circle of

radius r −
√

2, giving

L(r) ≥ π(r −
√

2)2 = πr2 − 2
√

2πr + 2π.

Thus

E(r) = |L(r)− πr2| ≤ 2π + 2
√

2πr ≤ 7 + 9r ≤ 10r,

the last inequality holding for all r ≥ 7. �

This argument skillfully exploits the geometry of the circle. I would like to present
an alternate argument with a much different emphasis.

The first step is to notice that instead of counting lattice points in an expand-
ing sequence of closed disks, it is equivalent to fix the plane region once and for all
– here, the unit disk D : x2+y2 ≤ 1 – and consider the number of points (x, y) ∈ Q2

with rx, ry ∈ Z. That is, instead of dividing the plane into squares of side length
one, we divide it into squares of side length 1

r . If we now count these “ 1
r -lattice

points” inside D, a moment’s thought shows that this number is precisely L(r).

What sort of thing is an area? In calculus we learn that areas are associated to inte-
grals. Here we wish to consider the area of the unit disk as a double integral over
the square [−1, 1]2. In order to do this, we need to integrate the characteristic
function χD of the unit disk: that is, χ(P ) evaluates to 1 if P ∈ D and χ(P ) = 0
otherwise. The division of the square [−1, 1]2 into 4r2 subsquares of side length 1

r
is exactly the sort of sequence of partitions that we need to define a Riemann sum:

that is, the maximum diameter of a subrectangle in the partition is
√

2
r , which tends

to 0 as r →∞. Therefore if we choose any point P ∗i,j in each subsquare, then

Σr :=
1

r2

∑
i,j

χ(P ∗i,j)
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is a sequence of Riemann sums for χD, and thus

lim
r→∞

Σr =

∫
[−1,1]2

χD = Area(D) = π.

But we observe that Σr is very close to the quantity L(r). Namely, if we take each
sample point to be the lower left corner of corner of the corresponding square, then
r2Σr = L(r) − 2, because every such sample point is a lattice point (which gets
multiplied by 1 iff the point lies inside the unit circle) and the converse is true
except that the points (1, 0) and (0, 1) are not chosen as sample points. So

lim
r→∞

L(r)

r2
= lim
r→∞

L(r)− 2 + 2

r2
= lim
r→∞

Σr + 0 = π.

The above argument is less elementary than Gauss’s and gives a weaker result: no
explicit upper bound on E(r) is obtained. So why have we bothered with it? The
answer lies in the generality of this latter argument. We can replace the circle by
any plane region R ⊂ [−1, 1]2. For any r ∈ R>0, we define the r-dilate of R,

rR = {rP | P ∈ R}.
This is a plane region which is “similar” to R in the usual sense of Euclidean
geometry. Note that if R = D is the closed unit disk then rD = {(x, y) ∈ R2 | x2 +
y2 ≤ r2} is the closed disk of radius r. Therefore a direct generalization of the
counting function L(r) is

LR(r) = #{(x, y) ∈ Z2 ∩ rR}.

As above, we can essentially view LR(r)
r2 as a sequence of Riemann sums for

∫
[−1,1]2

χR
– “essentially” because any lattice points with x or y coordinate equal to 1 exactly
will contribute to LR(r) but not to the Riemann sum. But since the total number
of 1

r -squares which touch the top and/or right sides of the square [−1, 1]2 is 4r+ 1,

this discrepancy goes to 0 when divided by r2. (Another approach is just to assume
that R is contained in the interior (−1, 1)2 of the unit square. It should be clear
that this is no real loss of generality.) We get the following result:

Theorem 12.3. Let R ⊂ [−1, 1]2 be a planar region. Then

(40) lim
r→∞

LR(r)

r2
= Area(R).

There remains a technical issue: what do we mean by a “plane region”? Any subset
of [−1, 1]2? A Lebesgue measurable subset? Neither of these is correct: take

I = {(x, y) ∈ [−1, 1]2 | x, y ∈ R \Q},
i.e., the subset of the square [−1, 1]2 consisting of points both of whose coordinates
are irrational. Then I is obtained by removing from [−1, 1]2 a set of Lebesgue mea-
sure zero, so I has Lebesgue measure 4 and thus

∫
[−1,1]2

χI exists in the Lebesgue

sense and is equal to 4. On the other hand, I contains no rational points whatso-
ever, so for all r ∈ Z+, LR(r) = 0. Thus, if we restrict r to positive integral values,
then both sides of (40) are well-defined, but they are unequal: 0 6= 4.

Looking back at the argument, what is needed is precisely the Riemann inte-
grability of the characteristic function χD of the region D. It is a basic fact that
a bounded function on a bounded domain is Riemann integrable if and only if it
is continuous except on a set of measure zero. The characteristic function χD is
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discontinuous precisely along the boundary of D, so the necessary condition on D
is that its boundary have measure zero. (Explicitly, this means that for any ε > 0,
there exists an infinite sequence Ri of open rectangles whose union covers D and
such that the sum of the areas of the rectangles is less than or equal to ε.) In
geometric measure theory, such regions are called Jordan measurable, and this
is the condition we need on our “planar region”.

Jordan measurability is a relatively mild condition: for instance any region bounded
by a piecewise smooth curve (a circle, ellipse, polygon. . .) is Jordan measurable. In
fact a large collection of regions with fractal boundaries are Jordan measurable:
for instance Theorem 12.3 applies with R a copy of the Koch snowflake, whose
boundary is a nowhere differentiable curve.

2. Better Bounds

2.1. The soft/hard dichotomy. As in the previous section, suppose we have
a plane region R ⊂ [−1, 1]2, and consider the function LR(r) which counts the
number of lattice points in the dilate rR of R. The main qualitative, or soft, result
of the last section was

LR(r) ∼ Area(R)r2.

But if we take a more quantitative, or hard, view, this is only the beginning.
Namely, as before, we define

ER(r) = |LR(r)−Area(R)r2|.

Theorem 12.3 tells us that limr→∞ER(r) = 0: this is a fundamentally soft-analytic
result. A hard-analytic result would give an explicit upper bound on ER(r). The-
orem 12.1 does just this, albeit in the special case where R is the closed unit disk:

ER(r) ≤ 10r.

Here are some natural questions:

Question 6. (Gauss’s Circle Problem) In the case of R = D, how much can
one improve on Gauss’s bound ED(r) ≤ 10r? Can we find nontrivial lower bounds?
What is the “truth” about ED(r)?

Question 7. Can one give an explicit upper bound on ER(r) for an arbitrary
plane region R? Could we have, for instance, that Er(R) is always bounded by a
linear function of r? Or by an even smaller power of r?

Question 6 has received much attention over the years. Let’s look again at the data:

r = 10 : L(r) = 317, πr2 ≈ 314, E(r) = 2.8407 . . .

r = 100 : L(r) = 31417, πr2 ≈ 31415.926, E(r) = 1.0734 . . .

r = 1000 : L(r) = 3141549, πr2 ≈ 3141592.653, E(r) = 43.653 . . .

r = 10000 : L(r) = 314159053, πr2 ≈ 314159265.358, E(r) = 212.3589 . . .

We now attempt to describe E(r) by a power law: i.e., to find a real number α
such that E(r) grows like rα. If E(r) ≈ rα, then logE(r) ≈ α log r, so that to test

for a power law we should consider the ratio P (r) := logE(r)
log r and see whether it
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tends towards some constant α as r →∞. We have at the moment only four values
of r, so this is quite rough, but nevertheless let’s try it:

r = 10 : P (r) = .453 . . . ,

r = 100 : P (r) = .01538 . . . ,

r = 1000 : P (r) = .54667 . . . ,

r = 10000 : P (r) = .5817 . . . .

Whatever is happening is happening quite slowly, but it certainly seems like E(r) ≤
Crα for some α which is safely less than 1.

The first theoretical progress was made in 1904 by a Polish undergraduate, in
competition for a prize essay sponsored by the departments of mathematics and
physics at the University of Warsaw. The student showed that there exists a con-
stant C such that ED(r) ≤ Cr 2

3 . His name was Waclaw Sierpinski, and this was
the beginning of a glorious mathematical career.1

On the other hand, in 1916 G.H. Hardy and E. Landau, independently, proved
that there does not exist a constant C such that E(r) ≤ Cr

1
2 . The conventional

wisdom however says that r
1
2 is very close to the truth: namely, it is believed that

for every real number ε > 0, there exists a constant Cε such that

(41) E(r) ≤ Cεr
1
2 +ε.

Remark: It is not hard to show that this conjecture implies that

lim
r→∞

P (r) = lim
r→∞

logE(r)

log r
=

1

2
.

(Note that the calculations above certainly are not sufficient to suggest this result.
It would therefore be interesting to extend these calculations and see if convergence
to 1

2 becomes more apparent.)

Note that Theorem 12.1 above tells us we can take ε = 1
2 and Cε = 10, whereas

Sierpinski showed that we can take ε = 1
6 .2 The best current bound was proven by

Huxley in 1993: he showed that (41) holds for every ε > 19/146 = 0.13 . . .. In early
2007 a preprint of Cappell and Shaneson appeared on the arxiv, which claims to
establish (41) for every ε > 0. As of this writing (Spring of 2009) the paper has not
been published, nor do I know any expert opinion on its correctness.

As for Question 7, we begin with the following simple but enlightening example.

Example: Let R = [−1, 1]2 be the square of sidelength 2 centered at the origin.
Then Area(R) = 4, so that for any r ∈ R+ we have Area(rR) = 4r2. On the other
hand, for r ∈ Z+, we can determine LR(r), the number of lattice points in [−r, r]2

1Sierpinski (1882-1969) may well be the greatest Polish mathematician of all time, and Poland
is a country with an especially distinguished mathematical tradition. Sierpinski is most remem-

bered nowadays for the fractal triangle pattern that bears his name. I have encountered his work
several times over the years, and the work on the Gauss Circle Problem is typical of his style: his

theorems have elementary but striking statements and difficult, intricate proofs.
2I don’t know what value he had for C 1

3
or even whether his proof gave an explicit value.
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exactly: there are 2r+ 1 possible values for the x coordinate and the same number
of possible values for the y-coordinate, so that Lr(R) = (2r + 1)2 = 4r2 + 4r + 1.
In this case we have

ER(r) = |Lr(R)−Area(rR)| = 4r + 1,

so that the true error is a linear function of r. This makes us appreciate Sierpinski’s
result more: to get a bound of ED(r) ≤ Crα for some α < 1 one does need to use
properties specific to the circle: in the roughest possible terms, there cannot be as
many lattice points on the boundary of a curved region as on a straight line segment.

More formally, in his 1919 thesis van der Corput proved the following result:

Theorem 12.4. Let R ⊂ R2 be a bounded planar region whose boundary is
C∞-smooth and with nowhere vanishing curvature. Then there exists a constant C
(depending on R) such that for all sufficiently large r ∈ R>0,

|LR(r)−Area(R)r2| ≤ Cr 2
3 .

It is also known that this result is best possible – there are examples of regions with
very nice boundaries in which the power 2

3 cannot be lowered. (Thus again, the
circle is very special!) There are many results which study how the behavior of the
error term depends on the assumptions one makes about the boundary of R. To go
to the other extreme, a 1997 result of L. Colzani shows that for any bounded region
R whose boundary has fractal dimension at most α (this has a technical meaning
particular to Colzani’s paper; we do not give an explicit definition here), then

|Lr(R)−Area(R)r2| ≤ Cr2−α.

As far as I know, it is an open problem to give corresponding lower bounds: for
instance, to construct, for any ε > 0, a region R such that
|Lr(R)−Area(R)r2| > r2−ε for infinitely many positive integers r. (I myself do not
know how to construct such a region for any ε < 1.)

3. Connections to average values

The reader may well be wondering why the Gauss Circle Problem counts as num-
ber theory. On the one hand, as we will see later on, number theory is very much
concerned with counting lattice points in certain planar and spatial reasons. But
more specifically, Gauss’ Circle Problem has to do with the average value of an
arithmetical function.

Namely, define r2(n) to be the function which counts the number of (x, y) ∈ Z2

such that n = x2 + y2. The Full Two Squares Theorem says that r2(n) > 0 iff
2 | ordp(n) for every p ≡ 3 (mod 4). As you have seen in the homework, in prac-
tice this condition behaves quite erratically. Certainly the function r2(n) does not
have any nice limiting behavior at n→∞: on the one hand it is 0 infinitely often,
and on the other hand it assumes arbitrarily large values.

Much more regularity is displayed by the function r2(n) “on average.” Namely,
for any function f : Z+ → C, we define a new function

fave : n 7→ 1

n
(f(1) + . . .+ f(n)) .
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As its name suggests, fave(n) is the average of the first n values of f .

It is also convenient to work also with the summatory function F (n) :=
∑n
k=1 f(k).

The relation between them is simple:

F (n) = n · fave(n).

Theorem 12.5. For f(n) = r2(n), F (n) ∼ πn and fave(n) ∼ π.

Proof. Indeed, F (n) = r2(1) + . . .+ r2(n) counts the number of lattice points
on or inside the circle x2 + y2 ≤ n, excepting the origin. Therefore

F (n) = LD(
√
n)− 1 ∼ π(

√
n)2 − 1 ∼ πn.

�

In this context, the Gauss Circle Problem is equivalent to studying the error between
F (n) and πn. Studying errors in asymptotic expansions for arithmetic functions is
one of the core topics of analytic number theory.

We remark with amusement that the average value of r2(n) is asymptotically con-
stant and equal to the irrational number π: there is no n for which r2(n) = π!

In fact there is a phenomenon here that we should take seriously. A natural ques-
tion is how often is r2(n) = 0? We know that r2(n) = 0 for all n = 4k + 3, so it is
equal to zero at least 1

4 of the time. But the average value computation allows us
to do better. Suppose that there exists a number 0 < α ≤ 1 such that r2(n) = 0 at
most α proportion of the time. Then r2(n) > 0 at least 1 − α of the time, so the
average value of r2(n) is at least 8(1− α). Then π ≥ 8(1− α), or

α ≥ 1− π/8 ≈ .607.

That is, we’ve shown that r2(n) = 0 more than 60% of the time.3

In fact this only hints at the truth. In reality, r2(n) is equal to zero “with prob-
ability one”. In other words, if we pick a large number N and choose at random an
elment 1 ≤ n ≤ N , then the probability that n is a sum of two squares approaches
0 as N → ∞. This exposes one of the weaknesses of the arithmetic mean (one
that those who compose and grade exams become well aware of): without further
assumptions it is unwarranted to assume that the mean value is a “typical” value
in any reasonable sense. To better capture the notion of typicality one can import
further statistical methods and study the normal order of an arithmetic function.
With regret, we shall have to pass this concept over entirely as being too delicate
for our course. See for instance G. Tenenbaum’s text [T] for an excellent treatment.

The lattice point counting argument generalizes straightforwardly (but fruitfully)
to higher-dimensional Euclidean space RN . For instance, the analogous argument
involving lattice points on or inside the sphere of radius r in R3 gives:

Theorem 12.6. The number R3(r) of integer solutions (x, y, z) to x2+y2+z2 ≤
r2 is asymptotic to 4

3πr
3, with error being bounded by a constant times r2.

3This argument was not intended to be completely rigorous, and it isn’t. What it really
shows is that it is not the case that r2(n) = 0 on a set of density at least α = 1− π/8. But this

is morally the right conclusion: see below.
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Corollary 12.7. The average value of the function r3(n), which counts rep-
resentations of n by sums of three integer squares, is asymptotic to 4

3π
√
n.

We can similarly give asymptotic expressions for the average value of rk(n) – the
number of representations of n as a sum of k squares – for any k, given a formula for
the volume of the unit ball in Rk. We leave it to the reader to find such a formula
and thereby compute an asymptotic for the average value of e.g. r4(n).



CHAPTER 13

Minkowski’s Convex Body Theorem

1. The Convex Body Theorem

1.1. Introduction.

We have already considered instances of the following type of problem: given a
bounded subset Ω of Euclidean space RN , to determine #(Ω ∩ ZN ), the number
of integral points in Ω. It is clear however that there is no answer to the problem
in this level of generality: an arbitrary Ω can have any number of lattice points
whatsoever, including none at all.

In the pervious chapter we counted lattice points not just on Ω itself but on dilates
rΩ of Ω by positive integers r. We found that for any “reasonable” Ω,

(42) LΩ(r) := #(rΩ ∩ ZN ) ∼ rN Vol(Ω).

More precisely, we showed that this holds for all bounded sets Ω which are Jordan
measurable, meaning that the characteristic function 1Ω is Riemann integrable.

It is also natural to ask for sufficient conditions on a bounded subset Ω for it
to have lattice points at all. One of the first results of this kind is a theorem of
Minkowski, which is both beautiful in its own right and indispensably useful in the
development of modern number theory (in several different ways).

Before stating the theorem, we need a bit of terminology. Recall that a subset
Ω ⊂ RN is convex if for all pairs of points P,Q ∈ Ω, also the entire line segment

PQ = {(1− t)P + tQ | 0 ≤ t ≤ 1}

is contained in Ω. A subset Ω ⊂ RN is centrally symmetric if whenever it con-
tains a point v ∈ RN it also contains −v, the reflection of v through the origin.

A convex body is a nonempty, bounded, centrally symmetric convex set.

Some simple observations and examples:

i) A subset of R is convex iff it is an interval.
ii) A regular polygon together with its interior is a convex subset of R2.
iii) An open or closed disk is a convex subset of R2.
iv) Similarly, an open or closed ball is a convex subset of RN .
v) If Ω is a convex body, then ∃ P ∈ Ω; then −P ∈ Ω and 0 = 1

2P + 1
2 (−P ) ∈ Ω.

vi) The open and closed balls of radius r with center P are convex bodies iff P = 0.

161
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Warning: The term “convex body” often has a similar but slightly different mean-
ing: e.g., according to Wikipedia, a convex body is a closed, bounded convex subset
Ω of RN which has nonempty interior (i.e., there exists at least one point P of Ω
such that for sufficiently small ε > 0 the entire open ball Bε(P ) of points of RN of
distance less than ε from P is contained in Ω). Our definition of convex body is
chosen so as to make the statement of Minkowski’s Theorem as clean as possible.

First we record a purely technical result, without proof:

Lemma 13.1. (Minkowski) A bounded convex set Ω ⊂ RN is Jordan measurable:
that is, the function

1Ω : x 7→ 1, x ∈ Ω; 0, x 6∈ Ω

is Riemann integrable. Therefore we can define the volume of Ω as

Vol(Ω) =

∫
RN

1Ω.

Here we are using “volume” as a generic term independent of dimensions. When
N = 1 it would be more properly called “length”; when N = 2, “area”; and, per-
haps, “hyper-volume” when N > 3.

Intuitively speaking, this just says that the boundary of a convex set is not patho-
logically rugged. In our applications, our bodies will be things like polyhedra and
spheres, which are evidently not pathological in this way.

We will also need the following simple result, which ought to be familiar from
a course in geometry, multi-variable calculus and/or linear algebra. The reader
might try to prove it for herself, but we will not assign it as a formal exercise
because we will discuss a more general result in §1.4.

Lemma 13.2. (Dilation Lemma) Recall that for a subset Ω of RN and a positive
real number α we define the dilate of Ω

αΩ := {α · P = (αx1, . . . , αxn) | P = (x1, . . . , xn) ∈ Ω}.
Then:
a) Ω is nonempty ⇐⇒ αΩ is nonempty.
b) Ω is bounded ⇐⇒ αΩ is bounded.
c) Ω is Jordan measurable ⇐⇒ αΩ is Jordan measurable, and if so,

Vol(αΩ) = αN Vol(Ω).

d) Ω is convex ⇐⇒ αΩ is convex.
e) Ω is centrally symmetric ⇐⇒ αΩ is centrally symmetric.

An immediate consequence is:

Corollary 13.3. If Ω ⊂ RN is a convex body of volume V , then for any
positive real number α, αΩ is a convex body of volume αNV .

We saw above that any convex body Ω ⊂ RN contains the origin. In particular,
such a set contains at least one point in ZN . Must it contain any more?

Of course not. Take in the plane the disk of radius r centered at the origin. This
is a convex body which, if r < 1, does not intersect any other lattice point besides
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0. If r = 1, it meets the four closest points to 0 if the disk is closed but not if it is
open; for r > 1 it necessarily meets other lattice points.

Can we find a convex body in R2 which contains no nonzero lattice points but
has larger area than the open unit disk, i.e., area larger than π? Of course we can:
the open square

(−1, 1)2 = {(x, y) ∈ R2 | |x|, |y| < 1}
has area 4 but meets no nonzero lattice points. As in the case of circles, this is
certainly the limiting case of its kind : any centrally symmetric – i.e., with vertices
(±a,±b) for positive real numbers a, b – will contain the lattice point (1, 0) if a > 1
and the lattice point (0, 1) if b > 1, so if it does not contain any nonzero lattice
points we have max(a, b) ≤ 1 and thus its area is at most 4. But what if we rotated
the rectangle? Or took a more elaborate convex body?

A symmetric convex subset of the real line R1 is just an interval, either of the
form (−a, a) or [−a, a]. Thus by reasoning similar to, but even easier than, the
above we see that a centrally symmetric convex subset of R must have a nontriv-
ial lattice point if its “one dimensional volume” is greater than 2, and a centrally
symmetric convex body (i.e., closed) must have a nontrivial lattice point if its one-
dimensional volume is at least 2.

Now passing to higher dimensions, we see that the open cube (−1, 1)N is a symmet-
ric convex subset of volume 2N which meets no nontrivial lattice point, whereas for

any 0 < V < 2N the convex body [−V
1/N

2 , V
1/N

2 ]N meets no nontrivial lattice point
and has volume V . After some further experimentation, it is natural to suspect the
following result.

Theorem 13.4. (Minkowski’s Convex Body Theorem) Suppose Ω ⊂ RN is a
convex body with Vol(Ω) > 2N . Then there exist integers x1, . . . , xN , not all zero,
such that P = (x1, . . . , xN ) ∈ Ω.

1.2. First Proof of Minkowski’s Convex Body Theorem.

Step 0: By Corollary 13.3, 1
2Ω is also a convex body of volume

Vol(
1

2
Ω) =

1

2N
Vol(Ω) > 1.

Moreover Ω contains a nonzero “integral point” P ∈ ZN iff 1
2Ω contains a nonzero

“half-integral point” – a nonzero P such that 2P ∈ ZN . So it suffices to show:
for any convex body Ω ⊂ RN with volume greater than one, there exist integers
x1, . . . , xN , not all zero, such that P = (x1

2 , . . . ,
xN
2 ) lies in Ω.

Step 1: Observe that if Ω contains P and Q, by central symmetry it contains
−Q and then by convexity it contains 1

2P + 1
2 (−Q) = 1

2P −
1
2Q.

Step 2: For a positive integer r, let L(r) be the number of 1
r -lattice points of Ω, i.e.,

points P ∈ RN ∩ Ω such that rP ∈ ZN . By Lemma 13.1, Ω is Jordan measurable,

and then by Theorem 12.3 we have limr→∞
L(r)
rN

= Vol(Ω). Since Vol(Ω) > 1, for

sufficiently large r we must have L(r) > rN . Because #(Z/rZ)N = rN , by the
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pigeonhole principle there exist distinct integral points

P = (x1, . . . , xN ) 6= Q = (y1, . . . , yN )

such that 1
rP,

1
rQ ∈ Ω and xi ≡ yi (mod r) for all i. By Step 1 Ω contains

R :=
1

2

(
1

r
P

)
− 1

2

(
1

r
Q

)
=

1

2

(
x1 − y1

r
, . . . ,

xN − yN
r

)
.

But xi ≡ yi (mod r) for all i and therefore 1
r (P −Q) = (x1−y1

r , . . . , xN−yNr ) ∈ ZN
and thus R = 1

2 ( 1
r (P −Q)) is a half integral point lying in Ω: QED!

1.3. Second Proof of Minkowski’s Convex Body Theorem.

We first introduce some further terminology.

Let Ω ⊂ RN be a bounded Jordan measurable set. Consider the following set

P (Ω) :=
⋃
x∈ZN

x+ Ω;

that is, P (Ω) is the union of the translates of Ω by all integer points x. We say
that Ω is packable if the translates are pairwise disjoint, i.e., if for all x 6= y ∈ ZN ,
(x+ Ω) ∩ (y + Ω) = ∅.

Example 13.5. Let Ω = B0(r) be the open disk in RN centered at the origin
with radius r. Then Ω is packable iff r ≤ 1

2 .

Example 13.6. For r > 0, let Ω = [0, r]N be the cube with side length r and
one vertex on the origin. Then Ω if packable iff r < 1, i.e., iff Vol(Ω) < 1. Also
the open cube (0, 1)N is packable and of volume one.

These examples serve to motivate the following result.

Theorem 13.7. (Blichfeldt’s Theorem) If a bounded, Jordan measurable subset
Ω ⊂ RN is packable, then Vol(Ω) ≤ 1.

Proof. Suppose that Ω is packable, i.e., that the translates {x+ Ω | x ∈ ZN}
are pairwise disjoint. Let d > 0 be such that every point of Ω lies at a distance at
most d from the origin.

Let Br(0) be the closed ball of radius r centered at the origin. It has volume
c(N)rN where c(N) depends only on N .1 By our work on Gauss’s Circle Problem,
we know that the number of lattice points inside Br(0) is asymptotic to c(N)rN .
Therefore the number of lattice points inside Br−d(0) is asymptotic, as r → ∞,
to c(N)(r − d)N ∼ c(N)rN . Therefore for any fixed ε > 0, there exists R such
that r ≥ R implies that the number of lattice points inside Br−d(0) is at least
(1− ε)c(N)rN .

Now note that if x ∈ ZN is such that ||x|| ≤ r− d, then the triangle inequality
gives x + Ω ⊂ B0(r). Then, if Ω is packable, then we have at least (1 − ε)c(N)rN

pairwise disjoint translates of Ω contained inside B0(r). Therefore we have

c(N)rN = Vol(Br(0)) ≥ Vol(P (Ω) ∩Br(0)) ≥ (1− ε)c(N)rN Vol(Ω),

1The values of c(N) are known – of course c(2) = π and c(3) = 4π
3

are familiar from our

mathematical childhood, and later on you will be asked to compute c(4) = π2

2
. But as you will

shortly see, it would be pointless to substitute in the exact value of c(N) here.
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and therefore

Vol(Ω) ≤ 1

1− ε
.

Since this holds for all ε > 0, we conclude Vol(Ω) ≤ 1. �

The reader who knows about such things will see that the proof works verbatim if
Ω is merely assumed to be bounded and Lebesgue measurable.

Now we use Blichfeldt’s Theorem to give a shorter proof of Minkowski’s Theo-
rem. As in the first proof, after the rescaling Ω 7→ 1

2Ω, our hypothesis is that Ω is
a convex body with Vol(Ω) > 1 and we want to prove that Ω contains a nonzero
point with half-integral coordinates. Applying Blichfeldt’s Lemma to Ω, we get
x, y ∈ ZN such that (x + Ω) ∩ (y + Ω) is nonempty. In other words, there exist
P,Q ∈ Ω such that x + P = y + Q, or P − Q = y − x ∈ ZN . But as we saw
above, any convex body which contains two points P and Q also contains −Q and
therefore 1

2P −
1
2Q = 1

2 (P −Q), which is a half-integral point.

1.4. Minkowski’s Theorem Mark II.

Let Ω ⊂ RN . In the last section we considered the effect of a dilation on Ω:
we got another subset αΩ, which was convex iff Ω was, centrally symmetric iff Ω
was, and whose area was related to Ω in a predictable way.

Note that dilation by α ∈ R>0 can be viewed as a linear automorphism of
RN : that is, the map (x1, . . . , xn) 7→ (αx1, . . . , αxn) is an invertible linear map.
Its action on the standard basis e1, . . . , eN of RN is simply ei 7→ αei, so its matrix
representation is

α : RN → RN , (x1, . . . , xn)t 7→


α 0 0 . . . 0
0 α 0 . . . 0
...
0 0 0 . . . α

 (x1, . . . , xn)t.

Now consider a more general linear automorphism M : RN → RN , which we may
identify with its defining matrix M ∈ GLN (R) (i.e., M = (mij) is an N × N real
matrix with nonzero determinant). We will now state – and prove – the following
generalization of the dilation lemma to arbitrary linear automorphisms:

Lemma 13.8. Let Ω be a subset of RN and M : RN → RN be an invertible
linear map. Consider the image

M(Ω) = {M(x1, . . . , xn)t | (x1, . . . , xn) ∈ Ω}.
a) Ω is nonempty ⇐⇒ M(Ω) is nonempty.
b) Ω is bounded ⇐⇒ M(Ω) is bounded.
c) Ω is convex ⇐⇒ M(Ω) is convex.
d) Ω is centrally symmetric ⇐⇒ M(Ω) is centrally symmetric.
e) Ω is Jordan measurable ⇐⇒ M(Ω) is Jordan measurable, and if so,

Vol(M(Ω)) = |det(M)|Vol(Ω).

Proof. Part a) is quite obvious. Part b) holds with M replaced by any homeo-
morphism of RN : i.e., a continuous map from RN to itself with continuous inverse,
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because a subset of RN is bounded iff it is contained in a compact subset, and
the image of a compact subset under a continuous function is bounded. Part c)
is true because the image of a line segment under a linear map is a line segment.
Part d) follows because of the property M(−v) = −Mv of linear maps. As for
part e), the preservation of Jordan measurability follows from the fact that an
image of a set of measure zero under a linear map has measure zero. The state-
ment about areas is precisely what one gets by applying the change of variables
(x1, . . . , xN ) 7→ (y1, . . . , yN ) = M(x1, . . . , xN ) in the integral

∫
RN 1dx1 · · · dxN . �

Corollary 13.9. If Ω ⊂ RN is a convex body and M : RN → RN is an invert-
ible linear map, then M(Ω) is a convex body, and Vol(M(Ω)) = |det(M)|Vol(Ω).

Recall that the lattice points inside rΩ are precisely the 1
r -lattice points inside Ω.

This generalizes to arbitrary transformations as follows: for M ∈ GLN (R), put

Λ := MZN = {M(x1, . . . , xN )t | (x1, . . . , xN ) ∈ ZN .

The map Λ : ZN → AZN is an isomorphism of groups, so AZN is, abstractly,
simply another copy of ZN . However, it is embedded inside RN differently. A nice
geometric way to look at it is that ZN is the vertex set of a tiling of RN by unit
(hyper)cubes, whereas Λ is the vertex set of a tiling of RN by (hyper)parallelopipeds.
A single parallelopiped is called a fundamental domain for Λ, and the volume of
a fundamental domain is given by |det(M)|.2 We sometimes refer to the volume of
the fundamental domain as simply the volume of Λ and write

Vol(Λ) = |det(M)|.

Now the fundamental fact – a sort of “figure-ground” observation – is the following:

Proposition 13.10. Let Ω ⊂ RN and let M : RN → RN be an invertible linear
map. Then M induces a bijection between M−1(ZN ) ∩ Ω and ZN ∩M(Ω).

If the statement is understood, the proof is immediate!

Applying this (with M−1 in place of M) gives the following: if we have a lat-
tice Λ = MZN , and a convex body Ω, the number of points of Λ ∩ Ω is the same
as the number of points of ZN ∩M−1(Ω). Since

Vol(M−1(Ω)) = |det(M−1)|Vol(Ω) =
Vol(Ω)

det(M)
=

Vol(Ω)

Vol(ΛM )
,

we immediately deduce a more general version of Minkowski’s Theorem.

Theorem 13.11. (Minkowski’s Theorem Mark II) Let Ω ⊂ RN be a convex
body. Let M : RN → RN be an invertible linear map, and put ΛM = M(ZN ).
Suppose that

Vol(Ω) > 2N Vol(ΛM ) = 2N |det(M)|.

Then there exists x ∈ Ω ∩ (ΛM \ (0, . . . , 0)).

2This is the very important geometric interpretation of determinants, which we would like to
assume is familiar from linear algebra. Although we have some concerns as to the validity of this

assumption, we will stick with it nonetheless.
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1.5. Pick’s Theorem.

Following Murty and Thain, we apply Minkowski’s Theorem to prove a truly classic
result lying on the border of number theory and plane geometry. A lattice poly-
gon is a polygon P ⊂ R2 all of whose vertices are elements of Z2. For the sake of
definiteness, let us agree that P refers to the polygon together with its interior. We
denote the boundary by ∂P and the interior of P by P ◦. And here we go!

Theorem 13.12. (G.A. Pick [Pi99]) Let P be a convex lattice polygon. Let

I := #(P ◦ ∩ Z2) be the number of interior lattice points,

B := #(∂P ∩ Z2) be the number of boundary lattice points.

Then we have

Area(P ) = I +
B

2
− 1.

Proof. (Murty-Thain [MT07])
An elementary triangle is a lattice triangle that has no lattice points other than
its vertices. Observe that Pick’s Theorem for elementary triangles states that every
elementary triangle has area 1

2 . Our strategy of proof is as follows: we first prove
Pick’s Theorem for elementary triangles and then deduce the general case by an
induction / triangulation argument.

Before beginning the argument, we wish to nail down a simple geometric con-
struction, the parallelogrammization of a triangle with respect to a vertex. Let A,
B, C be the vertices of a triangle. Let v be the vector BA and let W be the vector
BC. Let D be the vector v + w. Then ADC is a triangle congruent to ABC and
the two triangles together form the fundamental parallelogram of v and w (namely,
the set of all linear combinations αv+ βw with α, β ∈ [0, 1]). If A, B and C are all
lattice points, then so is D.3

Step 1: Let ABC be an elementary triangle. Parallelogrammizing with respect
to B we get a lattice parallelogram. The area of the lattice parallelogram is the
magnitude of the cross product v×w = (A−B)× (C−B). The usual determinant
formula for the cross product shows that since v, w ∈ Z2, so is v×w. Every nonzero
vector in Z2 has length at least one, so the area of the parallelogram is at least one
and thus the area of the triangle ABC is at least 1

2 .
Step 2: Let t = ABC be an elementary triangle. Seeking a contradiction, we as-
sume that its area is greater than 1

2 . It is no loss of generality to assume that
B = 0: translating with respect to a lattice point preserves elementary triangles
and areas. If we parallelogramize with respect to all three vertices, we get three
more elementary triangles, each congruent to the given triangle. The union of these
four triangles is again a lattice triangle, say T , no longer elementary because each
edge contains a lattice point that is not a vertex, but still without any interior
lattice points. Let Ω be the region T ∪ −T obtained from T by reflecting through
B (which we have assumed is 0). Then Ω is a convex body which is made up of
eight congruent copies of the original elementary triangle t, so it has area greater
than 4. It has no interior lattice points, and thus removing the boundary, we get a
symmetric convex body Ω◦ of area greater than 4 and with no lattice points except
the origin, contradicting Theorem 13.4!

3For the skeptical: let A = (xA, yA), B = (xB , yB), C = (xC , yC); then v = (xA − xB , yA −
yB) and w = (xC − xB , yC − yB), so D = B + v + w = (xA + xC − xB , yA + yC − yB).
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Step 3: Let P be any convex lattice n-polygon. We first dissect P into lattice trian-
gles. Indeed the convexity hypothesis makes this trivial: of course we may assume
n ≥ 4; for any consecutive vertices A, B, C, drawing the diagonal AC dissects P
into a lattice triangle and a convex (n−1)-gon (the (n−1)-gon is obtained by inter-

secting P with a half-plane with boundary line
←→
AC, and the intersection of convex

sets is convex), and now we proceed by induction. We now further dissect each
lattice triangle into elementary triangles, which is also easy: if we have a lattice
point on an edge that is not a vertex, connect it to the opposite side, bisecting the
triangle; if we have a lattice point in the interior of the triangle, connect it to each
of the vertices, trisecting the triangle.
We now prove Pick’s Theorem by induction on the number of elementary triangles
in the dissection; we did the base case n = 1 already. Assume it holds for unions of
n elementary triangles, and let Pn+1 be a convex lattice polygon that is the union of
n+ 1 elementary triangles. So Pn+1 consists of a convex lattice n-gon Pn together
with one more elementary triangle t. Let us write

In for the number of interior lattice points of Pn,

Bn for the number of boundary lattice points of Pn,

In+1 for the number of interior lattice points of Pn+1,

Bn+1 for the number of boundary lattice points of Pn+1.

By induction we have

Area(Pn) = In +
Bn
2
− 1.

We also have In+1 = In and Bn+1 = Bn + 1, and thus

In+1 +
Bn+1

2
− 1 = In +

Bn + 1

2
− 1 = (In +

Bn
2
− 1) +

1

2

IH
= Area(Pn) +

1

2
= Area(Pn) + Area(t) = Area(Pn+1). �

Exercise 13.1. Show that there are infinitely many pairwise noncongruent
elementary triangles.

Regarding the convexity hypothesis in the statement of Pick’s Theorem: this does
not appear in all formulations. We put it there so as to make it easy to see that
the polygon can be dissected into elementary triangles. In fact the theorem holds
for any simple polygon – namely, such that the boundary is a simple closed curve
– but this requires the fact that any simple polygon can be triangulated (in fact,
lattice triangulated, but that is not any harder).

Exercise 13.2. Prove it. Namely, show that any simple lattice polygon can
be dissected into elementary triangles. Deduce that Pick’s Theorem holds for all
simple lattice polygons.

Without the simplicity hypothesis, the question of precisely what one means by a
polygon becomes a pertinent one, and construed sufficiently inclusively, the result
can fail. As an example, consider a region between concentric squares:

H := [−2, 2]2 \ (−1, 1)2.

Then Area(H) = 42 − 22 = 12, I = 0 and B = 24, so we have

Area(H) = I +
B

2
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rather than

Area(H) = I +
B

2
− 1.

Those who know about Euler characteristics may notice that while the Euler char-
acteristic of any simple polygon is 1, the Euler characteristic of H is 0. This suggests
the following generalization of Pick’s Theorem.

Theorem 13.13. (Extended Pick’s Theorem) Let P be a closed subset of the
plane whose boundary consists of finitely many lattice polygons. Let

I := #(P ◦ ∩ Z2) be the number of interior lattice points,

B := #(∂P ∩ Z2) be the number of boundary lattice points,

χ(P ) be the Euler characteristic of P.

Then we have

Area(P ) = I +
B

2
− χ(P ).

Exercise 13.3. Prove Theorem 13.13 (e.g. by reducing to Theorem 13.12).

Exercise 13.4. Let Λ ⊂ R2 be a lattice. Formulate a generalization of The-
orem 13.12 (or, if you like, of Theorem 13.13) for convex polygons whose vertices
are elements of Λ.

1.6. Comments and complements.

Theorem 13.4 was first proved in an 1896 paper of H. Minkowski, and is treated
at further length in Minkowski’s 1910 text Geometrie der Zahlen [Mi10, pp. 73-
76]. Another proof is given in his 1927 Diophantische Approximationen [Mi27, pp.
28-30]. Theorem 13.7 appears in a 1914 paper of H.F. Blichfeldt [Bl14], and the
connection to Minkowski’s theorem is noted therein. Our first proof of Theorem
13.4 – which seems to me to be the most direct – is due to Mordell [Mo34].

Blichfeldt’s Theorem is equivalent to the following result:

Theorem 13.14. Let Ω ⊂ RN be a bounded (Jordan or Lebesgue) measurable
subset of volume greater than one. Then there exists x ∈ RN such that the translate
x+ Ω contains at least two integral points.

We leave the proof as an exercise.

There is also a “rotational analogue” of Blichfeldt’s Theorem:

Theorem 13.15. (Hammer [Ham68]) Let Ω ⊂ RN be a convex body. If the
volume of Ω is greater than the volume of the unit ball in RN , then there exists an
orthogonal matrix M ∈ O(N) such that MΩ contains a nonzero lattice point.

The proof is not so hard, but it uses some further facts about convex bodies.

Minkowski’s theorem is often regarded as the “fundamental theorem” upon which
an entire field, the geometry of numbers, is based. Because of this, it is not sur-
prising that many mathematicians – including Minkowski himself and C.L. Siegel
– have given various refinements over the years. Below we describe one such refine-
ment which can be proved along similar lines.
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First, we may allow the nonempty, centrally symmetric convex set Ω ⊂ RN to be
unbounded. In order to do this, we need to make sense of Jordan measurability and
volume for an unbounded subset Ω. Since we still want to define Vol(Ω) =

∫
RN 1Ω,

it comes down to defining what it means for a function defined on an unbounded
subset of RN to be Riemann integrable. Evidently what we want is an improper
multivariable Riemann integral. Recall that for improper integrals over the real
line, if the function f is allowed to take both positive and negative values then we
need to be extremely precise about the sense in which the limits are taken, but if f
is a non-negative function all roads lead to the same answer. Note that character-
istic functions are non-negative. So the following definition is simple and reasonable:

Let f : RN → [0,∞) be a function such that the restriction of f to any rectangle

[a, b] =
∏N
i=1[ai, bi] is Riemann integrable. Then we define∫

RN
f = sup

∫
[a,b]

f,

where the supremum ranges all integrals over all rectangles. Note that such an
improper integral is always defined although it may be ∞: for instance it will be if
we integrate the constant function 1 over RN .

Theorem 13.16. (Refined Minkowski Theorem) Let Ω ⊂ RN be a nonempty
centrally symmetric convex subset.

a) Then #(Ω ∩ ZN ) ≥ 2(dVol(Ω)
2N
e − 1) + 1.

b) If Ω is closed and bounded, then #(Ω ∩ ZN ) ≥ 2(bVol(Ω)
2N
c) + 1.

In other words, part a) says that if for some positive integer k we have Vol(Ω) is
strictly greater than k ·2N , then Ω contains at least 2k nonzero lattice points (which
necessarily come in k antipodal pairs P , −P ). Part b) says that the same conclu-
sion holds in the limiting case Vol(Ω) = k · 2N provided Ω is closed and bounded.

There are analogous refinements of Blichfeldt’s theorem; moreover, by a linear
change of variables we can get a “Refined Mark II Minkowski Theorem” with the
standard integral lattice ZN replaced by any lattice Λ = MZN , with a suitable
correction factor of Vol(Λ) thrown in.

We leave the proof of Theorem 13.16 and the statements and proofs of these other
refinements as exercises for the interested reader.

2. Diophantine Applications

2.1. The Two Squares Theorem Again.

Suppose p = 4k + 1 is a prime number.

By Fermat’s Lemma (Lemma 2 of Handout 4), there exists u ∈ Z such that u2 ≡ −1
(mod p): equivalently, u has order 4 in (Z/pZ)×. Define

M :=

[
1 0
u p

]
.
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We have det(M) = p2, so Λ := MZ2 defines a lattice in R2 with

Vol(Λ) = det(M) Vol(Z2) = p.

If (t1, t2) ∈ Z2 and (x1, x2)t = M(t1, t2)t, then

x2
1 + x2

2 = t21 + (ut1 + pt2)2 ≡ (1 + u2)t21 ≡ 0 (mod p).

Now let
Ω = B0(

√
2p) = {(x, y) ∈ R2 | x2 + y2 < 2p}

be the open ball of radius 2
√
p about the origin in R2. We have

Vol Ω = π(
√

2p)2 = 2πp > 4p = 22 Vol Λ,

so by Minkowski’s Theorem Mark II there exists (x1, x2) ∈ Λ with

0 < x2
1 + x2

2 < 2p.

Since p | x2
1 + x2

2, the only possible conclusion is

x2
1 + x2

2 = p.

2.2. The Four Squares Theorem.

Lemma 13.17. (Euler’s Identity) For any integers a1, . . . , a4, b1, . . . , b4, we have

(a2
1 + a2

2 + a2
3 + a2

4)(b21 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2+

(a1b2+a2b1+a3b4−a4b3)2+(a1b3−a2b4+a3b1+a4b2)2+(a1b4+a2b3−a3b2+a4b1)2.

Proof. Exercise! �

Thus the set of sums of four integer squares is closed under multiplication. Since
1 = 12 + 02 + 02 + 02 is a sum of four squares, it suffices to show that each prime p
is a sum of four squares. Since 2 = 12 + 12 + 02 + 02, we may assume p > 2.

Lemma 13.18. The (four-dimensional) volume of a ball of radius r in R4 is
π2

2 r
4.

Proof. Exercise! �

Lemma 13.19. For a prime p > 2 and a ∈ Z, there exist r, s ∈ Z such that

r2 + s2 ≡ a (mod p).

Proof. There are p−1
2 nonzero squares mod p and hence p−1

2 +1 = p+1
2 squares

mod p. Rewrite the congruence as r2 ≡ a − s2 (mod p). Since the map Fp → Fp
given by t 7→ a− t is an injection, as x ranges over all elements of Fp both the left

and right hand sides take p+1
2 distinct values. Since p+1

2 + p+1
2 > p, these subsets

cannot be disjoint, and any common value gives a solution to the congruence. �

Theorem 13.20. (Lagrange) Every positive integer is a sum of four integral
squares.

Proof. By Lemma 13.19, there are r, s ∈ Z such that r2 +s2 +1 ≡ 0 (mod p).
Define

M =


p 0 r s
0 p s −r
0 0 1 0
0 0 0 1

 .
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We have det(M) = p2, so Λ := MZ4 defines a lattice in R4 with

Vol(Λ) = det(M) Vol(Z4) = p2.

If (t1, t2, t3, t4) ∈ Z4 and (x1, x2, x3, x4) := M(t1, t2, t3, t4) then

x2
1 + x2

2 + x2
3 + x2

4 = (pt1 + rt3 + st4)2 + (pt2 + st3 − rt4)2 + t23 + t24

≡ t23(r2 + s2 + 1) + t24(r2 + s2 + 1) ≡ 0 (mod p).

Now let

Ω = B0(
√

2p) = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 < 2p}
be the open ball of radius

√
2p about the origin in R4. Using Lemma 13.18 we have

Vol(Ω) =
π2

2
(
√

2p)4 = 2π2p2 > 16p2 = 24 Vol Λ,

so by Minkowski’s Theorem Mark II there exists (x1, . . . , x4) ∈ Λ with

0 < x2
1 + x2

2 + x2
3 + x2

4 < 2p.

Since p | x2
1 + x2

2 + x2
3 + x2

4, the only possible conclusion is

x2
1 + x2

2 + x2
3 + x2

4 = p.

�

2.3. Vista: Testing for a PID.

The preceding applications were very pretty, but – in that they give new proofs of
old theorems – do not really serve to illustrate the power and utility of Minkowski’s
Convex Body Theorem. A much deeper application is to the computation of the
class number of a number field K. Although it will be beyond us to give proofs,
we feel the concept is so important that we should at least sketch the statement.

Let K be any number field, i.e., a field which contains Q as a subfield and is
finite-dimensional as a Q-vector space, say of dimension d. To a number field we
attach its ring of integers ZK . This is the set of all elements α in K which
satisfy a monic polynomial with integral coefficients: i.e., for which there exist
a0, . . . , an−1 ∈ Z such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0.

It is not hard to show that ZK is indeed a subring ofK: this is shown in Handout A3.
But more is true: if d is the degree of K over Q, then there exist α1, . . . , αd ∈ ZK
such that every element α ∈ ZK can uniquely be expressed as a Z-linear combina-
tion of the αi’s:

α = a1α1 + . . .+ adαd, ai ∈ Z.
Such a d-tuple (α1, . . . , αd) of elements of ZK is called an integral basis.

Example 13.21. Let K = Q. Then ZK = Z, and α1 = 1 is an integral basis.

Example 13.22. Let K/Q be a quadratic extension, so that there exists a

squarefree integer d 6= 0, 1 such that K = Q(
√
d). Observe that

√
d, satisfy-

ing the monic polynomial t2 − d, is an element of ZK , as is the entire subring
Z[
√
d] = {a + b

√
d | a, b ∈ Z} that it generates. With d = −1, this is just the ring

of Gaussian integers, which is indeed the full ring of integers of Q(
√
−1).
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In general things are more subtle: it turns out that if d ≡ 2, 3 (mod 4) then ZK =

Z[
√
d]; however if d ≡ 1 (mod 4) then the element τd := 1+

√
d

2 may not look like

an algebraic integer but it satsifies the monic polynomial t2 + t + 1−d
4 (which has

Z-coefficients since d ≡ 1 (mod 4)) so in fact it is, and in this case ZK = Z[τd] =

{a+ b( 1+
√
d

2 ) | a, b ∈ Z}.

Example 13.23. Let K = Q(ζn) obtained by adjoining to Q a primitive nth
root of unity. Then it is easy to see that ζn is an algebraic integer, and in this case
it can be shown that ZK = Z[ζn] is the full ring of integers.

It is rare to be able to write down an integral basis by pure thought; however, there
exists an algorithm which, given any single number field K, computes an integral
basis for K.

Question 8. For which number fields K is ZK a principal ideal domain?

This is absolutely one of the deepest and most fundamental number-theoretic ques-
tions because, as we have seen, in trying to solve a Diophantine equation we are
often naturally led to consider arithmetic in a ring of integers ZK – e.g., in studying
the equation x2 − Dy2 = n we take K = Q(

√
D) and in studying xn + yn = zn

we take K = Q(ζn). If ZK turns out to be a PID, we can use Euclid’s Lemma, a
formidable weapon. Indeed, it turns out that a common explanation of each of the
classical success stories regarding these two families of equations (i.e., theorems of
Fermat, Euler and others) is that the ring ZK is a PID.

Gauss conjectured that there are infinitely many squarefree d > 0 such that the
ring of integers of the real quadratic field K = Q(

√
d) is a PID. This is still un-

known; in fact, for all we can prove there are only finitely many number fields K (of
any and all degrees!) such that ZK is a PID. In this regard two important goals are:

(i) To give an algorithm that will decide, for any given K, whether ZK is a PID;
(ii) When it isn’t, to “quantify” the failure of uniqueness of factorization in ZK .

For this we define the concept of class number. If R is any integral domain,
we define an equivalence relation on the set I(R) of nonzero ideals of R. Namely
we put I ∼ J iff there exist nonzero elements a, b ∈ R such that (a)I = (b)J .
This partitions all the nonzero ideals into equivalence classes, simply called ideal
classes.4 The class number of R is indeed the number of classes of ideals. For
an arbitrary domain R, the class number may well be infinite.

The point here is that there is one distinguished class of ideals: an ideal I is
equivalent to the unit ideal R = (1) iff it is principal. It follows that R is a PID
iff its class number is equal to one. Therefore both (i) and (ii) above would be
addressed if we can compute the class number of an arbitrary ring of integers ZK .

This is exactly what Minkowski did:

4In fact, the use of the term “class” in mathematics in the context of equivalence relations
can be traced back to this very construction in the case of R = ZK the ring of integers of an

imaginary quadratic field K, which was considered by Gauss in his Disquisitones Arithmeticae.
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Theorem 13.24. (Minkowski) Let K be any number field.
a) The ideals of the ring ZK of integers of K fall into finitely many equivalence
classes; therefore K has a well-defined class number h(K) <∞.
b) There is an explicit upper bound on h(K) in terms of invariants of K which can
be easily computed if an integral basis is known.
c) There is an algorithm to compute h(K).

The proof is not easy; apart from the expected ingredients of more basic algebraic
number theory, it also uses, crucially, Theorem 13.4.

As an example of the usefulness of the class number in “quantifying” failure of
factorization even when ZK is not a UFD, we note that Lamé erroneously believed
he could prove FLT for all odd primes p because he assumed (implicitly, since the
concept was not yet clearly understood) that Z[ζp] was always a PID. Lamé’s proof
is essentially correct when the class number of Q(ζp) is equal to one, which is some
progress from the previous work on FLT, but unforunately this happens iff p ≤ 19.
Kummer on the other hand found a sufficient condition for FLT(p) to hold which
turns out to be equivalent to: the class number of Q(ζp) is not divisible by p.
This condition, in turn, is satisfied for all p < 200 except for 37, 59, 67, 101, 103,
131, 149, and 157; and conjecturally for a subset of the primes of relative density

e
−1
2 ≈ 0.61. Note finally that this remains conjectural to this day while FLT has

been proven: the study of class numbers really is among the deepest and most
difficult of arithmetic questions.

2.4. Comments and complements.

As is the case for many of the results we have presented, one of the attractions
of Theorem 13.20 is its simple statement. Anyone who is inquisitive enough to
wonder which integers can be written as a sum of four squares will eventually
conjecture the result, but the proof is of course another matter. Apparently the
first recorded statement – without proof – is in the Arithmetica of Diophantus of
Alexandria, some time in the third century AD. Diophantus’ text entered into the
mathematical consciousness of Renaissance Europe through Gaspard Bachet’s 1620
Latin translation of the Arithmetica.

Famously, Fermat was an ardent reader of Bachet’s book, and he saw and
claimed a proof of the Four Squares Theorem. As we have already mentioned, with
one exception (FLT for n = 4) Fermat never published proofs, making the question
of exactly which of his “theorems” he had actually proved a subject of perhaps eter-
nal debate. In this case the consensus among mathematical historians seems to be
skepticism that Fermat actually had a proof. In any case, the proof was still much
sought after Fermat’s death in 1665. Euler, one of the greatest mathematicians of
the 18th century, labored for 40 years without finding a proof. Finally the theorem
was proved and published in 1770 by the younger and equally great5 Italian-French
mathematician Joseph-Louis Lagrange.

5In quality at least. No one has ever equalled Euler for quantity, not even the famously
prolific and relatively long-lived twentieth century mathematician Paul Erdös, although there are

one or two living mathematicians that might eventually challenge Euler.
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There are many proofs of the Four Squares Theorem. Some are “completely el-
ementary”, i.e., which neither require nor introduce any “extraneous” concepts like
lattices. The most pedestrian proof begins as ours did with Euler’s identity and
Lemma 13.19. From this we know that it suffices to represent any prime as a sum
of four squares and also that for any prime p, some positive integer multiple mp is
of the form r2 + s2 + 12 and in particular a sum of four squares, and the general
strategy is to let m0 be the smallest integral multiple of p which is a sum of four
squares and to show, through a “descent” argument, that m0 = 1. Lagrange’s orig-
inal proof followed this strategy, and many elementary number theory texts contain
such a proof, including [HW].

Another proof, which has the virtue of explaining the mysterious identity of Lemma
13.17 proceeds in analogy to our first proof of the two squares theorem: it works
in a certain (non-commutative!) ring of integral quaternions. Quaternions play
a vital role modern number theory, but although it is not too hard to introduce
enough quaternionic theory to prove the Four Squares Theorem (again see [HW]),
one has to dig deeper to begin to appreciate what is really going on.

Yet another proof uses the arithmetic properties of theta series; this leads to an
exact formula for r4(n), the number of representations of a positive integer as a
sum of four squares. In this case, to understand what is really going on involves
discussion of the arithmetic theory of modular forms, which is again too rich for
our blood (but we will mention that modular forms and quaternions are themselves
quite closely linked!); and again Hardy and Wright manage to give a proof using
only purely formal power series manipulations, which succeeds in deriving the for-
mula for r4(n).

Regarding generalizations of Theorem 13.20, we will only mention one: a few
months before Lagrange’s proof, Edward Waring asserted that “every number is
a sum of four squares, nine cubes, nineteen biquadrates [i.e., fourth powers] and so
on.” In other words, Waring believed that for every positive integer k there exists
a number n depending only on k such that every positive integer is a sum of n
non-negative kth powers. If so, we can define g(k) to be the least such integer k.
Evidently the Four Squares Theorem together with the observation that 7 is not
a sum of three squares, give us g(2) = 4. That g(k) actually exists for all k is by
no means obvious. This was first proven by David Hilbert in 1909. We now know
the exact value of g(k) for all k; that g(3) = 9 was established relatively early on
(Wieferich, 1912), but g(4) was the last value to be established, by Balasubrama-
nian in 1986: indeed g(4) = 19, as Waring predicted.

Of more enduring interest is the quantity G(k), defined to be the least positive
integer n such that every sufficiently large positive integer can be written as a sum
of n non-negative kth powers: i.e., we allow finitely many exceptions. Since for all
k, 8k+7 is not even a sum of three squares modulo 8, none of these infinitely many
integers are sums of three squares, so g(2) = G(2) = 4. On the other hand it is
known that G(3) ≤ 7 < 9 = g(3), and it morever suspected that g(3) = 4, but this
is far from being proven. Indeed only one other value of G is known.

Theorem 13.25. (Davenport, 1939) G(4) = 16.
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Getting better bounds on G(k) is an active topic in contemporary number theory.



CHAPTER 14

The Chevalley-Warning Theorem

1. The Chevalley-Warning Theorem

In this chapter we shall discuss a result that was conjectured by Emil Artin in
1935 and proved shortly thereafter by Claude Chevalley. A refinement was given
by Artin’s student Ewald Warning, who, as the story goes, was the one whom
Artin had intended to prove the theorem before Chevalley came visiting Göttingen
and got Artin to say a little too much about the problem his student was working on.

One of the charms of the Chevalley-Warning theorem is that it can be stated and
appreciated without much motivational preamble. So let’s just jump right in.

1.1. Statement of the theorem(s).

Let q = pa be a prime power, and let Fq be a finite field of order q. We saw
earlier in the course that there exists a finite field of each prime power cardinality.1

For the reader who is unfamiliar with finite fields, it may be a good idea to just
replace Fq with Fp = Z/pZ on a first reading, and then afterwards look back and
see that the assumption of an arbitrary finite field changes nothing.

Theorem 14.1. (Chevalley’s Theorem) Let n, d1, . . . , r be positive integers
such that d1 + . . . + dr < n. For each 1 ≤ i ≤ r, let Pi(t1, . . . , tn) ∈ Fq[t1, . . . , tn]
be a polynomial of total degree di with zero constant term: Pi(0, . . . , 0) = 0. Then
there exists 0 6= x = (x1, . . . , xn) ∈ Fnq such that

P1(x) = . . . = Pr(x) = 0.

Exercise 1: Suppose we are given any system of polynomials P1(t), . . . , Pr(t) in n
variables t1, . . . , tn with

∑
i deg(Pi) < n. Deduce from Chevalley’s that if there

exists at least one x ∈ Fnq such that P1(x) = . . . = Pr(x), then there exists y 6= x
such that P1(y) = . . . = Pr(y).
(Hint: Make a change of variables to reduce to Chevalley’s theorem.)

In other words, Exercise 1 asserts that a system of polynomials in n variables
over Fq cannot have exactly one common solution, provided the sum of the degrees
is less than n. Warning’s theorem gives a generalization:

Theorem 14.2. (Warning’s Theorem) Let n, d1, . . . , r be positive integers such
that d1 + . . . + dr < n. For each 1 ≤ i ≤ r, let Pi(t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a
polynomial of total degree di. Let

Z = #{(x1, . . . , xn) ∈ Fnq | P1(x1, . . . , xn) = . . . = Pr(x1, . . . , xn) = 0.}

1It can be shown that any two finite fields of the same order are isomorphic – see any text
on field theory – but we don’t need this uniqueness statement here.

177
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Then Z ≡ 0 (mod p).

Arin had conjectured the following special case:

Corollary 14.3. Let P (t1, . . . , tn) ∈ F[t1, . . . , tn] be a homogeneous polyno-
mial of degree d in n variables over a finite field F. If n > d then there exists
(0, . . . , 0) 6= (x1, . . . , xn) ∈ Fn such that P (x1, . . . , xn) = 0.

In in the sequel, we will refer to any of Theorem 14.1, Theorem 14.2 or Corollary
14.3 as the Chevalley-Warning theorem.

1.2. Applications to Quadratic Forms.

Taking d = 1 Corollary 14.3 asserts that any homogenous linear equation at1+bt2 =
0 (with a and b not both 0) over a finite field has a nonzero solution. Of course linear
algebra tells us that the solution set to such an equation is a one-dimensional vec-
tor space, and this holds over any field, infinite or otherwise. So this is a trivial case.

Already the case d = 2 is much more interesting. A homogeneous polynomial
of degree 2 is called a quadratic form. For simplicity, we shall for the most part
consider here only nondegenerate diagonal forms over a field F ,2 i.e.,

q(x) = q(x1, . . . , xn) = a1x
2
1 + . . .+ anx

2
n, x1, . . . , xn ∈ F, x1 · · ·xn 6= 0.

For some fields F , no matter how large we take n to be, we can still choose the
coefficients so that q(x) = 0 has no nontrivial solution. For instance, consider the
sum of squares form

qn(x) = x2
1 + . . .+ x2

n.

This has no nontrivial solution over the real numbers, or over any subfield of R.

Proposition 14.4. Let F be any field, and consider the form qa(x) = x2
1 +ax2

2.
a) The form q2,a has a nontrivial solution iff there exists α ∈ F such that α2 = −a.
b) Therefore if F = Fq, q = pa, then q2,1(x) = x2

1 + x2
2 has a nontrivial solution iff

p = 2, p ≡ 1 (mod 4) or a is even.

Exercise 2: Prove Proposition 14.4.

Exercise 3: a) Suppose F is a field (of characteristic different from 2) which admits
a quadratic field extension K = F (

√
α). Deduce that there exists a binary qua-

dratic form q2,a(x) over F which has no nontrivial solution.
b) For any odd q = pa, show that there exists a binary quadratic form q over Fq
with only the trivial solution. Can you write one down explicitly?
c)* Show that the conclusion of part b) still holds when q is even, although in this
case one has to take a nondiagonal form q(x, y) = ax2 + bxy + cy2 = 0.

According to Corollary 14.3, any quadratic form in at least three variables over
a finite field has a nontrivial solution. This is quite different from the situation for
F = R or F = Q. And it has many useful consequences, e.g.:

2When the characteristic of F is not 2, one can diagonalize every quadratic form by making
a linear change of variables, so no generality is lost by restricting to the diagonal case.
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Proposition 14.5. Let F be a field of characteristic different from 2 in which
each quadratic form in three variables has a nontrivial solution. Then, for any
a, b, c ∈ F×, there exist x, y ∈ F such that

ax2 + by2 = c.

Proof. In other words, we are claiming that the inhomogeneous equation
ax2 + by2 = c has a solution over F . To see this, we homogenize: introduce a
third variable z and consider the equation: ax2 + by2 − cz2 = 0. By Corollary 14.3
there are x0, y0, z0 ∈ K, not all zero, such that ax2

0 + by2
0 = cz2

0 . If z0 6= 0, then
we can divide through, getting

a

(
x0

z0

)2

+ b

(
y0

z0

)2

= c.

If z0 = 0, this doesn’t work; rather, we get a nontrivial solution (x0, y0) to ax2
0 +

by2
0 = 0. Dividing by a we get x2

0 +( ba )y2
0 = 0. But as above this can only happen if

−b
a = t2 is a square in K, and then we can factor q(x) = x2−t2y2 = (x+ty)(x−ty).

This gives us a lot more leeway in solving the equation. For instance, we could factor
c as c · 1 and give ourselves the linear system

x+ ty = c

x− ty = 1

which has a solution (x, y) = ( c+1
2 , c−1

2 ). Note that it is here that we use the
hypothesis that the characteristic of K is not 2. �

In particular this gives an alternate (much more sophisticated!) proof of [Minkowski’s
Theorem Handout, Lemma 15].

2. Two proofs of Warning’s theorem

2.1. Polynomials and polynomial functions.

We begin with a discussion about polynomials as ring elements versus polyno-
mials as functions which is of interest in its own right. (In fact, it is because of the
interest of these auxiliary results that we have chosen to include this proof.)

Let R be an integral domain and R[t1, . . . , tn] be the polynomial ring in n in-
determinates over R. An element P (t) = P (t1, . . . , tn) ∈ R[t1, . . . , tn] is a purely
formal object: it is a finite R-linear combination of monomial terms, which are
added and multiplied according to simple formal rules.

Note that this is not the perspective on polynomials one encounters in calculus and
analysis. For instance a univariate polynomial P (t) = ant

n + . . .+ a1t+ a0 ∈ R[t]
is regarded as a function from R to R, given of course by x 7→ P (x). Similarly for
multivariable polynomials: P (t1, . . . , tn) ∈ R[t1, . . . , tn] may be defined by the same
formal R-linear combination of monomial terms as above but that is just notation:
what matters is the function Rn → R given by (x1, . . . , xn) 7→ P (x1, . . . , xn). In
other words, a polynomial in n variables can be evaluated at any point of Rn.

Can these two perspectives be reconciled? A moment’s thought makes it clear
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that the “evaluation” of a polynomial is a perfectly algebraic operation: in other
words, given any domain R and element P (t) of the polynomial ring R[t1, . . . , tn],
we can evaluate P at any point (x1, . . . , xn) ∈ Rn, getting an element P (x1, . . . , xn).
To be formal about it, we have an evaluation map:

Φ : R[t1, . . . , tn] 7→ Map(Rn, R),

where by Map(Rn, R) we just mean the set of all functions f : Rn → R. In fact this
map Φ has some nice algebraic structure. The set Map(Rn, R) of all functions from
Rn to R can be made into a commutative ring in which addition and multiplication
are just defined “pointwise”:

(f + g)(x1, . . . , xn) = f(x1, . . . , xn) + g(x1, . . . , xn),

(fg)(x1, . . . , xn) = f(x1, . . . , xn) · g(x1, . . . , xn).

It is straightforward to see that the evaluation map Φ is then a homomorphism of
rings. Let us put

Pn := Φ(R[t1, . . . , tn]) ⊂ Map(Rn, R),

so that Pn is the ring of polynomial functions in n variables on R.

We are interested in the following question: if P (t), Q(t) ∈ R[t1, . . . , tn] are such
that for all (x1, . . . , xn) ∈ Rn we have P (x1, . . . , xn) = P (x1, . . . , xn) – so that P
and Q give the same function from Rn to R – must P (t) = Q(t) as elements of
R[t1, . . . , tn]? In other words, is Φ injective?

I hope you know that in the familiar case of n = 1, R = R the answer is ”yes”: two
real univariate polynomials which give the same function are term-by-term equal.
The proof is as follows: define R(t) := P (t) − Q(t). We are given that R(x) = 0
for all x ∈ R. But if R(x) were not the zero polynomial, it would have some degree
d ≥ 0 and basic (high school!) algebra shows that a polynomial over a field of
degree d cannot have more than d roots. But R(x) has infinitely many roots, so it
must be the identically zero polynomial.

Evidently this argument works for univariate polynomials over any infinite field.
The following is a stronger result:

Proposition 14.6. Let R be an infinite integral domain and n ∈ Z+. Then
the evaluation map

Φ : R[t1, . . . , tn]→ Pn ⊂ Map(Rn, R)

is a homomorphism of rings.
a) Moreover Φ is injective.
b) However, Φ is not surjective: not every function f : Rn → R is given by a
polynomial.

Proof. a) Again it suffices to show that if Φ(P (t)) = 0, then P (t) is the zero
polynomial. If n = 1, we just showed this when R was a field. But that argument
easily carries over, since every integral domain R can be embedded into a field F
(namely its field of fractions). If there existed a nonzero polynomial P (t) ∈ R[t]
such that there were infinitely x ∈ R such that P (x) = 0, then since R ⊂ F , there
are also infinitely many x ∈ F such that P (x) = 0, contradiction. Assume now
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that n > 1. In general the theory of polynomials of several variables is signficantly
harder than that of univariate polynomials, but here we can use a dirty trick:

R[t1, . . . , tn−1, tn] = R[t1, . . . , tn−1][tn].

In other words, a polynomial P (t1, . . . , tn) in n variables over the integral domain
R may be viewed as a polynomial Q(tn) := (P (t1, . . . , tn−1))(tn) in one variable
over the integral domain Rn−1 := R[t1, . . . , tn−1]. If P (x1, . . . , xn) = 0 for all
(x1, . . . , xn) ∈ Rn then, since R ⊂ Rn−1, the univariate polynomial Q(tn) has
infinitely many roots in Rn−1 and thus is identically zero by the above argument.

As for part b), for instance the function 10 : Rn → R which maps 0 ∈ Rn to
1 and every other element of Rn to 0 is not a polynomial function. You are asked
to show this in Exercise 4 below. Another argument is by counting: for infinite R,
the cardinality of R[t1, . . . , tn] is equal to the cardinality of R, whereas the total
number of functions from Rn to R has cardinality |R||Rn| = 2|R| > |R|, so “most”
functions are not polynomials. �

Exercise 4: Let R be an infinite integral domain and n ∈ Z+. Show that the char-
acteristic function 10 of the origin – i.e., the function which maps 0 = (0, . . . , 0)
to 1 and every other element of Rn to zero – is not a polynomial function. (Hint:
restrict the function 10 to a line passing through the origin, and thereby reduce to
the case n = 1.)

We shall not need Proposition 14.6 later on, but it is interesting to contrast the
infinite case with the finite case. First of all:

Lemma 14.7. Let R = Fq be a finite integral domain (necessarily a field). Then
every function f : Fnq → Fq is given by a polynomial.

Proof. We first express the function 10, which takes 0 to 1 and every other
element to 0, as a polynomial. Indeed, since xq−1 = 1 for x ∈ F×q and 0q−1 = 0, we
have for all x = (x1, . . . , xn) ∈ Fnq that

10(x) =

n∏
i=1

(1− xq−1
i ).

For an arbitrary function f : Fnq → F, define

(43) Pf (t) :=
∑
y∈Fnq

f(y)

n∏
i=1

(1− (ti − yi)q−1).

Every term in the sum with y 6= x yields zero, and the term y = x yields f(x). �

On the other hand, over a finite field Fq, a nonzero polynomial may evaluate to the
zero function: indeed tq − t is a basic one variable example. There is no contra-
diction here because a nonzero polynomial over a domain cannot have more roots
than its degree, but tq − t =

∏
a∈Fq (t− a) has exactly as many roots as its degree.

Moreover, no nonzero polynomial of degree less than q could lie in the kernel of
the evaluation map, so tq − t is a minimal degree nonzero element of Ker(Φ). But,
since Fq[t] is a PID, every nonzero ideal I is generated by its unique monic element
of least degree, so Ker(Φ) = 〈tq − t〉.

We would like to compute Ker(Φ) in the multivariable case. Reasoning as above it
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is clear that for all 1 ≤ i ≤ n the polynomials tqi − ti must lie in the kernel of the
evaluation map, so at least we have J = 〈tq1 − t1, . . . , tqn − tn〉 ⊂ Ker(Φ). We will
see that in fact J = Ker(Φ). We can even do better: for each polynomial P (t) we

can find a canonical element P̃ of the coset P (t) + Ker(Φ).

The key idea is that of a reduced polynomial. We say that a monomial cta11 · · · tann
is reduced if ai < q for all i. A polynomial P ∈ Fq[t] is reduced if each of its
nonzero monomial terms is reduced. Equivalently, a reduced polynomial is one for
which the total degree in each variable is less than q.

Example: The polynomial Pf (t) above is a sum of polynomials each having de-
gree q − 1 in each variable, so is reduced.

Exercise 5: The reduced polynomials form an Fq-subspace of Fq[t1, . . . , tn], with a
basis being given by the reduced monomials.

The idea behind the definition is that if in a monomial term we had an expo-
nent taii with ai ≥ q, then from the perspective of the associated function this is
just wasteful: we have

xaii = x
q+(ai−q)
i = xqix

ai−q
i = xix

ai−q
i = x

ai−(q−1)
i .

Thus by a sequence of “elementary reductions” of this type we can convert any
polynomial P into a reduced polynomial P̃ . Moreover, a little reflection makes
clear that P − P̃ ∈ J .

Is it possible for a given polynomial P to be congruent modulo Ker(Φ) to more
than one reduced polynomial? Well, the reduced polynomials form an Fq-vector
subspace of the space of all polynomials with basis given by the reduced monomials,
of which there are qn, so the total number of reduced polynomials is qq

n

. In fact this
is also the total number of functions from Fnq to Fq. Since we know that every func-
tion is given by some reduced polynomial, it must be that evaluation map restricted
to reduced polynomials is a bijection. Finally, since we showed that every polyno-
mial was equivalent modulo J to a reduced polynomial, so that #Fq[t]/J ≤ qq

n

.

By surjectivity of Φ we know #Fq[t]/Ker(Φ) = # Map(Fnq ,Fq) = qq
n

. Therefore
the quotient map Fq[t]/J → Fq[t]/Ker(Φ) is a bijection and hence J = Ker(Φ).

Remark: More standard is to prove that a nonzero reduced polynomial does not
induce the zero function by induction on the number of variables. Then the surjec-
tivity of Φ can be deduced from the injectivity on reduced polynomials by noticing,
as we did, that the domain and codomain are finite sets with the same cardinality.
Our treatment here is undeniably more complicated than this, but also seems more
interesting. It will also smooth the way for our first proof of Warning’s theorem.

Let us summarize all the preceding results:

Theorem 14.8. (Polynomial evaluation theorem) Let R be an integral domain
and n ∈ Z+. Let Φ : R[t] = R[t1, . . . , tn] → Map(Rn, R) be the homomorphism
of rings obtained by associating to each polynomial the corresponding polynomial
function x = (x1, . . . , xn) 7→ P (x).
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a) If R is infinite, then Φ is injective but not surjective: every function f : Rn → R
is represented by at most one polynomial, and there exist functions not represented
by any polynomial.
b) If R is finite, then Φ is surjective but not injective: its kernel is the ideal 〈tq1 −
t1, . . . , t

q
n − tn〉. Thus every function f : Rn → R is represented by infinitely

many polynomials. Moreover, for each f there exists a unique reduced polynomial
representative, given explicitly as the polynomial Pf (t) of (43) above.

If f : Fnq → Fq is any function, we define its reduced degree in ti to be the degree
in ti of the associated reduced polynomial, and similarly its reduced total degree
to be the total degree of the associated reduced polynomial.

Exercise 6: Show that if P is any polynomial, the total degree deg(P̃ ) of P̃ is
less than or equal to the total degree deg(P ) of P .

2.2. First proof of Warning’s Theorem.

We have polynomials P1(t), . . . , Pr(t) in n variables with
∑r
i=1 deg(Pi) < n. Put

(44) Z = {(x1, . . . , xn) ∈ Fnq | P1(x) = . . . = Pr(x) = 0.}

We want to show that #Z ≡ 0 (mod p). Let 1Z : Fnq → Fq be the (Fq-valued)
“characteristic function” of the subset Z, i.e., the function which maps x to 1 if
x ∈ Z and x to 0 otherwise. Now one polynomial representative 1Z is

(45) P (t) :=

r∏
i=1

(
1− Pi(t)q−1

)
;

whereas – essentially by (43) above – the reduced polynomial representative is

QZ(t) =
∑
x∈Z

n∏
i=1

(
1− (ti − xi)q−1

)
.

Now comes the devilry: the total degree of P (t) is (q − 1)
∑
i di < (q − 1)n.

On the other hand, consider the coefficient of the monomial tq−1
1 · · · tq−1

n in
QZ(t): it is (−1)n#Z. If we assume that #Z is not divisible by p, then this term
is nonzero and QZ(t) has total degree at least (q − 1)n. By Exercise X.X, we have

deg(P̃ ) ≤ deg(P ) < (q − 1)n ≤ deg(QZ).

Therefore P̃ 6= deg(QZ), whereas we ought to have P̃ = QZ , since each is the
reduced polynomial representative of 1Z . Evidently we assumed something we
shouldn’t have: rather, we must have p | #Z, qed.

2.3. Ax’s proof of Warning’s theorem.

The following book proof of Warning’s Theorem is due to James Ax [Ax64].

We maintain the notation of the previous section, especially the polynomial P (t)
of (45) and the subset Z of (44). Because P (x) = 1Z(x) for all x ∈ Fnq , we have

#Z ≡
∑
x∈ Fnq

P (x) (mod p).
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So we just need to evaluate the sum. Since every polynomial is an Fq-linear com-
bination of monomial terms, it is reasonable to start by looking for a formula for∑
x∈Fnq

xa11 · · ·xann for non-negative integers a1, . . . , an. It is often the case that if

f : G → C is a “nice” function from an abelian group to the complex numbers,
then the complete sum

∑
x∈G f(x) has a simple expression. Case in point:

Lemma 14.9. Let a1, . . . , an be non-negative integers.
a) If for 1 ≤ i ≤ n, ai is a positive multiple of q−1, then

∑
x∈Fnq

xa11 · · ·xann = (−1)n.

b) In every other case – i.e., for at least one i, 1 ≤ i ≤ n, ai is not a positive integer
multiple of q − 1 – we have

∑
x∈Fnq

xa11 · · ·xann = 0.

Proof. Part a) is not needed in the sequel and is just stated for completeness;
we leave the proof as an exercise.

As for part b), we have

∑
x∈ Fnq

xa11 · · ·xann =

n∏
i=1

 ∑
xi∈ Fq

xaii

 .

By assumption there exists at least one i, 1 ≤ i ≤ n, such that ai is either 0 or
is positive but not a multiple of q − 1. If ai = 0, then

∑
xi∈Fq x

ai
i =

∑
xi∈Fq 1 =

q ≡ 0 ∈ Fq, so assume that ai is positive but not divisible by q − 1. Let α be a
generator for the cyclic group F×q , and put β = αai . Then

∑
xi∈Fq

xaii = 0ai +
∑
xi∈F×q

xaii = 0 +

q−2∑
N=0

(αN )ai =

q−2∑
N=0

βN =
1− βq−1

1− β
=

1− 1

1− β
= 0.

�

Finally, the polynomial P (t) has degree
∑r
i=1 di(q−1) = (q−1)

∑r
i=1 di < (q−1)n.

Thus in each monomial term cta11 · · · tarn in P (t) must have a1+. . .+ar < (q−1)n, so
it can’t be the case that each ai ≥ q−1. Therefore Lemma 14.9 applies, and

∑
x∈Fnq

is an Fq-linear combination of sums each of which evaluates to 0 in Fq and therefore
the entire sum is 0. This completes our second proof of Warning’s Theorem.

3. Some Later Work

Under the hypotheses of Warning’s theorem we can certainly have 0 solutions.
For instance, we could take P1(t) to be any polynomial with deg(P1) < n

2 and
P2(t) = P1(t) + 1. Or, when q is odd, let a ∈ Fq be a quadratic nonresidue, let
P1(t) be a polynomial of degree less than n

2 and put P (t) = P1(t)2 − a.

On the other hand, it is natural to wonder: in Warning’s theorem, we might actu-
ally have #Z ≡ 0 mod q? The answer is now known, but it took 46 years.

First consider the case of r = 1, i.e., a single polynomial P of degree less than
n. In [Wa36], Warning proved that #Z, if positive, is at least qn−d. And in the
same paper [Ax64], Ax showed that qb | #Z for all b < n

d . By hypothesis we can
take b = 1, so the aforementioned question has an affirmative answer in this case.



3. SOME LATER WORK 185

For the case of multiple polynomials P1, . . . , Pr of degrees d1, . . . , dr, in a celebrated
1971 paper N. Katz showed that qb | #Z for all positive integers b satisfying

b <
n− (d1 + . . .+ dr)

d1
+ 1.

Since the above fraction is by hypothesis strictly positive, we can take b = 1 getting
indeed #Z ≡ 0 (mod q) in all cases.

These divisibilities are called estimates of Ax-Katz type. It is known that there
are examples in which the Ax-Katz divisibilities are best possible, but refining these
estimates in various cases is a topic of active research: for instance there is a 2007
paper by W. Cao and Q. Sun, Improvements upon the Chevalley-Warning-Ax-Katz-
type estimates, J. Number Theory 122 (2007), no. 1, 135–141.

Notice that the work since Warning has focused on the problem of getting best
possible p-adic estimates for the number of solutions: that is, instead of bounds of
the form #Z ≥ N , we look for bounds of the form ordp(#Z) ≥ N . Such estimates
are closely linked to the p-adic cohomology of algebraic varieties, a beautiful (if
technically difficult) field founded by Pierre Deligne in his landmark paper ”Weil II.”

The hypotheses of the Chevalley-Warning theorem are also immediately sugges-
tive to algebraic geometers: (quite) roughly speaking there is a geometric division
of algebraic varieties into three classes: Fano, Calabi-Yau, and general type. The
degree conditions in Warning’s theorem are precisely those which give, among the
class of algebraic varieties represented nicely by r equations in n variables (“smooth
complete intersections”), the Fano varieties. A recent result of Hélène Esnault gives
the geometrically natural generalization: any Fano variety over Fq has a rational
point. There are similar results for other Fano-like varieties.





CHAPTER 15

Additive Combinatorics

1. The Erdős-Ginzburg-Ziv Theorem

1.1. A Mathematical Card Game.

Consider the following game. One starts with a deck of one hundred cards (or
N cards, for some arbitrary positive integer N). Any number of players may play;
one of them is the dealer. The dealer shuffles the deck, and the player to the dealer’s
left selects a card (“any card”) from the deck and shows it to everyone. The player
to the dealer’s right writes down the numerical value of the card, say n, and keeps
this in a place where everyone can see it. The card numbered n is reinserted into
the deck, which is reshuffled. The dealer then deals cards face up on the table, one
at a time, at one minute intervals, or sooner by unanimous consent (i.e., if everyone
wants the next card, including the dealer, then it is dealt; otherwise the dealer waits
for a full minute). A player wins this round of the game by correctly selecting any
k > 0 of the cards on the table such that the sum of their numerical values is divis-
ible by n. When all the cards are dealt, the players have as much time as they wish.

For example, suppose that n = 5 and the first card dealt is 16. 16 is not di-
visible by 5, so the players all immediately ask for another card: suppose it is 92.
92 is not divisible by 5 and neither is 92 + 16 = 118, so if the players are good,
they will swiftly ask for the next card. Suppose the next card is 64. Then some-
one can win by collecting the 64 and the 16 and calling attention to the fact that
64 + 16 = 80 is divisible by 5.

Here’s the question: is it always possible to win the game, or can all the cards
be dealt with no solution?

We claim that it is never necessary to deal more than n cards before a solution
exists. Moreover, if the number N of cards in the deck is sufficiently large compared
to the selected modulus n, it is possible for fewer than n cards to be insufficient.

To see the latter, note that if n = 1 we obviously need n cards, and if n = 2
we will need n cards iff the first card dealt is odd. If n = 3 we may need n cards iff
N ≥ 4, since if 1 and 4 are the first two cards dealt there is no solution. In general,
if the cards dealt are 1, 1+n, 1+2n, . . . , 1+(n−2)n, then these are n−1 cards which
are all 1 (mod n) and clearly we cannot obtain 0 (mod n) by adding up the values
of any 0 < k ≤ n−1 of these. This is possible provided N ≥ n2−2n+1 = (n−1)2.1

1We neglect the issue of figuring out exactly how many card are necessary if n is moderately
large compared to N . It seems interesting but does not segue into our ultimate goal.

187
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But why are n cards always sufficient? We can give an explicit algorithm for
finding a solution: for each 1 ≤ k ≤ n, let Sk = a1 + . . . + ak be the sum of the
values of the first k cards. If for some k, Sk is divisible by n, we are done: we
can at some point select all the cards. Otherwise, we have a sequence S1, . . . , Sn
of elements in Z/nZ, none of which are 0 (mod n). By the pigeonhole principle,
there must exist k1 < k2 such that Sk1 ≡ Sk2 (mod n), and therefore

0 ≡ Sk2 − Sk1 = ak1+1 + . . .+ ak2 (mod n).

In other words, not only does a solution exist, for some k ≤ n a solution exists
which we can scoop up quite efficiently, by picking up a consecutive run of cards
from right to left starting with the rightmost card.

Notice that this is not always the only way to win the game, so if this is the
only pattern you look for you will often lose to more skillful players. For instance,
in our example of n = 5, the sequence (which we will now reduce mod 5) 1, 2, 4
already has a solution but no consecutively numbered solution.

An interesting question that we will leave the reader with is the following: fix
n and assume that N is much larger than n: this is effectively the same as draw-
ing with replacement (because after we a draw any one card ai, the change in the
proportion of the cards in the deck which are congruent to ai (mod n) is negligible
if N is sufficiently large, and we will never deal more than n cards). Suppose then
that we deal 1 ≤ k ≤ n cards. What is the probability that a solution exists?

Anyway, we have proven the following amusing mathematical fact:

Theorem 15.1. Let a1, . . . , an be any integers. There exists a nonempty subset
I ⊂ {1, . . . , n} such that

∑
i∈I ai ≡ 0 (mod n).

1.2. The Erdős-Ginzburg-Ziv Theorem.

After a while it is tempting to change the rules of any game. Suppose we “make
things more interesting” by imposing the following additional requirement: we deal
cards in sequence as before with a predetermined “modulus” n ∈ Z+. But this time,
instead of winning by picking up any (positive!) number of cards which sum to 0
modulo n, we must select precisely n cards ai1 , . . . , ain such that ai1 + . . .+ain ≡ 0
(mod n). Now (again assuming that Ngn, or equivalently, dealing with replace-
ment), is it always possible to win eventually? If so, how many cards must be dealt?

Well, certainly at least n: since the problem is more stringent than before, again
if the first n − 1 congruence classes are all 1 (mod n) then no solution exists. If
we have at least n instances of 1 mod n then we can take them and win. On the
other hand, if the first n− 1 cards are all 1’s, then by adding up any k ≤ n− 1 of
them we will get something strictly less than n, so if the next few cards all come
out to be 0 (mod n), then we will not be able to succeed either. More precisely, if
in the first 2n − 2 cards we get n − 1 instances of 1 (mod n) and n − 1 instances
of 0 (mod n), then there is no way to select precisely n of them that add up to 0
(mod n). Thus at least 2n− 1 cards may be required. Conversely:
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Theorem 15.2. (Erdős-Ginzburg-Ziv, 1961) Let n ∈ Z+ and a1, . . . , a2n−1 ∈ Z.
There exists a subset I ⊂ {1, . . . , 2n− 1} such that:
(i) #I = n.
(ii)

∑
i∈I ai ≡ 0 (mod n).

Proof. (C. Bailey and R.B. Richter) The first step is to deduce the theorem
for n = p a prime using Chevalley-Warning. The second step is to show that if the
theorem holds for n1 and for n2, it holds also for n1n2.

Step 1: Suppose n = p is a prime number. Let a1, . . . , a2p−1 ∈ Z. Consider
the following elements of the polynomial ring Fp[t1, . . . , t2p−1]:

P1(t1, . . . , t2p−1) =

2p−1∑
i=1

ait
p−1
i ,

P2(t1, . . . , t2p−1) =

2p−1∑
i=1

tp−1
i .

Since P1(0) = P2(0) = 0 and deg(P1) + deg(P2) = 2p − 2 < 2p − 1, by Chevalley-
Warning there exists 0 6= x = (x1, . . . , x2p−1) ∈ F2p−1

p such that

(46)

2p−1∑
i=1

aix
p−1
i = 0,

(47)

2p−1∑
i=1

xp−1
i = 0.

Put

I = {1 ≤ i ≤ 2p− 1 | xi 6= 0}.
Since (as usual!) xp−1 is equal to 1 if x 6= 0 and 0 if x = 0, (46) and (47) yield:∑

i∈I
ai ≡ 0 (mod p),

∑
i∈I

1 ≡ 0 (mod p).

But we have 0 < #I < 2p, and therefore #I = p, completing the proof of Step 1.

Step 2: Because we know the theorem is true for all primes n, by induction we
may assume that n = km for 1 < k, m < n (i.e., n is composite) and, by induction,
that the theorem holds for k and m.

By an easy induction on r, one sees that if for any r ≥ 2 we have rk − 1 inte-
gers a1, . . . , ark−1, then there are r − 1 pairwise disjoint subsets of I1, . . . , Ir−1 of
{1, . . . , rk− 1}, each of size k, such that for all 1 ≤ j ≤ r− 1 we have

∑
l∈Ij ai ≡ 0

(mod k). Apply this with r = 2m to our given set of 2n− 1 = (2mk)− 1 integers:
this gives 2m− 1 pairwise disjoint subsets I1, . . . , I2m−1 ⊂ {1, . . . , 2n− 1}, each of
size k, such that for all 1 ≤ j ≤ 2m− 1 we have∑

i∈Ij

ai ≡ 0 (mod k).
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Now, for each j as above, put

bj =
∑
i∈Ij

ai, b′j =
bj
k
.

We thus have 2m− 1 integers b′1, . . . , b
′
2m−1. Again using our inductive hypothesis,

there exists J ⊂ {1, . . . , 2m − 1} such that #J = m and
∑
j∈J b

′
j ≡ 0 (mod m).

Let I =
⋃
j Ij . Then #I = km = n and∑

i∈I
ai ≡

∑
j∈J

∑
i∈Ij

ai ≡
∑
j∈J

kb′j ≡ 0 (mod km).

�

1.3. EGZ theorems in finite groups.

This application of Chevalley-Warning – one which makes good use of our ability to
choose multiple polynomials – is apparently well-known to combinatorial number
theorists. But I didn’t know about it until Patrick Corn brought it to my attention.

As with the Chevalley-Warning theorem itself, the EGZ theorem is sort of a pro-
totype for a whole class of problems in combinatorial algebra. In any group G
(which, somewhat unusually, we will write additively even if it is not commutative)
a zero sum sequence is a finite sequence x1, . . . , xn of elements of G such that
(guess what?) x1 + . . . + xn = 0. By a zero sum subsequence we shall mean
the sequence xi1 , . . . , xik associated to a nonempty subset I ⊂ {1, . . . , n}. In this
language, our Theorem 15.1 says that any sequence of n elements in Z/nZ has a
zero sum subsequence. The same argument proves the following result:

Theorem 15.3. Let G be a finite group (not necessarily commutative), of order
n. Then any sequence x1, . . . , xn in G has a zero sum subsequence.

Some EGZ-type theorems in this context are collected in the following result.

Theorem 15.4. (EGZ for finite groups)
a) (Erdős-Ginzburg-Ziv, 1961) Let G be a finite solvable group of order n and
x1, . . . , x2n−1 ∈ G. Then there exist distinct indices i1, . . . , in (not necessarily in
increasing order) such that xi1 + . . .+ xin = 0.
b) [Ol76] Same as part a) but for any finite group.
c) [Su99] Same as part a) but the indices can be chosen in increasing order:
i1 < . . . < in.
d) [Su99] The conclusion of part c) holds for a finite group G provided it holds for
all of its Jordan-Hölder factors.

We draw the reader’s attention to the distinction between the results of parts a)
and b) and those of c) and d): in the first two parts, we are allowed to reorder
the terms of the subsequence, whereas in the latter two we are not. In a commu-
tative group it makes no difference – thus, the generalization to all finite abelian
groups is already contained in the original paper of EGZ – but in a noncommu-
tative group the desire to preserve the order makes the problem significantly harder.

The inductive argument in Step 2 of Theorem 15.2 is common to all the proofs,
and is most cleanly expressed in Sury’s paper as the fact that the class of finite
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groups for which EGZ holds is closed under extensions. Thus the case in which G
is cyclic of prime order is seen to be crucial. In 1961 Erdős, Ginzburg and Ziv gave
an “elementary” proof avoiding Chevalley-Warning. Nowadays there are several
proofs available; a 1993 paper of Alon and Dubiner presented at Erdős’ 80th birth-
day conference gives five different proofs. Olson’s proof also uses only elementary
group theory, but is not easy. In contrast, Sury’s paper makes full use of Chevalley-
Warning and is the simplest to read: it is only three pages long.

Sury’s result has the intriguing implication that it would suffice to prove the EGZ
theorem for all finite simple groups (which are now completely classified. . .). To
my knowledge no one has followed up on this.

There is another possible generalization of the EGZ theorem to finite abelian, but
non-cyclic, groups. Consider for instance G(n, 2) := Zn × Zn, which of course
has order n2. Rather than asking for the maximal length of a sequence without
an n2-term zero sum subsequence, one might ask for the maximal length of a se-
quence without an n-term zero sum subsequence. (One might ask many other such
questions, of course, but in some sense this is the most reasonable “vector-valued
analogue” of the EGZ situation.) A bit of thought shows that the analogous lower
bound is given by the sequence consisting of n − 1 instances each of (0, 0), (0, 1),
(1, 0) and (1, 1): in other words, this is the “obvious” sequence with no n-term
zero-sum subsequence, of length 4(n − 1). It was conjectured by A. Kemnitz in
1983 that indeed any sequence in G(n, 2) of length at least 4n − 3 has an n-term
zero sum subsequence. Kemnitz’s conjecture was proved in 2003 independently by
Christian Reiher [Re07] (an undergraduate!) and Carlos di Fiore (a high school
student!!). Both proofs use the Chevalley-Warning theorem, but in quite intricate
and ingenious ways.

For any positive integer k, define G(n, d) = (Zn)d, the product of d copies of
the cyclic group of order n, and consider lengths of sequences without an n-term
zero sum subsequence: let us put f(n, d) for the maximal length of such a sequence.
Analogues of the above sequences with {0, 1}-coordinates give

f(n, d) ≥ 2d(n− 1).

In 1973 Heiko Harborth established the (much larger) upper bound

f(n, d) ≤ nd(n− 1).

Harborth also computed G(3, 3) = 18 > 23(3 − 1): i.e., in this case the “obvious”
examples do not have maximal length! It seems that the computation of G(n, 3)
for all n – or still more, of G(n, d) for all d – would be a significant achievement.

2. The Combinatorial Nullstellensatz

In this section we describe a celebrated result of Noga Alon that has served as
a powerful technical tool and organizing principle in combinatorics and additive
number theory. Recall that in §2 we considered the evaluation map

Φ : k[t1, . . . , tn]→ Map(kn, k)

and showed that when k is a finite field of order q, Ker Φ is the ideal I0 generated
by tq1− t1, . . . , tqn− tn. We showed this in a somewhat unorthodox way: first, by an
explicit construction we saw that Φ is surjective. Further, clearly Ker Φ contains
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I0, and thus by a counting argument Ker Φ = I0. At the time we remarked that a
more standard approach is to show that no nonzero reduced polynomial evaluates
to the zero function by an induction on the number of variables. We are now in a
position to want that argument, and in fact the following (mild) generalization.

Lemma 15.5. (Alon-Tarsi [AT92]) Let k be a field, n ∈ Z+, and f(t) ∈ k[t] =
k[t1, . . . , tn]; for 1 ≤ i ≤ n, let di be the ti-degree of f , let Si be a subset of k with
#Si > di, and let S =

∏n
i=1 Si. If f(x) = 0 for all x ∈ S, then f = 0.

Proof. We go by induction on n. The case n = 1 is truly basic: a nonzero
univariate polynomial over a field has no more roots than its degree. Now suppose
n ≥ 2 and that the result holds for polynomials in n− 1 variables. The basic idea
is the identity k[t1, . . . , tn−1, tn] = k[t1, . . . , tn−1][tn]: thus we write

f =

dn∑
i=0

fi(t1, . . . , tn−1)tin

with fi ∈ k[t1, . . . , tn−1]. If (x1, . . . , xn−1) ∈ kn−1, the polynomial f(x1, . . . , xn−1, tn) ∈
k[tn] has degree at most dn and vanishes for all #Sn > dn elements xn ∈ Sn, so it
is identically zero, i.e., fi(x1, . . . , xn−1) = 0 for all 0 ≤ i ≤ tn. By induction, each
fi(t1, . . . , tn−1) is the zero polynomial and thus f is the zero polynomial. �

And now the main attraction.

Theorem 15.6. (Combinatorial Nullstellensatz) Let k be a field, S1, . . . , Sn be
nonempty finite subsets of k, and put S =

∏n
i=1 Si. For 1 ≤ i ≤ n, put

gi(ti) =
∏
si∈Si

(ti − si) ∈ k[t] = k[t1, . . . , tn].

Suppose that for all s = (s1, . . . , sn) ∈ S we have f(s) = 0. Then there are
polynomials h1(t1, . . . , tn), . . . , hn(t1, . . . , tn) such that

f =

n∑
i=1

higi.

Proof. For 1 ≤ i ≤ n, put di = #Si − 1; we may write

gi(ti) = tdi+1
i −

di∑
j=0

gijt
j
i .

Observe that if si ∈ Si, then gi(xi) = 0, i.e.,

(48) xdi+1
i =

di∑
j=0

gijx
j
i .

Let f be the polynomial obtained from f by writing f as a sum of monomials and
repeatedly substituting each instance of teii with ei > di with a k-linear combination

of smaller powers of ti using (48). Then the reduced polynomial f has degree at
most di in ti and f − f is of the form

∑n
i=1 higi. Further, for all s = (s1, . . . , sn) ∈

S, f(s) = f(s) = 0. Thus Lemma 15.5 applies to give f = 0 and thus f =∑n
i=1 higi. �
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We hope the reader has noticed that the proof of Theorem 15.6 bears more than a
passing resemblance to our first proof of Warning’s Theorem.

Example: Let k = Fq be a finite field, and take S1 = . . . = Sn = Fq. Then
for 1 ≤ i ≤ n, gi = tqi − ti. Applying the Combinatorial Nullstellensatz, we
see that a polynomial f which vanishes at every point in Fnq lies in the ideal

I0 = 〈tq1 − t1, . . . , t
q
n − tn〉. That is, we have yet again computed the kernel of

the evaluation map Φ.

Exercise: a) Show that, in the notation of the proof of Theorem 15.6, the poly-
nomials h1, . . . , hn satisfy deg hi ≤ deg f − deg gi for all 1 ≤ i ≤ n.
b) Show that the coefficients of h1, . . . , hn lie in the subring of k generated by the
coefficients of f, g1, . . . , gn.

Corollary 15.7. (Polynomial Method) Let k be a field, n ∈ Z+, a1, . . . , an ∈
N, and let f ∈ k[t] = k[t1, . . . , tn]. We suppose:
(i) deg f = a1 + . . .+ an.
(ii) The coefficient of ta11 · · · tann in f is nonzero.
Then, for any subsets S1, . . . , Sn of k with #Si > ai for 1 ≤ i ≤ n, there is
s = (s1, . . . , sn) ∈ S =

∏n
i=1 Si such that f(s) 6= 0.

Proof. It is no loss of generality to assume that #Si = ai + 1 for all i, and
we do so. We will show that if (i) holds and f |S ≡ 0, then (ii) does not hold, i.e.,
the coefficient of ta11 · · · tann in f is 0.

Define, for all 1 ≤ i ≤ n, gi(ti) =
∏
si∈Si ti − si. By Theorem 15.6 and the

preceding exercise, there are h1, . . . , hn ∈ k[t] such that

f =

n∑
i=1

higi

and

deg hi ≤ (a1 + . . .+ an)− deg gi, ∀1 ≤ i ≤ n,
so

(49) deg higi ≤ deg f.

Thus if higi contains any monomial of degree deg f , such a monomial would be
of maximal degree in higi = hi

∏
si∈Si(ti − si) and thus be divisible by tai+1

i . It
follows that for all i, the coefficient of ta11 · · · tann in higi is zero, hence the coefficient
of ta11 · · · tann in f is zero. �

3. The Cauchy-Davenport Theorem

For nonempty subsets A,B of a group (G,+),2 we define the sumset

A+B = {a+ b | a ∈ A, b ∈ B}.

Exercise: Establish the trivial bound

(50) #(A+B) ≥ max #A,#B.

2In additive combinatorics, it is standard to write even non-commutative groups additively.
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Theorem 15.8. (Cauchy-Davenport) Let p be a prime number. For nonempty
subsets A,B of Z/pZ, we have

#(A+B) ≥ min(p,#A+ #B − 1).

Proof. Case 0: We may assume #A+ #B > 2.
Case 1: Suppose #A+#B > p. Then for all x ∈ Z/pZ we must haveA∩(x−B) 6= ∅,
hence x ∈ A+B. Thus A+B = Z/pZ and #(A+B) = p.
Case 2: Suppose #A+#B ≤ p and, seeking a contradiction, that #(A+B) ≤ #A+
#B− 2. Let C ⊂ Z/pZ be such that A+B ⊂ C ⊂ Z/pZ and #C = #A+ #B− 2.
The polynomial

f(t1, t2) =
∏
c∈C

(t1 + t2 − c) ∈ Fp[t1, t2]

vanishes identically on A×B. Let d1 = #A− 1, d2 = #B − 1; then the coefficient
of td11 t

d2
2 in f is the binomial coefficient

(
#A+#B−2

#A−1

)
, which is nonzero in Z/pZ since

#A+ #B − 2 < p. This contradicts Corollary ??. �

Exercise: Show that the Cauchy-Davenport Theorem is sharp, in the following
sense: for any prime p and integers a, b with 1 ≤ a, b,≤ p, there are subsets
A,B ⊂ Z/pZ with #A = a, #B = b and #A+B = min(p,#A+ #B − 1).

G. Károlyi and (slightly later, but independently) J.P. Wheeler gave the following
interesting generalization: for a (not necessarily abelian) group (G,+), we define
p(G) to be the least order of a nonzero element of G, or ∞ if G has no nonzero
elements of finite order.

Exercise: a) Show that p(Z/pZ) = p.
b) If G is finite, show that p(G) is the least prime divisor of #G.
c) Show that in any group G, if p(G) <∞, then p(G) is a prime number.

Theorem 15.9. (Károlyi-Wheeler [Ká05], [Wh12]) For nonempty subsets
A,B of a finite group G,

#(A+B) ≥ min(p(G),#A+ #B − 1).

Here is a very rough sketch of Wheeler’s proof of Theorem 15.9: if #G is even
then p(G) = 2 and the trivial bound (50) is sufficient. If #G is odd, then by the
Feit-Thompson Theorem G is solvable (!!). Thus there is a normal subgroup
H of G of prime index, whence an isomorphism G/H ∼= Z/pZ. By an inductive
argument (it takes about a page), one reduces to the Cauchy-Davenport Theorem.



CHAPTER 16

Dirichlet Series

1. Introduction

In considering the arithmetical functions f : N → C as a ring under pointwise
addition and “convolution”:

f ∗ g(n) =
∑

d1d2=n

f(d1)g(d2),

we employed that old dirty trick of abstract algebra. Namely, we introduced an
algebraic structure without any motivation and patiently explored its consequences
until we got to a result that we found useful (Möbius Inversion), which gave a sort
of retroactive motivation for the definition of convolution.

This definition could have been given to an 18th or early 19th century mathe-
matical audience, but it would not have been very popular: probably they would
not have been comfortable with the Humpty Dumpty-esque redefinition of multipli-
cation.1 Mathematics at that time did have commutative rings: rings of numbers,
of matrices, of functions, but not rings with a “funny” multiplication operation
defined for no better reason than mathematical pragmatism.

So despite the fact that we have shown that the convolution product is a use-
ful operation on arithmetical functions, one can still ask what f ∗ g “really is.”
There are (at least) two possible kinds of answers to this question: one would be to
create a general theory of convolution products of which this product is an example
and there are other familiar examples. Another would be to show how f ∗ g is
somehow a more familiar multiplication operation, albeit in disguise.

To try to take the first approach, consider a more general setup: let (M, •) be a
commutative monoid. Recall from the first homework assignment that this means
that M is a set endowed with a binary operation • which is associative, commuta-
tive, and has an identity element, say e: e •m = m • e = m for all m ∈ M . Now
consider the set of all functions f : M → C. We can add functions in the obvious
“pointwise” way:

(f + g)(m) := f(m) + g(m).

We could also multiply them pointwise, but we choose to do something else, defining

(f ∗ g)(m) :=
∑

d1•d2=m

f(d1)g(d2).

But not so fast! For this definition to make sense, we either need some assurance
that for all m ∈ M the set of all pairs d1, d2 such that d1 · d2 = m is finite (so

1Recall that Lewis Carroll – or rather Charles L. Dodgson (1832-1898) – was a mathematician.
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the sum is a finite sum), or else some analytical means of making sense of the sum
when it is infinite. But let us just give three examples:

Example 1: (M, •) = (Z+, ·). This is the example we started with – and of course
the set of pairs of positive integers whose product is a given positive integer is finite.

Example 2: (M, •) = (N,+). This is the “additive” version of the previous ex-
ample:

(f ∗ g)(n) =
∑
i+j=n

f(i)g(j).

Of course this sum is finite: indeed, for n ∈ N it has exactly n+1 terms. As we shall
see shortly, this “additive convolution” is closely related to the Cauchy product of
infinite series.

Example 3: (M, •) = (R,+). Here we have seem to have a problem, because
for functions f, g : R→ C, we are defining

(f ∗ g)(x) =
∑

d1+d2=x

f(d1)g(d2) =
∑
y∈R

f(x− y)g(y),

and although it is possible to define a sum over all real numbers, it turns out never
to converge unless f and g are zero for the vast majority of their values.2 However,
there is a well-known replacement for a “sum over all real numbers”: the integral.
So one should probably define

(f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y)dy.

Here still one needs some conditions on f and g to ensure convergence of this
“improper” integral. It is a basic result of analysis that if∫ ∞

−∞
|f | <∞,

∫ ∞
−∞
|g| <∞,

then the convolution product is well-defined. The convolution is an all-important
operation in harmonic analysis: roughly speaking, it provides a way of “mixing
together” two functions. Like any averaging process, it often happens that f ∗ g
has nicer properties than its component functions: for instance, when f and g are
absolutely integrable in the above sense, then f ∗g is not only absolutely integrable
but also continuous.

The most important property of this convolution is its behavior with respect
to the Fourier transform: for a function f : R→ C and y ∈ R, one defines

f̂(x) =

∫ ∞
−∞

f(y)e−2πixdy.

Then one has the following identity:

f̂ ∗ g = f̂ · ĝ.

2More precisely, if S is an arbitrary set of real numbers, it makes sense to define
∑
xi∈S = x

if for all ε > 0, there exists a finite subset T ⊂ S such that for all finite subsets T ′ ⊃ T we have
|
∑
xi∈T xi−x| < ε. (This is a special case of a Moore-Smith limit.) It can be shown that such

a sum can only converge if the set of indices i such that xi 6= 0 is finite or countably infinite.
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In other words, there is a natural type of “transform” f 7→ f̂ under which the
convolution becomes the more usual pointwise product.

Now the question becomes: is there some similar type of “transform” f 7→ f̂ which
carries functions f : M → C to some other space of functions and under which the
convolution product becomes the pointwise product?

The answer is well-known to be “yes” if M is a locally compact abelian group
(e.g. Z,Z/NZ, Rn, . . .), and the construction is in fact rather similar to the above:
this is the setting of abstract Fourier analysis. But our Examples 1 and 2 involve
monoids that are not groups, so what we are looking for is not exactly a Fourier
transform. So let us come back to earth by looking again at Examples 1 and 2.

In the case of Example 2, the construction we are looking for is just:

f ⇐⇒ {f(n)}∞n=0 7→ F (x) =

∞∑
n=0

f(n)xn.

That is, to the sequence {f(n)} we associate the corresponding power series
F (x) =

∑
n f(n)xn. One can look at this construction both formally and analyti-

cally.

The formal construction is purely algebraic: the ring of formal power series C[[t]]
consists of all expressions of the form

∑∞
n=0 anx

n where the an’s are complex num-
bers. We define addition and multiplication in the “obvious ways”:

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n :=

∞∑
n=0

(an + bn)xn,

(

∞∑
n=0

anx
n)(

∞∑
n=0

bnx
n) :=

∞∑
n=0

(a0bn + a1bn−1 + . . .+ anb0)xn.

The latter definition seems obvious because it is consistent with the way we multiply
polynomials, and indeed the polynomials C[t] sit inside C[[t]] as the subring of all
formal expressions

∑
n anx

n with an = 0 for all sufficiently large n. Now note
that this definition of multiplication is just the convolution product in the additive
monoid (N,+):

a0bn + . . .+ anb0 = (a ∗ b)(n).

It is not immediately clear that anything has been gained. For instance, it is,
technically, not for free that this multiplication law of formal power series is as-
sociative (although of course this is easy to check). Nevertheless, one should not
underestimate the value of this purely formal approach. Famously, there are many
nontrivial results about sequences fn which can be proved just by simple algebraic
manipulations of the “generating function” F (x) =

∑
n fnx

n. For example:

Theorem 16.1. Let a1, . . . , ak be a coprime set of positive integers, and define
r(N) to be the number of solutions to the equation

x1a1 + . . .+ xkak = N
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in non-negative integers x1, . . . , xk. Then as N →∞,

r(N) ∼ Nk−1

(k − 1)!(a1 · · · ak)
.

Nevertheless we also have and need an analytic theory of power series, i.e., of the
study of properties of F (x) =

∑
n anx

n viewed as a function of the complex variable
x. This theory famously works out very nicely, and can be summarized as follows:

Theorem 16.2. (Theory of power series) Let
∑
n anx

n be a power series with

complex coefficients. Let R = (lim supn |an|
1
n )−1. Then:

a) The series converges absolutely for all x ∈ C with |x| < R, and diverges – indeed,
the general term tends to infinity in modulus – for all x with |x| > R.
b) The convergence is uniform on compact subsets of the open disk of radius R
(about 0), from which it follows that F (x) is a complex analytic function on this
disk.
c) If two power series F (x) =

∑
n anx

n, G(x) =
∑
n bnx

n are defined and equal for
all x in some open disk of radius R > 0, then an = bn for all n.

In particular, it follows from Cauchy’s theory of products of absolutely convergent
series that if F (x) =

∑
n anx

n and G(x) =
∑
n bnx

n are two power series conver-
gent on some disk of radius R > 0, then on this disk the function FG – the product
of F and G in the usual sense – is given by the power series

∑
n(a∗b)(n)xn. In other

words, with suitable growth conditions on the sequences, we get that the product
of the transforms is the transform of the convolutions, as advertised.

Now we return to the case of interest: (M, •) = (Z+, ·). The transform that does
the trick is f 7→ D(f, s), where D(f, s) is the formal Dirichlet series

D(f, s) =

∞∑
n=1

f(n)

ns
.

To justify this, suppose we try to formally multiply out

D(f, s)D(g, s) =

( ∞∑
m=1

f(m)

ms

)( ∞∑
n=1

g(n)

ns

)
.

We will get one term for each pair (m,n) of non-negative integers, so the product
is (at least formally) equal to∑

(m,n)

f(m)g(n)

msns
=
∑

(m,n)

f(m)g(n)

(mn)s
,

where in both sums m and n range over over all positive integers. To make a Dirich-
let series out of this, we need to collect all the terms with a given denominator, say
Ns. The only way to get 1 in the denominator is to have m = n = 1, so the first

term is f(1)g(1)
1s . Now to get a 2 in the denominator we could have m = 1, n = 2 –

giving the term f(1)g(2)
2s – or also m = 2, n = 1 – giving the term f(2)g(1)

2s , so all in
all the numerator of the “2s-term” is f(1)g(2) + f(2)g(1).

Aha. In general, to collect all the terms with a given denominator Ns in the
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product involves summing over all expressions f(m)g(n) with mn = N . In other
words, we have the following formal identity:

D(f, s) ·D(g, s) = (

∞∑
n=1

f(n)

ns
)(

∞∑
n=1

g(n)

ns
) =

∞∑
n=1

∑
d|n f(d)g(n/d)

ns
= D(f ∗ g, s).

Thus we have attained our goal: under the “transformation” which associates to
an arithmetical function its Dirichlet series D(f, s), Dirichlet convolution of arith-
metical functions becomes the usual multiplication of functions!

There are now several stages in the theory of Dirichlet series:

Step 1: Explore the purely formal consequences: that is, that identities involving
convolution and inversion of arithmetical functions come out much more cleanly on
the Dirichlet series side.

Step 2: Develop the theory of D(f, s) as a function of a complex variable s. It
is rather easy to tell when the series D(f, s) is absolutely convergent. In particular,
with suitable growth conditions on f(n) and g(n), we can see that

D(f, s)D(g, s) = D(f ∗ g, s)

holds not just formally but also as an equality of functions of a complex variable.
In particular, this leads to an “analytic proof” of the Möbius Inversion Formula.

On the other hand, unlike power series there can be a region of the complex
plane with nonempty interior in which the Dirichlet series D(f, s) is only condi-
tionally convergent (that is, convergent but not absolutely convergent). We will
present, without proofs, the basic results on this more delicate convergence theory.

In basic analysis we learn to abjure conditionally convergent series, but they lie
at the heart of analytic number theory. In particular, in order to prove Dirichlet’s
theorem on arithmetic progressions one studies the Dirichlet series L(χ, s) attached
to a Dirichlet character χ (a special kind of arithmetical function we will define
later on), and it is extremely important that for all χ 6= 1, there is a “critical strip”
in the complex plane for which L(χ, s) is only conditionally convergent. We will
derive this using the assumed results about conditional convergence of Dirichlet
series and a convergence test, Dirichlet’s test, from advanced calculus.3 Finally,
as an example of how much more content and subtlety lies in conditionally conver-
gent series, we will use Dirichlet series to give an analytic continuation of the zeta
function to the right half-plane (complex numbers with positive real part), which
allows for a rigorous and concrete statement of the Riemann hypothesis.

2. Some Dirichlet Series Identities

Example 1: If f = 1 is the constant function 1, then by definition D(1, s) is what is
probably the most single important function in all of mathematics, the Riemann
zeta function:

ζ(s) = D(1, s) =

∞∑
n=1

1

ns
.

3P.G.L. Dirichlet propounded his convergence test with this application in mind.
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Example 2: Let f(n) = d(n), the divisor function, so D(d, s) =
∑
n
d(n)
ns . But we

also know that d = 1 ∗ 1. On Dirichlet series this means that we multiply: so that
D(d, s) = D(1, s)D(1, s), and we get that

D(d, s) = ζ(s) · ζ(s) = ζ2(s).

Example 3: Since δ(1) = 1 and δ(n) = 0 for all n > 1, we have D(δ, s) =
1
1s +

∑∞
n=2

0
ns = 1. Thus the Dirichlet series of the δ – the multiplicative iden-

tity for convolution – is just the constant function 1, the multiplicative identity in
the “usual” sense of multiplication functions.

Example 4: What is D(µ, s)? Since µ ∗ 1 = δ, we must have

1 = D(ι, s) = D(µ, s)D(1, s) = D(µ, s)ζ(s),

so

D(µ, s) =
1

ζ(s)
.

Probably this is the most important such identity: it relates combinatorial meth-
ods (the Möbius function is closely related to the inclusion-exclusion principle) to
analytical methods. More on this later.

We record without proof the following further identities, whose derivations are
similarly straightforward. Some notational reminders: we write ι for the function
n 7→ n; ιk for the function n 7→ nk; and λ for the function n 7→ (−1)Ω(n), where
Ω(n) is the number of prime divisors of n counted with multiplicity.

D(ι, s) = ζ(s− 1).

D(ιk, s) = ζ(s− k).

D(σ, s) = ζ(s)ζ(s− 1).

D(σk, s) = ζ(s)ζ(s− k).

D(ϕ, s) =
ζ(s− 1)

ζ(s)
.

D(λ, s) =
ζ(2s)

ζ(s)
.

3. Euler Products

Our first task is to make formal sense of an infinite product of infinite series, which
is unfortunately somewhat technical. Suppose that we have an infinite indexing set
P and for each element of p of P an infinite series whose first term is 1:

∞∑
n=0

ap,n = 1 + ap,1 + ap,2 + . . . .

Then by the infinite product
∏
p∈P

∑
n ap,n we mean an infinite series whose terms

are indexed by the infinite direct sum T =
⊕

p∈P N. Otherwise put, an element
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t ∈ T is just a function t : P → N such that t(p) = 0 for all but finitely many p in
P .4 Then by

∏
p∈P

∑
n ap,n we mean the formal infinite series∑

t∈T

∏
p∈P

ap,t(p).

Note well that for each t, since t(p) = 0 except for finitely many p and since ap,0 = 1
for all p, the product

∏
p∈P ap,t(p) is really a finite product. Thus the series is well-

defined “formally” – that is, merely in order to write it down, no notion of limit of
an infinite process is involved.

Let us informally summarize the preceding: to make sense of a formal infinite
product of the form ∏

p

(1 + ap,1 + ap,2 + . . .+ ap,n + . . .) ,

we give ourselves one term for each possible product of one term from the first
series, one term from the second series, and so forth, but we are only allowed to
choose a term which is different from the ap,0 = 1 term finitely many times.

With that out of the way, recall that when developing the theory of arithmeti-
cal functions, we found ourselves in much better shape under the hypothesis of
multiplicativity. It is natural to ask what purchase we gain on D(f, s) by assum-
ing the multiplicativity of f . The answer is that multiplicativity of f is equivalent
to the following formal identity:

(51) D(f, s) =

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
.

Here the product extends over all primes. The fact that this identity holds (as an
identity of formal series) follows from the uniqueness of the prime power factoriza-
tion of positive integers.

An expression as in (51) is called an Euler product expansion. If f is moreover

completely multiplicative, then f(pk)
pks

= ( f(p)
ps )k, and each factor in the product is a

geometric series with ratio f(p)
ps , so we get

D(f, s) =
∏
p

(
1− f(p)

ps

)−1

.

In particular f = 1 is certainly completely multiplicative, so we get the identity

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which we used in our study of the primes. We also get

(52)

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
=
∏
p

(
1− 1

ps

)
,

4The property that t(p) = 0 except on a finite set is, by definition, what distinguishes the
infinite direct sum from the infinite direct product.
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and, plugging in s = 2,

6

π2
=

1

ζ(2)
=

∞∑
n=1

µ(n)

n2
=
∏
p

(
1− 1

p2

)
.

But not so fast! We changed the game here: so far (52) expresses a formal identity
of Dirichlet series. In order to be able to plug in a value of s, we need to discuss the
convergence properties of Dirichlet series and Euler products. In particular, since
we did not put any particular ordering on our formal infinite product, in order for
the sum to be meaningful we need the series involved to be absolutely convergent.
It is therefore to this topic that we now turn.

4. Absolute Convergence of Dirichlet Series

Let us first study the absolute convergence of Dirichlet series
∑
n
an
ns . That is, we

will look instead at the series
∑
n
|an|
nσ , where s = σ + it.5

Theorem 16.3. Suppose a Dirichlet series D(s) =
∑
n
an
ns is absolutely conver-

gent at some complex number s0 = σ0 + it0. Then it is also absolutely convergent
at all complex numbers s with σ = <(s) > s0.

Proof. If σ = <(s) > σ0 = <(s0), then n−σ > nσ0 for all n ∈ Z+, so
∞∑
n=1

|an
ns
| =

∞∑
n=1

|an|
nσ
≤
∞∑
n=1

|an|
nσ0

=

∞∑
n=1

| an
ns0
| <∞.

�

It follows that the domain of absolute convergence of a Dirichlet series D(f, s)
is one of the following:

(i) The empty set. (I.e., for no s does the series absolutely converge.)
(ii) All of C.
(iii) An open half-plane of the form <s > S.
(iv) A closed half-plane of the form <s ≥ S.

Notice that in all cases, there is a unique σac ∈ [−∞,∞] such that:

(AAC1) For all s with <(s) > σac, D(s) is absolutely convergent.
(AAC2) For all s with <(s) < σac, D(s) is not absolutely convergent.

This unique σac is called the abscissa of absolute convergence of D(s).

Example 1 (Type i): D(s) =
∑
n

2n

ns .
This series does not converge (absolutely or otherwise) for any s ∈ C: no matter
what s is, |2n · n−s| → ∞: exponentials grow faster than power functions. So
σac =∞.

Example 2 (Type ii): A trivial example is the zero series – an = 0 for all n, or

5In other words, for a complex number s we write σ for its real part and t for its imaginary
part. This seemingly unlikely notation was introduced in a fundamental paper of Riemann, and

remains standard to this day.
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for that matter, any series with an = 0 for all sufficiently large n: these give finite
sums. Or we could take an = 2−n and now the series converges absolutely inde-
pendent of s. So σac = −∞.

Example 3 (Type iii): ζ(s) = 1
ns is absolutely convergent for s ∈ (1,∞). So σac = 1.

Example 4 (Type iv): For an = 1
(logn)2 , the domain of absolute convergence is

[1,∞).

The following result gives a sufficient condition for σac = 1:

Proposition 16.4. Let D(s) =
∑∞
n=1

an
ns be a Dirichlet series.

a) Suppose that there is M ∈ R such that |an| ≤M for all n. Then σac ≤ 1.
b) Suppose the sequence an does not tend to 0. Then σac ≥ 1.
c) In particular if the sequence an is bounded but not convergent to 0, then σac = 1.

Proof. a) Suppose |an| ≤M for all n and also that σ = <(s) > 1. Then∑
n

|an
ns
| ≤M

∑
n

1

nσ
= Mζ(σ) <∞.

b) The Dirichlet series at 0 is
∑
n
an
n0 =

∑
n an. Of course this series can only be

convergent (absolutely or otherwise) if an → 0. Part c) follows immediately from
a) and b). �

Definition: We say that an arithmetic function an : Z+ → C has polynomial
growth of order N if there exist positive real numbers C and N such that |an| ≤
CnN for all n ∈ Z+. We say that a function has polynomial growth if it has
polynomial growth of order N for some N ∈ R+.

Proposition 16.5. Suppose {an} has polynomial growth of order N . Then the
associated Dirichlet series D(s) = an

ns has σac ≤ N + 1.

Proof. By hypothesis, there exists C such that |an| ≤ CnN for all n ∈ Z+. If
σ = <(s) > N + 1, then there exists ε > 0 such that σ > N + 1 + ε. Then∑

n

|an
nσ
| ≤

∑
n

|an|
nN+1+ε

≤ C
∑
n

nN

nN+1+ε
= C

∑
n

1

n1+ε
<∞.

�

Corollary 16.6. Let f(n), g(n) be arithmetical functions with polynomial
growth of order N . Then

D(f, s)D(g, s) = D(f ∗ g, s)

is an equality of functions defined on (N + 1,∞).

This follows easily from the theory of absolute convergence and the Cauchy product.

Theorem 16.7. (Uniqueness Theorem) Let f(n), g(n) be arithmetical functions
whose Dirichlet series are both absolutely convergent in the halfplane σ = <(s) > σ0.
Suppose there exists an infinite sequence sk of complex numbers, with σk = <(sk) >
σ0 for all k and σk →∞ such that D(f, sk) = D(g, sk) for all k. Then f(n) = g(n)
for all n.
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Proof. First we put h(n) := f(n)− g(n), so that D(h, s) = D(f, s)−D(g, s).
Then our assumption is that D(h, sk) = 0 for all k, and we wish to show that
h(n) = 0 for all n.

So suppose not, and let N be the least n for which h(n) 6= 0. Then

D(h, s) =

∞∑
n=N

h(n)

ns
=
h(N)

Ns
+

∞∑
n=N+1

h(n)

ns
,

so

h(N) = NsD(h, s)−Ns
∞∑

n=N+1

h(n)

ns
.

Taking now s = sk we have that for all k ∈ Z+,

h(N) = −Nsk

∞∑
n=N+1

h(n)

n−sk
.

Fix a σ > σ0, and choose a k such that σk > σ. Then

|h(N)| ≤ Nσk

∞∑
n=N+1

|h(n)|n−σk ≤ Nσk

(N + 1)σk−c

∞∑
n=N+1

|h(n)|n−c ≤ C
(

N

N + 1

)σk
,

for some constant C independent of n and k. Since N is a constant, letting σk →∞
the right hand side approaches 0, thus h(N) = 0, a contradiction. �

Corollary 16.8. Let D(s) =
∑
n
an
ns be a Dirichlet series with abscissca of

absolute convergence σac. Suppose that for some s with <(s) > σac we have D(s) =
0. Then there exists a halfplane in which D(s) is absolutely convergent and never
zero.

Proof. If not, we have an infinite sequence {sk} of complex numbers, with
real parts tending to infinity, such that D(sk) = 0 for all k. By the Uniqueness
Theorem this implies that an = 0 for all n and thus D(s) is identically zero in its
halfplane of absolute convergence, contrary to our assumption. �

Corollary 16.9. (MIF for polynomially growing functions) If f(n) is an
arithmetical function with polynomial growth and F (n) =

∑
d|n f(n), then f(n) =∑

d|n F (d)µ(n/d).

Surely this was the first known version of the Möbius inversion formulaa. As Hardy
and Wright remark [HW], the “real” proof of MIF is the purely algebraic one we
gave earlier, but viewing things in terms of “honest” functions has a certain appeal.

Moreover, the theory of absolute convergence of infinite products (see e.g. [A1,
§11.5]) allows us to justify our formal Euler product expansions:

Theorem 16.10. (Theorem 11.7 of [A1]) Suppose that D(f, s) =
∑
n
f(n)
ns

converges absolutely for σ > σac. If f is multiplicative we have an equality of
functions

D(f, s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
,
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valid for all s with <(s) > σac. If f is completely multiplicative, this simplifies to

D(f, s) =
∏
p

(
1− f(p)

ps

)−1

.

Euler products are ubiquitous in modern number theory: they play a prominent
role in (e.g.!) the proof of Fermat’s Last Theorem.

5. Conditional Convergence of Dirichlet Series

Let D(f, s) =
∑∞
n=1

an
ns be a Dirichlet series. We assume that the abscissa of

absolute convergence σac is finite.

Theorem 16.11. There exists a real number σc with the following properties:
(i) If <(s) > σc, then D(f, s) converges (not necessarily absolutely).
(ii) If <(s) < σc, then D(f, s) diverges.

Because the proof of this result is already somewhat technical, we defer it until
§X.X on general Dirichlet series, where we will state and prove a yet stronger re-
sult.

Definition: σc is called the abscissa of convergence.

Contrary to the case of absolute convergence we make no claims about the conver-
gence or divergence of D(f, s) along the line <(s) = σ: this is quite complicated.

Proposition 16.12. We have

0 ≤ σac − σc ≤ 1.

Proof. Since absolutely convergent series are convergent, we evidently must
have σac ≥ σ. On the other hand, let s = σ + it be a complex number such that∑∞
n=1

an
ns converges. Of course this implies that an

ns → 0 as n → ∞, and that in

turn implies that there exists an N such that n ≥ N implies |anns | =
|an|
nσ ≥ 1. Now

let s′ be any complex number with real part σ + 1 + ε for any ε > 0. Then for all
n ≥ N ,

| an
ns′
| = |an|

nσ
· 1

n1+ε
≤ 1

n1+ε
,

so by comparison to a p-series with p = 1 + ε > 1, D(f, s′) is absolutely convergent.
�

It can be a delicate matter to show that a series is convergent but not absolutely
convergent: there are comparatively few results that give criteria for this. The
following one – sometimes encountered in an advanced calculus class – will serve us
well.

Proposition 16.13. (Dirichlet’s Test) Let {an} be a sequnece of complex num-
bers and {bn} a sequence of real numbers. Suppose both of the following hold:

(i) There exists a fixed M such that for all N ∈ Z+, |
∑N
n=1 an| ≤ M (bounded

partial sums);
(ii) b1 ≥ b2 ≥ . . . ≥ bn ≥ . . . and limn bn = 0.
Then

∑∞
n=1 anbn is convergent.
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Proof. Write SN for
∑N
n=1, so that by (i) we have |SN | ≤ M for all N . Fix

ε > 0, and choose N such that bN < 1
ε2M . Then, for all m,n ≥ N :

|
n∑

k=m

akbk| =
n∑

k=m

(Sk − Sk−1)bk|

= |
n∑

k=m

Skbk −
n−1∑

k=m−1

Skbk+1|

= |
n−1∑
k=m

Sk(bk − bk+1) + Snbn − Sm−1bm|

≤
n−1∑
k=m

|Sk||bk − bk+1|+ |Sn||bn|+ |Sm−1||bm|

≤M

(
n−1∑
k=m

|bk − bk+1|+ |bn|+ |bm|

)
= 2Mbm ≤ 2MbN < ε.

Therefore the series satisfies the Cauchy criterion and hence converges.6 �

Theorem 16.14. Let {an}∞n=1 be a complex sequence.

a) Suppose that the partial sums
∑N
n=1 an are bounded. Then the Dirichlet series∑∞

n=1
an
ns has σc ≤ 0.

b) Assume in addition that an does not converge to 0. Then σac = 1, σc = 0.

Proof. By Proposition 16.4, σac = 1. For any real number σ > 0, by taking
bn = 1

nσ the hypotheses of Proposition 16.13 are satisfied, so that D(σ) =
∑
n
an
nσ

converges. The smallest right open half-plane which contains all positive real num-
bers σ is of course <(s) > 0, so σ ≤ 0. By Proposition 16.12 we have 1 = σac ≤ 1+σ,
so we conclude that σ = 0. �

Theorem 16.15. (Theorem 11.11 of [A1]) A Dirichlet series D(f, s) converges
uniformly on compact subsets of the half-plane of convergence <(s) > σ.

Suffice it to say that, in the theory of sequences of functions, “uniform conver-
gence on compact subsets” is the magic incantation. As a consequence, we may
differentiate and integrate Dirichlet series term-by-term. Also:

Corollary 16.16. The function D(f, s) =
∑∞
n=1

f(n)
ns defined by a Dirichlet

series in its half-plane <(s) > σ of convergence is complex analytic.

6. Dirichlet Series with Nonnegative Coefficients

Suppose we are given a Dirichlet series D(s) =
∑
n
an
ns with the property that for

all n, an is real and non-negative. There is more to say about the analytic theory
of such series. First, the non-negativity hypothesis ensures that for any real s, D(s)
is a series with non-negative terms, so its absolute convergence is equivalent to its
convergence. Thus:

Lemma 16.17. For a Dirichlet series with non-negative real coefficients, the
abscissae of convergence and absolute convergence coincide.

6This type of argument is known as summation by parts.
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Thus one of the major differences from the the theory of power series is eliminated
for Dirichlet series with non-negative real coefficients. Another critical property of
all complex power series is that the radius of convergence R is as large as conceiv-
ably possible, in that the function necessarily has a singularity somewhere on the
boundary of the disk |z − z0| < R of convergence. This property need not be true
for an arbitrary Dirichlet series. Indeed the series

D(s) =

∞∑
n=1

(−1)n+1

(2n+ 1)s
= 1− 1

3s
+

1

5s
− . . . ,

has σ = 0 but extends to an analytic function on the entire complex plane.7 How-
ever:

Theorem 16.18. (Landau) Let D(s) =
∑
n
an
ns be a Dirichlet series, with an

real and non-negative for all n. Suppose that for a real number σ, D(s) converges
in the half-plane <(s) > σ, and that D(s) extends to an analytic function in a
neigborhood of σ. Then σ strictly exceeds the abscissa of convergence σc.

Proof (Kedlaya): Suppose on the contrary that D(s) extends to an analytic function
on the disk |s − σ| < ε, for some ε > 0 but σ = σc. Choose c ∈ (σ, σ + ε/2), and
write

D(s) =
∑
n

ann
−cnc−s =

∑
n

ann
−ce(c−s) logn

=

∞∑
n=1

∞∑
k=0

ann
−c(log n)k

k!
(c− s)k.

Here we have a double series with all coefficients non-negative, so it must converge
absolutely on the disk |s−c| < ε

2 . In particular, viewed as a Taylor series in (c−s),
this must be the Taylor series expansion of D(s) at s = c. Since D(s) is assumed
to be holomorphic in the disk |s − c| < ε

2 , this Taylor series is convergent there.
In particular, choosing any real number σ′ with σ − ε

2 < σ′ < σ, we have that
D(σ′) is absolutely convergent. But this implies that the original Dirichlet series is
convergent at σ′, contradiction!

For example, it follows from Landau’s theorem that the Riemann zeta function
ζ(s) =

∑
n

1
ns must have a singularity at s = 1, since otherwise there would exist

some σ < 1 such that the series converges in the entire half-plane <(s) > σ.
Of course this is a horrible illustration of the depth of Landau’s theorem, since

we used the fact that ζ(1) = ∞ in order to compute the abscissa of convergence
of the zeta function! We will see a much deeper application of Landau’s theorem
during the proof of Dirichlet’s theorem on primes in arithmetic progressions.

7. Characters and L-Series

Let f : Z+ → C be an arithmetic function.

Recall that f is said to be completely mutliplicative if f(1) 6= 0 and for all
a, b ∈ Z, f(ab) = f(a)f(b). The conditions imply f(1) = 1.

7We will see a proof of the former statement shortly, but not the latter. More generally, it is
true for the L-function associated to any primitive Dirichlet character.
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For N ∈ Z+, we say a function f is N -periodic if it satisfies:

(PN ) For all n ∈ Z+, f(n+N) = f(n).

An arithmetic function is periodic if it is N -periodic for some N ∈ Z+.

Remark: A function f : Z → C is said to be N -periodic if for all n ∈ Z,
f(n+N) = f(n). It is easy to see that any N -periodic arithmetic function admits
a unique extension to an N -periodic function with domain Z.

Note that if f is N -periodic it is also kN -periodic for every k ∈ Z+. Conversely, we
define the period P of a periodic function to be the least positive integer N such
that f is N -periodic, then it is easy to see that f is N -periodic iff P | N .

Now we are ready to meet the object of our affections:

A Dirichlet character is a periodic completely multiplicative arithmetic func-
tion.8

Example: For an odd prime p, define Lp : Z+ → C by Lp(n) = (np ) (Legendre

symbol). The period of Lp is p. Notice that Lp(n) = ±1 if n is prime to p, whereas
Lp(n) = 0 if gcd(n, p) > 1. This generalizes as follows:

Theorem 16.19. Let f be a Dirichlet character of period N .
a) If gcd(n,N) = 1, then f(n) is a ϕ(N)th root of unity in C (hence f(n) 6= 0).
b) If gcd(n,N) > 1, then f(n) = 0.

Proof. Put d = gcd(n,N). Assume first that gcd(n,N) = 1, so by Lagrange’s
Theorem nϕ(N) ≡ 1 (mod N). Then:

f(n)ϕ(N) = f(nϕ(N)) = f(1) = 1.

Next assume d > 1, and write n = dn1, N = dN1. By assumption N1 properly
divides N , so is strictly less than N . Then f is not N1-periodic, so there exists
m ∈ Z+ such that

f(m+N1)− f(m) 6= 0.

On the other hand

f(d) (f(m+N1)− f(m)) = f(dm+N)− f(dm) = f(dm)− f(dm) = 0,

so
f(n) = f(dn1) = f(d)f(n1) = 0 · f(n1) = 0.

�

7.1. Period N Dirichlet characters and characters on U(N).

A fruitful perspective on the Legendre character L(p) is that it is obtained from a
certain homomorphism from the multiplicative group (Z/pZ)× into the multiplica-
tive group C× of complex numbers by extending to L(0 (mod p)) := 0. In fact all
Dirichlet characters of a given period can be constructed in this way.

8Recall that by definition a multiplicative function is not identically zero, whence f(1) = 1.
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We introduce some further notation: for N ∈ Z+, let U(N) = (Z/NZ)× be the
unit group, a finite commutative group of order ϕ(N). Let X(N) be the group of
characters of U(N), i.e., the group homomorphisms U(N) → C×. We recall from
[Algebra Handout 2.5, §4] that X(N) is a finite commutative group whose order is
is also ϕ(N).9

Proposition 16.20. Let N be a positive integer. There is a bijective corre-
spondence between Dirichlet characters with period N and elements of X(N) =
Hom(U(N),C×).

Proof. If f : U(N)→ C is a homomorphism, we extend it to a function from
f : Z/NZ → C by defining f(0) = 0 on all residue classes which are not prime to
N , and then define

f̃(n) := f(n mod N).

In other words, if qN : Z→ Z/NZ is the quotient map, then f̃ := f ◦ qN .
Conversely, if f : Z+ → C is a Dirichlet character mod N , then its extension

to Z is N -periodic and therefore factors through f : Z/NZ→ C.
It is easy to see that these two constructions are mutually inverse. �

For example, the function 1 : n → 1 for all n is the unique Dirichlet character of
period 1. The character 1 is said to be trivial; all other Dirichlet characters are said
to be nontrivial. Under the correspondence of Proposition 16.20 it corresponds to
the unique homomorphism from the trivial group Z/1Z→ C.

7.2. Examples.

Example (Principal character): For any N ∈ Z+, define ξN : Z+ → C by

ξN (n) = 1, gcd(n,N) = 1,

ξN (n) = 0, gcd(n,N) > 1.

This is evidently a Dirichlet character mod N , called the principal character. It
corresponds to the trivial homomorphism U(N) → C×, i.e., the one which maps
every element to 1 ∈ C.

Example: N = 1: Since ϕ(1) = 1, the principal character ξ1 coincides with the
trivial character 1: this is the unique Dirichlet character modulo 1.

Example: N = 2: Since ϕ(2) = 1, the principal character ξ2, which maps odd
numbers to 1 and even integers to 0, is the unique Dirichlet character modulo 2.

Example: N = 3: Since ϕ(3) = 2, there are two Dirichlet characters mod 3, the
principal one ξ3 and a nonprincipal character, say χ3. One checks that χ3(n) must

be 1 if n = 3k+1, −1 if n = 3k+2, and 0 if n is divisible by 3. Thus Û(3) = {ξ3, χ3}.

Example: N = 4: Since ϕ(4) = 2, there is exactly one nonprincipal Dirichlet

character mod 4, χ4. We must define χ4(n) to be 0 if n is even and (−1)
n−1
2 if n is

odd. Thus Û(4) = {ξ4, χ4}. Note that ξ4 = ξ2.

9In fact, X(N) and U(N) are isomorphic groups: Theorem 15, ibid., but this is actually not
needed here.
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7.3. Conductors and primitive characters.

7.4. Dirichlet L-series.

By definition, a Dirichlet L-series is the Dirchlet series associated to a Dirichlet
character:

L(χ, s) = D(χ, s) =

∞∑
n=1

χ(n)

ns
.

In particular, taking χ = χ1 = 1, we get L(χ1, s) = ζ(s), which has σac = σc = 1.
But this is the exception:

Theorem 16.21. Let χ be a nontrivial Dirichlet character. Then for the Dirich-
let L-series L(χ, s) = D(χ, s), we have σac = 1, σc = 0.

Proof. It follows from the orthogonality relations [Handout A2.5, Theorem
17] that since χ is nonprincipal, the partial sums of L(χ, s) are bounded. Indeed
since |χ(n)| ≤ 1 for each n and the sum over any N consecutive values is zero,
the partial sums are bounded by N . Also we clearly have χ(n) = 1 for infinitely
many n, e.g. for all n ≡ 1 (mod N). So the result follows directly from Theorem
16.14. �

We remark that most of the proof of the Dirichlet’s theorem – specifically, that
every congruence class n ∈ (Z/NZ)× contains infinitely many primes – involves
showing that for every nontrivial character χ, L(χ, 1 + it) is nonzero for all t ∈ R.
This turns out to be much harder if χ takes on only real values.

8. An Explicit Statement of the Riemann Hypothesis

Let g be the arithmetical function g(n) = (−1)n+1. Then:

D(g, s) =

∞∑
n=1

(−1)n+1

ns
=

∞∑
n=1

1

ns
− 2

∞∑
n=1

1

(2k)s
= ζ(s)(1− 21−s).

This formal manipulation holds analytically on the region on which all series are
absolutely convergent, namely on <(s) > 1. On the other hand, by Example XX
above we know that D(g, s) is convergent for <(s) > 0. So consider the function

Z(s) =
D(g, s)

1− 21−s .

By Corollary 16.16 the numerator is complex analytic for <(s) > 0. The de-
nominator is defined and analytic on the entire complex plane, and is zero when
21−s = e(1−s) log 2 = 1, or when 1− s = 2πni

log 2 for n ∈ Z, so when s = sn = 1− 2πn
log 2 i.

But by construction Z(s) = ζ(s) for <(s) > 1, so Z(s) is what is called an mero-
morphic continuation of the zeta function.

Remark: All of the zeroes of 21−s are simple (i.e., are not also zeroes for the
derivative). It follows that for n 6= 0, Z(s) is holomorphic at sn iff D(g, sn) = 0.
We will see in the course of the proof of Dirichlet’s theorem that this indeed the
case, and thus Z(s) = ζ(s) is analytic in <(s) > 0 with the single exception of a
simple pole at s = 1.

However, our above analysis already shows that 21−s is defined and nonzero in
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the critical strip 0 < <(s) < 1, so that for such an s, Z(s) = 0 ⇐⇒ D(g, s) = 0.
We can therefore give a precise statement of the Riemann hypothesis in the follow-
ing (misleadingly, of course) innocuous form:

Conjecture 16.22. (Riemann Hypothesis) Suppose s is a zero of the function

D(g, s) =

∞∑
n=1

(−1)n

ns

with 0 < <(s) < 1. Then <(s) = 1
2 .

This serves to show once again how the deepest facts (and conjectures!) in analytic
number theory turn on cancellation in infinite series.

9. General Dirichlet Series

Let λ = {λn}∞n=1 be a sequence of real numbers which is strictly increasing and
with limn→∞ λn = ∞. Given a complex sequence (or “arithmetical function”)
a = {an}∞n=1, we may consider the series

Dλ(a, s) =

∞∑
n=1

ane
−sλn ,

called the general Dirichlet series associated to the sequence of exponents λ.

The theory we have developed for Dirichlet series can equally well be expressed
in this more general context. Why one might want to do this is probably not yet
clear, but bear with us for a moment.

In particular, if we define as before σac (resp. σc) to be the infimum of all
real numbers σ such that

∑∞
n=1 |an|e−σλn converges (resp. such that Dλ(a, σ)

converges), one can prove that <(s) > σac (resp. <(s) > σ) is the largest open
half-plane in which Dλ(a, s) is absolutely convergent (resp. convergent). Moreover,
there are explicit formulas for these abscissae, at least when σc ≥ 0 (which holds
in all applications we know of). For instance if

∑
n an diverges then σc ≥ 0.

Theorem 16.23. ([A2, §8.2]) Let Dλ(a, s) be a general Dirichlet series, and
assume that σc ≥ 0. Then:

(53) σac = lim sup
n

log
∑n
k=1 |ak|
λn

.

(54) σc = lim sup
n

log |
∑n
k=1 ak|
λn

.

Remark: If lim supn
log |

∑n
k=1 ak|
λn

= 0 and
∑
n an diverges, then σc = 0;

if lim supn
log |

∑n
k=1 ak|
λn

= 0 and
∑
n an converges, then

σc = lim sup
n

1

λn
ln |

∞∑
i=1

ai|.

These formulae are highly reminiscent of Hadamard’s formula (lim supn |an|
1
n )−1

for the radius of convergence of a power series
∑∞
n=0 anx

n.
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But in fact it is no coincidence: just as general Dirichlet series generalize “ordi-
nary” Dirichlet series – which we recover by taking λn = log n, they also generalize
power series – which we essentially recover by taking λn = n. Indeed,

∞∑
n=1

ane
−ns =

∞∑
n=1

anx
n,

with x = e−s. This change of variables takes right half-planes to disks around the
origin: indeed the open disk |x| < R corresponds to

|x| = |e−s| = |e−σ−it| = e−σ < R,

or σ > − logR, a right half-plane. Under the change of variables x = e−s the origin
x = 0 corresponds to some ideal complex number with infinitely large real part.

At first the fact that we have a theory which simultaneously encompasses Dirichlet
series and power series seems hard to believe, since the open disks of convergence
and of absolute convergence for a power series are identical. However, the analogue
of Proposition 16.12 for general Dirichlet series is

Proposition 16.24. Let Dλ(a, s) be a general Dirichlet series. Then the ab-
scissae of absolute convergence and of convergence are related by:

0 ≤ σac − σc ≤ lim sup
n→∞

log n

λn
.

In the case λn = n we have logn
n → 0, and Proposition 16.24 confirms that σac = σc.

We leave it as an exercise for the interested reader to compare the formulae (53)

and (54) with Hadamard’s formula R−1 = lim supn |an|
1
n for the radius of conver-

gence of power series. (After making the change of variables x = e−s they are not
identical formulae, but it is not too hard to show that they are equivalent in the
sense that any of them can be derived from the others without too much trouble.)



CHAPTER 17

Dirichlet’s Theorem on Primes in Arithmetic
Progressions

1. Statement of Dirichlet’s Theorem

The aim of this section is to give a complete proof of the following result:

Theorem 17.1. (Dirichlet, 1837) Let a,N ∈ Z+ be such that gcd(a,N) = 1.
Then there are infinitely many prime numbers p such that p ≡ a (mod N).

We remark that the proof gives more, that the set of primes p ≡ a (mod N) is
substantial in the sense of [Handout 12].1

One of the amazing things about the proof of Dirichlet’s theorem is how modern
it feels. It is literally amazing to compare the scope of the proof to the arguments
we used to prove some of the other theorems in the course, which historically came
much later. Dirichlet’s theorem comes 60 years before Minkowski’s work on the
geometry of numbers and 99 years before the Chevalley-Warning theorem!

Let us be honest that the proof of Dirichlet’s theorem is of a difficulty beyond
that of anything else we have attempted in this course. On the algebraic side, it
requires the theory of characters on the finite abelian groups U(N) = (Z/NZ)×.
From the perspective of the 21st century mathematics undergraduate with a back-
ground in abstract algebra, these are not particularly deep waters. More serious
demands come from the analytic side: the main strategy is, as in Euler’s proof of
the infinitude of primes, to consider the function

Pa(s) =
∑

p≡a (mod N)

1

ps
,

which is defined say for real numbers s > 1, and to show that lims→1+ Pa(s) = +∞.
Of course this suffices, because a divergent series must have infinitely many terms!
The function Pa(s) will in turn be related to a finite linear combination of logarithms
of Dirichlet L-series, and the differing behavior of the Dirichlet series for principal
and non-principal characters is a key aspect of the proof. Indeed, the fuel for the
entire proof is the following surprisingly deep fact:

Theorem 17.2. (Dirichlet’s Nonvanishing Theorem) For any non-principal
Dirichlet character χ of period N , we have L(χ, 1) 6= 0.

1In fact, with relatively little additional work, one can show that the primes are, in a certain
precise sense, equidistributed among the ϕ(N) possible congruence classes.

213
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There are many possible routes to Theorem 17.2. We have chosen (following Serre)
to present a proof which exploits the theory of Dirichlet series which we have de-
veloped in the previous handout in loving detail. As in our treatment of Dirichlet
series, we do find it convenient to draw upon a small amount of complex function
theory. These result are summarized in Appendix C, which may be most useful
for a reader who has not yet been exposed to complex analysis but has a good
command of the theory of sequences and series of real functions.

I hope that readers who are unable or unwilling to check carefully through all
the analytic details of the proof will still gain an appreciation for the sometimes
difficult but also quite beautiful ideas which are on display here. It may be ap-
propriate for me to end this introduction with a personal statement. I believe
that I first encountered the proof of Dirichlet’s theorem during a reading course in
(mostly analytic) number theory that I took as an undergraduate with Professor R.
Narasimhan, but in truth I have little memory of it. For my entire graduate career
I neglected analysis in general and analytic number theory in particular, to the ex-
tent that I came to regard the study of conditionally convergent series as a sort of
idle amusement. As a postdoc in Montréal I found myself in an environment where
analytic and algebraic number theory were regarded with roughly equal importance
(and better yet, often practiced simultaneously). Eventually the limitations of my
overly algebraic bias became clear to me, and since my arrival at UGA I have made
some progress working my way back towards a more balanced perspective.

Dirichlet’s theorem points the way towards modern analytic number theory
more than any other single result (even more than the Prime Number Theorem,
in my opinion, whose analytic proof is harder but less immediately enlightening).
Thus I came to the desire to dicsuss the proof of Dirichlet’s theorem in the course
(which was not done the first time I taught it).

The proof that I am about to present is not substantively different from what
can be found in many other texts (and especially, to the proof given in [Se73]).
Nevertheless, in order to both follow every detail of the proof and also to get a
sense of what was going on in the proof as a whole took me dozens of hours of
work, much more so than any other topic in this course. But to finally be able to
present the proof feels wonderful, like coming home again. So although I have done
what I can to present this material as transparently as possible, not only will I be
sympathetic if you find parts of it confusing the first time around, I will even be a
little jealous if you don’t! But do try to enjoy the ride.

2. The Main Part of the Proof of Dirichlet’s Theorem

2.1. Prelude on complex logarithms.

We begin rather inauspiciously by discussing logarithms. By a complex logarithm,
we mean a holomorphic function L(z) such that eL(z) = z. As compared to the
usual real logarithm, there are two subtleties. First, there are multiple such func-
tions: since ez+2πin = ez for all z, if L(z) is any complex logarithm, so is L(z)+2πin
for any integer n. More seriously, no complex logarithm can be defined on the en-
tire complex plane. Clearly we cannot have a logarithm defined at 0, since 0 is not
in the image of the complex exponential function. In complex analysis one learns
that if one removes from the complex line any ray passing through the origin –
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the real interval (−∞, 0] being the most standard choice – then one can define a
complex logarithm on this restricted domain. In particular, given any open disk in
the complex plane which does not contain the origin, there is a complex logarithm
defined on that disk.

For the moment though, let us proceed exactly as in calculus: we define a function
log(1− z) for |z| < 1 by the following convergent Taylor series expansion:

(55) log(1− z) = −
∞∑
n=1

zn

n
.

In our analysis, we will come to a point where we have an analytic function, say
f(z), and we will want initially want to interpret log f(z) in a rather formal way,
i.e., simply as the series expansion

log(1− (1− f(z))) =

∞∑
n=1

(1− f(z))n

n
.

It will be clear for our particular f(z) that the series converges to an analytic
function, say g, of z. The subtle point is whether g really is a logarithm of f
in the above sense, i.e., whether and for which values of z we have eg(z) = f(z).
Our expository choice here is to state carefully the claims we are making about
logarithms during the course of the proof and then come back to explain them at
the end. Readers with less familiarity with complex analysis may skip these final
justifications without fear of losing any essential part of the argument.

2.2. The proof. To begin the proof proper, we let X(N) denote the group
of Dirichlet characters modulo N . Fix a with gcd(a,N) = 1 as in the statement of
Dirichlet’s theorem.

Write Pa for the set of prime numbers p ≡ a (mod N), so our task is of course
to show that Pa is infinite. For this we consider the function

Pa(s) :=
∑
p∈Pa

1

ps
,

defined for s with <(s) > 1. Our goal is to show that Pa(s) approaches infinity as s
approaches 1. (It would be enough to show this for real σ – i.e., limσ→1+ Pa(σ) =∞
– but nevertheless for the proof it is useful to consider complex s.)

Remark: Notice that this gives more than just the infinitude of Pa: it shows that
it is “substantial” in the sense of Handout X.X.

The overarching idea of the proof is to express Pa(s) in terms of some Dirichlet
L-series for characters χ ∈ X(N), and thus to reduce the unboundedness of Pa(s)
as s→ 1 from some corresponding analytic properties of L-series near s = 1.

Why should Pa(s) have anything to do with Dirichlet L-series? First, define 1a
be the characteristic function of the congruence class a (mod N): i.e., 1a(n) is 1
if n ≡ a (mod N) and is 0 otherwise. Then Pa(s) is reminiscent of the Dirichlet
series for the arithmetical function 1a, except it is a sum only over primes. Note
that since 1a is not a multiplicative function, it would be unfruitful to consider
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its Dirichlet series D(1a, s) – it does not have an Euler product expansion. Nev-
ertheless 1a has some character-like properties: it is N -periodic and it is 0 when
gcd(n,N) > 1. Therefore 1a is entirely determined by the corresponding function
U(N)→ C, n (mod N) 7→ 1a(n).

Now recall from [Handout A2.5, §4.3] that any function f : U(N) → C× can
be uniquely expressed as a C-linear combination of characters; [Ibid, Corollary 18]
even gives an explicit formula.

With all this in mind, it is easy to discover the following result (which we may
as well prove directly):

Lemma 17.3. For all n ∈ Z, we have

1a(n) =
∑

χ∈X(N)

χ(a)−1

ϕ(N)
χ(n).

Proof: By the complete multiplicativity of the χ’s, the right hand side equals

1

ϕ(N)

 ∑
χ∈X(N)

χ(a−1n)

 ,

and now by orthogonality the parenthesized sum evaluates to ϕ(N) if a−1n ≡ 1
(mod N) – i.e., if n ≡ a (mod N) – and 0 otherwise. The result follows.

The corresponding identity for Pa(s) is:

(56) Pa(s) =
∑

χ∈X(N)

χ(a)−1

ϕ(N)

∑
p

χ(p)

ps
.

The terms
∑
p
χ(p)
ps are clearly reminiscent of Dirichlet L-series. Starting with

L(χ, s) =
∏
p

(
1− χ(p)

ps

)−1

.

and “taking logarithms” we get

logL(χ, s) =
∑
p

− log(1− χ(p)

ps
).

Expanding out this logarithm using the series (55) as advertised above, we get

(57) log(L(χ, s)) =
∑
p

∑
n

(
χ(p)

ps
)n/n.

But we regard the above as just being “motivational”; let us now be a little more
precise. The right hand side of (57) is absolutely convergent for <(s) > 1 and
uniformly convergent on closed half-planes <(s) ≥ 1 + δ. So if we simply define

`(χ, s) :=
∑
p

∑
n

(
χ(p)

ps

)n
/n,

then, whatever else it may be, `(χ, s) is an analytic function on the half-plane
<(s) > 1. Of course we know what the “whatever else” should be:
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First Claim on Logarithms: In the halfplane <(s) > 1, we have e`(χ,s) = L(χ, s).

As stated above, we postpone justification of this claim until the next section.

Notice that the n = 1 contribution to `(χ, s) alone gives precisely the sums ap-
pearing in (56); there are also all the n ≥ 2 terms, which we don’t want. So let’s
separate out these two parts of the series: definining

`1(χ, s) =
∑
p

χ(p)

ps

and

R(χ, s) =
∑
n≥2

∑
p

χ(p)n

npns
,

we have

`(χ, s) = `1(χ, s) +R(χ, s)

and also

Pa(s) =
∑

χ∈X(N)

χ(a−1)

ϕ(N)
`1(χ, s).

But recall what we’re trying to show: that Pa(s) is unbounded as s → 1. If we’re
trying to show that something is bounded, any terms which do remain bounded as
s→ 1 can be ignored. But

|R(χ, 1)| ≤
∑
n≥2

∑
p

1

npn
≤
∑
p

∑
n≥2

(
1

p

)n

=
∑
p

1

p2

p

p− 1
≤
∑
p

1

p2
· 2 ≤ 2

∞∑
n=1

1

n2
<∞.

So R(χ, s) is absolutely convergent at s = 1 hence remains bounded as s→ 1, and
thus we can safely ignore the terms R(χ, s). The following notation expresses this:

Pa(s) =
∑

χ∈X(N)

χ(a)−1

ϕ(N)
`(χ, s) +O(1);

here the “O(1)” denotes anything which is uniformly bounded as s→ 1. Separating
the term corresponding to the principal character ξN from the other terms, we get

Pa(s) =
1

ϕ(N)

∑
p-N

p−s +
∑
χ 6=ξN

`(χ, s) +O(1).

Now
∑
p-N p

−s, is up to a finite number of terms, just the sum
∑
p p
−s. We know

well that
∑
p p
−1 =∞, and by the Positivity Lemma this implies lims→1+

∑
p p
−s =

+∞. So the first term is unbounded near infinity. Therefore it would suffice to show
that for each nontrivial character χ, `(χ, s) is bounded as s→ 1.

Recall that for every nonprincipal χ we know that the Dirichlet series for L(χ, s)
is convergent on all of <(s) > 0; in particular, L(χ, s) is a well-defined analytic
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function at s = 1. Finally, we see the relevance of Theorem 17.2: if we know that
for each nonprincipal χ ∈ X(N), L(χ, 1) 6= 0, then

L(χ, 1) = lim
s→1

L(χ, s) = lim
s→1

e`(χ,s).

Second claim on logarithms: Therefore `(χ, s) is bounded as s→ 1.

Now, modulo these two claims and the proof of Theorem 17.2 we’re done: since
the contribution to Pa(s) from the nonprincipal Dirichlet L-series remains bounded
as s → 1 whereas the contribution from the principal Dirichlet L-series does not,
it follows that Pa(s) itself is unbounded as s approaches 1: more precisely, as s
approaches 1 through real values of s > 1, we get

lim
s→1+

Pa(s) =
∑

p≡a (mod N)

1

p−s
= +∞,

hence there must be infinitely many primes p ≡ a (mod N).

2.3. Tidying up the logarithms.

Let us now deal with our two claims on logarithms. For the first one, we know
from calculus that for a real number s with |s| < 1, the Taylor series expansion

− log(1− s) =

∞∑
n=1

sn

n

is valid: in other words, we do have the identity

e−
∑∞
n=1

sn

n = 1− s

for all such s. By the principle of analytic continuation, the corresponding complex
power series gives a well-defined logarithm whenever it is defined, which is at least
for complex s with |s| < 1. We have

lim
<(s)→+∞

L(χ, s) = 1,

so that there exists a σ0 such that <(s) > σ0 implies |1−L(χ, s)| < 1. Thus in this
halfplane we do have e`(χ,s) = L(χ, s). By the principle of analytic continuation,
this identity will continue to hold so long as both sides are well-defined analytic
functions, which is the case for all <(s) > 1, justifying the first claim on logarithms.

Similar reasoning establishes the second claim: since L(χ, s) is analytic and nonzero
at s = 1, there exists some small open disk about L(χ, 1) which does not contain the
origin, and therefore we can choose a branch of the logarithm such that logL(χ, s)
is well-defined on the preimage of that disk, so in particular on some small open
disk D about s = 1. Then logL(χ, 1) is a well-defined complex number. It may not
be equal to our `(χ, 1), but since any two logarithms of the same analytic function
differ by a constant integer multiple of 2πi, by the principle of analytic continuation
there exists some n ∈ Z such that `(χ, s)− 2πn = log(χ, s) on the disk D, and no
matter what n is, this means that `(χ, s) remains bounded as s→ 1.
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3. Nonvanishing of L(χ, 1)

We claim that L(χ, 1) 6= 0 for all nonprincipal characters χ ∈ X(N). Our argument
is as follows: consider the behavior of the Dedekind zeta function

ζN (s) =
∏

χ∈X(N)

L(χ, s).

near s = 1. We know that for each nonprincipal χ, L(χ, s) is holomorphic at s = 1,
whereas for principal χ we get essentially the Riemann zeta function, which we have
seen has a simple pole at s = 1: we have seen that

(s− 1)ζ(s)→ 1

as s → 1. It follows from basic function theory that ζN (s) has at most a sim-
ple pole at s = 1, and indeed has a pole iff L(χ, 1) 6= 0 for all nontrivial χ. Thus
our goal is to show that the Dedekind zeta function ζN (s) has a singularity at s = 1.

The key is that the Dirichlet series ζN (s) has a very particular form. To see this,
we need just a little notation: for a prime p not dividing N , let f(p) denote the

order of p in the unit group U(N), and put g(p) = ϕ(N)
f(p) , which is by Lagrange’s

theorem a positive integer. Now:

Proposition 17.4. a) We have

ζN (s) =
∏
p-N

1(
1− 1

pf(p)s

)g(p) .
b) Therefore ζN (s) is a Dirichlet series with non-negative integral coefficients, con-
verging absolutely in the half-plane <(s) > 1.

Proof. Let µf(p) be the group of f(p)th roots of unity. Then for all p - N we
have the polynomial identity∏

w∈µf(p)

(1− wT ) = 1− T f(p).

Indeed, both sides have the f(p)th roots of unity as roots (with multiplicity one),
so they differ at most by a multiplicative constant; but both sides evaluate to 1 at
T = 0. Now by the Character Extension Lemma [Lemma 13, Handout A2.5], for
all w ∈ µf(p) there are precisely g(p) elements χ ∈ X(N) such that χ(p) = w. This
establishes part a), and part b) follows from the explicit formula of part a). �

Now for a deus ex machina. We are given that ζN (s) is a Dirichlet series with non-
negative real coefficients. Therefore we can apply Landau’s Theorem: if σ is the
abscissca of convergence of the Dirichlet series, then the function ζN (s) has a singu-
lariety at σ. Clearly σ ≥ 1, so, contrapositively, if ζN (s) does not have a singularity
at s = 1, then not only does ζN (s) extend analytically to some larger halfplane
<(s) > 1 − ε, but it extends until it meets a singularity on the real line. But we
have already seen that each Dirichlet L-series is holomorphic for 0 < <(s) < 1, so
Landau’s theorem tells us that σ ≤ 0.

If you think about it for a minute, it is exceedingly unlikely that a Dirichlet series
with non-negative integral coefficients has absissca of convergence σ ≤ 0, and in
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our case it is quite straightforward to see that this is not the case: take s to be in
the real interval (0, 1). Expanding out the pth Euler factor we get

1(
1− 1

pf(p)s

)g(p) =

(
1 +

1

pf(p)s
+

1

p2f(p)s
+ . . .

)
.

Ignoring all the crossterms gives a crude upper bound: this quantity is at least

1 +
1

pϕ(N)s
+

1

p2ϕ(N)s
+ . . . .

Multiplying this over all p, it follows that

ζN (s) ≥
∑

n | (n,N)=1

1

nϕ(N)s
.

When we evaluate at s = 1
ϕ(N) we get∑

(n,N)=1

1

n
.

Since the set of integers prime to N has positive density, it is substantial. More
concretely, since every n of the form Nk + 1 is coprime to N , this last sum is at
least as large as

∞∑
k=1

1

Nk + 1
=∞.

QED!



CHAPTER 18

Rational Quadratic Forms and the Local-Global
Principle

A form of degree k is a polynomial P (x1, . . . , xn) which is homogeneous of degree

k: in each monomial term cxi11 · · ·xinn , the total degree i1 + . . .+ in is k. E.g.

Fn(x, y, z) = xn + yn − zn

is a form of degree n, such that the study of solutions to Fn(x, y, z) = 0 is equivalent
to Fermat’s Last Theorem.

For the most part we will concentrate here on quadratic forms (k = 2):∑
1≤i≤j≤n

aijx
ixj ,

where the coefficients aij are usually either integers or rational numbers (although
we shall also be interested in quadratic forms with coefficients in Z/nZ and R). For
instance, a binary quadratic form is any expression of the form

q(x, y) = ax2 + bxy + cy2.

As for most Diophantine equations, quadratic forms were first studied over the
integers, meaning that the coefficients aij are integers and only integer values of
x1, . . . , xn are allowed to be plugged in. At the end of the 19th century it was
realized that by allowing the variables x1, . . . , xn to take rational values, one gets
a much more satisfactory theory. (In fact one can study quadratic forms with co-
efficients and values in any field F . This point of view was developed by Witt in
the 1930’s, expanded in the middle years of this century by, among others, Pfister
and Milnor, and has in the last decade become especially closely linked to one of
the deepest and most abstract branches of contemporary mathematics: “homotopy
K-theory.”) However, a wide array of firepower has been constructed over the years
to deal with the complications presented by the integral case, culminating recently
in some spectacular results. Here we will concentrate on what can be done over the
rational numbers, and also on what statements about integral quadratic forms can
be directly deduced from the theory of rational quadratic forms.

Let us distinguish two types of problems concerning a quadratic form q(x1, . . . , xn),
which we will allow to have either integral or rational coefficients aij .

Homogeneous problem (or isotropy problem): Determine whether there exist
integers, x1, . . . , xn, not all zero, such that q(x1, . . . , xn) = 0. A quadratic form
such that q(x) = 0 has a nontrivial integral solution is said to be isotropic; if there
is no nontrivial solution it is said to be anisotropic.

221
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Example 0: The sum of squares forms x2
1 + . . . + x2

n are all anisotropic. Indeed,
for any real numbers x1, . . . , xn, not all zero, x2

1 + . . . + x2
n > 0: a form with this

property is said to be positive definite.

Example 1: The Z-quadratic form x2 − ny2 is isotropic iff n is a perfect square.

Inhomogeneous problem: For a given integer n, determine whether the equation
q(x1, . . . , xn) = n has an integer solution (if so, we say “q represents n”). More
generally, for fixed q, determine all integers n represented by q.

Example 2: We determined all integers n represented by a x2
1 + x2

2, and stated
without proof the results for the quadratic forms x2

1 +x2
2 +x2

3 and x2
1 +x2

2 +x2
3 +x2

4;
in the latter case, all positive integers are represented.

In general the inhomogeneous problem is substantially more difficult than the ho-
mogeneous problem. One reason why the homogeneous problem is easier is that,
even if we originally state it in terms of the integers, it can be solved using rational
numbers instead:

Proposition 18.1. (Principle of homogeneous equivalence) Let P (x1, . . . , xn)
be a homogeneous polynomial with integral coefficients. Then P (x1, . . . , xn) has a
nontrivial solution with x1, . . . , xn ∈ Z iff it has a nontrivial solution with x1, . . . , xN ∈
Q.

Proof. Of course a nontrivial integral solution is in particular a nontrivial
rational solution. For the converse, assume there exist p1

q1
, . . . , pnqn , not all 0, such

that P (p1q1 , . . . ,
pn
qn

) = 0. Suppose P is homogeneous of degree k. Then for any

α ∈ R×, we have

P (αx1, . . . , αxn) = αkP (x1, . . . , xn),

since we can factor out k α’s from every term. So let N = lcm(q1, . . . , qn). Then

P (N
p1

q1
, . . . , N

pn
qn

) = NkP (
p1

q1
, . . . ,

pn
qn

) = Nk · 0 = 0,

so that (N p1
q1
, . . . , N pn

qn
) is a nontrivial integral solution. �

Thus the homogeneous problem for integral forms (of any degree) is really a prob-
lem about rational forms.

Remark: The inhomogeneous problem still makes sense for forms of higher de-
gree, but to solve it – even for rational forms – is generally extremely difficult. For
instance, Selmer conjectured in 1951 that a prime p ≡ 4, 7, 8 (mod 9) is of the
form x3 + y3 for two rational numbers x and y. A proof of this in the first two
cases was announced (but not published) by Noam Elkies in 1994; more recently,
Dasgupta and Voight have carefully written down a proof of a slightly weaker result
[DV09]. The case of p ≡ 8 (mod 9) remains open. In this case (i.e., that of binary
cubic forms) the rich theory of rational points on elliptic curves can be fruitfully
applied. Even less is known about (say) binary forms of higher degree.
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1. Rational Quadratic Forms

In this section, we work with quadratic forms q with coefficients aij lying in Q.
(In fact, everything we say works over an arbitrary field F whose characteristic is
different from 2.) This gives many advantages, which we state mostly without proof:

Fact 1: Every rational quadratic form can be diagonalized.

In general, two quadratic forms q and q′ should be regarded as equivalent if there
is an invertible linear change of variables (x′1, . . . , x

′
n) = A(x1, . . . , xn) carrying one

to the other. In particular, equivalent quadratic forms represent the same values,
and equivalence preserve an/isotropy.

Any quadratic form q(x1, . . . , xn) can be represented by a symmetric matrix
Q, such that

q(x1, . . . , xn) = xQxT ,

where x = (x1, . . . , xn). However, there is a slight annoyance here which is seen by
calculating the quadratic form associated to the symmetric matrix[

a b
b d

]
; it is

q(x1, x2) = ax2
1 + 2bx1x2 + bx.2

So to get the “general” binary quadratic form of XX, we need to use the matrix[
a b

2
b
2 d,

]
and in general, the symmetric matrix M corresponding to the quadratic form∑
i≤j aijX

iXj is

mij = aij , i = j,
mij =

aij
2 , i 6= j,

so the representing matrix M of an integral quadratic form q will in general have
only half-integral entries.

Now the matrix interpretation of equivalence is as follows: the form with repre-
senting matrix M is equivalent to the quadratic form with representing matrix
AMAT for any invertible matrix A. If we are working with rational quadratic
forms, then M and A can have rational entries and the condition for invertibility is
that det(A) 6= 0. However, if we are working with integral quadratic forms, then A
must have integral entries and its inverse must have integral entries, which means
that det(A) = ±1.

Recall from linear algebra that every real symmetric matrix M is similar to a
diagonal matrix via a matrix A which is orthogonal: A−1 = AT . In fact, for every
symmetric matrix M with entries in a subfield F of C, there exists an invertible
matrix A such that AMAT is diagonal: this amounts to saying that we can “ratio-
nally diagonalize” a symmetric matrix by performing simultaneous row and column
operations. We omit the proof.
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In particular, every rational quadratic form is equivalent to a quadratic form of
the shape

〈a1, . . . , an〉 = a1x
2
1 + . . .+ anx

2
n.

Example: Consider the integral quadratic form q(x, y) = xy, with associated matrix

M =

[
0 1

2
1
2 0

]
. Note that we have det(M) = − 1

4 . If there exists an integrally

invertible matrix A with AMAT = D diagonal, then

det(D) = det(A) det(M) det(AT ) = det(M) det(A)2 = det(M) = −1

4
.

But the diagonal entries of the matrix defining an integral quadratic form must be
integers, so the determinant of any integrally diagonalizable quadratic form must
be an integer. So q(x, y) = xy is not integrally diagonalizable.

Fact 2: Every isotropic rational quadratic form is universal.

There is a special quadratic form

H = 〈1,−1〉 = x2
1 − x2

2,

called the hyperbolic plane. By diagonalizing the form q(x, y) = xy, one sees
that it is equivalent, over Q, to H. In particular the hyperbolic plane H is isotropic
– indeed take x1 = x2 – and moreover it represents every nonzero scalar x ∈ Q×:
take y = 1. One can show that if q is any isotropic rational quadratic form, then

q ∼= x2
1 − x2

2 + q′(x3, . . . , xn),

so that every isotropic form “contains” the hyperbolic plane. In particular, every
quadratic form which is isotropic rationally represents every rational number.

This is not true over Z: the isotropic quadratic form x2 − y2 does not represent
every integer. Indeed, x2 − y2 ≡ 2 (mod 4) has no solution, so x2 − y2 does not
represent any integer which is 2 (mod 4).

Fact 3: Over Q, the representation problem can be reduced to the isotropy problem.

More precisely, one has the following result:

Theorem 18.2. Let q(x1, . . . , xn) be a quadratic form over Q (or over any field
F of characteristic different from 2), and let a ∈ Q× (or a ∈ F×). The following
are equivalent:
a) The quadratic form q(x1, . . . , xn) + (−a)x2

n+1 is isotropic.
b) The quadratic form q rationally represents a.

Proof. If q represents a, then there exist x1, . . . , xn ∈ Q, not all 0, such that
q(x1, . . . , xn) = a, but then rewriting gives

q(x1, . . . , xn) + (−a)(1)2 = 0.

Conversely, suppose there are x1, . . . , xn, xn+1 in Q, not all 0, such that q(x1, . . . , xn)+
(−a)x2

n+1 = 0. If xn+1 6= 0, then we can move it to the other side and divide by it
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(thank goodness we are over Q!) to get

q(
x1

xn+1
, . . . ,

xn
xn+1

) = a.

Otherwise, we have q(x1, . . . , xn) = 0, for x1, . . . , xn not all zero, which means
that q is isotropic, and we averred above that this implies that q “contains” the
hyperbolic plane H and therefore represents every element of Q×, in particular
a. �

Thus, if we had an algorithm for deciding whether a given rational quadratic form
is isotropic, then applying it to the form q + (−a)x2

n+1, we can equally well decide
whether it rationally represents any given number a.

Remark: There is, to the best of my knowledge, absolutely nothing like “Fact
3” for forms of higher degree.

2. Legendre’s Theorem

We can now give a complete solution to a problem we first considered early on in
the course: given a, b, c ∈ Z, how do we know whether the (quadratic) form

ax2 + by2 + cz2 = 0

has a nontrivial solution?

Note that, by the discussion of the last section, if we can solve this problem we
can completely solve the homogeneous problem for ternary integral quadratic forms
q(x, y, z) = 0. Indeed, by Proposition 18.1 it is enough to decide whether or not
q(x, y, z) = 0 has a nontrivial rational solution, and working rationally we can di-
agonalize q to get an equation of the above form.

The answer is given by the following beautiful theorem of Legendre. To state
it, we will employ some ad hoc notation: for nonzero integers a and b, we will write
a� b to mean that a is a square (possibly zero) modulo |b|. Note that, if b is odd,
a� b implies that the Jacobi symbol

(
a
b

)
= 1, but not conversely. A small lemma:

Lemma 18.3. Let b, c ∈ Z \ {0}, with gcd(b, c) = 1. Then a� bc ⇐⇒ a� b
and a� c.

If there exists an integer x such that a ≡ x2 (mod bc), then certainly a ≡ x2

(mod b) and a ≡ x2 (mod c), giving the forward implication. Conversely, if a ≡ x2

(mod b) and a ≡ y2 (mod c), then since b and c are relatively prime, by CRT there
exists a z (mod bc) such that z ≡ x (mod b) and z ≡ y (mod c), hence a ≡ z2

(mod b) and a ≡ z2 (mod c), so a ≡ z2 (mod bc).

Theorem 18.4. (Legendre) Let a, b, c be nonzero integers, squarefree, relatively
prime in pairs, and neither all positive nor all negative. Then

ax2 + by2 + cz2 = 0

has a nontrivial integral solution iff all of the following hold:
(i) −ab� c.
(ii) −bc� a.
(iii) −ca� b.
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Some remarks on the conditions: if a, b and c are all positive or all negative, the
quadratic form is definite over R and has no nontrivial real solutions. Because
integral isotropy is equivalent to rational isotropy, we may adjust a, b and c by any
rational square, and therefore we may assume that they are squarefree integers.
Moreover, if two of them are divisible by a prime p, then they are both exactly di-
visible by p, and by a simple ordp argument the equation certainly has no solutions
unless p divides c. But then we may divide through a, b and c by p.

Let us prove the easy half of this theorem now, namely showing that these con-
ditions are necessary. In fact, let us show that they are precisely the conditions
obtained by postulating a primitive integral solution (x, y, z) and going modulo a,
b and c. Indeed, go modulo c: we get

ax2 ≡ −by2 (mod c);

multiplying by −b, which is coprime to c, we get the equivalent condition

−abx2 ≡ (by)2 (mod c).

Suppose first that there exists some prime p | c such that p | x. Then since
gcd(b, c) = 1, we get p | y, and that implies p2 | − ax2 − by2 = cz2. Since c
is squarefree, this implies p | z, contradicting primitivity. Therefore x is nonzero
modulo every prime p dividing c, so x is a unit modulo c, and we can divide, getting

−ab ≡ (byx−1)2 (mod c),

which is condition (i). By symmetry, reducing modulo a we get (ii) and reducing
modulo b we get (iii).

Following Ireland and Rosen, to prove the sufficiency we will state the theorem
in an equivalent form, as follows:

Theorem 18.5. (Legendre’s theorem restated) For a and b positive squarefree
integers, the equation

ax2 + by2 = z2

has a nontrivial integral solution iff all of the following hold:
(i) a� b.
(ii) b� a.
(iii) − abd2� d, where d = gcd(a, b).

We leave it as a (not difficult, but somewhat tedious) exercise to the reader to check
that Theorem 18.5 is equivalent to Theorem 18.4.

Now we prove the sufficiency of the conditions of Theorem 18.5.

The result is obvious if a = 1.

Case 1: a = b. The theorem asserts that ax2 + ay2 = z2 has a solution iff −1
is a square modulo a. By the first supplement to QR, this is last condition is equiv-
alent to: no prime p ≡ 3 (mod 4) divides a. If this condition holds then by the two
squares theorem we have a = r2+s2, and then we can take x = r, y = s, z = r2+s2.
On the other hand, if there exists p | a, p ≡ 3 (mod 4), then taking ordp of both sides
of the equation z2 = a(x2 + y2) gives a contradiction, since ordp(z

2) = 2 ordp(z) is
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even, and ordp(a(x2 + y2)) = ordp(a) + ordp(x
2 + y2) = 1 + ordp(x

2 + y2) implies
ordp(x

2 + y2) is odd, contradicting the Two Squares Theeorem.

If b > a, we can interchange a and b, so we may now assume that a > b.

We will now prove the theorem by a descent-type argument, as follows: assuming
the hypotheses of Theorem 18.5 we will construct a new form Ax2 + by2 = z2 satis-
fying the same hypotheses, with 0 < A < a, and such that if this latter equation has
a nontrivial solution then so does ax2 + by2 = z2. We perform this reduction pro-
cess repeatedly, interchanging A and b if A < b. Since each step reduces max(A, b),
eventually we will be in the case A = 1 or A = b, in which we have just shown
the equation has a solution. Reversing our sequence of reductions shows that the
original equation has a solution.

Now, since b� a, there exist T and c such that

(58) c2 − b = aT,

for T ∈ Z. Applying the square/squarefree decomposition, we may write T = Am2

with A squarefree. Choosing c minimally, we may assume that |c| ≤ a
2 .

Claim: 0 < A < a.

Proof: Since 0 ≤ c2 = aAm2 + b < a(Am2 + 1) and a > 0, Am2 > −1; since
b is squarefree, T = am2 6= 0, hence Am2 ≥ 1 and thus A > 0. Also

aAm2 < c2 ≤ a2

4
,

so

A ≤ Am2 <
a

4
< a.

Claim: A� b.

Recalling d = gcd(a, b), write a = a1d, b = b1d, so that gcd(a1, b1) = 1; since
a and b are squarefree, this implies gcd(a1, d) = gcd(b1, d) = 1. Then (58) reads

c2 − b1d = a1dAm
2 = aAm2.

So d | c2, and since d is squarefree, d | c. Put c = c1d and cancel:

(59) dc21 − b1 = Aa1m
2.

So Aa1m
2 ≡ −b1 (mod d); multiplying through by a1, we get

(60) Aa2
1m

2 ≡ −a1b1 (mod d).

Now, any common prime factor p of m and d would divide both b1 and d, a con-
tradiction; so gcd(m, d) = 1. Since −abd2 = −a1b1 is a square modulo d by (iii)

and a1 and m are units modulo d, (60) implies that A� d. Moreover, c2 ≡ aAm2

(mod b1). Since a� b, a� b1. Also gcd(a, b1) = 1 – a common divisor would divide
d, but gcd(b1, d) = 1 – and similarly gcd(m, b1) = 1. So

A ≡ c2(am2)−1 (mod b1),

and hence A� b1. Since A� b1 and A� d, by Lemma 18.3 A� b.
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Next, put r = gcd(A, b) and A = rA1, b = rb2, so that gcd(A1, b2) = gcd(r, b2) = 1.
We claim that −A1b2� r. Using (58) we have

(61) c2 − rb2 = c2 − rb = aAm2 = arA1m
2.

Since b is squarefree, so is r, hence r | c. So if a prime p divides both am and r,
then p2 | c2−aAm2 = rb2 =⇒ p2 | r, a contradiction. So gcd(am, r) = 1. Putting
c = rc1,

arA1m
2 ≡ −rb2 (mod r2),

so
aA1m

2 ≡ −b2 (mod r).

Since a� b and r | b, a� r. Multiplying through by b2, we get

−aA1b2m
2 ≡ b22 (mod r),

and since gcd(am, r) = 1, we conclude −A1b2� r.

Now assume that AX2 + bY 2 = Z2 has a nontrivial solution. Then

(62) AX2 = Z2 − bY 2.

Multiplying (62) by (58), we have

a(AXm)2 = (Z2 − bY 2)(c2 − b) = (Zc+ bY )2 − b(cY + Z)2.

Note that this unlikely-looking identity can be interpreted as

N(Z + Y
√
b)N(c+

√
b) = N(Zc+ bY + (cY + Z)

√
b).

Putting x = AXm, y = cY +Z, z = Zc+bY , this gives a solution to ax2+by2 = z2,
which is nontrivial since x 6= 0. Thus we have completed our “descent” argument,
which proves that the equation has a solution.

3. Hilbert’s Reciprocity Law

As we mentioned, Legendre’s theorem has the following consequence: a ternary
quadratic form

qa,b : aX2 + bY 2 − Z2

has a nontrivial integral solution iff there is a real solution and for every prime p
and every positive integer a the congruence

(63) aX2 + bY 2 ≡ Z2 (mod pa)

has a nontrivial solution. As a increases, each of these congruences is stronger
than the last, so it makes some sense to bundle up the infinitely many questions
of whether any of these p-power congruences has a solution into a single question.
Let us introduce the following terminology:

An integral quadratic form q(x1, . . . , xn) is p-isotropic if for all a ∈ Z+, the con-
gruence q(x1, . . . , xn) ≡ 0 (mod pa) has a nontrivial solution. Otherwise we will say
that it is p-anisotropic. We will say that q is∞-isotropic if it has a real solution.1

Considering the case of qa,b, for each prime p and for ∞ we are asking a yes/no

1Don’t ask why we have introduced the symbol ∞ to describe the real solutions. It is just
traditional to do so. Moreover, we will eventually get tired of saying “(and ∞)” and start writing

p ≤ ∞. There is no need to read anything deep into this, at least not today.
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question – “Is qa,b p-isotropic?” so it makes some vague sense to denote “yes” by
+1 and “no” by −1, so we define symbols 〈a, b〉p for all primes p and 〈a, b〉∞ in
this way: i.e., +1 if qa,b is p-isotropic and −1 if it is p-anisotropic (and the same
for ∞). So Legendre’s theorem can be rephrased by saying that qa,b is istropic iff
〈a, b〉p = 1 for all p ≤ ∞.

But now that we’ve defined the notation, a further question occurs to us: if qa,b is
isotropic, the answers to our questions are always yes; but if it isn’t, at least some
of the answers are no. So which combinations of yes and no are possible?

Theorem 18.6. (Hilbert) a) For every pair of nonzero integers a, b, the symbol
〈a, b〉p is equal to +1 except possibly for finitely many values of p ≤ ∞.
b) Two integral ternary quadratic forms qa,b and qc,d are rationally equivalent –
i.e., one can be obtained from the other by a 3× 3 invertible matrix A with rational
entries – iff 〈a, b〉p = 〈c, d〉p for all p ≤ ∞.
c) The finite set of p ≤ ∞ for which 〈a, b〉p = −1 has an even number of elements.
d) For every subset S of the primes union ∞ which is finite and of even order,
there exist a and b such that 〈a, b〉p = −1 iff p ∈ S.

We admit that this is a mouthful. In particular parts b) and d) solve yet a third
problem on rational quadratic forms: their classification up to equivalence. We
advise the reader to concentrate on the following consequence: for any qa,b, by
part a) we can consider the infinite product

∏
p≤∞〈a, b〉p (since it equals 1 except

possible finitely many times), and by part c) we get the following relation, the
Hilbert reciprocity law:

(64)
∏
p≤∞

〈a, b〉p = 1

This has the extremely useful upshot that instead of having to check congruences
modulo all powers of all primes and a sign condition, it suffices to omit any one
p ≤ ∞ from these checks. In particular, we could omit “p =∞” from the checking
and get the following result which looks hard to believe based upon the proof we
gave: if ax2 + by2 = z2 has a solution modulo pa for all p and a, then it neces-
sarily has an integral solution: in particular the condition that a and b are not
both positive follows automatically from all the congruence conditions, although it
is certainly independent of any finite number of them!

In fact, with a bit of hindsight one can see that the condition of whether or not
there is going to be a solution modulo all powers of 2 is the most complicated one.
This is taken into account in the statement of Legendre’s theorem: the congruence
conditions on their own would not imply that 〈a, b〉2 = +1 without the sign con-
ditions (“conditions at ∞”), so somehow Legendre’s clean conditions exploit this
slight redundancy. To see this, consider the case of a = b = −1, which has solutions
modulo every power of an odd prime, but no nontrivial solutions modulo 4 (and
also no real solutions).

Hilbert also found explicit formulae for 〈a, b〉p in terms of Legendre symbols. For
the sake of concision we do not state it here. However, we cannot help but men-
tioning that if one knows these formulae (which are not so hard to prove), then
the relation (64) is equivalent to knowing quadratic reciprocity together with its
first and second supplements! It turns out that all aspects of the theory rational
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quadratic forms can be generalized to the case where the coefficients lie not in
Q but in an arbitrary algebraic number field K. In particular, a suitable version
of Hilbert’s reciprocity law holds over K, and this is a very clean way to phrase
quadratic reciprocity over number fields.

4. The Local-Global Principle

We are now in a position to state what is surely one of the most important and
influential results in all of number theory.

Theorem 18.7. (Hasse-Minkowski) Let q(x1, . . . , xn) be an integral quadratic
form. The following are equivalent:
a) q is isotropic (over Z ⇐⇒ over Q).
b) q is isotropic over R, and for all n ∈ Z+, there are nontrivial solutions to the
congruence q(x1, . . . , xn) ≡ 0 (mod n).

It is clear that a) =⇒ b). Indeed, in contrapositive form, this has been our fa-
vorite “easy” method for showing that an equation does not have a solution: any
integral solution also gives a real solution and a solution to every possible congru-
ence. The matter of it is in the converse, which asserts that if a quadratic form
q(x1, . . . , xn) = 0 does not have an integral solution, we can always detect it via
congruences and/or over the real numbers.

This turns out to be the master theorem in the area of rational quadratic forms. It
is not (yet) stated in a form as explicit as Legendre’s theorem for ternary quadratic
forms – which, recall, did not just assert that isotropy modulo n for all n implied
isotropy over Z (or equivalently, over Q) but actually said explicitly, in terms of
the coefficients, a finite list of congruence conditions to check. Indeed one knows
such explicit conditions in all cases, and we will return to mention them in the next
section, but for now let us take a broader approach.

First, even in its “qualitative form” the theorem gives an algorithm for determining
whether any quadratic form is isotropic. Namely, we just have to search in parallel
for one of the two things:

(i) Integers x1, . . . , xn, not all 0, such that q(x1, . . . , xn) = 0.
(ii) An integer N such that the congruence q(x1, . . . , xn) ≡ 0 (mod N) has only
the all-zero solution.

For any given N , (ii) is a finite problem: we have exactly Nn − 1 values to plug
in and see whether we get 0. Similarly, if we wanted to check all tuples of integers
(x1, . . . , xn) with maxi |xi| ≤M , then that too is obviously a finite problem. Con-
ceivably we could search forever and never find either a value of M as in (i) or a
value of N as in (ii) – for sure we will never find both! – but the Hasse-Minkowski
Theorem asserts that if we search long enough we will find either one or the other.
This then is our algorithm!

In point of fact the situation is better for part (ii): it can be shown that for any
degree k form P (x1, . . . , xn) with integer coefficients, there is a recipe (algorithm!)
for computing a single value of N such that if P (x1, . . . , xn) ≡ 0 (mod N) has a
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nontrivial solution, then for all N the congruence has a solution. Moreover, one
can determine whether or not there are any real solutions (using methods from
calculus). For this the two essential tools are:

(i) The Weil bounds for points on curves over Z/pZ, which allows one to com-
pute a finite set of primes S such that for all p > S the congruence P ≡ 0 (mod p)
automatically has nontrivial solutions (in fact, a number of solutions which tends
to ∞ with p).

This is a serious piece of mathematics dating from around the 1940’s.

(ii) Hensel’s Lemma, which gives sufficient conditions for lifting a solution (x1, . . . , xn)
to P ≡ 0 (mod p) to solutions modulo all higher powers pa of p.

This turns out to be surprisingly similar to Newton’s method for finding roots
of equations, and the proof is relatively elementary.

Alas, we do not have time to say more about either one.

So in finite time we can determine whether or not there is any value of N for
which P (x1, . . . , xn) ≡ 0 has only the trivial solution, and we can also tell whether
there are real solutions. Of course, if P = 0 fails to have congruential solutions
and/or real solutions, then we know it cannot have nontrivial integral (equiva-
lently, rational) solutions. But suppose we find that our form P passes all these
tests? Can we then assert that it has a nontrivial integral solution?

As we have just seen (or heard), the answer is a resounding “yes” when P is a
quadratic form. In general, whenever the answer to this question is “yes”, one
says that the local-global principle, or Hasse principle, holds for P . Of course
the big question is: does the Hasse principle hold for all forms of higher degree?

One can also ask whether the Hasse principle holds for not-necessarily homoge-
neous polynomials, like x2 + y3 + z7 = 13. The following remarkable result shows
that it could not possibly hold for all polynomials in several variables over the
integers.

Theorem 18.8. (Davis-Matijasevic-Putnam-Robinson) There is no algorithm
that will accept as input a polynomial P (x1, . . . , xn) with integral coefficients and
output 1 if P (x1, . . . , xn) = 0 has an integral solution, and 0 otherwise.

Since we just said that there is an algorithm which determines if a polynomial (not
necessarily homogeneous, in fact) has congruential solutions and real solutions,
there must therefore be some polynomials which pass these tests and yet still have
no solutions.

Remark: It is unknown whether there exists an algorithm to decide if a poly-
nomial with rational coefficients has a rational solution.

One might think that such counterexamples to the Hasse principle might be in
some sense nonconstructive, but this is not at all the case:
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Theorem 18.9. The following equations have congruential solutions and real
solutions, but no nontrivial integral solutions:
a) (Selmer) 3X3 + 4Y 3 + 5Z3 = 0;
b) (Bremner) 5w3 + 9x3 + 10y3 + 12z3 = 0.

These are just especially nice examples. It is known (if not “well-known”) that for
every k > 2 there is a form P (x, y, z) = 0 of degree k which violates the local-global
principle. In fact some of my own work has been devoted to constructing large (in
particular, infinite) sets of counterexamples to the local-global principle.

There are however some further positive results, the most famous and important
being the following:

Theorem 18.10. (Birch) Let k be a positive integer. Then there exists an n0(k)
with the following property:
a) If k is odd, then every degree k form P (x1, . . . , xn) = 0 in n ≥ n0 variables has
a nontrivial integral solution.
b) If k is odd and P (x1, . . . , xn) is a degree k form in n ≥ n0 variables with “low-
dimensional singularities”, then P has a nontrivial integral solution iff it has a
nontrivial real solution.

Remark: The condition of low-dimensional singularities is a bit technical. Let us
rather define what it means for an equation to have no singularities at all, which
is a special case. A nontrivial complex solution (x1, . . . , xn) to P (x1, . . . , xn) at
which all the partial derivatives ∂P

∂xi
vanish is called a singular point. (Perhaps

you remember from multivariable calculus these are the points at which a curve or
surface can be “not so nice”: i.e., have self-intersections, cusps, or other patholo-
gies.) P is said to be nonsingular if there are no singular points. In particular,
one immediately checks that a diagonal form P (x1, . . . , xn) = a1x

k
1 + . . . + akx

k
n

is nonsingular, so Birch’s theorem applies to diagonal forms, and in particular to
quadratic forms. (As far as I know it is an open problem whether the theorem
holds for forms of even degree without any additional hypotheses.)

Thus morally, if only there are enough variables compared to the degree, then
all congruence conditions are automatically satisfied and moreover th. However, in
the proof n0 does indeed have to be very large compared to k, and it is quite an
active branch of analytic number theory to improve upon these bounds.

Another idea, which we shall be able to express only vaguely and see an exam-
ple of in the case of the inhomogeneous problem for integral quadratic forms, is
that if one asks as a yes/no question whether or not the existence of congruential
solutions and real solutions is enough to ensure the existence of integral solutions,
then one has to take rather drastic measures – e.g., enormously many variables
compared to the degree, as above – to ensure that the answer is “yes” rather than
“no” most of the time. However, if one can somehow quantify the failure of a
local-global phenomenon, then one can hope that in any given situation it fails
only to a finite extent.



5. LOCAL CONDITIONS FOR ISOTROPY OF QUADRATIC FORMS 233

5. Local Conditions for Isotropy of Quadratic Forms

(ii) Although the result is not phrased in explicit form, part of the point is
that one can easily determine whether the condition of part b) holds. For instance,
there will be real solutions unless, when the quadratic form is diagonalized (over
Q), all of the diagonal entries have the same sign. It is less obvious but still true
that given any equation P (x1, . . . , xn), there is an algorithm to check in a finite
amount of time whether for all N , P (x1, . . . , xn) ≡ 0 (mod N) has nontrivial so-
lutions. Explicit conditions will be given in the case of ternary quadratic forms
(n = 3), coming up soon. Such conditions are known for all n (for n = 2, they are
the restrictions coming from quadratic reciprocity that we have already seen).

(iii) In fact as the number of variables increases it becomes much easier to satisfy
the congruence conditions, until we get to n = 5: every quadratic form q(x1, . . . , xn)
in 5 or more variables has nontrivial solutions modulo every integer N ! This has a
remarkable corollary:

Theorem 18.11.
a) Let q(x1, . . . , xn) be an integral quadratic form in at least 5 variables. Then
q(x) = 0 has a nontrivial integral solution iff it has a nontrivial real solution, i.e.,
unless q is positive or negative definite.
b) Let q be a quadratic form in at least 4 variables which is not negative (resp.
positive) definite – i.e., over R it takes on some positive (resp. negative) values.
Then q rationally represents all positive (resp. negative) rational numbers.

Proof. Part a) follows immediately from the Hasse-Minkowski theorem and
the assertion that there are no “congruential” obstructions to a quadratic form in
at least 5 variables being isotropic. Part b) follows morally by applying Theorem
18.2, although to see it one needs to know that there is a field Qp of characteristic
0 with the property that q is isotropic over Qp iff q is isotropic modulo pa for all
a. �

We deduce in particular that every positive rational number is a sum of four rational
squares. This is of course weaker than Lagrange’s Theorem, and it must be, because
the theorem also applies e.g. to 2x2

1 + 3x2
2 + 4x2

3 + 5x2
4, which visibly does not

represent 1 over Z.





CHAPTER 19

Representations of Integers by Quadratic Forms

As we have seen, if

P (x1, . . . , xn) = d

is an inhomogeneous polynomial equation (i.e., d 6= 0), then the determination of
whether it has an integer solution is considerably more subtle than whether it has
a rational solution. Perhaps the best single example of this is the proven nonexis-
tence of an algorithm to determine whether a polynomial equation has an integral
solution. In contrast, the question of whether a homogeneous polynomial equation
must have a nontrivial solution is equivalent to the issue of whether polynomial
equations must have rational solutions, and this is a wide open problem (although
some experts think that it too will turn out to be algorithmically undecidable).

We have just surveyed the complete theory of homogeneous quadratic equations
in any number of variables. One of the great miracles of the quadratic case is that,
over Q, the inhomogeneous problem reduces to the homogeneous problem, so that
given a quadratic form q(x1, . . . , xn), we now know how to determine the set of all
integers (or even rational numbers) d such that

q(x1, . . . , xn) = d

has a rational solution. Two of the more striking consequences we derived from
this Hasse-Minkowski theory were the following:

Fact 1: A quaternary quadratic form q = ax2
1 + bx2

2 + cx2
3 + dx2

4 rationally rep-
resents all integers allowed by sign considerations:
(i) if a, b, c, d are all positive, q represents all d ∈ Q>0;
(ii) if a, b, c, d are all negative, q represents all d ∈ Q<0;
(iii) otherwise q represents all d ∈ Q×.

Fact 2: The three squares form x2 + y2 + z2 rationally represents an integer d
iff d > 0 and d 6= 4a(8k + 7).

These are strongly reminiscent of two results we stated but not did prove for inte-
gral quadratic forms, namely that x2

1 +x2
2 +x2

3 +x2
4 integrally represents all positive

integers and x2
1 + x2

2 + x2
3 + x2

4 integrally represents all positive integers except pre-
cisely those of the form 4a(8k + 7).

It seems clear that we cannot hope to recover general integral representability re-
sults from the Hasse-Minkowski theory. For instance, Fact 1 does not distinguish
between the Four Squares form and a form in which a, b, c, d are all at least 2: such
a form clearly cannot represent 1 integrally! Morally speaking, “local conditions”

235
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of congruence and sign do not take into account the size of the coefficients of the
quadratic form, whereas one clearly wants some or all of the coefficients to be small
in order for a positive definite quadratic form to have a fighting chance at repre-
senting small positive integers.

So what to do?

Let us describe some of the ways that various mathematicians have reacted to
this question over the years.

1. The Davenport-Cassels Lemma

Here is a beautiful observation which allows us to solve the representation problem
for x2 + y2 + z2:

Lemma 19.1. (Davenport-Cassels) Let q(x) = f(x1, . . . , xn) =
∑n
i,j=1 aijxixj

be a quadratic form with aij = aji ∈ Z. We suppose condition (DC): that for any
y = (y1, . . . , yn) ∈ Qn \ Zn, there exists x = (x1, . . . , xn) ∈ Zn such that

0 < |q(x− y)| < 1.

Then, for any integer d, q represents d rationally iff q represents d integrally.

Proof. For x, y ∈ Qn, put x ·y := 1
2 (q(x+y)−q(x)−q(x)). Then (x, y) 7→ x ·y

is bilinear and x · x = q(x). Note that for x, y ∈ Zn, we need not have x · y ∈ Z,
but certainly we have 2(x · y) ∈ Z. Our computations below are parenthesized so
as to emphasize this integrality property.
Let d ∈ Z, and suppose that there exists x ∈ Qn such that q(x) = d. Equivalently,
there exists t ∈ Z and x′ ∈ Zn such that t2d = x′ ·x′. We choose x′ and t such that
|t| is minimal, and it is enough to show that |t| = 1.

Applying the hypothesis (DC) x = x′

d , there exists a y ∈ Zn such that if
z = x− y we have

0 < |q(z)| < 1.

Now put

a = y · y − d,
b = 2(dt− x′ · y),

T = at+ b,

X = ax′ + by.

Then a, b, T ∈ Z, and X ∈ Zn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d+ ab(2dt− b) + b2(d+ a)

= d(a2t2 + 2abt+ b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)

= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).
Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �
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Remark 1: Suppose that the quadratic form q is anisotropic. Then condition (DC)
is equivalent to the following more easily verified one: for all x ∈ Qn, there exists
y ∈ Zn such that |q(x− y)| < 1. Indeed, since x 6∈ Zn and y ∈ Zn, x− y 6∈ Zn. In
particular x− y 6= (0, . . . , 0), so since q is anistropic, necessarily |q(x− y)| > 0.

Remark 2: Lemma 19.1 has a curious history. So far as I know there is no pa-
per of Davenport and Cassels (two eminent 20th century number theorists) which
contains it: it is more folkloric. The attribution of this result seems to be due to
J.-P. Serre in his influential text [Se73]. Later, André Weil pointed out [W] that
in the special case of f(x) = x2

1 + x2
2 + x2

3, the result goes back to a 1912 paper of
the amateur mathematician L. Aubry [Au12].

There is also more than the usual amount of variation in the hypotheses of this
result. Serre’s text makes the additional hypothesis that f is positive definite –
i.e., x 6= 0 =⇒ f(x) > 0. Many of the authors of more recent number theory
texts that include this result follow Serre and include the hypothesis of positive
definiteness. Indeed, when I first wrote these notes in 2006, I did so myself (and in-
cluded a place-holder remark that I belived that this hypothesis was superfluous).1

To get from Serre’s proof to ours requires only (i) inserting absolute values where
appropriate, and (ii) noting that whenever we need x · y to be integral, we have
an extra factor of 2 in the expression to make it so. The result is also stated and
proved (in a mildly different way) in Weil’s text.

Remark 3: In the isotropic case, the stronger hypothesis 0 < |q(x − y)| < 1 is
truly necessary. Consider for instance q(x, y) = x2 − y2: we ask the reader to show
that 2 is represented rationally but not integrally.

One might call a quadratic form Euclidean if it satisfies (DC). For example, the
quadratic form q(x, y) = x2− dy2 is Euclidean iff given rational numbers rx, ry, we
can find integers nx, ny such that

(65) |(rx − nx)2 − d(ry − ny)2| < 1

Since we know that we can find an integer within 1
2 of any rational number (and

that this estimate is best possible!), the quantity in question is at most ( 1
2 )2 + |d|( 1

2 )

if d < 0 and at most d
4 when d > 0. So the values of d for which (65) holds are pre-

cisely d = −1,−2, 2, 3. This should be a familiar list: these are precisely the values
of d for which you proved that Z[

√
d] is a PID. Whenever Z[

√
d] is a PID, one can

use Euclid’s Lemma to solve the problem of which primes (and in fact which inte-
gers, with more care) are integrally represented by x2−dy2. The Davenport-Cassels
Lemma allows for a slightly different approach: for these values of d, x2− dy2 = N
has an integral solution iff it has a rational solution iff x2 − dy2 − Nz2 = 0 is
isotropic, which we can answer using Legendre’s Theorem.

Also x2 + y2 + z2 satisfies the hypotheses of the Davenport-Cassels lemma: given
rational numbers x, y, z, find integers n1, n2, n3 at most 1

2 a unit away, and then

(x− n1)2 + (x− n2)2 + (x− n3)2 ≤ 1

4
+

1

4
+

1

4
< 1.

1A notable exception is Lam’s 2005 text on quadratic forms, which states the result for
anisotropic forms, simplified as in Remark 1.
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2. The Three Squares Theorem

Our goal in this section is to prove the following celebrated result.

Theorem 19.2. (Legendre-Gauss) For n ∈ Z+, the following are equivalent:
(i) n is not of the form 4a(8k + 7) for any a ∈ N and k ∈ Z.
(ii) n is a sum of three integer squares: there are x, y, z ∈ Z with x2 + y2 + z2 = n.

2.1. Proof of the Three Squares Theorem.

The strategy of proof is as follows: the quadratic form q(x, y, z) = x2 +y2 +z2 satis-
fies the hypotheses of the Davenport-Cassels Lemma (Lemma 19.1) of the previous
section. Therefore, to show that an integer n is a sum of three integer squares
it suffices to show the a priori much weaker assertion that it is a sum of three
rational squares. It is traditional to establish the latter assertion using the Hasse-
Minkowski theory of quadratic forms over Q in terms of quadratic forms over the
p-adic numbers. But since in these notes we have not even officially introduced the
p-adic numbers, we need to do something more elementary. Instead we follow the
second half of a short and clever argument of J. Wójcik [Wó72], which succeeds in
replacing the Hasse-Minkowski Theory with an appeal to (i) Fermat’s Two Squares
Theorem, (ii) Legendre’s Theorem on homogeneous ternary quadratic equations
and (iii) Dirichlet’s Theorem on Primes in Arithmetic Progressions.2

Let us first dispose of the (easy!) direction (i) =⇒ (ii) of Theorem 19.2.

Lemma 19.3. Let n be an integer of the form 4a(8k+7) for some a ∈ N, k ∈ Z.
Then n is not the sum of three rational squares.

Proof. Step 0: Suppose on the contrary that 4a(8k + 7) is a sum of three
rational squares. We may take our rational numbers to have a common deminator
d > 0 and thus (x

d

)2

+
(y
d

)2

+
(z
d

)2

= 4a(8k + 7).

Clearing denominators, we get

x2 + y2 + z2 = d24a(8k + 7).

Write d = 2bd′ with d′ odd. Since 12, 32, 52, 72 ≡ 1 (mod 8), we find that d′2 ≡ 1
(mod 8) and thus

d24a(8k + 7) = (2b)2(d′2)4a(8k + 7) = 4a+b(8k′ + 7).

In other words, to show that no integer of the form 4a(8k+7) is a sum of 3 rational
squares, it suffices to show that no integer of the form 4a(8k + 7) is a sum of three
integral squares. So let us now show this.
Step 1: We observe that x2 + y2 + z2 ≡ 7 (mod 8) has no solutions. Indeed, since
the squares mod 8 are 0, 1, 4, this is a quick mental calculation. (In particular this
disposes of the a = 0 case.)
Step 2: we observe that if n ≡ 0, 4 (mod 8) then the congruence

x2 + y2 + z2 ≡ n (mod 8)

2That we have given complete proofs of all of these theorems previously is a happy coinci-
dence: I did not learn about Wójcik’s argument until 2011, more than four years after these notes

were first written.
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has no primitive solutions, i.e., no solutions in which at least one of x, y, z is odd.
Indeed, since the squares mod 8 are 0, 1, 4, so in particular the only odd square is 1.
Since 4 and 0 are both even, if x, y, z are not all even, then exactly one two of them
must be odd, say x and y, so x2 ≡ y2 ≡ 1 (mod 8) and thus z2 ≡ 4− 2 (mod 8) or
z2 ≡ 8− 2 (mod 8), and neither 2 nor 6 is a square modulo 8.
Step 3: Now suppose that there are integers x, y, z such that x2+y2+z2 = 4a(8k+7).
If a = 0 then by Step 1 reducing modulo 8 gives a contradiction. If a = 1, then
4a(8k + 7) ≡ 4 (mod 8), so by Step 2 any representation x2 + y2 + z2 = 4(8k + 7)
must have x, y, z all even, and then dividing by 4 gives (x2 )2 +(y2 )2 +( z2 )2 = (8k+7),
a contradiction. If a ≥ 2, then 4a(8k + 7) ≡ 0 (mod 8), and again by Step 2 in
any representation x2 + y2 + z2 = 4a(8k + 7) we must have x, y, z all even. Thus
writing x = 2X, y = 2Y , z = 2Z we get an integer representation X2 + Y 2 +Z2 =
4a−1(8k+7). We may continue in this way until we get a representation of 4(8k+7)
as a sum of three integral squares, which we have just seen is impossible. �

Lemma 19.4. Suppose that every squarefree positive integer n 6≡ 7 (mod 8) is
a sum of three integral squares. Then every positive integer n 6= 4a(8k + 7) is a
sum of three integral squares.

Proof. Let n be a positive integer which is not of the form 4a(8k+ 7). As for
any positive integer, we may write n as n = 2an2

1n2, where a ≥ 0, n1 is odd and n2

is odd and squarefree.
Case 1: 0 ≤ a ≤ 1, n2 6≡ 7 (mod 8). Then 2an2 is squarefree and not 7 (mod 8),
so by assumption there exist x, y, z ∈ Z such that x2 + y2 + z2 = 2an2, and thus
(n1x)2 + (n1y)2 + (n1z)

2 = 2an2
1n2 = n.

Case 2: n2 6≡ 7 (mod 8). In such a case n is of the form (2b)2 times an integer n of
the type considered in Case 1. Since such an integer n is a sum of three integreal
squares, so is any square times n.
Case 3: n2 ≡ 7 (mod 8). For n not to be of the form 4a(8k + 7), the power of a
must be odd; in other words, we may write n as a square times 2n2 where n2 is
squarefree and of the form 8k+7. Thus 2n2 is squarefree and not of the form 8k+7,
so by assumption 2n2 is a sum of three squares, hence so is n. �

Lemma 19.5. Let m ∈ Z+, n ≡ 3 (mod 8), and write m = p1 · · · pr. Then the
number of i such that pi ≡ 3, 5 (mod 8) is even.

Exercise: Prove Lemma 19.5. (Suggestion: use the Jacobi symbol
(−2
m

)
.)

Since x2 + y2 + z2 rationally represents an integer n iff it integrally represents
an integer n, the following result completes the proof of Theorem 19.2.

Proposition 19.6. Let n be a squarefree integer, n 6≡ 7 (mod 8). Then n is a
sum of three rational squares.

Proof. To fix ideas we will first give the argument under certain additional
congruence conditions and then explain how to modify it to deal with the other
cases. Filling in the details for these latters cases would be a good exercise for the
interested reader.
Case 1: Let us suppose that m = p1 · · · pr is squarefree and m ≡ 1 (mod 4). Thus
each pi is odd and the number of pi ≡ 3 (mod 4) is even. By Dirichlet’s Theorem
on Primes in Arithmetic Progressions, there is a prime number q such that
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•
(
q
pi

)
=
(
−1
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 1 (mod 4).
(Indeed, each of the first conditions restricts q to a nonempty set of congruence
classes modulo the distinct odd primes pi, whereas the last condition is a condition
modulo a power of 2. By the Chinese Remainder Theorem this amounts to a set of
congruence conditions modulo 4p1 · · · pr and all of the resulting congruence classes
are relatively prime to 4p1 · · · pr, so Dirichlet’s Theorem applies.)
It follows that for all 1 ≤ i ≤ r,(

−q
pi

)
=

(
−1

pi

)(
q

pi

)
= 1,

and (
m

q

)
=

(
p1

q

)
· · ·
(
pr
q

)
=

(
q

p1

)
· · ·
(
q

pr

)
=

(
−1

p1

)
· · ·
(
−1

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 3 (mod 4), which as observed above is an even number.
since −q is a square modulo each of the distinct primes pi, by the Chinese Remain-
der Theorem it is also a square modulo m = p1 · · · pr. Therefore by the Chinese
Remainder Theorem there is an integer x such that

x2 ≡ −q (mod m)

x2 ≡ m (mod q).

But according to Legendre’s Theorem, these are precisely the congruence conditions
necessary and sufficient for the homogeneous equation

qu2 + z2 −mt2 = 0

to have a solution in integers (u, z, t), not all zero. Indeed, we must have t 6= 0,
for otherwise qu2 + z2 = 0 =⇒ u = z = 0. Moreover, since q ≡ 1 (mod 4),
by Fermat’s Two Squares Theorem there are x, y ∈ Z such that qu2 = x2 + y2.
Therefore

mt2 − z2 = qu2 = x2 + y2,

so

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2

and m is a sum of three rational squares, completing the proof in this case.
Case 2: Suppose m = 2m1 = 2p1 · · · pr with m1 = p1 · · · pr squarefree and odd. In
this case we may proceed exactly as above, except that we require q ≡ 1 (mod 8).
Case 3: Suppose m = p1 · · · pr is squarefree and m ≡ 3 (mod 8). By Lemma 19.5,
the number of prime divisors pi of m which are either 5 or 7 modulo 8 is even. By
Dirichlet’s Theorem there exists a prime q such that

•
(
q
pi

)
=
(
−2
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 5 (mod 8).
It follows that for all 1 ≤ i ≤ r,(

−2q

pi

)
=

(
−2

pi

)(
q

pi

)
= 1,
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and (
m

q

)
=

(
p1

q

)
· · ·
(
pr
q

)
=

(
q

p1

)
· · ·
(
q

pr

)
=

(
−2

p1

)
· · ·
(
−2

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 5, 7 (mod 8), which as observed above is an even number.
Therefore there is an integer x such that

x2 ≡ −2q (mod m)

x2 ≡ m (mod q),

so by Legendre’s Theorem the equation

2qu2 + z2 −mt2 = 0

has a solution in integers (u, z, t) with t 6= 0. Since q ≡ 1 (mod 4), there are
x, y ∈ Z such that 2qu2 = x2 + y2, so

mt2 − z2 = 2qu2 = x2 + y2,

and thus once again

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2

.

�

2.2. Some applications of the Three Squares Theorem.

Knowing exactly which integers are represented by x2 + y2 + z2 turns out to be
a powerful weapon for analyzing representation of integers by certain quaternary
quadratic forms.

Proposition 19.7. The three squares theorem implies the four squares theo-
rem.

Proof. In order to show the Four Squares Theorem it suffices to show that
every squarefree positive integer m is a sum of four integer squares. By the Three
Squares Theorem, m is even a sum of three integer squares unless m = 8k+ 7. But
if m = 8k + 7, then m− 1 = 8k + 6. Now ord2(8k + 6) = 1, so 8k + 6 is not of the
form 4a(8k+7), hence 8k+6 = x2 +y2 +z2 and m = 8k+7 = x2 +y2 +z2 +12. �

More generally:

Theorem 19.8. For any 1 ≤ d ≤ 7, the quadratic form q = x2 + y2 + z2 + dw2

integrally represents all positive integers.

Proof. As above it is enough to show that q represents all squarefree positive
integers. Moreover, if m 6= 8k + 7 is a squarefree positive integer then m is repre-
sented already by x2 +y2 +z2 so certainly by q. It remains to dispose of m = 8k+7.
Case 1: Suppose d = 1, 2, 4, 6. Then m− d · 12 = m− d is:
• m− 1 = 8k + 6, if d = 1. This is a sum of 3 squares.
• m− 2 = 8k + 5, if d = 2. This is a sum of 3 squares.
• m− 4 = 8k + 3, if d = 3. This is a sum of 3 squares.
• m− 5 = 8k + 2, if d = 5. This is a sum of 3 squares.
• m− 6 = 8k + 1, if d = 6. This is a sum of 3 squares.
Case 2: If d = 3, then

m− d · 22 = m− 12 = 8k − 5 = 8(k − 1) + 3.
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Thus, so long as m− 12 is positive, it is a sum of three squares. We need to check
separately that positive integers less than 12 are still represented by q, but this is
easy: the only one which is not already a sum of 3 squares is 7 = 22 +02 +02 +3 ·12.
Case 3: If d = 7, then

m− d · 22 = m− 28 = 8(k − 3) + 5.

Thus, so long as m − 28 is positive, it is a sum of three squares. Again we must
separately check that positive integers less than 28 are represented by q, and again
this comes down to checking 7: 7 = 02 + 02 + 02 + 7 · 12. �

If we are looking for quaternary quadratic forms q = x2 + y2 + z2 + dw2 which
represent all positive integers, then we have just found all of them: if d > 7, then
such a q cannot integrally represent 7. Nevertheless we can still use the Gauss-
Legendre Theorem to analyze these forms. For instance.

Proposition 19.9. For a positive integer n, TFAE:
(i) There are integers x, y, z, w such that n = x2 + y2 + z2 + 8w2.
(ii) n 6≡ 7 (mod 8).

Proof. (i) =⇒ (ii): For any integers x, y, z, w, reducing n = x2+y2+z2+8w2

modulo 8 gives n ≡ x2 + y2 + z2 (mod 8), and we already know that this has no
solutions when n ≡ 7 (mod 8).
(ii) =⇒ (i): Write n = 2am with m odd. If m is not of the form 8k + 7 then
both m and 2m are sums of three integer squares, and since n is an even power
of 2 times either m or 2m, n must be a sum of three intege squares. So we are
reduced to the case n = 2a(8k + 7) with a ≥ 1. If a = 1 then ord2(n) = 1 and
again n is a sum of three integer squares. Suppose a = 2, so n = 32k + 28 and
thus n − 8 · 12 = 32k + 20 = 4(8k + 5) is of the form x2 + y2 + z2 and thus
n = x2 + y2 + z2 + 8w2. If a ≥ 3 is odd, then n is a sum of three squares. If a ≥ 4

is even, then n = (2
a−2
2 )2(4 · (8k + 7)) is a square times an integer represented by

q, so n is also represented by q. �

Exercise: Prove or disprove the following claims:
a) If d is a positive integer which is not divisible by 8, then the quadratic form
x2 + y2 + z2 + dw2 integrally represents all sufficiently large positive integers.
v) If d = 8d′ is a positive integer, then the quadratic form x2 + y2 + z2 + dw2

integrally represents all sufficiently large positive integers which are not 7 (mod 8).

3. Approximate Local-Global Principle

From now on we restrict to the case of positive-definite integral quadratic forms
q(x1, . . . , xn). For such a form, the equation

q(x1, . . . , xn) = N

can have at most finitely many integral solutions. Indeed, if we define rq(N) to be
the number of solutions, then the summatory function

Rq(N) =

N∑
i=1

rq(i)
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is counting lattice points lying on or inside the ellipsoid q(x1, . . . , xn) = N in n-
dimensional Euclidean space. Recalling our previous study of this sort of problem,
we know that there exists a constant V such that

Rq(N) ∼ V ·Nn/2,

so that the average value of rq(N) is asymptotically N
n
2−1.

To say that q(x1, . . . , xn) = N has an integral solution is to say that rq(N) > 0.
It turns out to be a good strategy to exchange our problem for a seemingly harder
problem: what can one say about the order of magnitude of rq(N)?

One has the following theorem, thanks to the combined work of many leading
mathematicians over a period of about 50 years:

Theorem 19.10. (Hecke, Eichler, Tartakowsky, Kloosterman, Deligne, . . .)
Suppose q(x1, . . . , xn) is positive definite and n ≥ 5. There exists a decomposition

rq(N) = rE(N) + rC(N)

with the following properties:
a) rE(N) > 0 iff the equation q(x1, . . . , xn) = N has solutions everywhere locally.
b) There exist effectively computable positive constants C1, C2 (depending on q)
such that:

rE(N) > 0 =⇒ rE(N) ≥ C1N
n/2−1.

|rC(N)| ≤ C2d(N)N
n
4−

1
2 .

Here d(N) is the divisor function, which recall, grows slower than any positive
power of N . One can interpret this result as saying that a local-global principle for
rq(N) holds asymptotically, with almost square root error!

The proof of this theorem requires lots of techniques from 20th century number
theory, and in particular the introduction of objects which are a lot less elementary
and quaint than quadratic polynomials with integer coefficients. Notably the proof
first associates to a quadratic form a modular form – a certain especially nice
kind of function of a complex variable – and the result follows from a bound on
the coefficients of a power series expansion of this function. In particular, one uses
results on the number of solutions to much more general systems of equations over
finite fields established by fundamental work of Pierre Deligne in the 1970’s (work
that justly landed him the Fields Medal).

Corollary 19.11. Let q be a positive-definite quadratic form in n ≥ 5 vari-
ables. Then there exists N0 such that if N ≥ N0, q(x1, . . . , xn) = N satisfies the
local-global principle (has integral solutions iff it has congruential solutions).

Again, the theory of congruential solutions is sufficiently well-developed so as to
enable one to determine (with some work, to be sure) precise conditions on N such
that solutions exist everywhere locally. Therefore the corollary gives a method
for solving the representation problem for integral quadratic forms in at least four
variables: (i) explicitly compute the value of N0 in the Corollary; (ii) explicitly
compute the local conditions for solvability; (iii) check each of the finitely many
values of N , 1 ≤ N ≤ N0 to see whether q(x1, . . . , xn) = N has a solution.
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Thus the representation problem is reduced to a finite calculation. Of course not
all finite problems can be solved in a reasonable (or even unreasonable) amount of
time in practice, so quite a lot of technique and ingenuity is necessary to apply this
method. Here is a success story:

Theorem 19.12. (Hanke [Han04]) The quadratic form x3 + 3y2 + 5z2 + 7w2

integrally represents all positive integers except 2 and 22.

This result had been conjectured by M. Kneser in 1961.

Note that in Theorem 19.10 the number of variables has to be at least 4. When
n = 2 or 3, the above corollary is false: we already mentioned this in the case of 2
variables, which is in some sense the hardest but also the best understood in terms
of pure algebraic number theory. The case of ternary quadratic forms brings several
new features and remains fascinatingly open. If you want to hear more, you will
have to wait until 2008 and ask Prof. Hanke about it.

4. The 15 and 290 Theorems

The constants in Theorem 19.10 most definitely depend on the quadratic form q
in question. A greater challenge is to prove results about integral representability
that are in some sense independent of the particular quadratic form. For instance,
a positive-definite quadratic form is said to be universal if it integrally represents
every positive integer. (So the four squares form is universal.) The preceding sec-
tion asserts the existence of a complicated procedure that can determine whether a
given form is universal. Is there some easy way to determine whether a quadratic
form is universal?

Yes. In the early 1990’s, Conway and Schneeburger proved the following result.

Theorem 19.13. (15 Theorem [Con00]) A positive definite quadratic form
with integral defining matrix integrally represents every positive integer iff it inte-
grally represents the integers 1 through 15.

Example: We will determine all positive integers d for which the form

x2 + y2 + z2 + dw2

is universal. We know that by taking w = 0 we can get every positive integer except
those of the form 4a(8k+ 7); but since we need only go up to 15 it suffices to check
whether we can represent 7. Let’s check:

d = 1: 12 + 12 + 12 + 1 · 22 = 7.
d = 2: 22 + 12 + 02 + 2 · 12 = 7.
d = 3: 22 + 12 + 12 + 3 · 12 = 7.
d = 4: 12 + 12 + 12 + 4 · 12 = 7.
d = 5: 12 + 12 + 02 + 5 · 12 = 7.
d = 6: 12 + 02 + 02 + 6 · 12 = 7.
d = 7: 02 + 02 + 02 + 7 · 12 = 7.

We cannot represent 7 if d ≥ 8: taking w 6= 0 would make the form too large.
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In fact, let us consider the problem of which quadratic forms

q(x1, x2, x3, x4) = ax2
1 + bx2

2 + cx2
3 + dx2

4

with a ≤ b ≤ c ≤ d represent all positive integers. A case-by-case analysis shows
that in order for the integers 1, 2, 3 and 5 to all be represented, we need (a, b, c)
to be one of: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5). As it
happens, no ternary quadratic form can represent all positive integers. In the cases
at hand, the smallest exceptions are (as you can readily check):

x2 + y2 + z2 does not represent 7.
x2 + y2 + 2z2 does not represent 14.
x2 + y2 + 3z2 does not represent 6.
x2 + 2y2 + 2z2 does not represent 7.
x2 + 2y2 + 3z2 does not represent 10.
x2 + 2y2 + 4z2 does not represent 14.
x2 + 2y2 + 5z2 does not represent 10.

Now one can go through a similar analysis for the other 6 cases as we did for the
first case, and determine a complete list of diagonal positive definite quaternary
universal quadratic forms: there are precisely 54 of them.3 In fact this investi-
gation was originally done by S. Ramanujan in 1917, except that not having the
15 theorem he was forced to come up with “empirical” (i.e., conjectural) rules for
which integers are represented by the above ternary quadratic forms, so that he did
not supply proofs for his results.

Remark 4: Given the stories that have been told about Ramanujan and his un-
earthly intuition, it is interesting to remark that his paper lists a 55th universal
quadratic form: x2 + 2y2 + 5z2 + 5w2. Ironically, this form does not represent 15,
as Dickson observed ten years later.

The 15 theorem was discovered in a graduate seminar that Conway was teach-
ing at Princeton, in which Schneeburger was an attending student. The original
proof was quite computationally onerous, and it was never written down. Indeed,
by the time Manjul Bhargava became a graduate student at Princeton and heard
about the theorem, some of the details of the proof had been forgotten.

Bhargava was doubly stunned by this: that such a wonderful theorem could have
been discovered, and also that it had met such a disappointing fate. He found a
new proof of the 15 theorem which is, truly, one of the most beautiful mathemat-
ical arguments I have ever seen. It quite cleverly manages to avoid any unwieldy
computations. In fact he proved the following generalization:

Theorem 19.14. (Bhargava’s Master Theorem) Let S ⊂ Z+. There exists
a finite subset S0 of S such that a positive definite integer-matrix quadratic form
represents all integers in S iff it represents all integers in S0.

3It can now be told that I put this as an extra credit problem on the final exam. Moreover,
I hinted that I might do so, and in fact there was a student who practiced this type of calculation

and was able to give the complete solution!
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Example: Taking S to be the prime numbers, Bhargava showed that one may take
S0 to be the primes less than or equal to 73.

The proof gives an algorithm for determining S0, but whether or not it is prac-
tical seems to depend very much on the choice of S: it gets much harder if S does
not contain several very small integers.

Indeed, we have been saying “integer matrix” quadratic forms for the last few
results, but a quadratic form is represented by a polynomial with integer coeffi-
cients iff its defining matrix satisfies the slightly weaker condition that its diagonal
entries are integers and its off-diagonal entries are half-integers (e.g. q(x, y) = xy).
However, if q is any integral quadratic form, then the matrix entries of 2q are cer-
tainly integers, and q represents an integer N iff 2q represents 2N . Thus, applying
Bhargava’s Master Theorem to the subset of positive even integers, one deduces the
existence of an integer N0 such that if a positive-definite integral matrix represents
every N ∈ {1, . . . , N0} then it represents every positive integer.

Already in Conway’s course it was suggested that N0 could be taken to be 290.
However, the calculations necessary to establish this result were Herculean: one
needs to show that each of 6, 436 quaternary quadratic forms is universal. Some
of these forms can be proven universal in relatively slick and easy ways, but about
1, 000 of them are seriously hard. So Bhargava enlisted the help of Jonathan Hanke,
and after several years of intense work (including extremely intensive and carefully
checked computer calculations), they were able to show the following result.

Theorem 19.15. (290 Theorem [BHxx]) If a positive-definite integral qua-
dratic form represents each of:

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290,

then it represents all positive integers.



APPENDIX A

Rings, Fields and Groups

1. Rings

Recall that a binary operation on a set S is just a function ∗ : S×S → S: in other
words, given any two elements s1, s2 of S, there is a well-defined element s1∗s2 of S.

A ring is a set R endowed with two binary operations + and ·, called addition
and multiplication, respectively, which are required to satisfy a rather long list of
familiar-looking conditions – in all the conditions below, a, b, c denote arbitrary
elements of R –

(A1) a+ b = b+ a (commutativity of addition);
(A2) (a+ b) + c = a+ (b+ c) (associativity of addition);
(A3) There exists an element, called 0, such that 0 + a = a. (additive identity)
(A4) For x ∈ R, there is a y ∈ R such that x+y = 0 (existence of additive inverses).
(M1) (a · b) · c = a · (b · c) (associativity of multiplication).
(M2) There exists an element, called 1, such that 1 · a = a · 1 = a.
(D) a · (b+ c) = a · b+ a · c; (a+ b) · c = a · c+ b · c.

Comments:

(i) The additive inverse required to exist in (A4) is unique, and the additive inverse
of a is typically denoted −a. (It is easy to check that −a = (−1) · a.)

(ii) Note that we require the existence of a multiplicative identity (or a “unity”).
Every once in a while one meets a structure which satisfies all the axioms except
does not have a multiplicative identity, and one does not eject it from the club just
because of this. But all of our rings will have a multiplicative identity.

(iii) There are two further reasonable axioms on the multiplication operation that
we have not required; our rings will sometimes satisfy them and sometimes not:

(M′) a · b = b · a (commutativity of multiplication).
(M′′) For all a 6= 0, there exists b ∈ R such that ab = 1.

A ring which satisfies (M′) is called – sensibly enough – a commutative ring.

Example 1.0: The integers Z form a ring under addition and multiplication. Indeed
they are “the universal ring” in a sense to be made precise later.

247
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Example 1.1: There is a unique ring in which 1 = 0. Indeed, if r is any element of
such a ring, then

r = 1 · r = 0 · r = (0 + 0) · r = 0 · r + 0 · r = 1 · r + 1 · r = r + r;

subtracting r from both sides, we get r = 0. In other words, the only element of the
ring is 0 and the addition laws are just 0 + 0 = 0 = 0 ·0; this satisfies all the axioms
for a commutative ring. We call this the zero ring. Truth be told, it is a bit of an-
noyance: often in statements of theorems one encounters “except for the zero ring.”

Example 1.n: For any positive integer, let Zn denote the set {0, 1, . . . , n − 1}.
There is a function modn from the positive integers to Zn: given any integer m,
modn(m) returns the remainder of m upon division by n, i.e., the unique integer r
satisfying m = qn+ r, 0 ≤ r < n. We then define operations of + and · on Zn by
viewing it as a subset of the positive integers, employing the standard operations
of + and ·, and then applying the function modn to force the answer back in the
range 0 ≤ r < n. That is, we define

a+n b := modn(a+ b),

a ·n b := modn(a · b).
The addition operation is familiar from “clock arithmetic”: with n = 12 this is how
we tell time, except that we use 1, 2, . . . , 12 instead of 0, . . . , 11. (However, military
time does indeed go from 0 to 23.)

The (commutative!) rings Zn are basic and important in all of mathematics, espe-
cially number theory. The definition we have given – the most “naive” possible one
– is not quite satisfactory: how do we know that +n and ·n satisfy the axioms for a
ring? Intuitively, we want to say that the integers Z form a ring, and the Zn’s are
constructed from Z in some way so that the ring axioms become automatic. This
leads us to the quotient construction, which we will present later.

Modern mathematics has tended to explore the theory of commutative rings
much more deeply and systematically than the theory of (arbitrary) non-commutative
rings. Nevertheless noncommutative rings are important and fundamental: the ba-
sic example is the ring of n× n matrices (say, with real entries) for any n ≥ 2.

A ring (except the zero ring!) which satisfies (M′′) is called a division ring (or
division algebra). Best of all is a ring which satisfies (M′) and (M′′): a field.1

I hope you have some passing familiarity with the fields Q (of rational numbers), R
(of real numbers) and C (of complex numbers), and perhaps also with the existence
of finite fields of prime order (more on these later). In some sense a field is the rich-
est possible purely algebraic structure, and it is tempting to think of the elements

1A very long time ago, some people used the term “field” as a synonym for “division ring” and
therefore spoke of “commutative fields” when necessary. The analogous practice in French took
longer to die out, and in relatively recent literature it was not standardized whether “corps” meant
any division ring or a commutative division ring. (One has to keep this in mind when reading
certain books written by Francophone authors and less-than-carefully translated into English, e.g.

Serre’s Corps Locaux.) However, the Bourbakistic linguistic philosophy that the more widely used
terminology should get the simpler name seems to have at last persuaded the French that “corps”
means “(commutative!) field.”
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of field as “numbers” in some suitably generalized sense. Conversely, elements of
arbitrary rings can have some strange properties that we would, at least initially,
not want “numbers” to have.

2. Ring Homomorphisms

Generally speaking, a homomorphism between two algebraic objects is a map f
between the underlying sets which preserves all the relevant algebraic structure.

So a ring homomorphism f : R→ S is a map such that f(0) = 0, f(1) = 1 and
for all r1, r2 ∈ R, f(r1 + r2) = f(r1) + f(r2), f(r1r2) = f(r1)f(r2).

In fact it follows from the preservation of addition that f(0) = 0. Indeed, 0 = 0+0,
so f(0) = f(0 + 0) = f(0) + f(0); now subtract f(0) from both sides. But in gen-
eral it seems better to postulate that a homomorphism preserve every structure “in
sight” and then worry later about whether any of the preservation properties are
redundant. Note well that the property f(1) = 1 – “unitality” – is not redundant.
Otherwise every ring R would admit a homomorphism to the zero ring, which would
turn out to be a bit of a pain.

Example 2.1: For any ring R, there exists a unique homomorphism c : Z → R.
Namely, any homomorphism must send 1 to 1R, 2 to 1R + 1R, 3 to 1R + 1R + 1R,
−1 to −1R, −2 to −1R + −1R and so forth. (And it is not hard to see that this
necessarily gives a homomorphism.)

Recall that a function f : X → Y is an injection if x1 6= x2 =⇒ f(x1) 6= f(x2).
To see whether a homomorphism of rings f : R→ S is an injection, it suffices to look
at the set K(f) = {x ∈ R | f(x) = 0}, the kernel of f . This set contains 0, and if
it contains any other element then f is certainly not injective. The converse is also
true: suppose K(f) = 0 and f(x1) = f(x2). Then 0 = f(x2)− f(x1) = f(x2 − x1),
so x2 − x1 ∈ K(f), so by our assumption x2 − x1 = 0, and x1 = x2.

An important case is when R is a ring and S is a subset of R containing 0
and 1 and which is itself a ring under the operations of + and · it inherits from
R. (In this case what needs to be checked are the closure of S under +, − and ·:
i.e., for all s1, s2 ∈ S, s1 +s2, s1−s2, s1 ·s2 ∈ S.) We say that S is a subring of R.

Suppose R and S are division rings and f : R → S is a homomorphism between
them. Suppose that r is in the kernel of f , i.e., f(r) = 0. If r 6= 0, then it has
a (left and right) multiplicative inverse, denoted r−1, i.e., an element such that
rr−1 = r−1r = 1. But then

1 = f(1) = f(rr−1) = f(r)f(r−1) = 0 · f(r−1) = 0,

a contradiction. So any homomorphism of division rings is an injection: it is espe-
cially common to speak of field extensions. For example, the natural inclusions
Q ↪→ R and R ↪→ C are both field extensions.

Example 2.1, continued: recall we have a unique homomorphism c : Z → R. If
c is injective, then we find a copy of the integers naturally as a subring of R. E.g.
this is the case when R = Q. If not, there exists a least positive integer n such that
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c(n) = 0, and one can check that Ker(c) consists of all integer multiples of n, a set
which we will denote by nZ or by (n). This integer n is called the characteristic
of R, and if no such n exists we say that R is of characteristic 0 (yes, it would seem
to make more sense to say that n has infinite characteristic). As an important
example, the homomorphism c : Z→ Zn is an extension of the map modn to all of
Z; in particular the characteristic of Zn is n.

3. Integral Domains

A commutative ring R (which is not the zero ring!) is said to be an integral do-
main if it satisfies either of the following equivalent properties:2

(ID1) If x, y ∈ R and xy = 0 then x = 0 or y = 0.
(ID2) If a, b, c ∈ R, ab = ac and a 6= 0, then b = c.

(Suppose R satisfies (ID1) and ab = ac with a 6= 0. Then a(b− c) = 0, so b− c = 0
and b = c; so R satisfies (ID2). The converse is similar.)

(ID2) is often called the “cancellation” property and it is extremely useful when
solving equations. Indeed, when dealing with equations in a ring which is not an
integral domain, one must remember not to apply cancellation without further jus-
tification! (ID1) expresses the nonexistence of zero divisors: a nonzero element
x of a ring R is called a zero divisor if there exists y in R such that xy = 0.

An especially distressing kind of zero divisor is an element 0 6= a ∈ R such that
an = 0 for some positive integer n. (If N is the least positive integer N such that
aN = 0 we have a, aN−1 6= 0 and a · aN−1 = 0, so a is a zero divisor.) Such an
element is called nilpotent, and a ring is reduced if it has no nilpotent elements.

One of the difficulties in learning ring theory is that the examples have to run
very fast to keep up with all the definitions and implications among definitions.
But, look, here come some now:

Example 3.1: Let us consider the rings Zn for the first few n.
The rings Z2 and Z3 are easily seen to be fields: indeed, in Z2 the only nonzero

element, 1 is its own multiplicative inverse, and in Z3 1 = 1−1 and 2 = (2)−1.
In the ring Z4 22 = 0, so 2 is nilpotent and Z4 is nonreduced.
In Z5 one finds – after some trial and error – that 1−1 = 1, 2−1 = 3, 3−1 =

2, 4−1 = 4 so that Z5 is a field.
In Z6 we have 2 · 3 = 0 so there are zero-divisors, but a bit of calculation shows

there are no nilpotent elements. (We take enough powers of every element until we
get the same element twice; if we never get zero then no power of that element will
be zero. For instance 21 = 2, 22 = 4, 23 = 2, so 2n will equal either 2 or 4 in Z6:
never 0.)

2The terminology “integral domain” is completely standardized but a bit awkward: on the
one hand, the term “domain” has no meaning by itself. On the other hand there is also a notion
of an “integral extension of rings.” And, alas, it may well be the case that an extension of integral

domains is not an integral extension! But there is no clear remedy here, and proposed changes
in the terminology – e.g. Lang’s attempted use of “entire” for “integral domain” – have not been
well received.
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Similarly we find that Z7 is a field, 2 is a nilpotent in Z8, 3 is a nilpotent in Z9,
Z10 is reduced but not an integral domain, and so forth. Eventually it will strike
us that it appears to be the case that Zn is a field exactly when n is prime. This
realization makes us pay closer attention to the prime factorization of n, and given
this clue, one soon guesses that Zn is reduced iff n is squarefree, i.e., not divisible
by the square of any prime. Moreover, it seems that whenever Zn is an integral
domain, it is also a field. All of these observations are true in general but nontrivial
to prove. The last fact is the easiest:

Proposition A.1. Any integral domain R with finitely many elements is a
field.

Proof. Consider any 0 6= a ∈ R; we want to find a multiplicative inverse.
Consider the various powers a1, a2, . . . of a. They are, obviously, elements of R, and
since R is finite we must eventually get the same element via distinct powers: there
exist positive integers i and j such that ai+j = ai 6= 0. But then ai = ai+j = ai ·aj ,
and applying (ID2) we get aj = 1, so that aj−1 is the multiplicative inverse to
a. �

Theorem A.2. a) The ring Zn is a field iff n is a prime.
b) The ring Zn is reduced iff n is squarefree.

Proof. In each case one direction is rather easy. Namely, if n is not prime,
then n = ab for integers 1 < a, b < n, and then a · b = 0 in Zn. If n is not
squarefree, then for some prime p we can write n = p2 ·m, and then the element
mp is nilpotent: (mp)2 = mp2m = mn = 0 in Zn.

However, in both cases the other direction requires Euclid’s Lemma: if a prime
p divides ab then p|a or p|b. (We will encounter and prove this result early on in
the course.) Indeed, this says precisely that if ab = 0 in Zn then either a = 0 or
b = 0, so Zp is an integral domain, and, being finite, by Proposition A.1 it is then
necessarily a field. Finally, if n = p1 · · · pn is squarefree, and m < n, then m is not
divisible by some prime divisor of n, say pi, and by the Euclid Lemma neither is
any power ma of m, so for no positive integer a is ma = 0 in Zn. �

Example 3.2: Of course, the integers Z form an integral domain. How do we know?
Well, if a 6= 0 and ab = ac, we can multiply both sides by a−1 to get b = c. This
may at first seem like cheating since a−1 is generally not an integer: however it
exists as a rational number and the “computation” makes perfect sense in Q. Since
Z ⊂ Q, having b = c in Q means that b = c in Z.

It turns out that for any commutative ring R, if R is an integral domain we can
prove it by the above argument of exhibiting a field that contains it:

Theorem A.3. A ring R is an integral domain iff it is a subring of some field.

Proof. The above argument (i.e., just multiply by a−1 in the ambient field)
shows that any subring of a field is an integral domain. The converse uses the
observation that given an integral domain R, one can formally build a field F (R)
whose elements are represented by formal fractions of the form a

b with a ∈ R, b ∈
R \ {0}, subject to the rule that a

b = c
d iff ad = bc in R. There are many little

checks to make to see that this construction actually works. On the other hand,
this is a direct generalization of the construction of the field Q from the integral
domain Z, so we feel relatively sanguine about omitting the details here. �



252 A. RINGS, FIELDS AND GROUPS

Remark: The field F (R) is called the field of fractions3 of the integral domain R.

Example 3.3 (Subrings of Q): There are in general many different integral domains
with a given quotient field. For instance, let us consider the integral domains with
quotient field Q, i.e., the subrings of Q. The two obvious ones are Z and Q, and
it is easy to see that they are the extremes: i.e., for any subring R of Q we have
Z ⊆ R ⊆ Q. But there are many others: for instance, let p be any prime number,
and consider the subset Rp of Q consisting of rational numbers of the form a

b where
b is not divisible by any prime except p (so, taking the convention that b > 0, we
are saying that b = pk for some k). A little checking reveals that Rp is a subring
of Q. In fact, this construction can be vastly generalized: let S be any subset of
the prime numbers (possibly infinite!), and let RS be the rational numbers a

b such
that b is divisible only by primes in S. It is not too hard to check that: (i) RS is a
subring of Q, (ii) if S 6= S′, RS 6= RS′ , and (iii) every subring of Q is of the form
RS for some set of primes S. Thus there are uncountably many subrings in all!

4. Polynomial Rings

Let R be a commutative ring. One can consider the ring R[T ] of polynomials with
coefficients in T : that is, the union over all natural numbers n of the set of all
formal expressions

∑n
i=0 aiT

i (T 0 = 1). (If an 6= 0, this polynomial is said to have
degree n. By convention, we take the zero polynomial to have degree −∞.) There
are natural addition and multiplication laws which reduce to addition in R, the law
T i · T j = T i+j and distributivity. (Formally speaking we should write down these
laws precisely and verify the axioms, but this is not very enlightening.) One gets a
commutative ring R[T ].

One can also consider polynomial rings in more than one variable: R[T1, . . . , Tn].
These are what they sound like; among various possible formal definitions, the most
technically convenient is an inductive one: R[T1, . . . , Tn] := R[T1, . . . , Tn−1][Tn], so
e.g. the polynomial ring R[X,Y ] is just a polynomial ring in one variable (called
Y ) over the polynomial ring R[X].

Proposition A.4. R[T ] is an integral domain iff R is an integral domain.

Proof. R is naturally a subring of R[T ] – the polynomials rT 0 for r ∈ R and
any subring of an integral domain is a domain; this shows necessity. Conversely,
suppose R is an integral domain; then any two nonzero polynomials have the form
anT

n + an−1T
n−1 + . . . + a0 and bmT

m + . . . + b0 with an, bm 6= 0. When we
multiply these two polynomials, the leading term is anbmT

n+m; since R is a domain,
anbm 6= 0, so the product polynomial has nonzero leading term and is therefore
nonzero. �

Corollary A.5. A polynomial ring in any number of variables over an integral
domain is an integral domain.

This construction gives us many “new” integral domains and hence many new fields.
For instance, starting with a field F , the fraction field of F [T ] is the set of all formal

3The term “quotient field” is also used, even by me until rather recently. But since there is
already a quotient construction in ring theory, it seems best to use a different term for the fraction

construction.
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quotients P (T )
Q(T ) of polynomials; this is denoted F (T ) and called the field of rational

functions over F . (One can equally well consider fields of rational functions in sev-
eral variables, but we shall not do so here.)

The polynomial ring F [T ], where F is a field, has many nice properties; in some
ways it is strongly reminiscent of the ring Z of integers. The most important com-
mon property is the ability to divide:

Theorem A.6. (Division theorem for polynomials) Given any two polynomials
a(T ), b(T ) in F [T ], there exist unique polynomials q(T ) and r(T ) such that

b(T ) = q(T )a(T ) + r(T )

and deg(r(T )) < deg(a(T )).

A more concrete form of this result should be familiar from high school algebra:
instead of formally proving that such polynomials exist, one learns an algorithm for
actually finding q(T ) and r(T ). Of course this is as good or better: all one needs
to do is to give a rigorous proof that the algorithm works, a task we leave to the
reader. (Hint: induct on the degree of b.)

Corollary A.7. (Factor theorem) For a(T ) ∈ F [T ] and c ∈ F , the following
are equivalent:
a) a(c) = 0.
b) a(T ) = q(T ) · (T − c).

Proof. We apply the division theorem with b(T ) = (T − c), getting a(T ) =
q(T )(T − c) + r(T ). The degree of r must be less than the degree of T − c, i.e.,
zero – so r is a constant. Now plug in T = c: we get that a(c) = r. So if a(c) = 0,
a(T ) = q(T )(T − c). The converse is obvious. �

Corollary A.8. A nonzero polynomial p(T ) ∈ F [T ] has at most deg(p(T ))
roots.

Remark: The same result holds for polynomials with coefficients in an integral do-
main R, since every root of p in R is also a root of p in the fraction field F (R).

This may sound innocuous, but do not underestimate its power – a judicious appli-
cation of this Remark (often in the case R = Z/pZ) can and will lead to substantial
simplifications of “classical” arguments in elementary number theory.

Example 4.1: Corollary A.8 does not hold for polynomials with coefficients in an
arbitrary commutative ring: for instance, the polynomial T 2−1 ∈ Z8[T ] has degree
2 and 4 roots: 1, 3, 5, 7.

5. Commutative Groups

A group is a set G endowed with a single binary operation ∗ : G×G→ G, required
to satisfy the following axioms:

(G1) for all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)
(G2) There exists e ∈ G such that for all a ∈ G, e ∗ a = a ∗ e = a.
(G3) For all a ∈ G, there exists b ∈ G such that ab = ba = e.
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Example: Take an arbitrary set S and put G = Sym(S), the set of all bijections
f : S → S. When S = {1, . . . , n}, this is called the symmetric group of order n,
otherwise known as the group of all permutations on n elements: it has order n!.

We have notions of subgroups and group homomorphisms that are completely
analogous to the corresponding ones for rings: a subgroup H ⊂ G is a subset which
is nonempty, and is closed under the group law and inversion: i.e., if g, h ∈ H
then also g ∗ h and g−1 are in H. (Since there exists some h ∈ H, also h−1 and
e = h ∗ h−1 ∈ H; so subgroups necessarily contain the identity.)4 And a homomor-
phism f : G1 → G2 is a map of groups which satisfies f(g1 ∗ g2) = f(g1) ∗ f(g2) (as
mentioned above, that f(eG1

) = eG2
is then automatic). Again we get many ex-

amples just by taking a homomorphism of rings and forgetting about multiplication.

Example 5.1: Let F be a field. Recall that for any positive integer n, the n × n
matrices with coefficients in F form a ring under the operations of matrix addition
and matrix multiplication, denoted Mn(F ). Consider the subset of invertible ma-
trices, GLn(F ). It is easy to check that the invertible matrices form a group under
matrix multiplication (the “unit group” of the ring Mn(F ), coming up soon). No
matter what F is, this is an interesting and important group, and is not commu-
tative if n ≥ 2 (when n = 1 it is just the group of nonzero elements of F under
multiplication). The determinant is a map

det : GLn(F )→ F \ {0};

a well-known property of the determinant is that det(AB) = det(A) det(B). In
other words, the determinant is a homomorphism of groups. Moreover, just as
for a homomorphism of rings, for any group homomorphism f : G1 → G2 we can
consider the subset Kf = {g ∈ G1 | f(g) = eG2

} of elements mapping to the identity
element of G2, again called the kernel of f . It is easy to check that Kf is always a
subgroup of G1, and that f is injective iff Kf = 1. The kernel of the determinant
map is denoted SLn(F ); by definition, it is the collection of all n × n matrices

with determinant 1.5 For instance, the rotation matrices

[
cos θ sin θ
− sin θ cos θ

]
form a

subset (indeed, a subgroup) of the group SL2(R).

Theorem A.9. (Lagrange) For a subgroup H of the finite group G, we have
#H | #G.

The proof6 is combinatorial: we exhibit a partition of G into a union of subsets
Hi, such that #Hi = #H for all i. Then, the order of G is #H · n, where n is the
number of subsets.

The Hi’s will be the left cosets of H, namely the subsets of the form

gH = {gh | h ∈ H}.

4Indeed there is something called the “one step subgroup test”: a nonempty subset H ⊂ G
is a subgroup iff whenever g and h are in H, then g ∗ h−1 ∈ H. But this is a bit like saying you

can put on your pants in “one step” if you hold them steady and jump into them: it’s true but
not really much of a time saver.

5The “GL” stands for “general linear” and the “SL” stands for “special linear.”
6This proof may be too brief if you have not seen the material before; feel free to look in any

algebra text for more detail, or just accept the result on faith for now.
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Here g ranges over all elements of G; the key is that for g1, g2 ∈ G, the two cosets
g1H and g2H are either equal or disjoint – i.e., what is not possible is for them to
share some but not all elements. To see this: suppose x ∈ g1H and is also in g2H.
This means that there exist h1, h2 ∈ H such that x = g1h1 and also x = g2h2,
so g1h1 = g2h2. But then g2 = g1h1h

−1
2 , and since h1, h2 ∈ H, h3 := h1h

−1
2 is

also an element of H, meaning that g2 = g1h3 is in the coset g1H. Moreover, for
any h ∈ H, this implies that g2h = g1h3h = g1h4 ∈ g1H, so that g2H ⊂ g1H.
Interchanging the roles of g2 and g1, we can equally well show that g1H ⊂ g2H, so
that g1H = g2H. Thus overlapping cosets are equal, which was to be shown.

Remark: In the proof that G is partitioned into cosets of H, we did not use the
finiteness anywhere; this is true for all groups. Indeed, for any subgroup H of any
group G, we showed that there is a set S – namely the set of distinct left cosets
{gH} such that the elements of G can be put in bijection with S×H. If you know
about such things (no matter if you don’t), this means precisely that #H divides
#G even if one or more of these cardinalities is infinite.

Corollary A.10. If G has order n, and g ∈ G, then the order of g – i.e., the
least positive integer k such that gk = 1 – divides n.

Proof. The set of all positive powers of an element of a finite group forms a
subgroup, denoted 〈g〉, and it is easily checked that the distinct elements of this
group are 1, g, g2, . . . , gk−1, so the order of g is also #〈g〉. Thus the order of g
divides the order of G by Lagrange’s Theorem. �

Example 5.2: For any ring R, (R,+) is a commutative group. Indeed, there is
nothing to check: a ring is simply more structure than a group. For instance, we
get for each n a commutative group Zn just by taking the ring Zn and forgetting
about the multiplicative structure.

A group G is called cyclic if it has an element g such that every element x in
G is of the form 1 = g0, gn := g · g · . . . · g or g−n = g−1 · g−1 · . . . · g−1 for some
positive integer n. The group (Z,+) forms an infinite cyclic group; for every pos-
itive integer n, the group (Zn,+) is cyclic of order n. It is not hard to show that
these are the only cyclic groups, up to isomorphism.

An element u of a ring R is a unit if there exists v ∈ R such that uv = vu = 1.

Example 5.3: 1 is always a unit; 0 is never a unit (except in the zero ring, in
which 0 = 1). The units in Z are ±1.

A nonzero ring is a division ring iff every nonzero element is a unit.

The set of all units in a ring is denoted R×. It is not hard to see that the units
form a group under multiplication: for instance, if u and v are units, then they
have two-sided inverses denoted u−1 and v−1, and then

uv · (v−1u−1) = (v−1u−1)uv = 1,

so uv is also a unit. Similarly, the (unique) inverse u−1 of a unit is a unit. In
general, R× is not commutative, but of course it will be if R is commutative.
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6. Ideals and Quotients

In this section all groups and rings will be commutative.

Let R be a (commutative!) ring. An ideal of R is a subset I of R satisfying:
(IR1) I is a subgroup of the additive group of R.
(IR2) For any r ∈ R and any i ∈ I, ri ∈ I.

We often employ notation like rI = {ri | i ∈ I} and then (IR2) can be stated
more succinctly as: for all r ∈ R, rI ⊂ I. In other words, an ideal is a subset
of a ring R which is a subgroup under addition (in particular it contains 0 so is
nonempty) and is not only closed under multiplication but satisfies the stronger
property that it “absorbs” all elements of the ring under multiplication.

Remark (Ideals versus subrings): It is worthwhile to compare these two notions;
they are related, but with subtle and important differences. Both an ideal I and
a subring S of a ring R are subsets of R which are subgroups under addition and
are stable under multiplication. However, each has an additional property: for an
ideal it is the absorption property (IR2). For instance, the integers Z are a subring
of the rational numbers Q, but are clearly not an ideal, since 1

2 ·1 = 1
2 , which is not

an integer. On the other hand a subring has a property that an ideal usually lacks,
namely it must contain the unity 1 of R. For instance, the subset 2Z = {2n | n ∈ Z}
is an ideal of Z but is not a subring.

Example (trivial ideals): Any ring R (which is not the zero ring!) contains at
least two ideals: the ideal {0}, and the ideal R itself. These are however not very
interesting examples, and often need to be ignored in a discussion. (The conven-
tion that “ideal” should stand for “non-zero ideal” whenever convenient is a fairly
common and useful one in the subject.) An ideal I is said to be proper if it is not
R, and again most interesting statements about ideals should really be applied to
proper ideals. Note well that an ideal is proper iff it does not contain the unity 1.
Indeed, an ideal lacking 1 is certainly proper, and conversely, if 1 ∈ I and r ∈ R,
then r · 1 = r is in R.

Proposition A.11. The following are equivalent for a nonzero commutative
ring R:
a) R has only the trivial ideals {0} and R.
b) R is a field.

Proof. b) =⇒ a): Suppose I is a nonzero ideal of a field R, so I contains
some 0 6= a. Then since a is a field, a−1 exists and 1 = a−1a ∈ R · I ⊂ I, so I
contains 1 and is hence all of R.

a) =⇒ b): Suppose R is not a field; then some nonzero element a does not
have an inverse. Then the set aR = {ar | r ∈ R} is a proper, nonzero ideal. �

The preceding argument shows a general construction of ideals: for any element a
of R, the set of elements {ra | r ∈ R} is an ideal of R. (Just to check: r1a+ r2a =
(r1 + r2)a, −ra = (−r)a and r′(ra) = (r′r)a.) We denote such ideals as either Ra
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or (a); they are simple and easy to understand and are called principal ideals and
a is called a generator.

Proposition A.12. (To contain is to divide) Let a and b be elements of R.
The following are equivalent:
a) (a) ⊃ (b).
b) a | b; i.e., b = ac for some c in R.

Proof. Exercise! �

Proposition A.13. Let a and b be elements of an integral domain R. The
following are equivalent:
a) (a) = (b).
b) a = bu for some unit u ∈ R×.

Proof. Since (a) ⊃ (b), b = c1a for some c1 ∈ R. Since (b) ⊃ (a), a = c2b
for some c2 ∈ R. Combining this information we get b = c1c2b. If b = 0, then also
a = 0, a trivial case; otherwise, we can cancel b to get c1c2 = 1, meaning that c1
and c2 are units, so a = c2b shows what we want. �

The notion of generators for ideals can be generalized: for any a1, . . . , an, there is
an ideal, denoted (a1, . . . , an), and defined as the set of all elements of the form
a1r1 + . . .+ anrn as r1, . . . , rn range over all elements of R. This is called the ideal
generated by a1, . . . , an, and it is not hard to see that any ideal I which contains
the elements a1, . . . , an must contain the ideal (a1, . . . , an).

Example: In particular, taking R = Z, for any n ∈ Z we have an ideal (n) con-
sisting of all integer multiples of n. Taking n = 0 we get the zero ideal; otherwise
(n) = (−n), so that the same principal ideal may well have more than one gen-
erator. (However, in this case we are quite fortunate and every nonzero principal
ideal has a “standard” generator, namely the positive one.) Consider the ideal
generated by 4 and 7; is there some simpler way of writing it? Indeed yes: since
1 = 3·7+(−5)·4, the ideal (4, 7) contains 1, so it is in fact all of Z: (4, 7) = (1) = Z.
If you play around a bit with ideals generated by two different integers, you will
soon come around to the idea that (a, b) is always principal, and is generated by
the greatest common divisor of a and b. (Note that we are all of a sudden doing
number theory!) However, this turns out to be quite nontrivial to prove; it is the
essential content of the fundamental theorem of arithmetic.

Example: Let R = Z[T ], and consider the ideal (2, T ): it consists of all poly-
nomials of the form 2P (T )+TQ(T ). Is this ideal principal? If so, there would exist
a single magic polynomial M(T ) such that 2 = p1(T )∗M(T ) and T = p2(T )∗M(T ).
But since the degree of the product polynomial is the sum of the degrees of the
two polynomials, we get that p1(T ) and M(T ) are both constants, i.e., both inte-
gers. Replacing M(T ) by −M(T ) if necessary, we see that the only possibilities
are M(T ) = 1 or M(T ) = 2. But if M(T ) = 2, then T = 2p2(T ) which is impos-
sible, because 2 divides the leading term of 2p2(T ). So the only possibility is that
M(T ) = 1, i.e., perhaps the ideal (2, T ) is all of R? No, this isn’t right either: it is
not possible that 1 = 2P (T ) + TQ(T ): plugging in T = 0 we get that 1 = 2P (0),
and again, 1 is not divisible by 2. The ideal (2, T ) is not principal – too bad!
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Definition: A ring R is called principal if every ideal is principal. This property
interacts especially nicely with integral domains: a domain in which each ideal is
principal is called a principal ideal domain, or PID. Such are the rings whose
arithmetic most closely parallels the arithmetic of the integers, so are especially
prized.

6.1. Prime and maximal ideals. A proper ideal I in a ring is prime if
whenever xy ∈ I, x ∈ I or y ∈ I. A proper ideal is maximal if it is not strictly
contained in any larger proper ideal.

The first definition requires some justification. At the moment, we ask the reader to
consider which of the ideals (n) of the integers are prime. It will turn out that they
are the ones in which are generated by a prime number n = p, and this amounts to
the fundamental property of prime numbers: if a prime p divides xy, then p divides
x or p divides y (Euclid’s Lemma).

The following two observations are good to keep in mind; their proofs just involve
matching up various definitions, so are left as exercises.

Proposition A.14. A ring is an integral domain iff the zero ideal is prime.

Proposition A.15. A ring is a field iff the zero ideal is maximal.

Proposition A.16. In a principal ideal domain, every nonzero prime ideal is
maximal.

Proof. Suppose (a) is a prime ideal which is not maximal: then we have a
proper containment of ideals (a) ( (b), with (b) a proper ideal. By Proposition
A.12, this means that a = bc for some c ∈ R. Since (a) is prime, we get that either
b ∈ (a) or c ∈ (a). The former implies that (a) = (b), contradicting the strictness
of the containment. So c ∈ (a); say c = da. Then a = b(d)a = bda. Since a 6= 0,
we can cancel, getting bd = 1. Thus b is a unit, so (b) is not a proper ideal, a
contradiction. �

Example: In Z[T ], the ideal (T ) is prime: a polynomial is divisible by T iff its
constant term is zero. And if P1(T ) has constant term c1 and P2(T ) has constant
term c2, then P2(T ) has constant term c1c2, so if P1(T )P2(T ) has constant term
zero, so does at least one of P1 and P2. On the other hand it is not maximal, since
it is strictly contained in the proper ideal (2, T ).

6.2. Quotient rings.
The most important use of ideals is the quotient construction: if I is an ideal in a
(still assumed commutative) ring R, then we can form a ring R/I endowed with a
canonical homomorphism R→ R/I, as follows:

The elements of R/I are the cosets r+ I of the subgroup I of R. The addition and
multiplication laws are derived from those on R:

(r1 + I) + (r2 + I) = (r1 + r2 + I).

(r1 + I) · (r2 + I) = (r1r2 + I).

One must check that these definitions actually make sense (“are well-defined”):
namely, that the sum and product of cosets does not depend upon the choice of
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representative we chose. After all, r1 + I is the same coset as r1 + i1 + I, for any
i1 ∈ I. Now we just check that the properties of I are exactly such as to ensure
that the final answer tolerates such ambiguity: suppose we chose r1 + i1 and r2 + i2
instead. Then we would have defined the sum to be

r1 + i1 + r2 + i2 + I = r1 + r2 + (i1 + i2 + I).

But since i1, i2 ∈ I, so is i1+i2, which means that i1+i2+I = I, so it’s okay: we get
the same coset no matter what i1 and i2 we pick. And similarly for multiplication:

(r1 + i1 + I)(r2 + i2 + I) = (r1 + i1)(r2 + i2) + I = r1r2 + r1i2 + r2i1 + i1i2.

But again by the absorption property (IR2) of ideals, r1i2, r2i1, and i1i2 are all
elements of I, and hence so is their sum. (This shows why a mere subring wouldn’t
do!) Thus R/I is indeed a ring. Moreover, the map R→ R/I is just r 7→ r + I. It
is essentially tautological that it is a homomorphism of rings.

When two elements r1 and r2 determine the same coset r1 + I = r2 + I, their
images in R/I are equal (and conversely). In this situation, it is useful to say that
r1 and r2 are equal modulo I.

Basic example: Consider the ideal (n) in Z, where n is some positive integer. Then
a choice of representative for each coset Z+(n) is obtained by taking 0, 1, . . . , n−1.
In other words, for any two distinct integers 0 ≤ i, j < n, i − j is not a multiple
of n, so i+ (n) and j + (n) are distinct cosets. Moreover, for any larger integer k,
the coset k + (n) will be equal to a unique coset i + (n), where i is the remainder
upon dividing k by n.

Note that the ring Z/(n) is nothing else than the finite ring we denoted Zn, and
the way in which the fact that taking usual addition and multiplication and then
taking the remainder upon division by n endow Zn with the structure of a ring is
made rigorous by the quotient construction: it is a systematization of the process of
“throwing away multiples of n.” I highly recommend thinking about the quotient
construction in this case, since all the abstract ideas are there and it is relatively
easy to understand what it means for two integers a and b to determine the same
cosets.

Many properties of ideals I are equivalent to certain properties of the quotient
ring R/I. Here are two very important examples:

Proposition A.17. Let I be an ideal in a ring R.
a) I is prime iff R/I is an integral domain.
b) I is maximal iff R/I is a field.

Proof. To say that I is prime is to say that when xy ∈ I, either x ∈ I or
y ∈ I. Now an element x lies in I iff its image in R/I is zero, so an ideal I is prime
if whenever a product of two elements x+ I and y + I is zero in R/I, at least one
of x+ I and y + I is zero. This is exactly the definition of an integral domain!

If R/I is a field, then whenever x is not an element of I, there exists an element
y ∈ R such that (x + I)(y + I) = (xy + I) = (1 + I), i.e., xy − 1 = i ∈ I. If I is
not maximal, there exists some element x ∈ R \ I and a proper ideal J containing
I and x. But 1 = xy− i, so any ideal which contains both I and x also contains xy
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and −i, hence contains 1, so is not proper. Similarly, if I is maximal and x is any
element of R \ I, then the set Ix = {i+ rx | i ∈ I, r ∈ R} is an ideal containing I
and x, hence Ix strictly contains I so must contain 1. That is, 1 = i+ yx for some
i ∈ I, y ∈ R, and this means that (x+ I)(y+ I) = 1 + I, so that x+ I is invertible
in R/I. �

Example A.18. Let R = F [X,Y ] for any field F . It is easy to check that
R/(X) ∼= F [Y ]: we are considering polynomials P (X,Y ) modulo multiples of X,
and this is amounts to evaluating X = 0 and considering the corresponding poly-
nomials P (0, Y ), which form the ring F [Y ]. Since the quotient ring F [Y ] is an
integral domain, (X) is a prime ideal. Since it is not a field, (X) is not maximal.
Therefore R is not a PID. Note that we showed this without exhibiting any par-
ticular nonprincipal ideal. Tracking through the preceding proofs, we see that there
must be a nonprincipal ideal which contains (X); can you find one?



APPENDIX B

More on Commutative Groups

1. Reminder on Quotient Groups

Let G be a group and H a subgroup of G. We have seen that the left cosets xH
of H in G give a partition of G. Motivated by the case of quotients of rings by
ideals, it is natural to consider the product operation on cosets. Recall that for any
subsets S, T of G, by ST we mean {st | s ∈ S, t ∈ T}.

If G is commutative, the product of two left cosets is another left coset:

(xH)(yH) = xyHH = xyH.

In fact, what we really used was that for all y ∈ G, yH = Hy. For an arbitrary
group G, this is a property of the subgroup H, called normality. But it is clear –
and will be good enough for us – that if G is commutative, all subgroups are normal.

If G is a group and H is a normal subgroup, then the set of left cosets, denoted
G/H, itself forms a group under the above product operation, called the quotient
group of G by H. The map which assigns x ∈ G to its coset xH ∈ G/H is in fact
a surjective group homomorphism q : G → G/H, called the quotient map (or in
common jargon, the “natural map”), and its kernel is precisely the subgroup H.

Theorem B.1. (Isomorphism theorem) Let f : G → G′ be a surjective homo-
morphism of groups, with kernel K. Then G/K is isomorphic to G′.

Proof. We define the isomorphism q(f) : G/K → G′ in terms of f : map the
coset xK to f(x) ∈ G′. This is well-defined, because if xK = x′K, then x′ = xk
for some k ∈ K, and then

f(x′) = f(x)f(k) = f(x) · e = f(x),

since k is in the kernel of f . It is immediate to check that q(f) is a homomorphism
of groups. Because f is surjective, for y ∈ G′ there exists x ∈ G such that f(x) = y
and then q(f)(xK) = y, so q(f) is surjective. Finally, if q(f)(xK) = e, then
f(x) = e and x ∈ K, so xK = K is the identity element of G/K. �

In other words, a group G′ is (isomorphic to) a quotient of a group G iff there
exists a surjective group homomorphism from G to G′.

Corollary B.2. If G and G′ are finite groups such that there exists a surjec-
tive group homomorphism f : G→ G′, then #G′ | #G.

Proof. G′ ∼= G/ ker f , so #G′ ·#(ker f) = #G. �

261
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Remark: Suitably interepreted, this remains true for infinite groups.

Corollary B.3. If G′ is isomorphic to a quotient group of G and G′′ is
isomorphic to a quotient group of G′, then G′′ is isomorphic to a quotient group of
G.

Proof. We have surjective homomorphisms q1 : G → G′ and q2 : G′ → G′′,
so the composition q2 ◦ q1 is a surjective homomorphism from G to G′′. �

2. Cyclic Groups

Recall that a group G is cyclic if there exists some element g in G such that every
x in g is of the form gn for some integer n. (Here we are using the conventions that
g0 = e is the identity element of G and that g−n = (g−1)n.) Such an element g is
called a generator. In general, a cyclic group will have more than one generator,
and it is a number-theoretic problem to determine how many generators there are.

Example 1: The integers Z under addition are a cyclic group, because 1 is a gener-
ator. The only other generator is −1.

Example 2: We denote by Zn the additive group of the ring (Z/nZ). It is also
a cyclic group, because it is generated by the class of 1 (mod n).

We claim that these are the only cyclic groups, up to isomorphism. One (com-
paratively sophisticated) way to see this is as follows: let G be a cyclic group, with
generator g. Then there is a unique homomorphism f from the additive group of
the integers to G which maps 1 to g. The map f is surjective because, by assump-
tion, every y in G is of the form gn for some n ∈ Z, i.e., y = gn = f(n). Let K be
the kernel of this homomorphism. Then it is a subgroup of (Z,+), and since every
additive subgroup of (Z,+) is an ideal, we have K = nZ for some n ∈ N. Therefore
by the isomorphism theorem, we have that G is isomorphic to the additive group
of the quotient ring Z/nZ, i.e., to Zn.

Corollary B.4. Every quotient group of a cyclic group is cyclic.

Proof. We saw that a group is cyclic iff it is isomorphic to a quotient of
(Z,+). Therefore a quotient G′ of a cyclic group is a group that is isomorphic to a
quotient of a quotient of (Z,+), and by Corollary B.3 this simply means that G′ is
isomorphic to a quotient of (Z,+) and hence is itself cyclic. �

Proposition B.5. Let n ∈ Z+. For every positive divisor k of n, there is a
unique subgroup of Zn of order k, and these are the only subgroups of Zn.

Proof. For any divisor k of n, the subgroup generated by k (mod n) of
(Z/nZ,+) has order n

k , and as k runs through the positive divisors of n so does n
k .

So there is at least one cyclic subgroup of Zn of order any divisor of n. Conversely,
let H be a subgroup of (Z/nZ,+) and let k be the least positive integer such that
the class of k mod n lies in H. I leave it to you to show that H is the subgroup
generated by k (mod n). �

Remark: Here is a slicker proof: the subgroups of Zn correspond to the ideals in
Z/nZ which – by a general principle on ideals in quotient rings – correspond to the
ideals of Z containing (nZ), which correspond to the positive divisors of n.
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Corollary B.6. Subgroups of cyclic groups are cyclic.

Proposition B.7. For a ∈ Z+, the order of a ∈ (Z/nZ,+) is n
gcd(a,n) .

Proof. Let d = gcd(a, n) and write a = da′. The (additive) order of a
(mod n) is the least positive integer k such that n | ka. We have n | ka = kda′ ⇐⇒
n
d | ka

′, and since gcd(nd , a) = 1, the least such k is n
d . �

Corollary B.8. Let a ∈ Z, n ∈ Z+.
a) The class of a ∈ Zn is a generator if and only if gcd(a, n) = 1. In particular
there are ϕ(n) generators.
b) For any d | n, there are precisely ϕ(d) elements of Zn of order d.
c) It follows that

∑
d | n ϕ(d) = n.

Proof. Part a) is immediate from Proposition B.7. For any d | n, each element
of order d generates a cyclic subgroup of order d, and we know that there is exactly
one such subgroup of Zn, so the elements of order d are precisely the ϕ(d) generators
of this cyclic group. Part c) follows: the left hand side gives the number of elements
of order d for each d | n and the right hand side is #Zn. �

This leads to a very useful result:

Theorem B.9. (Cyclicity criterion) Let G be a finite group, not assumed to be
commutative. Suppose that for each n ∈ Z+, there are at most n elements x in G
with xn = e. Then G is cyclic.

Proof. Suppose G has order N , and for all 1 ≤ d ≤ N , let f(d) be the number
of elements of G of order d. By Lagrange’s Theorem, f(d) = 0 unless d | N , so
N = #G =

∑
d | N f(d). Now, if f(d) 6= 0 then there exists at least one element of

order d, which therefore generates a cyclic group of order d, whose elements give
d solutions to the equation xd = e. By our assumption there cannot be any more
solutions to this equation, hence all the elements of order d are precisely the ϕ(d)
generators of this cyclic group. In other words, for all d |n we have either f(d) = 0
or f(d) = ϕ(d), so in any case we have

N =
∑
d | N

f(d) ≤
∑
d | N

ϕ(d) = N.

Therefore we must have f(d) = ϕ(d) for all d | N , including d = N , i.e., there exists
an element of G whose order is the order of G: G is cyclic. �

Corollary B.10. Let F be a field, and let G ⊂ F× be a finite subgroup of the
group of nonzero elements of F under multiplication. Then G is cyclic.

Proof. By basic field theory, for any d ∈ Z+ the degree d polynomial td − 1
can have at most d solutions, so the hypotheses of Theorem B.9 apply to G. �

3. Products of Elements of Finite Order in a Commutative Group

Let G be a commutative group, and let x, y ∈ G be two elements of finite order, say
of orders m and n respectively. There is a unique smallest subgroup H = H(x, y) of
G containing both x and y, called the subgroup generated by x and y. H(x, y)
is the set of all elements of the form xayb for a, b ∈ Z. Moreover, since x has order
m and y has order n, we may write every element of H as xayb with 0 ≤ a < m,
0 ≤ b < n, so that #H ≤ mn. In particular the subgroup of an abelian group
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generated by two elements of finite order is itself finite.

It is very useful to have some information about both the size of H(x, y) and
the order of the element xy in terms of m and n alone. However we cannot expect
a complete answer:

Example 3: Suppose that m = n = N . We could take G to be the additive
group of Z/NZ× Z/NZ, x = (1, 0), y = (0, 1). Then the subgroup generated by x
and y is all of G, so has order N2, and the order of x+ y is N . On the other hand,
we could take G = ZN and x = y = g some generator. Then H(x, y) = G has order
N and #xy is N if N is odd and N

2 is N is even. Or we could have taken y = x−1

so that the xy = e and has order 1. And there are yet other possibilities.

Example 4: Suppose that gcd(m,n) = 1. We can show that xy has order mn,
and hence is a generator for H(x, y). Indeed, let a ∈ Z+ be such that (xy)a = e,
i.e., xa = y−a. But the order of xa divides m and the order of y−a divides n; since
gcd(m,n) = 1, xa = y−a = 1, so that a | m, a | n. Since, again, gcd(m,n) = 1,
this implies a | mn.

The general case is as follows:

Theorem B.11. Let x and y be elements of finite order m and n in a commu-
tative group G. Denote by H(x, y) the subgroup generated by x and y.
a) lcm(m,n) | #H(x, y) | mn.

b) lcm(m,n)
gcd(m,n) | #(xy) | lcm(m,n).

Proof. Step 1: Define a surjective homomorphism of groups Ψ : Zm × Zn →
H(x, y) by (c, d) 7→ xcy−d, so by #H(x, y) | #(Zm × Zn) by Corollary B.2.

Step 2: Let K be the kernel of Ψ. By the Isomorphism theorem, #H(x, y) =
#(Zm × Zn)/#K = mn

#K , so #H(x, y) | mn. Moreover, the kernel K consists of

pairs (c, d) such that xc = yd. Let f = gcd(m,n). Let o be the order of xc = yd.
Since the order of xc divides m and the order of yd divides n, o | gcd(m,n) = f .
There are f values of c (mod m) for which xc has order dividing f , and for each of
these values, there is at most one value of d (mod n) such that xc = yd (because
the elements yi for 0 ≤ i < n are distinct elements of G). This shows that the
kernel can be viewed as a subset of Zf , and it is easily checked to be a subgroup.
So #K | f and hence

lcm(m,n) =
mn

f
| mn

#K
= #H(x, y).

Step 3: (xy)lcm(m,n) = xlcm(m,n)ylcm(m,n) = 1, so the order of xy divides lcm(m,n).

Step 4: Finally, suppose that a ∈ Z+ is such that (xy)a = xaya = 1, so xa = y−a.
So the order of xa, which is m

gcd(a,m) is equal to the order of y−a, which is n
gcd(a,n) .

In other words, we have

m gcd(a, n) = n gcd(a,m).

Since gcd(mf , n) = 1, mf | gcd(a,m), or

m | f gcd(a,m) | fa.
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Similarly

n | f gcd(a, n) | fa.

Therefore lcm(m,n) | fa, or lcm(m,n)
gcd(m,n) | a, completing the proof of the theorem. �

Remark: The divisibilities in Theorem B.11 are best possible: if h and o are positive

integers such that lcm(m,n) | h | mn and lcm(m,n)
gcd(m,n) | o | lcm(m,n), then there exist

elements x, y ∈ Zm × Zn such that #H(x, y) = h, #xy = o.

Remark: The situation is profoundly different for noncommutative groups: for
every m,n ≥ 2 and 2 ≤ r ≤ ∞ there exists a group G containing elements x of
order m, y of order n whose product xy has order r. Moreover, if r <∞ then one
can find a finite group G with these properties, whereas one can find an infinite
group with these properties iff 1

m + 1
n + 1

r ≤ 1.

The following is a consequence of Theorem B.11 (but is much simpler to prove):

Corollary B.12. Let m,n ∈ Z+. Then Zm × Zn is cyclic iff gcd(m,n) = 1.

Proof. The order of any element (c, d) divides lcm(m,n), and the order of
(1, 1) is lcm(m,n). So the group is cyclic iff mn = lcm(m,n) iff gcd(m,n) = 1. �

4. Character Theory of Finite Abelian Groups

4.1. Introduction.

In this section our goal is to present the theory of characters of finite abelian
groups. Although this is an “easy” theory in that we can present it in its entirety
here, it nevertheless of the highest impotance, being the jumping off point for at
least two entire disciplines of mathematics: the general theory of linear represen-
tations of groups, and Fourier analysis. The special case of characters of the unit
groups U(N) = (Z/NZ)× will be used as one of the essential ingredients in the
proof of Dirichlet’s theorem on primes in arithmetic progessions.

Let G be a finite commutative group. A character χ : G→ C× of G is a homomor-
phism from G to the group C× of nonzero complex numbers under multiplication.

Suppose N = #G. By Lagrange’s theorem we have, for any g ∈ G, that gN = e
(the identity element), and thus for any character χ on G we have

χ(g)N = χ(gN ) = χ(e) = 1.

Thus χ(g) is itself a complex Nth root of unity. Recall that the set of all complex
Nth roots of unity forms a cyclic group of order N , say µN . In other words, every
character on a group G of order N is really just a homomorphism from G to µN ,
or equally well, from G into any fixed order N cyclic group.

We write X(G) for the set of all characters of G. We can endow X(G) with the
structure of a group: given χ1, χ2 ∈ X(G), we define their product “pointwise”:

∀g ∈ G, (χ1χ2)(g) := χ1(g)χ2(g).
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The identity element is the trivial character g 7→ 1 for all g, and the inverse of χ
is the function χ−1 : g 7→ 1

χ(g) . Because for any z ∈ C we have zz = |z|2, if if z is a

root of unity, then the inverse of z is given by its complex conjugate z. It follows
that the inverse of a character χ is also given by taking complex conjugates:

χ(g) = χ(g) =
1

χ(g)
= χ−1(g).

4.2. The Character Extension Lemma.

Most of the content of the entire theory resides in the following result.

Lemma B.13. (Character Extension Lemma) Let H be a subgroup of a finite
commutative group G. For any character ψ : H → C×, there are precisely [G : H]
characters Ψ : G→ C× such that Ψ|H = ψ.

Proof. The result is clear if H = G, so we may assume there is g ∈ G \ H.
Let Hg = 〈g,H〉 be the subgroup generated by H and g. Now we may or may not
have Hg = G, but suppose that we can establish the result for the group Hg and
its subgroup H. Then the general case follows by induction, since for any H ⊂ G
choose g1, . . . , gn such that G = 〈H, g1, . . . , gn〉. Then we can define G0 = H and
for 1 ≤ i ≤ n, Gi = 〈Gi−1, gi〉. Applying the Lemma in turn to Gi−1 as a subgroup
of Gi gives that in all the number of ways to extend the character ψ of H = G0 is

[G1 : G0][G2 : G1] · · · [Gn : Gn−1] = [G : G0] = [G : H].

So let us now prove that the number of ways to extend ψ from H to Hg = 〈H, g〉
is [Hg : H]. For this, let d be the order of g in G, and consider G̃ := H × 〈g〉. The

number of ways to extend a character ψ of H to a character of G̃ is equal to
#〈g〉 = d: such a homomorphism is uniquely specified by the image of (1, g) in
µd ⊂ C×, and all d such choices give rise to homomorphisms.

Moreover, there is a surjective homomorphism ϕ : H × 〈g〉 to Hg: we just take
(h, gi) 7→ hg−i. The kernel of ϕ is the set of all pairs (h, gi) such that gi = h. In
other words it is precisely the intersection H ∩ 〈g〉, which has cardinality a divisor
of d, say e. It follows that

#Hg =
#H × 〈g〉
#H ∩ 〈g〉

=
d

e
·#H,

so

[Hg : H] =
d

e
.

But a homomorphism f : H × 〈g〉 → C× descends to a homomorhpism on the
quotient Hg iff it is trivial on the kernel of the quotient map, i.e., is trivial on H∩〈g〉.
In other words, the extensions of ψ to a character of Hg correspond precisely to the

number of ways to map the order d element g into C× such that g
d
e gets mapped to

1. Thus we must map g to a (de )th root of unity, and conversely all such mappings

induce extensions of ψ. Thus the number of extensions is d
e = [Hg : H]. �

Corollary B.14. For any finite commutative group G, X(G) is finite and

#X(G) = #G.

Proof. Apply Lemma B.13 with H = 1. �
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Corollary B.15. For G a finite commmutative group and g ∈ G, TFAE:
(i) For every χ ∈ X(G), χ(g) = 1.
(ii) g is the identity element e of G.

Proof. Certainly (ii) =⇒ (i). Conversely, if g 6= e, then H := 〈g〉 is a
nontrivial cyclic group. By Corollary B.14, there exists a nontrivial character ψ of
H. Since g generates H, this implies ψ(g) 6= 1. Now apply Lemma B.13 to extend
ψ to a character of G. �

From these results one can deduce that the character group construction behaves
nicely under homomorphisms: suppose f : G → H is a homomorphism of finite
commutative groups. Then we can define a map X(f) : X(H) → X(G) – note
well: in the opposite direction! – just by taking a character χ : H → C× and
precomposing it with f to get a character χ ◦ f : G→ C×.

Proposition B.16. Let f : G→ H be a homomorphism of finite commutative
groups.
a) The induced map X(f) : X(H)→ X(G) is a group homomorphism.
b) The homomorphism f is injective ⇐⇒ the homomorphism X(f) is surjective.
c) The homomorphism f is surjective ⇐⇒ the homomorphism X(f) is injective.

Proof. Part a) is a straightforward verification which we leave to the reader.
b) Assume first that f is injective. We may as well assume then that G is a

subgroup of H and f = ι is the inclusion map. Then the induced homomorphism
X(ι) : X(H) → X(G) is nothing else than the map which restricts a character of
H to a character of the subgroup G; that this restriction map is surjective is an
immediate consequence of Lemma B.13. Inversely, assume that f is not injective,
so that there exists e 6= g ∈ G such that f(g) = e ∈ H. By Corollary B.15, there
exists a character χ : G → C× such that χ(g) 6= 1. But then for any character
ψ : H → C×, we have

(ψ ◦ f)(g) = ψ(e) = 1,

which shows that ψ ◦ f 6= χ, i.e., χ is not in the image of X(f).
c) By the Character Extension Lemma, there are precisely [H : f(G)] characters

on H which are trivial on f(G). Therefore f is surjective iff a character ψ on H
for which ψ ◦ f is trivial is necessarily itself trivial. �

4.3. Orthogonality relations.

Theorem B.17. Let G be a finite abelian group, with character group G.
a) For any nontrivial character χ ∈ X(G), we have

∑
g∈G χ(g) = 0.

b) For any nontrivial element g of G, we have
∑
χ∈X(G) χ(g) = 0.

Proof. a) Put

(66) S =
∑
g∈G

χ(g).

Since χ is nontrivial, there exists g0 ∈ G such that χ(g0) 6= 1. Multiplying both
sides of (66) by χ(g0), we get

χ(g0)S =
∑
g∈G

χ(g)χ(g0) =
∑
g∈G

χ(gg0) =
∑
g∈G

χ(g) = S;
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the penultimate equality holds because, as g runs through all elements of G, so
does g0. Therefore we have

(χ(g0)− 1)S = 0.

Since χ(g0) 6= 1, we must have S = 0.
b) If g 6= e, then by Corollary B.15 there is a character χ such that χ(g) 6= 1, and
then the argument is identical to part a).1 �

Let us explain why these are called orthogonality relations. Consider the set CG of
all functions f : G→ C. Under pointwise addition and scalar multiplication, CG is
a C-vector space of dimension #G. We define a Hermitian inner product on CG by

〈f, g〉 :=
1

#G

∑
x∈G

f(x)g(x).

Now let χ1 and χ2 be characters of G. If χ1 = χ2, then we have

〈χ1, χ1〉 =
1

#G

∑
x∈G
|χ1(x)|2 = 1,

whereas if χ1 6= χ2, then χ1χ
−1
2 is nontrivial, and then Theorem B.17 gives

〈χ1, χ2〉 =
1

#G

∑
x∈G

(χ1χ
−1
2 )(x) = 0.

In other words, the set X(G) of characters of G is orthonormal with respect to the
given inner product. In particular, the subset X(G) of CG is linearly independent.
Since its cardinality, #G, is equal to the dimension of CG, we conclude:

Corollary B.18. Let G be a finite commutative group, and let CG be the
C-vector space of all functions from G to C, endowed with the inner product

〈f, g〉 =
1

#G

∑
x∈G

f(x)g(x).

Then the set of characters of G forms an orthonormal basis with respect to 〈 , 〉.
Therefore, any function f : G→ C can be expressed as a unique linear combination
of characters. Explicitly:

f =
∑

χ∈X(G)

〈f, χ〉χ.

This can be viewed as the simplest possible case of a Fourier inversion formula.

4.4. The canonical and illicit isomorphism theorems; Pontrjagin du-
ality.

In the course of study of finite commutative groups, one sees that subgroups and
quotient groups have many similar properties. For instance, subgroups of cyclic
groups are cyclic, and also quotients of cyclic groups are cyclic. Moreover, a cyclic
group of order n has a unique subgroup of every order dividing n and no other
subgroups, and the same is true for its quotients. If one plays around for a bit with
finite commutative groups, one eventually suspects the following result:

1Alternately, using the canonical isomorphism G ∼= X(X(G)) described in the next section,
one can literally deduce part b) from part a).
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Theorem B.19. Let G and H be finite commutative groups. Then TFAE:
(i) H can be realized as a subgroup of G: ∃ an injective homomorphism H → G.
(ii) H can be realized as a quotient of G: ∃ a surjective homomorphism G→ H.

There is a certain resemblance between Theorem B.19 and Proposition B.16, but
they are not the same. Proposition B.16 asserts that if there is an injection H → G,
there is a surjection X(G)→ X(H) (and similarly with “injection” and “surjection”
interchanged). To deduce Theorem B.19 from Proposition B.16, one needs the
following:

Theorem B.20. (Illicit Isomorphism Theorem) Any finite commutative group
G is isomorphic to its chracter group X(G).

Some cases of Theorem B.20 are easy to establish. For instance, since G and X(G)
have the same order, they must be isomorphic whenever #G is prime. Further, to
give a character on a cyclic group of order N it suffices to send a fixed generator
to any Nth root of unity in C. More precisely, choosing a generator of an abstract
cyclic group G order N amounts to choosing an isomorphism of G with Z/NZ (we
send the generator to 1 (mod N)). And the characters on Z/NZ are all obtained
by exponentiation: for any c ∈ Z/NZ, there is a unique character χa such that

χc(1) = e2πic/N

and therefore for any b ∈ Z/NZ

χc(b) = e2πicb/N .

It is immediate to check that χc ·χc′ = χc+c′ , where addition is taken mod N . Thus

we get a canonical isomorphism X(Z/NZ)
∼→ Z/NZ.

Moreover, if G1 and G2 are finite commutative groups, then in a natural way

X(G1 ×G2) = X(G1)×X(G2);

again we leave the details to the interested reader. Of course the analogous identity
for products of any finite number of groups follows by induction.

Combining these observations, it follows that G ∼= X(G) for any finite commutative
group G of the form Zn1

× . . . × Znk , i.e., for any direct product of cyclic groups.
Is this enough to prove Theorem B.20? Indeed it is, because of the following:

Theorem B.21. (Fundamental theorem on finite commutative groups) Let G
be a finite commutative group.
a) There exist prime powers pa11 , . . . , parr (we allow pi = pj for i 6= j) such that

G ∼= Zpa11
× . . .× Zparr ,

i.e., G is a direct product of finite cyclic groups of prime power order.
b) Moreover, this decomposition is essentially unique in the following (familiar)
sense: if also we have

G ∼= Z
q
b1
1
× . . .× Zqbss ,

then r = s and there exists a bijection σ : {1, . . . , r} → {1 . . . s} such that for all
1 ≤ i ≤ r, qσ(i) = pi and bσ(i) = ai.
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Now please bear with me while I make a few possibly confusing remarks about why
I have labelled Theorem B.20 the “illicit” isomorphism theorem. In some sense it is
“lucky” that G ∼= X(G), in that it is not part of the general meaning of “duality”
that an object be isomorphic to its dual object. Rather, what one has in much
more generality is a canonical injection from an object to its double dual. Here,
this means the following: we can construct a canonical map G → X(X(G)). In
other words, given an element g in G, we want to define a character, say g•, on the
character group, i.e., a homomorphism X(G)→ C×. This may sound complicated
at first, but in fact there is a very easy way to do this: define g •χ := χ(g)! It is no
problem to check that the association g 7→ g• is a homomorphism of finite abelian
groups. Moreover, suppose that for any fixed g ∈ G the map g• were trivial: that
means that for all χ ∈ X(G), χ(g) = 1. Applying Corollary B.15, we get that
g = 1. Therefore this map

• : G→ X(X(G))

is an injective homomorphism between finite abelian groups. Moreover,

#X(X(G)) = #X(G) = #G,

so it is an injective homomorphism between finite groups of the same order, and
therefore it must be an isomorphism.

In order to write down the isomorphism •, we did not have to make any choices.
There is a precise sense in which the isomorphism to the double dual is “canonical”
and any isomorphism between G and X(G) is “noncanonical”, but explanining this
involves the use of category theory so is not appropriate here. More interesting is to
remark that there is a vastly more general class of commutative groups G for which
X(G) is defined in such a way as to render true all of the results we have proved here
except the illicit isomorphism theorem: we need not have G ∼= X(G). For this we
take G to be a commutative group endowed with a topology which makes it locally
compact Hausdorff. Any commutative group G can be endowed with the discrete
topology, which gives many examples. For a finite group the discrete topology is the
only Hausdorff topology, so this is certainly the right choice, but an infinite group
may or may not carry other interesting locally compact topologies. Some examples:

Example 1: The integers Z: here we do want the discrete topology.

Example 2: The additive group (R,+) with its usual Euclidean topology: this
is a locally compact group which is neither discrete nor compact. More gener-
ally, one can take (Rn,+) (and in fact, if G1 and G2 are any two locally compact
commutative groups, then so is G1×G2 when endowed with the product topology).

Example 3: The multiplicative group C× of the complex numbers is again lo-
cally compact but neither discrete nor compact, but it is “closer to being compact”
then the additive group C ∼= R2. In fact, considering polar coordinates gives an
isomorphism of topological groups C× ∼= R>0 × S1, where S1 is the unit circle.
Moreover, the logarithm function shows that R>0 is isomorphic as a topological
group to (R,+), so all in all C× ∼= (R,+) × S1. Note that S1, the circle group, is
itself a very interesting example.
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Now, given any locally compact commutative group G, one defines the Pontrjagin
dual group X(G), which is the group of all continuous group homomorphisms
from G to the circle group S1. Moreover, X(G) can be endowed with a natural
topology.2 Again, one has a natural map G→ X(X(G)) which turns out to be an
isomorphism in all cases.

If G is a finite, discrete commutative group, then as we saw, any homomorphism
to C× lands in S1 (and indeed, the countable subgroup of S1 consisting of all roots
of unity) anyway; moreover, by discreteness every homomorphism is continuous.
Thus X(G) in this new sense agrees with the character group we have defined. But
for infinite groups Pontrjagin duality is much more interesting: it turns out that
G is compact iff X(G) is discrete.3 Since a topological space is both compact and
discrete iff it is finite, we conclude that a topological group G which is infinite and
either discrete or compact cannot be isomorphic to its Pontrjagin dual.

It is easy to see that Hom(Z, S1) = S1, which according to the general theory
implies Hom(S1, S1) = Z: the discrete group Z and the compact circle group S1

are mutually dual. This is the theoretical underpinning of Fourier series.

However, if G is neither discrete nor compact, then the same holds for X(G),
so there is at least a fighting chance for G to be isomorphic to X(G). Indeed this
happens for R: Hom(R, S1) = R, where we send x ∈ R to the character t 7→ e2πitx.
This is the theoretical underpinning of the Fourier transform.

Another sense in which the isomorphism between G and X(G) for a finite com-
mutative group G is “illicit” is that turns out not to be necessary in the standard
number-theoretic applications. A perusal of elementary number theory texts re-
veals that careful authors take it as a sort of badge of honor to avoid using the
illicit isomorphism, even if it makes the proofs a bit longer. For example, the most
natural analysis of the group structure of (Z/2aZ)× for a ≥ 3 would consist in
showing: (i) the group has order 2a−1; (ii) it has a cyclic subgroup of order 2a−2;
(iii) it has a noncyclic quotient so is itself not cyclic. Applying Theorem B.21 one
can immediately conclude that it must be isomorphic to Z2a−2 × Z2. In our work
in Handout 9.5, however, we show the isomorphism by direct means.

This was first drawn to my attention by a close reading of J.-P. Serre’s text
[Se73] in which the illicit isomorphism is never used. Following Serre, our main
application of character groups – namely the proof of Dirichlet’s theorem on primes
in arihtmetic progressions – uses only #X(G) = #G, but not X(G) ∼= G.

However, to my mind, avoiding the proof of Theorem B.21 gives a misleading im-
pression of the difficulty of the result.4 On the other hand, Theorem B.21 evidently
has some commonalities with the fundamental theorem of arithmetic, which makes

2If you happen to know something about topologies on spaces of functions, then you know

that there is one particular topology that always has nice properties, namely the compact-open
topology. That is indeed the correct topology here.

3Similarly, G is discrete iff X(G) is compact; this follows from the previous statement together
with G ∼= X(X(G)).

4The real reason it is often omitted in such treatments is that the authors know that they
will be giving a more general treatment of the structure theory finitely generated modules over a
principal ideal domain, of which the theory of finite commutative groups is a very special case.
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it somewhat desirable to see the proof. In the next section we provide such a proof,
which is not in any sense required reading.

5. Proof of the Fundamental Theorem on Finite Commutative Groups

First some terminology: Let G be a commutative group, written multiplicatively.

If #G = pa is a prime power, we say G is a p-group.

For n ∈ Z+, we put G[n] = {x ∈ G | xn = 1}. This is a subgroup of G.

We say that two H1, H2 subgroups of G are complementary if H1 ∩H2 = {1},
H1H2 = G. In other words, every element g of G can be uniquely expressed in
the form h1h2, with hi ∈ Hi. In yet other (equivalent) words, this means precisely
that the homomorphism H1 × H2 → G, (h1, h2) 7→ h1h2 is an isomorphism. We
say that a subgroup H is a direct factor of G if there exists H ′ such that H,H ′

are complementary subgroups. Thus, in order to prove part a) it suffices to show
that every finite commutative group has a nontrivial direct factor which is cyclic of
prime power order; and in order to prove part b) it suffices (but is much harder!)
to show that if G ∼= H ×H ′ ∼= H ×H ′′ then H ′ ∼= H ′′.

More generally if we have a finite set {H1, . . . ,Hr} of subgroups of G such that
Hi ∩Hj = {1} for all i 6= j and G = H1 · · ·Hr, we say that the Hi’s form a set of
complementary subgroups and that each Hi is a direct factor. In such a circum-
stance we have G ∼= H1 × . . .×Hr.

We now begin the proof of Theorem B.21.

Step 1 (primary decomposition): For any commutative group G, let Gp be the

set of elements of G whose order is a power of p. Also let Gp
′

be the set of elements
of G whose order is prime to p. It follows from Theorem B.11b) that Gp and Gp

′

are both subgroups of G. We claim that Gp and Gp
′

are complementary subgroups.

Certainly Gp ∩ Gp
′

= {e}, since any element of the intersection would have both
order a power of p and relatively prime to p and thus have order 1 and be the
identity. On the other hand, let x be any element of G, and write its order as pk · b
with gcd(p, b) = 1. Thus we can choose i and j such that ipk + jb = 1, and then

x = x1 = xip
k+jb = (xp

k

)i ·(xb)j , and by Proposition B.7 the order of (xp
k

)i divides
b (so is prime to p) and the order of (xb)j divides pk. This proves the claim. Now
a simple induction argument gives the following:

Proposition B.22. Let G be a finite abelian group, of order n = pa11 · · · parr .
Then {Gpi}ri=1 forms a set of complementary subgroups, and the canonical map
H1 × . . .×Hr → G, (h1, . . . , hr) 7→ h1 · · ·hr is an isomorphism.

Thus any finite commutative group can be decomposed, in a unique way, into a di-
rect product of finite commutative groups of prime power order. We may therefore
assume that G is a commutative p-group from now on.

Step 2: We prove a refinement of Theorem B.9 for commutative p-groups.
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Proposition B.23. Let p be a prime and G be a finite commutative group of
order pa for some a ∈ Z+. TFAE:
(i) G has exactly p elements of order p.
(ii) G is cyclic.

Proof. We already know that (ii) =⇒ (i), of course. Assume (i); the natural
strategy is to appeal to our cyclicity criterion Theorem B.9. In this case we wish to
show that for any 0 < k ≤ a, there are at most pk elements of G of order dividing
pk. We accomplish this by induction (!); the case of k = 1 is our hypothesis, so
assume that for all 1 ≤ ` < k the number of elements of order dividing p` in G is
at most p` and we wish to show that the number of element of order dividing pk is
at most pk. For this, consider the endomorphism

ϕ : G[pk]→ G[pk], x 7→ xp
k−1

.

Now the kernel of ϕ is precisely G[pk−1], which we have inductively assumed has
order at most pk−1. If the order of G[pk] exceeds pk, then since

ϕ(G[pk]) ∼= G[pk]/Ker(ϕ),

we would have #ϕ(G[pk]) > p. But by Proposition B.7 the image of ϕ consists
entirely of elements of order dividing p, contradiction. �

Step 3:

Proposition B.24. Let G be a finite commutative p-group, and let pa be the
maximum order of an element of G. Then every cyclic subgroup C of order pa is a
direct factor of G: there exists a complementary subgroup H, giving an isomorphism
G ∼= C ×H.

Proof. The result holds vacuously for commutative groups of order p. Assume
that it holds for all commutative groups of order pk for k < a, and suppose we have
G = pa, x an element of maximal order in G and C = 〈x〉 If the order of x is
pa, then G = C is cyclic and the conclusion again holds trivially. Otherwise, by
Proposition B.23, there exists an order p subgroup K of G not contained in C, so
C ∩K = {e}. Then the cyclic subgroup (C + K)/K has maximal order in G/K;
by induction there exists a complementary subgroup H of G/K, i.e., a subgroup
H containing K such that (C + K) ∩ H = K, (C + K) · H = G. It follows that
H∩C ⊂ K∩C = {e} and C ·H = G, so C and H are complementary subgroups. �

We may now deduce Theorem B.21a) from Proposition B.24. Indeed, given any
finite p-group G we choose an element x of maximum order pa, which generates a
cyclic subgroup C of maximum order, which according to Proposition B.24 has a
complementary subgroup H and thus G ∼= Zpr ∼= H. Applying the same procedure
to H, eventually we will express G as a product of finite cyclic groups of p-power
order.

Step 4: Finally we address the uniqueness of the decomposition of a commuta-
tive p-group into a direct product of cyclic groups.5 Suppose we have

G ∼= Zpa1 × . . .× Zpar ∼= Zpb1 × . . .× Zpbs .

5This part of the proof follows [Su95].
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We may assume that a1 ≥ . . . ≥ ar and b1 ≥ . . . ≥ bs, and we wish to prove
that r = s and ai = bi for all i. We may also inductively assume the uniqueness
statement for commutative p-groups of smaller order than G. Now let ϕ : G → G
be x 7→ xp. Then we have

ϕ(G) ∼= Zpa1−1 × . . .× Zpar−1
∼= Zpb1−1 × . . .× Zpbs−1 .

Since #ϕ(G) < #G, by induction the two decompositions are unique, the only
proviso being that if an exponent ci is equal to 1, then Zpci−1 is the trivial group,
which we do not allow in a direct factor decomposition. Therefore suppose that k
is such that ai = 1 for all i > k and l is such that bj = 1 for all j > l. Then we get
k = l and ai = bi for all 1 ≤ i ≤ k. But now we have

pr−k =
#G

pa1+...+ak
=

#G

pb1+...+bk
= ps−k,

so we conclude r = s and thus ai = bi for 1 ≤ i ≤ r.

It is interesting to ask which of the steps go through for a group which is infi-
nite, non-commutative or both.

Step 1 fails in a non-commutative group: the elements of p-power order need not
form a subgroup. For instance, the symmetric group Sn is generated by transposi-
tions. In any commutative group one can define the subgroups Gp for primes p, and
they are always pairwise disjoint. The subgroup they generate is called the torsion
subgroup of G and often denoted G[tors]: it consists of all elements of finite order.

Step 2 fails for noncommutative finite p-groups: The quaternion group Q8 =
{±1,±i,±j,±k} is a noncyclic group of order 8 = 23 = p3 which has exactly
p = 2 elements of order dividing p. It is false for all infinite abelian groups, since
an infinite group can only be cyclic if its torsion subgroup is trivial.

Step 3 fails for finite noncommutative groups: again Q8 is a counterexample.

As for Step 4, one may ask the following

Question 9. Suppose we have three groups H, G1, G2 such that H × G1
∼=

H ×G2. Must it then be the case that G1
∼= G2?

Without any restrictions the answer to this question is negative. For instance, one
can take H = G1 = (R,+), G2 = 0, and note that R × R ∼= R as Q-vector spaces,
hence as commutative groups. On the other hand:

Theorem B.25. (Remak-Krull-Schmidt) If H, G1 and G2 are all finite groups,
then indeed H ×G1

∼= H ×G2 implies G1
∼= G2.

A group G is indecomposable if it is not isomorphic to H1×H2 with H1 and H2

both nonzero. By Theorem B.21, a finite commutative group is indecomposable iff
it is cyclic of prime power order. Any finite group can be written as a product of
indecomposable groups. Using Theorem B.25 it can be shown that if

G ∼= H1 × . . .×Hr = K1 × . . .×Ks,

where each Hi and Kj are indecomposable (nontrivial) groups, then r = s and there
exists a bijection σ : {1, . . . , r} → {1, . . . , r} such that Ki

∼= Hσ(i) for 1 ≤ i ≤ r.
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6. Wilson’s Theorem in a Finite Commutative Group

Here is one of the classic theorems of elementary number theory.

Theorem B.26. (Wilson’s Theorem) For an odd prime p, (p − 1)! ≡ −1
(mod p).

Remark: The converse of Wilson’s Theorem also holds: if for some integer n > 1
we have (n− 1)! ≡ 1 (mod n), then n is prime. In fact it can be shown that for all
composite n > 4, n | (n− 1)! (exercise).

Most of the standard proofs involve starting with an elementary group-theoretic
fact and then recasting it to avoid group-theoretic language to a greater or lesser
extent. Since this handout is meant to be a “comprehensive” guide to finite com-
mutative groups, we may as well give the argument in its proper language.

For a finite group G, let d2(G) be the number of order 2 elements in G.

Theorem B.27. (Wilson’s Theorem in a Finite Commutative Group)
Let (G,+) be a finite commutative group, and let S =

∑
x∈G x. Then:

a) If d2(G) 6= 1, then S = 0.
b) If d2(G) = 1 – so that G has a unique element, say t, of order 2 – then d2(G) = t.

Proof. We set
G[2] = {x ∈ G | 2x = 0}.

Every nonzero element of G[2] has order 2, so by Theorem B.21, G[2] ∼= Z2 × . . .×
Z2 = Zk2 , a direct product of copies of the cyclic group of order 2.6

Consider the involution ι : G → G given by x 7→ −x. The fixed points of
ι – i.e., the elements x ∈ G such that ι(x) = x – are precisely the elements of
G[2]. Thus the elements of G \ G[2] occur in pairs of distinct elements x,−x, so∑
x∈G\G[2] x = 0. In other words,

∑
x∈G x =

∑
x∈G[2] x, and we are reduced to the

case G[2] ∼= Zk2 .
Case 1: k = 0, i.e., G[2] = 0. Then∑

x∈G[2]

x =
∑
x∈{0}

x = 0.

Moreover, in this case d2(G) = 0, in agreement with the statement of the theorem.
Case 2: k = 1, i.e., G[2] = Z2. Then∑

x∈G[2]

x =
∑
x∈Z2

x = 0 + 1 = 1,

where 1 is the unique element of order 2 in Z2
∼= G[2] (and thus also the unique

element of order 2 in G). Again, this agrees with the statement of the theorem.
Case 3: k ≥ 2. Then d2(G) ≥ 3, so we wish to show S =

∑
x∈Zk2

x = 0. For each

1 ≤ i ≤ k, half of the elements of Zk2 have ith coordinate 0 ∈ Z2; the other half
have ith coordinate 1 ∈ Z2. So the sum of the ith coordinates of the elements of Zk2
is 2k/2 = 2k−1 = 0 ∈ Z2, since k ≥ 2: every coordinate of S equals 0, so S = 0. �

6Invocation of Theorem B.21 is overkill here: any 2-torsion commutative group admits the

unique structure of a vector space over the field F2 with 2 elements. Being finite, G[2] is certainly
finite-dimensional over F2, so is isomorphic as a vector space – hence a fortiori as an additive

group – to Fn2 .
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Lemma B.28. a) Let G1, . . . , Gr be commutative groups. Then(
r∏
i=1

Gi

)
[2] =

r∏
i=1

Gi[2].

b) If G1, . . . , Gr are finite, then d2(
∏r
i=1Gi) =

∏r
i=1 d2(Gi).

Proof. a) More generally, consider any x = (x1, . . . , xn) ∈
∏r
i=1Gi. Then

the order of x is the lcm of the orders of the components xi. Further, the lcm of a
finite set of numbers divides 2 iff each number in the set divides 2.
b) This follows immediately from part a). �

We now show that Theorem B.27 implies Theorem B.26. Let F be a finite field.
We take G = F×, the multiplicative group of nonzero elements of F.7 Now x ∈
G[2] ⇐⇒ x2 = 1, and the polynomial t2 − 1 has exactly two roots in any field of
characteristic different from 2 and exactly one root in any field of characteristic 2.
So d2(F×) is equal to 1 if #F is odd and equal to 0 if #F is even. Thus:

Corollary B.29. Let F be a finite field, put P =
∏
x∈F× x. Then:

a) If #F is even, then P = 1.
b) If #F is odd, then P is the unique element of order 2 in F×, namely −1.
So for any odd prime p, the second case holds for the field Z/pZ: Wilson’s Theorem.

As we mentioned above, Wilson’s Theorem construed as a statement about the
product of all residue classes from 1 up to n − 1 modulo n holds exactly when n
is prime. On the other hand, for composite n we may still apply Theorem B.27 to
the finite commutative group U(n) = (Z/nZ)×.

Theorem B.30. (Gauss) Let n > 2 be an integer, and let U(n) be the multi-
plicative group of units of the finite ring Z/nZ. Put P =

∏
x∈U(n) x. Then:

a) We always have P = ±1 (mod n).
b) More precisely: P = −1 (mod n) if and only if n is 4, an odd prime power pb,
or twice an odd prime power 2pb.

Proof. a) For n > 2, −1 (mod n) is an element of order 2 in U(n); applying
Theorem B.27 to G = U(n), we get P = ±1: further, P = −1 if −1 is the only
order 2 element of U(n), and P = 1 if there is a further element of order 2.

b) Let n = 2apb11 · · · pbrr with p1 < . . . < pr odd prime numbers, a ∈ N and
b1, . . . , br ∈ Z+. By the Chinese Remainder Theorem,

U(n) ∼= U(2a)×
r∏
i=1

U(pbii ).

Case 1: r = 0, a = 2. Then U(4) is cyclic of order 2, so d2(U(4)) = 1 and P = −1.
Case 2: a ≥ 3. Then U(2a) ⊂ U(n), and U(n) = U(2a) ∼= Z2a−2×Z2, so by Lemma
B.28, d2(U(2a)) = 4. Thus d2(U(n)) ≥ 4 and P = 1.
Case 3: a ≤ 1 and r = 1, i.e., n = pb or n = 2pb for an odd prime power pb. The
groups U(1) and U(2) are trivial, so U(n) ∼= U(pn). By Theorem 22, U(pn) is cyclic

7We are now talking about multiplicative groups rather than additive groups. It makes no
mathematical difference, of course, but the reader may wish to pause to reorient to the new

notation.
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of even order, so d2(U(n)) = 1 and P = −1.
Case 4: Suppose r ≥ 2. Then U(pb1)× U(pb2) ⊂ U(n), so

d2(U(n)) ≥ d2(U(pb1)× U(pb2)) = d2(U(pb1))× d2(U(pb2)) = 4.

Thus P = 1. �

After this section was first written, I found a closely related paper of the early
American group theorist George Abram Miller [Mi03]. In particular Miller proves
Theorem B.27 (with a very similar proof) and applies it to prove Theorem B.30.
That this result was first stated and proved by Gauss is not mentioned in Miller’s
paper, but its title suggests that he may have been aware of this.





APPENDIX C

More on Polynomials

1. Polynomial Rings

Let k be a field, and consider the univariate polynomial ring k[t].

Theorem C.1. The ring k[t] is a PID and hence a UFD.

Proof. In fact the argument is very close to the one we used to show that Z
is a PID. Namely, let I be an ideal of k[t]: we may assume that I 6= 0. Let b be a
nonzero element of I of minimal degree: we claim that I = 〈a〉. Indeed, let a be
any element of I. By polynomial division (this is the key!), there are q, r ∈ k[t] such
that a = qb+r and deg r < deg b. Since a, b ∈ I, r = a−qb ∈ I. Since deg r < deg b
and b has minimal degree among nonzero elements of I, we must have r = 0, and
thus a = qb and a ∈ 〈b〉. Thus k[t] is a PID and hence also a UFD. �

Polynomial differentiation: When k = R, every polyomial f ∈ R[t] can be
viewed as a differentiable function f : R→ R, and indeed the derivative f ′ is again
a polynomial. Although the derivative is defined by a limiting process, when re-
stricted to polynomials it is characterized by the following two properties:

(P1): f 7→ f ′ is an R-linear map: for all α, β ∈ R and all polynomials f, g,

(αf + βg)′ = αf ′ + βg′.

(P2): 1′ = 0, and for all n ∈ Z+, (tn)′ = ntn−1.

Indeed, the set {1, tn | n ∈ Z+} is a basis for the R-vector space R[t], and since
differentiation is linear, it is entirely determined by its action on this basis.

Now let k be any field. It is still true that {1, tn | n ∈ Z+} is a k-basis for k[t], so
there is a unique k-linear endomorphism of k[t] defined by 1′ = 0 and (tn)′ = ntn−1.
We continue to call the operator f 7→ f ′ differentiation and refer to f ′ as the de-
rivative of f , despite the fact that there are no limits here: it is purely algebraic.

Exercise: Show that for any field k, polynomial differentiation satisfies the prod-
uct rule: for all f, g ∈ k[t], (fg)′ = f ′g + fg′.

Exercise: Compute the kernel of differentiation as a linear endomorphism of k[t].
In more concrete terms, find all polynomials f ∈ k[t] such that f ′ = 0. (Hint: the
answer strongly depends on the characteristic of k.)

We say a polynomial f ∈ k[t] is separable if gcd(f, f ′) = 1.

Proposition C.2. A separable polynomial is squarefree.

279



280 C. MORE ON POLYNOMIALS

Proof. By contraposition: suppose f = gh2 for a polynomial h of positive
degree. Then f ′ = (gh2)′ = g′h2 + g(2hh′) = h(g′h + 2gh′). It follows that h is a
common divisor of f and f ′, so f is not separable. �

Exercise: Let k be a field of characteristic p > 0, and let K = k(x) be the field of
rational functions with coefficients in k. Consider the polynomial f = tp−x ∈ K[t].
a) Show that f is squarefree.
b) Show that f is not separable.

As the previous exercise shows, the converse of Proposition C.2 is not generally
valid: a squarefree polynomial need not be separable. Of course the counterexam-
ple took place over a rather exotic field. In fact for most of the fields one meets in
undergraduate mathematics (and, in particular, in this text) it turns out that all
squarefree polynomials are separable. Technically speaking, this holds for polyno-
mials over a field k iff k is perfect. The class of perfect fields includes all fields of
characteristic zero and all finite fields.

2. Finite Fields

Proposition C.3. Let F be a finite field. Then #F = pa for some prime
number p and some positive integer a.

Proof. Since F is finite, the elements, 1, 1+1, 1+1+1, . . . , 1+ · · ·+1 cannot
all be distinct. Thus the characteristic of F must be positive and then necessarily
a prime number p. That is, the subfield of F generated by 1 may be identified with
Fp = Z/pZ. Then F is a finite-dimensional vector space over Fp. Let e1, . . . , ea be
a basis for F over Fp. Then every element of F has a unique expression of the form
α1e1 + . . .+ αaea with α1, . . . , αa ∈ Fp, and it follows that #F = pa. �

Exercise: Let p be a prime number, and let R be a commutative ring with #R = p.
Show that R ∼= Z/pZ.

The fundamental result on finite fields is the following one.

Theorem C.4. Let p be a prime number, a a positive integer, and put q = pa.
a) There is a finite field F with #F = q.
b) Any two finite fields with the same cardinality are isomorphic.

In view of Theorem C.4, for any prime power q we may speak of “the finite field”
Fq of order q.1

The proof of Theorem C.4 is relatively easy if one has at hand a basic concept
in field theory, that of a splitting field for a polynomial f . Then the existence of
Fpa follows from the existence of a splitting field for the polynomial f(t) = tp

a − t
over the field Fp, and the fact that any two finite fields of the same order are iso-
morphic follows from the uniqueness of splitting fields. Here we will give a more
concrete proof of Theorem C.4a). In fact we will do better: given any finite field
F, we will give a formula for the number of degree a monic irreducible polynomials
with coefficients in F. This argument is done in two steps. The first step is a piece
of pure field theory; in the second step we apply Möbius Inversion.

1To be honest it is slightly sloppy to speak in this way, since Fq is only unique up to isomor-

phism. But this sloppiness is very standard, and, especially for our purposes, absolutely harmless.
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Lemma C.5. Let a, b, x ∈ Z+ with x > 1. The following are equivalent:
(i) a | b.
(ii) xa − 1 | xb − 1.

Proof. Write b = qa+ r with 0 ≤ r < a.
(i) =⇒ (ii): If a | b, then r = 0 and

xb − 1 = (xa)q − 1 = (xa − 1)(1 + xa + . . .+ (xa)q−1).

(ii) =⇒ (i): We have

xb − 1 = xb − xr + xr − 1 = xr(xaq − 1) + xr − 1.

By (i) =⇒ (ii) we know that xa − 1 | xaq − 1. By assumption xa − 1 | xb − 1, so
we conclude xa − 1 | xr − 1. Since r < a, if r > 0 we’d have xa − 1 > xr − 1 > 0,
contradiction. So r = 0 and a | b. �

Theorem C.6. Let F be a finite field of order q, let a ∈ Z+, and consider
f = tq

a − t ∈ F[t]. Then f is squarefree, and its factors are precisely the monic
irreducible polynomials P ∈ F[t] of degree dividing a.

Proof. Step 1: We have f ′ = qatq
a−1 − 1 = −1, since F has characteristic p.

By Proposition C.2, f is squarefree. Since f is monic, it is therefore a product of
distinct monic irreducible polynomials, and our task is now to show that a monic
irreducible polynomial P divides f = tq

a − t iff degP | a.
Step 2: For an irreducible polynomial P , put FP = F[t]/(P ), a field extension of
degree d = degP . Then P | f ⇐⇒ tq

a − t = 0 ∈ FP . Since t generates FP over
F, if tq

a

= t, then every element x ∈ FP satisfies xq
a

= x, or equivalently every
nonzero element of FP has order dividing qa− 1. Since F×p is cyclic of order qd− 1,

this holds iff qd − 1 | qa − 1 iff (by Lemma C.5) d | a. �

Theorem C.7. Let F be a finite field of order q, and let n ∈ Z+. The number
of monic irreducible polynomials of degree n with coefficients in Fq is

(67) I(F, n) =
1

n

∑
d|n

qdµ
(n
d

)
.

Proof. For any d ∈ Z+, let I(F, d) be the number of monic irreducible degree
d polynomials with F-coefficients. Let n ∈ Z+. Then since tq

n−t is the squarefree
product of all monic irreducible polynomials of degrees d | n, equating degrees gives∑

d|n

dI(F, d) = qn.

Applying Möbius Inversion, we get

nI(F, n) =
∑
d|n

qdµ
(n
d

)
.

Dividing both sides by n we get (67). �

Corollary C.8. a) For any finite field F and any n ∈ Z+, there is at least
one irreducible polynomial of degree n with F-coefficients.
b) For every prime power q = pa, there is a finite field F of order q.



282 C. MORE ON POLYNOMIALS

Proof. a) Theorem C.7 gives us an expression for the number of monic irre-
ducible polynomials of degree n with F-coefficients. By making some very crude
estimates we can quickly see that this quantity is always positive. Indeed:

I(F, n) =
1

n

∑
d|n

qdµ
(n
d

)
≥ 1

n
(qn − (qn−1 + . . .+ q + 1))

=
1

n

(
qn − qn − 1

q − 1

)
≥ 1

n
(qn − (qn − 1)) =

1

n
> 0.

b) By part a), there is a degree a irreducible polynomial f with Fp-coefficients.
Then Fp[t]/(f) is a finite field of order pa. �

Exercise C.1. Try to extract from (67) more realistic estimates on the size of
I(F, n).
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Hamburg 11 (1936), 73–75.
[CJ14] P.L. Clark and W.C. Jagy, Euclidean quadratic forms and ADC forms II: integral forms.

Acta Arith. 164 (2014), 265–308.
[Cl94] D.A. Clark, A quadratic field which is Euclidean but not norm-Euclidean. Manuscripta

Math. 83 (1994), no. 3-4, 327–330.

[Cl09] P.L. Clark, Elliptic Dedekind domains revisited. Enseignement Math. 55 (2009), 213–

225.
[Cl12] P.L. Clark, Euclidean Quadratic Forms and ADC-forms I. Acta Arithmetica 154 (2012),

137–159.

283



284 BIBLIOGRAPHY

[Cl19] P.L. Clark, Rabinowitsch times six, alpha.math.uga.edu/~pete/Rabinowitsch.pdf.

[CM98] T. Cochrane and P. Mitchell, Small solutions of the Legendre equation. J. Number

Theory 70 (1998), 62–66.
[Cox] D.A. Cox, Primes of the form x2 + ny2: Fermat, class field theory and complex multi-

plication. New York: John Wiley & Sons, Inc.; 1989.

[Coh73] P.M. Cohn, Unique factorization domains. Amer. Math. Monthly 80 (1973), 1–18.
[Conr-A] K. Conrad, Two applications of unique factorization.

http://www.math.uconn.edu/∼kconrad/blurbs/ringtheory/ufdapp.pdf
[Conr-B] K. Conrad, Examples of Mordell’s Equation.

http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/mordelleqn1.pdf
[Con97] J.H. Conway, The sensual (quadratic) form. With the assistance of Francis Y. C. Fung.

Carus Mathematical Monographs, 26. Mathematical Association of America, Washing-
ton, DC, 1997.

[Con00] J.H. Conway, Universal quadratic forms and the fifteen theorem. Quadratic forms and
their applications (Dublin, 1999), 23–26, Contemp. Math., 272, Amer. Math. Soc.,

Providence, RI, 2000.

[CS07] W. Cao and Q. Sun, Improvements upon the Chevalley-Warning-Ax-Katz-type esti-
mates. J. Number Theory 122 (2007), 135–141.

[Dic27] L.E. Dickson, Integers represented by positive ternary quadratic forms. Bull. Amer.

Math. Soc. 33 (1927), 63–70.
[DH05] W. Duke and K. Hopkins, Quadratic reciprocity in a finite group. Amer. Math. Monthly

112 (2005), no. 3, 251–256.

[DV09] S. Dasgupta and J. Voight, Heegner points and Sylvester’s conjecture. Arithmetic ge-
ometry, 91–102, Clay Math. Proc., 8, Amer. Math. Soc., Providence, RI, 2009.
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