PROF. CLARK'S MATH 3200 FALL 2009 MIDTERM 1

Part I: Do all of the following problems.
I.1) a) Show that the following are logically equivalent:
(i) $A \Longrightarrow(B \vee C)$;
(ii) $(A \wedge \sim B) \Longrightarrow C$.
b) Show that for all $x \in \mathbb{Z}, x\left(x^{2}+1\right)$ is even.
I.2) Negate the following statements:
a) x is odd and if y is even, then z is odd.
b) For any line ℓ in the plane and any point P not lying on ℓ, there exists exactly one line ℓ^{\prime} passing through P and parallel to ℓ.
c) I'm not going to lower my voice, and I'm staying right where I am.
d) All's well that ends well.
I.3) Consider an implication of the form " $\forall x \in S, P(x) \Longrightarrow Q(x)$."
a) What does it mean for the implication to hold trivially?
b) What does it mean for the implication to hold vacuously?
c) Let $S=\mathbb{Z}$. Let $P(x)$ be " $1298548 x+1509850980$ is odd", and let $Q(x)$ be "191| $x^{4}+53 x^{3}+17 x^{2}-14$." Show that for all $x \in S, P(x) \Longrightarrow Q(x)$.
d) Let S be the set of rational numbers. Let $P(x)$ be " e^{x} is an irrational number." Let $Q(x)$ be " $x^{4}+1 \geq 2 x^{2}$." Show that for all $x \in S, P(x) \Longrightarrow Q(x)$.
I.4) Consider an implication of the form " $\forall x \in S, P(x) \Longrightarrow Q(x)$."
a) What does it mean for the implication to hold trivially?
b) What does it mean for the implication to hold vacuously?
c) Let $S=\mathbb{Z}$. Let $P(x)$ be " $1298548 x+1509850980$ is odd", and let $Q(x)$ be "191| $x^{4}+53 x^{3}+17 x^{2}-14$ ". Show that for all $x \in S, P(x) \Longrightarrow Q(x)$.
d) Let S be the set of rational numbers. Let $P(x)$ be " e^{x} is an irrational number". Let $Q(x)$ be " $x^{4}+1 \geq 2 x^{2}$ ". Show that for all $x \in S, P(x) \Longrightarrow Q(x)$.

Part II: Do any two of the following three problems. ${ }^{1}$
II.1) Prove or disprove:
a) If x, y, z are objects such that $x \in y$ and $y \in z$, then $x \in z$.
b) If X, Y, Z are sets such that $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.
c) If X, Y, Z are sets such that $X \subsetneq Y$ and $Y \subsetneq Z$, then $X \subsetneq Z$.
II.2) Let A and B be sets. Show that $A \cap B=A \cup B$ if and only if $A=B$.
II.3) Show that for all $x \in \mathbb{Z}, 8 \mid(x-1)(x-2)(x-3)(x-4)$.

[^0]
[^0]: ${ }^{1}$ If it is not clearly indicated which two I am meant to grade, I will simply grade the first two problems that have nonempty answers.

