
4400/6400 EXERCISES

PETE L. CLARK

1. Homework 1

1.1. 4400 Problems.

Exercise 1.1.1. (O)1 How do you know there is no largest integer?

Exercise 1.1.2. We recall the definition of divisibility in Z: if a, b ∈ Z we say that
a divides b and write a | b if there is c ∈ Z such that ac = b.
a) Show: if a ∈ Z, then a | 0.
b) Show: if a ∈ Z and 0 | a, then a = 0.
c) Suppose a, b, c ∈ Z and that we have a | b and a | c. Show: a | b + c. In fact,
show that for all x, y ∈ Z, we have a | bx+ cy.
d) Suppose that a, b, c ∈ Z, that a | b and a - c (i.e., a does not divide c.) Show:
a - b+ c.
e) Suppose a, b, c ∈ Z and that a - b and a - c. What can we conclude about whether
a | b+ c? (If anything, prove it. If not, give examples to show that.)

Exercise 1.1.3. We can extend the definition of divisibility from Z to any commu-
tative ring R: if a, b ∈ R we say that a divides b and write a | b if there is c ∈ R
such that ac = b.
a) Which of the parts of the previous problem continue to hold in any commutative
ring? In any integral domain?
b) For a ∈ R, we define the principal ideal

(a) = {xa | x ∈ R}.
Show: for a, b ∈ R, we have a | b ⇐⇒ (a) ⊃ (b). (“To contain is to divide.”)

Exercise 1.1.4. Recall that a relation ≤ on a set X is a partial ordering if it
satisfies all of the following properties:
(PO1) (Reflexivity) For all x ∈ X, we have x ≤ x.
(PO2) (Anti-symmetry) For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y.
(PO3) (Transitivity) For all x, y, z ∈ X, if x ≤ y and y ≤ z then x ≤ z.
A partial ordering is total if it moreover satisfies
(PO4) (Totality) For all x, y ∈ X, either x ≤ y.
The usual ≤ is a total ordering on Z. (Not asking you to show this!)
Check which of the four axioms above are satisfied for the divisibility relation | on
Z, on N and on Z+.

Exercise 1.1.5. Recall Euclid’s Lemma: if p is a prime number and a, b ∈ Z, then
p | ab =⇒ p | a or p | b.
a) Show: if a1, . . . , an ∈ Z and p | a1 · · · an, then p | ai for at least one i.

1A problem marked (O) is “open-ended.” Think of it as a discussion rather than a right or
wrong answer.
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b) Show the Generalized Euclid’s Lemma: suppose a, b, c ∈ Z, that a | bc and
gcd(a, b) = 1. Show: a | c.
(Suggestion: use the Fundamental Theorem!)

Exercise 1.1.6. An arithmetic progression (in Z) is a finite or infinite sequence
of integers such that the difference of any two consecutive terms is constant. Thus
an arithmetic progression is determined by the initial value a0 ∈ Z, the common
difference d ∈ Z+ and the length k ≤ ∞, so if k <∞, the progression looks like

a0, a1 = a0 + d, a3 = a0 + 2d, . . . , ak−1 = a1 + (k − 1)d

and if k =∞ it looks similarly but goes on forever.
In this exercise we are interested in arithmetic progressions in which each term

is a prime number; we call these PAP’s. If the length is k, we speak of a k-PAP.
a) Check that 5, 11, 17, 23, 29 is a 5-PAP.
b) Find a 6-PAP. (Suggestion: start with a prime a0 and a common difference d
such that a0 + d is prime, and then see how many prime value you get. I.e., just
experiment. You will soon see that the choice of d is much more important than
the choice of a0.)
c) Show: 3, 13, 23 is the only 3-PAP with d = 10.
d) Show in any 6-PAP the common difference d must be divisible by 30.
e) Let a, a+ d, . . . , a+ (k − 1)d be a k-PAP. Show: p | d for all primes p ≤ k

2 .
f) Deduce from part e) that there is no infinite PAP.
g)∗ Show: if a, a + d, . . . , a + (k − 1)d is a k-PAP, then every prime p < k divides
d. Show by example that this cannot be improved to: every prime p ≤ k divides d.
h) When I first taught this course, the largest k for which there was an explicitly
known k-PAP was k = 23. Is this still the case?

Exercise 1.1.7. a) Let N ∈ Z+ and write it as 10a + b (i.e., b is the final decimal
digit of N). Show that 7 | N ⇐⇒ 7 | a − 2b. Explain why this gives an test for
divisibility by 7.
b) Can you find a similar test for divisibility by 13?
c) (O): Prove: For every positive integer d, there is a test for divisibility by d.

Commentary on part c): Exactly what a “divisibility by d” test means is part of
what you have to figure out. Of course we could always use the division algorithm
we learned in elementary school, so presumably a divisibility test is something that
is faster and/or easier than this. That some divisibility tests are faster and easier
than actual division is pretty obvious: for instance, to test divisibility by 125 we
only need to see if the last three digits are any of 125, 250, 375, 500, 625, 750, 875
or 000. The test for divisibility by 7 that comes from part a) is not as fast as that.
Also, this is the rare problem where it is important that N is given to us as its
decimal expansion. If we were allowed to rewrite N in base d notation, the teset
would be trivial.

Exercise 1.1.8. Try to formulate a conjecture on when a polynomial with integer
coefficients represents infinitely many primes. If you want to look this one up, the
keyword is Schinzel’s Hypothesis.

Exercise 1.1.9. ∗ Let p(x) be a nonconstant polynomial with integer coefficients.
Show that there are infinitely many positive integers n such that p(n) is not prime.
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Exercise 1.1.10. The term “polynomial function on the integers” is ambiguous. On
the one hand we could mean a polynomial

P (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

with all ai ∈ Z. On the other hand, we could mean that the coefficients ai are
real numbers, but nevertheless for all n ∈ Z, P (n) ∈ Z: i.e., as a function we
have P (Z) ⊂ Z. Let us call this latter condition integer-vlaued. a) Show that
P2(x) = 1

2x
2 + 1

2x is integer-valued but does not have integer coefficients.
b) Show that an integer-valued function has rational coefficients. (Suggestion: La-
grange Interpolation Formula.)
c)∗ Find an explicit description of all integer-valued polynomials of degree d. For
instance, any quadratic integer-valued polynomial is of the form ap2(x) + bx+ c for
a, b, c ∈ c. (Hint: think about binomial coefficients.)

Exercise 1.1.11. Schuh’s divisor game is played as follows: we begin with a
positive integer N and all of its positive divisors. Two players play, alternating
turns. On a given turn, a player chooses a positive divisor d of N and takes that
divisor and also all of its positive divisors e | d. The game ends when all the divisors
of N should be taken.
a) I haven’t told you who wins the game! Should the player who makes the last
move win or lose? (One way makes a really boring game.)
b) For a given value of N , there must be a winning strategy for either the first
player or the second player: why?
c) Analyze the game for small values of N . You will find that the game does not
depend on the numerical values but rather on the shape of the prime factorization
of N . Find explicit winning strategies when N is
(i) pa (a power of a prime)
(ii) pq (a product of two distinct primes)
(iii) pqr (a product of three distinct primes)
d)∗ Show: for any N > 1, the first player has a winning strategy. Note here that
you are not being asked for a specific winning strategy for all N : in fact that is
not known. (Hint: suppose for the sake of argument that the second player has a
winning strategy. Figure out how the first player can “steal” it.)
e)∗ Write a computer program that will play Schuh’s divisor game.

1.2. 6400 Problems.

Exercise 1.2.1. A monoid is a setM equipped with a binary operation ? : M×M →
M that is associative and has a two-sided identity:

∃e ∈M | ∀m ∈M e ?m = m ? e = m.

(Thus a monoid in which each element has an inverse is precisely a group.) Monoids
need not be commutative, but they will be in this problem.
a) Observe: (N,+) the natural numbers under addition, form a commutative
monoid, as does (Z+, ·), the positive integers under multiplication.
b) Generalizing what we did with these two monoids, in our commutative monoid
M we introduce a relation R: namely aRb iff there is c ∈ M such that a ? c = b.
So that this relation is reflexive and transitive, but in general it need not be anti-
symmetric. (Hint: try a nontrivial group.) Such a relation is called a quasi-order.
c) The two monoids (N,+) and (Z+, ·) have further nice properties:
(P1) Cancellation: if a ? b = a ? c, then b = c.
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(P2) Reducedness: if a ? b = e, then a = b = e.
Show: that in any commutative monoid satisfying (P1) and (P2), the relation R
above is a partial ordering.
d) Given commutative monoids (M,+) and (N,+), we introduce the direct sum
M ⊕N : as a set it is just the Cartesian product, i.e., its elements are ordered pairs
(m,n) with m ∈M and n ∈ N . The operation is “componentwise”:

(m1, n1) + (m2, n2) := (m1 +m2, n1 + n2).

Show: If M and N each satisfy (P1) and (P2), so does M ⊕N . If so, show that the
resulting partial order is also componentwise: (m1, n1)R(m2, n2) iff m1Rm2 and
n1Rn2. Deduce: if M and N each have more than one element, this partial order
is not a total order.
e) Show that (N,+)⊕ (N,+) is isomorphic to the submonoid of (Z+, ·) of the form
paqb for (any) two distinct primes p and q.
f) Given an infinite indexed family {Mi}i∈I of comutative monoids, we define the
direct sum

⊕
i∈IMi to the subset of the Cartesian product

∏
i∈IMi consisting of

tuples {ei} such that ei = 0 (the identity in Mi) for all but finitely many i. Show:
that the direct sum of a countably infinite number of copies of (N,+) with itself is
isomorphic to the multiplicative monoid (Z+, ·).
(This formalizes the statement that the primes are the building blocks of Z+ under
multiplication, just as 1 is the single building block of N under addition.)
g)∗ The process of forming the integers from the natural numbers and the rational
numbers from the integers can be generalized to get a group out of commutative
monoid. Namely, for a commutative monoid (M,+), let G′(M) be the set of all
ordered pairs (p,m) ∈ M ⊕M , and consider the following equivalence relation on
G′(M): (p1,m1) ∼ (p2,m2) iff there is s ∈M such that s+ p1 +m2 = s+ p2 +m1.
Show that the operation on M ⊕M is well-defined on ∼ equivalence classes and
endows it with the structure of a commutative group, in which the inverse of the
class [(p,m)] is the class [(m, p)].
(This group is denoted G(M) and called the group completion or Grothendieck
group associated to M .)

Exercise 1.2.2. Let (S,≤) be a finite partially ordered set with a bottom element
e – i.e., e ≤ s for all s ∈ S. We can play the poset game on S: players alternate
turns. On each turn, a player chooses an element s ∈ S; they then remove that
element and also all elements t ≤ s. The player who moves last loses.
a) Explain how the poset game generalizes Schuh’s divisor game.
b) Either prove that the first player alwys has a win, or give a counterexample.
(The trivial case in which S = {e} does not count as a counterxample!)
c) The poset game is the subject of an award-winning high school science project
of Steven Byrnes. What is Byrnes’ Poset Game Periodicity Theorem?

2. Homework 2

2.1. 4400 Problems.

Exercise 2.1.1. Prove the Division Theorem: for any a ∈ Z and b ∈ Z+, there
are unique integers q and r such that a = qb+ r and 0 ≤ r < b.

Exercise 2.1.2. For integers x, y, a greatest common divisor is an integer d such
that d | x, d | y, and for any integer e such that e | x and e | y, then e | d.
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(Here it is important to understand that “greatest” is with respect to the relation
of divisibility, not necessarily the usual ≤ coming from the additive structure.)
a) Show that if d is a greatest common divisor of x and y, so is −d.
b) Show that 0 is a greatest common divisor of 0 and 0 and moreover that it is the
only greatest common divisor.
c) Show: if x, y ∈ Z are not both zero, then there are exactly two greatest common
divisors of x and y: a positive integer d and its negative −d. By convention, when
we write gcd(x, y), we usually mean the unique positive one.

Exercise 2.1.3. Let R be a commutative ring. Recall that an ideal I is a subset of
R such that
(I1) For all x, y ∈ I we have −x ∈ I and x+ y ∈ I.
(That is, I is a subgroup of the additive group (R,+)).
(I2) for all x ∈ I and all r ∈ R, we have rx ∈ I.
a) Let x1, . . . , xn be any elements of R. We define

(x1, . . . , xn) := {r1x1 + . . .+ rnxn | r1, . . . , rn ∈ R}.
Show that this is an ideal of R. It is called “the ideal generated by x1, . . . , xn.”
b) When n = 1 we simply get the ideal (x1) of all multiples of x1. Such ideals are
called principal. A principal ideal domain (or PID) is an integral domain in
which every ideal is principal. In class we showed that Z is a PID. Let R be any
PID, let x1, . . . , xn ∈ R. Then by definition there is d ∈ R such that

(x1, . . . , xn) = (r).

Show that r is a greatest common divisor of x1, . . . , xn: that is, r | xi for all i
and if s | xi for all i then s | r.
c) In number theory it is common to denote the greatest common divisor of integers
x1, . . . , xn by (x1, . . . , xn). In our notation, this is the ideal generated by x1, . . . , xn.
Explain why these two notational choices are almost compatible.

Exercise 2.1.4. Let a, b ∈ Z.
a) Show that for all x ∈ Z, we have (a, b) = (a+ xb, b).
b)∗ Show that part a) holds verbatim with Z replaced by any commutative ring R.
c) Suppose b ∈ Z+, and write a = qb+ r as in the Division Theorem. Deduce from
part a) that

(a, b) = (b, r).

d) Explain the Euclidean Algorithm for computing the gcd of two positive inte-
gers in terms of part c).

Exercise 2.1.5. Let E be the rng of all even integers. Give a necessary and sufficient
condition on a positive element x ∈ E to have two different factorizations into
positive E-primes.
(Hint: pay attention to ord2(x) and to the number of odd primes dividing x.)

Exercise 2.1.6. Complete the proof of the fact that for all n ≥ 2, the harmonic sum

Hn =

n∑
i=1

1

i

is not an integer by showing that for all n ∈ Z+ we have ord2Hn 6= ord2
1

n+1 .

Exercise 2.1.7. ∗∗ Show that except for n = 1, 2, 6, we have ordp(Hn) < 0 for some
prime p 6= 2, 5.
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Exercise 2.1.8. a) Show that if I and J are ideals in a commutative ring, then I ∩J
is also an ideal.
b) Let a, b ∈ Z+. By part a), (a)∩ (b) is an ideal in Z. But because Z is a PID, we
must have (a) ∩ (b) = (c) for some c ∈ Z+. What is c in terms of a and b?

Exercise 2.1.9. a) Show: for a, b ∈ Z+ we have gcd(a, b) lcm(a, b) = ab.
b) ∗ Let a, b, c ∈ Z+. Find an identity relating gcd(a, b, c), lcm(a, b, c) and abc.
What if there are more than three numbers? (Suggestion: use inclusion/exclusion.)

Exercise 2.1.10. One says that integers a1, . . . , an are pairwise relatively prime
if gcd(ai, aj) = 1 for all i 6= j.
a) Show: if a1, . . . , an are pairwise relatively prime then gcd(a1, . . . , an) = 1.
b) Show that the converse does not hold when n ≥ 3. Indeed, find the smallest
example of three positive integers not simultaneously divisible by any d > 1 but for
which any 2 have a nontrivial common divisor.

Remark: The phrase “Let a1, . . . , an be relatively prime integers” is therefore am-
biguous when n ≥ 3. If you are not sure which meaning is intended, stop and
ask!

Exercise 2.1.11. a) Prove the Rational Roots Theorem: if

P (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

is a polynomial with integer coefficients and an 6= 0, then the only possible rational
roots are of the form ± c

d where c | a0 and d | an.
b) In particular, if an = 1 – one says that P is monic – then every rational root of
P is an integer.
c) Use either part a) or part b) to give a very quick proof of the irrationality of

√
2.

Exercise 2.1.12. a) Show that log2 10 is irrational.
b)∗ Let a, b ∈ Z+. Give a criterion for the irrationality of loga b.

2.2. 6400 Problems.

3. Homework 3

3.1. 4400 Problems.

Exercise 3.1.1. Let N ∈ Z+. A primitive root modulo N is an integer g such
that for every x ∈ (Z/NZ)×, there is n ∈ Z such that gn = x. In more algebraic
terms, it is a generator of the group (Z/NZ)×, and it exists whenever the group is
cyclic.
a) Show that g is a primitive root modulo N iff for n ∈ Z+, if gn ≡ 1 (mod N)
then n ≥ ϕ(N).
b) Using your criterion of part a), for each 2 ≤ N ≤ 32 either find a primitive root
modulo N or show that no primitive roots exist.

Exercise 3.1.2. * Find all integers x, y, z such that 3x+ 4y + 5z = 1.
(Suggestion: the matter of it is to find all solutions to the associated homogeneous
equation 3x + 4y + 5z = 0. To do this: for any x ∈ Z, we are trying to find
all y, z ∈ Z such that 4y + 5z = −3x. It is no problem to find a Q-basis for all
Q-solutions to this equation: e.g. take (−4/3, 1, 0) and (−5/3, 0, 1), so the general
Q-solution is {(−4/3b + 5/3c, b, c) | b, c ∈ Q}. The tricky part is finding a Z-basis
for all Z-solutions: for instance, clearly (−4, 3, 0) and (−5, 0, 3) are Z-solutions, but
not every Z-solution is of the form (−4B − 5C, 3B, 3C) for B,C ∈ Z.)
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Exercise 3.1.3. Let m, b ∈ R, and consider the line

` : y = mx+ b.

Let S = {(x, y) ∈ Q2 | y = mx+ b} be the set of Q-rational points on `.
a) Show: either S is empty or S consists of exactly one point or S is infinite.
b) Show: if m, b ∈ Q, then S is infinite.
c) Show: if m ∈ Q and b /∈ Q, then S = ∅.
d) Show: if m /∈ Q and b ∈ Q, then #S = 1.
e) What can be said if m, b /∈ Q?

Exercise 3.1.4. Let a and b be relatively prime positive integers.
a) Show: there do not exist x, y ∈ N such that xa+ yb = ab− a− b.
b) Show: for all N > ab− a− b, there are x, y ∈ N such that xa+ yb = N .

Exercise 3.1.5. It used to be the case that Chicken McNuggets were sold in packs
of 6, 9 and 20. Assuming this: what is the largest number of Chicken McNuggets
you cannot buy?
(It is not obvious that such a largest number exists...but it does.)

Exercise 3.1.6. Let c,N ∈ Z with N > 1. Let c be the class of c modulo N .
a) Show: c ∈ (Z/NZ)× iff gcd(c,N) = 1.
b) Recall that ϕ(N) := #(Z/NZ)×. Show: ϕ(N) ≤ N − 1 and that equality holds
iff N is prime.

Exercise 3.1.7. Lagrange’s Theorem in group theory says that if G is a finite group
and H is a subgroup then #H | #G. (Appendix A of the course text contains a
proof.) For number-theoretic purposes one can usually get away with the following
easier result:

Lagrange’s Little Theorem: Let (G, ·) be a finite commutative group, and
let g ∈ G. Then the order of g – the least n ∈ Z+ such that gn = 1 – divides #G.
a) Fill in the following sketch proof of Lagrange’s Little Theorem: say N = #G,
and write out the elements of G in some order as x1, . . . , xN . Let

P :=

N∏
i=1

xi.

Show that also

P =

N∏
i=1

gxi,

and deduce that gN = e (the identity element of G).
b) Deduce Fermat’s Little Theorem: for x ∈ Z and p a prime number, we have
xp ≡ x (mod p).

Exercise 3.1.8. Fill in the details of the following sketch proof of Wilson’s Theo-
rem: for any prime number p, we have (p−1)! ≡ −1 (mod p). First we observe that

we are trying to evaluate the product P :=
∏p−1
i=1 xi of the previous exercise when

G is the group (Z/pZ)×. Now let x ∈ (Z/pZ)×. If x 6= x−1, then x and x−1 both
appear in the product in question, and they cancel each other out. Therefore P is
actually equal to the product of all x ∈ (Z/pZ)× that are self-inverse. But the only
such elements are 1 and −1 (be sure to explain why!), and thus P = 1 · −1 = −1.
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Exercise 3.1.9. Let p be a prime number.
a) Show the following polynomial identity in Z/pZ[X]:

Xp−1 − 1 = (X − 1)(X − 2) · · · (X − (p− 1)).

(Suggestion: use Fermat’s Little Theorem and the Root-Factor Theorem.)
b) Evaluate the above identity at X = 0 and get another proof of Wilson’s Theorem.

Exercise 3.1.10. * The above exercises raise the question of the value of the product
P =

∏
x∈G x for an arbitrary finite commutative group G. Prove: if G has exactly

one element, say t, of order 2, then P = t; otherwise P = 1.

3.2. 6400 Problems.

Exercise 3.2.1. Let R be a ring, let I be an ideal of R. Let c ∈ R, and write c for
the class of c in R/I. Show that c ∈ (R/I)× iff the ideal

(c, I) := {rc+ i | r ∈ R, i ∈ I}

is all of R. Explain why this generalizes Exercise 3.1.6a).

Exercise 3.2.2. Fill in the details of the following sketch proof of Wilson’s Theorem
(due to Gerrish): let p be a prime number.
a) Show that the Sylow subgroups of the symmetric group Sp are cyclic of order p.
b) Show that the number of Sylow p-subgroups of Sp is np = (p− 2)!.
(Hint: count the number of p-cycles in Sn and divide by the number of generators
of a cyclic group of order p.)
c) By the Sylow Theorems we have np ≡ 1 (mod p), so (p − 1)np = (p − 1)! ≡
(p− 1) ≡ −1 (mod p).

4. Homework 4

4.1. 4400 Problems.

Exercise 4.1.1. Please read up on the following aspects of factorization in integral
domains, either from the course text or from the beginning of
http://alpha.math.uga.edu/~pete/factorization2010.pdf. Check your read-
ing by answering the following as true or false (you don’t need to give proofs):
a) Every prime element in a domain is irreducible.
b) Every irreducible element in a domain is prime.
c) Every principal ideal domain is a unique factorization domain.

Exercise 4.1.2. Let D ∈ Z, and let p be a prime number. Show that if there are
integers x, y ∈ Z such that x2 −Dy2 = p, then D is a square modulo p.

Exercise 4.1.3. Let D /∈ {0, 1} be a squarefree integer, and let Q(
√
D) be the

corresponding quadratic field. Define the conjugation map

α = a+ b
√
D 7→ α = a− b

√
D

and the norm map

N : Q(
√
D)→ Q, α 7→ N(α) = αα.

a) Show that conjugation is a field isomorphism: i.e., a bijection that preserves
addition and multiplication.
b) Show that N(a+ b

√
D) = a2 −Db2.
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c) Show that N : Q(
√
D)× → Q× is a group homomorphism: in other words, show

that for all α, β ∈ Q(
√
D) we have

N(αβ) = N(α)N(β).

d) Show that the restriction of the conjugation map to Z[
√
D] is a ring isomorphism

Z[
√
D]→ Z[

√
D].

e) Show that for α ∈ Q(
√
D), we have N(α) = 0 iff α = 0.

f) Show that for α ∈ Z[
√
D], we have N(α) ∈ {±1} iff α ∈ Z[

√
D]× – i.e., iff α has

an inverse in the ring Z[
√
D].

Exercise 4.1.4. a) Let x + yi ∈ Z[i] be such that N(x + iy) = x2 + y2 is a prime
number p. Show that x+ iy is irreducible in Z[i].
b) Let p ≡ 3 (mod 4) be a prime number. Show that p is irreducible as an element
of Z[i] even though N(p) = p2 is composite.

Exercise 4.1.5. Find all integers n that are of the form x2 − y2 for x, y ∈ Z.

Exercise 4.1.6. Factor 123 + 456i in Z[i].
(Suggestion: begin by factoring its norm. Feel free to ask a computer to do it!)

Exercise 4.1.7. Check carefully that the factorization

3 · 7 = 21 = (1 + 2
√
−5)(1− 2

√
−5)

shows that the ring Z[
√
−5] is not a unique factorization domain.

5. Homework 5

5.1. 4400 Problems.

Exercise 5.1.1.
a) Find all Z-solutions – up to scaling – of the equation 3X2 + 7Y 2 − 3Z2 = 0.
b) Can you modify your solution to part a) to give a nice description of all primitive
integer solutions?

Exercise 5.1.2. (For D. Petmecky2) Show that the equation 3X2 + 5Y 2 − Z2 = 0
has no Z-solutions except (0, 0, 0).

Exercise 5.1.3. Fix D ∈ Z. We say that n ∈ Z is primitively represented by the
form x2−Dy2 if there are coprime integers x, y such that x2−Dy2 = n. Find all
nonzero integers n that are primitively represented by x2 + y2.

Exercise 5.1.4. Let D /∈ {0, 1} be a squarefree integer.
a) Show that the units in Z[

√
−1] are precisely ±1,±

√
−1.

b) Show: for all D ≤ −2, the units in Z[
√
D] are precisely ±1.

c) For each D ∈ {2, 3, 5, 6, 7, 10}, prove or disprove that Z[
√
D] = {±1}.

Exercise 5.1.5. ∗ Consider the prime 13 ≡ 1 (mod 4). By Fermat’s Theorem, it is
a sum of 2 squares: 13 = 22 +32. From this representation, we deduce several more
representations: also

13 = (−2)2+32 = 22+(−3)2 = (−2)2+(−3)2 = 32+22 = (−3)2+22 = 32+(−2)2 = (−3)2+(−2)2,

thus there are eight representations altogether.
a) Show: any prime p ≡ 1 (mod 4) has precisely 8 representations as a sum of two

2Here is an example in which reducing modulo 4 is not sufficient!



10 PETE L. CLARK

squares.
(Suggestion: Consider the prime factorization of p in Z[i] and use part a) of the
previous exercise.)
b) Let n ∈ Z+. How many representations does n have as a sum of 2 squares?

Exercise 5.1.6. a) Prove the following algebraic identity: for all x1, x2, y1, y2 ∈ R,

(x21 + y21)(x22 + y22) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2.

b) Let D ∈ Z. Prove the following algebraic identity: for all x1, x2, y1, y2 ∈ R,

(x21 +Dy21)(x22 +Dy22) = (x1x2 −Dy1y2)2 +D(x1y2 + x2y1)2.

c) When D /∈ {0, 1} is squarefree, interpret the identity of part b) in terms of the

quadratic ring Z[
√
D]. (Note however that the identity holds for all D.)

Exercise 5.1.7. (“No forgiveness”)
a) Recall that a positive integer can be uniquely written in the form n = st2 for
s squarefree and that s is called the squarefree part of n. Show that the Full
Two Squares Theorem can be restated as follows: a positive integer is a sum of
two square iff its squarefree part is a sum of two squares and a squarefree positive
integer is a sum of two squares iff it is not divisible by any prime p ≡ 3 (mod 4).
b) Let m and n be coprime positive integers. Show: if m is not a sum of two
squares, then mn is not a sum of two squares.

Exercise 5.1.8. Adapt the proof of the Full Two Squares Theorem to show: a
positive integer n is of the form x2 + 2y2 if and only if ordp(n) is even for every
prime number p such that −2 is not a square modulo p.

Exercise 5.1.9. a) Show that there are x, y ∈ Z such that x2 − 2y2 = −1.3

b) Adapt the proof of the Full Two Squares Theorem to show: a nonzero integer n
is of the form x2− 2y2 if and only if ordp(n) is even for every prime number p such
that 2 is not a square modulo p.

Exercise 5.1.10. a) Show that there are not x, y ∈ Z such that x2 − 3y2 = −1.
b) Let p > 3 be a prime number such that 3 is a square modulo p. Show: there are

x, y ∈ Z such that x2 − 3y2 = (−1)
p−1
2 p.

(From what we did in class we know that |x2 − 3y2| = p. So the matter of it is
which signs we can take.)
c) ∗ State and prove a precise criterion for when an integer n is of the form x2−3y2.
(Again the trickiest part here is determining the sign conditions on n.)

Exercise 5.1.11. a) Determine exactly which primes p < 200 are of the form x2+3y2.
Can you find a pattern for these primes?
b) Determine exactly which primes p < 200 are of the form x2 + 7y2. Can you find
a pattern for these primes?

Exercise 5.1.12. a) Determine exactly which primes p < 200 are of the form x2+5y2.
Can you find a pattern for these primes?
b) Show: if x2 + 5y2 = p then p ≡ 1 (mod 4).

Exercise 5.1.13. a) Determine exactly which primes p < 200 are of the form x2 +
14y2. Can you find a pattern for these primes?
b) For each of D ∈ −3,−5,−7,−14 and each N ∈ {2, 3, 4, 5, 6} use a computer

3Yes, this is easy! But soon enough you should appreciate why we are starting here.
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program to count the number of primes p < 10N that are of the form x2 − Dy2.
Divide by the total number of primes p < 10N to get a proportion. What do you
observe about this proportion for each fixed D as N increases?
c) Perform similar computations to the above for other values of D and/or larger
N . What do you observe?

5.2. 6400 Problems.

Exercise 5.2.1. Let R be an atomic domain. Show that R is a UFD iff every
irreducible element of R is prime.

Exercise 5.2.2. Let R be an integral domain with fraction field F . We say that F is
integrally closed in F if for all α ∈ F , if α satisfies a monic polynomial relation
– i.e., f(α) = 0 for some f = tn + an−1t

n−1 + . . .+ a1t+ a0 ∈ R[t] – then α ∈ R.
a) Please check that we showed in the lectures (and in Chapter 1 of the text) that
Z is integrally closed in Q.
b) Adapt the proof of this result to show that if R is a UFD then R is integrally
closed in F .

Exercise 5.2.3. Let D /∈ {0, 1} be a squarefree integer.

a) If D ≡ 1 (mod 4), show that the element 1+
√
D

2 ∈ Q(
√
D) satisfies a monic

polynomial with coefficients in Z. Deduce that the ring Z[
√
D] is not a UFD.

b) ∗ Show that the ring Z[
√
D] is integrally closed in Q(

√
D) iff D ≡ 2, 3 (mod 4).

(Honestly, showing this from scratch is more trouble than it is worth. In the context
of a larger discussion of algebraic number theory, it gets a lot easier.)
c) ∗ ∗ ∗ Prove or disprove: there are infinitely many prime numbers p ≡ 3 (mod 4)
such that Z[

√
p] is a UFD.

6. Homework 6

6.1. 4400 Problems.

Exercise 6.1.1. Let m1,m2,m, n be positive integers, and let a ∈ Z.
a) Show: if a is a square modulo n and m | n then a is a square modulo m.
b) Show: if gcd(m1,m2) = 1 and a is a square modulo both m1 and m2, then a is
a square modulo m1m2.
c) Show: if a is a square modulo both m1 and m2 then a is a square modulo
lcm(m1,m2).
d) Find m1,m2, a such that a is a square modulo m1 and a is a square modulo m2

but a is not a square modulo m1m2.

Exercise 6.1.2. For each odd prime p ≤ 103, compute all quadratic residues mod p
– i.e., all squares in Z/pZ.

Exercise 6.1.3. Evaluate these Legendre symbols (the denominators are all prime
numbers): (

85

101

)
,

(
29

241

)
,

(
101

1987

)
,

(
31706

43789

)
.

Exercise 6.1.4. For the following a ∈ Z, find all odd primes p such that
(
a
p

)
= 1.

a) a = 169.
b) a = 53.
c) a = 31.
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d) a = 21.
e) a = 2018.

Exercise 6.1.5. Use Quadratic Reciprocity to show the following result first stated
(but not proved) by Euler: let p and q be distinct odd primes.

a) If q ≡ 1 (mod 4), then
(
q
p

)
= 1 iff p is congruent to a square modulo q – hence

lies in one of q−1
2 residue classes modulo q.

b) If q ≡ −1 (mod 4), then
(
q
p

)
= 1 iff p ≡ ±x2 (mod 4q).

Exercise 6.1.6. Show that Quadratic Reciprocity is equivalent to the following state-
ment: for distinct odd primes p 6= q, we have(

p

q

)
=

(
(−1)

q−1
2

p

)
.

Exercise 6.1.7. Prove the following fact, which we used in the proof of quadratic
reciprocity: let a ∈ Z, let p be an odd prime and let ζp = e2πi/p be a primitive pth
root of unity. Then

p−1∑
t=0

ζat =

{
p a ≡ 0 (mod p)

0 a 6≡ 0 (mod p)
.

Exercise 6.1.8. ∗∗ Our proof of quadratic reciprocity computes the square of the
quadratic Gauss sum:

τ2 = p∗ := (−1)
p−1
2 p.

Of course this means that τ = ±
√
p∗. Prove that in fact τ =

√
p∗.

Gauss conjectured that τ =
√
p∗ in 1801. From then on “seldom a week had

passed” in which he did not try to prove his conjecture. He finally succeeded in
1805, writing

Wie der Blitz einschlägt, hat sich das Räthsel gelöst.

This should serve to warn you that this exercise is very difficult! However, for one
bonus point4, translate Gauss’s quotation into English.

7. Homework 7

7.1. 4400 Problems.

Heads up: There is an online applet for finding the fundamental solution to a
Pell equation, available at

http://www.numbertheory.org/php/pell.html

When asked for the fundamental solution u to a Pell equation, you can use this
applet, learn about continued fractions and try to find the solution yourself, or do
some combination of the two.

4Whatever that means!
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Exercise 7.1.1. Prove the following Lemma from the text: let (x, y) be a nontrivial
solution to x2 −Dy2 = 1. Then:
(i) We have x, y,> 0 iff x+

√
Dy > 1.

(ii) We have x > 0, y < 0 iff 0 < x+
√
Dy < 1.

(iii) We have x < 0, y > 0 iff −1 < x+
√
Dy < 0.

(iv) We have x, y < 0 iff x+
√
Dy < −1.

Exercise 7.1.2. Find all integral solutions to the following (Pell) equations:
a) x2 − 5y2 = 1.
b) x2 − 53y2 = 1.
c) x2 − 73y2 = 1.
d) x2 − 1006009y2 = 1.

Exercise 7.1.3. a) Show: for any positive, nonsquare integer D and any positive
integer M there are infinitely many integral solutions to x2 −Dy2 = 1 with y ≡ 0
(mod M). (Suggestion: “change variables” y = My′.)
b) Can we always find solutions with x ≡ 0 (mod M)?

Exercise 7.1.4. A triangular number is a positive integer of the form

1 + . . .+m =
m(m+ 1)

2
.

A square number is a number of the form n2. A square-triangular number is
a number that is simultaneously triangular and square, i.e., a solution to

m(m+ 1)

2
= n2.

a) Show that the above equation simplifies to

8n2 = (2m+ 1)2 − 1.

b) Substitute x = 2m+1, y = 2n and show that solutions to x2−2y2 = 1 correspond
to square-triangular numbers, via

m =
x− 1

2
, n =

y

2
.

c) Use this correspondence to find all square-triangular numbers.

Exercise 7.1.5. Let D be a positive, nonsquare integer. The negative Pell equa-
tion is

x2 −Dy2 = −1.

When D is not a square, integral solutions correspond to units of norm −1 in
Z[
√
D]. However, the issue of whether such units exist is much more complicated

than for the Pell equation itself.
a) Find all solutions to the negative Pell equation when D is a square.
b) Suppose that D is a square and that the negative Pell equation has an integral
solution. Show: D is not divisible by 4 and that D is not divisible by any prime
p ≡ 3 (mod 4).
c)∗ Find a nonsquare value of D satisfying all the necessary conditions of part b)
but for which the negative Pell equation nevertheless has no solutions.

Remark 1. It can be shown that (for nonsquare D) the negative Pell equation
x2−Dy2 = −1 has solutions iff the period length of the continued fraction expansion
of
√
D is even. However this condition is arguably a bit awkward: it does not say
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much about the set of D’s for which there is a solution, and for a given D, the
amount of computation necessary to check this condition can be considerable.

Exercise 7.1.6. For D a positive, nonsquare integer and N a nonzero integer, one
can consider the generalized Pell equation

x2 −Dy2 = N.

Suppose that this equation has a (+,+) solution – i.e., a solution in positive integers
x, y. Show: it has infinitely many (+,+) solutions.

Exercise 7.1.7. Let a, k ≥ 2 be integers. Suppose that ak−1 is prime. Show: a = 2
and k is prime.

Exercise 7.1.8. It is a result of Euler that if n is any even perfect number, then n is
of the form 2k−1(2k− 1) for a prime number 2k− 1. (By the previous exercise, this
implies that k is also prime.) In this exercise you will fill in the details of a proof.
Since n is even, we may write n = 2k−1m with k ≥ 2 and m odd.
a) Show:

(1) 2km = 2n = σ(n) = (2k − 1)σ(m).

b) Deduce from (1) that 2k−1 | m and thus there isM ∈ Z such thatm = (2k−1)M .
c) Deduce from (1) that

(2) 2kM = σ(m).

d) Explain why

σ(m) ≥ m+M = 2kM = σ(m),

and deduce that

(3) σ(m) = m+M.

e) Deduce from (3) that m is prime and M = 1.
f) Complete the proof.

7.2. 6400 Problems.

Exercise 7.2.1. Let D be a positive nonsquare integer. Show tha tthe unit group
Z[
√
D]× of the ring Z[

√
D] is isomorphic to Z/2Z × Z. (Comment: this is true

whether or not there is a solution to the negative Pell equation, but the isomorphism
works a bit differently in the two cases.)

8. Homework 8

8.1. 4400 Problems.

Exercise 8.1.1. Show that for all n ≥ 2 we have ϕ(n) ≤ n− 1, with equality if and
only if n is prime.

Exercise 8.1.2. Show that ϕ(n) is even for all n ≥ 2.

Exercise 8.1.3. Show that there are infinitely many integers n such that ϕ(n) ≡ 0
(mod 4) and infinitely many integers n such that ϕ(n) ≡ 2 (mod 4).
(You may use Dirichlet’s theorem on primes in arithmetic progressions.)
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Exercise 8.1.4. Fill in the details of the proof of the following claim: ϕ(n) ≥
√

n
2 .

a) Write n = pa11 · · · parr be the standard form factorization. Show that

ϕ(n)2

n
=

r∏
i=1

pai−2i (pi − 1)2 ≥
r∏
i=1

(pi − 1)2

pi
.

b) Suppose p ≥ 3. Show that (p−1)2
p ≥ 1.

c) Show that if n is odd then ϕ(n)2

n ≥ 1, whereas if n is even then ϕ(n)2

n ≥ (2−1)2
2 = 1

2 ,
and deduce the result.

Exercise 8.1.5. a) Use the previous exercise to show that limn→∞ ϕ(n) =∞.
b) Give an independent proof that limn→∞ ϕ(n) =∞.
c) Deduce: for all N ∈ Z+, the set {n ∈ Z+ | ϕ(n) = N} is finite.

Exercise 8.1.6. Let n ∈ Z+.
a) Show: ϕ(n) = 1 ⇐⇒ n ∈ {1, 2}.
b) Show: ϕ(n) = 2 ⇐⇒ n ∈ {3, 4, 6}.
c) Find all n ∈ Z+ such that ϕ(n) = 4.

Exercise 8.1.7. Calculate Φ105(X).
(Suggestion: use the formula in §8.4.2 of the text – also derived in class – together
with a computer algebra system to perform the multiplication and division.)

Exercise 8.1.8. Investigate the literature on coefficients of cyclotomic polynomials
and report on what you find.

8.2. 6400 Problems.

Exercise 8.2.1. Prove the following analogue of the Prime Number Theorem: fix
a prime number p. For n ∈ Z+, let I(p, n) be the number of monic irreducible
polynomials f ∈ Z/pZ[X] of degree n. Show that as n→∞ we have

I(p, n) ∼ pn

n
,

i.e.,

lim
n→∞

I(p, n)

pn/n
= 1.

(Suggestion: use the formula for I(p, n) of Theorem 8.24 of the course text. Use
the fact that a proper divisor of n is at most n

2 .)

Exercise 8.2.2. Investigate the connections between Möbius Inversion and the Prin-
ciple of Inclusion-Exclusion.
(One deep connection is via a more general notion of a Möbius function of a suitable
partially ordered set. For a well written introduction, see
http://alpha.math.uga.edu/~pete/Bender-Goldman75.pdf

9. Homework 9

9.1. 4400 Problems.

Exercise 9.1.1. Write out a careful proof of the following fact mentioned in class:
let N ∈ Z+. Given any sequence a1, . . . , aN ∈ Z, there are 1 ≤ i ≤ j ≤ N such
that ai + ai+1 + . . .+ aj ≡ 0 (mod N).
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Exercise 9.1.2. For r > 0, let

L(r) := #{(x, y) ∈ Z2 | x2 + y2 ≤ r2}
be the number of lattice points lying on or inside the closed disk of radius r centered
at 0.
a) Explain why limr→∞

L(r)
r2 = π.

b) Compute L(10)/102 and compare to π.
c) Write a computer program to compute L(10k)/102k and compare to π for several
values of k. How many decimal places of accuracy can you get?

Exercise 9.1.3. Read about the Gauss Circle Problem and write a brief statement
about it. What is the best currently known result?

Exercise 9.1.4. Here is a Lemma from the textbook: for a prime p > 2 and a ∈ Z,
there are r, s ∈ Z such that r2+s2 ≡ a (mod p). The textbook proves this using an
elementary counting argument. Deduce this from the Chevalley-Warning Theorem
applied to the polynomial x2 + y2 − az2.

Exercise 9.1.5. ∗ Let Ω ⊂ RN be a convex body that is moreover closed (equiva-
lently, compact). Show: if Vol(Ω) = 2N , then Ω ∩ ZN ) {0}, i.e., Ω has a nonzero
lattice point.
(Hint: the hypotheses ensure that for all ε > 0, the dilate (1 + ε)Ω has a nonzero
lattice point.)

Exercise 9.1.6. Let P be a simple lattice polygon. (That is, P is a simple closed
polygonal curve.) Show that P can be dissected as a finite union of lattice triangles.

Exercise 9.1.7. The Gauss-Legendre Three Squares Theorem states that a positive
integer n is a sum of three integral squares unless n is of the form 4a(8k + 7).
Deduce the Four Squares Theorem from the Three Squares Theorem.

Exercise 9.1.8. a) Prove Euler’s Identity: For any integers a1, . . . , a4, b1, . . . , b4, we
have

(a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2+

(a1b2+a2b1+a3b4−a4b3)2+(a1b3−a2b4+a3b1+a4b2)2+(a1b4+a2b3−a3b2+a4b1)2.

b) Deduce from Euler’s Identity, that for any ring R, if x, y ∈ R are both sums of
four squares in R, then so is xy.
c) Find a, b ∈ Z such that a and b are each sums of three squares but ab is not.

Exercise 9.1.9. Identify and state the following theorems about quadratic forms:
a) The Conway-Schneeberger 15 Theorem.
b) The Bhargava-Hanke 290 Theorem.
c) The Rouse 451 Theorem.

Exercise 9.1.10. For each of the following (isotropic binary) quadratic forms, find
all integers it represents.
a) x2 + 2xy.
b) x2 + 3xy.
c) x2 + 4xy.
d) 2x2 + 5xy.
e) Why did we not ask about x2 + 5xy?


