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M Given the data set {(xi, i, fi),i = 1,...

consider the spline space

SHA) = {s € C(Q) :

The Tri Harmonic Spline

, V1 with fi = f(zi,y:), we

slt € Pg,Vt € A}
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The Tri Harmonic Spline

M Given the data set {(xi, i, fi),i = 1,...,V}, with f; = f(zi,y:), we
consider the spline space

Sqi(AN)={se€C"(Q):s|t € Pg,Vt € A}

M J = degree of the spline space
r = smoothness (number of times differentiable)
A\ = atriangulation of the data sites (z;,y:),i=1,...,V
(2 = the union of all triangles in A
P, = the space of all polynomials of degree < d.
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The Tri Harmonic Spline

we are looking for the spline Sf € S} (A) such that
Sf(xi,yq;) = fi,i=1,...,V, and

H(Sf) =min{H(s),s € Sg(A)},
where

H(s) = Z /T ((D28)2 +3(D2Dys)? + 3(D.Djs)” + (D25)2) dzxdy
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Purpose of Proving
Cconvergence

We want to show that S f will converge to the data function f as the number of
data sites increases.
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The Convergence Theorem

Let S¢ be the spline interpolating f at the vertices of A. Suppose that

f € C*(€Q). Then there exists a constant C dependent on d and 6. as well as
the Lipschitz constant associated with the boundary 052 if €2 is not convex such
that

If = SFllra@) < CIAP|fl3,00.0.
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Lemmas
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Lemmas

Lemma 1. Given atriangle T in A and domain 7, then for every

feWwWr (Qr)witho <m <dand1 < q < oo,
||D§D5(f - Qf)“q,T < K|T|m+1_a_ﬁ|f|m+1,q,QT>

forall 0 < o+ 8 < m.
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Lemmas

Lemma 1. Given atriangle T in A and domain 7, then for every

feWwWr (Qr)witho <m <dand1 < q < oo,
IDZ DY (f = Qe < KITI™ 7P| flins1,0,00

forall 0 < o+ 8 < m.

Lemma 2:
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Lemmas

Lemma 1. Given atriangle T in A and domain 7, then for every

fEW;”l(QT)WithOSdeandlngoo,

q, T < K|T|m+1_a_ﬁ|f|m+1,q,QTa

ID Dy (f — QF)
forall 0 < a+ 38 <m.
Lemma 2: Suppose that g is continuously three times differentiable over a

triangle T'. Suppose that g is zero at six vertices in Star('7") which do not lie on
a conic section. Then

191 Loy < CLIT|g]3,00,7

for a positive constant C'; independent of g and T'.
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Lemmas
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Lemmas

Lemma 3: Let T be a triangle and let At be its area. Then for all p € P; and
al1 <qg < oo,

plr < KA |plg.r
If we pick g =2, K = C>,and p = Sf"’, we get

&

STl T <
S fls, TS

S fls,2,1

where

Sflsor = \/ / ((D25f)2 + 3(D2D,5f)2 + 3(DoD3S)? + (D3Sf)?) dady.
T
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Proof of Convergence

Since, by definition, Sf — f = 0 at the vertices of T, we can apply Lemma 2
and get

1Sf— fI < CiT°|Sy — fls,00,1-

Also note that
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Proof of Convergence

Thus, we have

Sf—f? — Sf—f?
[ 158 = fPdedy = Y [ 17~ pPdady

TeA

Convergence of the tri-harmonic spline method — p. 9/13



Proof of Convergence

Thus, we have

St — f|? = Sf— f|?
/Qlf F2dzdy Z/T|f F2dxdy

TeA

<Cr Y |TI°Ar|Sf = fl3,00,r

TeA
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Proof of Convergence

Thus, we have

St — f|? = Sf— f|?
/Qlf F2dzdy Z/T|f F2dxdy

TeA

<Cr Y |TI°Ar|Sf = fl3,00,r

TeA

< AP Y Ar (|fl3,00,m + S f3,00,7)°

TeA
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Proof of Convergence

Thus, we have

Sf— f|? = Sf— f|?
/Qlf F2dzdy Z/T|f F2dxdy

TeEA

<G Y |TI°A[Sf = fl5.007

TeA

< AP Y Ar (|fl3,00,m + S f3,00,7)°

TeA

< CUA Y Az ([f[5,00, + 2( fl3,00,0) (1S f13,00,7) + [Sf[5,00,7)

TeA
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Proof of Convergence

<A Y Az ([f[5,00,0 + 2( fl3,00,7) (1S fl3,00,7) + [Sf]5,00,7)

TeA
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Proof of Convergence

< CUA Y Az ([f[5,00, + 2( fl3,00,7) (1S fl3,00,7) + 1S f[5,00,7)

TeA

S 01|A|6 Z AT (|f|§,oo,T _l_ (|f|§,oo,T + |Sf|§,oo,T) —l_ |Sf|§,oo,T)
TeAN
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Proof of Convergence

< CUA Y Az ([f[5,00, + 2( fl3,00,7) (1S fl3,00,7) + 1S f[5,00,7)

TeA

S 01|A|6 Z AT (|f|§,oo,T _l_ (|f|§,oo,T + |Sf|§,oo,T) —l_ |Sf|§,oo,T)

TeA

< AP Ar (2113 00w + 20813 00 7)

TeA
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Proof of Convergence

< CUA Y Az ([f[5,00, + 2( fl3,00,7) (1S fl3,00,7) + 1S f[5,00,7)

TeA

S 01|A|6 Z AT (|f|§,oo,T + (|f|§,oo,T + |Sf|§,oo,T) =+ |Sf|§,oo,T)

TeA

S 01|A|6 Z AT (2|f|§,oo,T + 2|Sf|§,oo,T)

TeA

Cs
VAT

<268 Y Ar (1B sir + (S

TeA
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Proof of Convergence

<2081 Y Ar (1B e +

TeA
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Proof of Convergence

< QCl\A\6 Z At (‘f‘g,oo,T + ( |Sf|3,2,T)2)

TeA

VAT

02
<20 |AP S Ay (\f\%,oo,T " A—;\Sf\§,2,T)

TeA
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Proof of Convergence

<2081 Y Ar (1B e +

TeA

02
<200 S Ay (\f\%,oo,T n A—;\Sf\§,2,T)

TeA

TeA

< 204|A° (Aﬂ|f|§,oo,9 +C5 Y |Sf|§,2,T)
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Proof of Convergence

<2680 Y A (15 e + (Sl la2r)?)

TeA

02
< QC1|A|6 Z Ar (|f|§,oo,T + A—;|Sf|§,2,:r)

TeA

TeA

i <204 |A|° (Aﬂ|f|§ooﬂ +C3 Z |Sf|§,2,T)

= 2C1|A° (Aol f13 00,0 + C3H(SS))
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Proof of Convergence

= 2C1|A° (Ao f[3,00,0 + C3H(SY))
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Proof of Convergence

= 2C1|A° (Ao f[3,00,0 + C3H(SY))

= 2C41|A[° (Al f13 00,0 + C3H(QS))
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Proof of Convergence

= 2C1|A° (Ao f[3,00,0 + C3H(SY))

= 2C41|A[° (Al f13 00,0 + C3H(QS))

By Lemma 1, withm = 1, p = oo, and |a| = 2,

H(Qf) = \Qf\g,zﬂ < CSAQ‘f‘g,oo,Q
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Proof of
Cconvergence

M Therefore,

/ S — fPdedy < 201 AP (Aalf R + CaAalfEoen))
0
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Proof of
Cconvergence

M Therefore,
/ Sf — fl2dzdy < 201|A° (Aol f e + CsAalfG.0)
0

M This implies

\// 1Sf — fl2dzdy < CaAa|AP|f]3,00.0-
Q
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