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Abstract

We are interested in solving the system

ALT c F
= (1)
L 0 A G

by a variant of the augmented lagrangian algorithm. This type of problem with non-
symmetric A typically arises in certain discretizations of the Navier-Stokes equa-
tions. Here A is a (n,n) matrix, ¢, FF € R", L is a (m,n) matrix, and \,G € R"™.
We assume that A is invertible on the kernel of L. Convergence rates of the aug-
mented lagrangian algorithm are known in the symmetric case but the proofs in [4]
used spectral arguments and cannot be extended to the nonsymmetric case. The
purpose of this paper is to give a rate of convergence of a variant of the algorithm
in the nonsymmetric case. We illustrate the performance of this algorithm with nu-
merical simulations of the lid-driven cavity flow problem for the 2D Navier-Stokes
equations.
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1 Introduction

We will use the same notations (.,.) and || || for the inner products and norms
in R"™ and R™. The particular inner product will be identified by the types
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of matrices appearing. The augmented lagrangian algorithm for symmetric
problems can be derived by minimization arguments. We refer to [4] for details.
It is described as follows: with r > 0 and p; > 0 for all [ as parameters, given
A0 e R™ specified arbitrarily, with A(¥) known, compute ¢ then A+ by

(A+rLTL)c® + LTAD = F +r TG

2
)\(H'l) — )\(l) _|_ pl (Lc(l) i G) ( )
In [10], we were interested in a variant of this algorithm for p, = p = % for all
l,r= % where € > 0 is fixed. More precisely, for this choice of the parameters,
the algorithm reads

(A+1L7L)c® + LTAD = F+ 117G

(3)
AED = \O 1 L — @).

The variant we considered is the following algorithm

(A+L1L7L)cD) + LAY = F+ 107G

4

AHD = \O L L(pet+h — @), @)
which can be easily shown to be equivalent to the following sequence of prob-
lems

A LT c+1) F
= ) (5)
L —eM A1) G — eM)\D

for M = I is the identity matrix of size m x m. Here, M is a suitable chosen
matrix. In [5], it was claimed that the later algorithm converges to the solution
¢ of (1) and

le = ¢H]) < Cefle = V],
for a constant C' > 0 independent of . We have not however been able to find
a proof of this result in the literature. The main objective of this article is to
prove the convergence of the following algorithm

(A+rL"M L)) + LTAD = F 4 rLTM G

6
A Z 30 4 AL - ), po 0,

which generalizes (5) and give a convergence rate similar to the one above. A
fine study of the convergence rate still appears to be difficult (cf. remark 2.12
p. 64 [4]).

The algorithm (6) is the Uzawa algorithm applied to the augmented system

(A+rL"M ' L)ye+ L'\ =F+rL"M'G (7)



and hence can have an improved convergence rate. One other advantage of
the augmented lagrangian algorithm is to solve compared to (1), systems of
smaller size.

However, following [3] p 15, A, = A + rL"M~'L has a condition number
IC(A;) asymptotically proportional to r, that is

M| |L)?
ML

K(A,) when r — oo,
o
o depending only on A and we again denote by || - || the matrix norm asso-
ciated with || - || on R". This prevents the choice of extremely large values of

r = p to get convergence in one step. Our convergence result and numerical
evidence also suggest that one does not have a good convergence rate for r
small and p large. We also see that a judicious choice of M can balance the
deterioration of the condition number.

It is reasonable to expect that an inexact Uzawa algorithm applied to (7)
might perform as well. Our numerical experiments did not yield convergence.

Other references for the augmented lagrangian algorithm are [1], [2], [3], [4]
and [7].

The paper is organized as follows. We first give a sufficient condition for sol-
vability of (1) which leads to a Ladyzhenskaya-Babuska-Brezzi (LBB) type
condition. We then prove the convergence rate. Finally, we will give numerical
experiments for the 2D Navier-Stokes equations.

2 Solvability

In this section, we derive a sufficient condition for the solvability of (1). Let
Ker(X) and Im(X) denote the kernel and range of the operator X. We first
give a few lemmas:

Lemma 1 R" = Ker(L) ® Im(L") and R™ = Ker(L') & Im(L).
Proof: It is enough to prove only one of the decompositions. Since Im(L) C

R™, we have R™ = Im(L) & Im(L)*, where Im (L)~ denotes the orthogonal of
Im(L). We need to show that

Im(L)* = Ker(L").



Let ¢ € Im(L)*. Forw € R", Lw € Im(L), so ¢* (Lw) = 0. Therefore w’ LTq =
0 so that LTq is orthogonal to IR™, that is LTq = 0, i.e. ¢ € Ker(LT). This
argument also shows that Ker(L") € Im(L)* and the result follows. O

The following result can be found in [6], we give here a detailed proof for
convenience.

Lemma 2 Suppose A is an invertible linear operator with positive definite
symmetric part A, = $(A+ A") that satisfy

(Az,y) < a(Agr,2)3(Ay,y)?, for allz,y € R" anda>1,  (8)
then (A1), is positive definite and satisfy

(A w,w) < ((A) 'w,w) < (AN w,w)  for all w € R™

Moreover ) )
(A2, y) < ((A) Mo, 2)* ((A) y)”
Proof: ( )2
A w, w) = su o Y ,
(47w, w) = supyenr 0
and

(w,y)* = (w, A7 Ay)* = (A7) w, Ay)* < o*(Ayy, y) (As(A7) " w, (A7) w)
by (8). So

(w,y)* < &?[lyl[3, (A(A™) w, (A7) Tw) = [Jyl[3, (A7) 7w, AT(AT) Tw)
= [lyl%, (A7) w, w),
where |||, = (4s.,.) and we used (Aw,w) = (A,w,w) for all w € R". It

follows that
((A) " w,w) < 0*(A7Y)w,w).

On the other hand (using fractional power of symmetric positive definite ma-
trices which can be defined via singular values decomposition)

(A gw, w) = (A" w, w) = (AZA™"w, (A)"Hw) < ||AZ A w]| ||(As) Fuwl|
— [|A |

-~ 1
= (A w,w) 2wl

_ _ 1
w|]ay-1r = (AA w, A w) 2 |Jwl](4,)-

As

It follows that

(A, w) < ((4) w,w)). (9)

H~



In addition
(At y) = (A A", (4) )
< (A’lx,a:)% ((As)’ly, y)% using the same arguments as above
< (4 2,2) (A 0.)

We can now prove the following theorem

1
2

using (9) . O

Theorem 3 Let A be a matriz which satisfies the condition (8) and has a
symmetric part A, positive definite with respect to L in the sense that x7 A,z >

0 and 2" A,z = 0 with Lx = 0 implies x = 0. In addition, assume that
G € Im(L). Then (1) is solvable and moreover
L 2
e e = el for ally € fn(L), (10)
where ¢, > 0 is a positive constant which depends on r and A, = A +
rL"M~'L.
Proof: We have
Ac+ LT\ =F
(11)
Le =G,

so rL"M~'Le¢ = r LY M~'G which gives
(A+rL"M ' L)yc+ L'\ = F +rL"M'G.

We first show that A +rLTM~!L is invertible. Since A is a square matrix, it
is enough to show that

(A+rL"M ')z =0=1=0.
We have
e (A+rL" M L)y = 2" (A, + r L"M ™' L)x = 2" Ayx + r(La)" M~ (L),
so by the assumptions on A,
T (A+rL"M ' L)x =0= 2" A,z = 0 and (Lz)" M *(Lz) = 0.

It follows that 27 A,z = 0 and Lz = 0. Since A, is assumed to be symmetric
positive definite with respect to L, we get x = 0. We can therefore write

c=(A+r LMLy Y (F+rL"M'G) — (A+rL"M L)' LT\,
Since Le = G, we see that the solvability of (1) is equivalent to solving

LA+rI"M L) ' N =LA+ rL"M 'Ly Y (F+rL"M'G) - G



for \. By Lemma 1, we have A = Ay + X with \g € Ker(LT) and X € Im(L).
Clearly it is enough to find A\. We show that there is ¢; > 0 such that

yTL(A+rL" ML) 'LTy > ¢/||y||* for all y € Im(L).

This will imply that L(A +rLTM~1L)"'LT is invertible on Im(L) and show
that (1) is solvable.

Since A satisfies (8) and because

(Agz, ) < (Ag+rL"M™'L)z,2) and (rL"M 'Lz, z) < ((Ag+rL" ML)z, 1),

we have

(A+rL"M ' L)x,y) < oz((As—l—rLTM*lL)x,x)%(As—H"LTM*IL)y,y)%, for allz,y € R",

and o = 1. It follows from Lemma 2 that
1

((A+rL ML) o w) > —

((Ag +rL"M L) 'w,w) for all w € R™

Because A, is positive definite with respect to L, A, +rLY M~ L is symmetric
positive definite and so L(A; +rL" M~'L)™'L" is symmetric positive definite
on Im(L) (L2 =0 and 2 € Im(L) implies z = 0) so that we have

y'L(A; +rL" M~ L)' LTy > cl|y|?>, for all y € Im(L), (12)
with ¢y > 0 depending on r. This gives
yILA+r LML) 'Ly = (LTy) T (A+rL"M L) (LT y)
= (L"y)"[(A+rL"M L)Y (LTy)
L LT T (A, + LM L) (L)

>
a?

1
= ?yTL(AS +rL" ML) LTy

v

%llyHQ, for ally € Im(L).

Recall that A, = (A+rL"M~'L)~" and notice that

y LA LTy = (A ' LTy, LTy)
- (LTy,u)?
= SUPuers 1y
(y, Lu)?
= SupueRn (A W u)




We have therefore proved that

(y7 Lu)z Co
SUP,cRn (o) > ?||y||2, for all y € Im(L),
which is a LBB type condition. 0

It would be desirable to have more information on the dependence on r of the
constant ¢; in Theorem (3). Put

E=A,+rL"M™'L,

and recall from (12) that LE 'LT is symmetric positive definite on Im(L).
We let D = LE7'L" considered as a mapping from Im(L) to Im(L) and seek
a lower bound of

T
y Dy
R(y) =TT >0,y € Im(L)7 ) 7£ 0,
vy
where R(y) is the Raleigh quotient. We have

_yT'LE 'Ly  y"LE Y (EE')LTy

R(y) = =
) vy vy
(y'LE")E(E"'L"y)
'y '
So
|E~ LTyl
R(y) = 1=~ B 13
(v) Ty (13)
where we have defined a norm || || associated with the symmetric positive
definite matrix F;
|[u||% = b(u, u) with b(u,v) = v’ Eu.
We have
b(E~'LTy, v
1B LT y||s = supoen JE_L0:0)
o Jv]le
with
b(E-LLT TEE-'LT rrr T
( yv) _ v y_vLly_vlv oLy c R
1ciipe 1iipe lolle— vlle
So
T
L
I|E'L"y||p = sup vern el (14)

w0 |[vlle



We claim that L is an invertible mapping from Im(LT) to Im(L), [8]. Since
y € Im(L), there is v in Im(LT) such that y = Lv. We write ||v[|? = vTv.
Then,

R(y) >

1 ((Lv)T(Lv>>2 Lo

1Zo|2\ " [[v]le 10]1%

_ I|Lv|[2 _ |[Lv]]?
vTAw +ro' LTM="Lv ~ oT Ay + r||Lo|[%,_,

For an operator X, puxmax denotes the greatest eigenvalue of X. We have,
using Raleigh’s principle,

vl Agw < /LASmaXHUHz'

On the other hand, since y = Lv # 0, ||Lv]|| > 11'1'\\' We therefore have

I
L

1
R(y) > [[L=?

> 0,
~ MAsmax T 7"||L||2

We have
1
[[L-12

NAsmax+T||L||2

Co S 1
L= — > —
a? — a?

3 Convergence

In this section, we prove the convergence of the iterative algorithm (6). In the
next section we give the convergence rate.

Theorem 4 Suppose that the linear system (1) has a unique solution ¢ and
that A the symmetric part of A is positive definite with respect to L. Moreover,
assume that M is symmetric positive definite. Then, the sequence (c) defined
in (6) converges to the solution c of (1) forr > &.

Proof: Clearly (6) is solvable since A, is invertible. With A given one com-
putes successively ¢*Y) and A1),

The original problem (1),

Ac+ LT\ =F
Lc =G,



can be rewritten as

(A+rL™M *L)yc+ LT\ = F+rLTM'G (15)
A= \+pMLc—- Q).
Let u(+Y) = ¢+ — ¢ and p+H) = A+D — X\ We have, using (15) and (6),
(A+rL" M L)y + LTp0 =0 (16)
and
P = pO 4 oM Ly, (17)
We deduce from (17) that
P2, = (Mp®™D, pt) = (Mp® 4 pLu™, p® 4+ pM Lu+D)
which gives

D12, = IpO12, + (Mp®, pM~ Lul+Y)
+ (pLu™D p®) + p?(Lu™D, M Lyt
= IpV113, + 20V, Lu™V) + p?(Lu™D, M~ Lu),

since M~! is symmetric and hence
P13 = I V1R = =2p(p", Lul™D) — p*(Lu™, M Lul). - (18)
It follows from (16) that
(Au®D, DY £ (L7 M LaH) | D) = — (O Ly D),
and hence by substituing this into (18), we get

1P 115 = 1P N13, = 2p(Au™D WDy 4 (2rp — p?) (Lu™D, M LuD)
= 2p(Au W)+ (2rp — p?) || Lu"Y) 3,

Therefore for r > £, since A is nonnegative,
11 = 91 2 0,
i.e.
1PN < [pWlar, - for alld (19)

and the sequence {||[p(’||5s} is seen to be decreasing. If for some I, ||p®||a —
P |ar = 0, then (Aul+D )Y = Lu+) = 0 and we have u(+1) = 0,



since Ag is symmetric positive definite with respect to L, and hence conver-
gence. Otherwise, the sequence being bounded below by 0 converges; hence
Ip®]]? — ||]p“*V||? converges to 0 which implies that (A,u®, u®) and ||Lu®||?
converge to 0. Since A, + rLTM~'L is positive definite, it follows that u("
converges to 0 and finally ¢ converges to c. O

4 Convergence Rate

To show the convergence rate, we will need the following lemma.

Lemma 5 . The mappings L : Im(LT) — Im(L) and L" : Im(L) — Im(LT)
are bijections with bounded inverses.

Proof: We show that L is one-one on Im(L"). This is immediate since Lz = 0
with z € Im(L") implies z € Im(L") NKer(L) = {0} by Lemma 1. As a linear
mapping between finite dimensional spaces, L has a bounded inverse on Im(L)

and there exists ko > 0 such that for any g € Im(L), there exists v, € Im(LT)
such that Lv, = g with

1
lvgll < +—llgl. (20)
0

A similar proof applies to LY. This completes the proof. O

We would like to elaborate on this last inequality. Let v € R" and ¢ = Lv €
Im(L) so there is v, € Im(LT) for which ¢ = Lv,. That is, Lv = Luv,. It follows
that v, = v + vy for some vy € Ker(L). We therefore have

1 1
[o 4 wvoll < —[[Lv|l = = L(v + vo)|
ko ko

for any v + vy € Im(LT). It follows that

1 1 L
ol < itz = 2 sup LED o all v e tm(LY). (21)
ko ko gerr |||
The same arguments applied to LT show that
1 T 1 (Ua LTq)
lall < —[IL7q|| = .~ sup for all ¢ € Im(L). (22)
ko ko vern  [[v]]

We have the following theorem

Theorem 6 Suppose that the linear system (1) has a unique solution ¢ and
that A, the symmetric part of A is positive definite with respect to L. Moreover,

10



assume that M s symmetric positive definite. Then,
le = VY < Clle — O,

for a positive constant C' which depends on r and p but independent of [.

Moreover forr =p=1

le = V) < Celle = O],

for a positive constant C' independent of | and e.

Proof: We write u(*) = ¢(+D + 7(+D with a(*+) € Ker(L) and 7+ €
Im(L"). Using (21), we have

kol @ V|| < [l Lu® 0],

where we used the inner product (M.,.) instead of the canonical one. Using
(17), we have

p p
SO
M
kol[7 )| < %(WHM +119ar),

where we used the equivalence of norms on R™. By (19) we have ||p‘+ ||, <
lp® |3 which gives

2||M
e < Ao,
0
We next give a bound on 4+, Since A+r LT M~'L is invertible, A is invertible

on Ker(L). Indeed if Az = 0 and Lz = 0, then (A + rL"M~'L)z = 0 which
implies that © = 0. Therefore there is cg > 0 such that

Aqp(+D)
ola®V) < sup 0 ATTD

vo€Ker(L) ||'U0||
— aw Ug‘Au(Hl) _ Ug’Aﬂ(lJrl)
vo€Ker(L) ||Uo||

However, from (16), we have Au(+Y) = —LTp®) —r LT M ' Lu"+1) which implies

vl Au™Y = T LTp® — ol LT M Ly

= —(Lwp)Tp" — r(Lwg) "M LuHY) =0

11



for vy € Ker(L). Thus,

. —v Au (1+1)
a0||u(l+1)||§ sup 07
voEKer(L) ||U0||
< A [z
< 2llAlA

el
We therefore have

V]

IN

[z + [[a

1Al
;E—(———-+-1)HA4HHPUWM4

IN

We now give a bound on |[p®||5s in terms of ||u?||. First we establish that
Mp" € Im(L). Solving for u!*V in (16) and substituting in (17), we get

P = (I — pM'L(A + rL" ML) L")pV,
It follows that M (p‘+Y — p(®) is in the range of L. Since

k+1
l+1 Zp ] 1) _|_p()

we have Mp") € Im(L) provided Mp® = M) — M)y € Im(L) which is
possible by a suitable choice of Ag. One way to do this is to first notice that
by (11), we may assume that A € Im(L). So if M = I, where [ is the identity
matrix of R™, we may choose Ay in Im(L). Otherwise, we can choose M in
such a way that M maps Im(L) into Im(L).

It follows from (22) that
,UTLTp(l)

kOHMp(l)“M*l = k0||p(l)||M < sup
verr  ||v]]

Combining the equations in (16) and (17), we get

(A+rL" ML — pL" M~'L)u® + LTp =0

thus vT LTp®) = — T (A + r LT ML — pL" M~ L)u". Therefore,
[[Arl|
Ip®[ar < TOPHU(Z)Ha

where A, , = A+ (r — p) LT M~'L. It follows that

2 Al [1Ar,l]
(l+1) < = (a7 1 M P (l) .
o) < 2 (L 3y el o)

12



For r =p, A,,=Aand for r = p =1 we get

le = V) < Celle = O],

for a positive constant C' independent of [ and e. U

5 Numerical experiments

In this section, we first present a spline discretization of the 2D Navier-Stokes
equations in velocity-pressure formulation. A simple iterative algorithm is used
to linearize the nonlinear equations. We have applied the algorithm described
here to the solutions of the linear systems which arise and display the maxi-
mum number of the iterations that was necessary to fully solve the problem
for various choices of the parameters r and p.

Let Q = U,eat be a polygonal domain in R?. Given two integers d > 0 and
0 < r < d, we consider the spline space of degree d and smoothness r

SHA) :={s€ C"(Q) :s]; € Py, Vt € A},

where IP,; denotes the space of polynomials of degree less than or equal d.
It is possible to represent in a unique fashion such a spline by a vector of
coefficients, the B-net of the spline.

We refer to [10] for the 3D case and [11] in the 2D case for additional details.
The weak form of the steady state Navier-Stokes equations is: Find u € H*(()?
such that

3
V/VU-VV+Z/Uja—u'V:/f'V Vv eV
Q ioile 0, Q
divu=0 in €
u=g on 0f),
where

Vo = {v € Hy(Q)?, divv =0}

and 0f2 is the boundary of 2. We approximate elements of V; by vectors d in
R?V | (each component of u is approximated by a spline with coefficient vector
in RY), which represent smooth splines, Hd = 0, are zero on the boundary,
Rd = 0 and satisfy the divergence-free condition, Dd = 0. Let us describe
these elements as vectors d in R*" satisfying Ld = 0 for some matrix L. If

13



we let ¢ encode the coefficients of the approximant of the velocity field, the
discrete problem is:

Find c in R?" satisfying Lc = G with G encoding the boundary conditions
and

ve"Kd + (B(c)e)’d =d"MF

for all d in R?" with constraint Ld = 0. Here, K and M are the stiffness and
mass matrices respectively; (B(c)c)”d encodes the nonlinear term.

Using functional arguments, it can be shown that there exists a Lagrange
multiplier A such that:

vKc+ B(c)e + L")\ = MF

Lc =G.

If we put A = vK + B(c), we showed in [9] that the previous problem is
solvable and that A, is symmetric positive definite with respect to L for v
sufficiently large. The system of nonlinear equations is linearized as follows:

Let (¢, A®) be the solution of the linear problem (i.e. the associated Stokes
equations) and for n = 0,1,..., define (¢, \(**1)) as the solution of

vEc"tD £ B(c™)c D 4 [T\ = JF

Le™™D =G,

Because we are not using a basis to represent the discrete solution, the stiffness
matrix K is singular. We have used the algorithm described in this paper to
solve at each step the previous system of equations. The termination criterion
for these steps is to require the maximum norm of ¢t — ¢ to be less than
10~ or the maximum norm of ¢+ —c(®*1)_ For the augmented Lagrangian
iterations we use the same criteria over successive iterations. We display below
the maximum number of iterations (over all steps) when this algorithm is
applied to the lid driven cavity flow problem at Reynolds number 400. We
used d = 7 and r = 0 in which case A has size 9216 x 9216 and L has
size 6908 x 9216. The actual mesh size consists of 128 triangles obtained by
refining 3 times a triangulation of the square into two triangles. Each triangle
was subdivided into 4 triangles by connecting the midpoint of the edges.

r 10 | 10%2 | 103 | 10* | 10° | 10°
p 10 | 10% | 10® | 10* | 10° | 108
Iterations | 7 4 3 3 4 2

14
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Fig. 1. 2D Cavity Flow Velocity Profile
r 10 102 103 104 105 106

p=2xr|2x10]2x10%|[2x10% | 2x10* |2 x 10° | 2 x 10°
[terations | N/A N/A 3 3 4 4

N/A stands for not available. We did not get fast convergence for these values.

r 108 | 10° | 108 | 109 | 10°
p 105 | 104 | 103 | 102 | 10

Iterations | 1 4 3 4 3

These numerical results suggest that for this specific problem, the choice r =
105 and p = 10° is optimal. We finally display the velocity profile when r =

p = 10% was used [cf. Fig 1].

6 Conclusion

In this paper, we have mainly given a convergence rate of a variant of the
augmented lagrangian algorithm. We intend to undertake a study of the op-
timal choice of the parameters r and p when this algorithm is applied to the
incompressible Navier-Stokes equations filling a gap left by earlier researchers.
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