Bivariate Splines for Surface Design

Dustin Burns

Department of Physics

Georgia Institute of Technology

Atlanta, GA 30332

Determine the best method for fitting a spline to a data set.

- Determine the best method for fitting a spline to a data set.
- Describe each method mathematically: Minimal Energy Interpolatory Method, L1 Norm Interpolatory Method, Minimal Roughness Interpolatory Method, Minimal Triharmonic Interpolatory Method, Minimal Surface Area Method

- Determine the best method for fitting a spline to a data set.
- Describe each method mathematically: Minimal Energy Interpolatory Method, L1 Norm Interpolatory Method, Minimal Roughness Interpolatory Method, Minimal Triharmonic Interpolatory Method, Minimal Surface Area Method
- Gather data from model truck using apparatus.

- Determine the best method for fitting a spline to a data set.
- Describe each method mathematically: Minimal Energy Interpolatory Method, L1 Norm Interpolatory Method, Minimal Roughness Interpolatory Method, Minimal Triharmonic Interpolatory Method, Minimal Surface Area Method
- Gather data from model truck using apparatus.
- Compare global and local graphs of truck splines.

Gathering Data

Our Truck Data

Our Truck Data

Minimal Energy Interpolatory Method

Minimal Energy Interpolatory Method

L1 Spline Interpolatory Method

- Minimal Energy Interpolatory Method
- L1 Spline Interpolatory Method
- Minimal Roughness Interpolatory Method

- Minimal Energy Interpolatory Method
- L1 Spline Interpolatory Method
- Minimal Roughness Interpolatory Method
- Minimal Triharmonic Interpolatory Method

- Minimal Energy Interpolatory Method
- L1 Spline Interpolatory Method
- Minimal Roughness Interpolatory Method
- Minimal Triharmonic Interpolatory Method
- Minimal Surface Area Method

Global Comparison of Front Angle View

Minimal Energy and L1 Norm

Minimal Roughness and Minimal Triharmonic

By Minimal Triharmonic Interpolotary Splines

Minimal Surface Area

Global Comparison of Top View

Minimal Energy

L1 Norm

Minimal Roughness

Minimal Triharmonic

Minimal Surface Area

Local Comparison of Roof Splines

Triangulations of Roof Splines For all methods except MSA

For MSA method

Minimal Energy Interpolatory Method

Contours of Minimal Energy Interpolotary Spline

L1 Norm Interpolatory Method

Minimal Roughness Interpolatory Method

Contours of Minimal Roughness Spline

Minimal Triharmonic Interpolatory Method

Minimal Surface Area Method

Local Comparison of Windshield Splines

Triangulation of Windshield Splines

Minimal Energy Interpolatory Method

Contours of Minimal Energy Interpolotary Spline

L1 Norm Interpolatory Method

Contours of L1 Spline

Minimal Roughness Interpolatory Method

Minimal Triharmonic Interpolatory Method

Contours of Minimal Triharmonic Interpolotary Spline

Minimal Surface Area Method

Contours of Minimal Surface Area Spline

Local Comparison of hood Splines

Triangulation of Hood Splines

Minimal Energy Interpolatory Method

L1 Norm Interpolatory Method

Contours of L1 Spline

Minimal Roughness Interpolatory Method

Minimal Triharmonic Interpolatory Method

Minimal Surface Area Method

Local Comparison of Door Splines

Triangulation of Door Splines

Minimal Energy Interpolatory Method

L1 Spline Interpolatory Method

Minimal Roughness Interpolatory Method

Minimal Triharmonic Interpolatory Method

Minimal Surface Area Method

Minimal Surface Area produces best splines and contours

- Minimal Surface Area produces best splines and contours
- This is because it is a fitting method with interpolation at the boundary measurements;

- Minimal Surface Area produces best splines and contours
- This is because it is a fitting method with interpolation at the boundary measurements;
- This method minimizes the surface area on the interior of the spline surface;

- Minimal Surface Area produces best splines and contours
- This is because it is a fitting method with interpolation at the boundary measurements;
- This method minimizes the surface area on the interior of the spline surface;
- MSA spline approaches the data set on the interior, including the points among the measured data that produce the spline with MSA

- Minimal Surface Area produces best splines and contours
- This is because it is a fitting method with interpolation at the boundary measurements;
- This method minimizes the surface area on the interior of the spline surface;
- MSA spline approaches the data set on the interior, including the points among the measured data that produce the spline with MSA
- Whereas the other methods interpolate all the measured data points, including the inherent human error.