
REVIEW FOR THIRD 3200 MIDTERM

PETE L. CLARK

1) Show that for all integers n ≥ 2 we have

13 + . . .+ (n− 1)3 <
1

4
n4 < 13 + . . .+ n3.

Solution: We go by induction on n.
Base Case (n = 2): We have

(2− 1)3 = 13 = 1 < 4 =
24

4
< 9 = 13 + 23.

Induction Step: Let n ≥ 2, and suppose that

13 + . . .+ (n− 1)3 <
n4

4
< 13 + . . .+ n3.

We note that

(n+ 1)4 = n4 + 4n3 + 6n2 + 4n+ 1,

so
(n+ 1)4

4
=
n4

4
+ n3 + (

3

2
n2 + n+

1

4
) >

n4

4
+ n3.

So

13 + . . .+ (n− 1)3 + n3
IH
<
n4

4
+ n3 <

(n+ 1)4

4
,

establishing the first of the two inequalities. Similarly, we have

(n+ 1)3 = n3 + 3n2 + 3n+ 1,

so
(n+ 1)4

4
=
n4

4
+ (n3 +

3

2
n2 + n+

1

4
) <

n4

4
+ (n3 + 3n2 + 3n+ 1)

=
n4

4
+ (n+ 1)3

IH
< 13 + . . .+ n3 + (n+ 1)3.

2) The distributive law for the real numbers states that for any real numbers a, b, c,
a · (b+ c) = a · b+ a · c. Assuming this, show by induction that for all n ∈ Z+ and
real numbers a, b1, . . . , bn, a · (b1 + . . .+ bn) = a · b1 + . . .+ a · bn.

Solution: There is nothing to show if n = 1, and the base case n = 2 is our
assumption. So assume: for a given n ≥ 2 and all a, b1, . . . , bn ∈ R, we have

a · (b1 + . . .+ bn) = a · b1 + . . .+ a · bn.
Now let a, b1, . . . , bn+1 be any real numbers. Then

a · (b1 + . . .+ bn + bn+1) = a · ((b1 + . . .+ bn) + bn+1)

= a · (b1 + . . .+ bn) + a · bn+1 = a · b1 + . . .+ a · bn + bn+1.
1
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In the penultimate inequality we used the distributive law for n = 2, and in the
last equality we used the induction hypothesis.

3) State the principle of mathematical induction and the principle of strong/complete
induction.

Solution: See http://www.math.uga.edu/ pete/3200induction.pdf.

4) Define all of the following terms: a relation R between sets X and Y , the
domain of a relation; the inverse relation R−1; an equivalence relation; a
function; the domain of a function; the codomain of a function; the range
of a function; an injective function; a surjective function; a bijective func-
tion.

Solution: A relation R on a set is a subset of the Cartesian product X × Y .
The domain of a relation R is the set of all x ∈ X such that there exists at least
one y ∈ Y with (x, y) ∈ R. The inverse relation is the subset R−1 = {(y, x) ∈
Y ×X | (x, y) ∈ R}. A function is a relation in which for each x ∈ X, there exists
a unique y ∈ Y such that (x, y) ∈ R. The range of a function is the set of all y ∈ Y
such that y = f(x) for at least one x ∈ X. A function f : X → Y is injective
(or one-to-one) if for all x1, x2 ∈ X, f(x1) = f(x2) =⇒ x1 = x2. A function
f : X → Y is surjective (or onto) if its range is all of Y . A function is bijective if
it is both injective and surjective.

5) f : X → Y and g : Y → X be functions.
a) Say what it means for f and g to be inverse functions.
b) Suppose ∀x ∈ X, g(f(x)) = x. Prove/disprove: f and g are inverse functions.
c) Same question as part b), but now assume that f is surjective.
d) Same question as part b), but now assume that g is injective.

Solution:
a) This means that g ◦ f = 1X , f ◦ g = 1Y .
b) We have seen in class several times that this is not true.1 For instance, take
X = {a} and Y = {1, 2}, f : a 7→ 1, g : 1 7→ a, 2 7→ a. Then g ◦ f = 1X but
f ◦ g : 1 7→ 1, 2 7→ 1.
c) It now follows that f and g are inverse functions, as discussed in class. E.g., by
the green and brown fact, f is injective, whereas by our assumption f is surjective,
so f is bijective and therefore f−1 exists. Applying f−1 to the equation g ◦f = 1X ,
we get g = f−1, so f and g are inverse functions.
d) Again, as discussed in class it does follow that f and g are inverse functions.
E.g., by the green and brown fact, g is surjective, whereas by our assumption g is
injective, so g is bijective and therefore g−1 exists. Applying g−1 to the equation
g ◦ f = 1X , we get f = g−1, so f and g are inverse functions.

6) Let f : X → Y and g : Y → Z be functions.
a) Define g ◦ f .
b) Suppose that f and g are injective. Show that g ◦ f is injective.

1Unfortunately I think we have not seen it yet this year, as of November 25th.
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c) Suppose that f and g are surjective. Show that g ◦ f is surjective.
d) Suppose that f and g are bijective. Show that g ◦ f is bijective.

Solution:
a) g ◦ f is the function from X to Z defined by x 7→ g(f(x)).
b) Suppose that x1, x2 ∈ X are such that g(f(x1)) = g(f(x2)). We wish to show
that x1 = x2. But since g is injective, we have f(x1) = f(x2), and since f is
injective, we have x1 = x2.
c) Suppose that z ∈ Z. We want to show that there exists x ∈ X such that
g(f(x)) = z. But since g is surjective, there exists y ∈ Y such that g(y) = z, and
since f is surjective, there exists x ∈ X such that f(x) = y. Then (g ◦ f)(x) =
g(f(x)) = g(y) = z.
d) If f and g are bijective, then f and g are both injective, so by part b) g ◦ f is
injective. Similarly, f and g are both surjective, so by part c) g ◦ f is surjective.
Therefore g ◦ f is bijective.

7) Let X be a set. Prove or disprove: there does not exist any function f : X → ∅.

Solution: This is true if and only if X is not the empty set. Indeed, if there exists
x ∈ X, by definition of a function we need there to be exactly one y ∈ Y such that
f(x) = y, but Y is empty so there is no such Y ! Howeover, if X = ∅ then the
empty relation on ∅×∅ does (rather vacuously) satisfy the properties of a function.

8) Let n ∈ Z+ and b ∈ R. Let f : R → R be the function x 7→ xn + b. De-
termine the range of f . Is f injective? Surjective? (Your answer may depend on n
and/or b.)

Solution: We claim that f is injective if and only if f is surjective if and only
if n is odd. To see this, note that f is differentiable and f ′(x) = nxn−1. If n is odd,
then n−1 is even, so f ′(x) ≥ 0 for all x ∈ R and is 0 only at the single point 0. From
calculus, it follows that f is strictly increasing: x1 < x2 =⇒ f(x1) < f(x2). In
particular f is injective. Moreover, we have limx→∞ xn =∞, limx→−∞ xn = −∞;
certainly f is continuous, so it follows from the intermediate value theorem that f
assumes all real values.

Inversely, suppose n is even. Then f(x) ≥ 0 for all x ∈ R, so that f is not
surjective. Moreover, f(−1) = f(1), so f is not injective.

Remark: Note that the “+b” was irrelevant in the proof. This is always the case:
for any b ∈ R and any function f : R→ R, the function g(x) = f(x) + b is injective
iff f(x) is injective, and g(x) is surjective iff f(x) is surjective.

9)a) Prove/disprove: if f : R → R is differentiable and such that f ′(x) ≥ 0 for
all x, then f is injective.

Solution: This is false. A counterexample is f(x) = C, any constant function.

b) Same as part a), except with the assumption that f ′(x) > 0 for all x.
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Solution: Now it follows from calculus that f is strictly increasing hence injective.
The details are as follows: suppose for a contradiction that there exist x1 < x2
such that f(x1) ≥ f(x2). Applying the Mean Value Theorem to f on the interval

[x1, x2], there exists a c, x1 < c < x2 with f ′(c) = f(x2)−f(x1)
x2−x1

. But f ′(c) > 0 is

positive and f(x2)−f(x1)
x2−x1

≤ 0, a contradiction.

Remarks: Parts a) and b) use calculus in a nontrivial way so are probably not
suitable test questions. Nevertheless these techniques of showing that functions are
injective and surjective are quite useful, and you should feel free to use them on
the exams without the need for proof.

c) Which of the following functions are injective (on their usual domains): sinx,
cosx, tanx, ex, lnx?

Solution: sinx, cosx and tanx are periodic: there exists a positive real number
C (here, C = π) such that f(x+C) = f(x) for all x ∈ R. Any periodic function is
far from injective: f(0) = f(C) = f(2C) = . . .. On the other hand ex and lnx are
both injective: again, their derivatives – ex and 1

x respectively – are positive for all
x in the domain.

d) Which of the functions of part c) are surjective onto R?

Solution: sinx and cosx are bounded, hence certainly not surjective. The func-
tion tanx is surjective, as a study of its vertical asymptotes makes clear. The fact
that ex > 0 for all real x means it is not surjective. On the other hand, since
limx→0+ lnx = −∞, limx→∞ lnx =∞, lnx is surjective.

10) Let f : X → Y be a function.
a) Define a relation on X by x ∼ x′ if f(x) = f(x′). Show that ∼ is an equivalence
relation.

Solution: Reflexivity: Indeed f(x) = f(x) for all x ∈ X.
Symmetry: If f(x) = f(y), then f(y) = f(x).
Transitivity: If f(x) = f(y) and f(y) = f(z), then f(x) = f(z).
In other words, the properties follow easily from the corresponding properties for
equality.

b) For any y ∈ Y , the fiber over y in X is the set

f−1(y) = {x ∈ X | f(x) = y}.

Show that for y 6= y′ the fibers over y and y′ are disjoint subsets of X.

Solution: If x lies in the fiber over y and x′ lies in the fiber over y′, then
f(x) = y 6= y′ = f(x′). So certainly x 6= x′ since otherwise f(x) = f(x′).

c) Show that the set of fibers {f−1(y) | y ∈ Y } gives a partition of x if and only if
f is surjective. Show that in this case the corresponding equivalence relation on X
is the same as the ∼ relation of part a).
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Solution: If f is not surjective, then at least one of the fibers is the empty set,
which is not allowed as an element of a partition. Conversely, suppose f is surjec-
tive. Then each fiber is nonempty. We saw above that distinct fibers are disjoint
sets, so it remains to be seen that the union of all fibers is X itself. But this is clear:
for x ∈ X, x lies in the fiber over f(x). The corresponding equivalence relation is
x ∼ x′ iff x and x′ lie in the same fiber, but this happens iff f(x) = f(x′), which is
the definition of ∼ in part a).

(Comment: too much for an in-class exam, I think.)

11) Let X be the set of all functions f : R → (0,∞). Define a relation ∼ on

X by f ∼ g if limx→∞
f(x)
g(x) = 1. Show that ∼ is an equivalence relation on X. (It

is called asymptotic equality).

Solution: Reflexivity: limx→∞
f(x)
f(x) = limx→∞ 1 = 1.

Symmetry: Recall that if limx→∞
f(x)
g(x) = L 6= 0, then limx→∞

g(x)
f(x) = 1

L . Taking

L = 1 gives the desired conclusion.

Transitivity: If limx→∞
f(x)
g(x) = limx→∞

g(x)
h(x) = 1, then

lim
x→∞

f(x)

h(x)
= lim

x→∞

f(x)

g(x)
· g(x)

h(x)
= lim

x→∞

f(x)

g(x)
· lim
x→∞

g(x)

h(x)
= 1 · 1 = 1.

12) For each of the following, give an example or prove that no such example exists.
a) A relation on a set which is symmetric and transitive but not reflexive.

Example: The relation {(0, 0)} on the set of real numbers.

b) A relation R ⊂ R × R such that each vertical line x = c intersects R in ex-
actly one point, but R is not a function.

This is impossible: that each x-value get assigned to a unique y-value is the defini-
tion of a function.

c) A function R ⊂ R × R such that each horizontal line y = d intersects R in
at most one point, but which is not invertible.

Example: f(x) = ex.

13) Suppose f : X → Y is a surjective function. Show that there exists a function
g : Y → X such that for all y ∈ Y , f(g(y)) = y.

Solution: By definition of surjectivity, for each y ∈ Y , there exists at least one ele-
ment x ∈ X with f(x) = y. So choose one such x, say xy. Then defining g : Y → X
by y 7→ xy does the trick, because f(g(y)) = f(xy) = y.


