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ABSTRACT

We give several examples of bivariate non-separable compactly supported orthonormal wavelets whose scaling func-
tions are supported over [0,3]x[0,3]. The Holder continuity properties of these wavelets are studied.
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1. INTRODUCTION

Univariate wavelets have found successful applications in signal processing since wavelet expan-
sions are more appropriate than conventional Fourier series to represent the abrupt changes in
non-stationary signals. To apply wavelet methods to digital image processing, we have to con-
struct bivariate wavelets. The most commonly used method is the tensor product of univariate
wavelets. This construction leads to a separable wavelet which has a disadvantage of giving a
particular importance to the horizontal and vertical directions. Much effort has been spent on
constructing non-separable bivariate wavelets. For example, in [1], Riemenschneider and Shen used
bivariate box splines which are natural generalizations of B-splines to construct wavelets. These
wavelets have infinite support, like the Battle-Lemarié wavelets. References [2], [3], [4], and [5]
also discuss non-separable compactly supported biorthogonal wavelets and prewavelets. In [6],
Cohen and Daubechies generalized the method in [7] to constructed non-separable bidimensional
(discontinuous) compactly supported wavelets. Also, in [8], Kovacevi¢ and Vetterli studied proper-
ties of multidimensional non-separable wavelets and numerically constructed examples of continu-

ous non-separable compactly supported bivariate wavelets. Both Cohen-Daubechies’ wavelets and
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1 -1
struct bivariate non-separable compactly supported orthonormal wavelets based on the commonly

Kovacevi¢-Vetterli’s examples are based on the dilation matrix [ ] In this paper, we con-

used uniform dilation matrix [g g]

To construct these wavelets, we start by constructing a compactly supported scaling function ¢

which generates multi-resolution analysis of Ly(R?). Let

mo(w) := mo(wy,wsz) = E cjrexp(e(jwr + kws))
0<5<p,0<k<g

be a bivariate trigonometric polynomial. We will construct mq which satisfies the following require-

ments:

1°. mo(0,0) = 1;



3
2°. 3 |mo(w + 7;)* = 1 with mo = (0,0), 71 = (7,0), 7o = (0,7), and 73 = (7, 7).
J=0

Let qg(w) = lf[l mo(w/2¥). Then 1° implies the convergence of this infinite product and hence ¢

is a well defined continuous function. 2° implies <Z> € Ly(R?). Thus, ¢ € La(R?) by Plancheral’s
Theorem. For a fixed ordering which maps bi-integers (0,0) < (7,k) < (p, q) into positive integers
{1,2,...,N} with N = (p+1)(¢ + 1), let A be a matrix of size N x N with entries

Ak1 koily ly — 4 Z Cir,go C51,d2)+(k1,k2)—2(£1,02)
J1,J2
for (0,0) < (K1, k2), (€1,02) < (p,q). In order to make {é(x — ki, y — k2), (k1, ko) € Z*} an orthonor-

mal set, we need to have
3°. 1 is a non-degenerate eigenvalue of A.

We then further study the coefficients of mg such that ¢ € C(R?) and other higher order

regularities, i.e.,
4°. ¢ € C7(R?) with v > 0.

After these preparations, we shall construct m,, v = 1,2, 3, such that

3 -
5°. Y mu(w+m)my(w+7;) =06, p,v=0,1,23.
=0
To make mg to be a low-pass filter, we require that mg have a factor (1 + ¢™)(1 + ¢*2). Thus,

mg satisfies the following
6°. mo(m,w2) =0 = mg(wy, ) for all (wy,ws) € [—7, 7.

For p = ¢ = 3, we are able to give the complete solution set of all mg satisfying 1°,2°, and
6°. We are able to identify many sets of solutions which further satisty 3° and 4°. In particular,
any tensor product of two univariate scaling functions with support in [0,3] is in our solution sets
(Example 2.1). For instance, a tensor product of Daubechies’ scaling function 9¢ is included. It
is known that 2¢(z1)2¢(z2) € C*(R?) with a > 0.5 [9]. We can expect other solutions to have
certain Holder’s exponents. We also find linear phase filters which generate an orthonormal scaling
function (Example 2.2). There are infinitely many filters mqo which are symmetric in the sense that
Chiky = Chyky (Example 2.3). Also, there are infinitely many filters mo which are neither linear
phase nor symmetric with respect to the line x = y (Example 2.4). We study the regularity of those
filters. Finally, we give two methods of construction of m,. One is for linear phase filters mq and

the other is for any given mg satisfying 1° and 2°. Once we have m,, we define

Pu(w) = my, (w/2) dw/2), p=1,2,3.



These v, will be the non-separable compactly supported orthonormal wavelets.

These constructions are given in Section 2. In Section 3, we present some numerical experi-
ments using our non-separable wavelets which show that the high frequency bands by non-separable
wavelets reveal more features than by separable wavelets. This may find applications in pattern
recognition, texture analysis and edge detection. Also, we present a comparison of image com-
pressions using tensor product and non-separable wavelets. We show that for text images, our

non-separable wavelets do a better job.

2. CONSTRUCTION OF SCALING FUNCTIONS AND WAVELETS

Rewrite mg(wq,wy) as

m(l’ay) = E cj,kl'jyk
0<5<p,0<k<g

with z = ¢ and y = ¢"“2. Also write m(z,y) in its polyphase form:
m(z,y) = folz®,y*) + e fi(a®,y") + yfo(a® y*) + wy fo(®,y7). (1)
The requirement 2° is equivalent to
m(z,y)|* + [m(—2,y)]* + |m(z, —y)|* + |m(=z,—y)" =1, V|z[=|y|=1. (2)
We have the following elementary lemma.

Lemma 2.1. A polynomial m satisfies (2) if and only if its polyphase components fo, f1, f2, f3
satisfy

1
|fol> + AP+ 1P+ |7 = T (3)
From now on, we only consider p = ¢ = 3. Thus, we write

L(z,y)=a, +bx+cy+d,zy, v=0,1,23. (4)

The requirement 1° implies m(1,1) =1, i.e.,
3
day+b,+e+d, =1 (5)
v=0

In addition, the requirement 6° implies m(—1,y) = 0 = m(z,—1) and hence,
1
al,—l—bl,—l—cl,—l—dl,zz, v=20,1,2,3. (6)

Lemma 2.2. fy, f1, f2 and fs satisfy (3) if and only if

3 3

E(aybl, +e¢,d,) =0, Z(al,cl, +b,d,) =0, (7)

v=0 v=0



3

3
Z a,d, =0, Z b,c, =0,
v=0

v=0

and
3

1
XX@+Jﬁ+cﬁ+ﬁ):Z.

v=0

(8)

(9)

This may be verified by straightforward calculation. We now present one of the main results in

this paper.

Theorem 2.1. Let

; 14+ 2)(1+
m(z,y) = Z Cj,k$]yk = %(Goo + a1oT + aory + ar1ry
0<;j<3,0<k<3

+ag0r’ + anz’y + ajpxy® + agz’y’ + a02y2)

with

ago = 1 +\/§(cosa+cosﬂ) + 2cosfcos¢

a10 = \/ﬁ(sina —cosa) —2cosfcosé + 2cosfsiné
agy = V2(sin B — cos B) — 2 cos O cos & + 2sin b cos
a1 = 2(cos 0 cos ¢ + sinfsinn — cos §sin € — sin 0 cos )
ag =1+ \/ﬁ(cosﬂ —sina) —2cosfsiné

agy =1+ \/i(cosa —sin ) — 2sin @ cosn

a9 = ﬂ(sinﬁ — cos ) — 2sin @ sinn + 2 cos O sin &
12 = V2(sin @ — cos @) — 2sin fsin 7 + 2sin 6 cos n
ayy =1 — \/é(sina + sin #) 4+ 2sin fsin 7.

Suppose that «, 3,0,¢,n satisfy the following

cos B cos £ + cos @ sin € + sinf cosn + sin fsiny = 2sin(a + %)sin (ﬂ + %) .
Then m(z,y) satisfies (2).

Proof: It follows from (7), (8) and (9) that
3
1

and

v=0
Then we have
3 1
Z(au - bz/ +c — dz/)2 = =
v=0 4

By (6), it follows that

(10)

(11)

(12)



Now m(—1,y) = 0 = m(z, —1) implies that ag + co = a2 + ¢3 and a1 + ¢; = az + ¢3. It follows that

1 1 1 1
ag+ co = §—|—4\/§cosa:a2—|—c2, and a; + ¢; = g—l——4\/§sina:¢13—|—a3. (13)
Similarly, we have
+b 1+ ! o] +b; and ay + b 1+ ! in 3 +5b (14)
a =—4+——cosfi=ua and a =—+4+——sinfB=a .
0oF b0 =2 o 1+ 0 202 =2 o 3+ 03
In other words, we have
bi:%—l—ﬁcosﬁ—ai, 1 =0,1,
bizé—l—ﬁsinﬁ—ai, 1= 2,3,
czzé—l—ﬁcosa—ai, 1 =10,2,
cZ:l—l—Lsina—ai, 1 =1,3,
12 (15)
dy = —2/ cos a + cos 3) + ao,
di = ;W(smoz—l— cos 3) + ax,
dy = 41%( cosa + sin ) + aq,
ds = ;W(smoz + sin ) + as.
We now find the relations among the a,’s. By (8), specifically, 0 = 3>_, a,d,, we have
1 : 1 ?
ag — Ccos & + cos +la — sin & + cos
. 9) + (o5t ")
1 ? 1 ?
+ <a2 — ﬁ(cosa + sin ﬂ)) + (Clg — ﬁ(sina + sin ﬁ))
1
- = (1 +sinfa+ ) sin(4 + g)) . (16)
By (8), specifically, >°_, b,c, = 0 and 3-°_ a,d, = 0, we have
1 1.
ag — cos o + cos + a1 — sin « + cos
+ a9 — cosa + sin 3) + a3 — —=(sin o + sin
12 8\/5( ﬁ) 3 8\/5( 6)
= (1 +sinfa+ ) sin(d + f)) . (17)
Let ag = ag — Slw(cosa + cosf3), 41 = a3 — 8\1/5(81110( + cosf3), 4y = az — Slw(cosa + sin ),
a3 = az — ;W(sina + sin 3). The equations (16) and (17) become
1\? 1\? 1\? 1\? 1\?2
(fo-55) (@ -55) +(@-5) +(8-75) =(5)
It follows that
ag = % + 81—2(cosa + cos ) + é cos f cos &,
a1:%+$(sina—l—cosﬁ)—l—% cos fsin ¢, 18
a2:%+$(c0sa—l—sinﬁ)—l—% sin @ cos 7, (18)
as = % + Slw(sina—l— sin ) + é sin # sin 7.



By (17) and (18), a, 3, 60,&,n must satisfy

1
- 4+ g(cosecosf + cos Bsin € + sin 6 cosn + sin  sin n)

- Lo Do)
= 1 4s1na 1 Sin 1 .

After simplified, the above equation is (12). The above derivations show that any solution m(z,y)
satisfying 1°,2°, and 6° must be in the form (10) and (11) with «, 8,7, &, n satisfying (12).
On the other hand, any solution m in the form (10) and (11) with «, 3,7, £, n satisfying (12) will
3 3

satisfy (17) and (16). These equations (17) and (16) are equivalent to Z a,d, = 0 and Z b,c, = 0.
v=0 v=0

By the expressions (11), we have (13), (14) and (15). These equations imply that

3 ) 1

I./_bl/ I./_dl/ =
UZ:;)(CL +ec ) 1
3 ) 1

I./_bl/_ v dl/ -
l;)(a ¢, +d,) 1
3 1
dav+b+e,+4d) =
v=0 4

The above three equations are equivalent to the two equations in (7) and equation (9). This

completes the proof. m

Let us give several examples of filters m(z,y) before studying their orthonormality conditions,

regularity, and the construction of wavelets from the scaling functions generated by these filters.

Example 2.1. We first look for separable filters. If we set £ = 5 in (12), then (12) becomes
(cos @ + sinf)(cos & +sin ) = (cos o + sin a)(cos B + sin 3).
If we further choose § = 3, then { = @ and m(z,y) in (10) may be simplified into
m(z,y) = M(z, 5)M(y, o)

with
1
M(z,a) = Z :1:(1 +2cos a + \/§(sina —cosa)r + (1 — V25sin oz);r:Z). (19)

Let

Slwr,ws) = [T M('F, @) M ('3, B)
k=1

be a scaling function, where a and 3 are some appropriate parameters. For a = = %,

: 111T++v3  3++V3 . 3—vV3 1-v3 .
M(62w75’ﬂ'/12) — 5 4\/__|_ 4\/_62w_|_ 4\/_622w_|_ 4\/_623w




A

is the filter associated with Daubechies’ scaling function ,¢ [9]. In this case, qz(wl,wg) = Qq/;(wl) 20 (w2)

which is a tensor product of the univariate scaling function.

Hence, for § = 8 and & = n = a, (12) is satisfied and m(z,y) given in (10) is a separable filter.
"

Example 2.2. Let us look for linear phase filters. That is, we need to have
Qoo = @22, o2 = 20, @12 = d10, Go1 = d21.

Solving these four equations together with (12), we obtain the following 8 filters satisfying 1°,2°,
and 6° with a fixed length p = ¢ = 3 up to a shift.

1) m(z,y) = S (=14 2z — a* + 2y — 22y + 2%y — y? + 2zy* — 2%y?);
2) m(z,y) = (1+ :z:)8(1 +y) (12— 2y + 20y — 2%y 1 o + 2297)

3) m(z,y) = O :c)8(1 T (1 9p 40?4 20y by — 2y 4 P,

1) m(z,y) = z(1+ 1’1(1 + y)y’

5) m(z,y) (1—|-:v)8(1-|-y)(1+$2_2$y+y2+$2y2);

6) m(z,y) = (L+ “'B)f(l + y)’

7) mia,y) = ZLF xi(l ),

8) mzy) = 1LY

Example 2.3. Let us consider the filter m(z,y) symmetric with respect to the line x = y. Then
a12 = da1, oz = d20, 001 = a19. These imply o = 3 and sinf cosn = cosfsiné. Then by (12), our
a, 3,0, &, n, must satisfy

{cos@cosf +2cos fsin ¢ 4 sin fsiny = 2sin? (a + %)7 (20)

sinf cos = cos #sin .

There are infinitely many possible ¢ and n for which we can find 6 and « satistying the two
equations in (20), including (¢,n) € [x/10,97/10] x [x/3,197/36]. We list four concrete examples.



Ex.2.3.1. | Ex.2.3.2. | Ex.2.3.3. | Ex.2.3.4
aoo 1.6330 2.1222 1.9891 2.3753
aio 1.5630 1.1428 1.2597 1.1796
az | —0.5630 | —0.4291 | —0.4661 | —0.4725
ao 1.5630 1.1428 1.2597 1.1796
an 0.8680 1.1454 1.0698 0.5858
an | —0.3073 | —0.4218 | —0.3941 | —0.2346
apz | —0.5630 | —0.4291 | —0.4661 | —0.4725
a2 | —0.3073 | —0.4218 | —0.3941 | —0.2346
a2 0.1135 0.1488 0.1422 0.0940

We also give two examples which have rational coefficients:

(1+2)(1+y)

—128zy° + 272%y?).

m(z,y) = 100
(1+2)(1+y)
m(z,y) 3468
Example 2.4. Let (0,¢) € [x/4,Tr/12]

(11 + 6z —

222 + 6y + 132y — 42’y — 2y°

x [7 /4,77 [12] be fixed. Let

a=3r/4— arcsin(\/sin(ﬁ + 7 /4)sin(€ 4+ 7 /4)).
Set n = ¢ and = a. Then (12) is satisfied. Any 6,¢ give a filter m(z,y) by (10).

Example 2.5. We look for m(z,y) which is in the following form:

with

14y 2

e = ()

p(z,y) =a+ba+cy +dey = (1,1’)[

The requirement 2° or (2) implies

From the last two equations, the matrix [a

plz,y) = [1,z] [g] [v, 0] [;] which is a tensor product of two polynomials. Hence, m(z,y) is

included in Example 2.1. =

5 ) p(z,y)

s ally)

ab+cd =—1,ac+bd = —1,

{a2—|—62—|—c2—|—d24,

ad = 1 bc—z

i
b d

—dzy® +2%y?),

(544 + 120z — 522° 4 120y + 4162y — 1282°y — 52y°

Let ¢ be the scaling function defined in terms of Fourier transform as follows:

Hm(eﬂ“ 62’“),

w17w2

: a
is of rank one. Thus, [b d] [ﬂ] [v, 0] and

(21)



where the polynomial m(z,y) is given in (10) and satisfies (12). We now study the orthonormality
of the scaling function ¢. Since m satisfies (2) and (5), we know that ¢ € Ly(R?). Let

gy = / &2, 9)(x — b1,y — by)dedy, for all ({1,05) € Z2. (22)
R2

Recauing m(;z;,y) = Eogkl,kz)gs ckhbxklybv we know ¢(x7y) = 4Ek1,k2 ck17k2¢(2$ - k172y - kQ)
Using this, (22) implies

ny1,n2 k1 ko

gy 0y = 4 Z (E Ck1,k26k1+n1—2£1,k2+n2—252) nyng (23)

for any (¢1,03), (n1,nqe) € Z*. Since support (¢) C [0,3]?, ay, 4, # 0 for ({1,0y) € Z* N (—3,3)*. Let
a be a vector of length 25 consisting of ay,s,’s for some fixed ordering of indices ({1, l3)’s and let A

be a matrix of size 25 x 25 with entries
A(f1£2)7(n17n2) =4 Z Chiky Chy +nq —241 kotna—202 (24)
k1,k2
for the same ordering. Then, o = Aa. That is, « is an eigenvector of A with eigenvalue 1. Since
2 _ 4 1 d
|m($7y)| - Z Z Ckiky Chi+j1 koo ¥ 1y 27
J1,d2 K1,k
requirement (2) implies

L j1=752=0,
4 E Clkyky Ck1+251,k2+252 — 5j1j2 = {0’ o%uhervfrise.
k1,k2
Let & be a vector of length 25 consisting of §;, ;, for (ji1,72) € (—3,3) N Z2. Then § = Aé, or § is
also an eigenvector of A with eigenvalue 1. If the eigenvalue 1 is non-degenerate, then o = 6 by the
Poisson summation formula, so {é(x — {1,y — {3), ({1,{3) € Z*} is orthonormal. This implies the

following.

Theorem 2.2. Let m(xz,y) be a polynomial satisfying (2) and m(1,1) = 1. Let A be the matrix
defined above. Let ¢ be the scaling function generated by m(e®1,e¢*2). If 1 is a non-degenerate
eigenvalue of A, then {¢(z — {1,y — {3),({1,0) € Z*} is orthonormal.

This is a generalization of the Lawton condition [10] for orthonormality. We use this condition

to check the orthonormality of ¢ generated by filters m(e™1, ¢™?) given in Examples 2.1-2.4.
Example 2.1. (Continued) Let

M(em, a) = ho + hie™ + hoe'® + hae™

with hg = % + ;Wcosa,hl = i + ﬁsina,hg = i— ﬁcosa and hs = i— ﬁsina. Writing

|M(€w,0z)|2 = po _I_pl(eiw + 6—iw) _I_p2(62iw + 6—22@) _I_p3(6i3w + e—iSw)’



we have Lawton’s matrix

p ps 0 0 O 0 ps 0 0 O
po p1 p2 ps O T om0 ps O
L=2ps pr po pr p2| =20 pr 5 p O
0 ps p2 1 po 0 p3 0 pm %
0 0 0 p3 po 0 0 0 p3s O

since pg = % and p; = 0. If 1 is a degenerate eigenvalue of L, then

N, — . _1 .
L 2p =1 2p3 0 — det 3 2p3 :
0 2p3 2p1 —1 1

0 = det

since p; + ps = %. It follows that ps = :I:%. Since p3 = hohs = (i + QIW cos a) (i - ﬁsin a) , we
find that a = —7. In this case, M(e™, —m/4) = % which does not generate an orthonormal
scaling function. For any other a € [0,27], the eigenvalue 1 of L is not degenerate and hence
M (w,a) will generate an orthonormal scaling function. Hence, mo(wi,wq) = M(e™1, a)M (™2, 3)
generates an orthonormal scaling function ¢ in Ly(R*) if a # —% and f # —%. =

Example 2.2.(Continued) Using Theorem 2.2 to check the 8 filters given in Example 2.2, we find

that the first 4 filters generate an orthonormal scaling function while the last 4 filters do not. =

Example 2.3.(Continued) The six filters given in Example 2.3 all generate an orthonormal scaling
functions as do the filter based on (¢,n) € [7/10,97/10] x [x/3,197/36]. =

Example 2.4.(Continued) This family of filters generate orthonormal scaling functions for (6,n) €
(/4,77 [12]%
Next we consider the regularity of the scaling function ¢ generated by filters m(e'1, e*?) given

in Theorem 2.1. To check if ¢ € C7(R?), we study the finiteness of/ |6(w)|(1 + |w|")dw. Write
R2

B 1+ e ] 4 ¢
2 2

m(ewl, ei‘”z’) pwr,wq).

We define an operator P acting on a trigonometric polynomial space £ := { Z cjkei(j“’1+k“’2) :

~1<jk<1

Cik € R} by
3 w L fw
(P =lp(S+m)Pr (S +m), ek (25)
=0
Theorem 2.3. Let fo =1 and X be the spectral radius of the operator P so that

J (P @) < OO 6y (26)

for a sufficiently small §. If A < 2, then ¢ generated by m(e™?,e™?) is continuous. Further,
¢ € C7(R?) for v < (1/2)log,(2/X).

10



Proof: It can be checked by induction that

Then for v < e < %,

N N B sin ‘*’21 sin 2 'v
Joa BN oo = [ FTETE (4 o T (57) o
sin ¥ sip w2 |12 ) 2 §ip 9L gin @2 |12 o 3
< /R2 W_IQ w_22 (14 |w|)*dw /R2 _12 —_22 H p <2k) |*dw
2 2 2 2

l
n 2

1 - —n\l—4ige
S O ( ) (1 —I_ Z /Qn—lﬂ,s|wl|s2nﬂ, 2 (1 2 ) H |p<

(5 — '7) n=1 2n—17r<|W2|<2ﬂﬂ. k=1

- o) (s S L)
O(gi )<1+22 n(1-2) A+5)”)5

for & sufficiently small. Hence, ¢ € C7(R?) if 27172 )" < 1. This implies A < 2. m

SN
IS
€
S ——

W= t\?'i| S

IN

We now apply Theorem 2.3 to check the regularity of the scaling functions generated by the
filters given in Examples 2.1-2.4.

Example 2.1. (Continued) Recalling M(z, o) from (19), let

2 . 1 ] .
plw) ==+ cos o + %_(sinoz — cosa)e™ + (5 — %) e,

1
2

bl
g (S

Then [p(w)* = go + qi(e™ + €7™) 4 ga(e™ + ™) with
3 1 .
© = 3 + 7§(cos a — sina) — sin a cos a,
G = —%—%(cosa—sina)—l—sinozcosa:1—q0,
1 1 . 1.
G = Z—|-2\/§(cosoz—sma)—§s1nacosa:5(%—1)-

Define by

Pf(2w) = [p(w)]*f(w) + |p(w + 7)|*f(w + 7).
If fo(w) =1, then Pfo(2w) = 2q0 + 2g2(e™ + 7). If f1(w) = €™ + 7™, then Pfi1(2w) = 4¢1 +
2¢1(e™ + e~™). Thus, under the basis {fo, f1}, the matrix form of P is P = [2(]0 2(]2] . The

41 2qx
eigenvalues of P are

_ — o J1EV4qg -3, ifdg >3
A= T4y _{2\/71—(]0, if 4g0 < 3.

11



By Theorem 2.3, in order to have ¢ € C(R) generated by the filter M(e™, ), we need to have
A < 2. It follows that 0 < ¢go < 1. This requires

—V2 < cosa —sina < 0.
Thus, if @ # —7/4 and 8 # —x /4 satisfy
—V2 < cosa—sina < 0and — V2 < cos 8 —sinf3 < 0,

then M(e™1, a)M(e™, 3) generates a continuous orthonormal scaling function ¢ supported on
[0,3] x [0,3]. For other a, we refer to [14] where Colella and Heil gave a detail study of the

continuity of the orthonormal scaling functions supported on [0, 3] in the univariate setting. m

Example 2.2. (Continued) All ¢ generated by m given in Example 2.2 are only in Ly(R?), none
are continuous. m

Example 2.3. (Continued) Let

plwr,wy) = a0+ a1pe™* + age™? + a11€1F92) 4 gy0e" 1 gy et(2erten)

_I_a226i2(wl+WQ) _I_ a126i(w1+2(U2) _I_ a026i2w2.
for a;i’s given in (10). Define
Pf(2wi,2w) = |p(wr,w)]’ f(wi,w2) + [plwr + 7, w2) [ w1 + 7, w2)
Hplwr,wz + 1) f(wi,wz + 1) + plwr + 7wz + 1) f (w1 + 7,02 + 7).
If fo(wi,w2) =1, then

4
Pfo(le,QWQ) = Z QO,ufu(le,sz)

v=0
with
filwr,wp) = € 4 e fo(wr,wy) = ellrten) 4 gmiluiten),
falwr,wp) = €2 472 fiwy,w,) = elr7we) g gmilwimwn)

4
Then Pf,(2wi,2wz) = > quufu(2w1, 2w;). Under the basis { fo, fi. f2, f3, f1}, the matrix for the P is
pn=0

[quv]o<up<a. The spectral radius for the four explicit solution sets listed in Example 2.3 is less than 2,
while the spectral radius for the filters with rational coefficients is not less than 2. By Theorem 2.3,
the corresponding filters Ex.2.3.1-2.3.4 generate continuous orthonormal scaling functions supported
on [0,3] x [0, 3]. We plot the largest eigenvalue as a function of ({,n) € [x/10,97/10] x [x /3,197 /36]
in Fig. 1. =m

Example 2.4. (Continued) Theorem 2.3 implies all scaling functions from Example 2.4 within the

contour line A = 2 as shown in Fig. 2 have certain Holder continuity. m

12
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Figure 2. Contour of spectrum A based on (6,¢) € [x/4, 77 /12)?



Finally, we show how to construct wavelets associated with the scaling ¢ generated by m given
in Theorem 2.1 which satisfies the conditions in Theorem 2.2.

First, for the linear phase filters given in Example 2.2, we can find m, satisfying requirement 5°

—3i(u)1 +(.«J2 )

as follows: Since m(wy,wy) = e m(w1,ws), the following matrix is unitary

m(wy,ws)  m(wr + mwr)  mw,wa+ 1) m(wr + T,wy + 7)
my(wr,we) mi(wr + 7,wy) my(wi,wa +7) my(ws + 7, ws + 7)
ma(wr,wz) Mma(wr + 7,wy) mao(wr,wy +7) ma(w + 7, ws + 7)
ma(wi,wz) ma(wr + 7,wy) mg(wr,wa +7) ma(ws + 7, ws + 7)

where

my(wi,ws) = € m(wy,wy 4 7) (27)
ma(wr,w2) = e“'m(wy + 7wy + 7).

{ my (wi,wy) = €“1m(w; + T, ws)

For other filters, we construct m, by a different method. We begin with polyphase components
fo, fi, f2, f5 of m(z,y). Write [fo,fl,fg,fg]T = a+ zb + yc + zyd with a = (a1, a1, aq,a3)’ and
etc.. Let L = [a,b,c,d] be a 4 x 4 matrix. Then there exists an orthonormal matrix H (by the
Householder transform) such that H L is a lower triangular matrix. Then

]Eo fo 1 x 0 0 0 1
f f x x x 0 0 x
~ = = HL =

I2 f2 Yy x x x 0 Y
g [ Ty X x x x| |y

Note that, by (3),
f F 3 ¢ 1
ol + 1P + 1L+ 11 = 1l + AP+ A1+ 157 =

If | fo| = 1, then fi = fa = f5 = 0 and we are done. Otherwise, let

v s 1 2
v = [vaflvf?va]T - 5[1707070]T and H(U) = ]4 - Evv*
be a Householder matrix such that
Jo 1/2
0
H(v Il =
W 2=
I3 0
For convenience, let H(v) be either an identity matrix of size 4 x 4 if | fo| = 1 or the Householder
matrix H(v) above. Then we have
fo 1/2
fil _ 0
L= HH(v) 0
I3 0

14



It follows that ]
[fo, f1, f2, 5] = [5,0,0,0] H(v)H.
By choosing M(z,y) = $H(v)H, we have
1
M(z,y)M™(z,y) = 1]4

with [fo, f1, f2, f5] in the first row of M(z,y). We should note that all entries of M(x,y) are poly-
nomials of  and y since v*v is a constant and H is a constant matrix. We now define polynomials

m,, v =0,1,2,3 with mg(w) = m(e™1, ™?) as follows:

mo(w + 7)) mo(w + m1) mo(w + 72) mo(w + 73)
mi(w + 7)) mi(w+m) mi(w+w2) mi(w+ 7ws)
mo(w + 7o) ma(w+ m1) ma(w+ 72) ma(w + 73)
ma(w + 7o) s(w+m) mg(w+mw) ms(w+ 7ws)
1 1 1 1 0 0 0
I =10 e* 0 0

(28)
-1 =1 1 ][0 0 0 et
Theorem 2.4. Let m, be trigonometric polynomials constructed in (28) above. Let ¢ be the scaling

function generated by mg by (21), where mg is given in Theorem 2.1 and satisfies the conditions in
Theorem 2.2. Let 1, be the wavelets defined by

A

hu(w) = my (w/2) §w/2),v =1,2,3. (29)
Then

{28, (22— 0,2 —0y) © (l,0) € 2%k € Zv=1,2,3}
is an orthonormal basis for Ly (R).

The proof is standard based on multi-resolution analysis of Ly(R?) (cf. [11] for the univariate
setting).

3. NUMERICAL EXPERIMENTS AND REMARKS
Let f be an image with finite energy, i.e., f € La(R?). Let s;. = f(5/2% k/2), (5, k) € Z? be the

digitization of f, where 1/2* is a sampling step. To use the wavelets constructed in this paper for

image processing, we first approximate f by

¢ .
Adf) = 30 sile2e )2y k)
(j.k)€2?
where ¢ is an orthonormal continuous scaling function constructed in the previous section. Since

qg(2j7r,2k7r) = 0 for all (5,k) € Z*\{(0,0)}, we have

1= Y dé(z—j,y—k), for each (z,y) € R

(7,k)€2?

15



Since ¢ has compact support, it follows that A,(f) converges to f pointwise as { — oo if f is a

continuous function.

Let Vo = spany {¢(z — j,y — k) : (j, k) € Z*} and V}, := {g(2%-),Vg € Vy} for all k € Z. Writing
v, v =1,2,3 for the wavelets associated with ¢ constructed by the method discussed in the previous
section, let Wy, := spany, {,(z — j,y — k) : (j, k) € Z*} and Wy, := {g(2*-) : Vg € W, }. Then
Vi C Vigr for all k € Z by (21). It can be shown that {Vi, k € Z} forms a multi-resolution analysis
of Ly(R?*). By 5°, we know that Vi = Vi & Wy, & Wy & Wy 3. Without loss of generality, we
may assume that £ = 1. It is clear that A;(f) € V4. By the relation above, we may express the
approximate image A{(f) by sub-images in Vo, Wy 1, Wy 2, and Wy 5.

Recall (21) and (29) in the previous section. It follows from 5° that

3

d(w/2) = szv (/2 + ma)d, (w)

v=0 k=0

with g := ¢. In the frequency domain, writing F(w Z fire iwrtke2) e have
(j.k)ez?

o

Ai(f)(w)

Fg(w/g 2)6(w/2)
= 3N m (@2 + 7)) Fw/2)t, (w).

v=0 k=0

Let us denote the four terms in the above summation by

Ao(N)(w) = Y mo(w/2 + ) F(w/2)¢(w)

Do, (f)(w) = Z_:ml,(w/Q—l—wk)F(w/Q);/;y(w), v=1,23.

In the time domain, we write

Ao(f) = DY fojrdlz—jy—k)eVy

(J.k) €22
DO,y(f) = Z go,l/7]'7k77bl/($_j7y_k) € WO,wl/: 17273'
(J.k) €22
The computation of {fox : (j, k) € Z*} is equivalent to the convolution of {c¢;x : 0 < j,k < 3} with
{fix: (J, k) € Z*} and down-sampling by 2, where ¢;;’s are given in (10). Similarly, for the digital
sub-images {go,.jk : (J, k) € Z*}. Such a decomposition of A;(f) into Ae(f) and Do, (f) may be

carried out repeatedly.

On the other hand, when we have Ag(f) and Dg,(f), we can reconstruct A;(f) exactly. Indeed,
recalling (21) and (29), we have,

Ao(Nw) = Folw)mo(w/2)p(w/2),
Do, (f)w) = Gou(w)m,(w/2)d(w/2),v =1,2,3,

16



where Fy and (Gg,, denote the discrete Fourier transform of the digital sub-images { fo jx, (7, k) € Z*}
and {go,.x : (j,k) € Z*}. By adding the four terms above together, we recover AT(\f)(w) In the
time domain, the computation of Fy(w)mg(w/2) is equivalent to up-sampling the sub-image { fo jx :
(4, k) € Z*} by 2 and then convoluting with {¢;z : 0 < 7,k < 3}. Similarly, for the computation of
(o, (w)m,(w/2). The reconstruction is exact because that the filters m,,v = 0,1,2,3, satisfy 2°.

Let us first present an interesting example of those four filters m,’s below, although the scaling
function and wavelets associated with these filters are not continuous.
Table 1. The coefficients of trigonometric polynomial m, (e™1, e'“2)

with the constant term in the lower and left corner, v = 0,1, 2, 3.

0.12438 0.124065 0.134125 | 0.134441
— 0.125309 | —0.124997 | —0.116181 | 0.134125
0.116492 | —0.13257 | —0.124997 | 0.124065
0.115563 0.116492 0.125309 | 0.12438
0.119815 0.103642 —0.128752 | —0.129055
0.136266 | —0.120253 0.111526 | —0.128752
S 0.117017 | —0.143438 0.124518 | —0.114555
0.132964 0.142446 —0.124211 | —0.114869
0.00393323 | —0.0044761 | —0.00422041 | 0.00418892
0.00390188 | 0.00393323 0.00423092 | 0.00419957
0 0 | 0.000127888 0.000110625 | —0.000137428 | —0.000137751
0 0 | 0.000145448 | —0.000128356 0.000119041 | —0.000137428
e — 0.129237 0.111792 0.130945 0.115243 | —0.00406622 | —0.00433127
7| 0.146981 | —0.129709 —0.106902 0.107394 0.00350473 | —0.00432173
—0.120619 0.137267 0.125783 —0.124314 0.00390884 | —0.00387968
—0.119657 | —0.120619 —0.133362 —0.132429 | —0.00391858 | —0.00388954
0.124063 0.107316 —0.137383 —0.137147 0.00436924 | 0.00437951
0.141097 | —0.124516 0.110856 —0.129236 | —0.00378467 | 0.00436924
" —0.111723 0.135288 —0.12695 0.116734 | —0.00407191 | 0.00404148
5T —0.110242 —0.11987 0.134239 0.125177 0.00408205 | 0.00405175
—0.0037948 | 0.00431857 0.00407185 | —0.00404147 0 0
—0.00376455 | —0.0037948 | —0.00408203 | —0.00405178 0 0

We have experimented with the decomposition and reconstruction procedures using several well-
known images. In Fig. 3 we show the decompositions of Lenna and a fingerprint. We may compare
them with the decomposition by separable filters, e.g., the filter associated with Daubechies’ scaling
function and wavelet 3¢ and 91). We can see that the sub-images in the high frequency bands in

Fig. 3 reveal more features than does the separable filter in Fig. 4.

These four filters may find an application in the analysis of images of an electronic circuit. Since

many different gateways look similar in the horizontal and vertical sub-images when an image of

17



Figure 3. Decomposition by a non-separable filter given in Table 1.

Figure 4. Decomposition by a separable filter associated with Daubechies’ scaling function 5¢

18



a circuit 1s decomposed into low-pass and three high-pass band sub-images, the diagonal bandpass

sub-image may be a key to differentiate the gateway types.

We have also implemented an image compression scheme using the non-separable wavelets and
compared with the tensor product Haar, Daubechies wavelets D4 and D6, and the well-known
biorthogonal wavelets with lengths 9 and 7 which are the wavelets for FBI finger print compression
standard. The image compression scheme consists of multilevel wavelet decomposition, embed-
ded zero-tree encoding and decoding [12], multilevel wavelet reconstruction, peak signal to noise

ratio(PSNR) error analysis.

The embedded zero-tree encoding and decoding algorithm consists of scalar quantization with a
coded significance map which maps spatial relevance across scales. That is, small coefficients in the
coarser scales will correspond to small coefficients in all the finer scales at the same spatial location.
The embedded aspect is a binary code which intertwines the significance map with the thresholding
values. The coding process yields an actual compressed file whose size is compared to the original

binary gray-scale image file which contains a byte per pixel.

This coding scheme is currently respected as one of the best wavelet encoders available for image
compression. For this experiment, periodic boundaries were employed for both the separable and

non-separable wavelets.

The peak signal to noise ratio(PSNR) for a gray-scale image = and its compressed reconstruction

T is given by

RMSE <M, ;<N
NM )
9255
PSNR = 201 <7)
810\ RMSE

Because this application is image dependent, we have chosen three images: a text image shown
on the left of Figure 5 besides the standard Lenna image and a finger-print image of size 512 x 512
in Figure 3.

Table 2. PSNR Image Compression Comparison

Compression Ratio 5:1
Images ‘ Text ‘ Lenna ‘ Finger
Tensor Haar 44.2946 | 39.5135 | 35.0276
Tensor D4 35.9717 | 40.3629 | 36.8700
Tensor D6 35.4661 | 40.6019 | 37.3612
Tensor 9/7 35.4661 | 41.1259 | 37.7037
Non-separable | 44.3010 | 40.2244 | 36.8700
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These &, will be the nonseparable compacsly supported orthonorms
These constructions are given in Section 2. In Section 3, we prese:
using eur nenseparable wavelets which show that the high frequency

reveal more features than by separable wavelsis,
2. CONSTRUCTION OF SCALING FUNCTIONS .

Rewrtle mgluy, wy) as

mia,y) = Z cipady®

ogigp gty

with = = ¢ and y = ™2, Alse wrile mia, w) In s polyphase fonm
mlz,y) = fole® p') + wfi(55 ") Fpfala® g+
The reguicement 2° i equivalent to
by )P + [l —2, g} + Ielio, =) [+ [m{—z, —y)i* =
We bave the following elementary lemma.

Lemma 2.1, A pelynomial m satisfies (2} Il and only if its poly
satisfy
. 1
YalP + AP+ R+ R = i

From now on, we ondy constder p= ¢ = 3. Thus, we write

‘Fhese &, will be $he sonseparable compacily supported orthonormg
These constructions are given in Section 2 In Section 3, we prose
using our nonseparable wavelets which show that the high frequency t

reveal more features dhan by separable wavelels,
2. CONSTRUCTION OF SCALING FUNCTIONS |

Rewrile oy o) as

mia,yl = E copady®
LRIk

with 7w ™ and o= e, Alse wiite mio, v ] in s polyplhase form
miz,g) = fole’ ) + o fil5 % Fuhla M+
The reguireroent 2° s equivalent to
oz )P + ol )+ flie, — )+ o=z~ =
We bave the following elementary lemnma.

Lemma 2.1, A pelynomial m satisfies (2] if and enly if its poly
salisfy
= 1
Wl + AP+ AP+ 1RF = e

From now on, we only consider p= ¢ = 3. Thus, we write

Figure 5. A Text Image (left) and Reconstructed Image after 10:1 Compression(right)

Compression Ratio 10:1
Images ‘ Text ‘ Lenna ‘ Finger
Tensor Haar 24.2022 | 35.3078 | 31.5978
Tensor D4 25.2776 | 36.5947 | 32.5100
Tensor D6 24.8288 | 36.9106 | 32.8931
Tensor 9/7 24.7949 | 38.1000 | 33.0980
Non-separable | 26.5489 | 36.4201 | 32.560

Compression Ratio 15:1
Images ‘ Text ‘ Lenna ‘ Finger
Tensor Haar 20.3240 | 32.8821 | 30.1455
Tensor D4 21.3618 | 35.1661 | 31.0029
Tensor D6 20.9433 | 35.5861 | 31.0523
Tensor 9/7 20.9693 | 35.8116 | 32.0364
Non-separable | 21.9141 | 34.9405 | 30.6138

We can see that our non-separable wavelets do a significantly better job for the text image for
compression ratios 10 and 15. This may find an application for fax transmission. We should remark
that the non-separable filters in the numerical experiments above are in Example 2.4 and we did

not exhaust all the possible non-separable filters in Theorem 2.1.
Finally, we have the following two remarks in order.

Remark 1. It is very easy to implement the filters constructed in this paper. In particular, for



4

a filter m,, we express the coefficient matrix in singular value form, i.e., [¢,j]o<ij<3 = Z Uivkug.

k=1

with singular values o}’s and singular vectors v;’s and ug’s. Then the processing of the convolution

of m, with any digital image {s;;} is the same as the processing of the convolution of separable
filters (cf. [13]) vi, and u} with {s;;} for k = 1,2, 3,4 and then addition of the resulting convolutions

multiplied by appropriate singular values.

Remark 2. It would be interesting to construct continuous compactly supported scaling functions

and wavelets associated with a linear phase filter. The authors are able to obtain a complete solution
of the linear phase filters of size 6x6 satisfying 1°,2°, and 6° (cf. [15]).
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