
CLARK’S FALL 2016 MATH 3100 MIDTERM IIA

Directions: All series are real series. Calculators are not permitted. You
have 60 minutes. Good luck!

I. [30 points]
a) State what it means for a series

∑
n an to converge absolutely and what

it means to converge nonabsolutely.

Solution: The series
∑

n an convergees absolutely if
∑

n |an| < ∞. The
series

∑
n an converges nonabsolutely if it converges and is not absolutely

convergent.

Comments:
a) Some people included in their answer that absolute convergence implies
convergence. I took off a point or two for that: I am asking for the definition
of absolute convergence. That absolute convergence implies definition is not
what absolute convergence means, it is an important fact about it.
b) Above we wrote

∑
n |an| < ∞ to mean that a series with non-negative

terms converges. We should not write
∑

n an <∞ when the terms are both
positive and negative: in that case, O’Connor no longer implies and we don’t
know that the sum is either a real number or the series diverges to ∞.

b) Prove or disprove: every convergent series is absolutely convergent.

Solution: Certainly not: equivalently, there are series which converge non-
absolutely. Note though to get a disproof we need to exhibit an actual series
which converges nonabsolutely. Well, in fact infinitely many of these appear
later in the exam, but for illustrative purposes it is good to exhibit the alter-

nating harmonic series
∑

n
(−1)n

n . The absolute series is the harmonic series
which diverges by Oresme / Condensation / Integral Test. The Alternating
Series Test applies to show convergence.

c) Let {an} be increasing with a1 ≥ 0.
Prove or disprove:

∑
n an diverges.

Solution: Disprove: the hypotheses allow an = 0 for all n ∈ Z+, in which
case the series is

∑
n 0 = 0.

Although this is technically correct (“the best kind of correct”), it feels
cheap not to add that in fact this is the only case in which the series can con-
verge. Otherwise we have aN > 0 for some N ∈ Z+, and since the sequence
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{an} is increasing, we have an ≥ aN for all n ≥ N , and thus

lim
n→∞

an ∈ [aN ,∞],

so an 6→ 0 and we have divergence by the Nth Term Test.

Comment: A lot of people wrote that an is increasing hence unbounded
above and diverges to ∞. That’s certainly not true: of course it could just
as well be bounded above. I was confused by that response. I wonder if you
were thinking instead of the sequence of partial sums Sn = a1 + . . .+ an? If
we assume that a1 > 0, then

Sn = a1 + . . .+ an ≥ a1 + a1 + . . .+ a1 = n(a1),

so indeed Sn is unbounded above. (Similarly if aN > 0 for some N ∈ Z+.)

II. [20 points]

a) For which x ∈ R does the following series converge:
∑∞

n=0

(
x2

x2+1

)n
?

Solution: The series is geometric with geometric ratio r = x2

x2+1
. For all

x ∈ R we have x2 < x2+1, so 0 ≤ r < 1. Thus |r| < 1 and
∑

n

(
x2

x2+1

)n
<∞.

b) For each x ∈ R for which the series converges, evaluate the sum.

Solution: For any r with |r| < 1 we know that
∑∞

n=0 r
n = 1

1−r . Thus

∞∑
n=0

(
x2

x2 + 1

)n

=
1

1− x2

x2+1

= x2 + 1.

Comment: I certainly accepted 1

1− x2

x2+1

for full credit: in fact, I didn’t even

do the algebra myself but learned that the answer simplifies from a student
exam. In general you do not need to algebraically simplify your final answer
unless specifically directed to (e.g. if you were asked to show that the series
converges to x2 + 1).

Comment: Some people seem a bit shaky on how the formulas for the
sum of a geometric series change depending upon where you start the sum.
In my view the most basic formula to remember is the one given above: for
|r| < 1 we have

infty∑
n=0

rn =
1

1− r
.

From this we easily (so easy that we need not remember the formula, just
how to get it) the formula for

∑∞
n=N rn for any N ∈ Z+: we have

∞∑
n=N

rN = rN + rN+1 + . . . = rN
(
1 + r + r2 + . . .

)
=

rN

1− r
.
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III. [20 points] Let q ≥ 0, and consider the series

∞∑
n=2

(−1)n

n(log n)q
.

a) For which q does the series converge absolutely?

Solution: The absolute series is
∑∞

n=2
1

n(logn)q . This is one of a class of

series we studied in class and appear in the text. The key here is to use
either the Condensation Test or the Integral Test. I will do it both ways
here.

Condensation: The functions n 7→ n, n 7→ nq and n 7→ log n are all
famously increasing: for n 7→ nq we use q ≥ 0 here. Products and composi-
tions of increasing functions are increasing, so n 7→ n(log n)q is increasing,
and thus n 7→ 1

n(logn)q is decreasing and positive. (The point here is that

it is really rather obvious that this function is decreasing: we don’t need to
make a big deal about it.) So the Condensation Test says that our given
series converges iff the following one converges:∑

n

2n
1

2n(log 2n)q
=
∑
n

1

(n log 2)q
=

1

(log 2)q

∑
n

1

nq
.

So we got a q-series (times a nonzero constant, which does not affect con-
vergence, of course), and we know – by Condensation! – that

∑
n

1
nq < ∞

if and only if q > 1. So our given series converges absolutely iff q > 1.

Integral Test: As above, the function f : [2,∞) → (0,∞) given by
f(x) = 1

x(log x)q is decreasing, so by the Integral Test we have∑
n

1

n(log n)q
<∞ ⇐⇒

∫ ∞
2

dx

x(log x)q
<∞.

Taking u = log x we get ∫ ∞
2

dx

x(log x)q
=

∫ ∞
log 2

du

uq
.

Here we will take it as already done that this integral converges iff q > 1:
we have done this integral before when applying the Integral Test to the
p-series. (Briefly, we just use the power rule when q 6= 1; when q = 1 the
antiderivative is log x, and limx→∞ log x = ∞, a fact we used already in
making the change of variables.) So the series converges iff q > 1.

b) For which q does the series converge nonabsolutely?
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Solution: Again we know n 7→ 1
n(logn)q is positive and decreasing. Since

0 ≤ 1

n(log n)q
≤ 1

n

and 1
n → 0, we have 1

n(log q)n → 0, so the Alternating Series Test applies to

give convergence for all q ≥ 0. Together with part a) we get nonabsolute
convergence iff q ∈ [0, 1].

c) For which q does the series diverge?

Solution: After having done parts a) and b), the answer must be whatever
values of q ≥ 0 are left over. (That is why this problem was worth 20 points
rather than 30 points, by the way.) In this case no values of q ≥ 0 are left
over, so for no q ≥ 0 does the series diverge.

Comment: It is natural to wonder what happens when q < 0 and even
to suspect that the series diverges: after all, that is what happens for

∑
n

1
np

for p < 0. (Unfortunately, a few people didn’t get that the “q ≥ 0” was
meant to apply to the entire problem. In retrospect I wish I had repeated
“for q ≥ 0” in each part.) Well, what happens for q < 0? We may as well
take Q = −q > 0 and observe that∑

n

1

n(log n)q
=
∑
n

(log n)Q

n
.

In other words, when q is negative we really have a power of log in the

numerator rather than the denominator. For all n ≥ 3 we have (logn)Q

n ≥ 1
n ,

so the absolute series diverges for all q < 0 by comparison to the harmonic
series. As for nonabsolute convergence: I claim that for each fixed Q > 0,

the sequence (logn)Q

n is eventually decreasing and converges to 0. If so,
after throwing away finitely many terms – which, as ever, does not disturb
convergence – the Alternating Series Test applies to show convergence. The
difference here is that it’s no longer obvious: we really have to do some
calculus to show these things. First let us show that

f(x) =
(log x)Q

x

is eventually decreasing. Indeed, we have

f ′(x) =
1

x2
· (xQ(log x)Q−1

1

x
− (log x)Q) =

(log x)Q−1

x2
(Q− log x) ,

which is negative if and only if log x > Q, i.e., if and only if x > eQ. So f is
eventually decreasing. Making the change of variables y = log x, we get

lim
x→∞

(log x)Q

x
= lim

y→∞

yQ

ey
.
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Exponential functions grow faster than power functions, as one can confirm

using l’Hôpital’s Rule again, so the limit is 0. (Alternately, limx→∞
(log x)Q

x =
∞
∞ , and one can apply L’H’ôpital’s Rule repeatedly until the exponent Q be-
comes less than or equal to 0, at which point one sees that the limit is 0.)

Of course, the case q < 0 is much trickier! You’re welcome that I excluded
it, and I’m sorry if you didn’t realize that I excluded it.

IV. [30 points] Classify each of the following series as absolutely con-
vergent, nonabsolutely convergent or divergent.

a)
∑

n(−1)n n10

n! .

Solution: The ratio test limt is

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)10

(n+ 1)!
· n!

n10
= lim

n→∞

(
n+ 1

n

)10 1

n+ 1
= 1 · 0 = 0.

Since 0 < 1, the series is absolutely convergent.

b)
∑

n(−1)n
(
n2+n+1
5n2−1

)n
.

Solution: The root test limit is

θ = lim
n→∞

|an|
1
n = lim

n→∞

(
n2 + n+ 1

5n2 − 1

)
= 1/5.

Since 1
5 < 1, the series is absolutely convergent.

c)
∑

n
nn

n! .

First Solution: The presence of n! suggests applying the ratio test. This
will succeed, after some work: we have

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)n+1

(n+ 1)!

n!

nn

= lim
n→∞

(n+ 1)(n+ 1)nn!

(n+ 1)n!nn
= lim

n→∞

(
n+ 1

n

)n

.

This last limit is, famously, e. The evaluation is a little involved: set

L = lim
x→∞

(
1 +

1

x

)x

.

Then

logL = lim
x→∞

x log(1 +
1

x
) = lim

x→∞

log(1 + 1
x

1
x

.

Put y = 1
x . Then using L’Hôpital’s Rule, we get

logL = lim
y→0

log(1 + y)

y
=

0

0
= lim

y→0

1

1 + y
= 1.
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So L = e1 = e. Since e > 1, the series diverges.

Second Solution: In this case it is much easier to look at the nth term:

nn

n!
=
(n
n

)( n

n− 1

)(
n

n− 2

)
· · ·
(n

2

)(n
1

)
≥ 1 · 1 · 1 · · · 1 · 1 = 1.

So nn

n! 6→ 0, and the series diverges by the nth term test.

Comment: It is important to remember that whenever the ratio or root
test limit is applied to show divergence of a series, this divergence comes by
showing that the Nth term of the series does not approach zero. Sometimes
it is easier to show that directly than by considering ratios or roots.


