REVIEW FOR THIRD 3200 MIDTERM

PETE L. CLARK

1) Show that for all integers $n \geq 2$ we have

$$
1^{3}+\ldots+(n-1)^{3}<\frac{1}{4} n^{4}<1^{3}+\ldots+n^{3}
$$

2) The distributive law for the real numbers states that for any real numbers a, b, c, $a \cdot(b+c)=a \cdot b+a \cdot c$. Assuming this, show by induction that for all $n \in \mathbb{Z}^{+}$and real numbers $a, b_{1}, \ldots, b_{n}, a \cdot\left(b_{1}+\ldots+b_{n}\right)=a \cdot b_{1}+\ldots+a \cdot b_{n}$.
3) State the principle of mathematical induction and the principle of strong/complete induction.
4) Define the following terms: a relation R between sets X and Y, the domain of a relation; the inverse relation R^{-1}; an equivalence relation; a function; the domain of a function; the codomain of a function; the range of a function; an injective function; a surjective function; a bijective function.
5) $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be functions.
a) Say what it means for f and g to be inverse functions.
b) Suppose $\forall x \in X, g(f(x))=x$. Prove/disprove: f and g are inverse functions.
c) Same question as part b), but now assume that f is surjective.
d) Same question as part b), but now assume that g is injective.
6) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
a) Define $g \circ f$.
b) Suppose that f and g are injective. Show that $g \circ f$ is injective.
c) Suppose that f and g are surjective. Show that $g \circ f$ is surjective.
d) Suppose that f and g are bijective. Show that $g \circ f$ is bijective.
7) Let X be a set. Prove or disprove: there does not exist any function $f: X \rightarrow \varnothing$.
8) Let $n \in \mathbb{Z}^{+}$and $b \in \mathbb{R}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $x \mapsto x^{n}+b$. Determine the range of f. Is f injective? Surjective?
(Your answer may depend on n and/or b.)
9)a) Prove/disprove: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and such that $f^{\prime}(x) \geq 0$ for all x, then f is injective.
b) Same as part a), except with the assumption that $f^{\prime}(x)>0$ for all x.
c) Which of the following functions are injective (on their usual domains): $\sin x$, $\cos x, \tan x, e^{x}, \ln x ?$
d) Which of the functions of part c) are surjective onto \mathbb{R} ?
9) Let $f: X \rightarrow Y$ be a function.
a) Define a relation on X by $x \sim x^{\prime}$ if $f(x)=f\left(x^{\prime}\right)$. Show: \sim is an equivalence relation.
b) For any $y \in Y$, the fiber over \mathbf{y} in \mathbf{X} is the set

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\}
$$

Show that for $y \neq y^{\prime}$ the fibers over y and y^{\prime} are disjoint subsets of X.
c) Show that the set of fibers $\left\{f^{-1}(y) \mid y \in Y\right\}$ gives a partition of x if and only if f is surjective. Show that in this case the corresponding equivalence relation on X is the same as the \sim relation of part a).
11) Let X be the set of all functions $f: \mathbb{R} \rightarrow(0, \infty)$. Define a relation \sim on X by $f \sim g$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$. Show that \sim is an equivalence relation on X. (It is called asymptotic equality).
12) For each of the following, give an example or prove no such example exists. a) A relation on a set which is symmetric and transitive but not reflexive.
b) A relation $R \subset \mathbb{R} \times \mathbb{R}$ such that each vertical line $x=c$ intersects R in exactly one point, but R is not a function.
c) A function $R \subset \mathbb{R} \times \mathbb{R}$ such that each horizontal line $y=d$ intersects R in at most one point, but which is not invertible.
13) Suppose $f: X \rightarrow Y$ is a surjective function. Show that there exists a function $g: Y \rightarrow X$ such that for all $y \in Y, f(g(y))=y$.

