Convergence of the triharmonic spline method

Cooper Cunliffe

Department of Mathematics University of North Carolina - Asheville Asheville, NC 28804

The Tri Harmonic Spline

Given the data set $\{(x_i, y_i, f_i), i = 1, ..., V\}$, with $f_i = f(x_i, y_i)$, we consider the spline space

$$S_d^r(\Delta) = \{ s \in C^r(\Omega) : s | t \in \mathbb{P}_d, \forall t \in \Delta \}$$

The Tri Harmonic Spline

Given the data set $\{(x_i, y_i, f_i), i = 1, ..., V\}$, with $f_i = f(x_i, y_i)$, we consider the spline space

$$S_d^r(\Delta) = \{ s \in C^r(\Omega) : s | t \in \mathbb{P}_d, \forall t \in \Delta \}$$

 $\blacksquare d = degree of the spline space$

r = smoothness (number of times differentiable)

 \triangle = a triangulation of the data sites $(x_i, y_i), i = 1, \dots, V$

 Ω = the union of all triangles in \triangle

 \mathbb{P}_d = the space of all polynomials of degree $\leq d$.

The Tri Harmonic Spline

we are looking for the spline $Sf \in S_d^r(\triangle)$ such that $Sf(x_i, y_i) = f_i, i = 1, ..., V$, and

$$H(Sf) = \min\{H(s), s \in S_d^r(\Delta)\},\$$

where

$$H(s) = \sum_{T \in \Delta} \int_{T} \left((D_x^3 s)^2 + 3(D_x^2 D_y s)^2 + 3(D_x D_y^2 s)^2 + (D_y^3 s)^2 \right) dxdy$$

Purpose of Proving Convergence

We want to show that Sf will converge to the data function f as the number of data sites increases.

The Convergence Theorem

Let S_f be the spline interpolating f at the vertices of \triangle . Suppose that $f \in C^3(\Omega)$. Then there exists a constant C dependent on d and θ_{\triangle} as well as the Lipschitz constant associated with the boundary $\partial\Omega$ if Ω is not convex such that

$$||f - Sf||_{L_2(\Omega)} \le C|\Delta|^3 |f|_{3,\infty,\Omega}.$$

Lemma 1:

Lemma 1: Given a triangle T in \triangle and domain Ω_T , then for every $f \in W_q^{m+1}(\Omega_T)$ with $0 \le m \le d$ and $1 \le q \le \infty$, $\|D_x^{\alpha} D_y^{\beta}(f - Qf)\|_{q,T} \le K|T|^{m+1-\alpha-\beta}|f|_{m+1,q,\Omega_T}$,

for all $0 \le \alpha + \beta \le m$.

Lemma 1: Given a triangle T in \triangle and domain Ω_T , then for every $f \in W_q^{m+1}(\Omega_T)$ with $0 \le m \le d$ and $1 \le q \le \infty$, $\|D_x^{\alpha} D_y^{\beta}(f - Qf)\|_{q,T} \le K|T|^{m+1-\alpha-\beta}|f|_{m+1,q,\Omega_T}$,

for all $0 \le \alpha + \beta \le m$.

Lemma 2:

Lemma 1: Given a triangle T in \triangle and domain Ω_T , then for every $f \in W_q^{m+1}(\Omega_T)$ with $0 \le m \le d$ and $1 \le q \le \infty$,

 $\|D_x^{\alpha} D_y^{\beta}(f - Qf)\|_{q,T} \le K |T|^{m+1-\alpha-\beta} |f|_{m+1,q,\Omega_T},$

for all $0 \le \alpha + \beta \le m$.

Lemma 2: Suppose that g is continuously three times differentiable over a triangle T. Suppose that g is zero at six vertices in Star(T) which do not lie on a conic section. Then

$$||g||_{L_{\infty}(T)} \le C_1 |T|^3 |g|_{3,\infty,T}$$

for a positive constant C_1 independent of g and T.

Lemma 3:

Lemma 3: Let T be a triangle and let A_T be its area. Then for all $p \in \mathbb{P}_d$ and all $1 \le q \le \infty$,

$$|p|_T \le K A_T^{-1/q} |p|_{q,T}$$

If we pick $q = 2, K = C_2$, and p = Sf''', we get

$$|Sf|_{3,\infty,T} \le \frac{C_2}{\sqrt{A_T}} |Sf|_{3,2,T}$$

where

$$|Sf|_{3,2,T} := \sqrt{\int_T \left((D_x^3 Sf)^2 + 3(D_x^2 D_y Sf)^2 + 3(D_x D_y^2 Sf)^2 + (D_y^3 Sf)^2 \right) dxdy}.$$

Since, by definition, Sf - f = 0 at the vertices of T, we can apply Lemma 2 and get

$$|Sf - f| \le C_1 |T|^3 |S_f - f|_{3,\infty,T}.$$

Also note that

$$H(Sf) = \sum_{T \in \triangle} |Sf|^2_{3,2,T}.$$

$$\int_{\Omega} |Sf - f|^2 dx dy = \sum_{T \in \Delta} \int_{T} |Sf - f|^2 dx dy$$

$$\int_{\Omega} |Sf - f|^2 dx dy = \sum_{T \in \Delta} \int_{T} |Sf - f|^2 dx dy$$

$$\leq C_1 \sum_{T \in \Delta} |T|^6 A_T |Sf - f|^2_{3,\infty,T}$$

$$\int_{\Omega} |Sf - f|^2 dx dy = \sum_{T \in \Delta} \int_{T} |Sf - f|^2 dx dy$$

$$\leq C_1 \sum_{T \in \Delta} |T|^6 A_T |Sf - f|^2_{3,\infty,T}$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|_{3,\infty,T} + |Sf|_{3,\infty,T} \right)^2$$

$$\int_{\Omega} |Sf - f|^2 dx dy = \sum_{T \in \Delta} \int_{T} |Sf - f|^2 dx dy$$

$$\leq C_1 \sum_{T \in \Delta} |T|^6 A_T |Sf - f|^2_{3,\infty,T}$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|_{3,\infty,T} + |Sf|_{3,\infty,T} \right)^2$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + 2(|f|_{3,\infty,T})(|Sf|_{3,\infty,T}) + |Sf|^2_{3,\infty,T} \right)$$

 $\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + 2(|f|_{3,\infty,T}) (|Sf|_{3,\infty,T}) + |Sf|^2_{3,\infty,T} \right)$

 $\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + 2(|f|_{3,\infty,T})(|Sf|_{3,\infty,T}) + |Sf|^2_{3,\infty,T} \right)$

 $\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(|f|^2_{3,\infty,T} + |Sf|^2_{3,\infty,T} \right) + |Sf|^2_{3,\infty,T} \right)$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + 2(|f|_{3,\infty,T}) (|Sf|_{3,\infty,T}) + |Sf|^2_{3,\infty,T} \right)$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(|f|^2_{3,\infty,T} + |Sf|^2_{3,\infty,T} \right) + |Sf|^2_{3,\infty,T} \right)$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(2|f|^2_{3,\infty,T} + 2|Sf|^2_{3,\infty,T} \right)$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + 2(|f|_{3,\infty,T}) (|Sf|_{3,\infty,T}) + |Sf|^2_{3,\infty,T} \right)$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(|f|^2_{3,\infty,T} + |Sf|^2_{3,\infty,T} \right) + |Sf|^2_{3,\infty,T} \right)$$

$$\leq C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(2|f|^2_{3,\infty,T} + 2|Sf|^2_{3,\infty,T} \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(\frac{C_2}{\sqrt{A_T}} |Sf|_{3,2,T} \right)^2 \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(\frac{C_2}{\sqrt{A_T}} |Sf|_{3,2,T} \right)^2 \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(\frac{C_2}{\sqrt{A_T}} |Sf|_{3,2,T} \right)^2 \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \frac{C_2^2}{A_T} |Sf|^2_{3,2,T} \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \left(\frac{C_2}{\sqrt{A_T}} |Sf|_{3,2,T}\right)^2 \right)$$

$$\leq 2C_1 |\Delta|^6 \sum_{T \in \Delta} A_T \left(|f|^2_{3,\infty,T} + \frac{C_2^2}{A_T} |Sf|^2_{3,2,T} \right)$$

$$\leq 2C_1 |\Delta|^6 \left(A_\Omega |f|^2_{3,\infty,\Omega} + C_2^2 \sum_{T \in \Delta} |Sf|^2_{3,2,T} \right)$$

$$\leq 2C_{1}|\Delta|^{6} \sum_{T \in \Delta} A_{T} \left(|f|^{2}_{3,\infty,T} + \left(\frac{C_{2}}{\sqrt{A_{T}}}|Sf|_{3,2,T}\right)^{2} \right)$$
$$\leq 2C_{1}|\Delta|^{6} \sum_{T \in \Delta} A_{T} \left(|f|^{2}_{3,\infty,T} + \frac{C_{2}^{2}}{A_{T}}|Sf|^{2}_{3,2,T} \right)$$
$$\leq 2C_{1}|\Delta|^{6} \left(A_{\Omega}|f|^{2}_{3,\infty,\Omega} + C_{2}^{2} \sum_{T \in \Delta} |Sf|^{2}_{3,2,T} \right)$$
$$= 2C_{1}|\Delta|^{6} \left(A_{\Omega}|f|^{2}_{3,\infty,\Omega} + C_{2}^{2} H(Sf) \right)$$

 $= 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_2^2 H(Sf) \right)$

 $= 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_2^2 H(Sf) \right)$

 $= 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_2^2 H(Qf) \right)$

 $= 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_2^2 H(Sf) \right)$

 $= 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_2^2 H(Qf) \right)$

By Lemma 1, with m = 1, $p = \infty$, and $|\alpha| = 2$,

 $H(Qf) = |Qf|^2_{3,2,\Omega} \le C_3 A_{\Omega} |f|^2_{3,\infty,\Omega}$

Therefore,

$$\int_{\Omega} |Sf - f|^2 dx dy \le 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_3 A_{\Omega} |f|^2_{3,\infty,\Omega} \right) \right)$$

Therefore,

$$\int_{\Omega} |Sf - f|^2 dx dy \le 2C_1 |\Delta|^6 \left(A_{\Omega} |f|^2_{3,\infty,\Omega} + C_3 A_{\Omega} |f|^2_{3,\infty,\Omega} \right) \right)$$

This implies

$$\sqrt{\int_{\Omega} |Sf - f|^2 dx dy} \le C_4 A_{\Omega} |\Delta|^3 |f|_{3,\infty,\Omega}.$$