In-Depth Example for Week 14

A Function which Does Not Equal its Taylor Series

For any function f which is infinitely differentiable at 0, we can create its Taylor series

$$P_f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

This series may not converge on the entire domain of f: it definitely converges at 0, and in general its domain of convergence is an interval centered at 0. However, an important question is: what does the series converge to? Does it necessarily converge to $f(x)$?

To determine this, we introduced the concept of Taylor remainders in class: $R_n(x) = f(x) - P^n_f(x)$, so that $\lim R_n(x) = f(x) - P^n_f(x)$. Thus, f equals P^n_f iff R_n has limit 0. Frequently, we can use Taylor’s theorem to estimate $|R_n(x)|$ and get a bound approaching 0, so in many cases, f does equal its Taylor series.

A function that equals its Taylor series is called analytic. Many famous functions are analytic, such as e^x, $\sin x$, $\cos x$, and $1/(1-x)$. Our job for this handout is to show that non-analytic functions exist; these are functions for which $P^n_f \neq f$ on the domain of convergence. In fact, since the Taylor series is the only possible power series a function can have (due to our uniqueness theorems), non-analytic functions do not have power series representations!

In this document, we will prove this theorem, giving us a non-analytic function:

Theorem. The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

is infinitely differentiable at 0, and $f^{(n)}(0) = 0$ for every $n \geq 0$. Thus, $P^n_f(x) = \sum 0x^n = 0$, and $f(x) \neq P^n_f(x)$ for any $x \neq 0$ (even though $P^n_f(x)$ converges everywhere).

Roughly speaking, this function is extremely flat near $x = 0$; try drawing this with a calculator and zooming in really far at the origin. Now, normally x^n is fairly flat-looking near $x = 0$, with larger n values causing a slower rise in the function and hence a flatter shape. In effect, our function $f(x)$ is so flat that it’s flatter than all the x^n functions!

Brainstorming:

For this function, I cannot find its Taylor series by reusing the known series of e^x and composing with an inner function $g(x) = -1/x^2$. The problem is that $g(x) = -1/x^2$ is not a continuous function at 0, and it certainly does not satisfy $g(0) = 0$. I have no choice but to use the definition of Taylor series by computing every derivative.

Three issues make this function particularly tricky to use when computing the derivatives:

1. The piecewise nature of the definition means that it’s not even clear if the function is continuous! Before we take any derivatives at all, we should know whether f is continuous at 0. If not, there’s no point in differentiating!
2. Due to the piecewise definition, each derivative will also have to be described piecewise! There will be a formula we can use for \(f^{(n)}(x) \) when \(x \neq 0 \), and a separate result for \(f^{(n)}(0) \). This brings up a concern: even if \(\lim_{x \to 0} f^{(n)}(x) \) exists, that does not necessarily tell us that limit is \(f^{(n)}(0) \)! In other words, we shouldn’t assume that \(f^{(n)} \) is continuous at 0 either.\(^1\) As a result, we’re going to have to use the definition of derivative (using difference quotients) to figure out the derivatives at 0.

3. The derivatives don’t follow a nice pattern: the first derivative uses the Chain Rule, and the second will use both the Chain and Product Rules. An exact formula for \(f^{(n)}(x) \) is incredibly complicated. Instead, we’ll have to figure out some rough idea of what form the derivative takes, show that this form gets us the limits as \(x \to 0 \) that we need, and we’ll prove by induction that this form is correct.

Concerning this third point, let’s get a sense of what this form might be! Here are the first few derivatives of \(f \) at nonzero values:

\[
\begin{align*}
f'(x) &= \frac{2}{x^3}e^{-1/x^2} & f''(x) &= \frac{4}{x^6}e^{-1/x^2} - \frac{6}{x^4}e^{-1/x^2} & f'''(x) &= \frac{8}{x^9}e^{-1/x^2} - \frac{36}{x^7}e^{-1/x^2} + \frac{24}{x^5}e^{-1/x^2}
\end{align*}
\]

From the looks of this, we can notice one important general trend: we get a few terms which each have the form \(c/x^p \cdot e^{-1/x^2} \) for some constants \(c \) and \(p \). Being more specific than this gets tricky, and it turns out this simple remark will suffice. In fact, if you factor out \(e^{-1/x^2} \), you get expressions like

\[
f''''(x) = e^{-1/x^2} \left(8(x^{-1})^9 - 36(x^{-1})^7 + 24(x^{-1})^5 \right)
\]

The expression in parentheses is sometimes called a polynomial in \(x^{-1} \). (In other words, you substitute \(x^{-1} \) into a polynomial, getting a collection of constant multiples, powers, and sums or differences.)

We’ll be able to show that

- Anything of the form \(c/x^p \cdot e^{-1/x^2} \) vanishes at the origin, meaning it has limit 0 as \(x \to 0 \).

- Anything of the form \(c/x^p \cdot e^{-1/x^2} \) will produce a derivative with terms that also have that form!

These will be the key steps in a proof by induction.

Solution:

To make our proof more manageable, we’ll first prove a couple auxiliary results as lemmas. These will make it much easier to manipulate the derivatives we’ll find:

Lemma 1. For any \(c \in \mathbb{R} \) and any \(p \in \mathbb{N} \), we have

\[
\lim_{x \to 0} \frac{c}{x^p}e^{-1/x^2} = 0
\]

\(^1\) There is a theorem in analysis that does establish that if \(f^{(n)}(x) \) has a limit as \(x \to 0 \), that limit must be \(f^{(n)}(0) \). We will not be using this result, though, as its proof is too off-track from the main result.
Proof of lemma 1. First, write $-1/x^2$ as $-(1/x)^2$. We will perform a change of variable $u = 1/x$. However, the limit of u depends on whether x approaches 0 from positive or negative values, i.e. whether $x \to 0^+$ or $x \to 0^-$.

First, suppose $x \to 0^+$. Then $u \to \infty$, and

$$
\lim_{x \to 0} c(1/x)^p e^{-1/x^2} = \lim_{u \to \infty} cu^p e^{-u^2} = \lim_{u \to \infty} cu^p e^{-u^2}
$$

Since e^{u^2} grows faster than e^u as $u \to \infty$, and we already know that e^u dominates u^p (i.e. $u^p/e^u \to 0$), it follows $cu^p/(e^{u^2})$ also has limit 0. This proves the one-sided limit as $x \to 0^+$. The one-sided limit as $x \to 0^-$ is similar; apart from saying $u \to -\infty$ this time, all the other steps stay the same.

We also introduce a result to help with derivatives:

Lemma 2. If P is a polynomial, say $P(x) = \sum_{k=0}^n a_k x^k$, and $x \neq 0$, then the derivative of $e^{-1/x^2} P(1/x)$ has the form $e^{-1/x^2} Q(1/x)$ for some (possibly different) polynomial Q. In other words, there exists some $m \geq 0$ and constants b_k for $0 \leq k \leq m$ such that

$$
\frac{d}{dx} \left(e^{-1/x^2} P(1/x) \right) = \frac{d}{dx} \sum_{k=0}^n a_k \frac{x^k}{x^{k+1}} e^{-1/x^2} = \sum_{k=0}^m b_k \frac{x^k}{x^{k+1}} e^{-1/x^2} = e^{-1/x^2} Q(1/x)
$$

Proof of lemma 2. For each k from 0 to n, we use the Product Rule and Chain Rule of derivatives to find

$$
\frac{d}{dx} \left(\frac{a_k}{x^{k+1}} e^{-1/x^2} \right) = -\frac{ka_k}{x^{k+1}} e^{-1/x^2} + \frac{a_k}{x^{k+1}} \frac{2}{x^3} e^{-1/x^2} = \left(-\frac{ka_k}{x^k} + \frac{2a_k}{x^{k+3}} \right) e^{-1/x^2}
$$

This has the form of a polynomial in $1/x$ times e^{-1/x^2}, because it can be written as e^{-1/x^2} times $-ka_k(1/x)^k + 2a_k(1/x)^{k+3}$. Adding up all these derivatives for k from 0 to n gives e^{-1/x^2} times a sum of finitely many polynomials with $1/x$ plugged in. Since the sum of any finite quantity of polynomials is a polynomial, our final derivative is e^{-1/x^2} times a polynomial in $1/x$.

Now, we can prove our main theorem.

Proof of theorem. First, we prove by induction that for all $n \geq 0$ and all $x \neq 0$, there exists a polynomial Q_n such that

$$
f^{(n)}(x) = e^{-1/x^2} Q_n(1/x)
$$

(The subscript does not mean order here... the degree of Q_n may be much higher than n.) For the base case of $n = 0$, $f(x) = e^{-1/x^2} \cdot 1$, so $Q_0(x) = 1$ works. Now, let $n \geq 0$, and assume the claim is true for n as inductive hypothesis. Now, $f^{(n+1)}(x)$ is the derivative of $f^{(n)}(x)$. By Lemma 2, there exists some polynomial Q_{n+1} such that

$$
\frac{d}{dx} e^{-1/x^2} Q_n(1/x) = e^{-1/x^2} Q_{n+1}(1/x)
$$

finishing the inductive step.

Second, and finally, we prove that for all $n \geq 0$, $f^{(n)}(0) = 0$. (It follows, by the way, that f is infinitely differentiable at 0 and hence each derivative is also continuous at 0.) The proof
is by induction on \(n \geq 0 \). For the base case of \(n = 0 \), \(f^{(0)}(0) = f(0) = 0 \) by definition of \(f \).

Now, let \(n \geq 0 \), and assume \(f^{(n)}(0) = 0 \) as inductive hypothesis. The \((n+1)\)st derivative at 0 is, by the definition of derivative,

\[
\lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{f^{(n)}(x)}{x}
\]

by the IH. From the first proof by induction, we know that when \(x \neq 0 \), \(f^{(n)}(x) = e^{-1/x^2}Q_n(1/x) \) for some polynomial \(Q_n \). Let’s write \(Q_n(x) = \sum_{k=0}^{m} a_k x^k \), where \(m \) is the degree of \(Q_n \). Thus,

\[
\lim_{x \to 0} \frac{f^{(n)}(x)}{x} = \lim_{x \to 0} \sum_{k=0}^{m} a_k \frac{(1/x)^k e^{-1/x^2}}{x} = \lim_{x \to 0} \sum_{k=0}^{m} a_k \frac{x^{k+1} e^{-1/x^2}}{x}
\]

By Lemma 1, each term of this sum has limit 0, so the sum has limit 0 and therefore \(f^{(n+1)}(0) = 0 \). This finishes the inductive step and the theorem! \(\square \)