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Abstract

We study an unconstrained version of the ℓq minimization for the sparse solution

of under-determined linear systems for 0 < q ≤ 1. Although the minimization is non-

convex when q < 1, we introduce a regularization and develop an iterative algorithm.

We show that the iterative algorithm converges and the iterative solutions converge

to the sparse solution under some additional assumptions on under-determined linear

systems. Numerical experiments are presented to demonstrate the effectiveness of

our approach.
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1 Introduction

We are interested in computing the sparse solution of under-determined linear systems in
the following sense: letting A be a matrix of size m×N with m << N and b be a vector
which is compressible, i.e., there exists a vector x∗ with ‖x∗‖0 < m such that b = Ax∗, we
would like to find the solution of the following minimization

min
x∈RN

{‖x‖0, Ax = b}, (1)
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where ‖x‖0 denotes the number of nonzero components of x. The solution is called the
sparse solution of Ax = b. This is one of critical problems in compressed sensing research.
This problem is motivated by data compression, error correction decodes, n-term approxi-
mation, and etc.. (See, e.g. [28]). It is known that problem (1) needs non-polynomial time
to solve (cf. [30]). It is crucial to recognize that one natural approach to tackle (1) is to
solve the following convex minimization problem:

min
x∈RN

{‖x‖1, Ax = b}, (2)

where ‖x‖1 =
∑N

j=1 |xj | is the standard ℓ1 norm. Note that it is equivalent to a linear
programming problem which can be solved by the standard simplex method or interior
point method.

The study of this problem (2) was pioneered by Donoho, Candès and their collaborators.
Many researchers have made a lot of contributions related to the existence, uniqueness,
and other properties of the sparse solution as well as computational algorithms and their
convergence analysis to tackle problem (1). See survey papers in [1], [3], and [2].

To motivate our study, let us outline some research results related to numerical algo-
rithms for the computation of sparse solutions of (1). First of all, the ℓ1 minimization (2)
by Candès and his collaborators (cf. [5]) is a successful approach to find sparse solutions
of (1) if the sparsity s = ‖x‖0 is not very large. A MATLAB program based on a linear
programming method for the sparse solution is available on-line at the Candès webpage.
The performance of the ℓ1 method is further improved based on the ideas of repeating
reweighted iteration (cf. [8]). Another approach is based on orthogonal greedy algorithm
(OGA). See [35] and [36] for some theoretic study and [33] for an efficient numerical al-
gorithm. The performance of the OGA in [33] is much improved based on the greedy ℓ1

algorithm proposed recently in [27]. Another approach for the computation of the sparse
solutions is based on ℓq minimization with 0 < q < 1. That is, we consider the following

min
x∈RN

{‖x‖q
q, Ax = b}, (3)

where ‖x‖q
q =

∑N
j=1 |xj|q for 0 < q ≤ 1. This minimization is motivated by the following

fact:
lim

q→0+

‖x‖q
q = ‖x‖0.

This approach was initiated by [24] and many researchers have worked on this direction.
Even though it is NP hard (cf. [23]), there are at least three advantages of using this
approach to the best of the authors’ knowledge. One is the result in [10]: for a Gaus-
sian random matrix A, the restricted q-isometry property of order s holds if s is almost
proportional to m when q → 0+. Another advantage demonstrated in [34], [9] and [20]
is when δ2s < 1 (or δ2s+1 < 1, δ2s+2 < 1), the solution of the ℓq minimization is a sparse
solution when q > 0 small enough, where δ2s is the restricted isometry constants of matrix
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A (similar for δ2s+1, δ2s+2). Note that for the ℓ1 minimization, one needs δ2s <
√

2 − 1 or
δ2s < 2/(3 +

√
2) or 4/(6 +

√
6) as shown in [4], [20] and [19]. The third advantage is that

the ℓq minimization can be applied to a wider class of random matrices A, e.g., when A is
a random matrix whose entries are iid copies of a pre-Gaussian random variable. See [21].
In addition, there are many other approaches, e.g., optimal basis pursuit(OMB) method
(for problem (2)), soft-thresholding iterations, standard and damped Landweber iterations
([12]) for problem (2), iterative reweighted least squares (IRLS) method (cf. [14]) (for
problems (2) and (3)) and etc..

In this paper we shall consider another version of ℓq minimization:

min
x∈RN

‖x‖q
q +

1

2λ
‖Ax − b‖2

2, (4)

which ‖x‖2
2 =

∑N
j=1 x2

j and λ > 0 is a parameter which is sufficiently small, e.g., λ = 10−8.
See Theorem 2.7 for an upper bound for λ. Clearly, this is a standard unconstrained
version of the original ℓq minimization (3). Due to the singularity of the gradient of the
associated functional above because of the sparsity of the solution x, we introduce the
following regularized version of the unconstrained ℓq minimization:

min
x∈RN

‖x‖q,ǫ +
1

2λ
‖Ax − b‖2

2, (5)

where

‖x‖q,ǫ =
N∑

j=1

(ǫ + x2
j)

q/2

and ǫ > 0 is another parameter which will go to zero in order to approximate ‖x‖q
q. This

is the main minimization problem we study in this paper. There are many unconstrained
versions of problem (2) have been studied in the literature (cf. [37] and references therein).
In addition, there are several studies on the unconstrained ℓq minimization (4), e.g., [11]
and [32]. The researchers in their papers [32] and [11] used several formats to regularize
(4). These regularized minimizations are different from the one in (5). They obtained
several interesting results on the lower bound for nonzero entries in the local minimizers
of (4). Their study inspires us to consider the lower bound for nonzero entries of our local
minimizers. We find ǫ is a good indicator if an entry of local minimizer is zero or not zero.

Clearly, the above problem (5) has a solution for any q ∈ (0, 1] and ǫ > 0. We shall
derive an iterative algorithm to compute a critical point xǫ,q of (5). We prove that the
iterative algorithm is convergent for any starting point. Although xǫ,q is a critical point
of the nonconvex minimization problem (5), we shall show that it is a global minimizer
under some additional assumptions on matrix A, the existence of a sparse solution, and
the sparsity of critical points. We shall introduce a concept called matrices of completely
full rank and recall the standard notion of the restricted isometry property (RIP). See [25]
for a verifiable sufficient condition for sparse solution. A matrix which is of completely
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full rank can be renormalized to be a matrix with a RIP. Under the assumption that xǫ,q

is a local minimizer for each ǫ and λ dependent on ǫ, we shall show that xǫ,q, ǫ → 0+

has a convergent subsequence which converges to a minimizer yq of the constrained ℓq

minimization problem (3). Under the sparsity conditions which can be verified, we can
show that the limit yq is the sparse solution of (1). This convergence requires that λ be
dependent on ǫ and λ → 0 when ǫ → 0. Furthermore, we discuss the convergence of the
minimizer zq of unconstrained ℓq minimization problem (4) for sufficiently small λ, but
λ 6→ 0. We shall use the notion of Γ-convergence to show that the minimizer zq converges
to solution of our original under-determined linear system (1) when q → 0+. These form
our main results in this paper.

However, it is easy to see that there is a lot of computation for various ǫ, q and λ to
perform. Namely we have to compute xǫ,q for many different small values ǫ for a fixed q
to get a limit yq of a convergent subsequence. Each xǫ,q is computed by using an iterative
algorithm which is proved to be convergent. Then we look for a convergent subsequence
of {yq, q > 0}. Thus, the computation is expensive. However, if we know the information
about the sparsity, say s of the sparse solution of (1), we can determine immediately if
xǫ,q is already a solution or not by checking if ‖xǫ,q‖0 = s or not and if Axǫ,q − b = 0 or
not. Thus the iteration can be quickly stopped. Suppose we do not know the sparsity.
Letting y∗ be the limit of a subsequence of {yq, q > 0}, if the sparsity of y∗ is ≤ m/2, the
chance of y∗ to be the sparse solution is good as we shall explain it in the next section.
Reduce ǫ and use y∗ as an initial solution to solve the minimization problem (5) again.
Otherwise, if the sparsity of y∗ is >> m/2 or closed to m, then the chance of y∗ to be a
solution of the following minimization (6) is slim. It is better to start with a completely
new initial guess and construct a new subsequence yq. This gives us reasons of the better
performance of our algorithm than the other schemes in our numerical experiments. Note
that when q → 0+, the unconstrained ℓq minimization converges to

min
x∈RN

‖x‖0 +
1

2λ
‖Ax − b‖2

2, (6)

which is the unconstrained version of our main problem (1). With λ small enough, the
solution can be viewed as a good numerical approximation of the sparse solution. Extensive
numerical experiments have been performed to compare with many other methods as
explained above. Our unconstrained ℓq minimization does indeed perform much better. In
particular, our approach performs the best for under-determined linear systems Ax = b

with uniform random matrices A, i.e., the entries of A are random variables of uniform
distribution.

The paper consists of three sections, in addition to this introductory section: our
analysis of the unconstrained ℓq minimization when q < 1 in §2, some additional properties
of the unconstrained ℓq minimization when q = 1 in §3, and finally in §4 numerical results
to demonstrate how well our unconstrained ℓq minimization can find the sparse solutions.
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2 Analysis of Unconstrained ℓq Minimization with 0 <

q < 1

We begin with some elementary properties of the minimization problem (5). Let Lq(ǫ,x)
be the function associated with (5). It is easy to see that the problem has a solution. We
use xǫ,q to denote a critical point of (5).

Consider the following one variable function of α

Lq(ǫ,x
ǫ,q + αy) = ‖xǫ,q + αy‖q,ǫ +

1

2λ
‖Axǫ,q + αAy − b‖2.

A critical point xǫ,q satisfies the following gradient equations
[

qxǫ,q
j

(ǫ + (xǫ,q
j )2)1−q/2

]

1≤j≤N

+
1

λ
AT (Axǫ,q − b) = 0. (7)

This is a necessary condition for minimizers. We now derive an iterative method to solve
the above equations due to their nonlinearity. Starting with any initial x(1), we solve the
following system of linear equations for x(k+1):

[
qx

(k+1)
j

(ǫ + (x
(k)
j )2)1−q/2

]

1≤j≤N

+
1

λ
AT (Ax(k+1) − b) = 0 (8)

or (
AT A + diag

[
qλ

(ǫ + |x(k)
j |2)1−q/2

, j = 1, · · · , N

])
x(k+1) = ATb (9)

for k = 1, 2, 3, · · · ,. It is easy to see that the above linear system is invertible for any x(k)

as long as ǫ > 0. Thus, the iterative method is well defined. We now show that these x(k)

converge to a critical point of the minimization problem (5). We begin with

Lemma 2.1 Fix any ǫ > 0. Let x(k+1) be the solution of (9) for k = 1, 2, 3, · · · . Then

‖Ax(k) − Ax(k+1)‖2 ≤ 2λ(Lq(ǫ,x
(k)) − Lq(ǫ,x

(k+1))). (10)

Proof. Mainly we need the following inequality

(ǫ + |x|2)q/2 − (ǫ + |y|2)q/2 − qy(x− y)

(ǫ + |x|2)1−q/2
≥ 0, (11)

where 0 < q < 1. This inequality can be verified by a direct computation. We now
compute

Lq(ǫ,x
(k)) − Lq(ǫ,x

(k+1)) =
N∑

j=1

(ǫ + |x(k)
j |2)q/2 −

N∑

j=1

(ǫ + |x(k+1)
j |2)q/2
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+
1

2λ

(
‖Ax(k) − b‖2 − ‖Ax(k+1) − b‖2

)

=
N∑

j=1

(ǫ + |x(k)
j |2)q/2 − (ǫ + |x(k+1)

j |2)q/2 +
1

2λ
‖Ax(k) − Ax(k+1)‖2

+
1

λ
(Ax(k+1) − b)T (Ax(k) − Ax(k+1)).

The last term can be simplified to be

−
N∑

j=1

qx
(k+1)
j (x

(k)
j − x

(k+1)
j )

(ǫ + |x(k)
j |2)1−q/2

by using (8) based on a dot-product with x(k) − x(k+1). With this we have

Lq(ǫ,x
(k)) − Lq(ǫ,x

(k+1))

=
N∑

j=1

(
(ǫ + |x(k)

j |2)q/2 − (ǫ + |x(k+1)
j |2)q/2 −

x
(k+1)
j (x

(k)
j − x

(k+1)
j )

(ǫ + |x(k)
j |2)1−q/2

)

+
1

2λ
‖Ax(k) − Ax(k+1)‖2

≥ 1

2λ
‖Ax(k) − Ax(k+1)‖2 ≥ 0

by using (11). The result (10) follows immediately.
We are now ready to prove the convergence of our iterative algorithm from any starting

point.

Theorem 2.1 Fix an ǫ > 0 and parameter λ > 0. There exists x∗ ∈ Rn such that the
iterative solutions x(k) in (9) converges to x∗, i.e.,

lim
k→∞

x(k) = x∗

and x∗ is a critical point of the problem (5).

Proof. By Lemma 2.1, we have

Lq(ǫ,x
(k+1)) ≤ Lq(ǫ,x

(k)). (12)

That is, Lq(ǫ,x
(k)) is decreasing. Let limk→∞ Lq(ǫ,x

(k)) = M . It is clear that ‖x(k)‖q is
bounded due to the fact that

‖x(k)‖q ≤ ‖x(k)‖q,ǫ ≤ Lq(ǫ,x
(k+1)) ≤ M + 1
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for k sufficiently large. Hence, there exist a vector x ∈ Rn and a convergent subsequence
x(kj) such that x(kj) → x. Note that x(kj+1) solves (8). By (9), x(kj+1) is also a convergent
subsequence. Let us say x(kj+1) → y. Note that Lq(ǫ,x) = M = Lq(ǫ,y). Then by (10),

‖Ax − Ay‖2 ≤ 2λ(Lq(ǫ,x) − Lq(ǫ,y)) = 0.

Thus we have Ay = Ax. Then it follows that ‖x‖q,ǫ = ‖y‖q,ǫ.
We now claim that x = y. Indeed, using dot product in (8) with x− y for k = kj and

letting j → ∞, we have

N∑

j=1

qyj(xj − yj)

(ǫ + |xj |2)1−q/2
+

1

λ
(Ax − Ay)T (Ay − b) = 0

As we have proved that Ax = Ay above, we have

N∑

j=1

yj(xj − yj)

(ǫ + |xj |2)1−q/2
= 0.

Combining the above equation with the fact ‖x‖q,ǫ = ‖y‖q,ǫ we just proved above, we end
with

‖x‖q,ǫ − ‖y‖q,ǫ −
N∑

j=1

qyj(xj − yj)

(ǫ + |xj|2)1−q/2
= 0.

In other words,

N∑

j=1

(
(ǫ + x2

j )
q/2 − (ǫ + y2

j )
q/2 − qyj(xj − yj)

(ǫ + x2
j )

1−q/2

)
= 0

By inequality (11), each summation term is nonnegative and hence has to be zero term by
term. Furthermore, each term can be rewritten as

0 = (ǫ + x2
j )

q/2 − (ǫ + y2
j )

q/2 − yj(xj − yj)

(ǫ + x2
j )

1−q/2

=
qx2

j − 2qxjyj + qy2
j

2(ǫ + x2
j)

1−q/2
+

2ǫ + (2 − q)x2
j + qy2

j − 2(ǫ + x2
j)

1−q/2(ǫ + y2
j )

q/2

2(ǫ + x2
j )

1−q/2
.

Since both of the above two terms are nonnegative, it follows from the first term above
that xj = yj for all j and hence, x = y. Let us denote x by x∗. Therefore, from (8) for
k = kj with j → ∞, we know x∗ satisfies (7) with x∗ in place of xǫ,q. Thus x∗ is a critical
point.

We remark that Axǫ,q 6= b if b 6= 0. Otherwise, we would have xǫ,q = 0 by (7) and
hence, a contradiction Axǫ,q = 0. When q = 1, we can see that the functional L1(ǫ,x)
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is strictly convex. The uniqueness of the minimizer which satisfies the gradient equation
implies that the limit x∗ of our iterative solution is xǫ,1, the minimizer of (5) with q = 1.
Although we only proved that x∗ is a critical point when q < 1, numerical experiments
show that the x∗ achieves the minimum for some ǫ small enough. Indeed, we can show the
limit of iterative solution is the global minimizer for (5) under some additional assumptions
on the sensing matrix A and sparsity of the limit solution.

To this end, let us introduce the concept of completely full rank. We say a matrix A of
size m×n with m < n is of completely full rank if any sub-matrices of A of size m×m are
full rank. For example, A = [(xj)

i−1]1≤i≤m,1≤j≤n with xj distinct is a matrix of completely
full rank. For another example, let A with

AT = [1, cos(xj), sin(xj), · · · , cos(mxj), sin(mxj)]j=1,··· ,n

for all xj ∈ [0, 2π), j = 1, · · · , n be a matrix of size (2m + 1)× n. Then A is of completely
full rank since A is a Tchebysheff system (cf. [26]).

Lemma 2.2 Suppose that A is of completely full rank. Let

A =

[
A 0m

In Rm

]
.

where 0m is a zero block matrix of size m×m, In is the identity matrix of size n× n, and
Rm is a zero matrix except for R(r(i), i) = 1 for i = 1, · · · , m with r(1), · · · , r(m) being
the first m entries of a random permutation of integers 1, 2, · · · , n. Then A is invertible
and ‖A−1‖2 is bounded above by a constant C which is dependent on A for any random
permutation.

Proof. Without loss of generality, we may assume that

Rm =

[
Im

0n−m,m

]

with 0n−m,m being a zero block matrix of size (n−m)×m. Since A is completely full rank,
we use the rows from m+1 to 2m of A to make A(1 : m, 1 : m) to be zero. Then we use the
rows 2m+1 to m+n to make A(1 : m, m+1 : n) to zero. Note that A(1 : m, n+1 : n+m)
is −A(1 : m, 1 : m). Clearly, the resulting matrix of A is invertible and the norm of the
inverse of the resulting matrix is dependent on the norm of the inverse of A(1 : m, 1 : m).
Similar for other random matrix Rm.

Lemma 2.3 Suppose that A is of completely full rank. If xǫ,q ∈ Rn has a sparsity ‖xǫ,q‖0 ≤
m/2. Then for any y ∈ Rn with sparsity ‖y‖0 ≤ m/2,

‖xǫ,q − y‖ ≤ C‖Axǫ,q − Ay‖, (13)

where C is a constant that depends on A.
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Proof. Consider xǫ,q − y whose sparsity is at most m. Without loss of generality, we
may assume that the first m entries of xǫ,q − y are nonzero. Let z be a vector of size
(n + m) × 1 whose first m entries are the first m entries of xǫ,q − y, whose entries with
indices n + 1, · · · , n + m are the negative of the first m components of xǫ,q − y and whose
remaining entries are zero. It is easy to see that

Az =

[
Axǫ,q − Ay

0m,1

]
.

Then
‖z‖2

2 = 2‖xǫ,q − y‖2
2 ≤ ‖A−1‖2

2‖Axǫ,q − Ay‖2
2.

This completes the proof.
We are now ready to prove that all critical points will be the global minimizers under

the sparsity assumptions described in the following theorem.

Theorem 2.2 Suppose that A is of completely full rank. For any ǫ, q, there is a λǫ,q

dependent on ǫ, q so that for any λ < λǫ,q, if xǫ,q is a critical point for problem (5) and if
the sparsity ‖xǫ,q‖0 ≤ m/2, then for any y with sparsity ‖y‖0 ≤ m/2,

‖y − xǫ,q‖2 ≤ Cλ(Lq(ǫ,y) − Lq(ǫ,x
ǫ,q)) (14)

for a positive constant C > 0.

Proof. We first calculate Lq(ǫ,y) − Lq(ǫ,x
ǫ,q) and show for an appropriately chosen λ,

(14) is true.

Lq(ǫ,y) − Lq(ǫ,x
ǫ,q) =

N∑

j=1

(ǫ + |yj|2)q/2 −
N∑

j=1

(ǫ + |xǫ,q
j |2)q/2

+
1

2λ

(
‖Ay − b‖2 − ‖Axǫ,q − b‖2

)

=
N∑

j=1

(ǫ + |yj|2)q/2 − (ǫ + |xǫ,q
j |2)q/2

+
1

2λ
‖Ay − Axǫ,q‖2 +

1

λ
(Axǫ,q − b)T (Ay − Axǫ,q).

The last term can be simplified to be

−
N∑

j=1

qxǫ,q
j (yj − x

ǫ,q
j )

(ǫ + (xǫ,q
j )2)1−q/2

by using the Euler-Lagrange equation of (5). With this we have

Lq(ǫ,y) − Lq(ǫ,x
ǫ,q)
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=

N∑

j=1

(
(ǫ + y2

j )
q/2 − (ǫ + (xǫ,q

j )2)q/2 −
qxǫ,q

j (yj − x
ǫ,q
j )

(ǫ + (xǫ,q
j )2)1−q/2

)

+
1

2λ
‖Ay − Axǫ,q‖2

≥
N∑

j=1

(
(ǫ + y2

j )
q/2 − (ǫ + (xǫ,q

j )2)q/2 −
qxǫ,q

j (yj − x
ǫ,q
j )

(ǫ + (xǫ,q
j )2)1−q/2

)

+
C

2λ
‖y − xǫ,q‖2 (by Lemma 2.3)

=
N∑

j=1

(
(ǫ + y2

j )
q/2 − (ǫ + (xǫ,q

j )2)q/2 −
qxǫ,q

j (yj − x
ǫ,q
j )

(ǫ + (xǫ,q
j )2)1−q/2

+
C

2λ
(yj − x

ǫ,q
j )2

)

We show that if λ is small enough, each term in the sum is nonnegative. It is reduced to
prove that for a fixed a, function

f(x) = (ǫ + x2)q/2 − (ǫ + a2)q/2 − qa(x − a)

(ǫ + a2)1−q/2
+

C

2λ
(x − a)2

has a global minimum at a. Simple calculus shows

f ′′(x) =
C

λ
+

q(ǫ − (1 − q)x2)

(ǫ + x2)2−q/2
.

The second term is smooth and tends to zero as x goes to infinity, thus is bounded. The
bound depends on ǫ and q. Therefore there exists a λǫ,q > 0 so that if λ < λǫ,q, f ′′(x) > 0,
f(x) is convex. It’s easy to verify the only minimum occurs at x = a where f(a) = 0 and
f(x) ≥ 0 for any x. We choose λ = λǫ,q/2. Thus

Lq(ǫ,y) − Lq(ǫ,x
ǫ,q)

=

N∑

j=1

(
(ǫ + y2

j )
q/2 − (ǫ + (xǫ,q

j )2)q/2 −
qxǫ,q

j (yj − x
ǫ,q
j )

(ǫ + (xǫ,q
j )2)1−q/2

+
C

2λǫ,q
(yj − x

ǫ,q
j )2

)

+
N∑

j=1

(
C

2λǫ,q

(yj − x
ǫ,q
j )2

)

≥
N∑

j=1

(
C

2λǫ,q
(yj − x

ǫ,q
j )2

)
.

Note that C depends on A, the result follows.
If y is a global minimizer of (5) which is sparse in the sense of ‖y‖0 ≤ m/2, then (14)

would be negative unless xǫ,q = y. That is, the limit xǫ,q of our iterative solution is a
global minimizer.
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The discussion above can be generalized. To this end, we need the concept of restricted
isometry property (RIP). We say matrix A possesses the sth RIP if there exists a nonzero
number δs < 1 such that

(1 − δs)‖xT‖2
2 ≤ ‖AxT‖2

2 ≤ (1 + δs)‖xT‖2
2, (15)

where xT is a vector in Rn whose nonzero entries are those with indices in T for all
T ⊂ {1, 2, · · · , n} with #(T ) ≤ s. The concept was introduced in [6] and [7] which
generated a great deal of interest. Many random matrices such as Gaussian, sub-Gaussian,
and pre-Gaussian random matrices are shown to have RIP with overwhelming probability.
See [6], [10] and [21] and the references therein. For a non-random matrix to have a RIP,
we can show

Theorem 2.3 Any matrix A of completely full rank can be normalized to have the mth

RIP. On the other hand, if A has the mth RIP, then A is of completely full rank.

Proof. Let I = {T ⊂ {1, · · · , n}, #(T ) = m} be the collection of all index sets each of
which is a subset of {1, · · · , n} with cardinality m, i.e., T = {i1, · · · , im} with 1 ≤ i1 <
i2 < · · · < im ≤ n for all choices of i1, · · · , im. Let αT and βT be the smallest and largest
singular values of AT which consists of columns with indices in T . Since A is of completely
full rank, there exist α and β such that αT ≥ α > 0 and βT ≤ β < ∞ for all T ∈ I. If we
normalize A by Â := A/β, then we have

α2

β2
‖xT‖2

2 ≤ ‖ÂTxT‖2
2 ≤ ‖x‖2

2, ∀T ∈ I.

By letting 1 − δm =
α2

β2
, we know that Â possesses mth RIP.

When A has the mth RIP, i.e. δm < 1, then the definition ‖ATxT‖2 ≥ (1 − δm)‖xT‖2

for all T with #(T ) = m implies that AT is of full rank for all T with #(T ) = m. That is,
A is of completely full rank.

If A is of completely full rank, so is αA for any scalar α. This gives us a method to
check if a matrix A has the mth RIP or can be scaled to have the mth RIP. The above
Theorem 2.3 provides a method to construct a matrix A with the sth RIP with 0 < s < m.
Indeed, take a matrix Ã of size s× n which is of completely full rank and add m− s rows
of any real numbers of length n to form a matrix B of size m × n. Then by using the
method in the proof above, B can be rescaled to A so that A possesses the sth RIP.

With the concept of RIP, we are able to prove a similar result to Theorem 2.2.

Theorem 2.4 Suppose that A possesses the sth RIP. There exists a small enough λ de-
pending on ǫ, q, and δs so that for any global minimizer yq and any critical point xǫ,q of
problem (5), if the sparsity ‖yq − xǫ,q‖0 ≤ s, then xǫ,q is a minimizer of problem (5).
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Proof. Note that we also have the following inequality as in (14) for this case.

‖y − xǫ,q‖2 ≤ Cλǫ,q(Lq(ǫ,y) − Lq(ǫ,x
ǫ,q)). (16)

The proof of (16) is almost identical to the proof of Theorem 2.2. The only adaption is
now we use the sth RIP property to bound ‖Ayq − Axǫ,q‖2 from below:

‖Ayq − Axǫ,q‖2 ≥ (1 − δs)‖yq − xǫ,q‖2

and the rest of the proof keeps the same. Thus since the right side of (16) is also non-
positive, we have Lq(ǫ,y

q) = Lq(ǫ,x
ǫ,q) and xǫ,q is a minimizer of problem (5).

These explain that if a global minimizer of (5) is sparse and a critical point is sparse,
then the critical point is a global minimizer. That is, the sparse minimizer is unique.

Now letting ǫ and correspondingly λ tend 0, we show that these minimizers for all
ǫ, λ > 0 with ǫ, λ → 0 converge to a solution of the constrained ℓq minimization problem
(3).

Theorem 2.5 Fix q > 0. Let xk be a critical point of (5) associated with ǫk, λk for
k = 1, 2, 3, · · · with ǫk, λk decreasing to 0, then there exists a subsequence from xk which
converges to yq and yq is a minimizer of (3).

Proof. We first show that xk is bounded in Rn. In fact for a fixed z satisfying Az = b

‖xk‖q
q ≤

N∑

j=1

(ǫk + (xk
j )

2)q/2 ≤ Lq(ǫk,x
k) ≤ Lq(ǫk, z) ≤ ‖z‖q

q + Nǫ
q/2
k . (17)

Therefore there exists a subsequence that converges to yq in Rn. For simplicity we assume
xk converges to yq in Rn. Taking k → ∞ in (17), we obtain

‖yq‖q
q ≤ ‖z‖q

q. (18)

Meanwhile since Lq(ǫk,x
k) ≤ ‖z‖q

q + Nǫ
q/2
k ≤ M for some M > 0 independent of k, we

have

1

2λk
‖Axk − b‖2 ≤ M or ‖Axk − b‖2 ≤ 2λkM (19)

By passing to the limit in (19), we have

Ayq = b (20)

Combining (18) and (20), we conclude that yq is a minimizer of problem (3).
We use the following theorem to help us find the solution of the constrained ℓq prob-

lem (3).

12



Theorem 2.6 Suppose q ∈ (0, 1) is a fixed positive number and A possesses the mth RIP.
Assume yq is the solution of problem (3) with sparsity ‖yq‖0 ≤ m/2. Let xk be a critical
point of (5) associated with ǫk, λk for k = 1, 2, 3, · · · which are decreasing to zero. If the
sparsity ‖xk‖0 ≤ m/2 for k sufficiently large, then there exists a subsequence from xk which
converges to yq.

Proof. Let zk be the solution of problem (5). We truncate zk by setting its N − [m/2]
smallest entries to zero and denote the resulting vector by z̃k. By one of the assumptions,
yq has a sparsity no greater than m/2 and by Theorem 2.5, {zk} has a subsequence that
tend to yq as k tends to infinity. For simplicity we assume limk→∞ zk = yq. One concludes
that z̃k also tends to yq as k tends to infinity and

lim
k→∞

Az̃k = lim
k→∞

Azk = b (21)

Applying Theorem 2.2 with y = z̃k, xǫ,q = xk, we have

‖z̃k − xk‖2 ≤ Cλk(Lq(ǫk, z̃
k) − Lq(ǫk,x

k))

≤ Cλk(Lq(ǫk, z
k) − Lq(ǫk,x

k)) + Cλk(Lq(ǫk, z̃
k) − Lq(ǫk, z

k)).

By definition, the first term is not greater than zero and hence,

‖z̃k − xk‖2 ≤ Cλk(Lq(ǫk, z̃
k) − Lq(ǫk, z

k))

= Cλk(‖z̃k‖ǫk,q − ‖zk‖ǫk,q) + (‖Az̃k − b‖2 − ‖Azk − b‖2).

It is straightforward to see the right side tends to zero as k tends to infinity. Hence,

lim
k→∞

xk = lim
k→∞

z̃k = yq.

That is, critical points xk converge to the solution of the unconstrained minimization (3).

We now use Theorem 2.6 to explain our computational procedure. According to [34]
(or [20], [9]), the minimizer yq of the constrained ℓq minimization (3) is the sparse solution
if q > 0 is small enough when the sparsity of the sparse solution is ≤ m/2. Let us assume
such q. In this case, ‖yq‖0 ≤ m/2. Let {xk, k ≥ 1} be the sequence of critical points in
Theorem 2.6. By the discussion above we use the ǫ to truncate the limit of our iterative
solution xk. If the number of nonzero entries of the truncated xk is bigger than m/2, this
xk is not good. A new initial guess is necessary to generate another iterative sequence to
have a new limit xk. If the number of nonzero entries of the truncated xk is less than or
equal to m/2, we keep this limit vector and continue the procedure to find a good xk+1

with ǫk+1 < ǫk. We have several methods to generate a new initial guess. If we exhaust
all initial guess generators, we deem the our unconstrained ℓq approach fails. These justify
our numerical approach to be given in the last section.
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In the above, we have discussed the minimizers of problem (5) with λ → 0. We now
devote the remaining part of this section to the study of the minimizer of unconstrained
ℓq minimization (4) without letting λ → 0, but keeping λ small enough (we will specify
how small is). Let zq be a minimizer of (4) for each q ∈ (0, 1). We show that zq converges
to the sparse solution of the original problem (1) as q → 0+. We shall use the concept of
Γ-convergence which was introduced by E. De Giorgi and T. Franzoni in 1975 (cf. [22]).
We first give the definition for the Γ-convergence.

Definition 2.1 Let (X, d) be a metric space with metric d. We say that a sequence of
functionals Ek : X → [−∞,∞] is Γ-convergent to a functional E : X → [−∞,∞] as
k → ∞ if for all u ∈ X we have

(i) for every sequence {uk ∈ X} converging to u

E(u) ≤ lim inf
k

Ek(uk)

(ii) there exists a sequence {uk ∈ X} converging to u such that

E(u) ≥ lim sup
k

Ek(uk),

or equivalently

E(u) = lim
k

Ek(uk).

Next we prove that if the minimizers of Ek have a cluster point, it is a minimizer of E
under the assumption of the Γ-convergence of Ek to E. We start with the following

Lemma 2.4 If a sequence of functionals Ek is Γ−convergent to a functional E on X as
k → ∞, for any subsequence {Ekj

} of {Ek},

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ inf

v∈X
E(v).

Proof. For any vector v ∈ X, by the definition of Γ−convergence, there exists {uk}
converging to v such that,

lim sup
k→∞

Ek(uk) ≤ E(v).

Note that infu∈X Ekj
(u) ≤ Ekj

(ukj
),

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ lim sup

kj→∞
Ekj

(ukj
)

≤ lim sup
k→∞

Ek(uk)

≤ E(v).
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Since v is arbitrarily chosen, we have

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ inf

v∈X
E(v).

One important consequence of a Γ-convergent sequence of functionals is the following
standard result (cf. [29])

Lemma 2.5 Suppose that a sequence of functionals Ek is Γ−convergent to a functional
E on X as k → ∞. Letting Ekj

be a subsequence and ukj
be the minimizer of Ekj

, if ukj

converges to u in X, then u is a minimizer of E.

Proof. By the definition of Γ−convergence,

E(u) ≤ lim inf
kj→∞

Ekj
(ukj

)

≤ lim sup
kj→∞

Ekj
(ukj

)

= lim sup
kj→∞

inf
v∈X

Ekj
(v)

≤ inf
v∈X

E(v).

The first line follows from the definition of Γ−convergence and the last line is the result
of Lemma 2.4.

More details on Γ convergence can be found in [29]. The preparatory results above are
enough for our current purpose.

Consider Lq(0,x), q ∈ (0, 1) to be a sequence of functionals. Let L0(0,x) be another
functional associated with the minimization in (6). We claim that Lq(0,x), q ∈ (0, 1) are
Γ-convergent to L0(0,x). Indeed, for any sequence xq ∈ Rn, q ∈ (0, 1) which converges to x

as q → 0+, we can see ‖b−Axq‖2
2 converge to ‖b−Ax‖2

2 easily. Writing x = (x1, · · · , xn)T ,
let δ = min{|xi| > 0}. Since xq → x, we have

Lq(0,x
q) ≥

∑

|xi|>0

|xq,i|q +
1

2λ
‖b− Axq‖2

2

≥
∑

|xi|>0

|1
2
δ|q +

1

2λ
‖b− Axq‖2

2

for q sufficiently small. It follows that

lim inf
q→0+

Lq(0,x
q) ≥

∑

|xi|>0

1 +
1

2λ
‖b− Ax‖2

2 = L0(0,x).

On the other hand, for any x, we choose a particular sequence xq = x for all q ∈ (0, 1).
Then we have

lim sup
q→0

Lq(0,x
q) = L0(0,x).
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These show that Lq(0,x), q ∈ (0, 1] are Γ-convergent to L0(0,x).
Assuming that x̂ is the sparse solution of our original problem (1) with sparsity s =

‖x̂‖0, let
D = min

‖x‖0≤s−1
‖Ax − b‖2

2. (22)

It is easy to see that D > 0. Then by Theorem 2.5, we conclude the following

Theorem 2.7 Let zq be a minimizer of the unconstrained ℓq minimization problem (4)

with λ satisfying
D

λ
> 2s, where s is the sparsity of our main problem (1). Then {zq, q ∈

(0, 1)} contains at least one convergent subsequence and the limit of any subsequence from
{zq, q ∈ (0, 1)} is a sparse solution of (1).

Proof. Since zq, q ∈ (0, 1) are bounded, zq contains a convergent subsequence. We
use Lemma 2.5 to conclude that the limit, say x0 of the convergent subsequence is a
minimizer of L0(0,x). Since the under-determined linear system has a sparse solution x̂,
L0(0, x̂) = ‖x̂‖0 which is the minimal value for any λ.

Since x0 is a minimizer of L0(0,x), we have L0(0,x
0) = ‖x̂‖0 by Lemma 2.5. That is,

x0 has to be a vector such that Ax0 = b and ‖x0‖0 = ‖x̂‖0. Otherwise, if Ax0 6= b, then
‖x0‖0 ≤ s − 1 and

L0(0,x
0) = ‖x0‖0 +

1

2λ
‖Ax0 − b‖2

2 ≥ ‖x0‖0 +
1

2λ
D > 1 + s

which contradicts to the fact L0(0,x
0) = ‖x̂‖0 = s. This completes the proof.

As the sparse solution x̂ may not be unique, the sequence zq, q ∈ (0, 1) does not converge
in general. The result in Theorem 2.7 above shows that the limit of any subsequence is a
sparse solution of (1).

3 Some Additional Properties of Unconstrained ℓ1 Min-

imization

In this section we exhibit more properties of the unconstrained ℓq minimization when q = 1.
We have the following stability property of the unconstrained ℓ1 minimization.

Proposition 3.1 (Stability) Suppose that q = 1. Let xb be a minimizer for input data b

in problem (5). Similarly, for an input data c, let xc be a minimizer of (5) with b replaced
by c. Then

‖Axb − Axc‖2 ≤ ‖b− c‖2 .

In particular, the above property holds for a minimizer xb of (2) and a minimizer xc of the
minimization problem (2) with b replaced by c. In addition, if A is completely full rank
and ‖xb‖0 ≤ m/2 as well ‖xc‖0 ≤ m/2, then there exists a positive constant C d

‖xc − xb‖ ≤ C‖b− c‖2.
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Proof. We mainly use the following inequality:
(

x√
ǫ + |x|2

− y√
ǫ + |y|2

)
(x − y) ≥ 0. (23)

which can be verified easily. Fix an ǫ > 0. Let xb be the minimizer satisfying the equation
(7) with q = 1 associated with b. Similarly, let xc satisfy (7) associated with c replacing
b. For convenience, let us write x := xb and y := xc. Multiplying x − y to both sides of
(7), we have

N∑

j=1

xj(xj − yj)√
ǫ + (xj)2

+
1

λ
(A(x − y))T (Ax − b) = 0. (24)

Similarly, we have

N∑

j=1

yj(xj − yj)√
ǫ + |xj|2

+
1

λ
(A(x − y))T (Ay − c) = 0. (25)

The subtractions of the above equations yields

1

λ
(A(x − y))T (Ax − Ay − b + c) = −

N∑

j=1

(
xj√

ǫ + |xj|2
− yj√

ǫ + |yj|2

)
(xj − yj)

which is less than or equal to zero by (23). It follows that

(Ax − Ay)T (Ax − Ay − b + c) ≤ 0

or
‖Ax − Ay‖2

2 ≤ (Ax − Ac)T (b− c).

An application of Cauchy-Schwarz inequality and let ǫ → 0+ together with Theorem 2.5
yield the proof of.

A simple corollary is the following

Corollary 3.1 Let N(A) be the null space of A. For any two minimizers x∗ and x of the
unconstrained ℓ1 minimization (2), x − x∗ ∈ Null(A). Similar for any two minimizers of
(3).

Next we prove the following

Proposition 3.2 (Extremal Value) Suppose that q = 1. Let xb,ǫ be the minimizers for
input data b in problem (5) with q = 1. Then

min
x∈RN

L1(ǫ,x) =
1

2λ

(
‖b‖2

2 − ‖Axb,ǫ‖2
2

)
+

N∑

j=1

ǫ√
ǫ + |(xb,ǫ)j |2

. (26)
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Consequently, for a minimizer xb of problem (4), we have

min
x∈RN

{‖x‖1 +
1

2λ
‖Ax − b‖2

2} =
1

2λ

(
‖b‖2

2 − ‖Axb‖2
2

)
. (27)

Proof. For convenience, let us write x := xb,ǫ. Multiplying x to the both sides of equation
(7), we have

N∑

j=1

x2
j√

ǫ + |xj |2
+

1

λ
(Ax)T (Ax − b) = 0.

The first term can be rewritten to

N∑

j=1

x2
j√

ǫ + |xj |2
= ‖x‖ǫ −

N∑

j=1

ǫ√
ǫ + |xj|2

.

The second term can be rewritten to

1

λ
(Ax)T (Ax − b) =

1

2λ

(
‖Ax − b‖2

2 + (Ax + b)T (Ax − b)
)
.

Combining these two equations together, we have

L1(ǫ,x) =
N∑

j=1

ǫ√
ǫ + |xj |2

− 1

2λ

(
(Ax + b)T (Ax − b)

)
.

which yields (26) in this proposition. By letting ǫ go to zero in (26), we get (27).
It follows from (27) that for a minimizer xb of problem (4), we have the following

Pythagorean inequality:
‖Axb − b‖2

2 + ‖Axb‖2
2 ≤ ‖b‖2

2.

Next we generalize the proof of Lemma 2.1 to have

Proposition 3.3 Suppose that q = 1. Let x be the minimizer for problem (4) with q = 1.
Then for any y

‖Ay − Ax‖2 ≤ 2λ(L1(0,y) − L1(0,x)). (28)

Proof. We follow the idea of proving Lemma 2.1. First we consider the problem (5) with
q = 1. It is easy to verify

√
ǫ + y2 −

√
ǫ + x2 ≥ (y − x)x√

ǫ + |x|2
(29)

Then

L1(ǫ,y) − L1(ǫ,x) =
N∑

j=1

√
ǫ + |yj|2 −

N∑

j=1

√
ǫ + |xj|2
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+
1

2λ

(
‖Ay − b‖2 − ‖Ax − b‖2

)

=
N∑

j=1

√
ǫ + |yj|2 −

√
ǫ + |xj |2 +

1

2λ
‖Ay − Ax‖2

+
1

λ
(Ax − b)T (Ay − Ax)

The last term can be reduced to

−
N∑

j=1

(yi − xi)xi√
ǫ + |x|2

Then

L1(ǫ,y) − L1(ǫ,x)

=

N∑

j=1

(√
ǫ + |yj|2 −

√
ǫ + |xj|2 −

xj(yj − xj)√
ǫ + |xj |2

)
+

1

2λ
‖Ay − Ax‖2

≥ 1

2λ
‖Ay − Ax‖2

by using (29). Next we let ǫ → 0 to conclude the result in this proposition.

4 Computation of Sparse Solutions of

Under-determined Linear Systems

In this section, we first explain that ǫ may be used for determining nonzero entries of critical
points of (5) in practice when ǫ is very small, e.g., ǫ = 10−5. For any fixed ǫ ∈ (0, 1), let
xǫ,q be a critical point of (5) from Theorem 2.1 which satisfies (7). We observe from (7)
that writing A = [a(1), · · · , a(N)], for each j with 1 ≤ j ≤ N ,

q(xǫ,q
j )2

(ǫ + (xǫ,q)2)2−q
≤ 1

λ2
‖a(j)‖2

2‖Axǫ,q − b‖2
2

≤2

λ
‖aj‖2

2Lq(ǫ,x
ǫ,q) ≤ 2

λ
‖aj‖2

2Lq(ǫ,x
(1)), (30)

where x(1) is the initial vector generating the sequence {x(1), · · · ,x(k), · · · } which contains
a subsequence convergent to xǫ,q. For any entry xǫ,q

j , we have two cases: |xǫ,q
j |2 > ǫ

and |xǫ,q
j |2 ≤ ǫ. Let us discuss these two cases. Suppose |xǫ,q

j |2 > ǫ. Letting L =
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2

λ
maxj ‖a(j)‖2

2Lq(1,x
(1)) be a constant bigger than the right-hand side of the above in-

equality (30), the above inequality (30) implies

q

22−q

1

|xǫ,q
j |2(1−q)

=
q|xǫ,q

j |2
(2|xǫ,q

j |2)2−q
<

q|xǫ,q
j |2

(ǫ + |xǫ,q
j |2)2−q

< L.

It follows that |xǫ,q
j |2(1−q) >

q

22−qL
or |xǫ,q

j |2 >
( q

22−qL

)1/(1−q)

.

On the other hand, if |xǫ,q
j |2 ≤ ǫ, we have

q|xǫ,q
j |2

(2ǫ)2−q
≤

q|xǫ,q
j |2

(ǫ + |xǫ,q
j |2)2−q

< L.

That is, q|xǫ,q
j |2 < 22−qLǫ2−q or |xǫ,q

j |2 <

(
22−qL

q

)
ǫ2−q. For convenience, let

B =

(
22−qL

q

)1/(1−q)

< ∞.

We summarize the above discussion to have

Theorem 4.1 Let xǫ,q be a critical point of (5) from Theorem 2.1 for a fixed λ > 0. If ǫ
is so small that Bǫ < 1, then for each entry xǫ,q

j of xǫ,q,

either |xǫ,q
j |2 > (1/B) or |xǫ,q

j |2 ≤ (Bǫ)1−qǫ.

From the above discussion, we can see that if the square of an entry of a critical point is
less than ǫ in magnitude, then it is much less than ǫ since Bǫ < 1 is very small. Intuitively,
such an entry should be treated as a zero. Similarly, if the square of an entry is larger

than ǫ, it will be much bigger than ǫ since |xǫ,q
j |2 > (1/B) =

1

Bǫ
ǫ. Heuristically ǫ is a good

indicator for entries of a critical point whether they are zero entries or nonzero entries.
Let us threshold xǫ,q by ǫ, that is, set all entries to be zero if |xǫ,q

i |2 ≤ ǫ. Let x̂ǫ,q be the
thresholded vector of xǫ,q. If ǫ is very small, we can view x̂ǫ,q as an approximate critical
point. Since nonzero entries are bigger than 1/

√
B in magnitude, we have

(
1

B

)q/2

‖x̂ǫ,q‖0 ≤ ‖x̂ǫ,q‖q
q ≤ ‖xǫ,q‖q

q ≤ Lq(ǫ,x
(1)) (31)

by (12). It follows ‖x̂ǫ,q‖0 ≤ Bq/2Lq(ǫ,x
(1)). One heuristic condition to ensure a critical

point xk with ‖xk‖0 ≤ m/2 is to choose a good initial guess such that Lq(ǫ,x
(1)) is as close

to m/2 as possible since Bq/2 is close to 1 if q is very small. If we choose x(1) to be a solution
of Ax(1) = b with small value ‖x(1)‖q

q, e.g., < m/2. then Lq(ǫ,x
(1)) ≤ ‖x(1)‖q

q +Nǫq ≤ m/2
if ǫ is small enough. Then x̂ǫ,q may be a good approximate global minimizer.
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Next we compare the performance of our unconstrained ℓq minimization described
in Section 2 with six other existing algorithms, namely the orthogonal greedy algorithm
(OGA)(cf. [33]), the ℓ1 greedy algorithm (L1G) (cf. [27]), the standard ℓ1 (L1) (cf. [5])
and the reweighted ℓ1(RWL1) algorithms (cf. [8]) which can be obtained on-line from
the Candès webpage, the regularized orthogonal matching pursuit (ROMP) (cf. [31]),
in addition to the ℓq (Lq) algorithm developed in [20]. In our unconstrained ℓq (nLq)
minimization, we choose λ = 10−8 and run our iterative algorithm explained in Section 2
for many small ǫ > 0 and q = i/30, i = 1, · · · , 30. We have to admit that it takes very
long time to get the sparse solution. However, if the sparsity is known, our algorithm finds
the sparse solution quickly since an intermediate iterative solution xǫ,q may have already
been a solution. We use this additional assumption for our algorithm during this numerical
experiment. In this comparison, we used 500 random pairs (A,x) with matrices A of size
m × N with N = 250 and m = 50 as in [14] and vectors x ∈ RN for sparsity ‖x‖0 = s
for s = 1, 2, · · · , 30, where matrices A are Gaussian random matrices whose entries are
iid of N(0, σ) with σ = 1/50. Thus b = Ax are known given vectors. These random
matrices and vectors are generated by using MATLAB command randn. It is a classic
result that these matrices have an s-RIP with overwhelming probability for an integer
s < m. Although they may not be of completely full rank, mth RIP condition is just a
sufficient condition for our theory. Also in practice, the given matrix A may not be of
completely full rank. We thus only use Gaussian random matrices for our experiments.

We use all 7 methods to solve Ax = b. Several algorithms require some initial guesses.
We have three schemes to generate initial guesses: 1) the pseudo-inverse method, 2) a
solution from the ℓ1 minimization, and 3) a solution of the linear system with submatrix,
m columns randomly chosen from A.

For each s and each pair A and b, we run each of the 7 algorithms to obtain vectors
x̃, and we considered the recovery a success if ‖x − x̃‖∞ < 10−5. That is, our tolerance is
10−5. We plot the percentages of successfully finding the sparse solutions for each method
in Fig. 1. Here nLq denotes our unconstrained ℓq minimization method. From the graph,
we can see that our method is very close to the best performer: the ℓ1 greedy algorithm.
The interested reader may use our graph to compare with other methods which are not
listed in this paper, e.g., the one in [14].

We have to point out that our algorithm is slower than the ℓ1 greedy (L1G) algorithm
since we have to do many iterative solutions for various ǫ and q. Nevertheless, our algorithm
does offer some advantage when the matrix A is an uniform random matrix. That is, we
also use these 7 algorithms above to test the recovery of the sparse solutions of under-
determined linear systems for uniform random matrices A using MATLAB command rand,
i.e. A = rand(50, 250) and vector x. All the procedures are exactly the same as above.
Our method is clearly better as shown in Fig. 2.
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Figure 1: Comparison of the 7 algorithms: the regularized orthogonal matching pursuit
(ROMP), the orthogonal greedy algorithm (OGA), the ℓ1 greedy algorithm (L1G), the
standard ℓ1 (L1), the reweighted ℓ1(RWL1) algorithms, the constrained ℓq (Lq) and un-
constrained ℓq (nLq) for sparse solution of under-determined linear system associated with
Gaussian random matrices
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Figure 2: Comparison of the 7 algorithms for sparse solution of under-determined linear
system associated with uniform random matrices
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