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The Tri Harmonic Spline

Given the data set {(xi, yi, fi), i = 1, . . . , V }, with fi = f(xi, yi), we
consider the spline space

S
r
d(△) = {s ∈ C

r(Ω) : s|t ∈ Pd, ∀t ∈ △}
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The Tri Harmonic Spline

Given the data set {(xi, yi, fi), i = 1, . . . , V }, with fi = f(xi, yi), we
consider the spline space

S
r
d(△) = {s ∈ C

r(Ω) : s|t ∈ Pd, ∀t ∈ △}

d = degree of the spline space
r = smoothness (number of times differentiable)

△ = a triangulation of the data sites (xi, yi), i = 1, . . . , V

Ω = the union of all triangles in △
Pd = the space of all polynomials of degree ≤ d.
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The Tri Harmonic Spline

we are looking for the spline Sf ∈ Sr
d(△) such that

Sf(xi, yi) = fi, i = 1, . . . , V , and

H(Sf) = min{H(s), s ∈ S
r
d(△)},

where

H(s) =
X

T∈△

Z

T

`

(D3
xs)2 + 3(D2

xDys)2 + 3(DxD
2
ys)2 + (D3

ys)2
´

dxdy
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Purpose of Proving
Convergence

We want to show that Sf will converge to the data function f as the number of

data sites increases.
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The Convergence Theorem

Let Sf be the spline interpolating f at the vertices of △. Suppose that

f ∈ C3(Ω). Then there exists a constant C dependent on d and θ△ as well as
the Lipschitz constant associated with the boundary ∂Ω if Ω is not convex such

that

‖f − Sf‖L2(Ω) ≤ C|△|3|f |3,∞,Ω.
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Lemmas

Lemma 1:
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Lemmas

Lemma 1: Given a triangle T in △ and domain ΩT , then for every

f ∈ W m+1
q (ΩT ) with 0 ≤ m ≤ d and 1 ≤ q ≤ ∞,

‖Dα
x D

β
y (f − Qf)‖q,T ≤ K|T |m+1−α−β |f |m+1,q,ΩT

,

for all 0 ≤ α + β ≤ m.
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Lemmas

Lemma 1: Given a triangle T in △ and domain ΩT , then for every

f ∈ W m+1
q (ΩT ) with 0 ≤ m ≤ d and 1 ≤ q ≤ ∞,

‖Dα
x D

β
y (f − Qf)‖q,T ≤ K|T |m+1−α−β |f |m+1,q,ΩT

,

for all 0 ≤ α + β ≤ m.

Lemma 2: Suppose that g is continuously three times differentiable over a

triangle T . Suppose that g is zero at six vertices in Star(T ) which do not lie on

a conic section. Then

‖g‖L∞(T ) ≤ C1|T |3|g|3,∞,T

for a positive constant C1 independent of g and T .

Convergence of the tri-harmonic spline method – p. 6/13



Lemmas

Lemma 3:
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Lemmas

Lemma 3: Let T be a triangle and let AT be its area. Then for all p ∈ Pd and

all 1 ≤ q ≤ ∞,

|p|T ≤ KA
−1/q
T |p|q,T

If we pick q = 2, K = C2, and p = Sf ′′′, we get

|Sf |3,∞,T ≤ C2√
AT

|Sf |3,2,T

where

|Sf |3,2,T :=

s

Z

T

`

(D3
xSf)2 + 3(D2

xDySf)2 + 3(DxD2
ySf)2 + (D3

ySf)2
´

dxdy.
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Proof of Convergence

Since, by definition, Sf − f = 0 at the vertices of T, we can apply Lemma 2

and get

|Sf − f | ≤ C1|T |3|Sf − f |3,∞,T .

Also note that

H(Sf) =
X

T∈△

|Sf |23,2,T .
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Proof of Convergence

Thus, we have
Z

Ω

|Sf − f |2dxdy =
X

T∈△

Z

T

|Sf − f |2dxdy
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Proof of Convergence

Thus, we have
Z

Ω

|Sf − f |2dxdy =
X

T∈△

Z

T

|Sf − f |2dxdy

≤ C1

X

T∈△

|T |6AT |Sf − f |23,∞,T
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Proof of Convergence

Thus, we have
Z

Ω

|Sf − f |2dxdy =
X

T∈△

Z

T

|Sf − f |2dxdy

≤ C1

X

T∈△

|T |6AT |Sf − f |23,∞,T

≤ C1|△|6
X

T∈△

AT (|f |3,∞,T + |Sf |3,∞,T )2
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Z

Ω
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≤ C1|△|6
X
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Proof of Convergence

≤ C1|△|6
X

T∈△

AT

`

|f |23,∞,T + 2(|f |3,∞,T )(|Sf |3,∞,T ) + |Sf |23,∞,T

´

≤ C1|△|6
X

T∈△

AT

`

|f |23,∞,T +
`

|f |23,∞,T + |Sf |23,∞,T

´

+ |Sf |23,∞,T

´

≤ C1|△|6
X

T∈△

AT

`

2|f |23,∞,T + 2|Sf |23,∞,T

´
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Proof of Convergence

≤ C1|△|6
X

T∈△

AT

`

|f |23,∞,T + 2(|f |3,∞,T )(|Sf |3,∞,T ) + |Sf |23,∞,T

´

≤ C1|△|6
X

T∈△

AT

`

|f |23,∞,T +
`

|f |23,∞,T + |Sf |23,∞,T

´

+ |Sf |23,∞,T

´

≤ C1|△|6
X

T∈△

AT

`

2|f |23,∞,T + 2|Sf |23,∞,T

´

≤ 2C1|△|6
X

T∈△

AT

„

|f |23,∞,T + (
C2√
AT

|Sf |3,2,T )2
«
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T∈△

AT
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Proof of Convergence

≤ 2C1|△|6
X

T∈△

AT

„

|f |23,∞,T + (
C2√
AT

|Sf |3,2,T )2
«

≤ 2C1|△|6
X

T∈△

AT

„

|f |23,∞,T +
C2

2

AT
|Sf |23,2,T

«

≤ 2C1|△|6
0

@AΩ|f |23,∞,Ω + C
2
2

X

T∈△

|Sf |23,2,T

1

A
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Proof of Convergence

≤ 2C1|△|6
X

T∈△

AT

„

|f |23,∞,T + (
C2√
AT

|Sf |3,2,T )2
«

≤ 2C1|△|6
X

T∈△

AT

„

|f |23,∞,T +
C2

2

AT
|Sf |23,2,T

«

≤ 2C1|△|6
0

@AΩ|f |23,∞,Ω + C
2
2

X

T∈△

|Sf |23,2,T

1

A

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Sf)

´
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Proof of Convergence

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Sf)

´
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Proof of Convergence

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Sf)

´

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Qf)

´
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Proof of Convergence

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Sf)

´

= 2C1|△|6
`

AΩ|f |23,∞,Ω + C
2
2H(Qf)

´

By Lemma 1, with m = 1, p = ∞, and |α| = 2,

H(Qf) = |Qf |23,2,Ω ≤ C3AΩ|f |23,∞,Ω
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Proof of
Convergence

Therefore,
Z

Ω

|Sf − f |2dxdy ≤ 2C1|△|6
`

AΩ|f |23,∞,Ω + C3AΩ|f |23,∞,Ω)
´
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Proof of
Convergence

Therefore,
Z

Ω

|Sf − f |2dxdy ≤ 2C1|△|6
`

AΩ|f |23,∞,Ω + C3AΩ|f |23,∞,Ω)
´

This implies
s

Z

Ω

|Sf − f |2dxdy ≤ C4AΩ|△|3|f |3,∞,Ω.
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