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Summary

Existing Methods

The following methods for fitting a given set of data are
available in the literature (cf. [1]).

Minimal Energy Method;
Discrete Least Squares Method;
Penalized Least Squares Spline Method;
L1 Spline Method;
Least Absolute Deviation Method;
L1 Smoothing Spline Method;
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New Methods

We shall consider the following new methods:
Minimal Triharmonic Energy Method;
Minimal Surface Area Method;
Minimal Roughness Method;
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Quick Comparison of New Methods

Table: Nonlinear Model Results

Function Case 1 Case 2 Case 3 Case 4

z = 1
9 (tanh(9x − 9y) + 1) 0.0206 0.0171 0.0593
z = sin x + sin y 0.0021 2.55× 10−4 0.1561
z = 2x4 + 5y4 0.1084 0.0188 1.5982

z = (x2 + 3y2)e−x2−y2
0.0109 0.0013 0.0942

Case 1: Minimal Energy Method
Case 2: Minimal Triharmonic Energy Method
Case 3: Minimal Rougness Method
Case 4: Minimal Surface Area
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Overview
Proof of Existence
Proof of Uniqueness

Overview

The Triharmonic Energy function is defined by the equation
H(f ) =∑

ti∈4
∫

ti

[(
∂3

∂x3 f
)2

+ 3
(

∂3

∂x2∂y f
)2

+ 3
(

∂3

∂x∂y2 f
)2

+
(
∂3

∂y3 f
)2
]

dxdy .

Let Λ(f ) = {s ∈ Sr
d (∂), s(xi , yi) = f, i = 1, . . . ,N}. Find

Sf ∈ Λ(f ) such that

H(Sf ) = min{H(s), s ∈ Λ(f )} (1)

Theorem
If Λ(f ) is not empty, then there exists a unique interpolatory
spline Sf ∈ Λ(f ) satisfying (1).
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First Show Existence

We first show the existence. Let So ∈ Λ(f ).
Consider D = {s ∈ Λ(f ),H(s) ≤ H(So)}.
Clearly D is not empty. We want to show that D is closed.
Let Sn ∈ D, n = 1, . . . ,∞ and Sn → S∗ in the maximum
norm.
Claim S∗ ∈ D, then D is closed.
||Sn − S∗|| → 0 for each triangle ti .
Sn − S∗|ti is a polynomial of degree d.
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Proof of Existence Continued

˛̨
∂
∂x Sn(x)− ∂

∂x S∗(x)
˛̨
≤ c
|ti |
||Sn − S∗||∞ by Markov Inequality (c.f. [?])˛̨̨

∂2

∂x2 Sm(x)− ∂2

∂x2 S∗(x)
˛̨̨
≤ c
|ti |
|| ∂
∂x Sn(x)− ∂

∂x S∗(x)|| ≤ c2

|ti |2
||Sm − S∗||∞˛̨̨

∂3

∂x3 Sk (x)− ∂3

∂x3 S∗(x)
˛̨̨
≤ c
|ti |
|| ∂

2

∂x2 Sk − ∂2

∂x2 S∗|| ≤ c2

|ti |2
|| ∂
∂x Sk − ∂

∂x S∗|| ≤
c3

|ti |3
||Sk − S∗||∞

From this it follows thatX
ti∈4

Z
ti

˛̨̨̨
∂3

∂x3 Sk (x)− ∂3

∂x3 S∗(x)

˛̨̨̨2
dx ≤

X
ti∈4

Z
ti

c3

|ti |3
(||Sk − S∗||∞)2 → 0
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Proof of Existence Continued

Then we have the equation

H(S∗) =
∑
ti∈4

∫
ti

∣∣∣∣ ∂3

∂x3 S∗(x)

∣∣∣∣2 dxdy

=
∑
ti∈4

∫
ti

∣∣∣∣ ∂3

∂x3 S∗(x)− ∂3

∂x3 Sk (x) +
∂3

∂x3 Sk (x)

∣∣∣∣2 dx

=
∑
ti∈4

∫
ti

(∣∣∣∣ ∂3

∂x3 S∗(x)− ∂3

∂x3 Sk (x)

∣∣∣∣2 +

∣∣∣∣ ∂3

∂x3 Sk (x)

∣∣∣∣2
)

dx

+
∑
ti∈4

2
∫

ti

(
∂3

∂x3 S∗(x)− ∂3

∂x3 Sk (x)

)
∂3

∂x3 Sk (x)dx
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Proof of Existence Continued

By the Cauchy-Schwarz inequality

≤ ε+ H(Sk ) + 2
X
ti∈4

0@Z
ti

˛̨̨̨
˛ ∂3

∂x3
S∗(x)−

∂3

∂x3
Sk (x)

˛̨̨̨
˛
2

dx

1A 1
2
0@Z

ti

˛̨̨̨
˛ ∂3

∂x3
Sk (x)

˛̨̨̨
˛
2

dx

1A 1
2

≤ ε+ H(Sk ) + 2

vuutX
ti∈4

 Z
ti

˛̨̨̨
∂3

∂x3
S∗(x)−

∂3

∂x3
Sk (x)

˛̨̨̨2
dx

!p
H(Sk )

≤ ε+ H(Sk ) + 2
√
ε
p

H(Sk )

≤ H(So) + ε+ 2
√
ε
p

H(So)
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Proof of Existence Concluded

Consequently, H(S∗) ≤ H(So).
It follows that S∗ ∈ D and hence D is closed.
Therefore we can claim that H(Sf ) is continuous and has a
limit over D.
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Make Titles Informative.

Next we will show uniqueness.
Suppose that we have two solutions S1,S2 ∈ Λf such that
H(S1) = H(S2), S1 6= S2.
Let Sα = αS1 + (1− α)S2, 0 ≤ α ≤ 1.
Clearly, Sα ∈ Λf , which means Sα ∈ Sr

d (∆).
Sα(ti) = αS1(ti) + (1− α)S2(ti) = αfi + (1− α)fi = fi
Let F (α) = H(αS1 + (1− α)S2) ≥ H(S1)
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∂x3 S2

˛̨̨2
dx
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R
ti

˛̨̨
∂3

∂x3 S1

˛̨̨2
dx + (1− α)2P

ti∈4
R

ti

˛̨̨
∂3

∂x3 S2

˛̨̨2
dx

≤ α2H(S1) + (1− α)2H(S2) + α(1− α)
P

ti∈4
R

ti

„˛̨̨
∂3
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∂3

∂x3 S2
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dx
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Proof of Uniqueness Continued

αH(S1) + (1− α)H(S2) from the previous slide
H(S1)(α + 1− α), since H(S1) = H(S2)

= H(S1) which implies that F (α) ≤ H(S1),
∴ F (α) = H(S1).
Since F (α) = H(S1), F (α) is a constant function.
Therefore F ′(α) = 0.
F ′(α) =∑

ti∈4 2
∫

ti

(
α ∂3

∂x3 S1 + (1− α) ∂3

∂x3 S2

)(
∂3

∂x3 S1 − ∂3

∂x3 S2

)
dxdy
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At α = 0+ , we have

0 = F ′(0) =
∑
ti∈4

2
∫

ti

∂3

∂x3 S2

(
∂3

∂x3 S1 −
∂3

∂x3 S2

)
dxdy

=
∑
ti∈4

2
∫

ti

[(
∂3

∂x3 S2
∂3

∂x3 S1

)
−
(
∂3

∂x3 S2

)2]
dxdy

=⇒
∑
ti∈4

2
∫

ti

∂3

∂x3 S2
∂3

∂x3 S1dxdy =
∑
ti∈4

2
∫

ti

(
∂3

∂x3 S2

)2

dxdy

=⇒
∑
ti∈4

∫
ti

∂3

∂x3 S1dxdy =
∑
ti∈4

∫
ti

∂3

∂x3 S2dxdy
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∫

ti
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∂3

∂x3 S2
1 −

∂3

∂x3 S1
∂3

∂x3 S2

)
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∑
ti∈4

2
∫

ti

(
∂3

∂x3 S1

)2

dx =
∑
ti∈4

2
∫
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∂x3 S1
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=⇒
∑
ti∈4

2
∫

ti

∂3

∂x3 S1dx =
∑
ti∈4

2
∫

ti

∂3

∂x3 S2dx
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Proof of Uniqueness Continued

From those two equations we get∑
ti∈4 2

∫
ti

[(
∂3

∂x3 S1

)2
− 2 ∂3

∂x3 S1
∂3

∂x3 S2 +
(
∂3

∂x3 S2

)2
]

dx = 0

which is the same as∑
ti∈4 2

∫
ti

[(
∂3

∂x3 S1

)2
−
(
∂3

∂x3 S2

)2
]

dx = 0.

The previous equation implies that ∂3

∂x3 S1 = ∂3

∂x3 S2.
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Proof of Uniqueness Concluded

We can see that ∂3

∂x3 (S1 − S2) = 0, ∂3

∂xy2 (S1 − S2) = 0, and
∂3

∂y3 (S1 − S2) = 0 are similar cases.

Since ∂3

∂x3 (S1 − S2) = 0, we know that S1 − S2 is a
polynomial of degree 2.
If S1 − S2 = 0 on at least 6 points, then it is not on a conic
section and must equal 0. Then S1 = S2.
Therefore the solution is unique.
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Overview

The Surface Area function is defined by the equation

A(f ) =
∑

ti∈4
∫

ti

√
1 +

(
∂
∂x f
)2

+
(
∂
∂y f
)2

dxdy

Let Λ(f ) = {s ∈ Sr
d (∆), s(xi , yi) = f,i = 1, . . . ,N}. Find

Sf ∈ Λ(f ) such that

A(Sf ) = min{A(s), s ∈ Λ(f )} (2)

Theorem
If Λ(f ) is not empty, then there exists a unique interpolatory
spline Sf ∈ Λ(f ) satisfying (2).
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First Show Existence

First we will prove the existence. Let So ∈ Λ(f ) .
Consider D = {s ∈ Λ(f ),A(s) ≤ A(So)}.
Clearly D is not empty.
Let Sn ∈ D, n = 1, . . . ,∞ and Sn → S∗ in the maximum
norm.
We claim that D is closed. We need to show that S∗ ∈ D.
||Sn − S∗|| → 0 for each triangle ti .
Sn − S∗|ti is a polynomial of degree d.
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Proof of Existence Continued∣∣∣∣ ∂
∂x (Sn − S∗)

∣∣∣∣ ≤ c
|ti | ||Sn − S∗|| →

0 By Markov Inequality (c.f. [1])
Next we show that A(Sn)→ A(S∗), since

Sn → S∗ , from assumption

=⇒
(
∂

∂x
Sn

)
→
(
∂

∂x
S∗
)

as shown above by (??)

=⇒
(
∂

∂x
Sn

)2

→
(
∂

∂x
S∗
)2

=⇒ 1 +

(
∂

∂x
Sn

)2

+

(
∂

∂y
Sn

)2

→ 1 +

(
∂

∂x
S∗
)2

+

(
∂

∂y
S∗
)2

=⇒

√
1 +

(
∂

∂x
Sn

)2

+

(
∂

∂y
Sn

)2

→

√
1 +

(
∂

∂x
S∗
)2

+

(
∂

∂y
S∗
)2

=⇒
∑
ti∈4

∫
ti

√
1 +

(
∂

∂x
Sn

)2

+

(
∂

∂y
Sn

)2

dxdy →
∑
ti∈4

∫
ti

√
1 +

(
∂

∂x
S∗
)2

+

(
∂

∂y
S∗
)2

dxdy

=⇒ A(Sn)→ A(S∗)
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Proof of Existence Concluded

Thus, since A(Sn) ≤ A(So), A(S∗) ≤ A(So).
Therefore S∗ ∈ D and D is closed.
Therefore we can claim that A(Sf ) is continuous and has a
limit over D.
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Proof of Uniqueness

Next we will show uniqueness.
Suppose that we have two solutions S1,S2 ∈ Λf such that
A(S1) = A(S2), S1 6= S2.
Let Sα = αS1 + (1− α)S2, 0 ≤ α ≤ 1.
Clearly, Sα ∈ Λf , which means Sα ∈ Sr

d (∆).
Sα(ti) = αS1(ti) + (1− α)S2(ti) = αfi + (1− α)fi = fi
Let F (α) = A(αS1 + (1− α)S2) ≥ A(S1)
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Proof of Uniqueness Continued

F (α) = A(αS1 + (1− α)S2)

≤ αA(S1) + (1− α)A(S2) by convexity
= (α + 1− α)A(S1) since A(S1) = A(S2)

= A(S1) which implies that F (α) ≤ A(S1), ∴ F (α) = A(S1)

Since F (α) = A(S1), F (α) is a constant function.
Therefore F ′(α) = 0.

F ′(α) =
X

ti∈4

Z
ti

2
h
2 ∂

∂x (αS1 + (1− α)S2) ∂
∂x (S1 − S2) + 2 ∂

∂y (αS1 + (1− α)S2)
i

∂
∂y (S1 − S2)r

1 +
“

∂
∂x (αS1 + (1− α)S2)

”2
+
“

∂
∂y αS1 + (1− α)S2

”2
dxdy
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i

∂
∂y (S1 − S2)r

1 +
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Proof of Uniqueness Continued

At α = 0+, we have

0 = F ′(0) =
X
ti∈4

Z
ti

2
h
2
“
∂
∂x S2

”
∂
∂x (S1 − S2) + 2

“
∂
∂y S2

i
∂
∂y (S1 − S2)

”
r

1 +
“
∂
∂x S2

”2
+
“
∂
∂y S2

”2
dxdy

=
X
ti∈4

Z
ti

4
»
∂
∂x S2

∂
∂x S1 −

“
∂
∂x S2

”2
–

+ 4
»
∂
∂y S2

∂
∂y S1 −

“
∂
∂y S2

”2
–

r
1 +

“
∂
∂x S2

”2
+
“
∂
∂y S2

”2
dxdy

=⇒
X
ti∈4

Z
ti

4
∂

∂x
S2

∂

∂x
S1dx =

X
ti∈4

Z
ti

4
∂

∂x
S2

2dx

=⇒
X
ti∈4

Z
ti

∂

∂x
S1dx =

X
ti∈4

Z
ti

∂

∂x
S2dx
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Proof of Uniqueness Concluded

From those two equations we get∑
ti∈4 2

∫
ti

[(
∂
∂x S1

)2 − 2 ∂
∂x S1

∂
∂x S2 +

(
∂
∂x S2

)2
]

dx = 0
which is the same as∑

ti∈4
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[(
∂

∂x
S1

)2

−
(
∂

∂x
S2

)2
]

dx = 0.

The previous equation implies that ∂
∂x S1 = ∂

∂x S2.
We can see that ∂3

∂x3 (S1 − S2) = 0, ∂3

∂xy2 (S1 − S2) = 0, and
∂3

∂y3 (S1 − S2) = 0 are similar cases.

Since ∂3

∂x3 (S1 − S2) = 0, we know that S1 − S2 is a polynomial of
degree 2.
If S1 − S2 = 0 on at least 6 points, then it is not on a conic
section and must equal 0. Then S1 = S2.
Therefore the solution is unique.
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The Difference

The implementation the the Minimal Surface Area Method
uses a different triangulation method from the other data
fitting methods.
This triangulation method is unique, because the interior
points are discarded leaving only the exterior points.
The following process is then used to determine the proper
triangulation.
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The Difference

First, the area for each of the 2 types of basic
triangulations, as shown below, is calculated and
compared. The triangulation with
the smaller surface area is then saved in the set of triangles.
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Second, if there are two adjacent triangulations of the same
type, the area of those triangles and of the third type are
compared, and the smaller one saved in the set of triangles.
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The Roughness function is defined by the equation

R(f ) =
∑

ti∈4
∫

ti

[(
δ
δx f
)2

+
(
δ
δy f
)2
]

dxdy (c.f [2]).

Let Λ(f ) = {s ∈ Sr
d (Λ), s(xi , yi) = f, i = 1, . . . ,N}.

Find Sf ∈ Λ(f ) such that
R(Sf ) = min{R(s), s ∈ Λ(f )}
This method is similar to the other methods discussed;
however, when it was implemented, the numerical results
were significantly worse compared to the results from the
other methods.
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The three new methods researched were Minimal
Triharmonic Method, Minimal Surface Area Method, and
Minimal Roughness Method.
Each of these methods and the Minimal Energy Method
were used for fitting data points from the a toy car.
The contour maps from each piece of the vehicle display
the smoothness of the function fitted to the data.
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Shown below is the Minimal Energy Method and Minimal
Triharmonic Method, Minimal Surface Area Method
and Minimal Roughness Method are show on the next slide.

Contours of Minimal Energy Interpolotary Spline
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Contours of Minimal Triharmonic Interpolotary Spline
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Contours of Minimal Surface Area Spline
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Contours of Minimal Roughness Spline
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It is easy to see that Minimal Surface Area is the best
method.
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