
REVIEW PROBLEMS FOR SECOND 3200 MIDTERM

PETE L. CLARK

1)a) State Euclid’s Lemma (the one involving prime numbers and divisibility).
b) Use Euclid’s Lemma to show that 31/5 and 51/3 are both irrational.

Solution:
a) Eulid’s Lemma (Euclid’s Elements, Proposition IX.20): Let p be a prime number,
and let a, b ∈ Z. If p | ab, then p | a or p | b. For future use list the strengthening
that we get by applying induction: if p | a1 · · · an then p | ai for some i.
b) Seeking a contradiction, suppose 31/5 is rational: then there are nonzero integers
a, b, with no common factor, such that

31/5 =
a

b
.

Raising both sides to the fifth power and clearing denominators, we get

a5 = 3b5.

Thus 3 | a5 = a · · · a; since 3 is prime, (the small generalization above of) Euclid’s
Lemma implies that 3 | a: so a = 3A for some A ∈ Z. Thus

35A5 = (3A)5 = a5 = 3b5,

so

b5 = 34A5.

It follows that 34 | b5 and as above that 3 | b. This contradicts our assumption that
a and b have no common factor greater than 1 and completes the proof.

The argument for 51/3 is extremely similar, and I leave it to you.

2) Let x, y ∈ Z, and suppose that x is of the form 9k + 3 for some integer k.
a) Show that 2x2 + 54y is divisible by 9.
b) Show that 2x2 + 54y is not divisible by 27.

Solution: a) We have

2x2 + 54y = 2(9k + 3)2 + 54y = 2 · 92k2 + 2 · 2 · 3 · 9k + 2 · 32 + 54y

= 9(2 · 9k2 + 12k + 2 + 6y).

Since 2 · 9k2 + 12k + 2 + 6y ∈ Z, this shows that 9 | 2x2 + 54y.
b) Looking back at the same calculation, it gives

2x2 + 54y = 27(6k2 + 4k + 2y) + 18.
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So, seeking a contradiction, suppose 27 | 2x2 + 54y, i.e., 2x2 + 54y = 27A for some
A ∈ Z. Then

27A = 2x2 + 54y = 27(6k2 + 4k + 2y) + 18,

so

18 = 27(A− (6k2 + 4k + 2y))

and thus 27 | 18. But it does not: contradiction!

3) Let x ∈ Z. Prove or disprove each of the following statements:
a) If 4 | x2, then 4 | x.
b) If 5 | x2, then 5 | x.
c) If 6 | x2 then 6 | x.

Solution:
a) Disprove: if x = 2 then x2 = 4, and we have 4 | x2 and 4 - x.
b) This is true, and it follows from Euclid’s Lemma for p = 5, a case we have
already done. It’s not much trouble to reproduce the diagonal of the multiplication
table modulo 5: if x ∈ Z, then x ≡ 0, 1, 2, 3, 4 (mod 5). We find:
• If x ≡ 0 (mod 5) then x2 ≡ 02 = 0 (mod 5),
• If x ≡ 1 (mod 5) then x2 ≡ 12 = 1 (mod 5),
• If x ≡ 2 (mod 5) then x2 ≡ 22 = 4 (mod 5),
• If x ≡ 3 (mod 5) then x2 ≡ 32 = 9 ≡ 4 (mod 5),
• If x ≡ 4 (mod 5) then x2 ≡ 42 = 16 ≡ 1 (mod 5).
Thus if x2 ≡ 0 (mod 5) then x ≡ 0 (mod 5). In other words, if 5 | x2 then 5 | x.

c) This is true. Again we’ve seen it before, and again I reproduce the diagonal
of the modulo 6 multiplication table:
• If x ≡ 0 (mod 6), then x2 ≡ 02 = 0 (mod 6),
• If x ≡ 1 (mod 6), then x2 ≡ 12 = 1 (mod 6),
• If x ≡ 2 (mod 6), then x2 ≡ 22 = 4 (mod 6),
• If x ≡ 3 (mod 6), then x2 ≡ 32 = 9 ≡ 3 (mod 6),
• If x ≡ 4 (mod 6), then x2 ≡ 42 = 16 ≡ 4 (mod 6),
• If x ≡ 5 (mod 6), then x2 ≡ 52 = 25 ≡ 1 (mod 6).
Thus if x2 ≡ 0 (mod 6) then x ≡ 0 (mod 6). In other words, if 6 | x2 then 6 | x.

4) Let r 6= 1 be a real number. Show that for all n ∈ Z+, 1 + r+ . . .+ rn = rn+1−1
r−1 .

First Solution: We show this by induction on n.

Base Case (n = 1): We have r2−1
r−1 = (r+1)(r−1)

r−1 = r + 1 = 1 + r.

Induction Step: Let n ∈ Z+ and suppose that

1 + r + . . . + rn =
rn+1 − 1

r − 1
.

Then

1 + r + . . . + rn+1 = (1 + r + . . . + rn) + rn+1 IH
=

rn+1 − 1

r − 1
+ rn+1

=
rn+1 − 1 + (r − 1)(rn+1)

r − 1
=

rn+1 − 1 + rn+2 − rn+1

r − 1
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=
rn+2 − 1

r − 1
.

Second Solution: Let

(1) Sn = 1 + . . . + r + rn.

Multiplying (1) by r we get

(2) rSn = r + . . . + rn + rn+1,

and subtracting (1) from (2) we get

(r − 1)Sn = rn+1 − 1

and thus

Sn =
rn+1 − 1

r − 1
.

Moral: Many of the things that Superman can do can be done by ordinary peo-
ple...perhaps with a bit more human ingenuity. (–Lex Luthor?)

5) Consider the following statement: for all n ∈ Z+, 3 | n3 + 2n.
a) Prove the statement using congruences.
b) Prove the statement using induction.

Solution:
a) In the language of congurences, we must show: for all n ∈ Z we have n3 +2n ≡ 0
(mod 3). The idea is that the value of n3 + 2n modulo 3 depends only on the value
of n modulo 3, so it’s enough to verify the congruence for n = 0, 1, 2. So:
• 03 + 2 · 0 = 0 ≡ 0 (mod 3)
• 13 + 2 · 1 = 3 ≡ 0 (mod 3)
• 23 + 2 · 2 = 12 ≡ 0 (mod 3).

b) As instructed, we proceed by induction on n.
Base Case (n = 1): We have 13 + 2 · 1 = 3 is divisible by 3.
Induction Step: let n ∈ Z+ and suppose that n3 + 2n is divisible by 3, so n3 + 2n =
3A for some A ∈ Z. Then

(n+1)3+2(n+1) = n3+3n2+3n+1+2n+2 = (n3+2n)+(3n2+3n+3) = 3(A+n2+n+1).

6) A student has been asked to prove: ∀x ∈ Z, P (x) =⇒ Q(x).1 For each of the
following openers, comment on the proof technique, or explain why it is not a valid
proof technique.

Example: “Let x ∈ S, and suppose P (x) is true.”
Comment: This is the beginning of a direct proof.

a) “Let x ∈ S, and suppose P (x) is false.”
b) “Let x ∈ S, and suppose that Q(x) is true.”
c) “Let x ∈ S, and suppose Q(x) is false.”
d) “Let x = 1. Then” [the student shows that P (1) is true and Q(1) is true].
e) “Let x = 2. Then” [the student shows that P (2) is false and Q(2) is false].

1Here P (x) and Q(x) are sentences involving an arbitrary integer x.
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f) “Let x = 3. Then” [the student shows that P (3) is true and Q(3) is false].
g) Let x ∈ S, and suppose that P (x) is true and Q(x) is false.

Solution:
a) Negating the consequence is a very strange way to begin a proof. It could only
succeed if the implication is trivially true: i.e., if Q(x) is true for all x ∈ S inde-
pendently of the truth or falsity of P (x). Don’t count on that! But even if that is
the case, assuming that P (x) is false is not needed. So there is never a good reason
to begin a proof in this way.

b) Here we have assumed what we are trying to prove. This is the worst mis-
take in all of mathematics! Even the nicest of instructors will have to give the
student zero points.

c) This is the beginning of a proof by contrapositive.
d) Unless S = {1}, this could be part of a proof but not the whole thing. If e.g.
S = Z+ and this is the entire proof then this is another terrible mistake: proof of a
universally quantified statement by exhibiting a single example. However, let’s not
be too critical. Many times in order to prove something for all x ∈ S one needs to
handle certain cases separately: perhaps the student begins with x = 1 and then
goes on to treat an arbitrary element of S \ {1}. So it could be fine...
e) If P (2) is false, then P (2) =⇒ Q(2) holds vacuously, so...why go to the trouble
of showing that Q(2) is false. This is not wrong yet (though it is certainly not a
complete proof unless S = {2})...but it does not inspire confidence.
f) If the argument is correct then the student has disproved the statement. Dis-
turbing, perhaps, but not the student’s fault. (Maybe there was an html issue?)
g) This is the beginning of a proof by contradiction.

7) a) State the principle of mathematical induction as it applies to subsets of Z+

and also as a proof technique.
b) True or false: Suppose that for P (x) is an open sentence with domain the real
numbers. Then it is simply not possible to use mathematical induction to show
that for all x ∈ R, P (x) holds.

Solution:
a) The principle of mathematical induction for sets is: let S ⊂ Z+ and suppose
that:
(MI1) 1 ∈ S, and
(MI2) For all n ∈ Z+, n ∈ S =⇒ n + 1 ∈ S.
Then S = Z+.
The Principle of Mathematical Induction as a proof technique is: let P (n) be an
open sentence with domain Z+. If we can show:
(Base Case) P (1) is true and
(Induction Step) For all n ∈ Z+, P (n) =⇒ P (n + 1),
then it follows that P (n) is true for all n ∈ Z+. (The point here is that one can
define S to be the set of all positive integers n for which P (n) holds, and by ap-
pealing to the above principle for sets we get S = Z+, which means P (n) holds for
all n ∈ Z+.
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b) True. For any integer N , let Z≥N = {n ∈ Z | n ≥ N} be the set of integers
greater than or equal to N . Then mathematical induction can be straightforwardly
modified to give a technique for proving that an open sentence P (n) holds for all
integers n ≥ N : just replace the base case by n = N and in the induction step as-
sume n ≥ N . However one cannot use induction to show statements P (x) for x ∈ R.

Addendum: Just so that you don’t do some internet searching and decide that I
am being dishonest with you: there is a proof technique which can be applied to
show statements P (x) for x ∈ R and which has much of the spirit of mathematical
induction. I call this technique real induction and have written an article about it.

http://math.uga.edu/~pete/instructors_guide_shorter.pdf.

But one should have mathematical induction down cold before studying such jazz
riffs on it.

8) a) Show: n! > 2n for all n ≥ 4.
b) Show: n! > 3n for all n ≥ 7.
(You may use that 7! = 5040 and 37 = 2187.)

Solution:
a) By induction on n.
Base Case (n = 4): We have 4! = 24 > 16 = 24.
Induction Step: Let n ≥ 4 and suppose n! > 2n. Since n ≥ 4, we have

n + 1 ≥ 5 > 2,

and thus

(n + 1)! = (n + 1)n!
IH
> (n + 1)2n > 2 · 2n = 2n+1.

b) By induction on n.
Base Case (n = 7): We have 7! = 5040 > 2187 = 37.
Induction Step: Let n ≥ 7 and suppose n! > 3n. Since n ≥ 7 we have

n + 1 ≥ 8 > 3,

and thus

(n + 1)! = (n + 1)n!
IH
> (n + 1)3n > 3 · 3n = 3n+1.

9) Show: for all integers n ≥ 0, we have
∫∞
0

xne−xdx = n!

Solution: Please see Proposition 16 on page 14 of

http://alpha.math.uga.edu/~pete/3200induction.pdf.

10) Let A be a set. Prove or disprove: if for every set B, A \ B = ∅, then
A = ∅.

Solution: Proof: Taking B = ∅ gives ∅ = A \∅ = A.
(What? There can be easy questions!)
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11) Prove or disprove:
a) For all rational numbers a and b, a + b and ab are both rational.
b) For all irrational (real) numbers a and b, a + b is irrational.
c) For all irrational (real) numbers a and b, a + b is rational.
d) For all irrational (real) numbers a and b, ab is irrational.
e) For all irrational (real) numbers a and b, ab is rational.

Solution:
a) Proof: write a = p

q and b = r
s with p, q, r, s ∈ Z and r, s 6= 0. Then

a + b =
p

q
+

r

s
=

ps + qr

qs
∈ Q,

ab =
p

q

r

s
=

pr

qs
∈ Q.

b) Disproof: take a =
√

2 and b = −
√

2. Then a, b are irrational and a+ b = 0 ∈ Q.

c) Disproof: take a = b =
√

2. Then a, b are irrational and a+b = 2
√

2 is irrational.

(If 2
√

2 = p
q were rational, then

√
2 = p

2q would be rational..and we know it isn’t.)

d) Disproof: take a = b =
√

2. Then a, b are irrational and ab =
√

2
√

2 = 2 ∈ Q.

e) Disproof: take a =
√

2, b =
√

3. Then a, b are both irrational and ab =
√

2
√

3 =√
6 which is (as we’ve seen at least twice now) irrational.


