REVIEW FOR THIRD 3200 MIDTERM

PETE L. CLARK

1) Show that for all integers $n \ge 2$ we have

$$1^3 + \ldots + (n-1)^3 < \frac{1}{4}n^4 < 1^3 + \ldots + n^3.$$

2) The distributive law for the real numbers states that for any real numbers a, b, c, $a \cdot (b + c) = a \cdot b + a \cdot c$. Assuming this, show by induction that for all $n \in \mathbb{Z}^+$ and real numbers a, b_1, \ldots, b_n , $a \cdot (b_1 + \ldots + b_n) = a \cdot b_1 + \ldots + a \cdot b_n$.

3) State the principle of mathematical induction and the principle of strong/complete induction.

4) Define the following terms: a relation R between sets X and Y, the domain of a relation; the inverse relation R^{-1} ; an equivalence relation; a function; the domain of a function; the codomain of a function; the range of a function; an injective function; a surjective function; a bijective function.

- 5) $f: X \to Y$ and $g: Y \to X$ be functions.
- a) Say what it means for f and g to be inverse functions.
- b) Suppose $\forall x \in X$, g(f(x)) = x. Prove/disprove: f and g are inverse functions.
- c) Same question as part b), but now assume that f is surjective.
- d) Same question as part b), but now assume that g is injective.
- 6) Let $f: X \to Y$ and $g: Y \to Z$ be functions.
- a) Define $g \circ f$.
- b) Suppose that f and g are injective. Show that $g \circ f$ is injective.
- c) Suppose that f and g are surjective. Show that $g \circ f$ is surjective.
- d) Suppose that f and g are bijective. Show that $g \circ f$ is bijective.

7) Let X be a set. Prove or disprove: there does not exist any function $f: X \to \emptyset$.

8) Let $n \in \mathbb{Z}^+$ and $b \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be the function $x \mapsto x^n + b$. Determine the range of f. Is f injective? Surjective? (Your answer may depend on n and/or b.)

9)a) Prove/disprove: if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and such that $f'(x) \ge 0$ for all x, then f is injective.

b) Same as part a), except with the assumption that f'(x) > 0 for all x.

c) Which of the following functions are injective (on their usual domains): $\sin x$, $\cos x$, $\tan x$, e^x , $\ln x$?

d) Which of the functions of part c) are surjective onto \mathbb{R} ?

10) Let $f: X \to Y$ be a function.

a) Define a relation on X by $x \sim x'$ if f(x) = f(x'). Show: \sim is an equivalence relation.

b) For any $y \in Y$, the **fiber over y in X** is the set

$$f^{-1}(y) = \{ x \in X \mid f(x) = y \}.$$

Show that for $y \neq y'$ the fibers over y and y' are disjoint subsets of X. c) Show that the set of fibers $\{f^{-1}(y) \mid y \in Y\}$ gives a partition of x if and only if f is surjective. Show that in this case the corresponding equivalence relation on X is the same as the \sim relation of part a).

11) Let X be the set of all functions $f : \mathbb{R} \to (0, \infty)$. Define a relation \sim on X by $f \sim g$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$. Show that \sim is an equivalence relation on X. (It is called **asymptotic equality**).

12) For each of the following, give an example or prove no such example exists. a) A relation on a set which is symmetric and transitive but not reflexive.

b) A relation $R \subset \mathbb{R} \times \mathbb{R}$ such that each vertical line x = c intersects R in exactly one point, but R is not a function.

c) A function $R \subset \mathbb{R} \times \mathbb{R}$ such that each horizontal line y = d intersects R in at most one point, but which is not invertible.

13) Suppose $f: X \to Y$ is a surjective function. Show that there exists a function $g: Y \to X$ such that for all $y \in Y$, f(g(y)) = y.