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Methods for Scattered Data Fitting and Interpolation

Existing Methods

The following methods for fitting a given set of data are
available in the literature (cf. [1]).

@ Minimal Energy Method;
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Methods for Scattered Data Fitting and Interpolation

Existing Methods

The following methods for fitting a given set of data are
available in the literature (cf. [1]).

@ Minimal Energy Method;
@ Discrete Least Squares Method;
@ Penalized Least Squares Spline Method;

Katie Agle Bivariate Splines for Surface Design



Methods for Scattered Data Fitting and Interpolation

Existing Methods

The following methods for fitting a given set of data are
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@ Penalized Least Squares Spline Method;
@ L, Spline Method;
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Methods for Scattered Data Fitting and Interpolation

Existing Methods

The following methods for fitting a given set of data are
available in the literature (cf. [1]).

@ Minimal Energy Method;

Discrete Least Squares Method;
Penalized Least Squares Spline Method;
L Spline Method;

Least Absolute Deviation Method;
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Methods for Scattered Data Fitting and Interpolation

Existing Methods

The following methods for fitting a given set of data are
available in the literature (cf. [1]).

@ Minimal Energy Method;

@ Discrete Least Squares Method;

@ Penalized Least Squares Spline Method;
@ L, Spline Method;

@ Least Absolute Deviation Method;

@ L4 Smoothing Spline Method;
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Methods for Scattered Data Fitting and Interpolation

New Methods

We shall consider the following new methods:
@ Minimal Triharmonic Energy Method;

Katie Agle Bivariate Splines for Surface Design



Methods for Scattered Data Fitting and Interpolation

New Methods

We shall consider the following new methods:
@ Minimal Triharmonic Energy Method;
@ Minimal Surface Area Method;

Katie Agle Bivariate Splines for Surface Design



Methods for Scattered Data Fitting and Interpolation

New Methods

We shall consider the following new methods:
@ Minimal Triharmonic Energy Method;
@ Minimal Surface Area Method;
@ Minimal Roughness Method;
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Methods for Scattered Data Fitting and Interpolation

Quick Comparison of New Methods

Table: Nonlinear Model Results

o
Function Case 1 Case 2 Case3 Case4
z = J(tanh(9x —9y) +1) 0.0206 0.0171 0.0593
z=sinx+siny 0.0021 2.55x10~* 0.1561
z=2x*+5y* 0.1084 0.0188 1.5982

z=(+3y%e " 00109 00013  0.0942
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Methods for Scattered Data Fitting and Interpolation

Quick Comparison of New Methods

Table: Nonlinear Model Results

o
Function Case 1 Case 2 Case3 Case4
z = J(tanh(9x —9y) +1) 0.0206 0.0171 0.0593
z=sinx+siny 0.0021 2.55x10~* 0.1561
z=2x*+5y* 0.1084 0.0188 1.5982

z=(+3y%e " 00109 00013  0.0942

@ Case 1: Minimal Energy Method
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Methods for Scattered Data Fitting and Interpolation

Quick Comparison of New Methods

Table: Nonlinear Model Results

o
Function Case 1 Case 2 Case3 Case4
z = J(tanh(9x —9y) +1) 0.0206 0.0171 0.0593
z=sinx+siny 0.0021 2.55x10~* 0.1561
z=2x*+5y* 0.1084 0.0188 1.5982

z=(+3y%e " 00109 00013  0.0942

@ Case 1: Minimal Energy Method
@ Case 2: Minimal Triharmonic Energy Method
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Methods for Scattered Data Fitting and Interpolation

Quick Comparison of New Methods

Table: Nonlinear Model Results

o
Function Case 1 Case 2 Case3 Case4
z = J(tanh(9x —9y) +1) 0.0206 0.0171 0.0593
z=sinx+siny 0.0021 2.55x10~* 0.1561
z=2x*+5y* 0.1084 0.0188 1.5982

z=(+3y%e " 00109 00013  0.0942

@ Case 1: Minimal Energy Method
@ Case 2: Minimal Triharmonic Energy Method
@ Case 3: Minimal Rougness Method
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Methods for Scattered Data Fitting and Interpolation

Quick Comparison of New Methods

Table: Nonlinear Model Results

o
Function Case 1 Case 2 Case3 Case4
z = J(tanh(9x —9y) +1) 0.0206 0.0171 0.0593
z=sinx+siny 0.0021 2.55x10~* 0.1561
z=2x*+5y* 0.1084 0.0188 1.5982

z=(+3y%e " 00109 00013  0.0942

@ Case 1: Minimal Energy Method

@ Case 2: Minimal Triharmonic Energy Method
@ Case 3: Minimal Rougness Method

@ Case 4: Minimal Surface Area
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Overview

@ The Triharmonic Energy function is defined by the equation
H(f) =

Suea [ (250) 48 (stigt) 8 (st5a) + (451)"] vy
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Overview

@ The Triharmonic Energy function is defined by the equation
H(f) =

2 3 \2
>hen [(axs ) +3 <3 23yf) +3 <6x8 2f) + (a‘r’—ysf> } dxdy.
o Let A(f) = {s € 5,(9),s(x;,yi)) =f i=1,...,N}. Find
St € A\(f) such that

H(Sf) = min{H(s),s € \(f)} (1)
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Overview

@ The Triharmonic Energy function is defined by the equation
H(f) =

2 N
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Overview

@ The Triharmonic Energy function is defined by the equation
H(f) =

2 N
>hen [(axs ) +3 (a 23yf) +3 <6x8 2f) + (a‘r’—ysf> } dxdy.
o Let A(f) = {s € 5,(9),s(x;,yi)) =f i=1,...,N}. Find
St € A\(f) such that

H(Sf) = min{H(s),s € A(f)} (1)

If N(f) is not empty, then there exists a unique interpolatory
spline Sy € \(f) satisfying (1).
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Outline




Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
@ Clearly D is not empty. We want to show that D is closed.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
@ Clearly D is not empty. We want to show that D is closed.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
@ Clearly D is not empty. We want to show that D is closed.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ Claim S* € D, then D is closed.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
@ Clearly D is not empty. We want to show that D is closed.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ Claim S* € D, then D is closed.
@ ||S, — S*|| — 0 for each triangle ;.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

First Show Existence

@ We first show the existence. Let S, € A(f).
@ Consider D = {s € A(f), H(s) < H(Sp)}.
@ Clearly D is not empty. We want to show that D is closed.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ Claim S* € D, then D is closed.
@ ||S, — S*|| — 0 for each triangle ;.
@ Sn— S*|; is a polynomial of degree d.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

@ |2 Sn(x) — &S (x)| < £11Sh — S*||~ by Markov Inequality (c.f. [?])

18]
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

@ | ZSn(x) - &S (x)| < 17118 — 8*[| by Markov Inequality (c.f. [?])

® [ Z8n(x) ~ Z:8°(x)| < GlIZSu0) ~ 2 M| < 2lISm— Sl
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

@ | ZSn(x) - &S (x)| < it111Sn — S”|lo by Markov Inequality (c.f. [?])

® |- Z5n(x) ~ 258" (¥)| < FlZSHx) ~ &S (0 < & 1Sn — 'l
0 | Z8u(x) - L8 ()| < Gl LS - LS < &l&S— &8I <
Zl1Sc = 8l
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

@ | ZSn(x) - &S (x)| < 17118 — 8*[| by Markov Inequality (c.f. [?])

® |- Z5n(x) ~ 258" (¥)| < FlZSHx) ~ &S (0 < & 1Sn — 'l
0 | Z8u(x) - L8 ()| < Gl LS - LS < &l&S— &8I <
Zl1Sc = 8l

@ From this it follows that

> o

ten

8 .
)= 5as ¥

Cox < Z/t,w 1Sk — §"|oc)? —

k
XS
9 LeA
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

Then we have the equation

H(S") = Z/ 2 s(x " axaly
el
88 82 2
_ t%/t S5 () — 55 Skx) + 5 5 Silx)| dx
88 298 2
- g[(axs WSk(x) +’ax38k(x) >dx
+22/ P 50— 2L 500 L si(x)dx
i ox3 ax3 7k ax3 7k
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Continued

By the Cauchy-Schwarz inequality

< €+H(Sk)+2f,eZA (/ ﬁs*() 7sk ) (/’83 (x) dx)
foX a3

< €+H(Sk)+2\Jt,eZA </ 932 () = 5 55k(X) dX> H(Sk)

< e+ H(Sk) +2Ve/H(Sk)

< H(So) + €+ 2v/e\/H(So)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Concluded

@ Consequently, H(S*) < H(Sy).
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Concluded

@ Consequently, H(S*) < H(Sy).
@ |t follows that S* € D and hence D is closed.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Existence Concluded

@ Consequently, H(S*) < H(Sy).
@ |t follows that S* € D and hence D is closed.

@ Therefore we can claim that H(Sy) is continuous and has a
limit over D.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
H(Sy) = H(Sz), St # So.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
H(Sy) = H(Sz), St # So.
@ LetS, = a5 —|—(1 —04)82, 0<a<.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
H(Sy) = H(Sz), St # So.

o LetS, = a5 —|—(1 —04)82, 0<a<.

@ Clearly, S, € A, which means S, € S}(A).
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
H(Sy) = H(Sz), St # So.

o letS,=aS+(1—a)S, 0<a< .

@ Clearly, S, € A, which means S, € S}(A).

® Su(l)) = aSi(t) + (1 — a)So(ti) = afi+ (1 —a)fi =1
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Make Titles Informative.

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
H(Sy) = H(Sz), St # So.

o letS,=aS+(1—a)S, 0<a< .

@ Clearly, S, € A, which means S, € S}(A).

® Su(l)) = aSi(t) + (1 — a)So(ti) = afi+ (1 —a)fi =1

@ Let F(a) = H(aS; + (1 —a)S2) > H(Sy)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)

3 3 2
© =%cnl; ’a%& +(1-0a) 28| ox
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS) +(1—a)Sy)
3 3 2
@ =>en i ’a%& +(1 - a)%SQ‘ dx

3 2 3 2
© =%, A, %31( a4 (1-aP Tyen fy %32) dx
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a) = H(aSi + (1 — a)Sz)
3 3 2
@ =>en i ’a%& +(1 - a)%SQ‘ dx
3 2
® =o? Liea fti %81‘ ax+(1-a)? 2hen ft,.

@ < o?H(S1) + (1 - a)?H(S2) +a(l —a) Xpen Jy (

3 2
%32) dx

3 3 2
2 s, %32] )dx

ax3

2
|+
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a) = H(aS + (1 — a)S»)
3 3 2
© =%,cnl, ’a%& +(1 fa)%sg‘ dx
3 2 3 2
© =%, A, %31( a4 (1-aP Tyen fy %32) dx
2 2 @ o> |8 ol
@ < oPH(S1) +(1 - a)PH(S2) +all = a) Sien W&] + W&] dx

= a?H(S1) + (1 = a)H(S2) + a(1 — a)(H(S1) + H(S2))
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)

3 3 2
© =%,cnl, ’a%& +(1 fa)%sg‘ dx

® —a?y, . J, 83—;31(2dx+(1 S 6873332)2dx

® < a?H(S) + (1 - aPH(S) +a(l —a) Tyen |, ( s, ’2 n 63—5332’2) dx
@ = 2H(S1) + (1 — a)H(Sz) + (1 — a)(H(S1) + H(S2))

@ — 02H(S)) + (1 — @)H(S) + a1 — )H(S1) + a(1 — a)H(S,)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)

3 3 2
=Sen ’a%& +(1- a)%sg‘ dx

® —a?y, . J, 83—;31(2dx+(1 S 6873332)2dx

® < a?H(S) + (1 - aPH(S) +a(l —a) Tyen |, ( s, ’2 n 63—5332’2) dx
@ = 2H(S1) + (1 — a)H(Sz) + (1 — a)(H(S1) + H(S2))

© = a2H(S)) + (1 - a)H(Sy) + a(l — a)H(S1) + a(1 — a)H(Sy)

O = H(S)(? +a - a?) + H(S:)((1 — a2 +a(l - a)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)

3 3 2
© =%,cnl, ’a%& +(1 fa)%sg‘ dx

3 2 3 2
® —a?y, . J, %31( dx+(1-a)PSyen %32) dx
3 2 3 2
< 02H(S)) + (1 - aPH(S2) + o(1 — ) Ty J, ( %31] T %32] )dx

= o?H(S1) + (1 — a)H(Sz) + a1 — a)(H(S1) + H(Sz))
o?H(S1) + (1 = )H(S2) + a(1 — @)H(S1) + (1 — a)H(Sz)
H(S1)(a? + o — a?) + H(S2)((1 — a)® + (1 — )
=H(S1)a+ H(S)(1 —a)(1 —a+ a)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ F(a)=H(aS + (1 —a)S)

3 3 2
© =%,cnl, ’a%& +(1 fa)%sg‘ dx

3 2 3 2
® —a?y, . J, %31( dx+(1-a)PSyen %32) dx
3 2 3 2
< 02H(S)) + (1 - aPH(S2) + o(1 — ) Ty J, ( %31] T %32] )dx

a?H(S1) + (1 — a)H(S2) + a1 — a)(H(Si) + H(Sz))
o?H(S1) + (1 = )H(S2) + a(1 — @)H(S1) + (1 — a)H(Sz)
H(S1)(a? + o — a?) + H(S2)((1 — a)® + (1 — )
=H(S1)a+ H(S)(1 —a)(1 —a+ a)

=aH(S1) + (1 — a)H(S2)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ aH(S1) + (1 — a)H(S,) from the previous slide
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ aH(S1) + (1 — a)H(S,) from the previous slide
@ H(Sy)(a+1— ), since H(S1) = H(S)
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ aH(Sy) + (1 — a)H(Sy) from the previous slide
@ H(Sy)(a+1— ), since H(S1) = H(S)
@ = H(S1) which implies that F(«) < H(Sy),

. F(a) = H(Sy).
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ aH(Sy) + (1 — a)H(Sy) from the previous slide
@ H(Sy)(a+1— ), since H(S1) = H(S)
@ = H(S1) which implies that F(«) < H(Sy),
. F(a) = H(S1).
@ Since F(«) = H(Sy), F(«) is a constant function.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ aH(Sy) + (1 — a)H(Sy) from the previous slide
@ H(Sy)(a+1— ), since H(S1) = H(S)
@ = H(S1) which implies that F(«) < H(Sy),
. F(a) = H(S1).
@ Since F(«) = H(Sy), F(«) is a constant function.
@ Therefore F'(a) = 0.
F'(a) =
Siea2ly (0S4 (1-0)258) (281 — 258, ) dxay
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

At o = 0T, we have

, oM
0=F(0) = Zz/axs <8x3 8)(332) dxcly

ten b
> l s)-(Ls)

= 2/ ( 1) ( 2> axdy
= 8x3 8x3

® .\’

= >y 2 /8x3 S1dxdy Z2/<a 382> dxdy
e e f

= Z/B - Sydxdy = Z/ < S2dxdy
teA e
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

At o = 1, we have

F) = Zz/[(ax3> (8X381838)]dxdy

= 22/( 31) dx—ZZ/ ;asgdx

ASYAN f ten
— 22/8 381dx—22/ 5 Sadix
ten U ten VU
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ From those two equations we get
ZtieAzfti |:(8XSS1> 8x3S1 8x382+ <8x382> :| dx =0
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ From those two equations we get
Yien2l, [(8)(381) —2.2.5, 855, ¢ (axssz) } dx =0

@ which is the same as

ey |(88) - () ac=0
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Continued

@ From those two equations we get
Yien2l, [(8)(381) —2.2.5, 855, ¢ (axssz) } dx =0
@ which is the same as

Zt,eAzft I:(axs ) <8x382> } dx = 0.

@ The previous equation implies that S1 Sg

8x3
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Concluded

s _ PO
@ We can see that 55(S; — Sz) =0, Bxy?
83
oys

(81 — 82) = 0, and
(S1 — Sz) = 0 are similar cases.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Concluded

3 93
° Wae can see that 25(S; — Sz) =0, 2 (S1 — S2) =0, and
8‘973(81 — S,) = 0 are similar cases.

@ Since 88—)33(81 — 85) =0, we know that S; — Sy is a
polynomial of degree 2.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Concluded

3 93
° Wae can see that 25(S; — Sz) =0, 2 (S1 — S2) =0, and
8‘973(81 — S,) = 0 are similar cases.

@ Since 88—)33(81 — 85) =0, we know that S; — Sy is a
polynomial of degree 2.

e If S; — S, = 0 on at least 6 points, then it is not on a conic
section and must equal 0. Then §; = Ss.
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Minimal Triharmonic Energy Method Overview
Proof of Existence
Proof of Uniqueness

Proof of Uniqueness Concluded

3 93
° Wae can see that 25(S; — Sz) =0, 2 (S1 — S2) =0, and
8‘973(81 — S,) = 0 are similar cases.

@ Since 88—)33(81 — 85) =0, we know that S; — Sy is a
polynomial of degree 2.

e If S; — S, = 0 on at least 6 points, then it is not on a conic
section and must equal 0. Then §; = Ss.

@ Therefore the solution is unique.
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Overview
Minimal Surface Area Method PG Exw.stence
Proof of Uniqueness
The Difference

Overview

@ The Surface Area function is defined by the equation

A = Sgen 1+ (0 + (41) ooy
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Overview

@ The Surface Area function is defined by the equation

2 2
AT = Sy 1+ (el + (1) ooy
@ Let A(f) = {s e S[(A),s(x;,y;))=fi=1,...,N}. Find
St € A(f) such that

A(S;) = min{A(s), s € A(f)} 2)
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Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Overview

@ The Surface Area function is defined by the equation

2 2
AT = Sy 1+ (el + (1) ooy
@ Let A(f) = {s e S[(A),s(x;,y;))=fi=1,...,N}. Find
St € A(f) such that

A(S;) = min{A(s), s € A(f)} 2)
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Overview

@ The Surface Area function is defined by the equation

2 2
AT = Sy 1+ (el + (1) ooy
@ Let A(f) = {s e S[(A),s(x;,y;))=fi=1,...,N}. Find
St € A(f) such that

A(S;) = min{A(s), s € A(f)} 2)

If \(f) is not empty, then there exists a unique interpolatory
spline Sy € \(f) satisfying (2).

Katie Agle Bivariate Splines for Surface Design



Overview
Minimal Surface Area Method FIEEH{ i EX|_stence
Proof of Uniqueness
The Difference

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
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Overview
Minimal Surface Area Method FIEEH{ i EX|_stence
Proof of Uniqueness
The Difference

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
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Overview
Minimal Surface Area Method FIEEH{ i EX|_stence
Proof of Uniqueness
The Difference

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
@ Clearly D is not empty.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
@ Clearly D is not empty.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
@ Clearly D is not empty.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ We claim that D is closed. We need to show that S* € D.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
@ Clearly D is not empty.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ We claim that D is closed. We need to show that S* € D.
@ ||S, — S*|| — 0 for each triangle ;.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

First Show Existence

@ First we will prove the existence. Let S, € A(f) .
@ Consider D = {s € A(f), A(s) < A(So)}.
@ Clearly D is not empty.

@ LetS,eD, n=1,...,00cand S, — S* in the maximum
norm.

@ We claim that D is closed. We need to show that S* € D.
@ ||S, — S*|| — 0 for each triangle t;.
@ S, — S*|; is a polynomial of degree d.
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Overview
Proof of Existence

Minimal Surface Area Method

Proof of Uniqueness
The Difference

Proof of Existence Continued

12(Sn— 89| < &lISa— 87| —
0 By Markov Inequality (c.f. [1])
Next we show that A(S,) — A(S*), since
S, — §°, from assumption
0

0
== — — [ =—S* ??
< XSn> < XS > as shown above by (??)

0 . \? 0 \?
= <ax5"> *(ax5>

0 \? o . \? o N\ [0 . \?
= o) () (o) +(5)
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Overview
Minimal Surface Area Method PSR Gl S4ETE

Proof of Uniqueness
The Difference

Proof of Existence Concluded

@ Thus, since A(Sy) < A(Sy), A(S*) < A(Sy).
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Overview

Minimal Surface Area Method P'i°°f g EX|_stence
Proof of Uniqueness

The Difference

Proof of Existence Concluded

@ Thus, since A(Sy) < A(Sy), A(S*) < A(Sy).
@ Therefore S* € D and D is closed.
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Overview

Minimal Surface Area Method FIEEH{ i EX|_stence
Proof of Uniqueness

The Difference

Proof of Existence Concluded

@ Thus, since A(Sy) < A(Sy), A(S*) < A(Sy).
@ Therefore S* € D and D is closed.

@ Therefore we can claim that A(Sy) is continuous and has a
limit over D.
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Minimal Surface Area Method PG @ IS EEEE
Proof of Uniqueness
The Difference

Outline




Overview
Minimal Surface Area Method PTG EX‘.Stence
Proof of Uniqueness
The Difference

Proof of Uniqueness

@ Next we will show uniqueness.
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Overview
Minimal Surface Area Method PTG Exwlstence
Proof of Uniqueness
The Difference

Proof of Uniqueness

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
A(S)) = A(S2), Si # Ss.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
A(S)) = A(S2), Si # Ss.
@ LetS, = a5 —|—(1 —04)82, 0<a<.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
A(S)) = A(S2), Si # Ss.

o LetS, = a5 —|—(1 —04)82, 0<a<.

@ Clearly, S, € A, which means S, € S}(A).
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
A(S)) = A(S2), Si # Ss.

o letS,=aS+(1—a)S, 0<a< .

@ Clearly, S, € A, which means S, € S}(A).

® Su(l)) = aSi(t) + (1 — a)So(ti) = afi+ (1 —a)fi =1
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness

@ Next we will show uniqueness.

@ Suppose that we have two solutions S, S» € As such that
A(S)) = A(S2), Si # Ss.

o letS,=aS+(1—a)S, 0<a< .

@ Clearly, S, € A, which means S, € S}(A).

® Su(l)) = aSi(t) + (1 — a)So(ti) = afi+ (1 —a)fi =1

@ Let F(a) =A(aS1+ (1 —a)S2) > A(Sy)
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Overview
Proof of Existence
Proof of Uniqueness

Minimal Surface Area Method

The Difference

Proof of Uniqueness Continued

Fla) = AaSi+(1-0a)S)

aA(S1) + (1 — @)A(Sz) by convexity

(a+1—a)A(Sy) since A(S1) = A(S2)

A(S1) which implies that F(a) < A(S1), ... F(a) = A(Sy)

IN

Katie Agle Bivariate Splines for Surface Design



Overview

Proof of Existence
Proof of Uniqueness
The Difference

Proof of Uniqueness Continued

Minimal Surface Area Method

Fla) = AaSi+(1-0a)S)

aA(S1) + (1 — @)A(Sz) by convexity

(a+1—a)A(Sy) since A(S1) = A(S2)

A(S1) which implies that F(a) < A(S1), ... F(a) = A(Sy)

IN

@ Since F(«a) =

A(Sy), F(«) is a constant function.
Therefore F'(«a) = 0.

Fo- 3 [ 2[24y (@81 + (1~ %) F (51 — %)+ 255 (@81 + (1 - )R] F(S1 - 8)
G

dy
\/1 + (&S + (1~ )8)* + (Zos + (1 - a)8,)°
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Overview
Proof of Existence
Proof of Uniqueness

Minimal Surface Area Method

The Difference

Proof of Uniqueness Continued

At o = 01, we have

N Z/z[z(gxsz)gx(&sg)+2(§ysz]§y(s1sz)>d)(dy
G

PR RO AR CO)
Vi (Gs) ()

= > 4732 S1dx_Z 4—82dx
teA e

dxdy

— —S1dx_ —Sgdx
tEA ; OX teA t OX
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Overview
Proof of Existence
Proof of Uniqueness

Minimal Surface Area Method

The Difference

Proof of Uniqueness Continued

At o = 1, we have

0=F() = /2[2(5181);*(3132”2(331)5}(8132)}

\/1 +(2s) +(2s)
4{%81)27%81%32}*4[(6%51)2 282 32}

/ \/1+(%s1)2+(6%31>2

= > |45 s1 9  Spax = 2/ (axs‘>2dx

dxdy

teA f

dxdy
teA f

ten’li el
= Z/—&dx_ > —S2dx
ten’li tenl
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Overview

Minimal Surface Area Method PTG Exwlstence
Proof of Uniqueness

The Difference

Proof of Uniqueness Concluded

@ From those two equations we get
2 2
Sien2ly |(%S) - 258158+ (45:)° dx =0

Katie Agle Bivariate Splines for Surface Design



Overview

Minimal Surface Area Method PTG Exwlstence
Proof of Uniqueness

The Difference

Proof of Uniqueness Concluded

@ From those two equations we get

2 2
Siea2 )y [(5S)° — 25515 S+ (%) dx =0
@ which is the same as

Zz/t_ [(;(31)2— (aaxszﬂ dx =0.

ten !
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Overview

Minimal Surface Area Method PTG Exwlstence
Proof of Uniqueness

The Difference

Proof of Uniqueness Concluded

@ From those two equations we get

2 2
Siea2 )y [(5S)° — 25515 S+ (%) dx =0
@ which is the same as

Zz/t_ [(;(31)2— (aaszﬂ dx =0.

ten !

@ The previous equation implies that 2 Sy = 2.S,.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness Concluded

@ From those two equations we get
2 2
Sien2ly |(%S) - 258158+ (45:)° dx =0
@ which is the same as
2 2
Zz/ [(831) - (832) ] dx = 0.
t | \OX ox
ten !

@ The previous equation implies that 2 Sy = 2.S,.

@ We can see that 86—;(81 - 8) =0, 8‘?(—;(81 - 8)=0,and
8‘9—;(81 — S,) = 0 are similar cases.
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Overview
Proof of Existence
Proof of Uniqueness

Minimal Surface Area Method

The Difference

Proof of Uniqueness Concluded

@ From those two equations we get
2 2
Sien2ly |(%S) - 258158+ (45:)° dx =0
@ which is the same as
2 2
Zz/ (831) - (832) dx =0.
7 ox ox
@ The previous equation implies that 2 Sy = 2.S,.
@ We can see that 86—;(81 - 8) =0, 8‘?(—;(81 - 8)=0,and
8‘9—;3(81 — S,) = 0 are similar cases.

@ Since 3%(81 — 8,) = 0, we know that Sy — S; is a polynomial of
degree 2.
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Overview
Proof of Existence
Proof of Uniqueness

Minimal Surface Area Method

The Difference

Proof of Uniqueness Concluded

@ From those two equations we get
2 2
Sien2ly |(%S) - 258158+ (45:)° dx =0
@ which is the same as
2 2
Zz/ [(831) - (832) ] dx = 0.
t | \OX ox
ten !

@ The previous equation implies that 2 Sy = 2.S,.

@ We can see that 86—;(81 - 8) =0, 8‘?(—;(81 - 8)=0,and
8‘9—;3(81 — S,) = 0 are similar cases.

@ Since 3%(81 — 8,) = 0, we know that Sy — S; is a polynomial of
degree 2.

@ If Sy — S; =0 on at least 6 points, then it is not on a conic
section and must equal 0. Then §; = S».
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

Proof of Uniqueness Concluded

@ From those two equations we get
2 2
Sien2ly |(%S) - 258158+ (45:)° dx =0
@ which is the same as

2 2
Zz/ K;&) - (8832) ] dx =0.
fen t X X
@ The previous equation implies that 2 Sy = 2.S,.

3

@ We can see that 86—;(81 —8) =0, 577(S1 = S2) =0, and

8‘9—;3(81 — S) = 0 are similar cases.

@ Since 3%(81 — 8,) = 0, we know that Sy — S; is a polynomial of
degree 2.

@ If Sy — S; =0 on at least 6 points, then it is not on a conic
section and must equal 0. Then §; = S».

@ Therefore the solution is unique.
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The Difference

The Difference

@ The implementation the the Minimal Surface Area Method

uses a different triangulation method from the other data
fitting methods.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

The Difference

@ The implementation the the Minimal Surface Area Method
uses a different triangulation method from the other data
fitting methods.

@ This triangulation method is unique, because the interior
points are discarded leaving only the exterior points.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

The Difference

@ The implementation the the Minimal Surface Area Method
uses a different triangulation method from the other data
fitting methods.

@ This triangulation method is unique, because the interior
points are discarded leaving only the exterior points.

@ The following process is then used to determine the proper
triangulation.
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

The Difference

@ First, the area for each of the 2 types of basic
triangulations, as shown below, is calculated and
compared. The triangulation with
the smaller surface area is then saved in the set of triangles.

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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Overview

Proof of Existence
Proof of Uniqueness
The Difference

Minimal Surface Area Method

The Difference

@ Second, if there are two adjacent triangulations of the same
type, the area of those triangles and of the third type are
compared, and the smaller one saved in the set of triangles.

2 2
1.8} 1.8
1.6 16
1.4 1.4
1.2 1.2
1 1
0.8} o8l
0.6} 1 0.6F
0.4 0.4F
ozf 1 o2t
% 05 1 “ o5 1
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Minimal Roughness Method

Overview

@ The Roughness function is defined by the equation
5 2
R(f) = ien ft’_ [(g(f) + (%f) ] dxdy (c.f[2]).
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Minimal Roughness Method

Overview

@ The Roughness function is defined by the equation
5 2
R(f) = Zti€A ft’_ [(g(f) + (%f) ] dxdy (c.f[2]).
@ Let A(f) = {s e S[(N),s(xi,yi)=Ffi=1,....,N}.
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Minimal Roughness Method

Overview

@ The Roughness function is defined by the equation
5 2
R(f) = Zti€A ft’_ [(g(f) + (%f) ] dxdy (c.f[2]).
@ Let A(f) = {s e S[(N),s(xi,yi)=Ffi=1,....,N}.

@ Find Sf € A(f) such that
R(Sf) = min{R(s),s € \(f)}
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Minimal Roughness Method

Overview

@ The Roughness function is defined by the equation
5 2
R(f) = ien ft’_ [(g(f) + (%f) ] dxdy (c.f[2]).
@ Let A(f) = {s e S[(N),s(xi,yi)=Ffi=1,....,N}.
@ Find Sf € A(f) such that
R(Sf) = min{R(s),s € \(f)}
@ This method is similar to the other methods discussed;
however, when it was implemented, the numerical results

were significantly worse compared to the results from the
other methods.
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Summary

Summary

@ The three new methods researched were Minimal
Triharmonic Method, Minimal Surface Area Method, and
Minimal Roughness Method.
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Summary

Summary

@ The three new methods researched were Minimal
Triharmonic Method, Minimal Surface Area Method, and
Minimal Roughness Method.

@ Each of these methods and the Minimal Energy Method
were used for fitting data points from the a toy car.
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Summary

Summary

@ The three new methods researched were Minimal
Triharmonic Method, Minimal Surface Area Method, and
Minimal Roughness Method.

@ Each of these methods and the Minimal Energy Method
were used for fitting data points from the a toy car.

@ The contour maps from each piece of the vehicle display
the smoothness of the function fitted to the data.
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Summary

Summary

@ Shown below is the Minimal Energy Method and Minimal
Triharmonic Method, Minimal Surface Area Method
and Minimal Roughness Method are show on the next slide.

Contours of Minimal Energy Interpolotary Spline Contours of Minimal Triharmonic Interpolotary Spline

] — L L . L L L L . 7 1
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Summary

Contours of Minimal Roughness Spline

@ ltis easy to see that Minimal Surface Area is the best
method.

atie Agle Bivariate Splines fol
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