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CHAPTER 1

Topology of Euclidean Space

1. A Little Review of Math 3100

The name of the course is Real Analysis, so let us begin with a check-in on the
real numbers R, perhaps the most important single mathematical object. Intu-
itively we view R as being the points on a number line, with the origin marked as
0 and with an orientation so that we may distinguish positive from negative. We
may represent every real number via an infinite decimal expansion, and while this
is certainly an excellent way to think about and work with real numbers, it works
poorly as a definition.

The modern approach is to lean on a certain collection of axioms for R:

I. The field axioms: R is endowed with two binary operations + and ·, satisfy-
ing many familiar properties like commutativity, associativity and so forth.

II. The order axioms: R is endowed with a total order relation ≤.

III. The ordered field axioms, which give compatibility between the field opera-
tions and the order structure:
(OF1) For all x ∈ R, exactly one of the following holds: x = 0, x > 0, −x > 0.
(OF2) For all x, y, z ∈ R, if x ≤ y then x+ z ≤ y + z.
(OF3) For all x, y ∈ R, if x ≥ 0 and y ≥ 0, then x · y ≥ 0.

A structure that satisfies all of the properties so far is called an ordered field.
There are in fact an enormous number of ordered fields: the rational numbers, Q,
is one. A subfield of R is a subset F ⊆ R that contains 0 and 1 and is closed under
the field operations: if x, y ∈ F then x+ y, x− y, x · y ∈ F and x

y ∈ F if y 6= 0. If

we take any subfield of R and restrict the relation ≤ to F , then we get an ordered
field. This builds a lot (infinitely many, to say the least!) of subfields of R. And
there are also more exotic ordered fields that do not arise in this way, although you
will probably never meet any in an undergraduate course (including this one).

The real numbers is characterized among ordered fields by satisfying:

IV. The completeness axiom, which can be stated in several equivalent forms.

But first let me nail down what “characterized” means: first of all, the real numbers
satisfy these completeness axioms. Second, an ordered field F that satisfies one of
these completeness axioms is “essentially” the real numbers, which means that one
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6 1. TOPOLOGY OF EUCLIDEAN SPACE

can find a bijective function f : F → R that preserves all of the structures: +, ·
and ≤. (More formally, f is an isomorphism of ordered fields.)

Now back to the completeness axioms. The most useful formulation is:

Dedekind’s Completeness: If X is a subset of R that is nonempty and bounded
above, then X has a least upper bound, or supremum, in R.

Another version is O’Connor’s Completeness / Monotone Sequence Lemma:
Every bounded monotone sequence {xn}∞n=1 in R converges to a real number.

What do I mean by “versions” of completeness? I mean that it can be shown that if
an ordered field satisfies Dedekind’s Completeness than it also satisfies O’Connor’s
Completeness (this was an important result in Math 3100) and also conversely an
ordered field that satisfies O’Connor’s Completeness also satisfies Dedekind’s Com-
pleteness (this was probably not covered in class in Math 3100 but see [SS]).

In any ordered field satisfying the completeness axioms, the following properties
also hold:

Archimedean Property: For every real number x, there is a positive integer
n with n > x.

Cauchy’s Completeness: Every Cauchy sequence in R converges.

The rational numbers Q are an example of an ordered field that do not satisfy
Cauchy’s completeness. It turns out that an ordered field satisfies the Archimedean
property iff it is (isomorphic to) a subfield of R, so non-Archimedean ordered fields
are precisely the ones we called “exotic” above. Moreover:

Proposition 1.1. An ordered field that satisfies the Achimedean Property and
Cauchy’s completeness is Dedekind complete – and thus isomorphic to R.

Proof. See [SS, Proposition 2.6.7 and Theorem 2.6.13b)]. �

Before we move on to the material of our course, one remark / reminder: one does
need to show that there is a Dedekind complete ordered field that is unique up to
isomorphism; that is, we still need to “construct the real numbers R.” At least,
someone does. The first such construction was given by Dedekind in the late 1800’s.
The truth of it is that no such construction is particularly simple, so that one needs
a certain amount of mathematical sophistication to understand it...at which point
it seems to be a better use of any instructor’s time to cover something else. So it
is extremely rare to encounter the construction R in a course. This course will be
no exception. But if by chance you do want to see a construction of R, it is written
up in [HC, Chapter 16].

2. Convergence in Euclidean Space

Let N ∈ Z+. By RN we mean the set of ordered N -tuples of real numbers

x = (x1, . . . , xN ).
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This is a familiar object from linear algebra, as a vector space over R. This means
that elements of RN can be added to each other, and it also makes sense to “scale”
an element x by a real number α:

α(x1, . . . , xN ) := (αx1, . . . , αxn).

However, we are interested in RN not just as a real vector space, but endowed with
the Euclidean norm, which is a function from RN to [0,∞), the non-negative real
numbers. Specifically:

∀ x = (x1, . . . , xN ) ∈ RN , ||x|| :=
√
x21 + . . .+ x2N .

We recall a very basic fact: for elements x1, . . . , xN in any ordered field F , we have

x21 + . . .+ x2N ≥ 0,

and
x21 + . . .+ x2N = 0 ⇐⇒ x1 = . . . = xN = 0.

That is: a sum of squares is never negative, and is 0 iff every term is 0.
From this we deduce:

∀ x ∈ RN , x = 0 ⇐⇒ ||x|| = 0.

Here is another easy property of the Euclidean norm:

Proposition 1.2. For all x ∈ RN and all α ∈ R, we have

||αx|| = |α|||x||.

The proof of Proposition 1.2 is left as an exercise.

By Euclidean N-space I mean RN equipped with its Euclidean norm. By the way,
the Euclidean norm itself can be defined in terms of an inner product operation

· : RN × RN → R,
(x1, . . . , xN ) · (y1, . . . , yN ) := x1y1 + . . .+XNYN .

Then:
∀ x ∈ RN , ||x|| =

√
x · x.

Inner products are extremely important in certain branches of analysis, but I think
they will only make a brief appearance in this course.

We use the Euclidean norm to measure distance between points in RN , namely:
for x,y ∈ RN , we define the Euclidean distance

d(x,y) := ||x− y||.
In mathematics, if we have a set X and a function d : X×X → R, then in order to
call d a “distance function” we usually required that it satisfy the following three
properties:

(D1) (Positive Definiteness) For all x, y ∈ X we have d(x, y) ≥ 0, with equality
iff x = y.
(D2) (Symmetry) For all x, y ∈ X we have d(x, y) = d(y, x).
(D3) (Triangle Inequality) For all x, y, z ∈ X we have d(x, z) ≤ d(x, y) + d(y, z).

Shall we try to show that our Euclidean distance satisfies these three properties?
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It starts out easily:

(D1): For x,y ∈ RN , we have d(x,y) = ||x−y|| ≥ 0 because the norm of anything
is at least 0, and moreover ||x− y|| = 0 iff x− y = 0 iff x = y. No problem!

(D2) For x,y ∈ RN , we have d(x,y) = ||x− y|| = || − (y− x)||. Using Proposition
1.2 we have

|| − (y − x)|| = | − 1|||y − x|| = ||y − x|| = d(y,x).

Again, no problem.
(D3) We want to show:

(1) ∀ x,y, z ∈ RN , ||x− z|| ≤ ||x− y||+ ||y − z||.

Hmm. Well, I notice that x− z = (x− y) + (y − z), so if we put

A := x− y, B := y − z,

then we have A,B ∈ RN and we want to show

||A + B|| ≤ ||A||+ ||B||.

In other words, we see that in order to show (D3) it suffices to show the slightly
simpler statement:

(2) ∀ x,y ∈ RN , ||x + y|| ≤ ||x||+ ||y||.

To show (2) we really need to do something, although there is more than one
“something” that will work. The following approach is a good one in that it uses
very little. The main step is to establish the following closely related result.

Theorem 1.3 (Cacuhy-Schwarz in RN ). For all x,y ∈ RN , we have

|x · y| ≤ ||x||||y||.

Proof. Write x = (x1, . . . , xN ), y = (y1, . . . , yN ). For non-negative real num-
bers X,Y we have X ≤ Y iff X2 ≤ Y 2, so it is equivalent to show

|x · y|2 ≤ ||x||2||y||2.

Without any vector notation, what we want to show is:

(x1y1 + . . .+ xnyn)2 ≤ (x21 + . . .+ x2n)(y21 + . . .+ y2n).

Put

L := (x1y1 + . . .+ xnyn)2

and

R := (x21 + . . .+ x2n)(y21 + . . .+ y2n),

so we want to show that L ≤ R; it will certainly suffice to show R− L ≥ 0. Now:

R =

n∑
i=1

x2i y
2
i +

∑
1≤i 6=j≤n

x2i y
2
j =

∑
i

x2i y
2
i +

∑
i<j

x2i y
2
j +

∑
i<j

x2jy
2
i ,

while

L =

n∑
i=1

x2i y
2
i +

∑
1≤i 6=j≤n

xiyixjyj =
∑
i

x2i y
2
i + 2

∑
i<j

xiyixjyj ,
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so

R− L =
∑
i<j

x2i y
2
j − 2

∑
i<j

xiyjxjyi +
∑
i<j

x2jy
2
i =

∑
i<j

(xiyj − xjyi)2 ≥ 0. �

Using Theorem 1.3, it easy to prove (2), especially if we allow ourselves to use
simple properties of inner products from Exercise 1.2. Indeed, let x,y ∈ RN . We
want to show that ||x + y|| ≤ ||x|| + ||y||. Again it suffices to show this after
squaring both sides, so equivalently we want to show:

||x + y||2 ≤ (||x||+ ||y||)2.
Now we have

||x + y||2 = (x + y) · (x + y) = (x · x) + (x · y) + (y · x) + (y · y)

= ||x||2 + 2(x · y) + ||y||2 ≤ ||x||2 + 2|x · y|+ ||y||2
CS
≤ ||x||2 + 2||x||||y||+ ||y||2

= (||x||+ ||y||)2.
It is important to know when equality holds in Cauchy-Schwarz or (this is very
closely related) in the Triangle Inequality.

Corollary 1.4. Let x,y ∈ RN . The following are equivalent:

(i) The vectors x and y are linearly dependent: that is, either x = 0 or there
is α ∈ R such that y = αx.

(ii) We have |x · y| = ||x|| · ||y||.

Your are asked to prove Corollary 1.4 in Exercise 1.4.

2.1. Exercises.

General Comment: Most exercises will refer to RN . Here it should be un-
derstood that N is an arbitrary positive integer. That is, unless you are asked for
an example, your solution should apply no matter what the value of N is.

Exercise 1.1. Show: for all x ∈ RN and all α ∈ R, we have

||αx|| = |α|||x||.

Exercise 1.2. Let x,y, z ∈ RN and α ∈ R.

a) Show: x · y = y · x.
b) Show: (αx) · y = α(x · y).
c) Show: (x + y) · z = (x · z) + (y · z).

Exercise 1.3. We showed that (2) implies (1). Show that conversely, (1)
implies (2). Explicitly, suppose that:

∀ x,y, z ∈ RN , ||x− z|| ≤ ||x− y||+ ||y − z||.
Show:

∀ x,y ∈ RN , ||x + y|| ≤ ||x||+ ||y||.

Exercise 1.4. Let x,y ∈ RN . Show that the following are equivalent:

(i) The vectors x and y are linearly dependent: that is, either x = 0 or there
is α ∈ R such that y = αx.

(ii) We have |x · y| = ||x|| · ||y||.

Exercise 1.5. Let x,y ∈ RN .
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a) Suppose that ||x+y|| = ||x||+||y||. Show: x and y are linearly dependent.
b) Find necessary and sufficient conditions for ||x + y|| = ||x||+ ||y|.

Exercise 1.6 (Reverse Triangle Inequality). Show: for all x,y ∈ RN , we have∣∣||x|| − ||y||∣∣ ≤ ||x− y||.

3. Sequences in RN

3.1. Sequences in a Set. Let X be any set. We have the notion of a sequence
in X: informally, this is an infinite ordered list of elements of X:

x1, x2, . . . , xn, . . . with xn ∈ X ∀n ∈ Z+.

This is formalized as a function x• : Z+ → X; then we have x•(n) = xn. For
instance we could consider sequences in the set of real-or-made-up English words
(such a thing consists of a finite string of letters from our alphabet, whether it is a
valid English word or not), and then

(3) b, bo, boo, booo, boooo . . .

defines a sequence.

In this level of generality we can consider subsequences: to form a subsequence,
we choose an infinite, strictly increasing sequence of positive integers

n1 < n2 < . . . < nk < . . .

and then form the new sequence

xn1 , xn2 , . . . , xnk , . . . .

Again we can be a bit more formal: a strictly increasing sequence of positive integers
corresponds to a strictly increasing function n• : Z+ → Z+, and then to pass
from the sequence x• : Z+ → X to the corresponding subsequence we form the
composition of functions

x• ◦ n• : k 7→ nk 7→ xnk .

So for instance if we take nk = k2 for all k then in our above weird example we get
the subsequence

(4) b, booo, boooooooo, booooooooooooooo, . . . .

But we’re not really cooking with gas here. Rather we’d like a notion of convergence
of sequences, and for this one needs some kind of extra structure on our set: for our
weird sequence (3) above, if you asked me whether it converges I can only look at
you quizzically: we just haven’t set up enough for that question to be meaningful.

3.2. Sequences in RN . Let me give the definition for convergence of se-
quences in RN , after a little motivation. First, for N = 1 we have seen this definition
already: it is the single most important definition of Math 3100. If we have a se-
quence {xn} of real numbers, we say the sequence converges to a real number L
if

∀ ε > 0, ∃K ∈ Z+ such that ∀n > K, |xn − L| < ε.

A sequence converges if it converges to some L ∈ R; otherwise it diverges. One
of the first things one shows is that if a sequence converges then its limit is unique.

Now let me rephrase this definition slightly. First, when N = 1 the Euclidean
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norm is precisely the absolute value, and thus |xn − L| is nothing else than the
distance d(xn, L) between xn and L...as is certainly familiar from Math 3100. Now
I make the following observation:

• The sequence {xn} converges to L iff the sequence d(xn, L) converges to 0.

Indeed, if we write out the latter convergence statement, it is: for all ε > 0, there
is N ∈ Z+ such that for all n > N we have

∣∣|xn − L| − 0
∣∣ < ε. But∣∣|xn − L| − 0

∣∣ = |xn − L|,

so this is the same as saying that xn → L.

Aha. So if {xn} is a sequence in RN and L ∈ RN , we can (and do!) say that
xn converges to L – and write xn → L – if d(xn, L) → 0. This is still an (ε,K)
definition: spelling it out, we get that xn → L means: for all ε > 0, there is K ∈ Z+

such that for all n > K we have ||xn − L|| < ε.1

Example 3.1. Consider the sequence xn = ( 1
n2 ,

n+3
n+4 ) in R2. We will show that

xn → (0, 1).
From Math 3100 we know how to show that 1

n2 → 0 and n+3
n+4 → 1. Let’s put

those together to show that xn → (0, 1). Let ε > 0, and put

K :=

⌈√
2

ε

⌉
.

Step 1: If n > K we have∣∣∣∣ 1

n2
− 0

∣∣∣∣ =

∣∣∣∣ 1

n2

∣∣∣∣ =
1

n2
≤ 1

n
<

1

K1
≤ 1

d
√
2
ε e

<
1
√
2
ε

≤ ε√
2
.

Step 2: If n > K, we also have∣∣∣∣n+ 3

n+ 4
− 1

∣∣∣∣ =
1

n+ 4
<

1

n
≤ ε√

2
.

Step 3:Thus, if n > K then

||xn − (0, 1)|| =
√

(
1

n2
− 0)2 + (

n+ 3

n+ 4
− 1)2 <

√(
ε√
2

)2

+

(
ε√
2

)2

= ε.

So xn → (0, 1).
There is a general moral to extract here. We will get back to this shortly.

Theorem 1.5 (Familiar Facts About Convergence). Let {xn} and {yn} be
sequences in RN . Suppose that xn → L ∈ RN and yn →M ∈ RN .

a) Let α ∈ R. Then αxn → αL.
b) We have xn + yn → L + M.
c) Every subsequence {xnk} of xn also converges to L.
d) If P ∈ RN is such that xn → P, then L = P.

1So you see that I could have just said that we’re replacing the absolute value | · | by the
Euclidean norm || · ||. But I have my reasons for phrasing it in terms of the distance function, as

will become clear at the end of the course.
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You are asked to prove each of these facts as exercises. Of course, this is mostly to
get you to look back at the corresponding proofs for real sequences.

A subset S ⊆ RN is bounded if there is M ≥ 0 such that for all x ∈ S we
have ||x|| ≤M . In other words, a subset is bounded if the distances of its elements
from the origin are bounded above by a fixed real number. (Soon enough we will
rephrase this by saying that S is contained in some closed ball centered at 0.)

We say that a sequence {xn} in RN is bounded if the set of terms {xn | n ∈
Z+} is a bounded subset of RN . Here is one more familiar fact:

Theorem 1.6. Convergent sequences in RN are bounded.

Proof. Suppose xn → L. Then there is K ∈ Z+ such that for all n > K we
have ||xn − L|| ≤ 1. By the Reverse Triangle Inequality, we get:

∀n > K,

∣∣∣∣||xn|| − ||L||∣∣∣∣ ≤ ||xn − L|| ≤ 1,

so

∀n > K, ||xn|| ≤ ||L||+ 1.

Now put

M := max(||x1||, . . . , ||xK ||, ||L||+ 1).

Then for all n ∈ Z+ we have ||xn|| ≤M , so {xn} is bounded. �

There are some things that we did with real sequences that do not make sense for
sequences in RN for N > 1, namely:

• In R we can multiply sequences and show the analogue of Theorem 1.5 for prod-
ucts. In RN we cannot in general multiply two vectors so as to get another vector.
However, there are a few loopholes here:
(i) We can multiply vectors in R2. Indeed we can identify R2 with the complex
numbers C and use the given multiplication.
(ii) We can multiply vectors in R3, using the cross product. This is a kind of weird
multiplication operation (neither commutative nor associative), but it still exists
(iii) For all N ∈ Z+ we can multiply two elements of RN to get an element of R,
using the scalar product.

It happens to be true that in all three cases, these products preserve convergence
of sequences. The first two of these are explored in the exercises; we will prove the
third a little later on.

• Whereas R comes equipped with an ordering, for N > 1 we do not have any
(natural, useful) total ordering on RN . Thus the important notion of monotone
sequence in RN has no analogue in RN , although we could speak of monotonicity
of the sequence of norms.

• In R we have the notion of diverging to +∞ and also the notion of diverging
to −∞. For N > 1 we have something similar but less precise. Namely, a sequence
x in RN diverges to infinity if the real sequence ||xN || diverges to ∞.



3. SEQUENCES IN RN 13

3.3. The Secret to Convergence in RN . Look back at Example 3.1 of a
convergent sequence in R2:

xn =

(
1

n2
,
n+ 3

n+ 4

)
.

Put xn = 1
n2 and yn = n+3

n+4 . Then the sequence of x-components converges to 0
and the sequence of y-components converges to 1; having established this it took
us only one more line to show that (xn, yn)→ (0, 1).

In fact this is a general phenomenon of convergence in RN ! Namely, let {xn}
be a sequence in RN . For each 1 ≤ i ≤ N , let xn,i be the ith component of xn.
Then the vector sequence {xn} can be traded in for N different real sequences:
{xn,1}, . . . , {xn,N}. It turns out that the convergence of the vector sequence is
equivalent to the convergence of all of the scalar sequences:

Theorem 1.7. Let {xn}∞n=1 be a sequence in RN , and let L = (L1, . . . , LN ) ∈
RN . Then the following are equivalent:

(i) The vector sequence xn converges to L.
(ii) For each 1 ≤ i ≤ N , the real sequence {xn,i} of ith components converges

to Li.

Proof. The key to this is the following relatively simple observation: let x =
(x1, . . . , xN ) ∈ RN . There is at least one 1 ≤ I ≤ N such that

∀1 ≤ i ≤ N, |xi| ≤ |xI |.

Fix such an I. Then for each 1 ≤ i ≤ N we have

|xi| =
√
x2i ≤

√
x21 + . . .+ x2N = ||x|| ≤

√
x2I + . . .+ x2I =

√
Nx2I =

√
N |xI |.

This shows: if ||x|| is small, then so is the absolute value of each coordinate of x –
in fact, each is no larger than ||x|| – and conversely, if all of the absolute values of

the coordinates are small, then ||x|| is also small: at most
√
N times as large as the

largest coordinate absolute value. These inequalities imply that for any sequence
{xn} in RN we have xn → 0 if and only if xn,i → 0 for all 1 ≤ i ≤ N . The general
case follows from this special case applied to the sequence {xn − L}. �

We extend the notion of Cauchy sequence to RN in a straightforward way: a
sequence {xn} in RN is Cauchy if for all ε > 0, there is K ∈ Z+ such that for all
m,n ≥ K we have ||xm − xn|| < ε. The same simple inequalities used in the proof
of Theorem 1.7 also work to show:

Theorem 1.8. A sequence {xn} in RN is Cauchy if and only if for all 1 ≤ i ≤
N , the real sequence {xn,i} is Cauchy.

We leave the details of this as an exercise. It follows that:

Corollary 1.9. A sequence in RN is convergent if and only if it is Cauchy.

Proof. We know the result for N = 1 from Math 3100. So by what we
have just seen, the vector sequence is convergent iff each of its component scalar
sequences is convergent iff each of its component scalar sequences is Cauchy iff the
vector sequence is Cauchy. �
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This has the same advantage of knowing the equivalence of Cauchy sequences and
convergent sequences in R: it allows us to decouple the question of convergence of
a sequence from the question of knowing the limit of the sequence; often the former
questions is much easier than the latter.

3.4. Bolzano-Weierstrass in RN . The celebrated Bolzano-Weierstrass The-
orem says that every bounded real sequence has a convergent subsequence. This
extends verbatim to sequences in RN , as we will now show. Let us first give an
equivalent formulation of boundedness of subsets of Euclidean N -space. Suppose
we are given real numbers a1 ≤ b1, a2 ≤ b2, . . . , aN ≤ bN . To this data we associate
the set

B(a1, b1, . . . , aN , bN ) := {x = (x1, . . . , xN ) := ∀1 ≤ i ≤ N, ai ≤ xi ≤ bi}.

A set B(a1, b1, . . . , aN , bN ) is called a closed box. A closed box in R is simply
a closed bounded interval. A closed box in R2 is a rectangle (together with its
interior) whose edges are parallel to the coordinate axes. And so forth. Now:

Lemma 1.10. A subset X ⊆ RN is bounded if and only if X is contained in
some closed box. In particular, all closed boxes are bounded subsets of RN .

We leave the proof of Lemma 1.10 as an exercise.

Theorem 1.11 (Bolzano-Weierstrass in RN ). Every bounded sequence in RN
has a convergent subsequence.

Proof. Let {xn} be a bounded sequence in RN . By Lemma1.10 there are real
numbers a1 ≤ b1, . . . , aN ≤ bN such that every term xn of the sequence lies in the
box B(a1, b1, . . . , aN , bN ).
Step 1: The sequence {xn,1} of first coordinates lies in the interval [a1, b1], so by
Bolzano-Weierstrass in R it has a subsequence that converges to L1 ∈ R.

Interregnum: We now have a purely notational pitfall to avoid: we are going
to be passing to subsequences quite a lot of times, so if we actually write this out
using double index notation then in Step 2 we are going to get triple indices, in
Step 3 quadruple indices, and so forth: it will be a terrible mess. So we will just
remember that we passed to a subsequence so as to make the sequence of first co-
ordinates converge.
Step 2: The sequence (which is actually a subsequence of our original sequence)
xn,2 of second coordinates lies in the interval [a2, b2], so by Bolzano-Weierstrass in
R it has a subsequence that converge to L2 ∈ R. What happens with the sequence
of first coordinates when we do this? Fortunately, if a sequence converges to a limit
then every subsequence converges to the same limit, so passing to this second sub-
sequence does not screw up what we did in Step 1: after two steps we have passed
to a subsubsequence – which is still a subsequence! – of the original sequence so as
to make each of the first two component real sequences converge.
Steps 3 to N : We move on to the bounded sequence of third components, apply
Bolzano-Weierstrass again, and so forth. After N steps we have passed to a sub-
sequence N times altogether to get a sequence in which each of the component
sequences converge, hence by Theorem 1.7 the subsub.....subsequence converges.
Passing from a sequence to a subsequence any finite number of times still yields a
subsequence of the original sequence, so...we’re done. �
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A point L ∈ RN is a partial limit of a sequence {xn} in RN if there is some
subsequence xnk → L. Thus Theorem 1.11 can be rephrased as: every bounded
sequence in RN has at least one partial limit. An unbounded sequence may or may
not have a partial limit; a divergent sequence may have more than one partial limit,
and it can be interesting to contemplate the set of all partial limits of a sequence.
This is pursued in the exercises.

3.5. Exercises.

Exercise 1.7. Let {xn} be a sequence in RN such that xn → L, and let α ∈ R.
Show: αxn → αL.

Exercise 1.8. Let {xn}, {yn} be sequences in RN . Suppose that xn → L and
yn →M . Show: xn + yn → L+M .

Exercise 1.9. Let {xn} be a sequence in RN . Show: if xn → L, then every
subsequence {xnk} also converges to L.

Exercise 1.10. Let {xn} be a sequence in RN , and let L,P ∈ RN . Suppose
that xn → L and xn → P. Show: L = P.

Exercise 1.11. Show: every finite subset of RN is bounded.

Exercise 1.12. The set C = {x + iy | x, y ∈ R} has a nice multiplication
operation:

(x+ iy)(z + iw) = (xz − yw) + (xw + zy)i.

If we identify the vector (x, y) with the complex number x+ iy, this gives a multi-
plication operation on R2:

(x, y) · (z, w) := (xz − yw, xw + zy).

Show: if {xn} and {yn} are two sequences in R2 such that xn → L and yn →M ,
then xn · yn → L ·M .

Exercise 1.13. Let x,y in R3, and let x×y ∈ R3 be the cross product. Show:
if xN → L and yN →M then xn × yn → L×M .

Exercise 1.14. Let {xn} be a sequence in RN .

a) Show: if {xn} is bounded, so is every subsequence.
b) Show: {xn} is unbounded iff some subsequence of {xn} diverges to ∞.

Exercise 1.15. A sequence {xn} in RN is Cauchy if and only if for all 1 ≤
i ≤ N , the real sequence {xn,i} is Cauchy.

Exercise 1.16. Suppose we are given real numbers a1 ≤ b1, a2 ≤ b2, . . . , aN ≤
bN . To this data we associate the set

B(a1, b1, . . . , aN , bN ) := {x = (x1, . . . , xN ) := ∀1 ≤ i ≤ N, ai ≤ xi ≤ bi}.
A set of the form B(a1, b1, . . . , aN , BN ) is called a closed box.
Show: a subset X ⊆ RN is bounded iff X is contained in some closed box.

Exercise 1.17. Let 1 ≤ i ≤ N . We define the ith coordinate projection
map

πi : RN → R, (x1, . . . , xN ) 7→ xi.

Show: a subset X ⊆ RN is bounded iff for all 1 ≤ i ≤ N , the subset πi(X) is a
bounded subset of R.
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Exercise 1.18. For a sequence {xn} in RN , show that the following are equiv-
alent:

(i) The sequence diverges to ∞ (recall this means that ||xn|| → +∞).
(ii) Every subsequence of xn is unbounded.
(iii) The sequence {xn} has no partial limit.

Comment: If we wished, we could define the “extended Euclidean space”

R̃N := RN ∪ {∞}
and say that ∞ is a partial limit of a sequence {xn} in RN iff some subsequence
diverges to ∞. With this convention, combining Exercises 1.14 and 1.18 we would

have that every sequence in RN has at least one partial limit in R̃N . We will not
adopt this definition simply because we will not use it further in this course.

Exercise 1.19. By Bolzano-Weierstrass, every bounded sequence in RN has
at least one partial limit. Show that a bounded sequence converges iff it has exactly
one partial limit.

Exercise 1.20. Find a sequence in RN that has every element of RN as a
partial limit.

4. Topology of RN

4.1. Open and Closed Sets. Let x ∈ RN and r > 0. We define the open
ball centered at x with radius r to be

B◦(x, r) := {y ∈ RN | ||x− y|| < r}
and the closed ball centered at x with radius r to be

B•(x, r) := {y ∈ RN | ||x− y|| ≤ r}.
Thus B◦(x, r) consists of all points of RN whose distance from x – called the cen-
ter of the ball – is less than r, and the same goes for B•(x, r) except that now the
distance is less than or equal to r.

The latter concept has actually arisen already: to see this, notice that our defi-
nition of a subset of RN being bounded is precisely that it is contained in B•(0,M)
for some M . Notice also that open and closed balls are always bounded sets: indeed,
for any x ∈ RN and r > 0, the Triangle Inequality gives:

B◦(x, r) ⊆ B•(x, r) ⊆ B•(0, ||x||+ r).

In R1 balls are not very interesting: you are asked to show as an exercise that a sub-
set of R is an open ball if and only if it is a bounded open interval and that a subset
of R is a closed ball if and only if it is a bounded closed interval. (This is actually one
reason why we want to work in RN at the beginning of the course: the topological
concepts we want to deal with are not trivial when we restrict to the one variable
case, but they are “geometrically degenerate” in a way that may hamper intuition.)

We say that a subset U ⊆ RN is open if for every x ∈ U , there is ε > 0 such
that B◦(x, ε) ⊆ U . In other words, a set is open if whenever it contains a point x
it also contains all points of RN that are sufficiently close to x.

The terminology suggests than an open ball should itself be an open set, but
we had better prove that.
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Proposition 1.12. Every open ball is an open subset of RN .

Proof. Consider the open ball B◦(x, r) and a point y in it. We need to find
a (smaller!) ball centered at y that is entirely contained in the first ball. The
question really is: how do we choose ε > 0 such that

B◦(y, ε) ⊆ B◦(x, r)?
Let’s try to work it out: if z ∈ B◦(y, ε), then

d(y, z)) = ||z− y|| < ε,

so by the Triangle Inequality we have

d(x, z) < ε+ d(x,y).

So the point z will lie in B◦(x, r) provided that ε+ d(x,y) ≤ r. Thus we can take

ε = r − d(x,y),

which is indeed positive: since y ∈ B◦(x, r), we have d(x,y) < r. �

Non-examples are as helpful as understanding new concepts as examples, so:

Proposition 1.13. No closed ball is an open subset of RN .

Proof. Consider B := B•(x, r). Let p := x + (r, 0, . . . , 0) be the rightmost
point on the ball. Then any open ball B◦(p, ε) contains the point p+( ε2 , 0, . . . , 0) =
x + (r+ ε

2 , 0, . . . , 0). This point has distance r+ ε
2 from x so does not lie in B. �

Let A be a subset of RN . We say that L ∈ RN is a limit point of A if there is a
sequence {xn} in A such that xn → L.

Every point L ∈ A is a a limit point of A, because we can take the constant
sequence L,L,L, . . .. (If this feels like cheating...good! You are probably grasping
for the related concept of accumulation point, which is coming up soon.)

Example 4.1. We claim that every point of the closed ball B•(x, r) is a limit
point of the corresponding open ball B◦(x, r). Indeed, we need only look at points
p ∈ B•(x, r) \B◦(x, r), i.e., points p whose distance from x is exactly r. Then take

xn = x + (1− 1

n
)(p− x).

Then

d(xn, x) = (1− 1

n
)||p− x|| = (1− 1

n
)r < r,

so xn ∈ B◦(x, r). And limn→∞ xn = x + (p− x) = p.

This example motivates the second key definition of this section: a subset A of RN
is closed if every limit point of A is an element of A. Another way of saying this
is that A is closed under taking limits of convergent sequences.

A basic fact in Math 3100 is that limits of sequences preserve non-strict inequalities:
that is, if we every term of a convergent sequence is at least a, then the limit is also
at least a, and if every term of a convergent sequence is at most b, then the limit is
also at most b. This means precisely that the closed interval [a, b] is a closed subset
of R. Recalling that these are precisely the closed balls in R, we get that every
closed ball in R1 is a closed subset of R1.
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We would like to extend this to RN : let’s try. Consider a closed ball B•(x, r)
in RN . Seeking a contradiction, suppose that there is some L ∈ RN \B•(x, r) and
a sequence {xn} in B•(x, r) such that xN → L. Let

d := d(x, L)

be the distance from the limit point to the center of the ball. Our assumption is
that d > r. Take ε := d− r. I claim that

B◦(L, ε) ∩B•(x, r) = ∅.

Indeed, if y ∈ B◦(L, ε) ∩B•(x, r) then

d = d(x, L) ≤ d(x, y) + d(y, L) < r + ε = d.

That’s a contradiction. But if we had a sequence in B•(x, r) converging to L then
sufficiently large terms of the sequence will give elements of B•(x, r) that are less
than ε away from L, so there is no such sequence. Therefore closed balls are closed.

If we look back this proof, we really showed that for every point L of the com-
plement RN \ B•(x, r), there is an open ball centered at L and contained in the
complement. In other words, we showed that B•(x, r) is closed essentially by show-
ing that its complement was open. This is true in general, very important, and not
so difficult to prove.

Theorem 1.14. A subset A ⊆ RN is closed iff its complement RN \A is open.

You are asked to prove Theorem 1.14 as an exercise.

4.2. Continuous Functions. Recall that a function f : R→ R is continuous
at a point c ∈ R if: for all ε > 0, there is δ > 0 such that for all x ∈ R, if |x− c| < δ
then |f(x) − f(c)| < ε. A function f : R → R is continuous if it is continuous at
every c ∈ R.

If we have a function f defined not on all of R but only on some subset A, then
we used the same definition as above but with one reasonable change: f : A → R
is continuous at c ∈ A if for all ε > 0 there is δ > 0 such that for all x ∈ A, if
|x− c| < δ then |f(x)− f(c)| < ε.

If we observe that |f(x) − f(c)| < ε means that d(f(x), f(c)) < ε and |x − c| < δ
means d(x, c) < δ, it should be pretty clear how to generalize this definition to
maps between Euclidean spaces. Again, let’s do it in two steps. First suppose that
M,N are positive integers and we have

f : RN → RM .

We say that f is continuous at c ∈ RN if for all ε > 0, there is δ > 0 such that for
all x ∈ RN , if d(x, c) = ||x − c|| < δ then d(f(x), f(c)) = ||f(x) − f(c)|| < ε. We
say f is continuous if it is continuous at every c ∈ RN .

And again it is no problem to make a more general definition: if A is a subset
of RN and f : A→ RM is a function, then f is continuous at c ∈ RN if for all ε > 0
there is δ > 0 such that for all x ∈ A, if d(x, c) = ||x−c|| < δ then ||f(x)−f(c)|| < ε.

Let us rephrase this definition in terms of open balls. A function f : A → RN
is continuous at c ∈ A if for all ε > 0, there is some δ > 0 such that f maps
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A ∩B◦(c, δ) into B◦(f(c), ε).

The following is an extension of an important result from Math 3100: continuous
functions are characterized by their preservation of limits of convergent sequences.

Theorem 1.15. Let X ⊆ RN , and let f : X → RM be a function. Let c ∈ X.
The following are equivalent:

(i) f is continuous at c.
(ii) For every sequence {xn} in X such that xn → c, we have f(xn)→ f(c).

Proof. (Compare this to [SS, Theorem 2.7.5]: it’s virtually identical.)
(i) =⇒ (ii): Fix ε > 0. Because f is continuous at c, there is δ > 0 such that for
all x ∈ X with ||x − c|| < δ, we have ||f(x) − f(c)|| < ε. Because xn → c, there
is K ∈ Z+ such that for all n > K we have ||xn − c|| < δ. Thus for all n > K we
have ||f(xn)− f(c)|| < ε.
(ii) =⇒ (i): We will prove the contrapositive: suppose f is not continuous at c.
Then there is ε > 0 such that for all δ > 0 there is x ∈ X with ||x − c|| < δ and
||f(x)− f(c)| ≥ ε. For n ∈ Z+, taking δ = 1

n gives xn ∈ X such that ||xn− c|| < 1
n

and ||f(xn)− f(c)|| ≥ ε. Thus xn → c, but f(xn) does not converge to f(c). �

4.3. New Continuous Functions From Old. Let us now discuss some ways
of building new continuous functions out of old continuous functions. We can start
with the real ground floor:

Proposition 1.16. Let X ⊂ RN , and let f : X → RM be a constant function:
for all x,y ∈ X we have f(x) = f(y). Then f is continuous.

Proof. Indeed for any ε > 0 we may take any positive value of δ we like, since
in fact for any x,y ∈ X we have ||f(x)− f(y)|| = ||0|| = 0 < ε. �

After constant functions, perhaps the simplest functions f : RN → R are the
coordinate functions or coordinate projections: for 1 ≤ i ≤ N , put

πi : RN → R by (x1, . . . , xN ) 7→ xi.

This is pretty fancy/careful notation. In practice we will often speak of “the func-
tion xi”. It is quite easy to see that these functions are continuous: indeed, let
x ∈ RN , and fix ε > 0. Then for y ∈ RN , we have

|xi − yi| ≤
√

(x1 − y1)2 + . . .+ (xN − yN )2 = ||x− y||,
so if ||x− y|| < ε then also |xi − yi| < ε, so we may take δ = ε.

Here is one use of the coordinate projections: let X ⊆ RN and let f : X → RM be
a function. Then for all x ∈ X, we have

f(x) = (π1(f(x)), . . . , πM (f(x)).

The notation may momentarily obscure this unprofound identity: we are just re-
assembling the components of the vector-valued function f . Now we have:

Proposition 1.17. For a function f : X ⊆ RN → RM and x ∈ X, the
following are equivalent:

(i) The function f is continuous at x.
(ii) Each of the functions f1, . . . , fM is continuous at x.
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The proof uses the same idea as Theorem 1.7 – a vector has small norm if and only
if each of its components has small absolute value – and is left as an exercise.

Proposition 1.18. Let f1, . . . , fM : X ⊆ RN → R, and let x ∈ X. If each of

f1, . . . , fM are continuous at x, then so are
∑M
i=1 fi and

∏M
i=1 fi.

Proof. Let’s use Theorem 1.15: let {xn} be a sequence in X that converges to
x. Since each f1, . . . , fM is continuous at x we have fi(xn)→ fi(x) as sequences in
R. By the extension Theorem 1.5b) from 2 sequences to M sequences (a completely
routine induction argument does this) we know that f1(xn) + . . . + fM (xn) →
f1(x) + . . . + fM (x), and applying Theorem 1.15 once more we get that

∑M
i=1 fi

is continuous at x. The argument for
∏M
i=1 fi except we use the fact that for real

sequences we have xn → L and yn →M implies xnyn → LM [SS, Theorem 2.5.4b)]
(and again, its evident extension from 2 sequences to M sequences). �

A function f : RN → R is a polynomial if it is built up out of constant functions
and coordinate functions by (finitely!) repeated addition and multiplication. Thus
for instance xyz+ 17y5− πx2y2z2 is a polynomial function. It follows from Propo-
sitions 1.16, 1.17 and 1.18 that polynomial functions are continuous. In particular:

Corollary 1.19. The inner product map RN × RN → R, (x,y) 7→ x · y is
continuous.

Proof. We may identify RN ×RN with R2N and then the inner product map
is (x1, . . . , x2N ) 7→ x1xN+1 +x2xN+2 + . . .+xNx2N . This is a polynomial function,
so it is continuous. �

Proposition 1.20. Let M,N,P ∈ Z+. Let X ⊆ RN and Y ⊆ RM . Let
f : X → RM and g : Y → RP be functions. Suppose that f(X) ⊆ Y , so that the
composition g ◦ f is defined.

a) Let x ∈ X. If f is continuous at x and g is continuous at f(x), then g ◦ f
is continuous at x.

b) If f and g are both continuous, so is g ◦ f .

Proof. a) Let ε > 0. Since g is continuous at f(x) there is D > 0 such that
if w ∈ Y is such that ||w − f(x)|| < D, then ||g(w) − g(f(x))|| < ε. Since f
is continuous at x, there is δ > 0 such that if z ∈ X is such that ||z − x| < δ,
then ||f(z) − f(x)|| < D. So altogether, if z ∈ X is such that ||z − x|| < δ, then
||f(z)− f(x)|| < D, so ||g(f(z))− g(f(x))|| < ε, so g ◦ f is continuous at x.
b) This follows immediately. �

If we assume as known that the function
√
x : [0,∞)→ R is continuous (actually we

will discuss inverses of continuous functions of one variable later on in the course),
then we can also prove that the norm function

|| · || : RN → R

is continuous: indeed, it is the composition of the polynomial function x21 + . . . x2N
with the square root function. Similarly, the Euclidean distance function

d : RN × RN → R, (x1, . . . , xN , y1, . . . , yN ) 7→
√

(x1 − y1)2 + . . .+ (xN − yN )2

is the composition of the polynomial function (x−y) · (x−y) with the square root
function, hence is continuous.
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As one more application of these ideas, we will prove:

Proposition 1.21. The addition function + : RN × RN → RN is continuous.

Proof. Again, we may identify RN × RN with R2N , and then we are trying
to show that the function

(x1, . . . , xN , xN+1, . . . , x2N ) 7→ (x1 + xN+1, . . . , xN + x2N )

is continuous. By Proposition 1.17 it’s enough to show that each component is
continuous. But the ith component is xi + xN+i, which is a polynomial. �

4.4. Sequential Compactness in RN . A subset X ⊆ RN is sequentially
compact if every sequence in X has a subsequence that converges to some L ∈ X.

Proposition 1.22. Let X ⊂ RN be a sequentially compact, and let f : X →
RM be a continuous function. Then the image f(X) is sequentially compact.

Proof. Let {yn} be a sequence in f(X). By definition of the image, every
element of f(X) is of the form f(x) for some x ∈ X, so for each n ∈ Z+ we may
choose xn ∈ X such that f(xn) = yn. Because X is sequentially compact, there is
some subsequence {xnk} that converges to an element x of X. By Theorem 1.15
we have

ynk = f(xnk)→ f(x).

Since f(x) ∈ f(X), this shows that f(X) is sequentially compact. �

The following is actually quite a big theorem.

Theorem 1.23. A subset of RN is sequentially compact iff it is closed and
bounded.

Proof. Step 1: We show that sequentially compact sets are both closed and
bounded. We do this contrapositively.

First suppose that X is not closed. Then there is a sequence {xn} in X that
converges to an element L ∈ RN \X. Because every subsequence of a convergent
sequence converges to the same limit, whatever subsequence we take will still be
convergent but the limit will lie outside of X, so X is not sequentially compact.

Now suppose that X is not bounded. We will produce a sequence in X no
subsequence of which is convergent. Indeed, since X is not bounded, for all n ∈ Z+

there is xn ∈ X with ||xn|| ≥ n. Such a sequence is unbounded, hence divergent.
Moreover, passing to a subsequence {xnk} is no help: ||xnk || ≥ nk ≥ k, so every
subsequence is unbounded. (In other words, this sequence diverges to ∞, hence so
does every subsequence.) So X is not sequentially compact.
Step 2: Suppose X is closed and bounded. Let {xn} be a sequence in X. Since X
is bounded, by Bolzano-Weierstrass, there is a subsequence that converges to some
L ∈ RN . Since X is closed, we have L ∈ X. So X is sequentially compact. �

At this point you’re probably thinking: “Hey, I’m not impressed with sequential
compactness because it turns out to be a fancy way to say closed and bounded.”
Let me try to debunk this. First, even if you want to think of it that way, we have
learned something very important about closed and bounded subsets of Euclidean
spaces. Namely, putting together the last two results, we (immediately!) get:
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Corollary 1.24. Let X ⊆ RN be closed and bounded, and let f : X → RM
be a continuous function. Then the image f(X) is a closed and bounded subset of
RM .

On the other hand, this does not work for either closedness or boundedness alone.

Example 4.2.

a) Consider f : R → R by f(x) = 1
x2+1 . Then f is continuous and f(R) =

(0, 1), so f takes the closed set R to the not-closed set (0, 1).
b) Consider f : (0, 1)→ R by f(x) = 1

x . Then f is cotinuous and f((0, 1)) =
(1,∞), so f takes the bounded set (0, 1) to the unbounded set (1,∞).

The actual answer is a bit more complicated though. All of the concepts that we
have introduced in the course so far can in fact be studied in much more generality:
namely in any metric space (we will learn a bit about metric spaces at the end of
the course). If we have a subset X of any metric space, then it will turn out that if
it is sequentially compact then it must also be closed and bounded, but in a general
metric space a closed, bounded subset does not need to be sequentially compact.
To get a glimpse of this, imagine we were working in Q instead of R, with all the
rest of the definitions being the same. Then

[0, 2]Q := {x ∈ Q | 0 ≤ x ≤ 2}
is a closed, bounded subset of Q, but it is not sequentially compact: there is a
sequence in [0, 2]Q that converges to the irrational real number

√
2, hence so does

every subsequence, hence no subsequence converges to an element of [0, 2]Q.
Just as in Math 3100 we used Bolzano-Weiersrtrass in R to show that Cauchy

sequences in R must converge, pretty much the same argument will show that in a
sequantially compact metric space, every Cauchy sequence must converge. So se-
quential compactness has something to do with completeness, but it is even stronger,
since Cauchy sequences in RN converge but RN is not sequentially compact.

Coming back to earth: from Corollary 1.24 we deduce:

Corollary 1.25 (Multivariable Extreme Value Theorem). Let X be a subset
of RN that is nonempty, closed and bounded, and let f : X → R be a continuous
function. Then f assumes its maximum and minimum values.

Proof. By the previous corollary, f(X) is a subset of R that is nonempty,
closed and bounded. By Exercise 1.25 it follows that sup f(X) and inf f(X) both
lie in f(X), so f(X) has a largest and smallest element. �

4.5. Exercises.

Exercise 1.21.

a) Show: a subset of R is an open ball if and only if it is a bounded open
interval (a, b).

b) Show: a subset of R is a closed ball if and only if it is a bounded closed
interval [a, b].

Exercise 1.22. Let I be a nonempty set, and let {Ui}i∈I be an indexed family
of open subsets of RN .

a) Show:
⋃
i∈I Ui is also an open subset of RN .
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b) Show: if I is finite, then
⋂
i∈I Ui is also an open subset of RN .

c) Give an example in which I is infinite and
⋂
i∈I Ui is not an open subset

of RN .

Exercise 1.23. Show: A subset A ⊆ RN is closed iff its complement RN \ A
is open.

Exercise 1.24. Let I be a nonempty set, and let {Ai}i∈I be an indexed family
of closed subsets of RN .

a) Show:
⋂
i∈I Ai is also a closed subset of RN .

b) Show: if I is finite, then
⋃
i∈I Ai is also a closed subset of RN .

c) Give an example in which I is infinite and
⋃
i∈I Ai is not an open subset

of RN .

(Comment: if you remember DeMorgan’s Laws, you can immediately deduce this
from Exercises 1.22 and 1.23. But if not, you can still solve this exercise directly,
and even if you, you might want to try it that way as well.)

Exercise 1.25. Let A ⊆ R be a nonempty subset.

a) Suppose that A is bounded above. Show that the supremum sup(A) is a
limit point of A.

b) Suppose that A is bounded below. Show that the infimum inf(A) is a limit
point of A.

c) Deduce: if A is closed and bounded, then A has a maximum element (i.e.,
an element larger than any other element of A and a minimum element
(i.e., an element smaller than any other element of A).

Exercise 1.26. Let X ⊆ RN , and let f : X → RM . For x ∈ X, we may write
f(x) as (f1(x), . . . , fM (x))); this defines functions f1, . . . , fM : X → R.

a) For 1 ≤ i ≤M , let πi : RM → R be the coordinate projections of Exercise
1.17. Show: for all 1 ≤ i ≤M , we have fi(x) = πi ◦ f .

b) Let x ∈ X. Show: f is continuous at x iff fi is continuous at x for all
1 ≤ i ≤M .

Exercise 1.27. Show that the scalar multiplication operation α·x 7→ αx defines
a continuous function R× RN → RN .

Exercise 1.28. For a sequence {xn} in RN , let L(xn) be the set of all partial
limits of the sequence.

a) Show: L(xn) is a closed subset of RN .
b) Suppose that the sequence {xn} is injective (i.e., for all m 6= n we have

xm 6= xn). Let X := x•(Z+) = {xn | n ∈ Z+} be the set of terms of the
sequence. Show that L(xn) is the set of accumulation points of X.

Exercise 1.29. Show: for every closed subset X ⊆ RN there is a sequence
{xn} in RN such that the set L(xn) of partial limits is X.

5. Uniform Continuity

Let A ⊆ RN . A function f : A → RM is uniformly continuous if for all
ε > 0 there is δ > 0 such that for all x, y ∈ A, if d(x, y) = ||x − y|| < δ, then
d(f(x), f(y)) = ||f(x)− f(y)|| < ε.
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The point of this definition is that ordinary continuity applies to one point at
a domain at a time, so for each fixed ε > 0, the δ that works for one point may not
work for another point. Uniform continuity means precisely that we may choose
the same δ to work for all points at once. Thus uniformly continuous functions are
continuous. The converse is not always true.

Example 5.1. Consider the continuous function f : R→ R by f(x) = x2. We
claim that f is not uniformly continuous. Indeed, for a positive integer n, take
x ∈ R and y = x+ δ. Then

|f(x)− f(y)| = |(x+ δ)2 − x2| = |2xδ + δ2|.

No matter how small δ is, this quantity will still be large if |x| is sufficiently large,
so in fact for no ε > 0 is there a δ > 0 such that |x−y| < δ implies |f(x)−f(y)| < ε.

Example 5.2. Consider the continuous function f : (0, 1) → R by f(x) = 1
x .

We claim that f is not uniformly continuous. Take x ∈ (0, 1) and y = x+ δ. Then

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

x+ δ

∣∣∣∣ =

∣∣∣∣ δ

x(x+ δ)

∣∣∣∣.
For each fixed δ, as x→ 0 the above expression tends to ∞, so for no ε > 0 is there
a δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.

In the first example the domain is closed but not bounded. In the second example
the domain is bounded but not closed.

Here is a sequential characterization of uniform continuity:

Proposition 1.26. Let X ⊆ RN be a subset, and let f : X → RM be a
function. The following are equivalent:

(i) f is uniformly continuous.
(ii) For all pairs of sequences {xn} and {yn} in X such that d(xn,yn) → 0,

we have d(f(xn), f(yn))→ 0.

Proof. First suppose that (i) fails: then there is some ε > 0 such that for all
δ > 0 there are xδ,yδ ∈ X such that ||xδ − yδ|| < δ and ||f(xδ) − f(yδ)|| ≥ ε. In
particular, for each n ∈ Z+ this holds for δ = 1

n . Let’s write xn and yn in place of

x 1
n

and y 1
n

: then for all n ∈ Z+ we have d(xn,yn) < 1
n and d(f(xn), f(yn)) ≥ ε.

In particular d(f(xn), f(yn)) fails to converge to 0, so condition (ii) fails.
Now suppose that condition (ii) fails: then we have sequences {xn} and {yn}

in X such that xn−yn converges to 0 but f(xn)−f(yn) fails to converge to 0. The
latter means that there is some ε > 0 and infinitely many positive integers n such
that ||f(xn)−f(yn)|| ≥ ε. This infinite set of positive integers defines subsequences
xnk and ynk . Because passing to a subsequence preserves convergence we have

lim
k→∞

xnk − ynk → 0,

and now ||f(xnk) − f(ynk)|| ≥ ε for all positive integers k. Beause xnk − ynk
converges to 0, for all δ > 0 there is k ∈ Z+ such that ||xnk − ynk || < δ, and we
still have ||f(xnk)− f(ynk)|| ≥ ε. So condition (i) fails. �

Lemma 1.27. Let {xn} and {yn} be sequences in RN with d(xn,yn) → 0. If
xn → L ∈ RN , then also yn → L.
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You are asked to prove Lemma 1.27 in Exercise 1.32.

Theorem 1.28 (Uniform Continuity Theorem). Let X ⊆ RN be sequentially
compact. Then every continuous function f : X → RM is uniformly continuous.

Proof. Seeking a contradiction, we suppose that f is not uniformly contin-
uous. Then by Proposition 1.26 there are sequences {xn} and {yn} in X with
d(xn,yn)→ 0 and d(f(xn), f(yn)) not converging to 0. As we saw in the proof of
Proposition 1.26, this means that there is ε > 0 and subsequences {xnk} and {ynk}
such that d(xnk ,ynk) ≥ ε for all k ∈ Z+. Thus if X is not uniformly continuous
then there are sequences {xn} and {yn} in X such that d(xn,yn) → 0 and ε > 0
such that d(f(xn), f(yn)) ≥ ε for all n ∈ Z+.

We will use the sequential compactness of X to get a contradiction. Indeed,
since X is sequential compact, there is a subsequence {xnk} that converges to some
element of X, say L. Since xn − yn → 0, also xnk − ynk → 0, so by Lemma 1.27
the sequence {ynk} also converges to L. Because f is continuous, we have

f(xnk)→ f(L) and f(ynk)→ f(L),

from which it follows that f(xnk)− f(ynk)→ 0 and thus for all sufficiently large k
we have d(xnk ,ynk) < ε. Contradiction! �

So here is a question that is so much more than fair: why uniform continuity?
What we have established up to this point is that uniform continuity is a variant of
continuity that is in general subtly stronger, still has a sequential characterization,
and that the two concepts coincide on closed, bounded subsets of Euclidean space.
But...what’s the point?

One thing that makes the study of theoretical mathematics challenging is that
key definitions emerge after years (centuries, here) of work on specific problems.
When the mathematics is presented however it is much more efficient to present the
definitions first and the application later on. Indeed, later on in this course we will
absolutely want to know that every continuous function f : [a, b]→ R is uniformly
continuous: this will be the key to showing that every such function is Riemann
integrable. However, I would like to show an application of uniform continuity now,
so in the next section we consider the extension problem for continuous functions.

5.1. Exercises.

Exercise 1.30. Use Proposition 1.26 to show that the function of Example 5.1
is not uniformly continuous.

Exercise 1.31. Use Proposition 1.26 to show that the function of Example 5.2
is not uniformly continuous.

Exercise 1.32. Let {xn} and {yn} be sequences in RN with d(xn,yn)→ 0. If
xn → L ∈ RN , show that also yn → L.

Exercise 1.33. State and prove an analogue of Exercise 1.26 for uniform con-
tinuity.

Exercise 1.34. Let M,N,P ∈ Z+. Let X ⊆ RN and let Y ⊆ RM . Let
f : X → RM and let g : Y → RP be functions. Suppose that f(X) ⊆ Y , so that the
composition g ◦ f is defined. Show: if f and g are both uniformly continuous, so is
g ◦ f .
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Exercise 1.35. A function f : R→ R is called periodic if there is a ∈ R\{0}
such that for all x ∈ R we have f(x+a) = f(a). Show: a function that is continuous
and periodic is uniformly continuous.

Exercise 1.36. Let f : R → R be a polynomial function, say f(x) = anx
n +

. . .+ a1x+ a0 with n ∈ Z≥0 and an 6= 0.

a) Suppose that f is a linear function (plus a constant, the linear algebraists
would add): i.e., that n ≤ 1. Show: f is uniformly continuous.

b) Suppose that n ≥ 2. Show: f is not uniformly continuous.
c) Can you generalize this to polynomials f : RN → R?

Exercise 1.37. We say that a function f : RN → RM vanishes at infinity
if for all ε > 0 there is R > 0 such that for all x ∈ RN , if ||x|| > R then ||f(x)|| < ε.
Show: if f is continuous and vanishes at infinity, then f is uniformly continuous.

Exercise 1.38. Let X ⊆ RN and let f : X → RM be uniformly continuous.
Show: if X is bounded, then f(X) is bounded.

6. Extending Continuous Functions

Suppose X is a subset of RN and f : RN → RM is a continuous function. It is
natural to ask: can f be extended to a continuous function on all of RN?

Example 6.1. Let f : [a, b] → R be continuous. Then f extends continuously
to all of R: indeed, we can put f(x) = f(a) for all x < a and f(x) = f(b) for all
x > b. This works!

Example 6.2. The function f(x) = 1
x is a continuous function on (0, 1] that

does not extend continuously to all of R. In the language of calculus, we would
say that limx→0+ f(x) =∞, which prevents such an extension. This is correct, but
here is an explanation using the language and concepts we have been developing: f
is continuous at a point x if for all ε > 0 f maps some ball B◦(x, δ) into the ball
B◦(f(x), ε). In particular f must be bounded in some small ball around x. Since
f((0, δ)) = (1

δ ,∞), no matter how we define f at 0, the function will be unbounded
in any δ-ball around 0, so it does not have any continuous extension to [0, 1].

One moral one can extract from this is:

Proposition 1.29. Let f : X ⊆ RN → RM . If f has a continuous extension
to RN , then for all bounded subsets Y ⊆ X, the image f(Y ) is bounded.

Proof. It is enough to see that for f : RN → RM , if Y ⊆ RN is bounded then
so is f(Y ). If Y is bounded, then it is contained in a closed ball B, which is closed
and bounded, so f(B) is closed and bounded, so f(Y ) ⊆ f(B) is bounded. �

This criterion is however not sufficient.

Example 6.3. The function f : R \ {0} → R defined by f(x) = sin(1/x) is not
only bounded on every bounded subset; it is just bounded. Nevertheless, it does not
extend continuously to R, as is left as an exercise.

Let us worry about extending a continuous function one point at a time. There are
two cases of this; one is trivial, and the other is not.
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Example 6.4. Let f : (0, 1) → R be a continuous function. Suppose we want
to extend f to a continuous function on (0, 1) ∪ {2}. There is precisely no problem
here: for any L ∈ R we can put f(2) := L, and the function f : (0, 1) ∪ {2} will
be continuous. Why? Because for any ε > 0, take δ = 1: we need to check that if
|x − 2| < 1 then |f(x) − L| < ε. But the only x ∈ (0, 1) ∪ {2} with |x − 2| < 1 is
x = 2 itself, and |f(2)− L| = 0.

This example motivates the following definition: let A be a subset of RN . An
isolated point of A is a point L ∈ A such that for some δ > 0 we have B◦(L, δ)∩
A = {L}. In other words, a point of A is isolated if for some δ > 0 the only point
of A that is within δ of L is L itself.

Proposition 1.30. Let A ⊆ RN , and let L ∈ A be an isolated point. Then
every function f : A→ RM is continuous at L.

Proof. This is the same argument as in Example 6.4: if δ > 0 is such that
B◦(L, δ) ∩ A = {L}, then for any ε > 0, we have that for all x ∈ A, d(x, L) <
δ =⇒ d(f(x), f(L) < ε....because the only x that satisfies the first inequality is
x = L! �

In terms of the extension problem, this means: if L is an isolated point of A, then
every continuous function f on A \ {L} extends continuously to A, and we can do
so by defining f(L) to be whatever we want!

Okay, that was indeed a trivial case. Let’s move on to the other case, which involves
a variant of the notion of limit point that was alluded to before. By an injective
sequence in a set X, we mean a sequence {xn} in X for which the defining function
x• : Z+ → X is injective. In plainer language, an injective sequence is a sequence
in which every term is a different element of X. Now for a subset A ⊆ RN , an
accumulation point is a point L ∈ RN for which there is an injective sequence
{xn} in A converging to L.

Compare with the definition of a limit point: the only difference is that we have
added the word “injective.” Thus every limit point of A is an accumulation point
of A. The converse is not true in general: for instance if A is finite there are no
injective sequences in A, so A has no accumulation points, but as always, every
element of A is a limit point of A. In general:

Proposition 1.31. Let A ⊆ RN , and let L ∈ RN be a limit point of A. Then
exactly one of the following holds:

(i) L is an accumulation point of A.
(ii) L is an isolated point of A.

Proof. Step 1: If L is an isolated point of A, then a sequence {xn} in A
converges to L if and only if we have xn = L for all sufficiently large n. We leave
this as an exericse (Exercise 1.41). From this it follows that if L is an isolated
point of A then L is not the limit of any injective sequence in A, so L is not an
accumulation point of A. Thus we have shown that conditions (i) and (ii) are
mutually exclusive.
Step 2: Suppose that L is a limit point of A that is not an isolated point of A.
This means that either L /∈ A or L ∈ A but for all δ > 0 there is xδ ∈ A with
0 < ||xδ −L|| < δ. In each of these two cases we will produce an injective sequence
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in A that converges to L.
Case 1: L /∈ A. Because L is a limit point of A there is a sequence {xn} in A
that converges to A. The problem is that is may not be injective: i.e., terms may
repeat. However, any element of p ∈ A can show up only finitely many times in the
sequence: indeed, since p ∈ A and L /∈ A, we have p 6= L, so d = d(p, L) > 0, and
because the sequence converges to L, we have d(xn, L) < d for all sufficiently large
n. Therefore we can form a subsequence simply by omitting every term that is a
repetition: i.e., for which the same element of A has alerady occurred earlier in the
sequence. This builds an injective subsequence, which must still converge to L.
Case 2: L ∈ A. Because we have elements of A arbitrarily close to L but different
from L, we can build a sequence the nth term of which has distance less than 1

n from
L and is also closer than any previous term. In other words, let x1 be an element
of A \ {L} with d(x1, L) < 1. Let x2 be an element of A \ {L} with d(x2, L) <
min( 1

2 , d(x1, L)). Let x3 be an element of A\{L} with d(x3, L) < min( 1
3 , d(x2, L)).

And so forth. This gives an injective sequence in A converging to L. �

Note that an isolated point of A is necessarily a point of A, but an accumulation
point of A may or may not be a point of A. For instance, every point of an open
or closed ball is an accumulation point.

Since a set X ⊆ RN is closed if it contains all its limit points, but every limit
point of X is either an element of X or an accumulation point (again, both are
possible!), it follows that a set is closed iff it contains its accumulation points.

So now let’s consider the nontrivial case of the “one point extension problem”:
let A ⊆ RN , let L ∈ RN \A be an accumulation point of A, and let f : A→ RM be
a continuous function. The question is whether we can extend f to a continuous
function on A ∪ {L}. First we observe that there is at most one way to do this:
indeed, suppose that g : A ∪ {L} → RM is a continuous extension of f . Because L
is an accumulation point of A, there is a sequence {xn} in A such that xn → L.
By Theorem 1.15 we have

g(L) = g( lim
n→∞

xn) = lim
n→∞

f(xn).

This tells us how to define g(L), so its value must indeed be unique.

Theorem 1.32. Let A ⊆ RN , let L ∈ RN \ A be an accumulation point of A,
and let f : A → RM be a continuous function. Suppose there is some r > 0 such
that

f |B•(L,r)∩A : B•(L, r) ∩A→ RM

is uniformly continuous. Then f admits a continuous extension to A ∪ {L}.

Proof. Step 1: Above we assumed that the continuous extension g existed
and gave a formula for it: namely, choose a sequence {xn} in A such that xn → L;
then g(L) = limn→∞ f(xn). So we want to define

f(L) := lim
n→∞

f(xn).

In fact, so as to make use of the assumed uniform continuity, we want the sequence
xn to lie in B•(L, r). Because the original sequence converges to L, we can attain
this just by removing finitely many terms, so let’s do so. Now we need to show
first that this limit actually exists and second that it does not depend upon the
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sequence {xn} we chose.
Step 1a): Because we know that Cauchy sequences in RM converge, it is enough
to show that {f(xn)} is Cauchy. For this, we know that the sequence {xn} is
convergent in RN , so it is Cauchy. Happily, it is easy to show that uniformly
continuous maps send Cauchy sequences to Cauchy sequences: let ε > 0. Because
of the uniform continuity of f , there is δ > 0 such that for all y, z ∈ B•(L, r) ∩ A,
we have d(y, z) < δ =⇒ d(f(y), f(z)) ≤ ε. Since {xn} lies in B•(L, r) and is
Cuachy, there is K ∈ Z+ such that if m,n ≥ K then d(xm,xn) ≤ δ, and thus

∀m,n ≥ K, d(f(xm), f(xn)) < ε.

This shows that the sequence f(xn) converges.
Step 1b): Let {yn} be another sequence in B•(L, r) ∩ A such that yn → L. Then
d(xn,yn) → 0, so by Proposition 1.26, we have d(f(xn), f(yn)) → 0. Since both
sequences are convergent, it follows from Lemma 1.27 their limits are equal.
Step 2: It remains to show that our extended function is continuous at L. But in
fact this follows from our Sequential Characterization of Uniform Continuity, since
we have just shown that if if xn → L then f(xn) → f(L). Strictly speaking, we
showed this only for sequences each of whose terms lie in B•(L, r) ∩ A, but again
any sequence that converges to L becomes such a sequence after removing finitely
many terms; so any such sequence converges after removing finitely many of its
terms...so any such sequence converges. �

Let me quickly discuss some further developments of these ideas.

For a subset A of RN , we can define its closure A to be A together with all
of its limit points (equivalently, with all of its accumulation points). As the name
implies, A is then a closed set (this is not completely obvious: it comes down to
showing a limit point of limit points of A is still a limit point of A). In fact A
is the smallest closed set containing A. It follows from our discussion that every
continuous function had at most one continuous extension to A. Such a continuous
extension need not exist, but it will if f is uniformly continuous on A. But in fact
this condition is a little too strong, and the precise result is the following.

Theorem 1.33. Let A ⊆ RN , and let f : A→ RM be continuous. The following
are equivalent:

(i) f admits a continuous extension to A.
(ii) The restriction of f to each bounded subset of A is uniformly continuous.

We are not so terribly far away from a proof of this important result; it will be
developed in some exercises.

A subset X ⊂ RN is called dense if its closure is all of RN . This means: for
every y ∈ RN and every ε > 0, there is x ∈ X with d(x,y) < ε. For instance Q is
dense in R. Theorem 1.33 therefore shows that if you have a continuous function
on a dense subset of RN then it extends continuously to all of RN if and only if
it is uniformly continuous on each bounded subset. As an example, consider an
exponential function ax. If you think about it, we can make good sense of ax us-

ing the methods of precalculus when x is any rational number, but what does a
√
2

mean? In order to make sense of it we need to use some limiting process. One
way to define ax as a function on all of R is to show that ax : Q→ R is uniformly
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continuous on bounded subsets. (It is not uniformly continuous on all of Q.)

What if A is not dense, so A ( RN is closed? It turns out that if X ⊆ RN is
a closed subset and f : X → RM is continuous, then there is always a continuous
extension of f to all of RN : in fact there are always lots and lots of such exten-
sions. This is a special case of an important result called the Tietze Extension
Theorem, which you might learn about in Math 4200: see [GT, Theorem 2.89].

Before we depart this topic, let us observe that we have essentially rediscovered
the notion of limit. Namely, let X ⊆ RN , let c be an accumulation point of X,
and let f : X \ {c} → RM be a function. Then we define

lim
x→c

f(x) = L

to mean: if we extend f to X by setting f(c) := L, then f is continuous at c.
Again, the value L is then the common value limn→∞ f(xn) for all sequences {xn}
in A\{L} that converge to c, so it is uniquely determined, if it exists. It is immediate
to see that the limit is L iff: forall ε > 0 there is δ > 0 such that for all x ∈ A\{c},
we have d(x, c) < δ =⇒ d(f(x), L) < ε.

6.1. Exercises.

Exercise 1.39. Let A ⊆ RN and let c be an isolated point of A. Show: every
function f : A→ RM is continuous at c.

Exercise 1.40. Show that the function f : R\{0} → R given by f(x) = sin( 1
x )

has no continuous extension to 0.

Exercise 1.41. Let A ⊆ RN , and let L ∈ A be an isolated point. Let {xn}
be a sequence in A. Show that xn → L if and only if there is K ∈ Z+ such that
xn = L for all n > K.

Exercise 1.42. Let A ⊆ RN . Let A be the union of A and the limit points of
A.

a) Show: A is closed.
b) Show: A is the intersection of all closed subsets of RN containing A.
c) Show: A is bounded iff A is sequentially compact.

Exercise 1.43. Let X ⊆ RN . Use Bolzano-Weierstrass (Theorem 1.11) to
show that the following are equivalent:

(i) X has an accumulation point in RN .
(ii) There is some bounded subset B ⊆ RN such that X ∩B is infinite.

Exercise 1.44. Let A ⊆ RN be bounded. Let f : A→ RM be continuous.

a) Show that the following are equivalent:
(i) f is uniformly continuous.

(ii) f admits a continuous extension to A.
b) Show that under the equivalent condiitons of part a), the continuous ex-

tension of f to g : A→ RM is unique and uniformly continuous.

Exercise 1.45. Let A ⊆ RN , and let f : A→ RM .

a) Show that f is continuous iff its restriction to each bounded subset of f is
continuous.
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b) Show: f admits a continuous extension to A iff its restriction to each
bounded subset of A is uniformly continuous.

The remaining exercises make use of the following definitions: let X ⊆ RN . We
say that X is discrete if every point of X is an isolated point. We say that X is
uniformly discrete if there is δ > 0 such that for all x1, x2 ∈ X, if ||x1 − x2|| < δ
then x1 = x2.

Exercise 1.46. a) Show: if X is uniformly discrete, then X is discrete.
b) Show { 1n | n ∈ Z+} is a subset of R that is discrete, not uniformly discrete

and not closed.
c) Show: if X is uniformly discrete, then X is closed.
d) Find a closed subset X ⊆ R that is discrete but not uniformly discrete.

Exercise 1.47. Let X → RN be a subset.

a) Show that the following are equivalent:
(i) X is discrete.

(ii) Every function f : X → RM is continuous.
(iii) Every function f : X → R is continuous.

b) Show that the following are equivalent:
(i) X is uniformly discrete.

(ii) Every function f : X → RM is uniformly continuous.
(iii) Every function f : X → R is uniformly continuous.

Exercise 1.48. Let X ⊆ RN . Show that the following are equivalent:

(i) Every continuous function f : X → RM is uniformly continuous.
(ii) Every continuous function f : X → R is uniformly continuous.
(iii) X is either sequentially compact or uniformly discrete.





CHAPTER 2

Derivatives and Inverse Functions

1. Functional Limits

Let X ⊆ RN be a nonempty subset, and let c ∈ X be a nonisolated point. For
a function f : X \ {c} → RM , recall that we say that limx→c f(x) = L if definining
f(c) := L makes f continuous at c. Spelling out, this means: for all ε > 0, there is
δ > 0 such that for all x ∈ X, if 0 < ||x− c|| < δ then ||f(x)− L|| < ε. If the limit
exists, then its value is unique.

The following is a variation on the fact that compositions of continuous functions
are continuous.1

Proposition 2.1. Let X ⊆ RN and Y ⊆ RM , and let f : X \ {c} → RM and
g : Y → RP . Suppose that f(X) ⊆ Y . Let c ∈ X be a nonisolated point. Then: if
limx→c f(x) = L and limy→L g(y) = M . Then

lim
x→c

g(f(x)) = M = g( lim
x→c

f(x)).

Proof. Define f at c by f(c) := L; then f is continuous at c. There is a
sequence {xn} in X converging to c, hence f(xn) converges to f(c) = L, so L is a
limit point of Y . If L /∈ Y , we put g(L) := M ; if L ∈ Y , then we redefine g(L) := M .
Either way this makes g continuous at M . By Proposition 1.20, the composition
g ◦ f is then continuous at c, so limx→c g(f(x)) = g(f(c)) = g(L) = M . �

1.1. Exercises.

Exercise 2.1 (Squeeze Theorem). Let X ⊆ RN , and let c ∈ X◦. Let f :
X \ {c} → R be a function. Let δ > 0 be such that B◦(c, δ) ⊆ X, and suppose there
are functions

m,M : B◦(c, δ) \ {c} → R
such that

∀x ∈ B◦(c, δ) \ {c}, m(x) ≤ f(x) ≤M(x)

and
lim
x→c

m(x) = L = lim
x→c

M(x).

Show: limx→c f(x) = L.

In the above statement of the Squeeze Theorem, it is in fact not critical that c be
an interior point of X: we could have worked with any accumulation point c of
X and in place of B◦(c, δ) used B◦(c, δ) ∩ X. We just wanted a relatively clean
statement.

1The annoying complicatedness of the statement is again a sign that continuity is the funda-
mental concept on which limits should be based, not the other way around.

33
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Exercise 2.2. Let X ⊆ R, and let a be an accumulation point of X. We say
that the right-handed limit limx→a+ f(x) = L exists if a is still an accumulation
point of X ∩ [a,∞) and upon restricting the domain from X to X ∩ [a,∞), the
limit exists and is equal to L. We say that the left-handed limit limx→a− f(x) =
L exists if a is still an accumulation point of X ∩ (−∞, a] and upon restricting
the domain from X to X ∩ (−∞, a]), the limit exists and is equal to L. Show:
limx→a f(x) exists if and only if limx→a+ f(x) and limx→a− f(x) both exists and
are equal, in which case the common value is limx→a f(x).

2. The Derivative

Suppose now that X ⊆ R, that x ∈ X is an accumulation point of X, and we have
f : X → R. (Thus with respect to the notation of the previous paragraph we have

taken N = M = 1.) We say that f is differentiable at c if limh→0
f(x+h)−f(x)

h
exists, and if so we denote this value by f ′(x) and call it the derivative of f at x.
We say that f : X → R is differentiable if it is differentiable at each point of X,
and if so we get a new function

f ′ : X → R, x 7→ f ′(x),

which is, of course, called the derivative of f .

An equivalent form of the limit defining f ′(a) is

lim
x→a

f(x)− f(a)

x− a
.

Remark. a) In practice, we will almost always apply this definition in
the case when X = I is an interval.

b) Our definition of derivative makes sense for functions f : X ⊆ R →
RM . In fact the same thing happens as usually happens for vector-valued
functions: we may write f = (f1, . . . , fM ) with fj : X → R and then f is
differentiable at c if and only if each fj(x) is differentiable at x, in which
case we have f ′(x) = (f ′1(x), . . . , f ′r(x)). Thus in a sense the analysis of
derivatives of a vector-valued function is a bit banal. The geometry of such
functions is still interesting – essentially these are parameterized curves
in RM – but we will not be studying it in this course.

c) On the other hand, it does not make sense to extend this definition (at
least, not verbatim) to functions of a vector variable: i.e., to f : X ⊆
RN → R for N ≥ 1, because then division of f(x + h) − f(x) by the
vector h doesn’t make sense. This is certainly not the end of the story:
there are several remedies. The one you have probably seen before is to
consider partial derivatives by holding all but one of the inputs fixed. As
the word “partial” suggests, there is also a “total’ derivative, which has a
more elaborate definition: the derivative of a function f : X ⊆ RN → RM

is a linear map L : RN → RM such that

lim
h→0

||f(x+ h)− f(x)− L(h)|||
||h||

= 0.

We will not be studying this definition in our course.

Proposition 2.2. Let X ⊆ R, and let a ∈ X be an accumulation point. Let
f : X → R be a function. If f is differentiable at a, then f is continuous at a.
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Proof. As we know, f is continuous at a if and only if limx→a f(x) exists and
is equal to f(a). So:

lim
x→a

(f(x)− f(a)) = lim
x→a

(
f(x)− f(a)

x− a

)
· (x− a)

= (
lim
x→a

f(x)− f(a)

x− a

)(
lim
x→a

x− a
)

= f ′(a) · 0 = 0.

Thus

0 = lim
x→a

(f(x)− f(a)) =
(

lim
x→a

f(x)
)
− f(a),

so

lim
x→a

f(x) = f(a). �

Thus differentiable functions are continuous. There are two statements that sound
vaguely similar to this but are not the same.

The first is “Continuous functions are differentiable.” Of course this assertion
is the logical converse of Proposition 2.2 so we should not necessarily expect it to
be true but rather inquire whether it is true. It isn’t.

Example 2.1. Let f : R → R by f(x) = |x|. This function is continuous: in
fact it is uniformly continuous with δ = ε for all ε > 0 (a “short map”). But it is
not differentiable at a = 0. Indeed,

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim
h→0

|h|
h
.

The function |h|h is

{
1 h > 0

−1 h < 0
, so it has no continuous extension to h = 0. So f

is not differentiable at 0.
There are a couple of followup remarks to make here:

a) If we restricted f to [0,∞), then it would be differentiable at 0. For then

in limh→0
|h|
h we are only conisdering positive values of h, so the limit

is 1. In general, if we have a subset X ⊆ R, a function f : X → R
and an accumulation point a ∈ X, we define the right handed limit
limx→a+ f(x) to exist if (i) a is still an accumulation point of X ∩ [a,∞)
and (ii) upon restricting the domain from X to X ∩ [a,∞), the limit at
a exists.2 When the right-handed limit defining the derivative exists, we
say that f is right-handed differentiable at a and write the f ′+(a).
There is a corresponding definition of left-handed limit and left-handed
derivative, denoted f ′−(a).

In our case of f(x) = |x| we have f ′+(0) = 1 and f ′−(0) = −1, and the
differing values of these left- and right-handed derivatives are what cause
the derivative overall not to exist.

2This shows by the way that our approach of allowing the domain of a limit to be a rather
general subset of RN is a good one: it allows us to handle certain variations on the limiting process

that one encounters in calculus in routine ways.
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b) The function f is differentiable at every a 6= 0. Indeed, if a > 0, then
there is δ > 0 – indeed, one may take δ = a – such that upon restriction
to (a − δ, a + δ) the function is just f(x) = x, which we surely know is
differentiable, with derivative 1. Because the derivative is defined by a
limit, it is a local property of f : the value of f ′ at a point a depends only
on the values of f in an arbtirarily small ball centered at a. So f ′(a) = 1
for all a > 0. Similarly, if a < 0, then there is δ > 0 – indeed, one may
take δ = |a| – such that upon restriction to (a − δ, a + δ) the function is
just f(x) = −x, which we surely know is differentiable, with derivative
−1. By the same discussion we have f ′(a) = −1 for all a < 0.

By the way, this is just about the mildest example of a continuous, nondifferentiable
function. Weierstrass used uniform convergence to construct functions f : R → R
that are continuous and differentiable at no point of R.

The second statement that sounds like “differentiable functions are continuous”
is “derivatives are continuous.” Since f is differentiable, f is continuous: but the
derivative f ′ is a different function. It does not have to be continuous:

Example 2.2. Let f : R → R by f(x) =

{
x2 sin(1/x) x 6= 0

0 x = 0
. Then f is

certainly differentiable away from 0 (we will shortly nail down the differentiation
rules from calculus that lead to this): indeed, for a 6= 0 we have

f ′(a) = 2x sin(1/x) + x2 · cos(1/x) · (−1/x2) = 2x sin(1/x)− cos(1/x).

We have

f ′(0) = lim
h→0

f(h)− f(0)

0
= lim
h→0

h2 sin(1/h)

h
= lim
h→0

h sin(1/h) = 0

because h → 0 and sin(1/h) is bounded. Therefore f is differentiable, and its
derivative is

f ′(x) =

{
2x sin(1/x)− cos(1/x) x 6= 0

0 x = 0
.

Since limx→0 f
′(x) does not exist, f ′ is not continuous at 0.

The fact that derivatives need not be continuous is often something of a nuisance.
A function f : X → R is called continuously differentiable, or C1 is f ′ : X → R
exists and is continuous. There are many, many theorems in analysis that have the
hypothesis that f is C1 rather than just that f is differentiable. On the other
hand, from the Fundamental Theorem of Calculus it will follow that every contin-
uous function is a derivative (again, not the same as “every continuous function
is differentiable”), which leads to the question “Which discontinuous functions are
derivatives?” We will not answer this question in this course, but we will see an
important property that every derivative must satisfy, continuous or not.

When it comes to the differentiation rules, we will mostly leave the task of confirm-
ing them to the reader.

Proposition 2.3. Let X be a subset of R, let a ∈ X be an accumulation point,
and let f, g : X → R be functions that are both differentiable at a.
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a) If C ∈ R then Cf is differentiable at a and (Cf)′(a) = Cf ′(a).
b) The function f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a).
c) The function fg is differentiable at a and (fg)′(a) = f ′(a)g(a)+f(a)g′(a).

d) If g(a) 6= 0, then 1
g is differentiable at a and (1/g)′(a) = −g′(a)

g(a)2 .

e) If g(a) 6= 0, then f
g is differentiable at a and (f/g)′(a) = g(a)f ′(a)−f(a)g′(a)

g(a)2 .

You are asked to prove Proposition 2.3 over the course of several exercises.

Now we want to prove the Chain Rule, which takes a bit more doing. In the
proof we will use the following result:

Lemma 2.4. Let X ⊆ R and let a ∈ X be an accumulation point. We suppose
that:

(i) The limit limx→a f(x) exists, and
(ii) There is L ∈ R such that for all δ > 0, there is x ∈ R such that 0 <
|x− a| < δ and f(x) = L.

Then: limx→a f(x) = L.

You are asked to prove Lemma 2.4 as an exercise.

Theorem 2.5 (Chain Rule). Let f and g be functions, each defined on a subset
of R and taking values in R Suppose that g ◦ f is defined, that f is defined and
differentiable at a ∈ R and that g is differentiable at f(a). Then g◦f is differentiable
at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. We have not used Leibniz notation for the derivative here and we will
probably never do so, but nevertheless we have all seen it and it motivates the
following attempted proof:

(g◦f)′(a) = lim
x→a

g(f(x))− g(f(a))

x− a
=

(
lim
x→a

g(f(x))− g(f(a))

f(x)− f(a)

)
·
(

lim
x→a

f(x)− f(a)

x− a

)
.

Since f is continuous at a, as x→ a we have f(x)→ f(a), and thus we may rewrite
the above as(

lim
f(x)→f(a)

g(f(x))− g(f(a))

f(x)− f(a)

)
·
(

lim
x→a

f(x)− f(a)

x− a

)
= g′(f(a))f ′(a).

There is however a gap in this argument: we multiplied and divided by f(x)−f(a):
what if that quantity is 0? Well, it could be, so we need to think carefully about
what happens if that is the case. More precisely, the above argument works so long
as f(x)−f(a) is nonzero for all x 6= a sufficiently close to a (at which f is defined).
So the other possibility is that for all δ > 0 there is x in the domain of f such that
0 < |x− a| < δ such that f(x) = f(a). In this case, by Lemma 2.4 we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= 0

and also

(g ◦ f)′(a) = lim
x→a

g(f(x))− g(f(a))

x− a
= 0,

(g ◦ f)′(a) = 0 = g′(f(a))f ′(a).

This completes the proof. �
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2.1. Exercises.

Exercise 2.3. We revisit the notation and assumptions of Exercise 2.2.
Show: f ′(x) exists if and only if f ′+(x) and f ′−(x) both exist and are equal, in

which case f ′(x) = f ′+(x) = f ′−(x).

Exercise 2.4. Let X ⊆ R, and let a be an accumulation point of X. Let
f : X → R.

a) Show: if f is continuous at a, then |f | is continuous at a.
b) Show by example that |f | can be continuous at a when f is not.
c) Show that the following are equivalent:

(i) f is differentiable at a, and either f(a) 6= 0 or f(a) = f ′(a) = 0.
(ii) f ′ is differentiable at a.

Exercise 2.5. Prove parts a) and b) of Proposition 2.3.

Exercise 2.6. Prove part c) of Proposition 2.3.

Exercise 2.7. Prove parts d) and e) of Proposition 2.3.

Exercise 2.8. Almost everyone thinks at first that the product rule should
read (fg)′(a) = f ′(a)g′(a). But actually this is a bad guess. Use dimensional
analysis to explain why this cannot be correct. (That is, assign dimensional units
to the input and output variables, figure out what the dimensional units of f ′ should
be, and show that the dimensional units of (fg)′ are not the same as those of f ′g′.)

Exercise 2.9 (Generalized Product Rule). Let X ⊆ R and let a ∈ X be an
accumulation point. Let f1, . . . , fn : X → R be functions that are each differentiable
at a. Show: f1 · · · fn is differentiable at a, and

(f1 · · · fn)′(a) = f ′1(a)f2(a) · · · fn(a) + . . .+ f1(a) · · · fn−1(a)f ′n(a).

Exercise 2.10. (Generalized Leibniz Rule) Recall that f (n) denotes the nth
derivative of f . Show: for all n ∈ Z+, if f and g are both n times differentiable
then so is fg, and

(fg)n(a) =

n∑
k=0

(
n

k

)
f (k)g(n−k).

Exercise 2.11. Use the methods of Math 3100 to show that (sinx)′ = cosx

and (cosx)′ = − sinx. That is, define sinx by
∑∞
n=0

(−1)nx2n+1

(2n+1)! and cosx by∑∞
n=0

(−1)nx2n

(2n)! and check the identity by termwise differentation. Please cite a

result from [SS] that justifies this termwise differentiation!

Exercise 2.12. Prove Lemma 2.4.

3. The Mean Value Theorem

3.1. Functions increasing or decreasing at a point. Let I ⊂ R be an
interval, and let a be an interior point of I. We say that a function f : I → R is
increasing at a if there is δ > 0 such (a − δ, a + δ) ⊆ I and for all x ∈ (a − δ, a)
and y ∈ (a, a+ δ) we have

f(x) ≤ f(a) ≤ f(y).
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The definition of strictly increasing at a is the same as for increasing at a except
that the conclusion is

f(x) < f(a) < f(y).

Thus the idea of being increasing (resp. strictly increasing) at a is that all points x
slightly to the left of a have a function value f(x) that is no larger (resp. smaller)
than the value f(a) at a, which is no larger (resp. smaller) than the value f(y) at
all points y slightly to the right of a.

We have similar definitions for decreasing at a and strictly decreasing at a
where the conclusions are respectively

f(x) ≤ f(a) ≤ f(y)

and
f(x) > f(a) > f(y).

Theorem 2.6. Let I be an interval, and let a ∈ I◦ (that is, a is an interior
point of I). Let f : I → R be differentiable at a.

a) If f ′(a) > 0, then f is strictly increasing at a.
b) If f ′(a) < 0, then f is strictly decreasing at a.

Proof. In the limit definition of the derivative, take ε = f ′(a). Then there is
δ > 0 such that for all x ∈ I with 0 < |x− a| < δ, we have∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < f ′(a),

or equivalently:

0 <
f(x)− f(a)

x− a
< 2f ′(a).

So: • If x ∈ (a−δ, a), then f(x)−f(a)
x−a is positive and x−a is negative, so f(x)−f(a)

is negative: that is, f(x) < f(a).

• If x ∈ (a, a+ δ), then f(x)−f(a)
x−a is positive and x− a is positive, so f(x)− f(a) is

positive: that is, f(x) > f(a).
b) This is similar enough to part a) that we leave it to the reader. One method is
simply to repeat the argument of part a) with some flipped inequalities. Those who
don’t like direct repetition may wish to reduce to part a) using Exercise 2.13. �

We note that when f ′(a) = 0, no conclusion can be drawn. For instance, if
f(x) = x3, then f ′(0) = 0 and f is strictly increasing at 0. If f(x) = −x3,
then f ′(0) = 0 and f is strictly decreasing at 0. If f(x) = x2, then f ′(0) = 0 and f
is neither increasing at 0 nor decreasing at 0.

If X ⊂ RN and f : X → R is a function, we say f has a local minimum at
a ∈ X if there is δ > 0 such that f(a) is the minimum value of the restriction of
f to X ∩ B◦(a, δ): that is, for all x ∈ X with ||x − a|| < δ, we have f(x) ≥ f(a).
Similarly, we say f has a local maximum at a ∈ X if there is δ > 0 such that
f(a) is the maximum value of the restriction of X to X ∩ B◦(a, δ): that is, for all
x ∈ X with ||x− a|| < δ, we have f(x) ≤ f(a).

Theorem 2.6 is mainly of interest to us because of the following consequence that
should be familiar from calculus:
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Corollary 2.7. Let I be an interval, let a ∈ I◦. If f : I → R has a local
minimum or local maximum at a, then f ′(a) = 0.

Proof. We will show the contrapositive: if f ′(a) 6= 0, then f has neither a
local minimum nor local maximum at a. Indeed, if f ′(a) > 0, then by Theorem
2.6a), the function f is strictly increasing at a: thus it takes smaller values slightly
to the left of a – so does not have a local minimum at a – and larger values slightly
to the right of a – so does not have a local maximum at a. Similarly, if f ′(a) < 0,
then by Theorem 2.6b) the function f is strictly decreasing at a so again takes both
larger and smaller values in any small interval around a, so again has neither a local
minimum nor local maximum at a. �

Now here comes an intriguing result showing that derivatives have the Intermediate
Value Property. Let’s firm up some terminology: for real numbers x, y, z, we say
that y lies between x and z if either x < z < y or y < z < x.

Theorem 2.8 (Darboux). Let f : [a, b] → R be a differentiable function. If
L ∈ R lies in between f ′(a) and f ′(b), then there is c ∈ (a, b) such that f ′(c) = L.

Proof. We will handle the case in which f ′(a) < L < f ′(b); the case in which
f ′(b) < L < f ′(a) will be left to the reader.
Step 1: First suppose that L = 0: so f ′(a) < 0 < f ′(b). By the Extreme Value
Theorem, f attains a minimum at some point c ∈ [a, b]. Because f ′(a) < 0, the
function f is strictly decreasing at a, so we cannot have c = a; similarly, because
f ′(b) > 0, the function f is strictly increasing at b, so we cannot have c = b.
Therefore c ∈ (a, b), so by Corollary 2.7 we have f ′(c) = 0.
Step 2: In general, we have f ′(a) < L < f ′(b). To reduce to Step 1, we define
g : [a, b]→ R by g(x) := f(x)− L(x). Then g is again differentiable, and moreover
g′(a) = f ′(a) − L < 0 and g′(b) = f ′(b) − L > 0, so by Step 1 there is c ∈ (a, b)
such that 0 = g′(c) = f ′(c)− L. Thus f ′(c) = L. �

This curious similarity between continuous functions and derivatives motivates us
to formalize the Intermediate Value Property. Here is a clean way to do so: if I is
an interval, we say a function f : I → R is Darboux if for all a < b in I, every value
of R in between f(a) and f(b) lies in the image f(I). In other words, if f(a) < f(b)
then the image f(I) contains the interval [f(a), f(b)], while if f(a) > f(b) then the
image f(I) contains the interval [f(b), f(a)].

Remark. The Intermediate Value Theorem tells us that continuous functions
f : I → R are Darboux: for a < b in I, the Intermediate Value Theorem applied to
f |[a,b] : [a, b] → R tells us that every value in between f(a) and f(b) lies in f(I);
exactly the same restriction argument holds if f = g′ is a derivative.

Thus we know two classes of Darboux functions: continuous functions and deriva-
tives. Actually the second class includes the first: later, as an application of the
Fundamental Theorem of Calculus, we will see that every continuous function is a
derivative. On the other hand, not every Darboux function is a derivative (if this
were true, the problem of characterizing derivatives would have an easier answer
than it actually does).

Suppose that I is an interval, c ∈ I◦ and f : I → R is a function. We say that
f has a simple discontinuity at c if each of the one-sided limits limx→c+ f(x)
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and limx→c− f(x) exist but f is not continuous at c: this means that either
limx→c+ 6= f(c) or limx→c− f(c) (or both). (Alternate terminology: jump discon-
tinuity.) In Exercise 2.15 you are asked to show that Darboux functions cannot
have simple discontinuities. What is interesting about this result is that it does
not say that Darboux functions must be continuous: again, the function f ′(x) of
Example 2.2 is a dicontinuous derivative. So when Darboux functions do have
discontinuities, these functions must be “complicated.”

3.2. The Mean Value Theorem.

Theorem 2.9 (Rolle’s Theorem). Let f : [a, b]→ R be differentiable. If f(a) =
f(b), then there is c ∈ (a, b) such that f ′(c) = 0.

Proof. Since f is continuous and [a, b] is closed and bounded, by the Extreme
Value Theorem f attains a minimum value m and a maximum value M . Suppose
first that the minimum is attained at an interior point: there is c ∈ (a, b) such that
f(c) = m. By Corollary 2.7 we must then have f ′(c) = 0, completing the argument
in this case. Now suppose that the maximum is attained at an interior point: there
is c ∈ (a, b) such that f(c) = M . Again we may apply Corollary 2.7 to conclude
that f ′(c) = 0, completing the argument in this case.

So we are left to deal with the case in which the minimum and maximum both
occur at the endpoints of [a, b]: that is, we either have f(a) = m and f(b) = M or
we have f(a) = M and f(b) = m. But we’ve assumed that f(a) = f(b) so either
way we have m = M . That is, the minimum value is the same as the maximum
value, so f is constant and thus its derivative is 0 at every point of (a, b). �

Theorem 2.10 (Mean Value Theorem). Let f : [a, b] → R be continuous and
differentiable at every c ∈ (a, b). Then there is c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We’ll deduce this from Rolle’s Theorem (Theorem 2.9).
Namely, there is a unique line in R2 joining the points (a, f(a)) and (b, f(b)),

and let L(x) be this line, viewed as a function of x. (We could certainly write down
a formula for L(x), but we don’t need to.) We put

g : [a, b]→ R by g(x) := f(x)− L(x).

Since f and L are differentiable, so is g. Moreover we have

g(a) = f(a)− L(a) = f(a)− f(a) = 0 = f(b)− f(b) = f(b)− L(b) = g(b).

Applying Rolle’s Theorem to g, there is c ∈ (a, b) such that

0 = g′(c) = f ′(c)− L′(c),

so

f ′(c) = L′(c).

But L′(c) is the slope of L, which is f(b)−f(a)
b−a . We’re done. �

There is a strengthening of the Mean Value Theorem that is sometimes useful,
though perhaps only for things that we will not actually cover in our course, like
l’Hôpital’s Rule and Taylor’s Theorem. Here it is:
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Theorem 2.11 (Cauchy Mean Value Theorem). Let f, g : [a, b] → R be con-
tinuous and moreover differentiable on (a, b). Then there is c ∈ (a, b) such that

(5) (f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

Proof. Case 1: Suppose g(a) = g(b). By Rolle’s Theorem, there is c ∈ (a, b)
such that g′(c) = 0. For this value of c, both sides of (5) are 0 so (5) holds.
Case 2: Suppose g(a) 6= g(b), and define

h(x) = f(x)−
(
f(b)− f(a)

g(b)− g(a)

)
g(x).

Then h is continuous on [a, b], differentiable on (a, b), and

h(a) =
f(a)(g(b)− g(a))− g(a)(f(b)− f(a))

g(b)− g(a)
=
f(a)g(b)− f(b)g(a)

g(b)− g(a)
,

h(b) =
f(b)(g(b)− g(a))− g(b)(f(b)− f(a))

g(b)− g(a)
=
f(a)g(b)− f(b)g(a)

g(b)− g(a)
= h(a).

Applying Rolle’s Theorem to h, we get a c ∈ (a, b) such that

0 = h′(c) = f ′(c)−
(
f(b)− f(a)

g(b)− g(a)

)
g′(c),

or equivalently,

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c). �

3.3. Mean Value Inequalities. The following result is a consequence of the
Mean Value Theorem:

Corollary 2.12 (Mean Value Inequality). Let f : [a, b]→ R be continuous on
[a, b] and differentiable on (a, b). Suppose there are real numbers m ≤M such that

∀x ∈ (a, b), m ≤ f ′(x) ≤M.

Then we have

m(b− a) ≤ f(b)− f(a) ≤M(b− a).

Proof. By the Mean Value Theorem, we have f(b)−f(a)
b−a = f ′(c) for some

c ∈ (a, b). Since m ≤ f ′(c) ≤M , we have

m(b− a) ≤ f ′(c)(b− a) = f(b)− f(a) = f ′(c)(b− a) ≤M(b− a). �

Here is a slightly less precise consequence of Corollary 2.12:

Corollary 2.13 (Norm Mean Value Inequality). Let f : [a, b]→ R be contin-
uous and differentiable on (a, b). Define

||f ′|| := sup
c∈(a,b)

||f ′(c)||,

and assume that ||f ′|| <∞: that is, we assume that f ′ is bounded on (a, b). Then:

||f(b)− f(a)|| ≤ ||f ′||(b− a).

Proof. Indeed, for all x ∈ (a, b), we have −||f ′|| ≤ f ′(c) ≤ ||f ′||. Applying
Corollary 2.12 with m = −||f ′|| and M = ||f ′|| gives the result. �
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The Norm Mean Value Inequality is arguably more intuitive than the Mean Value
Theorem. If we interpret the derivative of a function as its instantaneous velocity,
MVT says that there is always at least one interior point at which the instantaneous
velocity at that point is equal to the average velocity over the interval [a, b]. While
the statement is crisp and appealing, I wouldn’t find it to be “obvious” if I didn’t
know the proof. On the other hand, the Norm Mean Value Inequality says that
for f : [a, b]→ R, an upper bound on the displacement between time a and time b
is (b− a) times the maximum speed. This seems intuitively clear, since if you are
given a speed limit L > 0 and asked to maximize your displacement, then it seems
clear that the way to do this is to either move to the right at speed L at all times,
giving a displacement of L(b − a) or to move to the left at speed L at all times,
giving a displacement of −L(b− a).

In fact this latter argument makes sense for vector-valued functions f : [a, b]→ RM :
if a prisoner escapes their prison at time a and has a maximum speed of L, then by
time b they cannot have gone any farther than L(b − a) from where they started.
Indeed this is mathematically correct:

Theorem 2.14 (Vector-Valued Norm Mean Value Inequality). Let f : [a, b]→
RM be continuous and differentiable on (a, b). (Recall that the latter simply means
that if f = (f1, . . . , fM ), then each fj : (a, b)→ R is differentiable.) Suppose

||f ′|| := sup
c∈(a,b)

||f ′(c)|| <∞.

Then we have

||f(b)− f(a)|| ≤ ||f ′||(b− a).

Proof. [R, p. 113–114] Define g : [a, b]→ R by

g(t) := (f(b)− f(a)) · f(t).

(Note that we have taken the dot product of two vector-valued functions to get
a scalar-valued function.) Simply by writing out components, one sees that since
f is differentiable on (a, b), so is g, so the Mean Value theorem applies: there is
c ∈ (a, b) such that

g(b)− g(a) = (b− a)g′(c).

Now

g(b)− g(a) = (f(b)− f(a)) · f(b)− (f(b)− f(a)) · f(a)

= (f(b)− f(a)) · (f(b)− f(a)) = ||f(b)− f(a)||2,
while

(b− a)g′(c) = (b− a)

(
(f(b)− f(a)) · f ′(c)

)
≤ (b− a)||f(b)− f(a)|| · ||f ′(c)||

≤ (b− a)||f(b)− f(a)|| · ||f ′||;
we used Cauchy-Schwarz to get the first inequality and the definition of ||f ′|| to get
the second. So

||f(b)− f(a)||2 = g(b)− g(a) = (b− a)g′(c) ≤ (b− a)||f(b)− f(a)|| · ||f ′||.
The result holds trivially if f(b) = f(a); otherwise, we may divide through by
||f(b)− f(a)|| to get

||f(b)− f(a)|| ≤ ||f ′||(b− a). �
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Example 3.1. Let f : [0, 2π] → R by f(x) = (cosx, sinx). Then for all x
we have f ′(x) = (− sinx, cosx), so ||f ′(x)|| = 1. On the other hand, we have
f(2π) − f(0) = (1, 0) − (1, 0) = (0, 0). Thus whereas in 1 dimension, knowing the
instantaneous speed (i.e., |f ′(x)|) at all points determines the absolute value of the
displacement, in more than 1 dimension this is no longer the case...e.g. because
you can travel in a circle at constant speed! This example seems to show that there
is no higher analogue of the Mean Value Theorem – and indeed, no such result is
known to me – whereas there is a higher dimensional analogue of the Norm Mean
Value Inequality. In some circles this is a convincing argument for preferring MVI
over MVT...but I don’t see why we can’t have both.

Let me end this section with an observation that I made rather recently...in 2022,
after hearing five short lectures on MVT in the same week. MVT is often moti-
vated as a theorem that can be used by the highway patrol: suppose that a (linear!)
highway has cameras set up at various checkpoints. Suppose there are cameras at
checkpoints A < B and that these cameras observe a car passing the first check-
point at time a and the second checkpoint at time b. Then the average velocity is
B−A
b−a . It follows from the Norm Mean Value Inequality that for at least one point

the car had speed at least B−A
b−a : for if not, the displacement would be less than

B − A. So the highway patrol can award a ticket even if they don’t witness the
speeding happening in between the checkpoints.

After hearing this argument three or four times in rapid succession, finally some-
thing occurred to me: how do we know that the car’s position is a differentiable
function of time? Honestly, I think we don’t. (For what it’s worth, I mentioned
this to my PhD student Freddy Saia and he did not agree. It’s not so much a math
question as a question about how we use mathematics to model physical reality.)
The differentiability on (a, b) is a hypothesis of all of these results...so maybe a
savvy driver could evade the ticket by claiming to have driven nondifferentiably?

It turns out that the answer is no if we enlarge our definition of “speeding.” Namely,
for M > 0, say that a function f : [a, b]→ R is an M-speeder if for all δ > 0 there

are a ≤ x < y ≤ b with 0 < y−x < δ and |f(y)−f(x)|y−x > M . In other words, you are

an M -speeder if there are arbitrarily short intervals on which your average speed
exceeds M . If I say so myself, I find this definition rather reasonable: covering too
much distance in too small a time is exactly the unsafe behavior that speed limits
are trying to prevent.

I proved the following result:

Theorem 2.15. Let f : [a, b]→ R be any function. If for some M > 0 we have
|f(b)−f(a)|

b−a > M , then f is an M -speeder. More precisely, there is c ∈ [a, b] such

that for all δ > 0 there is x ∈ [a, b] with 0 < |c− x| < δ and |f(c)−f(x)||c−x| > M . If f

is continuous, we may take c ∈ (a, b).

For the proof, please see [Cl22]. The level of the argument is appropriate for our
course; it’s just that at our level it will probably take some time to understand it.



3. THE MEAN VALUE THEOREM 45

Theorem 2.15 generalizes the Norm Mean Value Inequality, since if f is differen-
tiable then at the point c (which can be taken in (a, b) since differentiable functions
are continuous) the given conditions imply that |f ′(c)| > M . In fact the result
holds verbatim for functions f : [a, b]→ RM , taking norms instead of absolute val-
ues when appropriate. Finally, in the one-dimensional case I also give a normless
version with two inequalities; this generalizes the Mean Value Inequality.

3.4. Exercises.

Exercise 2.13. Let I ⊆ R be an interval, and let a be an interior point of I.

a) Show: f is increasing at a if and only if −f is decreasing at a.
b) Show: f is strictly increasing at a if and only if −f is strictly decreasing

at a.

Exercise 2.14. Treat the case of Theorem 2.8 in which f ′(a) > L > f ′(b).

Exercise 2.15. Let I be an interval, let c ∈ I, and suppose f : I → R has a
simple discontinuity at c. Show: f is not a Darboux function.

Exercise 2.16. Let I be an interval, and let f : I → R be differentiable.

a) Show: if f ′(x) ≥ 0 for all x ∈ I, then f is increasing.
b) Show: if f ′(x) > 0 for all x ∈ I, then f is strictly increasing.
c) Show: if f ′(x) ≤ 0 for all x ∈ I, then f is decreasing.
d) Show: if f ′(x) < 0 for all x ∈ I, then f is strictly decreasing.

Exercise 2.17. Let I be an interval, and let f : I → R be differentiable.

a) Suppose that f ′(x) ≥ 0 for all x ∈ I, so by Exercise 2.16, f is increasing.
If we moreover had that f ′(x) > 0 for all x ∈ I, then by Exercise 2.16b)
f would be strictly increasing. However, f may be strictly increasing even
when f ′(x) = 0 for some x ∈ I. Show that the following are equivalent:
(i) f is not strictly increasing.

(ii) There are a < b in I such that f |[a,b] : [a, b]→ R is constant.
b) Use the criterion of part a) to show that for all odd integers n ≥ 1, the

function f : R→ R by f(x) = xn is strictly increasing.
c) State an analogous criterion for a function to be strictly decreasing. (You

need not prove it.)

Exercise 2.18. Let f : I → R be a differentiable function.

a) [Zero Velocity Theorem]
Show: if f ′(x) = 0 for all x ∈ I, then f is constant.

b) [(Almost) Uniqueness of Antiderivatives] Suppose that f, g : I → R are
differentiable functions and that f ′ = g′. Show: there is C ∈ R such that
g = f + C: i.e., for all x ∈ I, we have g(x) = f(x) + C.

Exercise 2.19. Let k ∈ Z+. Suppose that the kth derivative f (k) of f exists
and is identically 0: f (k)(x) = 0 for all x ∈ I. Show: f is a polynomial function of
degree at most k. (Suggestion: use induction on k.)

Exercise 2.20. Let I be an interval, let c ∈ I◦, and let f : I → R. We suppose:

(i) f is continuous.
(ii) For all x ∈ I \ {c}, f is differentiable at x.

(iii) limx→c f
′(x) = L exists (as a real number).

Show: f is differentiable at c and f ′(c) = L.
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4. Inverse Functions

4.1. The Interval Image Theorem. Let us extend the notion of “between-
ness” from R to RN . If x and y are distinct points of RN , we say that z ∈ RN lies
between x and y if z lies on the line segment

xy := {(1− t)x+ ty | t ∈ [0, 1]}.
A subset X of RN is convex if whenever it contains distinct points x and y it also
contains all points in between, i.e., it also contains the line segment xy.

You are asked to show in an Exercise that if for all i in a set I we have a convex
subset Xi of RN , then the intersection

⋂
i∈I Xi is convex, but the union

⋃
i∈I Xi

need not be.

It is easy to see that intervals in R are convex. In fact:

Proposition 2.16. For a nonempty subset X ⊆ R, the following are equivalent:

(i) X is an interval.
(ii) X is convex.

Proof. (i) =⇒ (ii): this is not hard but is somewhat tedious because there
are so many different kinds of intervals. The first kind is R itself, which is certainly
convex. The next are (a,∞), [a,∞), (−∞, b) and (−∞, b]. If x < y are both in
(a,∞), then a < x, so if x < z < y then a < x < z and thus z ∈ (a,∞). Variations
of this same easy argument handle [a,∞), (−∞, b) and (−∞, b]. The remaining
intervals are the bounded intervals [a, b], [a, b), (a, b] and (a, b). Each of these is the
intersection of two unbounded intervals: e.g. [a, b] = [a,∞) ∩ (−∞, b], so they are
convex by Exercise 2.26.
(ii) =⇒ (i): Let X ⊆ R be a nonempty convex subset.
Case 1: Suppose that X is unbounded above and below. Then for all N ∈ Z+ there
is x ∈ X with x ≤ −N and y ∈ X with y ≥ N , so by convexity [−N,N ] ⊆ X.
Since this holds for all N , we have X = R.
Case 2: Suppose that X is unbounded above and bounded below; let a be the
infimum of X.
Case 2a): Suppose that a ∈ X. We claim that X = [a,∞). Indeed, since X
contains its infimum, a is the minimum element of X, so X ⊆ [a,∞). Conversely,
if x ∈ R is greater than a, then because X is unbounded above there is b ∈ X such
that x < b. Thus a, b ∈ X and x ∈ [a, b], so by convexity we have x ∈ X. So
X = [a,∞).
Case 2b): Suppose that a /∈ X. In a very similar manner we can show that
X = (a,∞).
Case 3: Suppose that X is unbounded below and bounded above. If b is the
supremum of X, then as in Case 2 we can show that X = (−∞, b] (if b ∈ X) or
X = (−∞,−b) (if b /∈ X).
Case 4: Suppose that X is bounded above and below: let a = inf X and b = supX.
Then again, we can show that X is one of [a, b], [a, b), (a, b] or (a, b) depending on
whether it contains a and on whether it contains b. �

Proposition 2.16 gives a simple description of all nonempty convex subsets of R.
Nothing like this holds for RN for any N ≥ 2: convex subsets are too complicated
to be “classified” in this way, although there is a rich theory concerning them.
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In Exercise 2.27 you are asked to deduce from Proposition 2.16 that boxes in RN
are convex. More generally, if for N1, . . . , Nk we are given a convex subset Xk of
RNk , then the Cartesian product

X =

k∏
i=1

Xi

is a convex subset of
∏k
i=1 RNk = RN1+...+Nk : Exercise 2.28.

Proposition 2.17. Closed balls in RN are convex.

Proof. Being convex is a translation-invariant property of a subset of RN :
that is, if X ⊆ RN , and a ∈ RN , then X is convex if and only if

a+X := {a+ x | x ∈ X}
is convex: this is true because the translate of a line segment is another line segment.
So it suffices to show that for r > 0 the closed ball B•(0, r) is convex. So, let
P,Q ∈ B•(0, r), and let t ∈ [0, 1]. Then we need to show that ||(1− t)P + tQ|| ≤ r.
Thank goodness for the Triangle Inequality:

||(1− t)P + tQ|| ≤ ||(1− t)P ||+ ||tQ||

= (1− t)||P ||+ (t)||Q|| ≤ (1− t)r + tr = r. �

Remark. Using Proposition 2.17 it is not hard to show that for any a ∈ RN
and r > 0, if X ⊆ RN satisfies:

B◦(a, r) ⊆ X ⊆ B•(a, r),
then X is convex. This suggests that convexity of a subset of RN is unaffected by
what happens “on the boundary.” And this suggestion is correct...though it is not
important enough to us to stop and formalize it, beyond noting that a convex subset
certainly need not be either open or closed.

Although our interest in convexity in Euclidean space is sincere, at the present time
our goal is something very specific:

Theorem 2.18 (Subinterval Image Theorem). Let I be an interval. For a
function f : I → R, the following are equivalent:

(i) The function f is Darboux.
(ii) For every subinterval J ⊆ I, the image f(J) is an interval.

Proof. (i) =⇒ (ii): Suppose f is Darboux. Let c and d be distinct points
of f(J), so there are a, b ∈ J with f(a) = c and f(b) = d; interchanging c and d if
necessary, we may assume that a < b. Because f is Darboux, f([a, b]) contains the
interval between c and d, hence so does f(J), since f(J) ⊇ f([a, b]). We have shown
that f(J) is convex, which by Proposition 2.16 implies that f(J) is an interval.
(ii) =⇒ (i): Let a < b be points of I. By assumption f([a, b]) is an interval, hence
f([a, b]) is a convex subset that contains f(a) and f(b), hence f([a, b]) contains the
interval between f(a) and f(b). This is the definition of a Darboux function. �

Thus Darboux functions are precisely the functions f : I → R that map each
subinterval of I onto a subinterval of R. However, just having f(I) be an interval
is not enough for f to be Darboux: Exercise 2.29 gives a counterexample.
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Corollary 2.19. If I is an interval and f : I → R is either continuous or the
derivative of some other function, then f(I) is an interval.

Proof. The Intermediate Value Theorem proved in the previous course [SS,
Thm. 2.7.6] says precisely that continuous functions are Darboux, whereas Dar-
boux’s Theorem (Theorem 2.8) and Remark 3.1 tells us that derivatives are Dar-
boux. Either way, Theorem 2.18 applies.3 �

It follows almost immediately from Corollary 2.19 and the Extreme Value Theorem
that if f : [a, b] → R is continuous, then f([a, b]) is a closed bounded interval:
this is Exercise 2.23a). (This is precisely the conjunction of the Intermediate and
Extreme Value Theorems from calculus, but for some reason stating it this way
does not seem to be standard.) The case where I is not both closed and bounded is
more interesting: in Exercise 2.23b) you are asked to show that if I and J are two
intervals in R such that I 6= [a, b] for any a ≤ b then there is a continuous function
f : I → R scuh that f(I) = J .

4.2. Inverses of Continuous Functions. Our main goal of this section is
to prove the following result.

Theorem 2.20. Let I be an interval, let f : I → R be an injective continuous
function, and put J := f(I). Then:

a) f : I → J is a bijection, so it has an inverse function f−1 : J → I.
b) The set J is also an interval.
c) The inverse function f−1 : J → R is also continuous.

Regarding Theorem 2.20, part a) is a general fact: if f : X → Y is injective, then
f also defines a surjective function from X to f(X). (Every function can be made
surjective by replacing its codomain with its image.) Thus f : X → f(X) is a
bijection, so it has a unique inverse function f−1 : f(X)→ X. Part b) is precisely
Theorem 2.18. What remains is to show that f−1 is also continuous: this is the crux.

We will come at this rather indirectly.

Lemma 2.21. Let X and Y be subsets of R, and let f : X → Y be a bijection,
with inverse function f−1 : Y → X.

a) If f is strictly increasing, then f−1 is strictly increasing.
b) If f is strictly decreasing, then f−1 is strictly decreasing.

Proof. a) Let y1 < y2 in Y . We want to show that f−1(y1) < f−1(y2).
Seeking a contradiction, we assume otherwise: f−1(y1) ≥ f−1(y2). Since f−1 is a
bijection, we cannot have equality, so we must have f−1(y2) < f−1(y1). Applying
the strictly increasing function f to both sides, we get

y2 = f(f−1(y2)) < f(f−1(y1)) = y1,

so y2 < y1, a contradiction.
b) Let y1 < y2 in Y . We want to show that f−1(y1) > f−1(y2). Again, suppose not;

3In fact for every subinterval J of I we know that f(J) is a subinterval. But restricting
a continuous function or a derivative to a subinterval, we still get a continuous function or a

derivative, so this more complicated conclusion doesn’t carry any more content.
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then we must have f−1(y1) < f−1(y2). Applying the strictly decreasing function f
to both sides, we get

y1 = f(f−1(y1)) > f(f−1(y2)) = y2,

so y1 > y2, a contradiction. �

Lemma 2.22 (Λ-V Lemma). Let I be an interval, and let f : I → R. The
following are equivalent:

(i) The function f is neither strictly increasing nor strictly decreasing.
(ii) At least one of the following holds:

(a) f is not injective: there are a < b in I with f(a) = f(b).
(b) f admits a Λ-configuration: there are a < b < c in I with f(a) <

f(b) > f(c).
(c) f admits a V -configuration: there are a < b < c in I with f(a) >

f(b) < f(c).

Lemma 2.22 is called the “Λ-V Lemma” because of the shapes of the letters Λ and
V : if a function defined on an interval is injective and not monotone, then we can
find three points a < b < c in I such that value of the function goes up from a to
b and then goes down from b to c – like the letter Λ – or we can find three points
a < b < c in I such that the value of the function goes down from a to b and then
goes up from b to c – like the letter V . The idea of the proof is straightforward: if
f is injective and neither increasing nor decreasing then there are points a < b such
that f(a) > f(b) (if not, f would be increasing) and there are also points c < d
such that f(c) < f(d) (if not, f would be decreasing).

Now there are various cases depending upon the ordering of the points a, b, c, d
and of the points f(a), f(b), f(c), f(d). For instance: suppose that a < b < c < d. If
f(b) < f(c), then going from a to b to c gives a V -configuration. On the other hand,
if f(b) > f(c), then going from b to c to d gives a V -configuration. For one more
case, suppose that a < c < b < d. If f(a) < f(c), then f(a) < f(c) > f(a) > f(b),
so going from a to c to b gives a Λ-configuration. If on the other hand f(a) > f(c),
then f(a) > f(c) < f(d), so going from a to c to d gives a V -configuration. In
Exercise 2.21 you are asked to work out the remaining cases.

Theorem 2.23. Let I be an interval, and let f : I → R be an injective Darboux
function. Then f is monotone.

Proof. It suffces to show that if f is injective and not monotone, then f is not
Darboux. By Lemma 2.22, f admits either a Λ-configuration or a V -configuration.
• Suppose first that f admits a Λ-configuation: there are a < b < c in I with

f(a) < f(b) > f(c). Then max(f(a), f(c)) < f(b), and if L ∈ (max(f(a), f(c)), f(b)),
then we have

f(a) < L < f(b) > L > f(c).

Since f is Darboux, there is d ∈ (a, b) such that f(d) = L and also e ∈ (b, c) such
that f(e) = L. But then f(d) = L = f(e), contradicting the injectivity of f .
• Now suppose that f admits a V -configuration: there are a < b < c with
f(a) > f(b) < f(c). Then a very similar argument shows that for every L ∈
(f(b),min(f(a), f(c)) then there is d ∈ (a, b) with f(d) = L and also e ∈ (b, c) with
f(e) = L, so f(d) = L = f(e), contradicting the injectivity of f . �

Lemma 2.24. Let I be an interval, and let f : I → R be a monotone function.
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(a) Suppose that c ∈ I◦. Then limx→c+ f(x) and limx→c− f(x) both exist.
Moreover, if f is increasing, then

lim
x→c−

f(x) = sup{f(x) | x < c} ≤ f(c) ≤ inf{f(x) | x > c} = lim
x→c+

f(x),

while if f is decreasing, then

lim
x→c−

f(x) = inf{f(x) | x < c} ≥ f(c) ≥ sup{f(x) | x > c} = lim
x→c+

f(x).

b) Suppose that I has a left endpoint a. Then limx→a+ f(x) exists. Moreover,
if f is increasing then

f(a) ≤ lim
x→a+

f(x),

while if f is decreasing then

f(a) ≥ lim
x→a+

f(x).

c) Suppose that I has a right endpoint b. Then limx→b− f(x) exists. More-
over, if f is increasing then

f(b) ≥ lim
x→b−

f(x),

while if f is decreasing then

f(b) ≤ lim
x→b−

f(x).

You are asked to prove Lemma 2.24 in Exercise 2.24.

Corollary 2.25. Let I be an interval. For a monotone function f : I → R,
the following are equivalent:

(i) f is continuous.
(ii) f is Darboux.
(iii) f(I) is an interval.

Proof. Corollary 2.19 gives (i) =⇒ (ii) and (i) =⇒ (iii) even without the
assumption that f is monotone.
(ii) =⇒ (i): If f is Darboux, then by Exercise 2.15 it cannot have simple dis-
continuities, while by Lemma 2.24 since f is monotone, it can only have simple
discontinuities. So f is continuous!
(iii) =⇒ (i): We will treat the case in which f is increasing; the case in which f is
decreasing is very similar and left to the reader. We will also argue by contrapos-
itive, so suppose that f fails to be continuous at some point c ∈ I. Suppose first
that c is an interior point of I. By Lemma 2.24 we must have

m := lim
x→c−

f(x) < lim
x→c+

f(x) =: M.

Thus we must have either m < f(c) or f(c) < M (or both). If m < f(c), choose
a point a of I that is less than c and choose L such that m < L < f(c). Then
f(a) ≤ m < L < f(c), but L is not a value of f : since f is increasing, the value
L would have to be taken on the subinterval [a, c), but for all x ∈ [a, c) we have
f(x) ≤ m < L. If f(c) < M , choose a point b of I that is greater than c and choose
L such that f(c) < L < M . Then similarly f(c) < L < M ≤ f(b) but L is not a
value of f . Either way, f(I) is not convex and thus is not an interval.

The cases in which c is an endpoint are similar. For instance, if c is the left
endpoint of I, discontinuity at c means f(c) < M := inf{f(x) | c < x}. Choose L



4. INVERSE FUNCTIONS 51

such that f(c) < L < M , and let b ∈ I \ {c}. Then f(c) < L < M ≤ f(b) and L is
not a value of f , so f is not convex and thus not an interval. �

And now we are ready to prove Theorem 2.20c)! Indeed, let I be an interval, let
f : I → R be an injective continuous function, and let J be the interval f(I). Then
f : I → J is a continuous bijection, with inverse function f−1 : J → I. By Theorem
2.23 f is a monotone injection, hence either strictly increasing or strictly decreasing.
By Lemma 2.21 it follows that f−1 is also a monotone injection. Finally, we know
that f−1(J) = I is an interval, so applying Corollary 2.25 to f−1 : J → R, we get
that f−1 is continuous.

4.3. Inverses of Differentiable Functions.

Theorem 2.26. Let I and J , be intervals, and let f : I → J be a continuous
bijection. Let b ∈ J◦, and put a := f−1(b). Suppose that f is differentiable at a
and f ′(a) 6= 0. Then f−1 is differentiable at b and

(6) (f−1)′(b) =
1

f ′(a)
=

1

f ′(f−1(b))
.

Before giving the proof we remark that most of the content lies in the assertion that
f−1 is differentiable at b. If we assume that f−1 is differentiable, then differentiating
f(f−1(x)) = x gives f ′(f−1(x))(f−1)′(x) = 1, so (f−1)′(x) = 1

f ′(f−1(x)) .

Proof. We have

(f−1)′(b) = lim
h→0

f−1(b+ h)− f−1(b)

h
= lim
h→0

f−1(b+ h)− a
h

.

Since J = f(I), for each b+ h ∈ J (we assume h is sufficiently small so that b+ h
does lie in J ; we can assume this since b ∈ J◦) there is a unique kh ∈ R such that

b+ h = f(a+ kh).

Then

f−1(b+ h) = a+ kh and h = f(a+ kh)− f(a).

Making these substitutions, we get

(f−1)′(b) = lim
h→0

a+ kh − a
f(a+ kh)− f(a)

= lim
h→0

(
f(a+ kh)− f(a)

kh

)−1
.

So we are clearly on the right track: if we can show that limh→0 kh = 0, then the
above limit is 1

f ′(a) and we will be done.

Now we have kh = f−1(b + h) − a. Moreover, by Theorem 2.20, since f is
continuous so is f−1, and thus

lim
h→0

kh = lim
h→0

f−1(b+ h)− a = f−1(b)− a = a− a = 0,

and we’re done. �
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4.4. Several Variables. As I have hinted before, the concept of a continuous
function is actually one of the most general in all of mathematics: whenever we have
sets X and Y each endowed with classes of subsets called “open” (and required
to satisfy several familiar properties), one can define the notion of a continuous
function f : X → Y .4 Much what we said about continuous functions applies in
this level of generality: e.g. continuous functions preserve limits of sequences and
compositions of continuous functions are continuous. However, it is not a general
fact that a continuous bijection must have a continuous inverse – not even close.
In fact this does not even hold when X and Y are subsets of Euclidean space.

Example 4.1. Let X = [0, 2π) and let Y = {(x, y) ∈ R2 | x2 + y2 = 1} be the
unit circle. Let f : X → Y by f(x) = (cosx, sinx). This is a continuous function
because cosine and sine are both continuous functions. It is also a bijection: the
inverse function g maps a point on the unit circle to its angle, taken to lie in [0, 2π).
However, g is not continuous at the point Q = (1, 0), since points with angle slightly
less than 2π are very close to Q, but under g these points get mapped almost 2π
units away from g(Q) = 0.

It turns out that if X ⊆ RN is closed and bounded and f : X → RM is a continu-
ous injection, so f : X → f(X) is a continuous bijection, then the inverse function
f−1 : f(X) → X is necessarily continuous. This uses the sequential compactness
of X and is actually not terribly difficult: Exercises 2.24 and 2.25 cover this.

The following result is terribly difficult:

Theorem 2.27 (Brouwer, 1912). Let U ⊆ RN be an open subset, and let f :
U → RN be a continuous injection. Then V := f(U) is open in RN , and the inverse
function f−1 : V → U is also continuous.

It would be possible to prove this result in Math 8200 (Algebraic Topology), as an
application of singular homology. If you ever take this course, ask for it!

Finally, there is an inverse function theorem for differentiable functions f : U → RN ,
where U ⊆ RN is an open subset. Although we barely mentioned the total deriva-
tive, we can still state the result. Write f = (f1, . . . , fN ), and let P ∈ U . Suppose

that on some smaller open subset containing P , each of the partial derivatives ∂fi
∂xj

exists and is continuous. (With the extra hypothesis of continuity of the partials,
this implies that f is differentiable in the “total” sense we mentioned above.) We

can therefore form the Jacobian matrix J(f)(P ), whose i, j entry is ∂fi
∂xj

(P ). We

suppose that this matrix is invertible (this is the higher-dimensional analogue of
assuming that f ′(a) 6= 0). Then there is an open subset V of RN containing P such
that W := f(V ) is an open subset of RN containing f(P ) – so f : V → W is a
bijection – and moreover f−1 : W → V has continuously differentiable partials for
all y ∈ W , and indeed if y = f(x) is in W , the Jacobian matrix J(f−1)(y) is the
inverse of the Jacobian matrix J(f)(x). For a proof, see [R, Thm. 9.24].

4It is actually only a little trouble to be much less vague: a topological space is a set X

endowed with a family τ of subsets of X. This family is required to satisfy: (i) ∅, X ∈ τ ; (ii) if
for all i ∈ I, Ui lies in τ then so does

⋃
i∈I Ui; (iii) if U1, . . . , Un lie in τ , then so does

⋂n
i=1 Ui.

The elements of τ are called open subsets of X. Taking X = RN and τ to be the open sets
as we defined them at the beginning of the course is a – very, very important! – example of a

topological space.
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4.5. Exercises.

Exercise 2.21. Prove the Λ-V Lemma [HC, Lemma 5.38].

Exercise 2.22. Prove Lemma 2.24.

Exercise 2.23. Let I, J ⊂ R be intervals5.

a) Suppose I = [a, b] and f : I → R is a continuous function. Show: there
are real numbers m ≤M such that f(I) = [m,M ].

b) Suppose that I is not a closed, bounded interval. Show: there is a contin-
uous function f : I → R with f(I) = J .

Exercise 2.24. Let X ⊆ RN and let f : X → RM be a function. Show that
the following are equivalent:

(i) f is continuous.
(ii) For all open subsets V of RM , f−1(V ) := {x ∈ X | f(x) ∈ V } is of the

form U ∩X for an open subset U of RN .
(iii) For all closed subets V of RM , f−1(V ) is of the form A ∩X for a closed

subset A of RN .

Exercise 2.25. Let X ⊆ RN be closed and bounded, and let f : X → RM be
a continuous injection. Let Y := f(X), so f : X → Y is a continuous bijection.
Show that Y is closed and bounded and f−1 : Y → X is continuous.
(Suggestion: if Z ⊆ X is closed, then f(Z) is closed; apply Exercise 2.24.)

Exercise 2.26.

a) Let I be a nonempty set, and let {Xi}i∈I be any family of convex subsets
of RN . Show:

⋂
i∈I Xi is also convex.

b) Show by example that the union of two convex subsets of RN need not be
convex.

Exercise 2.27. Show the closed box B =
∏N
i=1[ai, bi] is a convex subset of RN .

Exercise 2.28. Let N1, . . . , Nk be positive integers, and put N := N1 + . . . Nk.

We may view RN as the Cartesian product
∏k
i=1 RNi . (Just concatenate the coor-

dinates of the various vectors into one vector.) For 1 ≤ i ≤ k, let Xi be a convex

subset of RNi . Show that the Cartesian product
∏k
i=1Xi is a convex subset of RN .

Exercise 2.29. Consider the following function f : R→ R:

f(x) =

{
−5 x < 0

x sinx x ≥ 0
.

a) Show f(R) = R.
b) Show: f is not a Darboux function. This shows that being Darboux is

stronger than having the image be an interval.

5Our convention is that the empty set is not an interval.





CHAPTER 3

The Riemann Integral

1. Abstract Integrals and the Fundamental Theorem of Calculus

We now begin our study of “the integral calculus.” The basic idea here is as follows:

for a function f : [a, b]→ R we wish to associate a real number
∫ b
a
f , the definite

integral. When f is non-negative, our intutition is that
∫ b
a
f should represent the

area under the curve y = f(x) — more precisely the area of the region bounded
above by y = f(x), below by y = 0, on the left by x = a and on the right by x = b.

For general functions f , the integral
∫ b
a
f is supposed to represent the signed area

— more on this later.
The above sentiment is roughly analogous to the intuition that a continuous

function is one whose graph is a “nice, unbroken” curve. Namely, it is a geometric
idea that must be analytically formalized, and whose analytic formalization re-
quires further ideas. The above gives a precise description of a subset of the plane
associated to f : [a, b]→ [0,∞), namely the set

Sf := {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)}.

It is easy to see that Sf is bounded if and only if f is bounded (Exercise 3.1). So
if we knew how to assign an area to every bounded subset of R2, then this would
work as a definition. The issue is that this “assigning areas” problem is itself a very
challenging one: the part of mathematics that deals with this in a satisfactory way
is called measure theory, which is part of graduate real analysis.

So our main task here is to define a new limiting process telling us how to as-

sign the real number
∫ b
a
f to the function f : [a, b] → R. Just as for all previous

limiting processes (limits of sequences and series, functional limits at a point, con-
tinuity, differentiability) the limit need not exist for all functions, and indeed there

are some functions f : [a, b] → R for which
∫ b
a
f is not defined. (This is true both

for the particular limiting processes that we will study but also, for certain choices
of f , for any reasonable limiting process.) Just as we call a function differentiable
if the limiting process defining the limit exists, we will call a function integrable
if it lies in the class of functions for which the limiting process works to assign a

number
∫ b
a
f . (This is not yet a definition since we haven’t said what the process is!)

Before we plunge into the details of a particular limiting process, it will be helpful
to consider some properties that we want our integral to study. If the integral is
supposed to be a signed area, it should surely satisfy the following properties:

(I1) If f = C is constant, then
∫ b
a
C = C(b− a).

55
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Indeed, when C > 0 the set Sf is just a rectangle with base length b − a and
with height C: that’s an area that we know. When C < 0, the set Sf is a rectangle
with the same description, but now it is bounded above by the x-axis and below by
y = C, so our convention is that this counts as “negative area.” When C = 0, the
set Sf is just the line segment [a, b], which indeed should have area 0.

Comment: Until further notice, we will “explain” our properties only for non-
negative functions f . This case is simpler and easier to explain. Once we sufficiently
develop the theory we will be able to understand how to recover the general case
from this (essentially we add a sufficiently large constant to make f non-negative).

(I2) If f1, f2 : [a, b] → R satisfy f1 ≤ f2 — that is, for all x ∈ [a, b] we have

f1(x) ≤ f2(x) — then
∫ b
a
f1 ≤

∫ b
a
f2.

Under our running “explanatory assumption” that f1 and f2 are non-negative,
if f1 ≤ f2 then Sf1 is a subset of Sf2 , and certainly the area of a subset should be
less than or equal to the area of the entire set.

(I3) If f : [a, b]→ R and a ≤ c ≤ b, then
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

To explain this, again under the additional assumption that f ≥ 0, we will add
to our notation by writing Sf,[a,b] for what we above wrote as Sf , taking the inter-
val [a, b] as known. Then we have

Sf,[a,b] = Sf,[a,c] ∪ Sf,[c,b]
and Sf,[a,c] ∩ Sf,[c,b] is just the vertical line segment from (c, 0) to (c, f(c)), which
should have area 0. The way we think areas should work is that the area of the
union should be the sum of the areas minus the area of the intersection, so this
explains (I3).

Again, let me emphasize: I am not proving (I1), (I2) and (I3). I couldn’t pos-

sibly do that until I tell you what
∫ b
a
f means. I am just writing down some desired

consequences of any reasonable definition of
∫ b
a
f . Or, if you like, we are writing

down axioms that our integration process should satisfy.

In fact, I do like – I find the axiomatic approach to be a clean way to come at
this problem. To make it work completely, I want to add one more ingredient:
what is the “domain.” Namely, suppose we are given a subset R[a, b] of the set of
all functions f : [a, b]→ R that we call the integrable functions.

(There is a little fine print here: first of all, we actually mean to define R[a, b]
for each pair of real numbers (a, b) with a ≤ b. Second of all, if a ≤ c ≤ b and
f ∈ R[a, b], we want f |[a,c] : [a, c] → R to lie in R[a, c] and f |[c,b] : [c, b] → R to lie
in R[c, b]. This is necessary to make sense of Axiom (I3), for instance.)

Having done this, an integral is, for each a ≤ b, a function∫
: R[a, b]→ R, f 7→

∫ b

a

f
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that should satisfy the above axioms. This means that we want constant func-
tions to be integrable and that we require (I2) and (I3) to hold for functions
f1, f2, f ∈ R[a, b].

However, we need one more thing in order to be sure we are doing something
nontrivial. That is...we need to say something about R[a, b], the set of integrable
functions. The only functions that our axioms ensure lie in R[a, b] are the constant
functions. So we could take R[a, b] to consist of constant functions and then we
are only talking about signed areas of rectangles. One step away would be to take
R[a, b] to be all polynomial functions. In this case, verfiying the axioms corresponds
roughly to the amount of understanding posssessed by a B-level calculus student:
we just need to know to reverse the power rule for differentiation.

So let us sneak in one more axiom to ensure that there is some content here:

(I0) For all real numbers a < b we have that:
(I0(a)) Every continuous function f : [a, b]→ R lies in R[a, b]; and
(I0(b)) Every function f ∈ R[a, b] is bounded.

Concerning this last axiom: we start with part b) and do not give a justifica-
tion but rather admit that it is there to simplify the situation. However we observe
that parts a) and b) are compatible because of the Extreme Value Theorem: every
continuous function is bounded. Therefore because of axiom (IO) we can — at
the least – integrate every continuous function f : [a, b] → R. Such an integral is
guaranteed to have real content: because of the close connection to the area prob-
lem, such an integral gives a rigorous mathematical meaning to “the area under a
non-negative continuous curve y = f(x).”

Now something remarkable happens: if we assume that we have an integral
∫

:
R[a, b] → R satisfying axioms (I0) through (I3), then without knowing anything
about how this function is actually defined, we can use it to prove the Fundamental
Theorem of Calculus!

Theorem 3.1 (Fundamental Theorem of Calculus). Let
∫

: R[a, b]→ R satisfy
(IO), (I1), (I2) and (I3). Let f ∈ R[a, b]. For x ∈ [a, b], we define

F(x) :=

∫ x

a

f.

Then:

a) The function F : [a, b]→ R is continuous.
b) If f is continuous at c, then F is differentiable at c, and F ′(c) = f(c).
c) If f is continuous and F : [a, b] → R is any antiderivative of f – i.e.,

F ′ = f – then ∫ b

a

f = F (b)− F (a).

Proof. a) By (I0(b)), there is M > 0 such that |f(x)| ≤ M for all x ∈ [a, b].
Let ε > 0, and take δ := ε

M . For any a ≤ c ≤ d ≤ b, because −M ≤ f ≤ M ,
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applying (I2) and (I1) we get

−M(d− c) =

∫ d

c

(−M) ≤
∫ d

c

f ≤
∫ d

c

M = M(d− c),

so using (I3) we get

(7)

∣∣∣∣F(d)−F(c)

∣∣∣∣ =

∣∣∣∣ ∫ d

a

f −
∫ c

a

f

∣∣∣∣ =

∣∣∣∣ ∫ d

c

f

∣∣∣∣ ≤M(d− c),

which shows that F is uniformly continuous with δ = ε
M .

b) Since f is continuous at c, for all ε > 0, there is δ such that |x− c| < δ implies

f(c)− ε < f(x) < f(c) + ε.

Thus:

f(c)− ε =

∫ x
c

(f(c)− ε)
x− c

≤
∫ x
c
f

x− c
≤
∫ x
c

(f(c) + ε)

x− c
= f(c) + ε,

which we may rewrite as∣∣∣∣F(x)−F(c)

x− c
− f(c)

∣∣∣∣ =

∣∣∣∣
∫ x
c
f

x− c
− f(c)

∣∣∣∣ ≤ ε,
which shows that

F ′(c) = lim
x→c

F(x)−F(c)

x− c
= f(c).

c) Suppose f is continuous. By part b), we know that F(x) =
∫ x
a
f is an anti-

derivative of f . By Exercise 2.18 we know that antiderivatives are unique up to
the addition of a constant, which means that if F is any antiderivative of f there
is C ∈ R such that

∀x ∈ [a, b], F (x) = F(x) + C,

and thus,

F (b)− F (a) = (F(b) + C)− (F(a) + C)

= F(b)−F(a) =

∫ b

a

f −
∫ a

a

f =

∫ b

a

f ;

above we used Exercise 3.2 to get
∫ a
a
f = 0. �

We now have several important remarks to make.

First, as discussed above, any integral
∫

: R[a, b] → R restricts to an integral∫
: C[a, b] → R on the set of all continuous functions f : [a, b] → R. But

part c) of the Fundamental Theorem of Calculus tells us that in this case there
is no need for axiomatics: the integral of any continuous function is necessarily
given as F (b) − F (a) for any antiderivative F of f . In other words, the function∫

: C[a, b]→ R is unique.

Second: I must observe that the proof of Theorem 3.1 was...quite easy. Admit-
tedly the statement was a bit technical, but the proof of each part took only a few
lines. Our proofs that our fancy-looking function F is always continuous and is
differentiable when f is continuous each came out right away: earlier in our course
we worked harder to prove the continuity/differentiability of very specific functions.

Why is the proof of the Fundamental Theorem of Calculus so easy? This is a
question I thought a lot about the first time I taught undergraduate real analysis, in
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2004 at McGill University. The proof of FTC is usually given in freshman calculus
courses, but the theory of the Riemann integral is much more intricate (um, wait
for it; you’ll see). How is it possible that the theory is hard but its main theorem
is easy?

The answer is that as we’ve stated it, the Fundamental Theorem of Calculus
is not the crux that we might think it is. Do you see why? The answer is that our
statement of the Fundamental Theorem assumes that we have an integral satisfy-
ing the axioms (I0) through (I3) and defined on the class of continuous functions
(so (I0) is satisfied). After we prove the theorem, it turns out that on the class of
continuous functions, this integral is unique. But how do we know that the integral
exists? Answer: we don’t, yet. That’s where the real work lies.

Third: Theorem 3.1 has the following very important consequence:

Corollary 3.2. Each continuous function f : [a, b]→ R has an antiderivative.

Indeed, the Fundamental Theorem supplies us with the particular antiderivative
F(x) =

∫ x
a
f . (I emphasize that at the moment we know this conditionally on the

assumption that the integral exists.) Once again we know, as a consequence of the
Mean Value Theorem, that antiderivatives are unique up to an additive constant.
As we saw in the proof, we have F(a) =

∫ a
a
f = 0, so that tells us which antideriv-

ative we’re getting: the unique one that is 0 at the left endpoint.

It may be interesting to ask how much of the content of the Fundamental Theorem
of Calculus is carried by Corollary 3.2: that is, suppose that we know, somehow,
that every continuous function has an antiderivative. Can we then use this to show
the existence of an integral on C[a, b]? The answer is yes: if F is antiderivative

of f , then you can show directly that
∫ b
a
f := F (b) − F (a) defines an integral∫

: C[a, b] → R. This is an amusing exercise: Exercise 3.3. On the other hand, al-
though there are several ways to go about constructing this integral

∫
: C[a, b]→ R

that we have been talking about, I believe that I do not know any way to prove
Corollary 3.2 that does not involve constructing the integral in some way and then
differentiating

∫ x
a
f to get f(x).

Let me now give a small preview of what’s coming next: we will define a certain
process that can be applied to any function f : [a, b] → R. This process returns
two different extended real numbers – i.e., either real numbers, ∞ of −∞. These

are called the upper Darboux integral
∫ b
a
f and the lower Darboux integral∫ b

a
f . It will turn out that in all cases we have∫ b

a

f ≤
∫ b

a

f.

We say that the function f is Darboux integrable if the two are equal and the
common value is a real number (and not ±∞).

We will study the Darboux integration process and show that it satisfies all our
axioms: that is, if we define RD[a, b] to be the set of Darboux integrable functions,
then these functions satisfy (I1), (I2), (I3), and most importantly, (I0): every Dar-
boux integrable function is bounded (indeed boundedness is equivalent to the upper
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and lower integrals both being finite) and every continuous function f : [a, b]→ R.
It is this last statement that carries most of the content of the Fundamental Theo-
rem of Calculus. We will also show some further useful properties of the Darboux
integral: for instance, we will see that RD[a, b] is a vector space over the real num-
bers and the integral

∫
: RD[a, b]→ R is a linear map.

At this point, we will know that RD[a, b] contains all the continuous functions,
and it will not be hard to see that it contains many other functions as well – e.g.
all bounded functions that are either monotone or have finitely many discontinu-
ities. So it is natural to ask: can we determine exactly which functions are Darboux
integrable?

Leaving that question hang in the air for now, here is a very different question:
why have we not said “Riemann” yet? After all, in calculus one speaks of the Rie-
mann integral and after all that is the title of this chapter. Well, what we called
the “Darboux integral” above is what many would call the Rieman integral. How-
ever we have a distinction to make: Riemann himself defined a different process
from Darboux’s: in other words, Riemann’s actual technical definition of the limit
is different from Darboux’s. Rather we should say that Darboux’s definition is
different from Riemann’s, since Riemann’s came first: Darboux’s is actually easier
to understand and easier to work with in many respects. The main advantage of
Riemann’s definition is that it is indeed a (rather complicated!) limit of Riemann
sums, which means that certain sequential limits can be evaluated by interpreting
them as Riemann sums of a Riemann integrable function.

What is the relationship between the integrals of Darboux and Riemann? Al-
though their descriptions are different, we have already shown that as functions

C[a, b] → R they must be equal, i.e., the real number
∫ b
a

assigned to each continu-
ous f : [a, b] → R must be the same, because both satisfy the axioms and there is
a unique integral on the continuous functions satisfying the axioms. In fact their
relationship is closer still: if we let RR[a, b] denote the set of Riemann integrable
functions, then in fact

RD[a, b] = RR[a, b]

— that is, a function is Riemann integrable if and only if it is Darboux integrable
– and moreover when a function f : [a, b]→ R is integrable according to either def-

inition the assigned values
∫ b
a
f agree. So at the end of the day, although Riemann

and Darboux are different processes, they yield exactly the same integral. In other
words, they are ultimately two different descriptions of the same thing.

1.1. Exercises.

Exercise 3.1. Let f : [a, b]→ [0,∞) be a function. Show that the subset

Sf := {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

is bounded if and only if f is bounded.

Exercise 3.2. Show that the axioms (I1), (I2) and (I3) imply that for any
integrable f : [a, b]→ R and any c ∈ [a, b], we have

∫ c
c
f = 0.
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Exercise 3.3. Suppose that you happen to know that every continuous function
has an antiderivative. Show that, defining, for every continuous function f : [a, b]→
R,
∫ b
a
f to be F (b) − F (a) where F is any antiderivative of f , defines an integral∫

: C[a, b]→ R: in other words, check that the axioms (I1) through (I3) are satisfied.

2. Darboux’s Riemann Integral

In this section we present Darboux’s approach to the Riemann integral. Throughout
this section a < b are real numbers.

2.1. Upper and lower sums, upper and lower integrals. Partitions: A
partition of [a, b] is a finite subset P of [a, b] containing a and b. Thus we may
write P as {x0, x1, . . . , xn−1, xn} with a = x0 < x1 < . . . < xn−1 < xn = b.
Notice that the positive integer n is one less than the number of elements of
P; we think of a partition P as subdividing the interval [a, b] into subintervals
[a, x1], [x1, x2], . . . , [xn−1, b], and thus n is the number of subintervals into which we
subdivided [a, b]. The telescoping sum

n−1∑
i=0

(xi+1 − xi) = (x1 − a) + (x2 − x1) + . . .+ (b− xn−1) = b− a

shows that the length of the interval [a, b] is the sum of the lengths of the subinter-
vals into which we divided it using P.

Because [a, b] is infinite, there are certainly infinitely many partitions of it. We
introduce a relation among them: we say that a partition P2 of [a, b] refines a par-
tition P1 of [a, b] if P1 ⊆ P2: thus, P2 contains all the points of P1 and (if P2 6= P1)
some others. We can think of P2 as being obtained from P1 by repeatedly choos-
ing one of the subintervals [xi, xi+1] given by P1 and subdividing it by adding an
addition point z ∈ (xi, xi+1). This refinement relation is a partial ordering on the
set of partitions of [a, b]: this just means that every partition refines itself; if each
of two partitions refines the other than they are equal; and if P3 refines P2 and P2

refines P1 then P3 refinee P1.

Now let f : [a, b] → R be a bounded function. To every partition P = {a = x0 <
x1 < . . . < xn−1 < xn = b} of [a, b], we will define an upper sum L(f,P) ∈ R and
a lower sum U(f,P) ∈ R. To this we first define:

• For all 0 ≤ i ≤ n− 1, let Mi(f) be the supremum of f([xi, xi+1]), and
• For all 0 ≤ i ≤ n− 1, let mi(f) be the infimum of f [(xi, xi+1]).

Now we put

U(f,P) :=

n−1∑
i=0

Mi(f) (xi+1 − xi)

and

L(f,P) :=

n−1∑
i=0

mi(f) (xi+1 − xi) .

Some remarks are in order.
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Remark. a) Since for any nonempty subset X of R we have inf X ≤
supX, for any f : [a, b]→ R and all 0 ≤ i ≤ n−1 we have mi(f) ≤Mi(f),
from which it follows that

L(f,P) ≤ U(f,P).

b) For all 0 ≤ i ≤ n − 1, we have Mi(f) ∈ R because f is bounded above.
Suppose on the other hand that f were not bounded above. Then by Exer-
cise 3.4b), there is at least one i such that f is not bounded above on the
subinterval [xi, xi+1], so the supremum of f([xi, xi+1]) is ∞. It is a stan-
dard convention the arithmetic of extended real numbers that ∞+∞ =∞
and for a ∈ (0,∞] we have a · ∞ = ∞. Using these conventions we find
that if f is unbounded above we can make sense of the upper sum U(f,P):
it will always be ∞.

c) Similarly, for all 0 ≤ i ≤ n− 1, we have mi(f) ∈ R because f is bounded
below. If were unbounded below then by the same reasoning as part a) we
find that we can make sense of the lower sum L(f,P) but it will always be
−∞. Thus for any function f we have U(f,P) ∈ R∪{∞} and L(f,P) ∈
R ∪ {−∞}.

d) Suppose that f : [a, b]→ R is continuous. Then f is bounded, and for all
1 ≤ i ≤ n, by the Extreme Value Theorem we get that mi(f) is the min-
imum of f on [xi, xi+1] and Mi(f) is the maximum of f on [xi, xi+1].
Though we will not define Riemann sums until the next section – the extra
complication of choosing a “sample point” in each subinterval is part of
what Darboux’s approach manages to avoid – nevertheless we remark now
that when f is continuous the upper sum and lower sum are both Riemann
sums for f .

Example 2.1. Consider f : [0, 1]→ R by f(x) = x2.

a) Suppose we take the smallest possible partition: P1 = {0, 1}. The mini-
mum of f on [0, 1] is 0 and the maximum of f is 1, so

L(x2,P1) = 0 < 1 = U(x2,P1).

We can interpret this geometrically: consider the Sx2 = {(x, y) ∈ R2 | 0 ≤
x ≤ 1, 0 ≤ y ≤ x2}, whose area we are trying to define via some limiting
process. This set contains the line segment S0 = [0, 1]×{0}, that has area
0, and it is contained in the unit square S1 = [0, 1]× [0, 1], that has area
1. So although we haven’t defined the integral yet, the idea is that we have

learned from P1 is that we want
∫ 1

0
x2 to be some real number such that

L(x2,P1) = 0 <

∫ 1

0

x2 ≤ 1 = U(x2,P1).

b) Even a vague memory of definite integrals from calculus should suggest
that we try something else: for n ∈ Z+ let

Pn := {0 < 1

n
<

2

n
< . . .

n− 1

n
< 1}

be the partition that subdivides [0, 1] into n equally spaced subintervals.
Because f(x) = x2 is increasing, the supremum it takes on any subinterval
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[c, d] of [0, 1] is just f(d) and the infimum it takes on any subinterval [c, d]
of [0, 1] is just f(c). So:

U(x2,Pn) =

n−1∑
i=0

Mi(x
2)

(
i+ 1

n
− i

n

)
=

n−1∑
i=0

(
i+ 1

n
)2 · 1

n

=
1

n3

n−1∑
i=0

(i+ 1)2 =
1

n3

n∑
i=1

i2.

Oh, thank goodness that in a previous course (Math 3200) we practiced
induction with sums like these: we happen to remember that

∀n ∈ Z+,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

so we get

U(x2,Pn) =
n(n+ 1)(2n+ 1)

6n3
.

The computation for the lower sums is very similar: for all i we have

mi(x
2) =

(
i
n

)2
, which leads to

L(x2,Pn) =
1

n3

n−1∑
i=0

i2 =
1

n3

n−1∑
i=1

i2 =
(n− 1)n(2n− 1)

6n3
.

Now we observe that

lim
n→∞

U(x2,Pn) =
1

3
= lim
x→∞

L(x2,Pn).

So we found a sequence of partitions along which the lower sums converged
to 1

3 and along which the upper sums also converged to 1
3 . This makes us

strongly suspect that we want
∫ 1

0
x2 = 1

3 . In calculus we would probably be
happy to take either one of these limits as sufficient to give the answer,
but now we are trying to find our way to a principled definition of an
integrable function. We can reason as follows: for any partition P, we
can interpret U(f,P) as the area enclosed by a piecewise constant function
that is always greater than or equal to f and we can interpret L(f,P) as
the area enclosed by a piecewise constant function that is always less than
or equal to f , so we should have

(8) ∀ partitions P of [a, b], L(f,P) ≤
∫ b

a

f ≤ U(f,P).

So in our case we want
∫ b
a
f to satisfy

∀n ∈ Z+,
(n− 1)n(2n− 1)

6n3
≤
∫ 1

0

x2 ≤ n(n+ 1)(2n+ 1)

6n3
.

Limits of sequences preserve lax inequalities (≤ and ≥, not < and >), so

1

3
= lim
n→∞

L(f,P) ≤
∫ 1

0

x2 ≤ lim
n→∞

U(f,P) =
1

3
.

This tells us that
∫ 1

0
x2 = 1

3 !

In other words, our one idea about
∫ b
a
f is that it should lie in between
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L(f,P) and U(f,P) for any partition P of [a, b]. In this particular exam-
ple, just by looking at the sequence of partitions {Pn}∞n=1 we see that the
only real number that could possibly satisfy this is 1

3 .

This leads us to our first definition of Darboux integrability: a function f : [a, b]→
R is Darboux integrable if there is exactly one real number S such that for all
partitions P of [a, b] we have

L(f,P) ≤ S ≤ U(f,P);

for a Darboux integrable function f we put
∫ b
a
f to be this unique real number S.

Proposition 3.3. Let f : [a, b]→ R be a function. If f is Darboux integrable,
then it is bounded.

Proof. We will show the contrapositive: suppose f is unbounded; we claim
that f is not Darboux integrable.
Case 1: If f is unbounded both above and below then for all partitions P of [a, b]
we have U(f,P) = ∞ and L(f,P) = −∞. So every real number lies in between
every lower sum and upper sum: thus the uniqueness of I fails.
Case 2: Suppose f is unbounded above but bounded below. Then for all partitions
P of [a, b] we have that U(f,P) = ∞ but L(f,P) ∈ R. Every real number is at
most ∞, so in order to be Darboux integrable there would have to be a unique real
number I greater than or equal to L(f,P) for all partitions P. In other words, the
set {L(f,P) | P is a partition of [a,b]} would need to have a unique upper bound.
That’s not how upper bounds in R work: if I ∈ R is an upper bound for any subset
X of R then so is I + 1, so X cannot have a unique, finite upper bound.
Case 3: If f is bounded above but unbounded below, the reasoning of Case 2
applies: there is no unique real number less than or equal U(f,P) for all P. �

However, this definition of Darboux integrability is not so easy to work with: one
can see this by observing that in Example 2.1 we did not show that x2 is Darboux
integrable on [0, 1]: all we showed was that if it is, then the integral is 1

3 .
The awkwardness in our definition of Darboux integrability is characteristic

of many definitions in theoretical mathematics: the definition involves a universal
quantifier over an infinite set and for each element of that set asserts something
nontrivial. Here that set is the set of all partitions of [a, b]. In our above example,
showing Darboux integrability apparently asks us to compute U(f,P) and L(f,P)
for every partition of [0, 1] and check that L(f,P) ≤ 1

3 ≤ U(f,P). Are we really

supposed to perform infinitely many computations to check that x2 is integrable?!?

No, not really. This definition is too hard to check directly, so we need a re-
sult that tells us that it is sufficient to do something easier. The result that we
are going for here is as follows: a bounded function f : [a, b] → R is Darboux
integrable if and only if: for all ε > 0, there is a partition P of [a, b] such that
U(f,P) − L(f,P) < ε. Once we establish this, we don’t need to look at all parti-
tions; we just need to exhibit a sequence of partitions along which the gap between
the upper and lower sums tends to 0. That is much easier: in Example 2.1, the se-
quence {Pn} works. Because limn→∞ U(f,Pn) = 1

3 = limn→∞ L(f,Pn), it follows
that limn→∞ U(f,Pn) − L(f,Pn) = 0, so for any ε > 0, just taking Pn for large
enough n does what we want.
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In order to show this, we need a few preliminaries. They involve refinements of
partitions, which you may notice that we defined but have not yet used for any-
thing whatsoever. Well, now is the time.

Lemma 3.4. Let f : [a, b]→ R be a function.

a) Let P1 and P2 be partitions of [a, b], with P2 refining P1 (that is, P2 ⊇ P1).
Then we have

L(f,P1) ≤ L(f,P2) ≤ U(f,P2) ≤ U(f,P1).

b) Let P and Q be any partitions of [a, b]. Then we have

L(f,P) ≤ U(f,Q).

Proof. We get from P1 to P2 by adding finitely many more points. So it suf-
fices to treat the case in which P2 is obtained from P1 by adding a single additional
point c ∈ (xi, xi+1) for some 0 ≤ i ≤ n− 1 and then show that L(f,P2) ≤ L(f,P1)
and U(f,P2) ≤ U(f,P1). (Notice that we already know the middle inequality
L(f,P2) ≤ U(f,P2); it is just there to make everything look nice.) This is actually
quite easy: most of the terms in the sums U(f,P1) and U(f,P2) are the same; the
only change is that we replace the ith term sup(f [xi, xi+1]) · (xi+1−xi) of U(f,P1)
with the two terms sup(f [xi, c]) ·(c−xi)+sup(f [c, xi+1]) ·(xi+1−xc). If A ⊆ B ⊂ R
then supA ≤ supB, so we have

sup(f [xi, c]) · (c− xi) + sup(f [c, xi+1]) · (xi+1 − xc)

≤ sup(f [xi, xi+1])·(c−xi)+sup(f [xi, xi+1])·(xi+1−c) ≤ sup(f [xi, xi+1])·(xi+1−xi).
Thus U(f,P2) ≤ U(f,P1). The same reasoning works for the lower sums: the
infimum of f on [xi, xi+1] is less than or equal to its infimum on [xi, c] and its
infimum on [c, xi+1].
b) Let R := P ∪ Q; this is a partition of [a, b] that is a common refinement of P
and Q. Applying part a) twice, we get

L(f,P) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q). �

Now one final definition that we hinted at in the last section: for any function
f : [a, b]→ R, we define the upper Darboux integral∫ b

a

f := inf U(f,P) ∈ [−∞,∞]

and the lower Darboux integral∫ b

a

f := L(f,P) ∈ [−∞,∞];

in each case we are ranging over all partitions P of [a, b]. Notice that
∫ b
a
f is a

“minimax”: for each partition we maximized f (actually we took suprema, but
people don’t say “infysup”), collected these values over all partitions and then took

the minimum (actually the infimum). Simlarly,
∫ b
a
f is a “maximin.” When it makes

sense to do, it’s often a surprisingly good idea to take minimaxes and maximins and
to compare them: see e.g. https://en.wikipedia.org/wiki/Minimax_theorem,
which is the foundational result in Game Theory. Anyway, there is a clear geometric

idea: the upper integral
∫ b
a
f is the best upper bound one can get on the area of
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the region Sf using upper rectangles, while the lower integral
∫ b
a
f is the best lower

bound one can get on the same area using lower rectangles. So if we want there to
be a unique real number lying between all the areas of lower rectangles and all the
areas of upper rectangles, then presumably we want the upper and lower integrals
to be equal, finite numbers. We are about to show this, but first one “sanity check”:

Lemma 3.5. Let f : [a, b]→ R be a function.

a) We have ∫ b

a

f ≤
∫ b

a

f.

b) If f is bounded, then
∫ b
a
f,
∫ b
a
f ∈ R.

Proof. a) The lower integral
∫ b
a
f is the supremum of the set

X := {L(f,P) | P is a partition of [a, b]},

while the upper integral
∫ b
a
f is the infimum of the set

Y := {U(f,P) | P is a partition of [a, b]}.

But Lemma 3.4b) says that for all x ∈ X and all y ∈ Y we have x ≤ y. Thus every
x ∈ X is a lower bound for Y , so x ≤ inf Y , and since this holds for all x ∈ X we
have supX ≤ inf Y .
b) Suppose that f is bounded: there is M > 0 such that |f | ≤ M . Then for any
partition P of [a, b] we have

−M(b− a) ≤ L(f,P) ≤ U(f,P) ≤M(b− a),

and it follows that
∫ b
a
f,
∫ b
a
f ∈ [−M(b− a),M(b− a)]. �

Theorem 3.6 (Darboux’s Integrability Criterion). For a function f : [a, b] →
R, the following are equivalent:

(i) There is a unique real number I such that for all partitions P of [a, b] we
have L(f,P) ≤ I ≤ U(f,P).

(ii) We have
∫ b
a
f =

∫ b
a
f ∈ R.

(iii) For all ε > 0, there is a partition P such that U(f,P) and L(f,P) are
real numbers and U(f,P)− L(f,P) < ε.

Henceforth we call a function satisfying these conditions Darboux integrable.

Proof. Step 1: Suppose first that f is unbounded. By Proposition 3.3, condi-
tion (i) fails. Moreover either f is unbounded above — in which case U(f,P) =∞
for all P hence

∫ b
a
f =∞, so (ii) and (iii) fail — or f is unbounded below – in which

case L(f,P) = −∞ for all P hence
∫ b
a
f = −∞, so again (ii) and (iii) fail.

So it suffices to consider the case in which f is bounded. In this case, by Ex-

ercise 3.5 we know that
∫ b
a
f and

∫ b
a
f are both finite.

Step 2: We show that (i) ⇐⇒ (ii). For a real number S, we have S ≤
∫ b
a
f if and

only if I is less than or equal to every upper sum of f , and we have S ≥
∫ b
a
f if

and only if S is greater than or equal to every lower sum of f , so a real number S
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lies in the interval [
∫ b
a
f,
∫ b
a
f ] if and only if it lies in between every lower sum of f

and every upper sum of f . So the upper and lower integrals are equal if and only
if there is a unique S in between every lower sum of f and every upper sum of f .
Step 3: We show that (ii) ⇐⇒ (iii): If (ii) holds, let ε > 0. Then there is a
partition P of [a, b] such that

L(f,P) >

∫ b

a

f − ε

2

and another partition Q of [a, b] such that

U(f,Q) <

∫ b

a

f +
ε

2
,

so

U(f,Q)− L(f,P) <

∫ b

a

f −
∫ b

a

f + ε = ε.

Now let R := P ∪Q. Since R refines both P and Q, we have

U(f,R) ≤ U(f,P) and L(f,R) ≥ L(f,P),

so

U(f,R)− L(f,R) ≤ U(f,Q)− L(f,P) < ε.

If (iii) holds, then let ε > 0, and choose a partition P such that U(f,P)−L(f,P) <

ε. Then, since
∫ b
a
f ≤ U(f,P) and

∫ b
a
f ≥ L(f,P), we have∫ b

a

f −
∫ b

a

f ≤ U(f,P)− L(f,P) < ε.

Since this holds for all ε > 0, we have
∫ b
a
f =

∫ b
a
f . �

2.2. Verification of the Axioms. Our next order of business is to check
that the Darboux integral that we have defined satisfies Axioms (I0), (I1), (I2) and
(I3) from §3.1. “Checking axioms” doesn’t sound so exciting, but we get quite a
payoff: the Fundamental Theorem of Calculus, which includes the fact that every
continuous function f : [a, b]→ R is a derivative.

The verification of (I1) is left as Exercise 3.6 and the verification of (I2) is left
as Exercise 3.7. Checking the third axiom is less straightforward:

Proposition 3.7. Let f : [a, b]→ R be a Darboux integrable function.

a) For any a ≤ c ≤ d ≤ b, the function f |[c,d] : [c, d] → R is Darboux
integrable.

b) For any a ≤ c ≤ b, we have
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

Proof. a) Let ε > 0. Since f is Darboux integrable, there is a partition P of
[a, b] such that U(f,P)− L(f,P) < ε. Let P ′ := P ∪ {c, d}, and write

P ′ = {a = x0 < x1 < . . . < xn−1 < xn = b}.

Since P ′ refines P, we have U(f,P ′) ≤ U(f,P) and L(f,P ′) ≥ L(f,P), so

U(f,P ′)− L(f,P ′) < ε.
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Now p := P ′ ∩ [c, d] is a partition of [c, d]: it contains c and d and is a suset of a
finite set, hence finite. To be specific, suppose that c = xI and d = xJ . Then

U(f, p)− L(f, p) =

J−1∑
i=I

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi),

whereas

U(f, P ′)− L(f,P ′) =

n−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi).

The only difference between the former sum and the latter is that in the former
sum we are summing from I to J − 1 and in the latter we are summing from 0 to
n − 1, so the latter sum is the former sum together with some additional terms.
But every term in either sum is non-negative, because the supremum of f on any
subinterval is at least as large as its infimum on that subinterval. Thus:

U(f, p)− L(f, p) ≤ U(f,P ′)− L(f,P ′) < ε.

By Theorem 3.6, f[c,d is Darboux integrable.
b) Let P be a partition of [a, b], and let P ′ := P ∪ {c}. We also put

PL := P ∩ [a, c] and PR := P ∩ [c, b],

so PL is a partition of [a, c] and PR is a partition of [c, b]. Similarly to part a),
upon writing out the partial sums we find immediately that

U(f,P ′) = U(f |[a,c],PL)+U(f |[c,b],PR) and L(f,P ′) = L(f |[a,c],PL)+L(f |[c,b],PR).

Moreover, since P ′ is a refinement of P we have

L(f,P) ≤ L(f,P ′) and U(f,P ′) ≤ U(f,P).

By part a), f |[a,c] : [a, c]→ R and f |[c,b] : [c, b]→ R are Darboux integrable, so

L(f,P) ≤ L(f,P ′) = L(f |[a,c],PL) + L(f |[c,b],PR)

≤
∫ c

a

f +

∫ b

c

f

≤ U(f |[a,c],PL) + U(f |[c,b],PR) = U(f,P ′) ≤ U(f,P).

Thus
∫ c
a
f +

∫ b
c
f lies between every lower sum and every upper sum. Since f is

Darboux integrable, the unique such real number is
∫ b
a
f , and we conclude:∫ b

a

f =

∫ c

a

+

∫ b

c

f. �

We have already shown that every Darboux integrable function is bounded: Propo-
sition 3.3. The last, and most important, thing we have to show is this:

Theorem 3.8. Let f : [a, b]→ R be continuous. Then f is Darboux integrable.

Proof. The key is that by Theorem 1.28 we know that f is uniformly contin-
uous. So let ε > 0; we may choose δ > 0 such that for all x, y ∈ [a, b], if |x− y| < δ
then |f(x) − f(y)| < ε

b−a . Now choose N ∈ Z+ such that b−a
N < δ and let PN be

the partition that divides [a, b] into N subintervals of equal length. Then

(9) U(f,PN )− L(f,PN ) =

(
b− a
N

)N−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1])) .
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Because xi+1 − xi = b−a
N < δ, on the subinterval [xi, xi+1]] any two values of f

differ from each other by less than ε
b−a , so

∀0 ≤ i ≤ N − 1, sup(f [xi, xi+1])− inf(f [xi, xi+1]) ≤ ε

b− a
.

If we apply this inequality to each term of (9), we now get b−a
N times a sum of N

terms, each one of which is at most ε
b−a , so we get

U(f,PN )− L(f,PN ) ≤ b− a
N
·N · ε

b− a
≤ ε.

So f is Darboux integrable by Theorem 3.6. �

Finally the circle has been completed: we shown that the Darboux integral satisfies
all of our axioms (I0) through (I3), so we do have a gadget

∫
: RD[a, b] → R to

plug into the hypothesis of the Fundamental Theorem of Calculus. Thus the Fun-
damental Theorem of Calculus becomes an unconditional result, and in particular
we have shown that every continuous function has an antiderivative.

We were fortunate enough to know the Uniform Continuity Theorem (Theorem
1.28), so we used it to get a very agreeable proof of Theorem 3.8. In contrast to
the situation of showing that a continuous function has an antiderivative – which I
do not know how to show without somehow constructing a definite integral – there
are alternate approaches to Theorem 3.8 that avoid the use of uniform continuity.
See for instance [HC, Thm. 8.9] or [No52].

We end this section with a “supplement” to the Fundamental Theorem of Cal-
culus that is actually more similar to the approach taken to that result in freshman
calculus than the approach we have thus far taken here.

One often thinks of the Fundamental Theorem of Calculus as having two parts,
with these two parts together showing that integration and differentiation are es-
sentially inverse operations. The first part of the Fundamental Theorem concerns
the situation in which we differentiate an integral. This is addressed by part b) of
our Theorem 3.1: if f is continuous, then the derivative of

∫ x
a
f is f(x). The second

part of the Fundamental Theorem concerns the situation in which we integrate a
derivative. This is addressed by part c) of our Theorem 3.1, which can be restated

as: if f is differentiable and its derivative is continuous, then
∫ b
a
f ′ = f(b)− f(a).

Stating the result this way shows the presence of a hypothesis that is not clearly
necessary: namely, that f ′ be continuous. We could try to push our luck here in two
ways: first, a more natural hypothesis here would be that f ′ is Darboux integrable.

Then
∫ b
a
f ′ is defined, we so we can ask: is it equal to f(b)− f(a) even when f ′ is

not continuous? The answer is yes:

Theorem 3.9 (Supplement to the Fundamental Theorem of Calculus).
Let f : [a, b]→ R be differentiable. If f ′ : [a, b]→ R is Darboux integrable, then:∫ b

a

f ′ − f(b)− f(a).

Proof. Let P = {a = x0 < x1 < . . . < xn−1 < xn = b} be a partition of [a, b].
By the Mean Value Theorem there is ti ∈ (xi, xi+1) such that

f(xi+1)− f(xi) = f ′(ti)(xi+1 − xi).
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Then we have for all 0 ≤ i ≤ n− 1 that

inf(f ′([xi, xi+1])(xi+1 − xi) ≤ f ′(ti)(xi+1 − xi) = f(xi+1 − f(xi)

= f ′(ti)(xi+1 − xi) ≤ sup(f ′[xi, xi+1])(xi+1 − xi).
Summing these inequalities from i = 0 to n− 1 gives

L(f ′,P) ≤
n−1∑
i=0

(f(xi+1)− f(xi)) = f(b)− f(a) ≤ U(f ′,P).

Thus f(b)− f(a) lies between every lower sum of of f ′ and every upper sum of f ′.
Since we are assuming that f ′ is Darboux integrable, the unique such real number

is
∫ b
a

, so we must have
∫ b
a
f ′ = f(b)− f(a). �

The second question is whether the Darboux integrability of f ′ is actually neces-
sary: perhaps whenever f is differentiable, f ′ is Darboux integrable? The answer
is no, as is most easily seen by observing that f ′ : [a, b]→ R need not be bounded.
Part d) of Exercise 3.14 gives examples of unbounded derivatives, while part e)
shows a class of functions f for which f ′ is discontinuous but Darboux integrable
— showing that Theorem 3.9 really is an extension of the Fundamental Theorem
of Calculus. This class includes our old friend from Example 2.2.

The sufficiently intellectually curious always have further questions. One might
say unboundedness is a rather “cheap” reason for a function f : [a, b]→ R to fail to
be Darboux integrable. (Later on we will investigate exactly which bounded func-
tions are Darboux integrable.) Must f ′ be Darboux integrable if it is bounded? The
answer is no: see [Go16] for an example that is chosen for its relative simplicity.

2.3. Linearity of the Darboux Integral. Before proceeding further, it will
be helpful to introduce some further notation regarding the quantity U(f,P) −
L(f,P), which appears in condition (iii) in Darboux’s Integrability Criterion (The-
orem 3.6) and therefore shows up often in our arguments. If P = {a = x0 < x1 <
. . . < xn−1 < xn = b} then

U(f,P)− L(f,P) =

n−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi).

For a function f : I → R defined on an interval I, let us define the oscillation of
f on I to be

ω(f, I) := sup(f(I))− inf(f(I)) ∈ [−∞,∞].

This is an extended real number which lies in R if and only if f is bounded on I,
which will almost always be the case for us. Then we have

U(f,P)− L(f,P) =

n−1∑
i=0

ω(f, [xi, xi+1])(xi+1 − xi).

And let us also put

∆(f,P) := U(f,P)− L(f,P).

Thus f is Darboux integrable if and only if for all ε > 0 there is a partition P of
[a, b] with ∆(f,P) < ε, and moreover if P ′ is a partition refining P then

∆(f,P ′) ≤ ∆(f,P).
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Theorem 3.10. Let RD[a, b] be the set of Darboux integrable functions f :
[a, b]→ R. Then the Darboux integral∫

: RD[a, b]→ R

is a linear functional – that is:

a) The set RD[a, b] is a subspace of the vector space of all functions f :
[a, b]→ R.

b) The function
∫

: RD[a, b]→ R is a linear map: for all f, g ∈ RD[a, b] and
all α, β ∈ R, we have∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

Proof. Equivalently, and perhaps more plainly, we must prove that if f, g :
[a, b]→ R are Darboux integrable, then:

(i) For all α ∈ R, αf is also Darboux integrable, and moreover
∫ b
a

(αf) = α
∫ b
a
f ;

(ii) f + g is also Darboux integrable, and moreover
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

Assertion (i) is mostly a matter of pulling constants through upper and lower sums,
so we leave this as Exercise 3.9.

Now let us show assertion (ii). Let ε > 0; because f and g are Darboux
integrable, there is a partition P1 of [a, b] such that ∆(f,P1) < ε

2 and a partition
P2 of [a, b] such that ∆(f,P2) < ε

2 . Let P3 be a common refinement of P1 and P2

(e.g. take P3 = P1 ∪ P2); then ∆(f,P3) and ∆(g,P3) are each less than ε
2 .

We observe that for an interval I and for functions f, g : I → R, we have

sup((f+g)(I)) ≤ sup(f(I))+sup(g(I)) and inf((f+g)(I)) ≥ inf(f(I))+inf(g(I)).

You are asked to show this in Exercise 3.15. Using these inequalities we get

L(f,P3) + L(g,P3) ≤ L(f + g,P3) ≤ U(f + g,P3) ≤ U(f,P3) + U(g,P3).

This shows that

∆(f + g,P3) ≤ ∆(f,P3) + ∆(g,P3) <
ε

2
+
ε

2
= ε,

and thus f + g is Darboux integrable. Moreover, whenever we have a Darboux
integrable function h : [a, b]→ R and a partition P of [a, b] such that ∆(h,P) ≤ ε,

we know
∫ b
a
h lies in the interval [L(h,P), U(h,P)] of length ∆(h, P ) ≤ ε, so we

know that
∫ b
a
h has distance at most ε from each of U(h,P) and L(h,P). So:∫ b

a

(f + g) ≤ U(f + g,P3) ≤ U(f,P3) + U(g,P3) ≤
∫ b

a

f +

∫ b

a

g + ε

and similarly∫ b

a

f +

∫ b

a

g − ε < L(f,P3) + L(g,P3) ≤ L(f + g,P3) ≤
∫ b

a

(f + g).

This shows that

∣∣∣∣ ∫ ba (f + g)− (
∫ b
a
f +

∫ b
a
g)

∣∣∣∣ ≤ ε. Since this holds for all ε > 0, we

have
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g. �
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As one simple application of Theorem 3.10, we can reduce the study of
∫ b
a
f to the

case in which f is non-negative and thus officially not worry about signed areas.
Indeed, if f : [a, b] → R is Darboux integrable, then it is bounded, so there is a

C ≥ 0 such that f +C ≥ 0 on [a, b]. So
∫ b
a

(f +C) really does represent the area of

the region Sf+C , and we can recover
∫ b
a
f from this as∫ b

a

f =

∫ b

a

(f + C)−
∫ b

a

C =

∫ b

a

(f + C)− C(b− a).

2.4. Exercises.

Exercise 3.4. Let X be a subset of RN , and let Y1, . . . , Yn be finitely many
subsets of X such that X =

⋃n
i=1 Yi. Let f : X → RM .

a) Show: f is bounded if and only if, for each 1 ≤ i ≤ n, f |Yi : Yi → RM is
bounded.

b) Suppose M = 1. Show: f is bounded above if and only if, for each 1 ≤ i ≤
n, f |Yi : Yi → RM is bounded above. Then show the same with “bounded
above” replaced everywhere by “bounded below.”

Exercise 3.5. Let f : [a, b]→ R.

a) Suppose that f is bounded above by M ∈ R: we have f(x) ≤ M for all
x ∈ [a, b]. Show: for every partition P of [a, b], we have∫ b

a

f ≤ U(f,P) ≤M(b− a).

b) Suppose that f is bounded below by m ∈ R: we have f(x) ≥ m for all
x ∈ [a, b]. Show: for every partition P of [a, b], we have

m(b− a) ≤ L(f,P) ≤
∫ b

a

f.

Exercise 3.6. Let f : [a, b]→ R be defined by f(x) = C for all x ∈ [a, b].

a) Show: for every partition P of [a, b] we have U(f,P) = L(f,P) = C(b−a).

b) Deduce: f is Darboux integrable and
∫ b
a
C = C(b − a). Thus Axiom (I1)

holds for the Darboux integral.

Exercise 3.7. Let f, g : [a, b] → R be two Darboux integrable functions with
f ≤ g: that is, for all x ∈ [a, b], we have f(x) ≤ g(x).

a) Show: for every partition P of [a, b] we have U(f,P) ≤ U(g,P) and
L(f,P) ≤ L(g,P).

b) Deduce:
∫ b
a
f ≤

∫ b
a
g. Thus Axiom (I2) holds for the Darboux integral.

Exercise 3.8. Let f : [a, b]→ R and let c ∈ (a, b). Suppose that each of f |[a,c] :
[a, c] → R and f |[c,b] : [c, b] → R are Darboux integrable. Show: f : [a, b] → R is

Darboux integrable and
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

(This is similar to Proposition 3.7 and — hint — can be proved in much the same
way. Once we establish this, the proof of Proposition 3.7b) applies verbatim to give∫ b
a
f =

∫ c
a
f +

∫ b
c
f . You can just say so: no need to repeat the argument.)
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Exercise 3.9. Suppose f : [a, b] → R is Darboux integrable. Show: for all
α ∈ R, the function αf : [a, b]→ R is also Darboux integrable, and moreover∫ b

a

(αf) = α

∫ b

a

f.

Exercise 3.10. Let f : [0, 1]→ R by f(x) =

{
1 x ∈ Q
0 x ∈ R \Q

.

a) Show:
∫ 1

0
f = 0 and

∫ 1

0
f = 1.

b) Deduce: f is bounded function that is not Darboux integrable.

Exercise 3.11. Let T : [0, 1] → R be Thomae’s function of Exercise 2.3,
restricted to the unit interval. Recall from that Exercise that f is continuous at
every rational number and discontinuous at every irrational number.1 Show: T is

Darboux integrable and
∫ 1

0
T = 0.

Exercise 3.12. Let f : [a, b] → R be bounded. Suppose that for all c ∈ (a, b],
the restricted function f |[c,b] : [c, b] → R is Darboux integrable. Show that f is

Darboux integrable and limc→a+
∫ b
c
f =

∫ b
a

.
(Suggestion: use the fact that if |f | ≤M , then on any subinterval [c, d], every upper
sum of f is at most M(d− c) and every lower sum of f is at least −M(d− c), and
note that these quantities approach 0 with the length of [c, d].

Exercise 3.13. Suppose f : [a, b] → R is bounded and has finitely many dis-
continuities. Show that f is Darboux integrable. (You may, or may not, wish to
use Exercise 3.12.)

Exercise 3.14. Let a, b be positive real numbers, and define f : R→ R by

f(x) =

{
xa sin( 1

xb
) x 6= 0

0 x = 0
.

a) Show: for all values of a and b, fa,b is continuous.
b) Show: fa,b is differentiable if and only if a > 1.

(Here and hereafter, the only issues are at x = 0; fa,b is certainly infinitely
differentiable on R \ {0}.)

c) Show: f ′a,b is continuous if and only if a > b+ 1.

d) Show: if a ∈ (1, b + 1), then f ′a,b is unbounded on any open interval con-

taining 0. Deduce: if c < 0 < d, f ′a,b is not Darboux integrable on [c, d].

e) Show: if 1 < a = b + 1, then f ′a,b exists, is discontinuous precisely at
0, and is bounded on any closed, bounded interval. Using Exercise 3.12,
deduce that if c < 0 < d, then f ′a,b|[c,d] : [c, d]→ R is Darboux integrable.

Exercise 3.15. Let X ⊂ RN and let f, g : X → R.

a) Show:

sup((f + g)(X) ≤ sup(f(X)) + sup(g(X)).

1Strictly speaking, one should look again at the endpoints 0 and 1 of the interval: there are

some functions f : R → R that are discontinuous at 0 and 1 such that after restricting to [0, 1]
become continuous at one or both endpoints. But in fact Thomae’s function does not have even

one-sided limits at any rational point.
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b) Show:

inf((f + g)(X) ≥ inf(f(X)) + inf(g(X)).

(Comment: in part a), each of the terms is either a real number or ∞. In part
b), each of the terms is either a real number or −∞. Standard conventions on the
arithmetic of extended real numbers apply, e.g. ∞ +∞ = ∞ and for all x ∈ R,
x+∞ =∞.)

Exercise 3.16 (Mean Value Theorem for Integrals). Let f : [a, b] → R be
continuous. Show: there is c ∈ [a, b] such that∫ b

a

f = f(c) · (b− a).

(Hint: let m = min f([a, b]) and M = max f([a, b]). Show that
∫ b
a
f

b−a ∈ [m,M ]. Thus∫ b
a
f

b−a is intermediate between two values of f ....)

Exercise 3.17 (Integrability of Monotone Functions).

a) Let f : [a, b] → R be an increasing function, and let Pn be the partition
that divides [a, b] into n equally spaced subintervals. Show:

∆(f,P) = U(f,P)− L(f,P) = (f(b)− f(a)) ·
(
b− a
n

)
.

Use this to show that f is Darboux integrable.
b) Show that if f : [a, b]→ R is decreasing, then it is Darboux integrable.

c) Show: if f is monotone, then limn→∞
b−a
n

∑n−1
i=0 f(a+ i( b−an )) =

∫ b
a
f .

Exercise 3.18 (Monotone Functions Can Be Pretty Discontinuous). Let {xn}∞n=1

be an injective sequence of real numbers: i.e., for all m 6= n we have xm 6= xn. For
x ∈ R, let Sx := {n ∈ Z+ | xn ≤ x}. We define a function f : R → R as follows:
for x ∈ R,

f(x) :=
∑
n∈Sx

2−n.

In other words, f(x) is the sum of an infinite series whose nth term is 2−n if xn ≤ x
and is 0 if xn > x.

a) Show that for all x ∈ R, the infinite series defining f(x) converges and we
have 0 ≤ f(x) ≤ 1.
(Suggestion: compare to the geometric series

∑∞
n=1 2−n = 1.)

b) Show: f is increasing.
c) Show: for n ∈ Z+, limx→x+

n
f(x) − limx→x−n f(x) = 2−n. Thus f is

discontinuous at xn.
d) Show: if x ∈ R \ {xn | n ∈ Z+}, then f is continuous at x.
e) Deduce: there is an increasing f : [0, 1] → R that is continuous at every

irrational point of [0, 1] and discontinuous at every rational point of [0, 1].

3. Riemann’s Riemann Integral

In this section we touch upon Riemann’s construction of the Riemann integral,
which was earlier than Darboux’s. Riemann’s construction is a bit more techni-
cally elaborate than Darboux’s – hence our decision to start with, and mostly focus
on, Darboux’s – but it has its merits, and it is to our advantage to at least be
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familiar with both.

In order to motivate Riemann’s construction, imagine you have a function f :
[a, b]→ R that you know is Darboux integrable: to fix ideas, let us suppose that it

is continuous. Can we actually compute
∫ b
a
f?

Perhaps your first idea is to find an antiderivative F of f and use the Funda-

mental Theorem of Calculus:
∫ b
a
f = F (b) − F (a). If you think this is how most

integrals are actually computed, then you have been misled. Despite the time spent
in freshman calculus on integration (i.e., antidifferentiation!) techniques, for any
function more complicated than a rational function or a polynomial expression in
trigonometric functions, it is quite rare to be able to write down an antiderivative
“as an elementary function” of the sort you studied in precalculus. If your function
is given by a power series expansion such that [a, b] lies inside the open interval of
convergence of the series, then you are in business: as you learned in Math 3100,
power series can be integrated term by term, and moreover it is easy to estimate
the value of a power series at a non-boundary point of convergence: you can cut
off after finitely many terms and use geometric series to get an upper bound for
the error. But such functions are a lot more than continuous: they are infinitely
differentiable (and in fact, most infinitely differentiable functions are still not given
by convergent power series expansions).

Returning to the Darboux integral, we point out that things work out very nicely if
f : [a, b]→ R is monotone, as is explored in Exercise 3.17. To fix ideas, let us sup-
pose that f is increasing. First of all, in this case, on any subinterval [xi, xi+1]
the supremum is just f(xi+1), the value at the right endpoint, while the infi-
mum is just f(xi), the value at the left endpoint. So we can actually compute
U(f,P) and L(f,P) for any partition P. Moreover, if you just take the partition
Pn that subdivides [a, b] into n equally spaced subintevals, then in the expression
for ∆(f,Pn) = U(f,Pn)−L(f,Pn) almost everything cancels out, and you are left
with (f(b)− f(a)) · ( b−an ). Evidently this approaches 0 as n approaches ∞, which
already shows that f is Darboux integrable. But moreover, it follows easily from
this that

lim
n→∞

U(f,Pn) = lim
n→∞

L(f,Pn) =

∫ n

a

f,

so choosing for instance the lower sum, we get concretely that∫ n

a

f = lim
n→∞

(
b− a
n

) n−1∑
i=0

f(a+ i(
b− a
n

)).

Even if this limit is too hard to evaluate exactly (which it usually is), we can still
compute, for any n, a lower bound L(f,Pn) for the integral and an upper bound
U(f,Pn) for the integral, and as n approaches ∞, since each sequence approaches∫ b
a
f , the gap between them ∆(f,Pn) approaches 0. Therefore we can compute

∫ b
a
f

degree to accuracy ε by choosing a large n and computing U(f,Pn), L(f,Pn) and
∆(f,Pn): if ∆(f, Pn) ≤ ε; great. If not, try again with a larger value of n.

This works so well that we might try to bootstrap it to other functions, e..g. by
breaking up f : [a, b]→ R into finitely many subintervals such that it is monotone
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on each one. Unfortunately not every function is piecewise monotone, and for those
which are we may have to do quite a lot of work in order to successfully break it
up in this way. Or we might try to write f = g − h where each of g and h is

monotone, taking advantage of the fact that
∫ b
a
f =

∫ b
a
g −

∫ b
a
h. In theory, a large

class of functions can be written as the difference of two increasing functions – in
particular every function with a continuous derivative can be expressed this way –
but in practice finding the g and h is usually not easy.

Why are we avoiding trying to compute the Darboux integral of a non-monotone
function f : [a, b] → R? Because if f is not monotone, then for any partition
P = {a = x0 < x1 < . . . < xn−1 < xn = b}, then order to compute U(f,PN ) or
L(f,Pn) we have to solve n optimization problems: we have to maximize (resp.
minimize) f on each subinterval [xi, xi+1]. That doesn’t sound fun. But we have
a more basic issue: which partitions P should we be using? Darboux integrability
means that for each ε > 0 there is some partition Pε of [a, b] for which ∆(f,Pε) < ε.
It doesn’t tell us how to find Pε. Geometric intuition (recall we have been assuming
that f is continuous) suggests we should as in the monotone case be able to use
the uniform partitions Pn for sufficiently large n, or in other words that we should
again have

lim
n→∞

∆(f,Pn) = 0, hence lim
n→∞

U(f,Pn) = lim
n→∞

L(f,Pn) =

∫ b

a

f.

We still have the darned upper and lower sums, but....actually, it is clear that the
left endpoint sum b−a

n

∑n−1
i=0 f(a + i( b−an )) lies in between L(f,Pn) and U(f,Pn),

so by the Squeeze Theorem for sequences it would indeed then follow that

lim
n→∞

b− a
n

n−1∑
i=0

f(a+ i(
b− a
n

)) =

∫ b

a

f.

Riemann’s work shows that all of these things are true and more. There are two key
ideas that distinguish Riemann’s integral from Darboux’s. First, instead of upper
and lower sums we work with sums obtained by taking the height of the rectangle
to be any point in the subinterval [xi, xi+1]. The second idea is that his notion
of convergence is a priori more demanding than Darboux’s in a way that works
against you if you are trying to show that a given function is integrable but works
for you if you know that it is.

We begin with a function f : [a, b] → R and a partition P = {a = x0 < x1 <
. . . < xn−1 < xn = b} of [a, b], but now we introduce one more piece of data, a
tagging of P. A tagging is a function τ : {0, 1, . . . , n} → [a, b] such that for all i,
the point τ(i) lies in the ith subinterval [xi, xi+1] determined by the partition P.
Instead of using functional notation we may just put x∗i = τ(i), and then a tagging

is a finite sequence {x∗0 ≤ x∗1 ≤ . . . ≤ x∗n−1 ≤ x
}
n. Notice that this sequence need

not be quite injective: we could have x∗i = x∗i+1; this holds if and only if both are
equal to xi+1, which is both the right endpoint of [xi, xi+1] and the left endpoint
of [xi+1, xi+2]. The pair (P, τ) is called a tagged partition.
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To any tagged partition (P, τ) and, of course, a function f : [a, b] → R we as-
sociate a Riemann sum

R(f,P, τ) :=

n−1∑
i=0

f(x∗i )(xi+1 − xi).

It is easy to compare with the upper and lower sums: of course we have

sup(f([xi, xi+1]) ≥ f(x∗i ) and inf(f [xi, xi+1]) ≤ f(x∗i ),

so

L(f,P) ≤ R(f,P, τ) ≤ U(f,P).

If f assumes its maximum and minimum value on each subinterval [xi, xi+1] – so
for instance if f is continuous – then L(f,P) and U(f,P) are themselves Riemann
sums. In general this is not quite true because the suprema and infima need not
be attained, but almost: we will have

U(f,P) = sup
τ
R(f,P, τ) and L(f,P) = inf

τ
R(f,P, τ).

Thus for each partition P, the upper sum is the least upper bound of all possible
Riemann sums for P and the lower sum is the greatest lower bound of all possible
Riemann sums for P. This is quite clear if f is bounded; it is still true if f is
unbounded, but it requires a bit more work:

Proposition 3.11. Let f : [a, b]→ R be a function and P a partition of [a, b].

a) If f is unbounded above, then as we range over all possible taggings τ of
[a, b], we have

sup
τ
R(f,P, τ) =∞.

b) If f is unbounded below, then as we range over all possible taggings τ of
[a, b], we have

inf −τR(f,P, τ) = −∞.

We leave the proof of Proposition 3.11 as Exercise 3.19.

So far this is all pretty similar to Darboux’s treatment. The second main idea

is that the sense in which the Riemann sums are required to converge to
∫ b
a
f

is quite stringent. To give it, we need just one more definition: for a partition
P = {a = x0 < x1 < . . . < xn−1 < xn = b} of [a, b], its mesh is

|P| := max
0≤i≤n−1

xi+1 − xi;

that is, the mesh of P is the largest length of a subinterval [xi, xi+1]. For instance, in
the uniform partition Pn all subintervals have length b−a

n , so its mesh is |Pn| = b−a
n .

A function f : [a, b] → R is Riemann integrable if there is S ∈ R such that:
for all ε > 0, there is δ > 0 such that for every partition P of [a, b] with mesh
|P| ≤ δ and every tagging τ of P, we have

|R(f,P, τ)− S| ≤ ε.

We then put
∫ b
a
f := S.

Let us check that Riemann integrability implies Darboux integrability: let ε > 0.
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Then there is δ > 0 such that for any partition P of mesh less than δ we have
|R(f,P, τ) − S| ≤ ε

2 , which of course means that R(f,P, τ) ∈ [S − ε
2 , S + ε

2 ]. Be-
cause the upper sum U(f,P) is the supremum of the R(f,P, τ)’s as we range over
τ and R(f,P, τ) ≤ S + ε

2 for all τ , we get U(f,P) ≤ S + ε
2 ; similarly, we get

L(f,P) ≥ S− ε
2 , so ∆(f,P) ≤ ε, and thus f is Darboux integrable and moreover S

is the Darboux integral
∫ b
a
f . (In particular, there is at most one S ∈ R satisfying

the conditions in the definition of Riemann integrability.)

It is much less obvious whether every Darboux integrable function is Riemann
integrable. But happily it is true:

Theorem 3.12. a) For a function f : [a, b]→ R, the following are equiv-
alent:

(i) The function f is Darboux integrable.
(ii) The function f is Riemann integrable.
(iii) For every sequence {(Pn, τn)}∞n=1 of tagged partitions of [a, b] with

|Pn| → 0, the sequence {R(f,Pn, τn)}∞n=1 of Riemann sums is con-
vergent.

b) If the equivalent conditions of part a) hold, then for any sequence {(Pn, τn)}
of tagged partitions of [a, b] with |Pn| → 0, we have

lim
n→∞

R(f,Pn, τn) =

∫ b

a

f.

We are not going to prove Theorem 3.12 in our course, but you can find the proof
in [HC, §8.4]. So that you don’t feel short-changed, let me mention that most
undergraduate analysis texts do not prove this theorem; many of them just develop
Darboux’s integral and forget to make the connection with Riemann sums.

Let us sum up the state of affairs: because of Theorem 3.12, the Darboux inte-
gral and the Riemann integral, although they were defined differently, turn out to
be completely equivalent: a function is integrable in sense if and only if it is in the

other sense, and if so they return the same real number
∫ b
a
f . So we no longer need

to distinguish between them: henceforth we will only speak of Riemann integrable
functions and the Riemann integral. This is what is most commonly done, even by
people who have much less right to conflate the two than we do.

We end this section with one more result that helps to make the Riemann inte-
gral more computable.

Theorem 3.13. Let f : [a, b]→ R be differentiable with bounded derivative: let
M > 0 be such that |f ′| ≤M . For n ∈ Z+, let

Ln(f) =

n−1∑
i=0

f(a+ i(
b− a
n

))(
b− a
n

)

be the left endpoint Riemann sum of f . Then∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ ≤ ( (b− a)2M

2

)
1

n
.
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Proof. Step 1: We establish the result for n = 1. For x ∈ [a, b], we apply the
Mean Value Theorem to f on the interval [a, x]: there is c ∈ (a, x) with

f(x)− f(a) = f ′(c)(x− a).

Since |f ′(c)| ≤M , we get

−M(x− a) + f(a) ≤ f(x) ≤M(x− a) + f(a)

and thus ∫ b

a

(−M(x− a) + f(a)) ≤
∫ b

a

f ≤
∫ b

a

(M(x− a) + f(a)).

Of course we can evaluate the first and last integrals with the Fundamental Theorem
of Calculus, and we get

−M
2

(b− a)2 + (b− a)f(a) ≤
∫ b

a

f ≤ M

2
(b− a)2 + (b− a)f(a),

which is equivalent to ∣∣∣∣ ∫ b

a

f − L1(f)

∣∣∣∣ ≤ M

2
(b− a)2.

Step 2: Let n ∈ Z+. For 0 ≤ i ≤ n− 1, put x∗i = a+ i b−an . Then:∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ =

∣∣∣∣ n−1∑
i=0

(∫ x∗i+1

x∗i

f − f(x∗i )

(
b− a
n

)) ∣∣∣∣
≤
n−1∑
i=0

∣∣∣∣ ∫ x∗i+1

x∗i

f − f(x∗i )

(
b− a
n

) ∣∣∣∣.
Step 1 applies to each term in the last sum to give∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ ≤ n−1∑
n=0

M

2

(
b− a
n

)2

=

(
(b− a)2M

2

)
1

n
. �

Whereas Theorem 3.12 guarantees us that for any Riemann integral f : [a, b]→ R,

we can compute
∫ b
a
f as the limit limn→∞ Ln(f) of the left endpoint Riemann sums,

Theorem 3.13 gives us, for functions with a bounded derivative, a precise error es-

timate: it tells us how large n needs to be in order to for Ln(f) to compute
∫ b
a
f to

any prescribed accuracy, where the bound depends on the size of the derivative. To
get a bound on f ′ essentially amounts to solving one optimization problem, which
is great progress over the arbitrarily many optimization problems we had to solve
to compute a single upper or lower sum. More basically, this result is telling us
that the faster f is changing from point to point in the local sense, the more sample

points we will need in order to get a handle on
∫ b
a
f : this makes a lot of sense. On

the other hand, of course if we don’t know anything about f other than that it is,
say, differentiable, then we don’t know how many sample points we will need to use

to usefully approximate
∫ b
a
f because for any sample points we choose, for all we

know f could be oscillating wildly in between them.

Moreover Theorem 3.13 is the first of an infinite sequence of theorems: the rough
form of the kth theorem in the sequence is that if we assume that the kth deriv-
ative f (k) of f exists and is bounded, then using the values of f at the points of
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the partition Pn of [a, b] into n equally spaced subintervals, one can write down
a certain finite sum Sk,n(f) that is a certain weighted average of several different
Riemann sums, and has the property that∣∣∣∣Sk,n(f)−

∫ b

a

f

∣∣∣∣ ≤ C 1

nk
.

Here C is a certain explicit expression depending only on (b − a), the number n
of sample points and an upper bound M for |f (k)|. Thus, the more smoothness

we assume on f , the more rapidly we can compute
∫ b
a
f . The k = 2 case is the

Trapezoidal Rule [HC, Thm. 9.5], while the k = 3 case is Simpson’s rule [HC,
Thm. 9.8]. The branch of mathematics in which you will learn how this works for
all k ∈ Z+ and many other similar results is numerical analysis.

3.1. Exercises.

Exercise 3.19. Prove Proposition 3.11.

Exercise 3.20. In this exercise we show that limn→∞
∑n
k=1

n
k2+n2 = π

4 .

a) Let Pn be the partition of [0, 1] into n equally spaced subintervals. Let
f : [0, 1] → R by f(x) = 1

x2+1 . Show:
∑n
k=1

n
k2+n2 = R(f,Pn, τn), where

τn is the right endpoint tagging: for all 0 ≤ i ≤ n− 1, x∗i = i
n .

b) Use Theorem 3.12 and the Fundamental Theorem of Calculus to evaluate
limn→∞R(f,Pn, τn).

4. The Class of Riemann Integrable Functions

4.1. More Riemann Integrable Functions. We had a big fish to catch:
the existence of an antiderivative for any continuous function. So we built a big
net — the Darboux integral — and with that big net we caught our fish. (Then we
discussed the construction of a second net — the Riemann integral — that looked
rather different from our first net, but we found that in the end the second net
catches exactly the same fish as the first. So we stopped distinguishing between the
two nets.) It is now time to ask: what other fish have we caught? That is, what
can we say about the class R[a, b] of Riemann integrable f : [a, b]→ R? Again, we
know that this class contains all continuous functions, and we also know that every
function in the class is bounded.

The previous exercises Exercise 3.12 and 3.13 give some instances of functions
that are discontinuous but Riemann integrable. Let us concentrate on the latter:
according to 3.13, if f : [a, b] → R is bounded and has only finitely many discon-
tinuities, then f is Riemann integrable. Let us sketch a proof: let M > 0 be such
that |f | ≤ M , fix δ > 0, and choose a partition P of [a, b] that contains, for each
point c of disconinuity of f — to fix ideas, let us assume that the discontinuities
occur at interior points of [a, b] – there are consecutive elements xi, xi+1 ∈ P with
xi+1 − xi < δ. If we remove the open intervals (xi, xi+1) from [a, b], we get a finite
union of closed subintervals — suppose that there are N of them — such that f is
continuous on each one, hence Riemann integrable. This means that for any ε > 0
we can refine P to a partition Pε such that on the Nth subinterval, the difference
between the upper sum and the lower sum is at most ε

2N , so therefore the sum of
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the differences of the lower sums is at most ε
2 . Finally, on each subinterval [xi, xi+1]

we have

∆(f |[xi,xi+1],Pε) < 2Mδ.

This is because since |f | ≤M , its oscillation – i.e., its supremum minus its infimum
– is at most 2M , so we multiply this by the length of the subinterval. Thus overall
for this partition Pε we find that

∆(F,Pε) <
ε

2
+ 2NMδ.

Since M and N are fixed, we can choose δ sufficiently small so that 2NMδ < ε
2 ,

and we win: f is integrable by Darboux’s Criterion.

So now we are interested in bounded function f : [a, b] → R with infinitely many
discontinuities. At first glance, such a function looks unlikely to be Riemann inte-
grable, at least to me: by Exercise 1.43, the set of discontinuities of f must have
an accumulation point in [a, b], and that seems like it could screw things up –
arguments like the one we made for finitely many discontinuities are not going to
succeed. (Anyway, in our argument above the number N of discontinuities appeared
in our bound; if there are infinitely many discontinuities, we certainly cannot do
this.) However, again some previous exercises show that we’ve caught profoundly
more fish than we thought: Exercise 3.17 shows that every monotone function
f : [a, b]→ R is Riemann integrable. That is not so surprising, but Exercise 3.18 is:
there is a strictly increasing function f : [a, b] → R that is discontinuous at every
rational point of [a, b]! Thus a bounded function can be Riemann integrable even
when its set of discontinuities is dense in [a, b].

The following result further exhibits the largeness of the class of Riemann inte-
grable functions.

Theorem 3.14. Let f : [a, b]→ [c, d] be Riemann integrable, and let g : [c, d]→
R be continuous. Then the composite function g ◦ f : [a, b] → R is Riemann
integrable.

We are going to omit the proof of this result because of time constraints and because
it is a bit technical: see [HC, Thm. 8.17]. It becomes easier in an important special
case. For a subset X of RN , a function f : X → RM is Lipschitz if there is a
constant C ∈ (0,∞) such that

∀x1, x2 ∈ X, ||f(x1)− f(x2)|| ≤ C||x1 − x2||.

Any C that works here is called a Lipschitz constant for f . You should think
of Lipschitz as a kind of “super-continuity”: indeed such functions are uniformly
continuous with δ = ε

C . The following result — the second part of which appeared
on the midterm! — showed that this property, although very strong, certainly
comes up in nature.

Proposition 3.15. Let I be an interval, and let f : I → R be a differentiable
function.

a) If f ′ is bounded, then f is Lipschitz.
b) If I = [a, b] and f ′ is continuous, then f is Lipschitz.
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Proof. a) Let M > 0 such that |f ′| ≤ M . Let x1 < x2 be elements of I. By
the Mean Value Theorem there is c ∈ (x1, x2) such that

|f(x1)− f(x2)| = |f ′(c)||x1 − x2| ≤M |x1 − x2|.
Thus M is a Lipschitz contant for f .
b) If f ′ : [a, b] → R is continuous, then by the Extreme Value Theorem, f ′ is
bounded, so part a) applies to show that f is Lipschitz. �

It turns out to be much easier to show Theorem 3.14 if we assume that g is not
only continuous but Lipschitz: this is Exercise 3.22. Here is a nice consequence of
this:

Theorem 3.16. If f, g : [a, b]→ R are both Riemann integrable, then so is f ·g.

Proof. If h : [a, b] → R is any Riemann integrable function, then it follows
from Theorem 3.14 that h2 is also Riemann integrable. In fact, since h is bounded
– say |h| ≤ M – by Proposition 3.15 we have that x2 : [−M,M ] → R is Lipschitz,
so this lies in the part of Theorem 3.14 that we (the student who solves the right
exercises and I) have proved. Now here is a dirty trick;

fg =
(f + g)2 − f2 − g2

2
,

which shows that fg is Riemann integrable, since we know that linear combina-
tions of Riemann integrable functions are Riemann integrable and that squares of
Riemann integrable functions are Riemann integrable. �

4.2. The Riemann-Lebesgue Criterion. In fact there is a precise char-
acterization of which bounded functions f : [a, b] → R are Riemann integrable.
This is usually called Lebesgue’s Criterion, after the leading mathematician
Henri Lebesgue who constructed a superior version of the integral to Riemann’s.
(Lebesgue is also the founder of the subject of measure theory referred to above.
Most of Math 8100 concerns measure theory and the Lebesgue integral.) However
my former colleague Roy Smith showed me exactly where this criterion occurs in a
work of Riemann, so I will call it the Riemann-Lebesgue criterion.

We actually need a tiny piece of measure theory even to state this criterion, namely
we need the notion of a subset X of R having measure zero. For this, let
{[an, bn]}∞n=1 be a sequence of closed bounded intervals. We say that this sequence
covers X if

X ⊆
∞⋃
n=1

[an, bn],

or in words, if every element of X lies in at least one of the subintervals [an, bn].
To this sequence of intervals we attach a total length

L({[an, bn]} :=

∞∑
n=1

(bn − an) ∈ [0,∞].

In other words, we really do just add up the lengths of the subintervals. This is
an infinite series with non-negative terms, so it either converges or diverges to ∞.
The idea is that, if the total length is finite, it should give an upper bound on the
“length” of X. This intriguing idea is the beginning of measure theory, but we only
need this one thing: we say that X has measure zero if for all ε > 0, there is a
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covering {[an, bn]} of X of total length at most ε.

This concept is addressed in the exercises. It is pretty clear that every finite subset
of R has measure zero: if we are allowed to use degenerate closed intervals [a, a]
this is truly obvious, but actually in the definition of measure zero it doesn’t matter
whether we are allowed this or not, so it might be more educational to always use in-
tervals of positive length. More generally, we say that a subset X ⊆ R is countable
if there is a surjective sequence in X, i.e., a surjective function x• : Z+ → X. This
includes finite subsets, certainly. Moreover, each of Z+, N, Z and Q are countable
(these are developed in the exercises). Then any countable subset X has measure
zero – again, this is clear if we can use intervals [a, a] but is not much harder to
show even if we can’t. There are also uncountable subsets of measure zero: one
very famous one, the Cantor set, is developed in the exercises.

And here is the result:

Theorem 3.17 (Riemann-Lebesgue Criterion). For a function f : [a, b] → R,
the following are equivalent:

(i) f is Riemann integrable.
(ii) f is bounded, and its set of discontinuities has measure zero.

We will not give a proof of Theorem 3.17. Most proofs use somewhat more ad-
vanced material, but this is not necessary: see [HC, §8.5] for a proof that you have
all the prerequisites to read.

Nevertheless we can stop to appreciate Theorem 3.17: it tells us exactly what
fish we’ve caught with our integral! Moreover, if you know this result than many
of our other results on Riemann integrability follow immediately. It is easy to see
from the definition of measure zero that a finite union of sets, each of measure zero,
also has measure zero. (It is not much harder to see that moreover if {Xn}∞n=1 is an
infinite sequence of sets of measure zero then

⋃∞
n=1Xn also has measure zero...but

we don’t need this here.)

So: let f, g : [a, b] → R be Riemann integrable, so each is bounded and is dis-
continuous only a set of measure zero. Then:

• For α ∈ R, αf is bounded and has the same discontinuities as f , so is Rie-
mann integrable.
• f + g is bounded (if |f | ≤M1 and |g| ≤M2 then |f + g| ≤M1 +M2). If the set
of discontinuties of f is Xf and the set of discontinuities of g is Xg, then the set of
discontinuities of f + g is contained in Xf ∪Xg, so has measure zero. So f + g is
Riemann integrable.
• Almost the identical argument works to show that f · g is Riemann integrable
(only modification: if |f | ≤M1 and |g| ≤M2, then |fg| ≤M1M2).
• If f is monotone, then it is bounded – f([a, b]) lies in the interval in between f(a)
and f(b) – and it can be shown that the set of discontinuities of f is countable. So
f is Riemann integrable.
• Suppose f : [a, b] → [c, d] and g : [c, d] → R is continuous. Then g is bounded,
hence so is g ◦ f . Moreover, since g is continuous, the set of discontinuities of g ◦ f
is contained in the set of discontinuities of f , and a subset of a set of measure zero
has measure zero. So g ◦ f is Riemann integrable.
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4.3. Exercises.

Exercise 3.21. Let f : I → [c, d] be a bounded function, and let g : [c, d]→ R
be a Lipschitz function with Lipschitz constant C. Show:

ω(g ◦ f, I) ≤ Cω(f, I).

Exercise 3.22. Let f : [a, b]→ [c, d] be Darboux integrable, and let g : [a, b]→
R be Lipschitz with Lipschitz constant C. Show that g ◦ f : [a, b] → R is Riemann
integrable as follows: let ε > 0, and choose a partition Pε for which ∆(f,Pε) < ε

C .
Use Exercise 3.21 to show that ∆(g ◦ f,Pε) < ε.

Exercise 3.23. Let f : [a, b]→ R be Riemann integrable.

a) Show that |f | : [a, b]→ R is Riemann integrable.
(Suggestions: the absolute value function is Lipschitz, so you can apply
Exercise 3.22. Or you can show that for any subinterval I of [a, b] we have
ω(|f |, I) ≤ ω(f, I).)

b) Show the Integral Triangle Inequality:∣∣∣∣ ∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

A nonempty set X is countable if there is a surjective function f : Z+ → X. By
definition, the empty set is also countable.

Exercise 3.24. Let X be a set.

a) Show: if X is finite, then X is countable.
b) Show: if X is infinite and countable, then there is a bijection f : Z+ → X.

Thus every countable set is in bijection with exactly one of the following: (i) the
empty set; (ii) the set {1, . . . , n} for some n ∈ Z+; or (iii) Z+.

Exercise 3.25. a) Show: every subset of a countable set is countable.
b) Let ι : Y → X be an injective function. Show: if X is countable, then so

is Y .

Exercise 3.26. Show: if n ∈ Z+ and X1, . . . , Xn are countable sets, then their
union

⋃∞
n=1 is countable.

Exercise 3.27. a) Let X and Y be sets. Show: if X is countable and
there is a surjection f : X → Y , then Y is countable.

b) Show: Z+ × Z+ is countable.
c) Show: the set Q of rational numbers is countable.

(Suggestion: since Q = Q>0 ∪{0}∪Q<0 and multiplication by −1 gives a
bijection from Q>0 to Q<0, by Exercise ?? it is enough to show that Q>0

is countable. Do this by finding a surjective function f : Z+ × Z+ → Q.)

Exercise 3.28.

a) Let X ⊆ R be a countable subset. Show: X has measure zero.
b) Deduce from the Riemann-Lebesgue Criterion that R is uncountable.

(Hint: if R were countable, then every bounded function would be Riemann
integrable.)

The previous exercise gives a proof of the uncountability of R that is striking, but
is also overkill: the Riemann-Lebesgue Criterion is a difficult result whose proof we
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have omitted. The next exercise outlines a classic proof (due to G. Cantor) of the
uncountability of R.

Exercise 3.29. In this exercise we refer to decimal expansions of real numbers.
Some real numbers have a unique decimal expansion, but others have (exactly) two
different decimal expansions: a real number admitting a decimal expansion ending
with all 0’s also has a decimal expansion ending with all 9’s. For the sake of
definiteness, when we refer to “the decimal expansion” of x ∈ R we will exclude an
expansion ending with all 9’s.

Let f : Z+ → R be any function, and put xn := f(n). Build a real number
x = 0.d1d2 · · · dn · · · ∈ [0, 1] as follows: for all n ∈ Z+, the nth decimal digit dn of x
is different from the nth decimal digit of xn and also different from 0 and 9. (This
still leaves us at least 7 choices.) Show: for no n ∈ Z+ do we have x = xn, and
deduce that f is not surjective.

Exercise 3.30. Let I be an interval, and let f : I → R be a monotone function.
Let X be the set of c ∈ I such that f is discontinuous at c. Show: X is countable.
(Suggestion: we may assume f is increasing. An increasing function f can only
be discontinuous at c if limx→c− f(x) < limx→c+ f(x). If so, there is a rational
number lying strictly in between the left hand limit and the right hand limit. Use
this to build an injective function ι : X → Q and then apply Exercise 3.25b).)

Compare Problem 3.18 with Exercise 3.30. Things are getting subtle: monotone
functions can have infinitely many discontinuities on a bounded interval, but still
their set of discontinuities is “small” in a strong sense.





CHAPTER 4

Convex Functions

1. The Basic Definition

Let X ⊆ RN , and let f : X → R b a function. We define the epigraph of f ,

Epi(f) := {(x1, . . . , xN , y) ∈ X × R | y ≥ f(x1, . . . , xN )}.

Compare the epigraph to the graph of f :

Graph(f) := {(x1, . . . , xN , y) ∈ X × R | y = f(x1, . . . , xN )}.

The only difference in the two deifnitions is the ≥ appearing in the definition of
the epigraph: thus the epigraph is indeed the set of points that lie “on top of” the
graph Graph(f) in the sense that for all P = (x1, . . . , xN ) ∈ X, the point (P, y) lies
on the epigraph if and only if the final coordinate y is equal or larger to the final
coordinate of the corresponding point (P, f(P )) of Graph(f). In particular:

Graph(f) ⊆ Epi(f).

Proposition 4.1. Let X ⊆ RN be a convex set. For a function f : X → R,
the following are equivalent:

(i) The epigraph Epi(f) of f is a convex subset of RN+1.
(ii) The function f satisfies the Secant Graph Inequality: for all P,Q ∈ X

and all 0 ≤ λ ≤ 1, we have

f((1− λ)P + λQ) ≤ (1− λ)f(P ) + λf(Q).

Proof. (i) =⇒ (ii): Suppose that Epi(f) is a convex subset of RN+1, and let
P,Q ∈ X and λ ∈ [0, 1]. Then the points

P̃ := (P, f(P )) and Q̃ := (Q, f(Q))

lie on the graph of f , hence also on the epigraph Epi(f). Since Epi(f) is convex, we

have (1− λ)P̃ + λQ̃ also lies in the epigraph, which means that its final coordinate
— which is (1−λ)f(P ) +λf(Q) — is greater than or equal to the value of f on its
first N coordinates — which is f((1− λ)P + λQ). This is precisely condition (ii).

(ii) =⇒ (i): Assume the Secant Graph Inequality, and let P̃ = (P, yP ) and

Q̃ = (Q, yQ) be two points of Epi(f): thus we have yP ≥ f(P ) and yQ ≥ f(Q). Let
λ ∈ [0, 1]. By the Secant Graph Inequality, we have:

(1− λ)yP + λyQ ≥ (1− λ)f(P ) + λf(Q) ≥ f((1− λ)P + λQ).

This inequality indeed shows that (1− λ)P̃ + λQ̃ lies in Epi(f). �

We call a function satisfying the equivalent properties of Proposition 4.1 convex.

87
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2. Secant Inequalities

Proposition 4.2. Let I ⊆ R be an interval, and let f : I → R be a function.
The following are equivalent:

(i) f is convex.
(ii) (Three Secant Inequality) For all a < x < b ∈ I,

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
.

(iii) (Two Secant Inequality) For all a < x < b ∈ I,

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
.

(iv) (Generalized Two Secant Inequality) For all a < b ≤ c < d ∈ I,

f(b)− f(a)

b− a
≤ f(d)− f(c)

d− c
.

Proof. (i) ⇐⇒ (iii): Clearing denominators in the Two Secant Inequality,
we get: for all a < x < b ∈ I,

(10) f(x) ≤ f(a) +

(
f(b)− f(a)

b− a

)
(x− a).

The function on the right hand side is the secant line between (a, f(a)) and (b, f(b)),
so (10) is precisely the Secant Graph Inequality, which was one of our two definitions
of convex functions.
(ii) =⇒ (iii): This is immediate.
(i) =⇒ (ii): Let a < x < b ∈ I. As we saw, the Secant Graph Inequality implies
the Two Secant Inequality:

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
,

which is half of the Three Secant Inequality. To get the other half: the secant line
between (a, f(a)) and (b, f(b)) can also be written as

f(b) +
f(a)− f(b)

b− a
(b− x),

so the Secant Graph Inequality gives

f(x) ≤ f(b) +
f(a)− f(b)

b− a
(b− x),

which is equivalent to
f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
.

(iv) =⇒ (iii): Taking b = c in the Generalized Two Secant Inequality we get the
Two Secant Inequality (with different names for the three points).
(iii) =⇒ (iv): We may assume that b < c, otherwise as above the two inequalities
are the same. If we apply the Two Secant inequality to a < b < c and then to
b < c < d, we get

f(b)− f(a)

b− a
≤ f(c)− f(b)

c− b
and

f(c)− f(b)

c− b
≤ f(d)− f(c)

d− c
,
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and thus
f(b)− f(a)

b− a
≤ f(d)− f(c)

d− c
. �

�

3. Continuity

It is not quite true that convex functions must be continuous:

Example 3.1. Let f : (0, 1) → R by f(x) = x2. Then f is continuous. In
freshman calculus, to determine the concavity of f we would take its second deriv-
ative; since f ′′(x) = 2 > 0, we would say that f is “concave up,” which is what
we are now calling convex. Soon enough we will establish that this is actually true:
a twice differentiable function f : I → R is convex if and only if f ′′ ≥ 0. At the
moment we are interested in different questions: how can we extend f to be defined
at 0 and 1 so as to be (i) continuous and (ii) convex?

Since 0 and 1 are accumulation points of (0, 1), there is at most one way to
extend f continuously to 0 and at most one way to extend f continuously to 1:
namely, we must take f(0) = 0 and f(1) = 1. But what about convexity? Assum-
ing, as we are, that

Epi(f) = {(x, y) ∈ R | 0 < x < 1, y ≥ x2}

is convex, we find that if we put f(0) = A and f(1) = B, then the epigraph of the
extension is convex if and only if A ≥ 0 and B ≥ 1. Thus it is possible to extend f
to [0, 1] so as to be convex and not continuous.

However, we should not give up so easily. It turns out that a convex function
f : I → R must be continuous except possibly on the endpoints of the interval, and
actually even more is true.

Theorem 4.3. Let I ⊆ R be an interval, and let f : I → R. Then the restriction
of f to the interior I◦ of I is continuous. Moreover, for any subinterval [a, b] of
I◦, we have that f |[a,b] : [a, b] → R is Lipschitz: there is C ≥ 0 such that for all
x, y ∈ [a, b] we have |f(x)− f(y)| ≤ C|x− y|.

Proof. Let [a, b] ⊂ I◦; we may then choose u, v, w, z ∈ I◦ with u < v < a and
b < w < z. Now let x ≤ y ∈ [a, b]. Applying the Generalized Two Secant Inequality
twice, we get

f(v)− f(u)

v − u
≤ f(y)− f(x)

y − x
≤ f(z)− f(w)

z − w
.

It follows that

|f(x)− f(y)|
|x− y|

≤ max

(∣∣∣∣f(v)− f(u)

v − u

∣∣∣∣, ∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣),
so

C := max

(∣∣∣∣f(v)− f(u)

v − u

∣∣∣∣, ∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣)
is a Lipschitz constant for f on [a, b].

Lipschitz functions are continuous, so f is continuous on every closed subinter-
val of I◦. For any c ∈ I◦ there is δ > 0 such that [c− δ, c+ δ] ⊂ I◦, and this shows
that f is continuous at c. �
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4. Derivatives

The following result tells us that what we learned about convex functions in fresh-
man calculus was actually correct.

Theorem 4.4. Let I ⊆ R be an interval, and let f : I → R be a function.

a) Suppose that f is differentiable. Then the following are equivalent:
(i) f is convex.

(ii) f ′ is increasing.
b) Suppose that f is twice differentiable. Then the following are equivalent.

(i) f is convex.
(ii) f ′′ ≥ 0 on I.

Proof. a) (i) =⇒ (ii): Suppose f is convex. Let a < x ≤ b ∈ I, and define

s(x) :=
f(x)− f(a)

x− a
,

while for x ∈ [a, b), we define

S(x) :=
f(b)− f(x)

b− x
.

Since f is convex, we may apply the Three Secant Inequality for a < x < b:

s(x) ≤ s(b) = S(a) ≤ S(x).

Taking limits, we get:

f ′(a) = lim
x→a+

s(x) ≤ s(b) = S(a) ≤ lim
x→b−

S(x) = f ′(b).

(ii) =⇒ (i): Let a < b ∈ I, and consider s : (a, b] → R as in part a). Since f is
differentiable, so is s, and

s′(x) =
(x− a)f ′(x)− (f(x)− f(a))

(x− a)2
.

By the Mean Value Theorem, there is y ∈ (a, x) such that f(x)−f(a)
x−a = f ′(y). Since

f ′ is increasing, we have

f(x)− f(a)

x− a
= f ′(y) ≤ f ′(x),

or equivalently:

(x− a)f ′(x)− (f(x)− f(a)) ≥ 0.

Thus s′(x) ≥ 0 for all x ∈ (a, b], so indeed s is increasing. In particular we have for
all a < x ≤ b that

f(x)− f(a)

x− a
≤ s(x) ≤ s(b) =

f(b)− f(a)

b− a
.

This is the Two Secant inequality, so f is convex.
b) We know that a differentiable function defined on an interval is increasing if and
only if its derivative is non-negative at all points on that interval. Applying this
observation to f ′, we get that: f is convex if and only if f ′ is increasing if and only
if f ′′ ≥ 0. �

Corollary 4.5. Suppose that a function f : I → R is both convex and differ-
entiable. Then f ′ is continuous.
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Proof. By Theorem 4.4a), f ′ is increasing. By Darboux’s Theorem (Theorem
2.8), f ′ is a Darboux function, so by Corollary 2.25, f ′ is continuous. �

Here is a simple but imporant extremal property of differentiable convex functions.

Corollary 4.6. Let I be an interval, and let f : I → R be a differentiable
convex function. Suppose that there is c ∈ I such that f ′(c) = 0. Then:

a) The function f attains a global minimum at c.
b) If f is not constant on any nontrivial subinterval of I, then f attains a

strict global minimum at c: that is, for all x 6= c, we have f(x) > f(c).

Proof. a) By Theorem 4.4, the function f ′ is increasing. Seeking a contradic-
tion, we suppose that if f does not attain a minimum at c.
Case 1: Suppose there is some d > c such that f(d) < f(c). By the Mean Value
Theorem, there is z ∈ (c, d) such that f ′(z) < 0. But since f ′ is increasing and
c < z, this implies that f ′(c) ≤ f ′(z) < 0, so f ′(c) < 0, a contradiction.
Case 2: Suppose there is some b < c such that f(b) < f(c). Now Mean Value
Theorem implies there is z ∈ (b, c) such that f ′(z) > 0. But since f ′ is increasing
and z < c, this implies that f ′(c) ≥ f ′(z) > 0, a contradiction.
b) If there is some other point e 6= c such that f attains a minimum at e, then by
Corollary 2.7 we must have f ′(e) = 0. Since f ′ is increasing, this means that f ′

is identically zero on the interval between c and e, so f is constant on the interval
between c and e. �

5. Supporting Lines and Differentiability

Let I be an interval, let f : I → R be a function, and let c ∈ I. A linear function1

` : I → R is a supporting line for f at c if

`(c) = f(c) and ∀x ∈ I, f(x) ≥ `(x).

Thus a supporting line is a line that is always equal or below the graph of the
function and is equal at c.

Example 5.1.

a) Consider the function f : R → R by f(x) = x2. The line ` = 0 is a
supporting line for f at 0. It is hard not to notice that ` is none other
than the tangent line to f at 0. It is moreover easy to see that this is the
only supporting line at 0: suppose `(x) = mx with m 6= 0. Then setting
f(x) = `(x) gives x2 = mx, with solutions x = 0 and x = m. This is not
yet a contradiction: a supporting line at c is allowed to “touch” the graph
of f at points other than c. But now plug in x = m

2 : we have

f(
m

2
) =

m2

4
<
m2

2
= `(x).

In Exercise 4.2a) you are asked to show that for all c ∈ R, the unique
supporting line at c is the tangent line.

If instead we had f(x) = −x2, then f could not have a supporting line

1Analysts and algebraists, sadly, don’t quite agree on what a linear function from R to R is.

An algebraist would say that it is a linear transformation, hence of the form αx for some α ∈ R.

An analyst would say that f(x) = mx + b for any m, b ∈ R; equivalently, these are the functions
with constant derivative. I am an algebraist but this is an analysis course, so here, by a linear

function I mean f(x) = mx+ b.



92 4. CONVEX FUNCTIONS

at any point: for sufficiently large |x|, −x2 grows faster in absolute value
than any linear function `(x), so we will certainly have −x2 < `(x) for
all sufficiently large |x|. Again, we can’t help but notice: x2 is convex –
its second derivative is 2 > 0 – while −x2 is not – its second derivative is
−2 < 0. This suggests that the existence of supporting lines has something
to do with convexity.

b) Consider the function g : R → R by g(x) = |x|. At c = 0 the line y = x
is clearly a supporting line. But also the line y = −x is also a supporting
line! In Exercise 4.2b) you are asked to show that the supporting lines for
g at c = 0 are precisely those of the form `(x) = mx with m ∈ [−1, 1].
You are also asked to show that if c > 0 the unique supporting line to g at
c is y = x, while if c < 0 the unique supporting line to g at c is y = −x.

Again the function g is convex: its epigraph is the intersection of two
closed halfplanes, hence is a convex set. This reinforces our feeling that
convexity is related to the existence of supporting lines and further suggests
that the differentiability of a convex function is related to the uniqueness
of supporting lines.

Theorem 4.7. Let I be an open interval. For a function f : I → R, the
following are equivalent:

(i) f is convex.
(ii) f admits a supporting line at each c ∈ I.

Proof. (i) =⇒ (ii): Neither of the two properties (i) or (ii) is disturbed
by translating the coordinate axes, so we may assume that c = 0 and f(0) = 0.
Suppose that f is convex.

Let α ∈ I \ {0}. For all λ1, λ2 > 0 such that λ1α,−λ2α ∈ I, the Secant Graph
Inequality gives

0 = (λ1 + λ2)f

(
λ1

λ1 + λ2
(−λ2α) +

λ2
λ1 + λ2

(λ1α)

)
≤ λ1f(−λ2α) + λ2f(λ1α),

or
−f(−λ2α)

λ2
≤ f(λ1α)

λ1
.

It follows that

−∞ < sup
λ2

−f(−λ2α)

λ2
≤ inf

λ1

f(λ1α)

λ1
<∞,

so there is m ∈ R such that

−f(−λ2α)

λ2
≤ m ≤ f(λ1α)

λ1
.

Equivalently, for all t ∈ R such that tα ∈ I we have f(tα) ≥ mt, which shows that
`(x) = m

α x is a supporting line for f at c = 0.
(ii) =⇒ (i): Suppose that f has a supporting line at each point of I, and

choose one: for all c ∈ I, let `c : I → R be a supporting line for f at c. Then for
all x ∈ I, we have

∀c ∈ I, f(x) ≥ `c(x) and f(c) = `c(c),

so

f(x) = sup
c∈I

`c(x).
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Since linear functions are convex, it follows that f is the supremum of a family of
convex functions, hence f is convex by Exercise 4.7. �

The proof of (i) =⇒ (ii) in Theorem 4.7 is perhaps a bit too slick for its own good,
but if one looks carefully one can detect a whiff of one-sided derivatives of f . The
proof of (ii) =⇒ (i) is more transparent: it gives a geometric sense in which f is
put together from its family of supporting lines.

The next result is the deepest result on convex functions for which we will give
a complete proof. We know that a convex function defined on an open interval
must be continuous but need not be differentiable: e.g. |x| has a corner point at
0. In fact a general convex function is differentiable except only at certain corner
points, of which there are cannot be too many.

Theorem 4.8. Let I be an open interval, and let f : I → R be convex.

a) For all c ∈ I, the left-hand derivative f ′−(c) and the right-hand derivative
f ′+(c) each exist. Moreover, for all x1 < x2 ∈ I we have

(11) f ′−(x1) ≤ f ′+(x1) ≤ f ′−(x2) ≤ f ′+(x2).

In particular f ′− and f ′+ are increasing.
b) The function f ′− is left-continuous on I: for all c ∈ I, limx→c− f(x) =

f(c). Similarly, the function f ′+ is right-continuous on I: for all c ∈ I,
limx→c+ f(x) = f(c).

c) For c ∈ I, the following are equivalent:
(i) f is differentiable at c.

(ii) f ′− is continuous at c.
(iii) f ′+ is continuous at c.

d) The set of points of I at which f fails to be differentiable is countable.
e) Let c ∈ I. A line ` passing through (c, f(c)) is a supporting line for f at

c if and only if its slope m satisfies

f ′−(c) ≤ m ≤ f ′+(c).

Proof. a) Fix c ∈ I, and define

ϕc : I \ {c} → R, ϕ(x) :=
f(x)− f(c)

x− c
.

For notational simplicity, put

I− = (−∞, c) ∩ I and I+ = (c,∞) ∩ I.
By the Three Secant Inequality, ϕc is increasing on I− and is also increasing on
I+ and moreover every value ϕc takes on I− is less than or equal to every value it
takes on I+. It follows that

f ′−(c) = lim
x→c−

ϕ(x) = supϕ(I−) ≤ inf ϕ(I+) = lim
x→c+

ϕ(x) = f ′+(c).

Let x1 < x2 in I, and choose z ∈ (x1, x2). Using part a) and the Three Secant
Inequality, we get

f ′−(x1) ≤ f ′+(x1) ≤ ϕx1
(z) =

f(z)− f(x1)

z − x1

≤ f(z)− f(x2)

z − x2
= ϕx2(z) ≤ f ′−(x2) ≤ f ′+(x2).
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b) This is proved in Exercises 4.9 and 4.10.
c) Let c ∈ I. From (11) we deduce:

lim
x→c−

f ′+(x) ≤ f ′−(c) ≤ f ′+(c) ≤ lim
x→c+

f ′−(x).

So: if f ′− is continuous at c, then f ′−(c) ≤ f ′+(c) ≤ f ′−(c), so the left and right
hand derivatives are equal at c and thus f is differentiable at c. Similarly, if f ′+ is
continuous at c, then f ′+(c) ≤ f ′−(c) ≤ f ′+(c); again f is differentiable at c.

It follows from (11) that

lim
x→c−

f ′−(x) = lim
x→c−

f ′+(x) and lim
x→c+

f ′−(x) = lim
x→c+

f ′+(x).

If f ′− is not continuous at c, then since it is increasing and left-continuous, while
f ′+ is increasing and right-continuous, we must have

f ′−(c) < lim
x→c+

f ′−(x) ≤ lim
x→c+

f ′+(x) = f ′+(c).

Thus f ′(c) < f ′+(c) and f is not differentiable at c. A similar argument shows that

if f ′+ is not continuous at c then f is not differentiable at c.
d) By part c), we know that f fails to be differentiable precisely where the increasing
function f ′− fails to be continuous; this latter set is countable by Exercise 3.30.

e) Let c, x ∈ I. If x < c, then f ′−(c) ≥ ϕ(x) = f(x)−f(c)
x−c . Clearing denominators

and using that x− c < 0, we get

(12) ∀x < c, f(x) ≥ f(c) + f ′−(c)(x− c).
Clearly this also holds, with equality, when x = c. If x > c, then f ′+(c) ≤ ϕ(x) =
f(x)−f(c)

x−c . Now x− c > 0, so clearing denominators gives

(13) ∀x > c, f(x) ≥ f(c) + f ′+(c)(x− c).
So if f ′−(c) ≤ m ≤ f ′+(c), then combining (12) and (13) we get:

∀x ∈ I, f(x) ≥ f(c) +m(x− c),
so `m,c(x) := m(x− c) + f(c) is a supporting line for f at c. The fact that in order
for `m,c(x) to be supporting line we must have f ′−(c) ≤ m ≤ f ′+(c) follows easily
from the definitions of the one-sided derivatives. We leave this as Exercise 4.11. �

We want to mention two final results that we will not prove here. They are safely
at the graduate level. First:

Theorem 4.9 (Lebesgue). Let I be an interval, and let f : I → R be monotone.
Then the set X of points at which f is not differentiable has measure zero.

This is a remarkable theorem. We know that monotone functions are continuous
except on a countable set of points: this is Exercise 3.30. We interpret this as saying
that the set of discontinuities of a monotone function is “small” in a very strong
sense. The set of points at which a monotone function fails to be differentiable
must of course contain its set of discontinuities, but Lebesgue’s Theorem says that
this set is still “small,” however in a different and weaker sense.

There are certainly sets of measure zero that are uncountable. A classic one
is the Cantor set, which is obtained from [0, 1] by repeatedly removing the open
middle third of each line segment remaining. This is more of a hand-wave than a
definition: we do not wish to enter into serious discussion of the Cantor set in our
course; rather we will refer the reader to [GT, §2.15]. It turns out that there is also
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a Cantor function f : [0, 1]→ R. This amazing function is continuous, increasing
and fails to be differentiable precisely on points of the Cantor set. In particular,
the set of points of nondifferentiability is uncountable.

Lebesgue’s Theorem suggests investigating the twice differentiability of a convex
function f : I → R. Indeed, if f is convex and differentiable, then by Theorem
4.4b) we know that f ′ is increasing, so by Lebesgue’s Theorem f ′′ = (f ′)′ exists
except on a set of measure zero.

Our definition of f ′′ is (f ′)′; with this definition, in order to ask whether f is
twice differentiable at c it is not enough to know that f ′(c) exists; we need to know
that f ′ exists in some interval (c−δ, c+δ). As we have seen, for a convex function f
this need not be the case. However, there are various ways to extend this definition,
after which it turns out that a convex function is twice differentiable except on a
set of measure zero. Such results go under the name Alexandroff’s Theorem.

6. Jensen’s Inequality

Theorem 4.10 (Jensen’s Inequality). ] Let f : I → R be continuous and
convex. For x1, . . . , xn ∈ I and λ1, . . . , λn ∈ [0, 1] with λ1 + . . .+ λn = 1, we have

f(λ1x1 + . . .+ λnxn) ≤ λ1f(x1) + . . .+ λnf(xn).

Proof. We go by induction on n, the case n = 1 being trivial. So suppose the
result holds for n ∈ Z+, and let x1, . . . , xn, xn+1 ∈ I and λ1, . . . , λn, λn+1 ∈ [0, 1]
with λ1 + . . . + λn+1 = 1. If λn+1 = 0 we are reduced to the case of n variables,
which holds by induction. If λn+1 = 1 then λ1 = . . . = λn = 0 and equality holds
trivially. So the nontrivial case is λn+1 ∈ (0, 1). Now we write

λ1x1+. . .+λn+1xn+1 = (1−λn+1)

(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn

)
+λn+1xn+1,

and use the Secant Graph Inequality to get

f(λ1x1+. . .+λn+1xn+1) = f((1−λn+1)

(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn

)
+λn+1xn+1)

≤ (1− λn+1)f

(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn

)
+ λn+1f(xn+1).

Since λ1

1−λn+1
, . . . , λn

1−λn+1
are non-negative numbers that sum to 1, by induction

the above expression is less than or equal to

(1− λn+1)

(
λ1

1− λn+1
f(x1) + . . .+

λn
1− λn+1

f(xn)

)
+ λn+1f(xn+1)

= λ1f(x1) + . . .+ λnf(xn) + λn+1f(xn+1). �

Although there is nothing to the proof of Theorem 4.10 other than induction ap-
plied to the Secant Graph Inequality, nevertheless when we apply it to various
specific convex functions f we get a remarkably rich supply of nontrivial inequali-
ties. Indeed, mathematics is rife with “named inequalities,” most of which have no
apparent relation to each other and must be proved by various (sometimes ad hoc)
techniques. Above I said “most”: the exception to this is Jensen’s Inequality, which
provides a common source for so many individual inequalities, as we will now see.
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Here is a quick tour of several named inequalities. A special case of the first is
the Arithmetic Geometric Mean Inequality, which pops up now and then in un-
dergraduate level mathematics and can be proved by induction albeit in a rather
elaborate way [AM, Thm. 7.1]. The ones in the middle are probably unfamiiliar at
the undergraduate level but are relevant to graduate level real analysis. Our tour
ends with a visit to our oldest friend.

Theorem 4.11 (Weighted Arithmetic Geometric Mean Inequality).
Let x1, . . . , xn ≥ 0, and let λ1, . . . , λn ∈ [0, 1] be such that λ1 + . . .+ λn = 1.

a) We have:

(14) xλ1
1 · · ·xλnn ≤ λ1x1 + . . .+ λnxn.

b) (Arithmetic Geometric Mean (AGM) Inequality) We have:

(x1 · · ·xn)
1/n ≤ x1 + . . .+ xn

n
.

Proof. a) We are going to apply Jensen’s Inequality with f(x) = ex, a function
that is convex because for all x ∈ R, f ′′(x) = ex > 0. We may assume that
x1, . . . , xn > 0; otherwise, at least one is zero, so the left hand side of (14) is 0 and
the right hand side is non-negative. For 1 ≤ i ≤ n, put yi := log xi. Then:

xλ1
1 · · ·xλnn = elog(x

λ1
1 ···x

λn
n ) = eλ1y1+...+λnyn

≤ λ1ey1 + . . .+ λne
yn = λ1x1 + . . .+ λnxn.

b) This follows from part a) by taking λ1 = · · · = λn = 1
n . �

Theorem 4.12 (Young’s Inequality).
Let x, y ≥ 0, and let p, q > 1 satisfy 1

p + 1
q = 1. Then:

(15) xy ≤ xp

p
+
yq

q
.

Proof. As for the last result, the inequality holds trivially if either x or y is
0, so we may assume x, y > 0. Now we apply Theorem 4.11a) with n = 2, x1 = xp,
x2 = yq, λ1 = 1

p and λ2 = 1
q . We get:

xy = (xp)1/p(yq)1/q = xλ1
1 xλ2

2 ≤ λ1x1 + λ2x2 =
xp

p
+
yq

q
. �

Theorem 4.13 (Hölder’s Inequality). Let x1, . . . , xn, y1, . . . , yn ∈ R, and let
p, q > 1 satisfy 1

p + 1
q = 1. Then:

(16) |x1y1|+ . . .+ |xnyn| ≤
(
|x1|p + . . .+ |xn|p

)1/p(
|y1|q + . . .+ |yn|q

)1/q

.

Proof. The result is clear if either x1 = . . . = xn = 0 or y1 = . . . = yn = 0,
so we assume neither is the case. For 1 ≤ i ≤ n, we apply Young’s Inequality with

x =
|xi|

(|x1|p + . . .+ |xn|p)1/p
and y =

|yi|
(|y1|q + . . .+ |yn|q)1/q

and sum the resulting inequalities from i = 1 to n. We get:∑n
i=1 |xiyi|

(|x1|p + . . .+ |xn|p)1/p (|y1|q + . . .+ |yn|q)1/q
≤ 1

p
+

1

q
= 1. �
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Theorem 4.14 (Minkowski’s Inequality).
For x1, . . . , xn, y1, . . . , yn ∈ R and p ≥ 1, we have:
(17)(
|x1+y1|p+. . .+|xn+yn|p

)1/p

≤
(
|x1|p+. . .+|xn|p

)1/p

+

(
|y1|p+. . .+|yn|p

)1/p

.

Proof. Once again we may assume that x1, . . . , xn are not all 0 and that
y1, . . . , yn are not all 0. The case p = 1 is much less interesting than the rest: in
that case the inequality reads:

|x1 + y1|+ . . .+ |xn + yn| ≤ |x1|+ |y1|+ . . . |xn|+ |yn|,
which is a consequence of the Triangle Inequality in R. Now suppose that p > 1.
Setting q := 1

1− 1
p

we get: q > 1 and 1
p + 1

q = 1. Now:

|x1 + y1|p + . . .+ |xn + yn|p = |x1 + y1||x1 + y1|p−1 + . . .+ |xn + yn||xn + yn|p−1

= |x1||x1 +y1|p−1 + . . .+ |xn||xn+yn|p−1 + |y1||x1 +y1|p−1 + . . .+ |yn||xn+yn|p−1.
Applying Hölder’s Inequality and using (p−1)q = p, we get that the last expression
is at most

(|x1|p + . . .+ |xn|p)1/p (|x1 + y1|p + . . .+ |xn + yn|p)1/q

+ (|y1|p + . . .+ |yn|p)1/p (|x1 + y1|p + . . .+ |xn + yn|p)1/q

=

(
(|x1|p+ . . . |xn|p)1/p+(|y1|p+ . . .+ |yn|p)1/p

)
·
(
|x1+y1|p+ . . .+ |xn+yn|p

)1/q

.

Dividing both sides by the second factor on the right hand side, we get

(|x1 + y1|p + . . .+ |xn + yn|p)1/p

= (|x1 + y1|p + . . .+ |xn + yn|p)1−1/q ≤ (|x1|p + . . . |xn|p)1/p+(|y1|p + . . .+ |yn|p)1/p
�.

If in Minkowski’s Inequality we take p = 2 and write x = (x1, . . . , xn) and y =
(y1, . . . , yn), then we get

||x + y|| ≤ ||x||+ ||y||.
Thus Minkowski’s Inequality is a parameterized family of inequalities that special-
izes to the Triangle Inequality in Rn when p = 2.

7. Exercises

Exercise 4.1. Let I be an interval, and let f : I → R. Show: f is convex if
and only if satisfies the Grand Two Secant Inequality: for all a, b, c, d ∈ I with

a < b, c < d and a < c, we have f(b)−f(a)
b−a ≤ f(d)−f(c)

d−c .

Exercise 4.2.

a) Let f : R → R by f(x) = x2. Show: for all c ∈ R, the unique supporting
line to f at c is the tangent line `c(x) = y − c2 = 2c(x− c).

b) Let g : R→ R by g(x) = |x|. Show:
(i) The supporting lines to g at 0 are precisely `(x) = mx for m ∈ [−1, 1].

(ii) If c > 0, the unique supporting line to g at c is `(x) = x.
(iii) If c < 0, the unique supporting line to g at c is `(x) = −x.

Exercise 4.3. Let f : [a, b]→ R be convex.
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a) Show that f attains a maximum value at x = a or x = b.
b) Suppose moreover that f is nonconstant. Show: for all c ∈ (a, b), we have

f(c) < max(f(a), f(b)).

Exercise 4.4. Let f : [a, b]→ R be convex.

a) Show: if f is not monotone, then there is a unique c ∈ (a, b) such that f
is decreasing on [a, c] and increasing on [c, b].

b) Deduce: f attains a minimum value.

Exercise 4.5.

a) Let f : (a, b) → R be convex. Show: limx→a+ f(x) ∈ (−∞,∞] and
limx→b− f(x) ∈ (−∞,∞].

b) Let f : [a, b]→ R be convex. Show:

lim
x→a+

f(x) ≤ f(a) and lim
x→b−

f(b).

In particular, both of these limits are finite.

Exercise 4.6. Let f : R → R be a bounded convex function. Show: f is
constant.

Exercise 4.7. Let I be an interval in R, and let {fj : I → R}j∈J be a family
of convex functions. Let f : I → R be a function such that for all x ∈ I we have

f(x) = sup
j∈J

fj(x).

Show: f is convex.

Exercise 4.8. Let f : [a, b]→ R be convex and continuous. Prove the Hermite-
Hadamard inequality:

f

(
a+ b

2

)
≤
∫ b
a
f

b− a
≤ f(a) + f(b)

2
.

(Hint: let l(x) = m(x − a+b
2 ) be a supporting line to f at a+b

2 , and let L(x) be
the secant line between a and b – i.e., the unique line passing through (a, f(a)) and
(b(, f(b)). We know that

∀x ∈ [a, b], l(x) ≤ f(x) ≤ L(x).

Write out
∫ b
a
l ≤

∫ b
a
f ≤

∫ b
a
L and simplify.)

Exercise 4.9. Let I be an open interval, and let {fn : I → R} be a sequence
of functions. Suppose that all of the following hold:

(i) For all n ∈ Z+ and all x ∈ I we have fn(x) ≤ fn+1(x).
(ii) Each fn is continuous and increasing.
(iii) The sequence converges pointwise on I to a function g.

a) Show: g is left-continuous: for every point c ∈ I, limx→c− f(x) = f(c).
b) Give an example to show that g need not be right-continuous.
c) State an analogue of part a) for which the conclusion is that f is right-

continuous at c.

Exercise 4.10. Let I be a open interval, and let f : I → R be a convex
function.
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a) Let n ∈ Z+, and define gn(x) =
f(x− 1

n )−f(x)
−1
n

. (The domain of gn is the

set of x ∈ I such that x− 1
n ∈ I.) Show: gn is continuous and increasing.

b) Show: for all n, we have gn ≤ gn+1.
c) Show: for all c ∈ I, we have limn→∞ gn(c) = f ′−(c). Deduce from Exercise

4.9 that f ′− is left-continuous.
d) Adapt the above argument to show that f ′+ is right-continuous.

Exercise 4.11. Let I be an open interval, let f : I → R be a convex function,
and let c ∈ I. Show directly from the definitions of f ′−(c) and f ′+(c) that if ` is a
supporting line for f at c with slope m, then f ′−(c) ≤ m ≤ f ′+(c).

Exercise 4.12. Let I be an interval. A function f : I → R is midpoint-
convex if for all x1 < x2 in I we have

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
.

It is immediate that convex functions are midpoint-convex. Show: if f is midpoint-
convex and continuous, then f is convex.2

Exercise 4.13. Let f : R → R be increasing. Define F : R → R by F (x) :=∫ x
0
f . (It is a standard convention that when a > b, by

∫ b
a
f we mean −

∫ a
b
f .) Note

that by Exercise 3.17, this makes sense even if f is not continuous.

a) Show: F is convex. (Suggestion: by Theorem 3.1a), F is continuous.
Show that F is midpoint-convex and apply Exercise 4.12.)

b) Show: for c ∈ R, we have that F is differentiable at c if and only if f is
continuous at c.

c) Show: for any countable subset X ⊂ R, there is a convex function F :
R → R that is differentiable at c if and only if c ∈ R \X. In particular,
there is a convex function that is differentiable at every irrational number
and fails to be differentiable at every rational number.
(Suggestion: combine part b) with Exercise 3.18.)

2It turns out that there are functions that are midpoint-convex but not convex, but this
nontrivial fact is more a fact of set theory than of analysis.





CHAPTER 5

Metric Spaces

1. A look ahead

In the last two chapters we sketched out some of the terrain of more advanced
analysis, in which function theory and set theory interact in more subtle ways. In
truth, graduate level real analysis is a very challenging course that relatively few
students will take. So I want to end by previewing a different course: undergradu-
ate general topology. This course gives a generalization and abstraction of most of
the material from Chapter 1, to the context of metric spaces.

Let X be a set. A metric function is a function d : X × X → R such that
all of the following hold:

(D1) (Positive Definiteness) For all x, y ∈ X, we have d(x, y) ≥ 0, with equal-
ity if and only if x = y.
(D2) (Symmetry) For all x, y ∈ X, we have d(x, y) = d(y, x).
(D3) (Triangle Inequality) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a pair (X, d), where X is a set and d : X × X → R is a
metric function. In our course, the shining example was to take X = RN and d
to be the Euclidean distance function: d(x,y) := ||x − y||. Many other examples
come from this, since if (X, d) is a metric space and Y is any subset of X, then if
dY : Y ×Y → R is just the metric function restricted to Y ×Y , then dY is a metric
function on Y , so (Y, dY ) is again a metric space.

In Chapter 1 we studied:

• Convergence of sequences in RN .
• Continuity of functions f : X → RM where X is a subset of RN .
• Bounded, open and closed sets in RN .
• Sequential compactness of subsets of RN .

These concepts translate essentially verbatim to the context of a general metric
space (X, d), and there is a useful general theory that parallels much of what we
did in Euclidean spaces. However, in several ways, RN and various subsets of it
(especially, closed and bounded subsets) behave more nicely than an arbitrary met-
ric space. When this occurs, it is important to think deeply about why: usually
one can isolate a certain specific feature of RN and use it to define classes of metric
spaces in which these good things continue to happen.

101
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Let us now give just a flavor of this.

We said that a sequence {xn} in RN converges to a point p in RN if the real
sequence d(xn, p) converges to 0. This definition makes sense in any metric space,
and the geometric intuitition is the same: all sufficiently large terms of the sequence
should lie arbitrarily close to the limit. (It does not make sense to talk about di-
vergence to ∞ without some extra structure.) In any metric space, a sequence can
have at most one limit, and if a sequence converges to p than all of its subsequences
converge to p. And again, it is interesting to explore to what extent we can get a
divergent sequence to converge by passing to subsequences.

We can define open and closed balls in any metric space (X, d) in exactly the
same way, for x ∈ X and ε > 0, we put

B◦(x, ε) := {y ∈ X | d(x, y) < ε} and B•(x, ε) := {y ∈ X | d(x, y) ≤ ε}.
They may not look like balls anymore – we will see an interesting example of this
later – but if you think about it, the finer geometry of balls was never really used.1

Again we can define a subset U of a metric space (X, d) to be open if for every
x ∈ U there is ε > 0 such that B◦(x, ε) ⊆ U . Moreover we can define limit points
of a subset Y in the same way: these are the limits of convergent sequences whose
terms lie in Y . (We can also define accumulation points.) Then we can say that
a subset Y is closed if it contains all of its limit points. Again it turns out that
Y ⊆ X is closed if and only if its complement X \Y is open...and the proof is really
the same. We can also define boundedness: a subset Y ⊆ X is bounded if it lies
in some closed ball B•(x,R). Equivalently, for a nonempty subset Y of a metric
space X we can define its diameter

diam(Y ) := sup{ d(y1, y2) | y1, y2 ∈ Y } ∈ [0,∞]

and put diam∅ = 0; then a subset Y is bounded if and only if it has finite diameter.

If (X, dX) and (Y, dY ) are two metric spaces and f : X → Y is a function between
them, then all of the following definitions go through using the metric functions
instead of Euclidean norms: continuous, uniformly continuous, Lipschitz. Just to
spell out the first one: we say that f : X → Y is continuous at c ∈ X if for all ε > 0,
there is δ > 0 such that for all x ∈ X, if d(x, c) < δ then d(f(x), f(c)) < ε. Once
again continuous functions are characterized by preservation of limits of convergent
sequences, we have a sequential characterization of uniform continuity, and so forth.

For a subset Y of a metric space (X, d), we say that Y is sequentially com-
pact if every sequence {xn} in Y admits a subsequence converging to an element
of Y . This is the same definition as before. Again, as before it is easy to prove that
a sequentially compact subset must be closed (otherwise take a sequence converg-
ing to a limit point of Y that does not lie in Y ) and bounded (otherwise we can
build a sequence in Y for which any two distinct terms have distance at least one
from each other, and then there is no convergent subsequence). But now a surprise
occurs: for a subset Y of a general metric space X, being closed and bounded is
not sufficient for sequential compactness.

1Perhaps the closest we came to this was showing that balls are convex. Convexity does not
make sense in an arbitrary metric space. One needs the structure of a real vector space for this.
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Example 1.1. For a set X, the discrete metric dd on X is

d(x, y) :=

{
0 x = y

1 x 6= y
.

For any c ∈ X and any 0 < ε < 1, we have B◦(c, ε) = {x}. Then (X, dd) is
bounded: if X 6= ∅, then diam(X) = 1. Also X is closed as a subset of itself.

But: if a sequence {xn} in a metric space converges to a point c, then for all
ε > 0, we must have xn ∈ B◦(c, ε) for all sufficiently large n. So a sequence in the
discrete metric space (X, dX) converges to c if and only if all sufficiently large terms
are equal to c, i.e., is eventually constant. If X is moreover infinite, then there is
an injective sequence x• : Z+ → X. Every subsequence of {xn} remains injective
and therefore divergent. Therefore X itself is closed, bounded but not sequentially
compact. (Exactly the same holds for every infinite subset Y of X.)

If one looks back at the proof of the Bolzano-Weierstrass Theorem in RN , we get
referred back to Bolzano-Weierstrass in R which was proved in a previous course
using the completeness properties of R. In a metric space X we do not have a no-
tion of ordering of the points, so upper bounds and Dedekind completeness doesn’t
make sense. However, Cauchy sequences do: a sequence {xn} in a metric space
(X, d) is Cauchy if for all ε > 0 there is N ∈ Z+ such that for all m,n ≥ N we
have d(xm, xn) < ε. Again it is easy to see that convergent sequences are Cauchy
but the converse does not generally hold: we say that a metric space is complete
if every Cauchy sequence in that space is convergent.

For instance, there are Cauchy sequences in Q (which becomes a metric space
by restricting the metric function on R) that converge only to elements of R – e.g.

a sequence of rational approximations to
√

2 – so Q is not a complete metric space.
Actually, a little thought shows that this phenomenon is much more general: if
(X, d) is any metric space whatsoever and Y is a subset of X that is not closed,
then by definition there is a sequence {yn} in Y converging to an element x ∈ X \Y ;
any subsequence still converges to x and therefore not to any element of Y . So in-
complete metric spaces abound.

I want to end by telling you some striking and important theorems in metric topol-
ogy to convince you that there is more to learn here. The first one introduces an
alternate take on sequential compactness that is more prevalent in advanced math-
ematics. Namely, a subset Y of a metric space (X, d) is compact if for every family
{Ui}i∈I of open subsets of X that covers Y in the sense that Y ⊆

⋃
i∈I Ui, there is

a finite subset J ⊆ I such that
⋃
i∈J Ui also covers Y . In brief: “every open cover

of Y has a finite subcover.” As we saw in our course, sequential definitions seem
to be easier to understand and process than set-theoretic definitions, though both
are important. Indeed, we could have made good use of compactness in our course
but we were able to make do with sequential compactness instead.

One more definition: a subset Y of a metric space X is totally bounded if for
every ε > 0, it admits a finite cover by subsets of diameter at most ε. Equivalently,
for every ε > 0, Y admits a finite cover by closed ε-balls. Since sets of finite diam-
eter are bounded and finite unions of bounded sets are bounded, certainly totally
bounded implies bounded. The terminology is of course suggesting that totally
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bounded could be stronger. This is an absolutely key example of a difference be-
tween RN and a general metric space: in RN every bounded set is totally bounded
(this was a homework problem). However, an infinite set with the discrete metric
is bounded but not totally bounded: the only sets of diameter at most 1

2 are single
points, an an infinite set is not a finite union of singleton subsets!

Now we can state what is probably the most important theorem of metric topology:

Theorem 5.1. For a metric space (X, d), the following are equivalent:

(i) X is compact: every open cover of X has a finite subcover.
(ii) X is sequentially compact: every sequence in X has a convergent subse-

quence.
(iii) X is “accumulation point compact”: every infinite subset of X has an

accumulation point in X.
(iv) X is complete (Cauchy sequences converge) and totally bounded (for all

ε > 0, X can be covered by finitely many subsets of arbitrarily small
diameter).

Proof. See e.g. [GT, Thm. 2.78]. (Warning: in those notes, where we say
“limit point” they say “adherent point” and where we say “accumulation point”
they say “limit point.”) �

Theorem 5.1 is not really a generalization of the Bolzano-Weiestrass Theorem in
RN , but it helps us to understand Bolzano-Weierstrass more deeply: it shows that
the two key facts that go into it are the completeness of R (from which the com-
pleteness of RN follows almost immediately) and the fact that bounded subsets in
Euclidean space are totally bounded, which can be thought of as a consequence of
the Archmedean property in the form that if you divide a real number by 2 enough
times, it gets arbitrarily small.

If we have two metric spaces (X, dX) and (Y, dY ), a map f : X → Y is an isometric
embedding if it preserves distances between points:

∀x1, x2 ∈ X, dY (f(x1), f(x2)) = dX(x1, x2).

Such maps are in particular Lipschitz with Lipschitz constant 1, so they are uni-
formly continuous, and so forth. But really this is much stronger: Lipschitz maps
are maps that only stretch distances between points by a bounded factor, while
isometric embeddings preserve distances. You should think of an isometric embed-
ding f : X → Y as giving you a “perfect copy” f(X) of X as a subset of Y .

Now here is another big theorem:

Theorem 5.2. Let (X, dX) be a metric space. Then there is a metric space

(X̃, dX̃) and an isometric embedding

ι : X → X̃

such that:

(i) X̃ is a complete metric space, and

(ii) The image ι(X) is dense in X̃: that is, for every x ∈ X̃ there is a sequence
{xn} in X such that ι(xn)→ x.
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The metric space X̃ is called the completion of the metric space X, and it
can be thought of as “filling in the missing holes” that prevent Cauchy sequences
in X from converging. Moreover, the completion X̃ is essentially unique, although
I don’t have the time to explain exactly what that means here. This is such a pro-
found idea: you have a space in which not every Cauchy sequence converges, which
robs you of and essential tool to show convergence of sequences. So you faithfully
embed your space inside a larger space (in a parsimonious way: every point you
have added is the limit of a sequence in your original space) and in that larger space
all Cauchy sequences converge.

One thing that the formalism of metric spaces buys you is the idea to consider
two different metric functions on the same space. This turns out to be very natural
and useful, because indeed there is often more than one sense in which things can
get “close together” and you want to compare the two. Let me end by mentioning
an example of this: let

X = C[a, b] = {continuous f : [a, b]→ R}

be the set of continuous real-valued functions defined on [a, b]. We want to make
this into a metric space, i.e., we want to measure the distance between two func-
tions. How might we do this?

One way to do this was given in Math 3100: for f, g ∈ C[a, b], put

d∞(f, g) := max
x∈[a,b]

|f(x)− g(x)|.

(It is easy to see that this is a metric: the triangle inequality follows from the usual
triangle equality in R.) Convergence of sequences in the d∞-metric is precisely
uniform convergence. However, there is another metric that is arguably even more
natural: for f, g ∈ C[a, b], put

d1(f, g) :=

∫ b

a

|f − g|.

I claim that d1 is a metric function. This time the Triangle Inequality is not the
hardest part: for f, g, h ∈ C[a, b] we have

d1(f, h) =

∫ b

a

|f−h| ≤
∫ b

a

(|f − g|+ |g − h|) =

∫ b

a

|f−g|+
∫ b

a

|g−h) = d1(f, g)+d1(g, h).

Because |f − g| = |g − f |, clearly d1(f, g) = d1(g, f). Also clearly f1(f, g) ≥ 0, be-
cause the integral of a non-negative function is non-negative. Also clearly d1(f, f) =
0. However, it takes some work to show that if if d1(f, g) = 0 then f = g: this
comes down to showing: if f : [a, b] → R is continuous and non-negative, then∫ b
a
f = 0 implies f = 0. (This is a good exercise! I recommend you try it.) Note

that everthing we’ve said so far about d1 holds for all Riemann integrable functions
but here we need to assume f is continuous.

We have moreover that

d1(f, g) =

∫ b

a

|f − g| ≤
∫ b

a

d∞(f, g) = (b− a)d∞(f, g),
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so that the d1-metric is, up to the constant (b−a), the smaller of the two, and intu-
itively it measures the distance in a more refined way: whereas d∞(f, g) measures
the maximum distance between f(x) and g(x), 1

b−ad1(f, g) measures the average

distance between f(x) and g(x). In more advanced analysis both of these metrics
are important, and they fit into an infinite family of metrics dp for p ∈ [1,∞].

It turns out that C[a, b] with the d∞-metric is complete: this is a variant of the
Math 3100 fact that a uniform limit of continuous functions remains continuous.
On the other hand, C[a, b] with the d1-metric is not complete.

Example 1.2. For n ∈ Z+, let fn : [0, 2] be the function

fn(x) =

{
xn if x ∈ [0, 1)

1 if x ∈ [1, 2]
.

This sequence converges pointwise the to the function:

f : [0, 2]→ R, f(x) =

{
0 if x ∈ [0, 1)

1 if x ∈ [1, 2]
,

which is discontinuous at 1. Since f is bounded with a single discontinuity, it is
Riemann integrable, and

d1(fn, f) =

∫ 2

0

|fn − f | =
∫ 1

0

|xn|+
∫ 2

1

0 =

∫ 1

0

xn =
1

n+ 1
→ 0.

This implies that the sequence {fn} is Cauchy in C[a, b] with the d1-metric: indeed,
for all m,n ∈ Z+, we have

d1(fm, fn) ≤ d1(fm, f) + d1(fn, f),

so if we choose N ∈ Z+ such that for all n ≥ N we have d1(fn, f) < ε
2 then for all

m,n ≥ N we have d1(fm, fn) < ε. If there were a continuous function g such that
fn → g in the d1-metric, then for all n ∈ Z+ we have

d1(f, g) ≤ d1(f, fn) + d2(fn, g),

so
d1(f, g) ≤ lim

n→∞
d1(f, fn) + d2(fn, g) = 0.

Since f and g are both continuous on [1, 2], we must have g(x) = f(x) = 1 for all
x ∈ [1, 2]. Similarly, for any δ ∈ (0, 1), we have

0 =

∫ 2

0

|f − g| =
∫ δ

0

|f − g|+
∫ 2

δ

|f − g|;

since both terms are non-negative, we conclude
∫ δ
0
|f − g| = 0. Since f and g

are continuous on [0, δ], we must have g = f = 0. Therefore we know that g is
continuous on [0, 2], is equal to 0 for all x ∈ [0, 1) and is equal to 1 for all x ∈ [1, 2].
But there is no such function, so {fn} is Cauchy in (C[a, b], d1) but not convergent.

But all is not lost! By Theorem 5.2 one can consider the completion of C[a, b] with
respect to the d1-metric. This is called the Lebesgue space L1([a, b])...and now
we are back to real analysis. Indeed, these Lebesgue spaces are discussed in Math
8100 perhaps more than any other topic.
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