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Abstract

In this paper, we forecast ground level ozone concentrations over the USA, using past spa-
tially distributed measurements and the functional linear regression model. We employ bivariate
splines defined over triangulations of the relevant region of the USA to implement this func-
tional data approach in which random surfaces represent ozone concentrations. We compare the
least squares method with penalty to the principal components regression approach. Moderate
sample sizes provide good quality forecasts in both cases with little computational effort. We
also illustrate the variability of forecasts due to the choice of smoothing penalty. Finally, we
compare our predictions with the ones obtained using thin-plate splines. Predictions based on
bivariate splines require less computational time than the ones based on thin-plate splines and
are more accurate. We also quantify the variability in the predictions arising from the variabil-
ity in the sample using the jackknife, and report that predictions based on bivariate splines are
more robust than the ones based on thin-plate splines.

Keywords: functional data, ozone, bivariate splines.

1 Introduction

Ground-level ozone is a harmful pollutant (Bell et al., 2004). To inform the public on a daily basis
about ozone and other pollutants, the US Environmental Protection Agency (EPA) has created
a simplified index of air quality, the pollutant standards index (PSI), and since July 1999, EPA
replaced the PSI with the Air Quality Index (AQI). Forecasts of these indices made 24 hours
ahead have been provided to newspapers in various regions so that people can avoid outdoor
activities likely to damage their health. Using the PSI, Neidell (2010) showed that air quality
warnings associated with ground-level ozone have had an impact on outdoor activities in Southern
California, especially for susceptible local residents. Hence, improving the quality of these forecasts
may contribute to better public health.

We consider here ozone concentrations from the network of EPA stations across the USA, over a
span of three months in the summer of 2005. Our goal is to predict the ozone concentration values at
a specific location in suburban Atlanta 24 hours ahead based on the previous ozone concentrations
values up to the current hour. There are many available methods, ranging from chemistry-transport
models to statistical techniques. Recently, Guillas and Lai (2010) initiated a brand new statistical
approach to predict ozone concentration values using functional linear regression with bivariate
splines (piecewise polynomial functions over a triangulation of a polygonal domain). The goal is to
capture predictive power in time from spatial synoptic scales, as chemistry and transport occur at
regional scales. Such spatio-temporal information has been used before to model time-dependent
dynamics in hourly ozone concentration fields, see e.g. Dou et al. (2010). However, our approach
represents the surface as a random function, which enables us to carry out regression and prediction
in that setting. Modelling observations as functional data presents many advantages, see Ramsay
and Silverman (2005) and Ferraty and Vieu (2006) for an overview of functional data analysis
(FDA). For that purpose, one needs a parametric representation of the surfaces ideally in a flexible
basis that kriging is not able to offer. Guillas and Lai (2010) established the theoretical foundations,
even under time-dependence assumptions, of this method for which a least squares criterion with
penalty is minimized. In the following, we refer to this approach as the “brute force method” (BF).
Comparison with time series approaches using FDA (i.e. in one dimension: time) shows that BF
can predict better, particularly with small sample sizes by borrowing strength across space around
the location of interest, see Guillas and Lai (2010) for examples.

Crambes et al. (2009) minimized a residual sum of squares subject to a smoothness penalty as in
BF, but modified the usual penalty term of univariate smoothing splines to study the prediction.



They showed that the rates of convergence of the estimates of the slope are optimal. Yuan and
Cai (2010) demonstrated that BF can deliver optimal rates of convergence for either prediction or
estimation. Their setting unifies the treatment of estimation and prediction under the umbrella
of one family of norms. They showed the interesting property that the faster the decay in the
eigenvalues of the covariance operator of the explanatory variable, the faster the prediction and the
slower the estimation of the slope.

The Functional Principal Component Regression (FPCR) has been introduced in two papers (Car-
dot et al., 1999, 2003), which cover the case of random functional data that are curves. It relies on
the principal component decompositions prior to inference about the regression slope. Cardot et al.
(2003) used univariate splines to approximate the empirical estimator for the regressor function as-
sociated with the random functional. FPCR was shown to attain optimal rates of convergence
for prediction and estimation (Cai and Hall, 2006; Hall and Horowitz, 2007). As pointed out by
Cressie and Wikle (2011), the Empirical Orthogonal Functions (EOFs) employed in space-time
analysis of geophysical data are merely principal components for the vector of observations. In
practice, EOFs are used since observations are collected at discrete points. However, this approach
can yield misleading results as these observations are not weighted spatially. The analysis should
reflect the continous variations of the field. The Karhunen-Loéve expansion considered below is the
continuous equivalent of the EOF decomposition. Using bivariate splines, we respect the continuous
nature of ozone fields.

In our context of ozone forecasting, Aneiros-Perez et al. (2004) considered a functional additive
model and Crambes et al. (2009) applied least squares with penalty to the prediction of the maxi-
mum of the ground-level ozone concentration. However, these studies do not exploit spatial infor-
mation. When dealing with random surfaces and a functional associated with these over a domain
of irregular shape, bivariate splines can be an excellent approximation tool, especially when the
random surfaces are observed only over scattered locations (Lai, 2008) as these splines possess
optimal approximation properties (Lai and Schumaker, 2007). Thus, we shall use these splines
in FPCR and would like to know how it compares with BF for the ozone concentration forecast-
ing problem. We shall explain this generalization in the following section in detail and discuss
the similarities and differences between BF and FPCR in this context. We illustrate numerically
the advantages and disadvantages of these two approaches. The biggest difference lies in the fact
that BF is straightforward and can be used for prediction without a spectral decomposition while
the FPCR requires the use of a selected number of eigenvalues and eigenvectors in advance to be
effective for prediction.

Thin-plate splines have been used in various applications to model surfaces, see Wood (2003) and
references therein. For instance, Paciorek et al. (2009) considered the measurement of particulate
matters concentrations, and used thin-plate splines to represent spatial variations in a spatio-
temporal model. We wish to compare the skills of thin-plate splines and bivariate splines in our
problem of spatial representation and prediction of ozone concentrations. For that aim, we compare
in this paper BF using either thin-plate splines or bivariate splines. This is the first time that such
comparison is carried out.

The paper is organized as follows. We first explain two approaches of prediction with an emphasis
on the FPCR in the next section and we explain the similarities and differences of these two methods
in practice. Then we present numerical experiments in Section 3. In Section 4, we compare the
use of thin-plate splines and bivariate splines. In section 6, we address the issue of the choice of
triangulation. Finally in section 7, we conclude and discuss some future research directions.



2 Two Approaches of Forecasting

Let Y be a real-valued random variable which is a functional of random surface X. That is, let D
be a polygonal domain in R?. The functional linear model for Y is:

Y:f(X)—|—€Z<g,X>~|—€:/Dg(s)X(s)d8—|—€, (1)

where X is a random surface over D, g(s) is in a function space H (usually L?(D)), € is a real
random variable that satisfies Fe = 0 and EX (s)e =0,Vs € D.

2.1 Brute-Force (BF)

The BF method is explained in detail in Guillas and Lai (2010). For convenience, let us outline
the approach as follows. The estimate of the function ¢ € H is chosen to solve the following
minimization problem:

min & [(V - (8,X)%] + plIBll3, (2)

where p > 0 is a penalty, and ||3]|3 denotes the semi-norm of 3
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in which Dy denotes the differentiation operator with respect to the k-th variable. Our objective
is to determine or approximate g which is defined on a spatial domain D based on observations
of X, from a set of design points in D, and of the random variable Y. We choose a spline space
Sh(A), i.e. the space of polynomials of degree d and smoothness 7 over the triangulation A (Lai
and Schumaker, 2007), which is a finite dimensional subspace of L?(D).

In practice, the random surfaces X;’s are not observed continuously but at design points s, €
D,k =1,---,N. The smooth bivariate spline approximation Sx, of X; is the solution in S}(A) of
the following minimization

N
min {Z |h(sk) — Xi(sg)|* +~vEn(h), h € SQ(A)} ,
k=1

where En(h) = [(D}h)? + 2(D1D2h)? + (D3h)? is a energy functional and v > 0 a smoothing
parameter. The existence, uniqueness and computational scheme can be found in Awanou et al.
(2006). The approximation properties of the penalized least squares fit are summarized in Lai
(2008).
We seek an approximation S’;;L € S}(A) of the empirical estimator of g such that SAng minimizes
the following:
S 2 2

,din, n;af (8, 5x.))* + pllBll3 (4)
where Sx, € S}(A) is a penalized least squares fit of the ozone data X; on the hour i using
the bivariate spline space Sj(A). The space of bivariate splines over the domain D, S};(A), can
be chosen for instance to be SY(A) (linear finite elements), S2(A) for continuity only but with
polynomials of degree 5, or S3(A) (our actual choice in this paper) for more smoothness across the
domain. We choose d = 5 and r = 1 because these values satisfy the minimal requirements for a



smooth spline to have the optimal approximation order with d greater than 3r + 1, see Th 2.1 in
Guillas and Lai (2010). We do not consider here higher degrees because the additional number of
degrees of freedom would require more data to yield some benefit.

Although spline functions are only C! differentiable in the case of 551(&) over the domain, they are
in the Sobolev space H2(A\) and hence, we can use the above penalty function with second order
derivatives. Indeed, we compute all second order derivatives of spline functions inside each triangle
(polynomials within each triangle) but not over edges nor at vertices. All edges and vertices of a
triangulation form a set of measure zero for the integration in (3).

We use here the representation of splines by their coefficients in the Bernstein-Bezier basis of
bivariate polynomials ¢;,7 = 1,--- ,m , for which computations are efficient and continuity and
smoothness conditions can easily be derived (Lai and Schumaker, 2007, Chapter 2).

The solution of the above minimization is in S}(A) and is given by g;fn = > Cni¢i with

coefficient vector ¢, = (¢ 4,7 =1,--- ,m) satisfying :4\;6; = b, where

Ap =

12(¢Z7SXZ><¢j75Xg> +p52(¢27¢j>] )
i,j=1,--.m

n
(=1

where & (o, 8) = [, D=2 D?lD%ozD’iD%ﬂ, corresponds to the semi-norm ||3]|3 above, and

I;;L = [le Z }/f<¢jv SX4>]
j=1

(=1

=1,--,m

In theory, the spline space S;(A) is dense in H as the size |A| of triangulation A decreases to
zero and hence, the approximation S, of the empirical estimator of g in (4) approximates g as the
sample of n observations collected at the same hour of the day, over n consecutive days increases
and |A| — 0 (Guillas and Lai, 2010).

2.2 Functional Principal Component Regression (FPCR)

We next spend some effort to explain the FPCR. Cardot et al. (2003) used univariate splines to
approximate the function g in the functional linear model and used the principal component analysis
and smoothing spline techniques to find the spline-based estimators. In the following, we generalize
the ideas of Cardot et al. (2003) to deal with random surfaces over a 2D domain of irregular shape
based on bivariate spline functions. Let I' be the standard covariance operator of the H-valued
random variables X, I' := E(X(s)X(t)) and

(Tg)(t) = eDE(X(S)X(t))g(S)ds, Vg e H.

Let A be th cross-covariance of (X,Y), i.e., A := E(X(s)Y) with

(A, f) = /tEDE(X(t)Y)f(t)dt vf e H. (5)

We can easily prove the relationship I'g = A.

Clearly I' is an integral operator mapping H to H. Assume that I' is a compact operator, as
in Cardot et al. (2003). Let Aj,j = 1,2,---, be the eigenvalues of I' arranged in the decreasing
order and v; € H be eigenfunctions of I' associated with \; for j = 1,2,---. Suppose that



vj,j =1,2,---, form a complete orthonormal basis for H. Then we can write I' = Zj Ajvi(t)vi(s)
and g = Zj (g,vj)v; for any g € H. Hence, since I is a symmetric operator, we have

/\j<g,Uj> = <g,)\j'Uj> = <g,F’Uj> = <ngvj> = <A7Uj> = <E(X(t)Y),’Uj>.

It follows that (g,v;) = (E(X(-)Y),v;)/A; if A; > 0. Thus, we get the expansion for g:

Z y)vj_

Jj=1

Note that the function g is in H if and only if

5 (<E<X(->Y>,vj>>2 .

)\.
j=1 J

In general, we do not know if T' is invertible or not. Let A(T') be the kernel of I'. That is,
N(T) = {z € H,T'z = 0} and suppose that N'(I') # (. Then g cannot be uniquely determined.
Nevertheless, g can be determined in A/(I")*.

Let Hj = span{vy,---,v;} C N(I')* be a finite dimensional approximation of the orthogonal
complement of N (I'). For example, we can use the spline space Sgl(A) of piecewise polynomial
functions without smoothness over a triangulation A of the underlying domain D. The discontin-
uous spline space Sd_l(A) will better approximate the orthogonal complement than a spline space
Sh(A) with smoothness r > 1. Next let Py, be the orthogonal projection operator from H to Hj,.
When A\, > 0, PI'P) is invertible. Note that PrI'Prg = Z;?:l A\j(vj, g)vj. Thus, for all z € H,

Pox = Z?zl(x,vﬁvj. We have (PpI'Prg, Prz) = (A, Pyx), or

k k
Z)\J v, 9)(vj, Z x,05) (A, v;)
J=1 Jj=1

for all x € H. It follows that (v, g) = %(A, vj) for j =1,--- , k. Hence, we obtain the approxima-
tion of g in Hy:

P
gk :Z)\*<A UJ>

In order to compute our estimate of g, we make use of random samples X;,7 =1, --- ,n in H with
dependent variable Y;. We start with the case of fully observed surfaces X;. Let I';; be the empirical

estimator of I': .
1
Doz = = (Xi,2)X;

i=1

3

and A,, be the empirical estimator of A:

n

An = Xi7 }/7;

—_

Then the finite dimensional operator I';, is a compact operator mapping H to H and hence, I';, can
be expanded in terms of its eigenfunctions 9;, j = 1,2,---. That is,

o
Fye = g Aj (05, x)0
j=1



Similar to the above theoretical discussion, we have
Apz = (gn, pz)

for some g, in H. Assume that the first k&, largest eigenvalues S\j, j=1,---,k, are nonzero. Then
the principal component regression estimator of gy is obtained in Hy, , the finite dimensional space
spanned by 01, -+, Ug,,:
k N
R ~ Ay (05) .
gPCR = Z nj\ 20
J

j=1
which is an approximation of the empirical estimator of g.
As we use the discontinuous spline space Sd_l(A) to represent eigenfunctions 9;, gpcr is a disconti-
nous piecewise polynomial function, i.e., it is not continuous at the edges and vertices of A\, §por is
not in S (A). However, we can smooth gpcr by approximating it using bivariate splines in S}(A)
with » > 1. Let gspcr be the solution of the following continuous least squares minimization:

Gsron = min [ laren(s) = 1(s) s

When the random sample is not fully observed, as in BF we use spline approximations of the

random samples X;,7 = 1,--- ,n, with penalty 7. We then use the discontinuous spline space. Let

f; be an approximation of the empirical estimator I';, of I':

n

To(a) = = 5 (Sx,.2)Sx, (6)
i=1

and E;L be an approximation of the empirical estimator A,, of A:

Baw) = (S, )Y (7
i=1

Clearly, I',, is a bounded operator on the space spanned by bivariate polynomials, and thus we can
express in the following format:

L) = D Xi(05,2);, (8)

where )TJ and v; are a pair of eigenvalue and eigenvector of f‘vn and m is the dimension of the spline
space Sj(A). It then follows that

<Avnv x> = <gn7 f‘vnx> (9)
for some «,, € H. Assume that the first k,, largest eigenvalues )Tj, j=1,--- k, are nonzero. Then

the principal component regression estimator of g, is

kn

GrerR =Y Ari\gyj)@' (10)

j=1

which is an approximation of the empirical estimator of ¢g. Finally we can use the discrete least
squares minimization to compute a smooth version of gpcr and denote it by gspcr. It is the
solution in S%(A) of the following minimization

N
min {Z \h(sk) — gpcr(sk)]?, h € SQ(A)} ;
=1

7



where the locations of the stations are denoted sy.
We now compare BF and FPCR. In the FPCR, the spline approximation of the covariance operator
T, is
— 1 <&
r =— Sx,,x)S 11
n(T) n2< X0 T)SX, (11)

/=1

from (6). For any = = >\, ¢;¢;, the operator FNH maps any bivariate polynomial x into the space

of bivariate polynomials as
n

n
—~ 1
Fn(x) — Z Cig Z<SX57 ¢’L>SXZ
i=1 /=1
Thus the matrix associated with the covariance operator in this finite dimensional space is
1 n
*Z<SX13)¢1><SX@7¢J> )

n
=1 1<i,j<m

which is the matrix :471 used in BF when no penalty is present (Guillas and Lai, 2010). Similarly,
the spline approximation A,, of the empirical estimator A,, of A is,

m n

o~ 1
i=1 (=1

The vector representation of ANn is

[:l Z(SXW ®i)Y;

(=1

1<i<n

which is the b~n used in BF. .

If we were to be able to use all eigenvalues and eigenvectors of the covariance matrix A,, and invert
the covariance operator, the solution would be the same one as the brute-force approach with
no penalty. However, the FPCR approach uses a few principal eigenelements to compute gpcrg.
Obviously, BF and FPCR can differ greatly.

As the empirical covariance matrix A, is not invertible in general, the choice of regularization
procedure for this ill-posed problem is either done through the addition of a penalty (as in BF),
also known as the Tikhonov regularization, or by a projection on a few principal components (as
in FPCR). Tuning parameters are either the penalty p for BF or the number of eigenvalues k,, for
FPCR. For a discussion of previous work in these two approaches in the one dimension setting, see
Yuan and Cai (2010).

As a result of performing the eigendecomposition in FPCR, we only retain k,, vectors, which does
not ensure continuity at the edges. In this situation, we then employ the penalized least squares
fit to find a smoother version gspcr of gpcr in Sj(A). We proceed as follows. We evaluate the
discontinuous polynomial gpcr at the domain points (Lai and Schumaker, 2007) that constitute
the minimum set of points to fully characterize any bivariate polynomial of a fixed degree, by its
function evaluations in the triangulation A. Then we fit the continuous (or even smooth) spline
gspcr that approximates best these function evaluations.



3 Numerical Results on the Prediction for Ozone Concentration
Values

In this paper, we forecast the ground-level ozone concentration at one EPA station in suburban
Atlanta (in Kennesaw, GA, latitude 34.0138°N, longitude 84.6049°N) using the random surfaces
over the entire U.S. domain based on the measurements at various EPA stations from the previous
days. The locations are scattered over a complicated domain, delimited by the United States
frontiers, which has been scaled into [0, 1] x [0, 1], see Figure 1.

There are about 1000 EPA stations in the U.S. We are given the ozone concentrations at each
locations for every hour over three months from July to September, 2005. The amount of the
missing data is very small, so they affect very slightly our computations as the penalized least
squares fit was used. Assume that the ozone concentration in a city, say Atlanta on one day at a
particular time is a linear functional of the ozone concentration distribution over the surrounding
region of the U.S. continent on the previous day. Also we may assume that the linear functional is
continuous. Thus, we can use functional linear model for prediction.

With bivariate spline functions, we can easily carry out all the experiments to approximate the
ozone distributed random surfaces and approximate the linear functional. Based on bivariate
splines theory, the smaller the triangulation size, the better the approximation. In the following
numerical experiments, we considered three different sizes of triangulations over the South East of
the USA, depicted in Figure 2.

We first use BF, following (1), with penalty p = 10~%. This level of penalty was considered reason-
able after some preliminary analysis. We could have formally searched for an optimal penalty p but
it was relatively clear that a few orders of magnitude of potential p values would work well, so we
kept p = 1079, In that setting, f(X) is the ozone concentrations at the station of interest at one
particular hour of one day and X is the ozone concentration distribution function over the South
East of the USA at the same hour, but on the previous day. We use a penalized least squares fit
Sx of X with penalty v to compute the empirical estimate S .

Let us explain our numerical procedures in detail. To forecast the ozone concentration on a par-
ticular day, we build hourly surfaces for all hours over all days in the sample, before the day at
which we want to predict. We have two options: one in which 24 functions S, are estimated using
the data Y and X for each hour of the day (BF-1), and one in which one function Sy is estimated
using all hours of the day (BF-24). In the second option, the sample size is 24 times larger, but the
relationship between the surface of ozone at an hour and ozone at the station 24 hours ahead does
not depend on the hour. This stationarity assumption weakens BF-24 but enables the computation
of more robust predictions when the number of days in the sample is small, and these methods
suffer from autocorrelation leakage for nearby hours. The same notations are adopted for FPCR-1
and FPCR-24. The methods BF-1 and FPCR-1 do no suffer from autocorrelation leakage as most
studies show significant autocorrelation only over 2-3 hours for ground-level ozone, but use a much
smaller sample size.

For illustration of both BF and FPCR, we display in Figure 3 the 24 hour ahead predictions over
two different days, based on length varying from 10 to 22 days of learning. The methods give similar
results, but FPCR seems to provide better forecasts than BF, with not as much of a need for a
large sample size to provide good predictions. In the next two sections we quantify the predictive
abilities of these two techniques.

Figure 4 and 5 respectively display estimates for the prediction functions g for BF-1 and FPCR-1
at four different times of the day (5AM, 11AM, 3PM and 6PM). The scales are different for BF
and FPCR. Indeed, the empirical eigenvalues for FPCR are much larger here than for the matrix



;1\; in BF, as we use polynomials without any smoothness condition across edges in a first step.
The resulting eigenvectors that help us reconstitute the prediction functions g are therefore much
smaller for BF.

3.1 BF predictions

Here we present numerical results using BF to predict at the Atlanta station. It is necessary to
choose the value of v. Figure 6 displays the averaged daily RMSEs of predictions over August
20-31, 2005 for various choices of v, as well as averaged daily Mean Absolute Deviations (MAD)
and averaged daily maximum error. It shows that RMSEs decrease rapidly with sample size and
level off at around 20 observations. It also indicate that v ought to not be chosen too large or too
small, but its impact on the predictions is relatively minor for BF-24. For BF-1, it is necessary to
choose a high value for -y, here v = 1, as too much roughness in the hourly surfaces X can produce
variability on the estimates of the functions g due to a much smaller sample size.

3.2 FPCR predictions

We show our numerical results using our FPCR approach to predict at the Atlanta station. In that
setting, it is necessary to choose a number of eigenvalues/eigenvectors to carry out the predictions.
Hence we have one additional tuning parameter in addition to the v values. Figures 8 and 9 display
RMSEs for one such choice of 2 eigenvalues according to sample size. It shows that for FPCR-
24, RMSEs are already small for sample sizes of only 5 days, and decrease very slowly. It is a
remarkable behaviour of this method to be able to learn with a very small number of days. For
FPCR-1, which uses 24 times less data points but exactly at the hour of interest, the RMSEs are
much larger but decrease steadily from these large values and reach lower values than FPCR-1 after
around 20 days. Hence FPCR-1 is more tailored to the problem, but requires more days.

We considered 2, 4, 6 and 10 eigenvalues only, as forecasts were not improved by employing more
than 10 eigenvalues. The tables of RMSEs ranked by size of the learning period, for 2, 4, and
6 eigenvalues, are not displayed here but show similar behavior. Table 1 summarizes RMSEs for
these various choices for FPCR-24 and provides a comparison with BF-24 for a sample size of 30
days.

Such RMSE calculations can provide the basis for cross-validation over a subset of days prior to the
prediction period. However, one must be careful to choose the adequate performance criterion (e.g.
RMSE, MAD) to match cross-validation and the forecasting task (Gneiting, 2011). We used RMSE
in the sequel but paid attention to potential variations across performance criteria, see Figure 6.

4 Comparison with thin-plate splines
In this section, we assess the predictive abilities of BF using either bivariate splines or thin-plate

splines. Thin-plate splines also minimize fo:l |h(sx) — Xi(sk)|? + vEn(h) and lead to solution in
a basis of thin-plate splines of the type:

n 3
h(x) =Y din(lle — i)+ ajé;()
=1 Jj=1

where ¢; are linearly independent polynomials of degree 2, and n(r) is proportional to 72 log(r)
(radial functions), see Wood (2003) and references therein. We use here the R package fields
(Fields-Development-Team, 2006) to fit thin-plate splines. Figure 10 depicts the predictions for
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September 10, with varying sample sizes, obtained using the BF with thin-plate splines (with
penalty gamma chosen by cross-validation) instead of bivariate splines. A lack of coherence in
the predictions across hours can be seen when small samples are used to predict. For instance,
forecasts at 18:00, 19:00 and 20:00 dramatically differ for sample sizes of 10 and 14 days, and
dampen for larger sample sizes. This phenomenon occurs systematically over the validation period.
The explanation is that the lack of spatial fit, compared to bivariate splines, may deteriorate the
inference when only limited information is available. We can quantify this variability through the
use of jackknife (Efron, 1979). For a day, we carry out predictions using 10 out of the 11 days
previous to the day before predictions are made, removing one day at a time out of the sample,
and we produce 10 predictions for the BF with either bivariate splines or thin-plate splines. As
shown in Figure 11, the resulting variability in the forecasts is much larger using thin-plate splines
compared to using bivariate splines.

Table 2 shows that the BF-1 with bivariate splines (BF-BS-1) surpasses the BF-1 with thin-plate
splines (BF-TPS-1) over the period September 5-14 (not overlapping the period September 1-4
considered in the jackknife illustration above and showing similar behavior). It is so by a large
margin for small sample sizes and by a small margin for larger sample sizes. The BF with thin-plate
splines needs at least 16 days of learning to give reasonable predictions, due to the aforementioned
high sensitivity to the given sample. The decrease in RMSE is slow for 10-15 days and then abrupt
from 15 to 16. This pattern is reflected as well over one day in Figure 10 where we can observe
a sudden improvement in predictive power for the morning (mean level) as well as the afternoon
(large reduction in variability); the possible explanation for such sensitivity may be the non-linear
nature of the thin-plate splines fitting compared to bivariate splines fitting. Table 2 also shows the
advantage of using 24 hours when computing the estimate of g: one does not need a large number
of days to be able to produce reasonable predictions. However, the drawback of this feature is that
when sample size increases, the predictions are made using too much averaging, compared to the
tailored 1-hour based version, as seen clearly when comparing the variation of RMSEs with sample
size for BF-BS-24 and BF-BS-1. To compensate for larger instability when using smaller sample
size in BF-BS-1 and FPCR-1, we increased the penalty up to v = 1 to obtain good predictions.
Thin-plate splines are globally supported, so large scale influences can occur in the fit with no
respect of boundaries and sharp variations. Bivariate splines are locally supported, and can fit in
any geometry of polygonal domain of interest. As a result, bivariate splines are more likely to better
represent local variations. Furthermore, the computational cost of using radial functions of the kind
r?log(r) is large due to numerical approximations in the integrals used to derive scalar products,
whereas bivariate splines are merely polynomials for which immediate and exact results for integrals
can be obtained. We noticed differences of several orders of magnitude in our particular computer
set-up between bivariate splines and thin-plate splines. To overcome the difficulty of numerical
approximations, Reiss and Ogden (2010) used another basis of radial functions: radial cubic B-
splines over compact domains for a neuroimaging application. However, these compactly supported
splines do not possess optimal approximation properties, so their use may be restricted to sample
locations that are numerous and spatially covering the domain of interest, as in neuroimaging.

5 Comparison with the VAR model

In Table 2, we compare the performance of our functional approach with a standard multivariate
time series approach: the vector autoregression model (VAR). We use the the R package vars
(Pfaff, 2008) with the default settings. We first select each vector of EPA stations in the South
East at a selected hour. There are 210 locations in our data set, and fitting the VAR requires at
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least 210 observations, so we cannot use a model for each hour of the day as for BF-1 and FPCR-1.
Therefore we need to make use of all the previous hours in the 10-17 day samples to have enough
information to fit the VAR. To make a prediction using 10 days of learning for September 10, we
are using a sample size of 240 hours, which is the same as in the BF /FPCR-24 models.

The next challenge in employing the VAR model is to impute a few missing data. To do so, we use
either the spatial average over all available stations at the time when the observation is missing or
the average value over all available observations at the same hour and at the same location where
the data is missing. We denote these methods VAR-space and VAR-time in Table 2. Note that
bivariate spline methods do not suffer from these imputation problem as they naturally include an
excellent interpolation step. We could have employed this step in the VAR-space to impute these
few missing values but this was unlikely to significantly change the VAR predictions and we sticked
to the standard VAR approach. Finally, because observations are rounded to the next integer by
the EPA, many of the columns in the observations are collinear, so we add negligible normally
distributed random numbers with mean zero and standard deviation 0.01 to each observation to
make the system solvable (correcting any values that becomes negative). The VAR models have
huge errors for the 10 day sample size because the system is nearly collinear. However, we do see
a decrease in errors as the sample size increases. Nevertheless, both VAR approaches yield RMSEs
around 40-100% higher than the BF and FPCR for the maximum sample size of 17 days considered
here.

6 Effect of triangulation

Unsurprisingly, preliminary analysis showed that large scale triangulations (such as the entire con-
tinental USA) do not produce good forecasts as these spatial scales are producing spurious effects.
Indeed, the chemistry and transport occur only at a regional scale on the 24 hour-ahead horizon.
Hence, we only considered triangulations (see Figure 2) over the South-East USA to carry out sta-
tistical inference. We were not able to draw a conclusion in terms of which one is the best as none
of these three triangulations is consistently better than the others across the days of the validation
period. Obviously, there is an infinite number of triangulations for this region. Finding an optimal
triangulation for our purpose is very interesting and could lead to even better predictive abilities.
It seems to be better to use a triangulation dependent on the geography as one wants to borrow
strength spatially in a meaningful manner. For example, the ridges of mountains should be edges of
the triangulation; cities should be taken into account as predictions, for instance by putting them
at the vertices of the triangulation. This investigation is beyond the scope of this paper.

7 Conclusions and Future Research

The BF method works very well for Atlanta. The predictions are consistent for various learning
periods and the predictions are close to the exact measurements. Using the first two eigenvalues
or more, FPCR also works very well. It is hard to say which one is better in general. However, on
average, FPCR seems to slightly outperform BF in our example as it requires a smaller sample size
to be efficient.

Overall, we recommend BF since it is simpler than FPCR which requires some expert knowledge
about how many eigenvalues are needed for the best prediction. In our examples, we observed the
decay of the eigenvalues, and often could not find an abrupt fall, also called a knee, if the values of
all eigenvalues are plotted a normal scale. When plotted on a logarithmic scale, each of eigenvalues
(in the first 10 of them) has a knee. It is hard to decide which one is the right knee. Determination
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of how many eigenvalues for the best prediction is not an easy task and requires further study. Yuan
and Cai (2010) showed not only that the FPCR requires additional assumptions to be valid, but that
on well-designed simulations, predictions given by BF, with penalty p chosen with cross-validation,
compares favorably to the FPCR from Hall and Horowitz (2007). However, if one has information
about the principal components, or if the situation is made easy for their estimation, it may be
possible for FPCR to outperform BF in these cases. A reasonably accurate estimation of principal
components might explain why this occurred in our example over the prediction period September
5-14. Finally, Ferraty et al. (2011) considered pre-smoothing for FPCR, that is the perturbation
of the normal equation I'g = A at the beginning of the analysis. It seems to significantly improve
the FPCR when the sample size is small or the noise is large. One could expect our results to be
enhanced accordingly with the use of presmoothing.

It is also interesting to study the ozone value prediction at other cities, e.g., Boston, Cincinnati
and others, see Ettinger (2009) for more details. The numerical results again show that BF is easy
to use and performs well. We see that the quality of predictions reaches a plateau after a learning
period of around 15 days. Although in theory we can predict better if we use a longer learning
period, the numerical results vary based on our experiments. We also conducted experiments for
predictions using bivariate splines of degree d bigger than 5: we employed d = 6,7,8 and 9 (not
reported here). The numerical results are broadly similar to the predictions using bivariate splines
of degree d = 5.

The inclusion of co-variates (e.g. meteorological or even chemistry-transport model predictions) can
improve such purely statistical ozone predictions (Damon and Guillas, 2002; Guillas et al., 2008).
We showed here the abilities of our method with no covariates, with potential gains from the use of
this additional information. However, the treatment of covariates (themselves spatially distributed)
in this spatial functional data context is challenging. One possibility is first to merely add a non-
spatially varying average effect as a parametric component. Such semiparametric functional models
are now well understood (Aneiros and Vieu, 2006). A better idea would be to fully integrate
the functional covariates. Modelling and computational issues arise, and this is currently under
investigation.

Crainiceanu and Goldsmith (2010) recently developed Bayesian approaches for functional data,
including a specific treatment of FPCR. Uncertainties are naturally computed as a result. Such
Bayesian methods would most probably improve the quantification of uncertainties.

When the overall geographical coverage of triangulation is reasonably small (the coarseness is
another issue), the predictions are better for both BF and FPCR for our particular example.
Indeed, one should restrict itself to regions for which the spatial variability, through chemistry and
transport, corresponds to the time scale of the prediction. As a result, larger regions, possibly
the entire continental US, may be appropriate for predictions at longer horizons when larger scale
transport is occuring. One can foresee adaptive triangulations that would suit particular conditions.
The major conclusion from our results above is that bivariate splines outperform thin-plate splines
in this context both in precision and computing time, and would do even more when the domain
shows further constraints such as mountains and sea-shore that have a large impact on chemistry
and transport due to their local features. Such qualities are attractive in various settings where
taking boundaries into account would help improve interpolation over thin-plate splines (Newlands
et al., 2011). We believe that our method has the potential to be implemented for operational
pollution forecasting as a result.
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10~ 1072 10 107* 10° 10°% 107" 1078
2 11.61 11.42 11.34 11.35 11.25 11.40 12.40 14.92
4 11.60 11.21 11.21 11.35 11.46 11.68 12.07 14.28
6 12.03 11.23 11.22 11.51 11.29 11.58 12.10 12.97
10 12.77 11.23 11.36 11.46 11.24 11.68 12.24 12.23
BF 11.33 11.20 11.03 10.87 11.00 10.86 10.84 11.57

Table 1: Average 30 Day RMSE over August 20-31 by « values. FPCR-24 for 2, 4, 6 and 10
eigenvalues, BF-24 for p = 107Y.

BF-TPS-1 BF-BS-24 BF-BS-1 FPCR-24 FPCR-1 VAR-space VAR-time

10 19.75 13.68 14.58 9.82 10.08 3.07 x 108 4.87 x 107
11 19.46 13.58 13.61 9.91 9.98 50.78 111.73
12 19.21 13.22 12.70 9.91 9.94 33.18 37.54
13 18.76 13.03 12.12 9.90 9.99 27.70 28.36
14 18.32 12.94 11.52 9.89 9.87 23.41 40.78
15 18.36 13.15 11.30 9.91 9.74 18.80 23.16
16 12.48 12.95 11.05 9.92 9.82 20.40 20.51
17 12.08 12.55 10.98 9.85 9.80 19.79 1777

Table 2: Average RMSEs of BF with thin-plate splines (BF-TPS), BF-24 with bivariate splines
(v = 10~%), BF-1 with bivariate splines (y = 1), FPCR-24 with bivariate splines (v = 10~%), FPCR-
1 with bivariate splines (v = 1), VAR-space, VAR-time, over Sept 5-14 (10 day-long validation
period) with sample sizes from 10 to 17 days.
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Figure 1: Locations

of EPA stations and an example of a triangulation
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Figure 2: Triangulations 77 (blue), T5 (red), T3 (black) of the South East of the USA.
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Figure 3: Predictions using BF and FPCR with bivariate splines, over Sept.

7 and Sept.

10,

with varying sample sizes for the learning periods prior to predictions, penalty v = 10~* for both
methods and two eigenvalues for FPCR.
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Figure 4: Estimated prediction functions ¢ at different times for BF-1, penalty v = 10~*
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Figure 5: Estimated prediction functions g at different times for FPCR-1, penalty v = 10~ and
two eigenvalues.

22
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Figure 6: BF-24: Averaged daily RMSE, MAD and maximum error over August 20-31, 2005.
Sample Size varies from 5 days of learning to 30 days, and penalty for bivariate splines fitting ~
varies in the range 107! to 1078,
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BF-1 Average RMSE over August 20-31, 2005
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Figure 7: BF-1 Average RMSE over August 20-31, 2005. Sample Size varies from 5 days of learning
to 30 days, and penalty for bivariate splines fitting v varies in the range 10° to 1076.

FPCR-24 Average RMSE over August 20-31, 2005

15.5 ‘ ‘
107t
1072
151 1020
1074
145 10
107°
1077
14 10_8 H
135 -

13r b

Average RMSE Error

11 I I I I
5

10 15 20 25 30
Sample Size

Figure 8: FPCR-24 average RMSE over August 20-31 and 2 Eigenvalues. Sample Size by v values,
with number of days for the training period between 5 and 30.
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Figure 9: FPCR-1 average RMSE over August 20-31 and 2 Eigenvalues. Sample Size by ~ values,
with number of days for the training period between 5 and 30.
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Thin Plate: Atlanta on Sept 10, 2005
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Figure 10: Prediction using BF with thin-plate spline (BF-TPS), over Sept 10, with varying sample
sizes for the learning periods prior to predictions.
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Figure 11: Brute force jackknife predictions (sample size 10, after leave one out of 11), with bivariate
splines (green), thin-plate splines (red) over September 1 to 4.
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