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Abstract

For ground level ozone prediction, we consider a functional linear regression model where

the explanatory variable is a real random surface and the response is a real random vari-

able. We use bivariate splines over triangulations to represent the random surfaces. Then we

use this representation to construct two solutions, a least squares estimate of the regression

function based on a brute force approach, and an autoregressive estimator based on a prin-

cipal component analysis. We apply these two functional linear models to ground level ozone

forecasting over the United States to illustrate the predictive skills of these two methods.

We also extend the brute force approach to a model where both the explanatory variable

and the response are both real random surfaces.
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Chapter 1

Introduction

When we think about ozone, we often think about ozone in the upper atmosphere and the

depletion of the ozone layer. However, when ozone is present in the lower atmosphere it

can be toxic. Many human activities such as driving, daytime fueling of automobiles, and

the normal practices of industrial facilities and electric utilities contribute to ground level

ozone. We do not emit ozone directly into the air but these activities produce nitrogen

oxides (NOx) and volatile organic compounds (VOC). When exposed to heat and sunlight

the NOx and VOC produce ozone. High quantities of ground level ozone produce adverse

reactions in humans. Headaches, coughing, eye irritation and chest discomfort can all be

caused by an overexposure to ozone. For these reasons, we want to predict future ozone

values so we can protect “at risk” groups of people from overexposure to ozone. Since there

are many contributing factors it is hard to derive a model from first principles of chemistry

and physics. Hence we look to statistics to create a predictive model.

In statistics, there are many approaches for prediction. See [Crambes, Kneip, and Sarda,

2009 (9)] and [Damon and Guillas’02, (10)]) and its references. For problems with large

data sets, like ozone prediction, we can use Functional Data Analysis (FDA). The statistical

objects in FDA are curves, surfaces and manifolds, as well as traditional numbers or vectors

(22; 13). FDA aggregates consecutive discrete recordings and views them as sample values of

a random curve or random surface, keeping track of order or smoothness. A popular approach

to ozone prediction is to use an the autoregressive functional linear model. A functional linear

model is defined as a regression model with a random function as the explanatory variable and

a real random variable as the response, (see Ramsay and Silverman, 2005 (22)). In a series of

1



2

papers [Cardot, Ferraty, and Sarda’99 (5)], [Cardot, Ferraty, and Sarda’03(6)], and [Cardot

and Sarda’05 (7)], Cardot and his collaborators study the autoregressive approach for random

curves and a functional associated with the random curves. Their research uses univariate

splines to approximate the empirical estimator for the function associated with the random

functional. In particular, they introduce consistent estimates based on functional principal

components, and decompositions in univariate splines spaces. We use bivariate splines to

extend the autoregressive approach to random surfaces and a functional associated with the

random surfaces. We want to deal with random surfaces and a functional associated with

those random surfaces over a domain of irregular shape and hence bivariate splines are an

excellent tool to approximate the surfaces. In practice, random surfaces are only observed at

scattered locations and bivariate splines offer a natural way to approximate the surfaces in

these models, (see [Lai’08, (19)]). Hence we use bivariate splines as the explanatory variable

in the autoregressive functional linear model. Then we investigate how the autoregressive

process based on bivariate splines can be used for the ozone concentration forecasting. The

univariate autoregressive model can be extended to the bivariate setting as follows. Let Y

be a real valued random variable. Let D be a polygonal domain in R2. The regression model

is:

Y =

∫

D
g(s)X(s)ds + ε, (1.1)

where X is a random surface over the domain D, g ∈ H where H is usually L2(D), and ε is a

real random variable that satisfies Eε = 0 and EX(s)ε = 0 for all s ∈ D. The objective is to

approximate the function g defined on the two dimensional spatial domain D from a given

set of design points in D. For the ozone prediction problem, we take the ozone concentration

for a particular location at a specific time to the the real random variable Y . The random

surfaces are created by fitting ozone concentrations at previous times over a region that

contains the location of interest.

The organization of this dissertation is as follows. In Chapter 2 we introduce some of

the basics of bivariate splines and some useful theorems for approximation as well as several
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scattered data fitting schemes. The univariate autoregressive functional linear models are also

presented in Chapter 2. In Chapter 3, we extend the autoregressive functional linear models

to the bivariate setting. We closely follow the ideas in [Cardot, Ferraty, and Sarda’03, (6)]

and use bivariate splines instead of univariate splines. In Chapter 4 we consider an alternative

approach to solving (1.1) by using the optimal approximation property of splines. We call

this method the “brute force” approach. It is a new approach to ozone prediction using

bivariate splines introduced in [Guillas and Lai’08,(17)]. In Chapter 5, we extend the ideas

of the brute force method to a model with a random function as the explanatory variable and

a random function as the response. Chapter 6 implements the the methods in Chapters 3

and 4 on real data. For our numerical experiments, we use a data set of ozone concentrations

from various Environmental Protection Agency (EPA) stations over the continental United

States. The data was collected over a span of three months in 2005. We demonstrate how

the two methods predict tomorrow’s ozone concentrations for a particular city based on

the previous ozone concentrations. In Chapter 7, we explain the similarities and differences

between these two methods, make some conclusions about each approach, and discuss future

research directions.



Chapter 2

Preliminaries

2.1 Bivariate Splines

In this section, we review some basics of bivariate splines and the necessary spline theory

we need for our application to functional linear models. Most of the spline results presented

in this section can be found in [Lai and Schumaker’07, (21)]. Let D be a polygonal domain

in R2 and 4 a triangulation of D. That is, 4 is a finite collection of triangles T ⊂ D such

that ∪T∈4T = D and the intersection of any two triangles is either the empty set, a common

edge, or a common vertex. For each T ∈ 4, let |T | denote the length of the longest edge

of T , and let ρT be the radius of the inscribed circle of T . The longest edge length in the

triangulation 4 is denoted by |4| and is referred to as the size of the triangulation. For any

triangulation 4 we define its shape parameter by

κ4 :=
|4|
ρ4

, (2.1)

where ρ4 is the minimum of the radii of the incircles of the triangles of 4. The shape

parameter for a single triangle, κT , satisfies

κT :=
|T |
ρT

≤ 2

tan(θT /2)
≤ 2

sin(θT /2)
, (2.2)

where θT is the smallest angle in the triangle T . The shape of a given triangulation affects

how well we can approximate a function over the triangulation. Hence we have the following

definition of a β-quasi-uniform triangulation.

4
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Definition 2.1.1 (β-Quasi-Uniform Triangulation). Let 0 < β < ∞. A triangulation 4 is

a β-quasi-uniform triangulation provided that

|4|
ρ4

≤ β.

Once we have a triangulation, we define the spline space of degree d and smoothness r

over that triangulation as follows:

Definition 2.1.2 (Spline Space). Let 4 be a given triangulation of a domain D. Then we

define the spline space of smoothness r and degree d over 4 by,

Sr
d(4) = {s ∈ Cr(D) | s|T ∈ Pd, ∀ T ∈ 4},

where Pd is the space of polynomials of degree at most d.

When working with polynomials on triangulations, it is more useful to work with barycen-

tric coordinates instead of Cartesian coordinates. We define them in the following lemma.

Lemma 2.1.1 (Barycentric Coordinates). Let T = 〈(x1, y1), (x2, y2), (x3, y3)〉 = 〈v1, v2, v3〉
be a non-degenerate triangle. Then any point v := (x, y) ∈ R2 has a unique representation

of the form

v = b1v1 + b2v2 + b3v2 (2.3)

with

1 = b1 + b2 + b3. (2.4)

The numbers b1, b2, b3 are called barycentric coordinates of the point v relative to the triangle

T .

Proof. Writing (2.3) and (2.4) in matrix form yields




1 1 1

x1 x2 x3

y1 y2 y3







b1

b2

b3




=




1

x

y




(2.5)
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The area of T is given by

AT =
1

2
det




1 1 1

x1 x2 x3

y1 y2 y3




. (2.6)

We know AT is positive when T is a non-degenerate triangle and its vertices are numbered

in a counter-clockwise order. Hence (2.5) is a non singular system and by Cramer’s rule we

have the following formulas for the barycentric coordinates:

b1 = 1
2AT

det




1 1 1

x x2 x3

y y2 y3




, b2 = 1
2AT

det




1 1 1

x1 x x3

y1 y y3




, b3 = 1
2AT

det




1 1 1

x1 x2 x

y1 y2 y




.

(2.7)

Lemma 2.1.2 presents a useful algebraic characterization of the barycentric coordinates,

b1, b2 and b3 that also have the nice geometric interpretation as areas of the sub-triangles

formed by the given point v (see Figure 2.1).

Lemma 2.1.2. For each i = 1, 2, 3 the function bi is a linear polynomial in x and y which

assumes the value 1 at the vertex vi and vanishes at all points on the edge of T opposite vi.

Proof. When we expand (2.7) for b1 by the first column, we obtain

b1 =
(x2y3 − y2x3)− x(y3 − y2) + y(x3 − x2)

2AT

.

Hence we see that b1 is in fact a linear polynomial. When we evaluate b1 at v1 we obtain

b1|v1 =
1

2AT

det




1 1 1

x1 x2 x3

y1 y2 y3




=
1

AT

AT = 1.

by (2.6). Finally, any point on the edge opposite of v1 lies on the line between v1 and v2 and

hence can be written as a linear combination of v2 and v3. Therefore the determinate of the

matrix in (2.7) is zero and so b1 is zero. The proofs for b2 and b3 are similar.
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Figure 2.1: For the triangle above, T = 〈v1, v2, v3〉, the barycentric coordinates b1, b2 and
b3 for the point v have the geometric interpretation of being the areas of the sub-triangles
formed by v.

We use barycentric coordinates to define Bernstein-Bézier polynomials over a given tri-

angle.

Definition 2.1.3 (Bernstein-Bézier Polynomials). For a fixed degree d > 0 and non-negative

integers i, j, k such that i + j + k = d, we define the Bernstein-Bézier polynomials to be

Bd
ijk(x, y) =

d!

i!j!k!
bi
1b

j
2b

k
3.

The Bernstein-Bézier polynomials are useful because they form a basis for the polynomials

of degree d over a given triangle, T .

Theorem 2.1.1. The set

Bd := {Bd
ijk}i+j+k=d (2.8)

of Bernstein-Bézier polynomials is a basis for the space of polynomials Pd.
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Figure 2.2: For the triangle above defined by v1, v2 and v3 the barycentric coordinates are
shown at each of the vertices and at the center of the edge opposite v3.

Proof. The size of Bd is
(

d+2
2

)
which is the same dimension as Pd. Hence we only need to

show that all the polynomials of the form xνyµ for ν + µ ≤ d are in the span of Bd. First,

we show that 1 ∈ Bd. From the trinomial expansion we have

1 = (b1 + b2 + b3)
d =

∑

i+j+k=d

d!

i!j!k!
bi
1b

j
2b

k
3, (2.9)

and hence
∑

i+j+k=d

Bd
ijk(v) ≡ 1 for all v ∈ R2. (2.10)

Hence 1 ∈ Bd and we say the Bernstein-Bézier polynomials form a partition of unity. Now

we show that x, y ∈ Bd. By (2.3), we have


 x

y


 = b1


 x1

y1


 + b2


 x2

y2


 + b3


 x3

y3


 . (2.11)
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Using the partition of unity (2.10) with d− 1, we have

x = b1x1 + b2x2 + b3x3

= (b1x1 + b2x2 + b3x3)

( ∑

i+j+k=d−1

Bd−1
ijk (x, y)

)

=
∑

i+j+k=d

1

d
(ix1 + jx2 + kx3)B

d
ijk(x, y). (2.12)

Similarly for y we have

y =
∑

i+j+k=d

1

d
(iy1 + jy2 + ky3)B

d
ijk(x, y). (2.13)

Now, we proceed by induction. Assume that the theorem holds for polynomials of degree

d− 1. Then we have

xν−1yµ =
∑

i+j+k=d−1

cijkB
d−1
ijk (x, y)

for some coefficients cijk. To get a polynomial of degree d, we multiply by x using (2.12),

xνyµ = (b1x1 + b2x2 + b3x3)
∑

i+j+k=d−1

cijkB
d−1
ijk (x, y) (2.14)

=
∑

i+j+k=d

dijkB
d
ijk(x, y) (2.15)

for some constants dijk.

Since the Bernstein-Bézier polynomials form a basis for Pd, we can write any polynomial

of degree d over T uniquely in terms of Bernstein-Bézier polynomials. We call this the B-form

of a polynomial.

Definition 2.1.4 (B-Form). Let s ∈ Pd satisfy

s|T =
∑

i+j+k=d

cijkB
d
ijk(x, y).

We use the coefficient vector s = (cijk, i + j + k = d, T ∈ 4) to denote a spline function in

S−1
d (4) [Lai and Schumaker’07, (21)].

The coefficients cijk are displayed using locations called domain points.
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Definition 2.1.5 (Domain Points). For a given triangle T = 〈(x1, y1), (x2, y2), (x3, y3)〉 the

domain points are defined as

ξijk =
i

d
(x1, y1) +

j

d
(x2, y2) +

k

d
(x3, y3)

for i + j + k = d.

@
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@
@

@
@

@
@

@
@

@
@@

ξ020

ξ002ξ200

v

vv

v v

v

ξ110 ξ011

ξ101

Figure 2.3: Set of domain points for a polynomial of degree 2

To store polynomials in B-form, we only need to store the coefficients. Fortunately, there

is an efficient and stable algorithm to evaluate polynomials in B-form by using only the

coefficients. This algorithm is known as the de Casteljau Algorithm and is based on the

following recurrence relation

Bd
ijk = b1B

d−1
i−1,j,k + b2B

d−1
i,j−1,k + b3B

d−1
i,j,k−1. (2.16)

The above recurrence relation follows directly from the definition of Bd
ijk and we use the

convention that expressions with negative subscripts are considered to be zero.

Theorem 2.1.2 (de Casteljau Algorithm). Let p be a polynomial with coefficients c
(0)
ijk := cijk,

i + j + k = d. Suppose v has barycentric coordinates b := (b1, b2, b3). Let

c
(`)
ijk(b) := b1c

(`−1)
i+1,j,k(b) + b2c

(`−1)
i,j+1,k(b) + b3c

(`−1)
i,j,k+1(b), (2.17)
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for i + j + k = d− `. Then

p(v) =
∑

i+j+k=d−`

c
(`)
ijk(b)B

d−`
ijk (v), (2.18)

for 0 ≤ ` ≤ d. In particular,

p(v) = c
(d)
000(b). (2.19)

Proof. The de Casteljau algorithm is proved by induction. We note that (2.18) is true for

` = 0. Now, we assume it holds for `− 1 and use (2.16) for degree d− ` + 1

p(v) =
∑

i+j+k=d−`+1

c
(`−1)
ijk Bd−`+1

ijk (v)

=
∑

i+j+k=d−`+1

c
(`−1)
ijk

(
b1B

d−`
i−1,j,k(v) + b2B

d−`
i,j−1,k(v) + b3B

d−`
i,j,k−1(v)

)
.

Now, we split the above into three sums:

∑

i+j+k=d−l+1, i≥1

b1c
(`−1)
ijk Bd−`

i−1,j,k(v) =
∑

i+j+k=d−`

b1c
(`−1)
i+1,j,kB

d−`
ijk (v)

∑

i+j+k=d−l+1, j≥1

b2c
(`−1)
ijk Bd−`

i,j−1,k(v) =
∑

i+j+k=d−`

b2c
(`−1)
i,j+1,kB

d−`
ijk (v)

∑

i+j+k=d−l+1, k≥1

b3c
(`−1)
ijk Bd−`

i,j,k−1(v) =
∑

i+j+k=d−`

b3c
(`−1)
i,j,k+1B

d−`
ijk (v).

Combining, the above sums yields (2.18). For ` = d, (2.18) reduces to (2.19) because the

only Bernstein-Bézier polynomial of degree zero is B0
000 ≡ 1.

One important result of the de Casteljau algorithm is that the intermediate coefficients

c
(`)
ijk produced in the algorithm are polynomials of degree ` in v. Hence we have the following

result.

Theorem 2.1.3. The coefficients in the de Casteljau algorithm in equation (2.18) are given

by

c
(`)
ijk =

∑

ν+µ+κ=`

ci+ν,j+µ,k+κB
`
νµκ(v), i + j + k = d− `. (2.20)
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Proof. We start by noting that

c
(1)
ijk = ci+1,j,kb1 + ci,j+1,kb2 + ci,j,k+1b3, i + j + k = d− 1 (2.21)

are linear polynomials since b1, b2 and b3 are linear polynomials in v. Now, we rewrite the

equation above as

c
(1)
ijk = (b1E1 + b2E2 + b3E3)cijk,

where we define E1cijk = ci+1,j,k, E2cijk = ci,j+1,k and E3cijk = ci,j,k+1. Similarly, we can

express (2.17) in the de Casteljau algorithm as

c
(`)
ijk = (b1E1 + b2E2 + b3E3)c

(`−1)
ijk .

Now, we repeatedly use the formula for c
(`)
ijk, `− 1 times and apply the trinomial expansion

to obtain:

c
(`)
ijk = (b1E1 + b2E2 + b3E3)

`cijk

=
∑

ν+µ+κ=`

B`
νµκ(v)Eν

1Eµ
2 Eκ

3 cijk

=
∑

ν+µ+κ=`

ci+ν,j+µ,k+κB
`
νµκ.

The de Casteljau Algorithm is also helpful in computing the directional derivative at a

given point. Before we discuss the derivative we need the notion of directional coordinates

of a vector u.

Definition 2.1.6 (Directional Coordinates). The directional coordinates of a vector u are

the triple (a1, a2, a3), defined by

ai := αi − βi, i = 1, 2, 3 (2.22)

where (α1, α2, α3) and (β1, β2, β3) are the barycentric coordinates of the two points w and ŵ

such that u := w − ŵ.
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Note that while the barycentric coordinates (b1, b2, b3) of a point v sum to one, the

directional coordinates (a1, a2, a3) of a vector u sum to zero.

Theorem 2.1.4 (Differentiation). Let u := w − v be a vector with directional coordinates

(a1, a2, a3) with ai = αi − βi, i = 1, 2, 3. Then for any i + j + k = d, the derivative in the

direction u is given by

DuB
d
ijk(v) = d

[
a1B

d−1
i−1,j,k(v) + a2B

d−1
i,j−1,k(v) + a3B

d−1
i,j,k−1(v)

]
(2.23)

and

Dup(v) = d
∑

i+j+k=d−1

c
(1)
ijk(a)Bijk(v), (2.24)

where c
(1)
ijk(a) are the quantities arising in the first step of the de Casteljau Algorithm (2.1.2)

based on the triple a.

Proof. Let (b1, b2, b3) be the barycentric coordinates for the point v. Then the barycentric

coordinates of the point v + tu are (b1 + ta1, b2 + ta2, b3 + ta3) and

Bd
ijk(v + tu) =

d!

i!j!k!

[
(b1 + ta1)

i(b2 + ta2)
j(b3 + ta3)

k
]
.

Now, we differentiate with respect to t and evaluate the result at t = 0, yielding

DuB
d
ijk(v) =

d!

i!j!k!

[
ibi−1

i a1b
j
2b

k
3 + bi

1jb
j−1
2 a2b

k
3 + bi

1b
j
2kbk−1

3 a3

]

= d
[
a1B

d−1
i−1,j,k(v) + a2B

d−1
i,j−1,k(v) + a3B

d−1
i,j,k−1(v)

]
.

To obtain (2.24), we differentiate the B-form of the polynomial and apply (2.23),

Dup(v) =
∑

i+j+k=d

cijkDuB
d
ijk(v)

=
∑

i+j+k=d

cijk

(
d

[
a1B

d−1
i−1,j,k(v) + a2B

d−1
i,j−1,k(v) + a3B

d−1
i,j,k−1(v)

])

= d
∑

i+j+k=d−1

ci+1,j,ka1B
d−1
ijk (v) + ci,j+1,ka2B

d−1
ijk (v) + ci,j,k+1a3B

d−1
ijk (v)

= d
∑

i+j+k=d−1

c
(1)
ijk(a)Bijk(v).
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By applying Theorem 2.1.4 repeatedly we obtain the following theorem for multiple

derivatives.

Theorem 2.1.5. Let p be a polynomial written in B-form, and suppose u is a vector with

directional coordinates a := (a1, a2, a3). Then for any 1 ≤ m ≤ d,

Dm
u p(v) =

d!

(d−m)!

∑

i+j+k+d−m

c
(m)
ijk (a)Bd−m

ijk (v), (2.25)

where c
(m)
ijk (a) are the quantities obtained after m steps of the de Casteljau algorithm applied

to the coefficients of p using the triple a.

Polynomials in B-form also have nice integration and inner product formulas.

Theorem 2.1.6 (Integration). Let p be a polynomial written in B-form over a triangle T

with coefficients cijk, i + j + k = d. Then
∫

T

p(x, y) dxdy =
AT(
d+2
2

)
∑

i+j+k=d

cijk, (2.26)

where AT is the area of T .

Proof. Using barycentric coordinates as defined by (2.5), we can write

 x

y


 =


 x1 − x3 x2 − x3

y1 − y3 y2 − y3


 +


 x3

y3


 , (2.27)

and it follows the corresponding determinate is 2AT as in (2.6). Now using the fact
∫ 1

0

xi(1− x)jdx =
i!j!

(i + j + 1)!
, (2.28)

we have

i!j!k!

d!

∫

T

Bd
ijk(x, y)dxdy =

∫

T

bi
1b

j
2(1− b1 − b2)

kdb1db2

= 2AT

∫ 1

0

∫ 1−b1

0

bi
1b

j
2(1− b1 − b2)

kdb1db2

= 2AT

∫ 1

0

bi
1(1− b1)

j+k+1

∫ 1−b1

0

(
b2

1− b1

)j (
1− b2

1− b1

)k
db2

(1− b1)
db1

= 2AT

∫ 1

0

ui(1− u)j+k+1du

∫ 1

0

tj(1− t)kdt

= 2AT
i!(j + k + 1)!

(i + j + k + 2)!

j!k!

(j + k + 1)!
.
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Hence we have ∫

T

Bd
ijk(x, y)dxdy =

2AT

(d + 2)(d + 1)
=

AT(
d+2
2

) , (2.29)

for all i + j + k = d. Then (2.26) follows by integrating the B-form of a polynomial term by

term.

The inner product for is given in the following theorem [Chui and Lai’90, (8)].

Theorem 2.1.7 (Inner Product).

∫

T

Bijk(x, y) Bνµκ(x, y) dxdy =

(
i+ν

i

)(
j+µ

j

)(
k+κ

k

)
AT(

2d
d

)(
2d+2

2

) . (2.30)

Proof. Consider the product of two Bernstein-Bézier polynomials

Bd
ijkB

d
νµκ =

(
i+ν

i

)(
j+µ

j

)(
k+κ

k

)
(
2d
d

) B2d
i+ν,j+µ,k+κ, (2.31)

then applying (2.29) yields (2.30).

Now, that we have defined polynomials over a single triangle we want to connect the

triangles in such a way that they connect smoothly to form our splines. Hence we introduce

the following conditions for smoothness.

Theorem 2.1.8 (Smoothness). Let T = 〈v1, v2, v3〉 and

T̃ = 〈v4, v3, v2〉 be triangles sharing the edge e := 〈v2, v3〉. Let

p(v) =
∑

i+j+k=d

cijkB
d
ijk(v) (2.32)

and

p̃(v) =
∑

i+j+k=d

c̃ijkB̃
d
ijk(v), (2.33)

where {Bd
ijk} and {B̃d

ijk} are the Bernstein-Bézier basis polynomials associated with T and

T̃ respectively. Suppose u is any direction not parallel to e. Then

Dn
up(v) = Dn

u p̃(v), (2.34)
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v ∈ e and n = 0, . . . , r if and only if

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κB
n
νµκ(v4) (2.35)

for j + k = d− n and n = 0, . . . , r.

Proof. Along the edge, e both p and p̃ reduce to a univariate splines hence for them to join

continuously we need

c̃0jk = c0jk, for j + k = d, (2.36)

which is the case when r = 0. Now, for r > 0 we start by noting that all of the derivatives

of p and p̃ corresponding to the direction of v3 − v2 agree at every point along e, and

all other derivatives will be linear combinations of Dv4−v2 and Dv3−v2 . Hence (2.34) holds

if and only if it holds for direction u = v4 − v2. Let b = (b1, b2, b3) be the barycentric

coordinates of v4 relative to T . Then the directional coordinates of u with respect to T and

T̃ are a := (b1, b2 − 1, b3) and ã := (1, 0,−1), respectively. Now, by Theorem 2.1.5 for each

0 ≤ n ≤ r,

Dn
up|e =

d!

(d− n)!

∑

j+k=d−n

c
(n)
0jk(a)Bd−n

0jk ,

and

Dn
u p̃|e =

d!

(d− n)!

∑

j+k=d−n

c̃
(n)
0jk(ã)B̃d−n

0jk ,

where c
(n)
ijk(a) and c̃

(n)
ijk(ã) are the coefficients obtained by applying n steps of the de Casteljau

algorithm to {cijk} and {c̃ijk} using a and ã respectively. For any point v on the edge e, we

have Bd−n
0kj (v) = B̃0kj(v), hence (2.34) holds if and only if

c̃
(n)
0jk(ã) = c

(n)
0kj(a), j + k = d− n, n = 0, . . . , r. (2.37)

Recall that ã := (1, 0,−1) then applying (2.20) yields

c̃
(n)
ijk(ã) =

n∑
m=0

(−1)n−m

(
n

m

)
c̃m,j,d−j−m, j + k = d− n. (2.38)
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Although, if we follow the proof of Theorem 2.1.3 we have

c
(n)
0jk = (b1E1 + (b2 − 1)E2 + b3E3)

ncijk

= (b1E1 + b2E2 + b3E3 − E2)
ncijk

=
n∑

m=0

(−1)n−m

(
n

m

)
(b1E1 + b2E2 + b3E3)

mc0,k+n−m,j

=
n∑

m=0

(−1)n−m

(
n

m

)
c
(m)
0,d−j−m,j(b)

for j + k = d− n. Therefore (2.37) holds if and only if

c̃n,j,d−j−n = c
(n)
0,d−j−n,j(b), j = 0, . . . , n, n = 0, . . . , r,

which is equivalent to (2.35).

One of the main reasons we want to use splines is for their optimal approximation order.

We need to show several results before we can get to the main theorem. We start with a result

that connects the q-norms and ∞-norms of polynomials on a given triangle. The following

results can be found in [Lai and Schumaker’07, (21)].

Theorem 2.1.9. Let T be a triangle, and let AT be its area. Then for all p ∈ Pd and all

1 ≤ q < ∞,

A
−1/q
T ‖p‖q,T ≤ ‖p‖T ≤ KA

−1/q
T ‖p‖q,T , (2.39)

where K is a constant depending only on d and ‖p‖T := ess supu∈T |p(u)|.

Proof. By the definition of norm, we have

A
−1/q
T ‖p‖q,T ≤ ‖p‖T .

For the second inequality, we consider the standard triangle T̃ = {(x, y) : x ≤ 0, y ≤
1, x + y ≤ 1} and use the fact that all norms on the finite dimensional space of polynomials

are equivalent. Then

‖g‖T̃ ≤ K‖g‖q,T̃ ,
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for all polynomials g ∈ Pd, where K is a constant depending only on d. Now, we can apply a

change of variables to map any polynomial p ∈ Pd into a polynomial g ∈ Pd with ‖g‖T̃ = ‖p‖T

and ‖g‖q,T̃ = A
−1/q
T ‖p‖q,T and hence

‖p‖T = ‖g‖T̃ ≤ K‖g‖g,T̃ = KA
−1/q
T ‖p‖q,T .

The next theorem links the ∞-norms of polynomials to the coefficients of their B-form

representation. First need the following result which can be found in [Lai and Schumaker’07,

(21)].

Lemma 2.1.3. Let {g1, . . . , gn} be the the Bernstein-Bézier basis polynomials of degree d

and let {t1, . . . , tn} be the associated domain points arranged in the same order. Define

M := [gj(ti)]
n
i,j=1, (2.40)

then the matrix M is nonsingular.

Theorem 2.1.10. Let p be a polynomial written in B-form with coefficient vector c. Then

‖c‖∞
K

≤ ‖p‖T ≤ ‖c‖∞, (2.41)

where K is a constant that depends only on d.

Proof. By Lemma 2.1.3, the coefficient vector c of a spline in B-form can be computed from

the system of equations

Mc = r

where r := (p(t1), . . . , p(tn))T . Then we have

‖c‖∞ = ‖M−1r‖∞ ≤ ‖M−1‖‖r‖.

We obtain the first inequality by observing that ‖r‖∞ ≤ ‖p‖T . The second inequality follows

from geometric interpretation of barycentric coordinates which implies

0 ≤ Bd
ijk(v) ≤ 1 for allv ∈ T, (2.42)

and the partition of unity property of Bernstein-Bézier polynomials (2.10).
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Now, we can extend Theorem 2.1.10 to the q-norms of polynomials.

Theorem 2.1.11. Given 1 ≤ q < ∞ there exists a constant K > 0 depending only on d

such that if p is a polynomial written in B-form, then

A
1/q
T

K
‖c‖q ≤ ‖p‖q,T ≤ A

1/q
T ‖c‖q. (2.43)

Proof. First we note that

‖p‖T ≤ ‖c‖∞ ≤ K1‖p‖T (2.44)

by Theorem 2.1.10. When we combine (2.44) with (2.39) and

‖c‖q
q ≤

(
d + 2

2

)
‖c‖q

∞

we obtain the first inequality. Combining (2.44) with (2.39) and ‖c‖∞ ≤ ‖c‖q yields the

second inequality.

To develop error bounds we will apply the Markov inequality to compare the size of the

derivative of a polynomial to the size of the polynomial itself on a given triangle T .

Theorem 2.1.12. Let T := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞. Then there exists a

constant K depending only on d such that for every polynomial p ∈ Pd, and any nonnegative

integers α and β with 0 ≤ α + β ≤ d,

‖Dα
xDβ

y p‖q,T ≤ K

ρα+β
T

‖p‖q,T , 0 ≤ α + β ≤ d, (2.45)

where ρT denotes the radius of the largest circle inscribed in T .

Proof. The unit vector u pointing in the direction of the x-axis has the barycentric coordi-

nates (y2 − y3, y3 − y1, y1 − y2)/2AT , where AT is the area of the triangle T . Thus for

p =
∑

i+j+k=d

cijkB
d
ijk

we have

Dxp =
d

2AT

∑

i+j+k=d−1

[(y2 − y3)ci+1,j,k + (y3 − y1)ci,j+1,k + (y1 − y2)ci,j,k+1] B
d−1
ijk .
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By the partition of unity property of Bd−1
ijk , we have

‖Dxp‖∞,T ≤ d‖c‖∞(|y2 − y3|+ |y3 − y1|+ |y1 − y2|
2AT

.

Since the area of a triangle is equal to its perimeter times ρT /2 it follows that

ρT

2
(|y2 − y3|+ |y3 − y1|+ |y1 − y2|) ≤ AT .

Hence

‖Dxp‖∞,T ≤ d‖c‖
ρT

.

Now, we combine ‖c‖∞ ≤ ‖c‖q with Theorem 2.1.9 and Theorem 2.1.11 to obtain

‖Dxp‖q,T ≤ A
1/q
T ‖Dxp‖∞,T ≤ dA

1/q
T

ρT

‖c‖∞ ≤ dA
1/q
T

ρT

‖c‖q ≤ dK

ρT

‖c‖q,T

where K is the constant in (2.43). The proof for ‖Dy‖q,T is similar and the general result

follows from induction.

Now we can approximate any function in Cd+1 on a triangle T with approximation order

O(|T |d+1) by the polynomial of degree d which interpolates f at the set of domain points.

Before we can prove the main result on approximation order we need to introduce Lagrange

polynomials, quasi-interpolants and some important inequalities we need to estimate our

error bounds. We start by using the Lagrange polynomials, we can express the polynomial

that interpolates the domain points by

pijk(v) := Πi−1
µ=0

aµ(v)

aµ(ξijk)
Πj−1

ν=0

bν(v)

bν(ξijk)
Πk−1

κ=0

cκ(v)

cκ(ξijk)
(2.46)

where aµ(v) is the line passing through the points ξµjk with µ + j + k = d, bν(v) is the line

passing through the points ξiνk with i + ν + k = d, and cκ(v) is the line passing through the

points ξijκ with i + j + κ = d. We also use the convention that a product is defined to be

one when the upper limit is negative.

Theorem 2.1.13. Let {ξijk}i+j+k=d be the domain points defined in (2.1.5) and let

{pijk}i+j+k=d be the corresponding Lagrange polynomials defined in (2.46). Then there
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exists a constant K depending only on d and θT such that for every f ∈ Cm+1(T ) with

0 ≤ m ≤ d, the interpolating polynomial

pf =
∑

i+j+k=d

f(ξijk)pijk

satisfies

‖Dα
xDβ

y (f − pf )‖T ≤ K|T |m+1−α−β|f |m+1,T (2.47)

for all 0 ≤ α + β ≤ m and |f |m+1,T denotes the L∞ norm of the m + 1st derivative of f over

T .

Proof. For each domain point, we let ξijk = (ξx
ijk, ξ

y
ijk) for i + j + k = d. Applying the Taylor

expansion to f about a fixed point (x, y) ∈ T yields

f(ξijk) =
∑

0≤µ+ν≤m

1

µ!ν!
Dµ

xDν
yf(x, y)(ξx

ijk − x)µ(ξy
ijk − y)ν

+
∑

µ+ν=m+1

1

µ!ν!
Dµ

xDν
yf(η)(ξx

ijk − x)µ(ξy
ijk − y)ν

where η is some point on the line from ξijk to (x, y). For any non-negative integers α and β

with α + β ≤ m + 1 differentiation of pf yields

Dα
xDβ

y pf (x, y) =
∑

i+j+k=d

f(ξijk)D
α
xDβ

y pijk(x, y).

Now, by the Taylor expansion given above we have

Dα
xDβ

y pf (x, y) =
∑

0≤µ+ν≤m

1

µ!ν!

∑

i+j+k=d

Dµ
xDν

yf(x, y)(ξx
ijk − x)µ(ξy

ijk − y)νDα
xDβ

y pijk(x, y)

+
∑

µ+ν=m+1

1

µ!ν!

∑

i+j+k=d

Dµ
xDν

yf(η)(ξx
ijk − x)µ(ξy

ijk − y)νDα
xDβ

y pijk(x, y).



22

To simplify the above equation, we note that interpolation reproduces polynomials up to

degree d hence

∑

i+j+k=d

(ξx
ijk − x)µ(ξy

ijk − y)νDα
xDβ

y pijk(x, y)

= Dα
xDβ

y

∑

i+j+k=d

(ξx
ijk − x)µ(ξy

ijk − y)νpijk(u, v)|(u,v)=(x,y)

= Dα
xDβ

y (u− x)µ(v − y)ν |(u,v)=(x,y)

=





α!β! if (µ, ν) = (α, β)

0 otherwise.

Thus we can simplify the Taylor series expansion above to

Dα
xDβ

y pf (x, y) = Dα
xDβ

y f(x, y)

+
∑

µ+ν=m+1

1

µ!ν!

∑

i+j+k=d

Dµ
xDν

yf(η)(ξx
ijk − x)µ(ξy

ijk − y)νDα
xDβ

y pijk(x, y).

Then we have

∣∣Dα
xDβ

y (pf (x, y)− f(x, y))
∣∣

=

∣∣∣∣∣
∑

µ+ν=m+1

1

µ!ν!

∑

i+j+k=d

Dµ
xDν

yf(η)(ξx
ijk − x)µ(ξy

ijk − y)νDα
xDβ

y pijk(x, y)

∣∣∣∣∣

≤ K1|T |m+1
∑

i+j+k=d

∥∥Dα
xDβ

y pijk

∥∥
T
|f |m+1,T .

Applying the Markov inequality, Theorem 2.1.12, yields

‖Dα
xDβ

y pijk‖T ≤ K2

ρα+β
T

‖pijk‖T . (2.48)

From our definition of the Lagrange polynomials in (2.46) it is easy to see that

‖pijk‖T ≤ dd. (2.49)

Now by combining (2.1.12) and (2.49) we obtain

∥∥Dα
xDβ

y (pf (x, y)− f(x, y))
∥∥ ≤ K3

|T |m+1

ρα+β
T

|f |m+1,T . (2.50)

The result in (2.47) follows from (2.50) and (2.2).



23

When d ≥ 3r+2 the spline space Sr
d(4) possesses an optimal approximation order which

is achieved by the use of a quasi-interpolation operator. To define the quasi-interpolation

operator we need linear functionals {λijk,T}i+j+k=d, T ∈ 4 which are based on values of f at

the set of domain points over triangles in 4, that is

λijk,T (f) =
∑

|ν|=d

aijk
ν f(ξT

ν ). (2.51)

The quasi-interpolation operator of f is defined by

Qf :=
∑

T∈4

∑

i+j+k=d

λijk,T (f)BT
ijk. (2.52)

Now, we are ready for the crucial theorem on optimal approximation order [Lai and Schu-

maker’98, (20)].

Theorem 2.1.14 (Optimal Approximation Order). Assume d ≥ 3r + 2 and let 4 be a

triangulation of D. Then there exists a quasi-interpolatory operator Qf ∈ Sr
d(4) mapping

f ∈ L1(D) into Sr
d(4) such that Qf achieves the optimal approximation order: if f ∈

Wm+1
p (D),

‖Dα
1 Dβ

2 (Qf − f)‖Lp(D) ≤ C|4|m+1−α−β|f |m+1,p,D (2.53)

for all α + β ≤ m + 1 with 0 ≤ m ≤ d, where D1 and D2 denote the derivatives with respect

to the first and second variables, ‖f‖Lp(D) denotes the usual Lp norm of f over D, |f |m,p,D

denotes the Lp norm of the mth derivatives of f over D, and Wm+1
p (D) stands for the usual

Sobolev space over D. The constant C depends only on the degree d and the smallest angle

θ4 and may be dependent on the Lipschitz condition on the boundary of D.

We will also need the following lemma that relates the norm of the spline with the norm

of the splines coefficients [Lai and Schumaker’98, (20)].

Lemma 2.1.4. Suppose that 4 is a β-quasi-uniform triangulation. There exist two positive

constants C1 and C2 independent of 4 such that for any spline function S ∈ Sr
d(4) with

coefficient vector s = (s1, · · · , sm)T with S =
m∑

i=1

sjφj,

C1|4|2‖s‖2 ≤ ‖S‖2 ≤ C2|4|2‖s‖2. (2.54)
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Now we discuss the some useful results from [Awanou, Lai and Wenston’06, (1)]: the

Lagrange Multiplier Method and the scattered data fitting schemes we implement in our

functional linear models. The Lagrange Multiplier Method is a useful method for using

splines to solve ill-posed problems. Let S := Sr
d(4) be the spline space of degree d and

smoothness r over a given triangulation 4. Define a functional on S by

J(u) =
1

2
a(u, u)− b(u)

where a is a continuous bilinear form and b is a continuous linear functional. Consider the

constrained minimization problem:

J(sG) = min{J(s), s ∈ S, B(u) = G} (2.55)

where B(u) = G is a set of side conditions such as smoothness and interpolation conditions.

Let

A =
(
a(Bd,T

ijk , Bd,T ′
pqr )

)
i+j+k=d, T∈4
p+q+r=d, T ′∈4

be the matrix associated with the bilinear form a. Let F =
(
b(Bd

ijk)
)

be the vector associated

with the linear form b. The side conditions in matrix form are Bu = g. Using the B-form of

spline functions we can rewrite the above abstract problem as

min J(c) = 1
2
cT Ac− cT F

subject to Hc = 0, Ic = f ,

where Hc = 0 is the linear system imposed by the smoothness conditions in Theorem 2.1.8

and Ic = f is an interpolation condition. The theory of Lagrange Multipliers yields

L(c, λ1, λ2) =
1

2
cT Ac− cT F + λT

1 Hc + λT
2 (Ic− f) (2.56)

for λ1 and λ2 such that

Ac + HT λ1 + Iλ2 = F

Hc = 0, Ic = f ,
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or in matrix form, 
 BT A

0 B





 λ

c


 =


 F

G


 . (2.57)

We solve the system above using the following matrix iterative method [Awanou, Lai and

Wenston’06, (1)].

Algorithm 2.1.1 (Matrix Iterative Method). Let I be the identity matrix of Rm. Fix ε > 0,

given an initial guess λ(0) ∈ Im(B). Compute

c(1) =

(
A +

1

ε
BT B

)−1 (
F +

1

ε
BT G−BT λ0

)
.

Then iteratively compute

c(k+1) =

(
A +

1

ε
BT B

)−1 (
Ac(k) +

1

ε
BT G

)

for k = 1, 2 . . .

Below is the convergence theorem for the above matrix iterative method [Awanou and

Lai’05, (2)].

Theorem 2.1.15. Assume the linear system (2.57) has a solution (λ, c) where c is unique.

Also assume that A is positive definite with respect to B. That is, xT Ax ≥ 0 and xT Ax = 0

with Bx = 0 implies that x = 0. Then there exists a constant C1(ε) depending on ε but

independent of k such that

∥∥c− ck+1
∥∥ ≤ C1(ε)

(
C2ε

1 + C2ε

)k+1

for k ≥ 1 where C2 = ‖B+‖2‖A‖ and B+ denotes the pseudo inverse of B.

We use the matrix iterative method in our discussion of several different methods for fit-

ting scattered sets of data. For each scattered data fitting method we are given unstructured

data {(xi, yi, f(xi, yi)), i = 1, . . . N}. We want to find a smooth surface sf that fits the data.

We start by discussing the minimal energy method that interpolates the given data. Let
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{(xi, yi, f(xi, yi)), i = 1, . . . , N} be a scattered data set where all of the points are distinct

and take 4 to be a triangulation of the given data locations with vertices at the given data

locations. Let S := Sr
d(4) be the spline space of degree d and smoothness r over 4. Then

we consider the set of interpolating splines,

Λ(f) := {s ∈ S : s(xi, yi) = f(xi, yi), i = 1, . . . , N} , (2.58)

and choose sf ∈ Λ(f) such that

E(sf ) := min
s∈Λ(f)

E(s)

where

E(s) :=
∑

T∈4

∫

T

(
s2

xx + 2s2
xy + s2

yy

)
dxdy. (2.59)

The following existence and uniqueness theorem is given in [Awanou, Lai and Wenston’06,

(1)].

Theorem 2.1.16. Suppose that Λ(f) is non-empty. Then there exists a unique sf ∈ Λ(f)

minimizing (2.59).

The convergence theorem for the minimal energy method is below [von Golitschek, Lai

and Shumaker’02,(14)].

Theorem 2.1.17. Suppose S ⊆ Sr
d(4) where d ≥ 3r + 2 and 4 is β-quasi-uniform trian-

gulation. Then there exists a constant C depending only on d and β such that

‖f − sf‖L∞(Ω) ≤ C|4|2|f |2,∞,Ω.

To solve the minimal energy method we note that for s ∈ S, the spline s satisfies the

smoothness conditions in Theorem 2.1.8 which can be expressed as the linear system

Hc = 0.

The energy functional E(s) can be expressed in terms of c as

E(s) = cT Kc
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where K = diag(KT , T ∈ 4) is a block diagonal matrix with

KT =

[∫

T

(
D2

xB
d,T
ijk D2

xB
d,T
pqr + 2DxDyB

d,T
ijk DxDyB

d,T
pqr + D2

yB
d,T
ijk D2

yB
d,T
pqr

)
dxdy

]
i+j+k=d
p+q+r=d

(2.60)

where Bd,T
ijk is the Bernstein basis polynomial of degree d with respect to the triangle T .

Hence the minimal energy interpolation problem is equivalent to the following constrained

minimization problem:

min cT Kc

subject to

Hc = 0, Ic = f

where Ic = f is the linear system associated with the interpolation conditions. Finally

we solve the above constrained minimization problem by the previously described matrix

iterative method in Algorithm 2.1.1 since K is positive definite.

Next we discuss the discrete least squares method. Let {(xi, yi, f(xi, yi)), i = 1, . . . , N}
be a scattered data set where N is a relatively large integer. Let Ω be the convex hull of the

given data locations and 4 a triangulation of Ω. For the discrete least squares method, we

do not require the vertices of 4 to be data points. We also want the data locations to be

evenly distributed over 4 with respect to d.

Definition 2.1.7. For a given spline space Sr
d(4), let d = max{dT , T ∈ 4}. We say that

the given data locations v`, ` = 1, . . . , N are evenly distributed over 4 with respect to d if

for each triangle T ∈ 4, the matrix

[
Bd

ijk(v`)|T , v` ∈ T
]

is of full rank.

The discrete least squares method finds sf ∈ S such that

N∑
i=1

|sf (xi, yi)− f(xi, yi)|2 = min
s∈S

N∑
i=1

|s(xi, yi)− f(xi, yi)|2 .
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The existence and uniqueness of a solution is given in the theorem below [Awanou, Lai and

Wenston’06, (1)].

Theorem 2.1.18. Suppose that the data locations (xi, yi) for i = 1, . . . , N are evenly dis-

tributed over 4 with respect to d. Then there exists a unique discrete least squares solution

satisfying (2.61).

The following is the convergence theorem for the discrete least squares method [von

Golitschek and Shumaker’02, (15)].

Theorem 2.1.19. Let S = Sr
d(4) where d ≥ 3r+2. Let4 be a β-quasi-uniform triangulation

of D and s0 denote the discrete least squares solution in (2.61). Then for all f ∈ Wm+1
∞ (D),

‖f − s0‖L∞(D) ≤ C|4|m+1|f |m+1,∞,D

where C is a constant depending only on the degree d and β if D is convex and also on the

Lipschitz constant L∂D of the boundary of D if D is not convex.

To compute the discrete least squares solution we let

L(c) :=
N∑

i=1

|s(xi, yi)− f(xi, yi)|2 .

We only need to find a local minimizer since L(c) is convex. Hence by the Lagrange Multiplier

Method, we let

F(c, α) = L(c) + αT Hc

and set

∂

∂c
F(c, α) = 0

∂

∂α
F(c, α) = 0.

Again we apply the Matrix Iterative Algorithm 2.1.1 to solve the linear system


 HT 2B

0 H





 α

c


 =


 2b

0



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where B = diag(BT , T ∈ 4) with

BT =


 ∑

(xl,yl)∈T

Bd,T
ijk (xl, yl)B

d,T
pqr (xl, yl)




i+j+k=d
p+q+r=d

(2.61)

and

b =
(
bT
ijk, i + j + k = d, T ∈ 4)

(2.62)

with

bT
ijk =

∑

(xl,yl)∈T

f(xl, yl)B
d,T
ijk (xl, yl).

When we combine the minimal energy method and the discrete least squares method

we form the penalized least squares method. For the penalized least squares method, let

{(xi, yi, f(xi, yi)), i = 1, . . . , N} be a scattered data set where N is a relatively large integer.

Again take Ω to be the convex hull of the given data locations and 4 a triangulation of Ω.

Then the penalized least squares method is to find sf ∈ S such that for a positive weight

λ > 0

Pλ(sf ) := min
s∈S

Pλ(s) (2.63)

where

Pλ(s) :=
N∑

i=1

|s(xi, yi)− f(xi, yi)|2 + λE(s)

and E(s) denotes the energy functional defined in equation (2.59). The existence and unique-

ness criterium for the penalized least squares method is outlined in the following theorem.

Theorem 2.1.20. Fix λ > 0 and suppose that there exist three data points that are distinct

and non-collinear. Then there exists a unique sf ∈ Sr
d(4) satisfying (2.63) with r ≥ 1.

Proof. For existence we need to show that (B − λK) is invertible. To do this we will show

that (B−λK) is positive definite. The determinate of a positive matrix is positive and hence

every positive definite matrix is invertible.

Now to show uniqueness, let sf and ŝf be solutions to (2.63), with coefficient vectors cf

and ĉf respectively. Since Pλ is convex for any z ∈ [0, 1] we have

P (zsf + (1− z)ŝf ) ≤ zPλ + (1− z)Pλ(ŝf ) = Pλ(ŝf ).
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Hence Pλ(ŝf + z(sf − ŝf )) is a constant with respect to z. Thus

∂

∂z
Pλ(ŝf + z(sf − ŝf )) = 0.

That is for all z ∈ (0, 1)

0 =
∂

∂z
Pλ(ŝf + z(sf − ŝf ))

= 2λz(cf − ĉf )
T K(cf − ĉf )

+2z(cf − ĉf )
T B(cf − ĉf )− 2bT (cf − ĉf ).

Hence we have

(cf − ĉf )
T K(cf − ĉf ) = 0 (2.64)

(cf − ĉf )
T B(cf − ĉf ) = 0. (2.65)

Now, (2.64) implies that sf − ŝf is a linear function. By (2.65) we know that sf − ŝf is

equal to zero at three non-collinear points with C1 conditions. Hence sf − ŝf ≡ 0 and the

minimizer is unique.

The convergence theorem for the penalized least squares method is below [Lai’07, (19)].

Theorem 2.1.21. Let sf,λ be the penalized least squares spline in Sr
d(4) with d ≥ 3r + 2.

Suppose that f ∈ Wm+1
∞ (Ω) with 1 ≤ m ≤ d. Suppose that A1 > 0 and A2 < ∞ are constants

such that A2/A1 is independent of 4. Then

‖sf,λ − f‖L∞(Ω) ≤ C

(
1 +

√
λ

|4|

)(
|4|m|f |m+1,Ω +

λ

|4||f |2,Ω

)
,

if λ is sufficiently small compared to |4|. Here C > 0 is constant dependent on A2/A1 and

β and d.

To solve the penalized least squares method, note that for s ∈ S, the spline s satisfies

the smoothness conditions in Theorem 2.1.8 which can be expressed as the linear system

Hc = 0.
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The energy functional can be expressed as before in terms of c as

E(c) = cT Kc,

where K is defined as before in equation (2.60). We have

N∑
i=1

|s(xi, yi)− f(xi, yi)|2 =
∑

T∈4

∑
v∈T

( ∑

i+j+k=d

cT
ijkB

d,T
ijk (v)− f(v)

)2

= cT Bc− 2bTc + ‖f‖2

where f = (f(v), v = (xl, yl), l = 1, . . . , N) is the data value vector and B and b are the

same as (2.61) and (2.62) respectively. Thus

Pλ(s) = λcT Kc + cT Bc− 2bTc + ‖f‖2
2. (2.66)

Again for the penalized least squares method, we only need to compute a local minimizer

since Pλ(s) is convex. To do this we use the Lagrange Multiplier Method by letting

F(c, α) = Pλ(c) + αT Hc

and set

∂

∂c
F(c, α) = 0

∂

∂α
F(c, α) = 0.

Finally by the existence and uniqueness Theorem 2.1.20 we know (B + λK) is positive

definite. Hence we can apply the Matrix Iterative Algorithm 2.1.1 to solve the linear system


 HT 2(B + λK)

0 H





 α

c


 =


 2b

0


 .

2.2 Univariate Functional Linear Models

In this section, we discuss the functional linear model as discussed in [Cardot, Ferraty and

Sarda’03, (6)]. Suppose C = [0, 1] and let H be the separable Hilbert space of square inte-

grable functions defined on [0, 1]. Let 〈φ, ψ〉 denote the usual inner product of the functions
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φ and ψ on H and ‖ψ‖ the norm of ψ. Let (X,Y ) be a pair of random variables defined on

the same probability space, with X values in H and Y valued in R. Let f be the conditional

mean of Y given X, that is

E (Y | {X(t) = x(t), t ∈ [0, 1]}) = f ({x(t), t ∈ [0, 1]}) , (2.67)

for x ∈ H. If the function f is linear and continuous, then by the Riesz representation

theorem there is a unique function α in H such

E (Y | {X(t) = x(t), t ∈ [0, 1]}) = 〈α, x〉, (2.68)

for x ∈ H. If f is not linear or continuous, consider the continuous linear approximation of

f as the function α in H satisfying

α = arg min
β∈H

E [
(Y − 〈β,X〉)2] = arg min

β∈H
E [

(f(x)− 〈β, X〉)2] . (2.69)

We want to consider the model in (2.68) or equivalently (2.69), for the continuous linear

function defined as

Ψ(x) = 〈α, x〉, (2.70)

for x ∈ H. In this general setting α may not exist and if it does it may not be unique.

We can develop conditions for the existence and uniqueness of α based on the covariance

operator or X and the cross covariance matrix of X and Y . First, we assume the H valued

random variable X is centered (E(X(t)) = 0, for all t a.e.) and has a finite second moment

(E(‖X‖2) < ∞). Then the covariance operator Γ of the H valued random variable is defined

to be

Γx(t) =

∫ 1

0

E [X(t)X(s)] x(s)ds, (2.71)

for x ∈ H and t ∈ [0, 1]. We note here that Γ is an integral operator whose kernel is the

covariance function of X. It can be shown that the operator Γ is nuclear, self-adjoint, and

non-negative. Similarly, we define the cross covariance operator ∆ of (X, Y ) to be the linear

functional

∆x =

∫ 1

0

E [X(t)Y ] x(t)dt, (2.72)
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for x ∈ H. Now there is a solution to (2.69) if and only if it satisfies

∆(x) = 〈α, Γ(x)〉, (2.73)

for x ∈ H. Let λj for j = 1, 2, . . . be the eigenvalues of Γ and vj for j = 1, 2, . . . the

corresponding eigenfunctions. Then we can express

α =
∞∑

j=1

〈α, vj〉vj. (2.74)

By (2.73) and (2.74) we can get the coordinates of α in terms of the functions vj as follows

〈E(XY ), vj〉 = λj〈α, vj〉, (2.75)

for j = 1, 2, . . .. Let N (Γ) = {x ∈ H, Γx = 0}, if N (Γ) 6= {0} then α cannot be uniquely

determined. Some of the eigenvalues are null and if α satisfies (2.73), then α + α0 satisfies

(2.73) for any α0 ∈ N (Γ). Hence a unique solution to (2.69) can only be determined in the

space N (Γ)⊥. Hence we look for a solution in the closure of Im(Γ) = {Γx, x ∈ H}. By

inverting (2.75) we get another expansion for α:

α =
∞∑

j=1

〈E(XY ), vj〉
λj

vj. (2.76)

Now, we note that the function α will belong to H if and only if

∞∑
j=1

〈E(XY ), vj〉
λj

< ∞. (2.77)

In fact, (2.77) is satisfied if f is a continuous linear function then f(X) = 〈α, X〉. We also

note that the estimation of α is difficult since the eigenvalues λj decrease rapidly to zero.



Chapter 3

Autoregressive Approach for Functional Linear Models

In this chapter, we extend the functional linear model to the bivariate setting. For the

autoregressive approach in the bivariate setting, we take Y to be a real valued random

variable which is a functional of a random surface X over a polygonal domain D ∈ R2. The

functional linear model for Y is:

Y = f(X) + ε = 〈g, X〉+ ε =

∫

D
g(s)X(s)ds + ε, (3.1)

where g ∈ H, such as L2(D), ε is a real random variable that satisfies Eε = 0 and EX(s)ε = 0,

for all s ∈ D. We rephrase the problem, by looking for the function g ∈ H that solves the

following minimization problem:

min
β∈H

E [
(f(X) + ε− 〈β, X〉)2

]
. (3.2)

We want to approximate the function, g, defined on the two dimensional spatial domain D
based on the observations on X from a set of design points in D and the random variable Y.

We cannot assume that the random surfaces at various time steps are completely indepen-

dent; hence we want to write the model in terms of the covariance operator of the H-valued

random variable X,

Γ := E(X(s)X(t)) (3.3)

and the cross covariance of (X,Y ),

∆ := E(X(s)Y ). (3.4)

Theorem 3.0.1. The solution to the minimization problem (3.2) is

Γg = ∆. (3.5)

34
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Proof. We start with the minimization problem (3.2). If g is the solution, the following

function

F (r) = E [
(Y − 〈g + rf, X〉)2

]
(3.6)

achieves the minimum when r = 0 for any function f ∈ H. By taking the derivative with

respect to r, we have

F ′(r) = 2E [(Y − 〈g + rf, X〉)(−〈f, X〉)] = 0. (3.7)

Evaluating at r = 0 yields

E [(Y − 〈g, X〉)(〈f, X〉)] = 0,

so

E [(〈g, X〉)(〈f, X〉)] = E [Y (〈f, X〉)] . (3.8)

Note that the left-hand side of (3.8) is

E
[∫

s∈D
g(s)X(s)ds

∫

t∈D
f(t)X(t)dt

]
=

∫

t∈D

∫

s∈D
g(s)E [X(s)X(t)]f(t)dsdt (3.9)

and the right-hand side is

E [Y (〈f,X〉)] = E
[∫

t∈D
f(t)X(t)Y dt

]
=

∫

t∈D
f(t)E [X(t)Y ]dt. (3.10)

Since the equation (3.8) holds for all f ∈ H, we have

∫

t∈D

∫

s∈D
g(s)E [X(s)X(t)]f(t)dsdt =

∫

t∈D
f(t)E [X(t)Y ]dt. (3.11)

Now, let Γ be the standard covariance operator of the H-valued random variables X as

defined in (3.3) and take ∆ to be the cross-covariance of X and Y as defined in (3.4). Then

we have

(Γg)(t) =

∫

s∈D
E(X(s)X(t))g(s)ds, ∀g ∈ H.

and

〈∆, f〉 =

∫

t∈D
E(X(t)Y )f(t)dt ∀f ∈ H.



36

Now, (3.11) can be denoted by

Γg = ∆.

Note that Γ is a symmetric integral operator mapping H to H. Assume that Γ is a

compact operator [Cardot, Ferraty,and Sarda’03, (6)]. Let λj, j = 1, 2, . . . , be the eigenvalues

of Γ arranged in decreasing order and take vj ∈ H to be the eigenfunctions of Γ associated

with λj for j = 1, 2, . . .. Suppose that vj, j = 1, 2, . . . , form a complete orthonormal basis for

H. Then we can write Γ =
∑

j λjvj(t)vj(s) and g =
∑

j

〈g, vj〉vj for any g ∈ H. Then (3.11)

yields

λj〈g, vj〉 = 〈g, λjvj〉 = 〈g, Γvj〉 = 〈Γg, vj〉 = 〈∆, vj〉 = 〈E(X(t)Y ), vj〉,

and it follows that if λj > 0

〈g, vj〉 = 〈E(X(·)Y ), vj〉/λj.

Thus, we get the expansion for g

g =
∞∑

j=1

〈E(X(·)Y ), vj〉
λj

vj.

Note that the function g is in H if and only if

∞∑
j=1

(〈E(X(·)Y ), vj〉
λj

)2

< +∞.

In general, we do not know if Γ is invertible or not. Let N (Γ) be the kernel of Γ, N (Γ) =

{x ∈ H, Γx = 0} and suppose that N (Γ) 6= ∅. In this case, g can not be uniquely determined.

However, g can be determined in N (Γ)⊥. So we let Hk = span{v1, . . . , vk} ⊂ N (Γ)⊥ be a

finite dimensional approximation of the orthogonal complement of N (Γ) and Pk be the

orthogonal projection operator from H to Hk. Now, PkΓPk is invertible when λk > 0. Note

that PkΓPkg =
∑k

j=1 λj〈vj, g〉vj. Thus, for all f ∈ H, Pkf =
∑k

j=1〈f, vj〉vj and (3.11) yields

〈PkΓPkg, Pkf〉 = 〈∆, Pkf〉,
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or
k∑

j=1

λj〈vj, g〉〈vj, f〉 =
k∑

j=1

〈f, vj〉〈∆, vj〉

for all f ∈ H. It follows that 〈vj, g〉 =
1

λj

〈∆, vj〉 for j = 1, . . . , k. Hence, we have the

approximation of g in Hk:

gk =
k∑

j=1

1

λj

〈∆, vj〉vj.

So far, we have only done a theoretical analysis. Now, we move on to an empirical estimate

of g. For random samples Xi, i = 1, . . . , n in H and Yi is another random variable dependent

on Xi, Γn be the empirical estimator of Γ is given by,

Γnx =
1

n

n∑
i=1

〈Xi, x〉Xi

where x is a vector in an appropriate finite dimensional space and ∆n is the empirical

estimator of ∆:

∆nx =
1

n

n∑
i=1

〈Xi, x〉Yi.

Then the finite dimensional operator Γn is a compact operator mapping H to H and hence,

Γn can be expanded in terms of its eigenfunctions v̂j, j = 1, 2, . . .. That is,

Γnx =
∞∑

j=1

λ̂j〈v̂j, x〉v̂j.

Similar to our theoretical discussion, we have

∆nx = 〈gn, Γnx〉

for some gn ∈ H. Assume that the first kn largest eigenvalues λ̂j, j = 1, · · · , kn are nonzero.

Then the principal component regression estimator of gk is

ĝPCR =
kn∑
j=1

∆n(v̂j)

λ̂j

v̂j

which is an approximation of the empirical estimator of g.

In general, ĝPCR ∈ Hk is a rough function. We smooth ĝPCR by approximating it with

bivariate splines. Let Sr
d(4) be the spline space of polynomials degree d and smoothness r
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over triangulation 4 with d ≥ 3r+2. Then we take ĝSPCR to be the solution of the following

continuous least squares minimization:

min
f∈Sr

d(4)

∫

D
|ĝPCR(s)− f(s)|2ds.

In practice, the random surfaces Xi’s are not observed continuously. The only information

given is the values of Xi at design points sk ∈ D, k = 1, . . . , N . That is, for the ith surface

we only have {zi,k, k = 1, . . . , N} to describe Xi where zi,k is a random value at the design

point sk ∈ D. We also have Yi a random variable dependent on Xi. Since we only have

a discrete version of the Xi we approximate it by X̃i by using the penalized least squares

method (2.63). We use the space bivariate splines with optimal approximation order, the

space Sr
d(4), smoothness r and degree d ≥ 3r + 2 defined over the triangulation 4 of D.

Let Γ̃n be an approximation of the empirical estimator Γn of Γ:

Γ̃n(x) =
1

n

n∑
i=1

〈X̃i, x〉X̃i (3.12)

and ∆̃n be an approximation of the empirical estimator ∆n of ∆:

∆̃n(x) =
1

n

n∑
i=1

〈X̃i, x〉Yi, (3.13)

for spline approximation of random samples Xi, i = 1, . . . , n.

We see that Γ̃n is a bounded operator on Sr
d(4) and hence can be expressed as follows:

Γ̃n(x) =
m∑

j=1

λ̃j〈ṽj, x〉ṽj, (3.14)

where λ̃j is an eigenvalue and its associated ṽj eigenvector of Γ̃n and m is the dimension of

the spline space Sr
d(4). Then

〈∆̃n, x〉 = 〈gn, Γ̃nx〉 (3.15)

for some gn ∈ H. We take the first kn largest eigenvalues λ̃j, j = 1, · · · , kn that are nonzero

and define the principal component regression estimator of gn as

g̃PCR =
kn∑
j=1

∆n(ṽj)

λ̃j

ṽj. (3.16)
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The above is an approximation of the empirical estimator of g. Finally we can use the

penalized least squares fit to compute a smooth version of g̃PCR and denote it by g̃SPCR. We

also note that instead of using Hk, one could use other finite dimensional function spaces.



Chapter 4

Brute Force Approach to Functional Linear Models

In this chapter,we discuss the brute force method. The results in this chapter are from [Guillas

and Lai’08, (17)] and offer an alternative approach to the autoregressive method. We include

these results here to make it convenient for the reader and as a preparation for Chapter 5.

The brute force method exploits the optimal approximation property of splines, Theorem

2.1.14. The general idea of this approach starts by trying to approximate a bounded and

continuous functional f . By the Riesz representation theorem, the functional can be written

as f(X) = 〈g, X〉 for some function g ∈ H. That is, we want to solve the same minimization

problem as in Chapter 3:

α = arg min
β∈H

E [
(f(X)− ε− 〈β, X〉)2

]
. (4.1)

However it is impossible to solve the above minimization problem because we have an infinite

dimensional Hilbert space H. Hence we find an approximation to the solution by choosing a

finite dimensional spline space Sr
d(4) of smoothness r and degree d ≥ 3r + 2 which is dense

in H as |4| → 0. This reduces the original problem (4.1) to the spline estimate

Sα = arg min
β∈Sr

d(4)
E [

(f(X)− ε− 〈β, X〉)2
]
. (4.2)

From the spline estimate we develop an empirical estimate for a given set of observed surfaces

{X1, . . . , Xn}
Ŝα,n = arg min

β∈Sr
d(4)

1

n

n∑
i=1

(f(Xi)− εi − 〈β, Xi〉)2. (4.3)

All of the theory up to this point is for given complete random surfaces but in practice we

are not able to observe the entire random surface. Instead, we observe a random surface X

40
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over design points sk, k = 1, . . . , N over D. We create a surface to represent X from the given

data by using splines. We create a spline SX by finding the penalized least square fit of X.

To do this we assume that sk, k = 1, . . . , N are evenly distributed over 4 of D with respect

to Sr
d(4). Then we repeat the above theory using our approximated random surfaces. We

start with the original problem (4.1) using SX instead of X:

αD = arg min
β∈H

E [
(f(X)− ε− 〈β, SX〉)2

]
. (4.4)

Again we have the same issue, that the Hilbert space H is infinite and we cannot find the

minimum but we can find an approximate solution in the finite spline space Sr
d(4). Hence

we obtain a spline estimate based on the approximated random surfaces:

SαD
= arg min

β∈Sr
d(4)

E [
(f(X)− ε− 〈β, SX〉)2

]
. (4.5)

From this spline estimate we finally reach something we can compute from real data, the

empirical estimate based the approximated random surfaces:

S̃α,n = arg min
β∈Sr

d(4)

1

n

n∑
i=1

(f(Xi)− εi − 〈β, SXi
〉)2. (4.6)

The first theorem in this section states when there exists a unique solution to the original

minimization problem over Sr
d(4),(4.2).

Theorem 4.0.2. Suppose that only the zero spline in Sr
d(4) is orthogonal to the collection

X = {X(s), s ∈ D} ⊂ H. Then the minimization problem (4.2) has a unique solution in

Sr
d(4).

Proof. We want to rewrite the minimization problem in terms of a linear system. Let

{φ1, · · · , φm} be a basis for Sr
d(4). First we note that if β ∈ Sr

d(4) we can write β =
∑m

j=1 cjφj and then

〈β, X〉 =

〈
m∑

j=1

cjφj, X

〉
=

m∑
j=1

cj〈φj, X〉.

Hence we can write the difference in the minimization problem as the following function of

the coefficient vector:

F(cj) = E
[
(f(X)−

m∑
j=1

cj〈φj, X〉)2

]
. (4.7)
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Differentiation yields

∂F
∂cl

= 2E
[(

f(X)−
m∑

j=1

cj〈φj, X〉
)

m∑
j=1

〈φj, X〉
]

= 2E
[
f(X)

m∑
j=1

〈φj, X〉 −
m∑

j=1

cj〈φj, X〉
m∑

j=1

〈φj, X〉
]

.

Then ∂F
∂cl

= 0 implies

E
[
f(X)

m∑
j=1

〈φj, X〉
]

= E
[

m∑
j=1

cj〈φj, X〉
m∑

j=1

〈φj, X〉
]

. (4.8)

We can rewrite this as a linear system

Ac = b, (4.9)

where A is an m×m matrix with entries E(〈φi, X〉〈φj, X〉) for i, j = 1, . . . , m and the vector

b is of length m with entries E((f(X) + ε)〈φj, X〉) = E(f(X)〈φj, X〉) for j = 1, . . . , m and

the coefficient vector of Sα is the vector c = (c1, . . . , cm)T which satisfies (4.9). Here we note

that the matrix A is the same A matrix in the previous chapter, the representation of the

covariance function of X expanded with respect to the spline basis φj, j = 1, . . . , m.

To have a unique solution to (4.2) we need to solve the linear system (4.9). We know

that A is invertible if it is full rank and the only solution to cT Ac = 0 is c = 0. That is for

any vector c we have

cT Ac =
m∑

i=1

m∑
j=1

ciE(〈φi, X〉〈φj, X〉)cj (4.10)

c = E
(〈

m∑
i=1

ciφi, X

〉 〈
m∑

j=1

cjφj, X

〉)
(4.11)

= E
(〈

m∑
i=1

ciφi, X

〉)2

= 0, (4.12)

for all X ∈ X . The above requires
〈

m∑
i=1

ciφi, X

〉
=

m∑
i=1

ci〈φi, X〉 = 0 (4.13)

which implies that c = 0. Therefore if we assume that the zero spline function in Sr
d(4) is

the only one orthogonal to all X ∈ X then A is invertible and (4.2) has a solution.
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Now that we know when there exists a unique Sα, we want to know how well Sα approx-

imates α in terms of, |4|, the size of triangulation.

Theorem 4.0.3. Suppose that E(‖X‖2) < ∞ and suppose α ∈ Cν(D) for r ≤ ν ≤ d + 1.

Then the solution Sα from the minimization problem (4.2) approximates α in the sense:

E((〈α− Sα, X〉)2) ≤ C|4|2νE(‖X‖2), (4.14)

where |4| is the maximal length of the edges of 4.

Proof. Let {φ1, · · · , φm} be a basis for Sr
d(4) and take {φj, j = m + 1,m + 2, · · · } to be

a basis of the orthogonal complement space of Sr
d(4) in H. Then write α =

∑
j cjφj. The

minimization in (3.2) yields

E(〈α,X〉〈φj, X〉) = E(f(X)〈φj, X〉) (4.15)

for all j = 1, 2, . . . while the minimization in (4.2) gives

E(〈Sα, X〉〈φj, X〉) = E(f(X)〈φj, X〉) (4.16)

for j = 1, 2, . . . , m. Now by subtracting (4.15) and (4.16) we obtain

E(〈α− Sα, X〉〈φj, X〉) = 0 (4.17)

for j = 1, 2, . . . , m. Let Qα =
∑m

j=1 ajφj be the quasi-interpolatory spline in Sr
d(4) which

achieves the optimal order of approximation of α from Sr
d(4). Then by (4.17) and the Cauchy
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Schwartz inequality we have:

E((〈α− Sα, X〉)2) = E(〈α− Sα, X〉〈α− Sα, X〉)

= E(〈α− Sα, X〉〈α− Sα + Qα −Qα, X〉)

= E((〈α− Sα, X〉)(〈α−Qα, X〉+ 〈Qα − Sα, X〉))

= E
(

(〈α− Sα, X〉)
(
〈α−Qα, X〉+

〈
m∑

j=1

(aj − cj)φj, X

〉))

= E
(

(〈α− Sα, X〉)
(
〈α−Qα, X〉+

m∑
j=1

(aj − cj) 〈φj, X〉
))

= E(〈α− Sα, X〉〈α−Qα, X〉)

≤ (E((〈α− Sα, X〉)2))1/2E((〈α−Qα, X〉)2)1/2.

Squaring both sides an applying Theorem 2.1.14 yields the result:

E((〈α− Sα, X〉)2) ≤ E((〈α−Qα, X〉)2) ≤ ‖α−Qα‖2E(‖X‖2). (4.18)

Now, we consider the empirical estimate of Sα for given a sample of independent and

identically distributed (i.i.d) random surfaces Xi, i = 1, . . . , n. The empirical estimate Ŝα,n ∈
Sr

d(4) is the solution of

Ŝα,n = arg min
β∈Sr

d(4)

1

n

n∑
i=1

(f(Xi) + εi − 〈β, Xi〉)2. (4.19)

The following is theorem for the existence and uniqueness of the empirical estimate.

Theorem 4.0.4. Suppose that only the zero spline function in the spline space Sr
d(4) is

perpendicular to the subspace span{X1, · · · , Xn} except on an event whose probability pn

goes to zero as n → +∞. Then, with probability 1− pn, there exists a unique Ŝα,n ∈ Sr
d(4)

minimizing (4.19).

Proof. Similar to the proof of Theorem 4.0.2, we will start be writing the minimization

problem in to a linear system. Let {φ1, · · · , φm} be a basis for Sr
d(4). The difference in the
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minimization problem can be written as a function of the coefficient vector:

F(cj) =
1

n

n∑
i=1

(
f(Xi)−

m∑
j=1

cj〈φj, Xi〉
)2

. (4.20)

Differentiation yields

∂F
∂cl

= 2
1

n

n∑
i=1

(
f(Xi)−

m∑
j=1

cj〈φj, Xi〉
)

m∑
j=1

〈φj, Xi〉

= 2
1

n

n∑
i=1

f(Xi)
m∑

j=1

〈φj, Xi〉 −
m∑

j=1

cj〈φj, X〉
m∑

j=1

〈φj, Xi〉.

Then ∂F
∂cl

= 0 implies

1

n

n∑
i=1

f(Xi)
m∑

j=1

〈φj, Xi〉 =
1

n

n∑
i=1

m∑
j=1

cj〈φj, Xi〉
m∑

j=1

〈φj, Xi〉. (4.21)

Now, we see the solution of the above minimization is given by Ŝα,n =
∑m

i=1 cn,iφi with

coefficient vector cn = (cn,i, i = 1, . . . , m) satisfies the linear system

Âncn = b̂n, (4.22)

where

Ân =

[
1

n

n∑

`=1

〈φi, X`〉〈φj, X`〉
]

i,j=1,...,m

(4.23)

and

b̂n =

[
1

n

n∑

`=1

f(X`)〈φj, X`〉+
1

n

n∑

`=1

〈φj, ε`X`〉
]

j=1,...,m

. (4.24)

To see that (4.22) has a unique solution, we claim that if Ânc
′ = 0, then c′ = 0. It

follows that (c′)T Ânc′ = 0, that is
∑n

`=1(〈
∑m

i=1 c′iφi, X`〉)2 = 0. So,
∑m

i=1 c′iφi is orthogonal

to X`, ` = 1, · · · , n. Now, by the assumption, c′ = 0 except for an event whose probability

pn goes to zero when n → +∞.

We want to show that Ân converges to A, componentwise. Assume that the finite sequence

{〈φi, X`〉〈φj, X`〉, ` = 1, 2, ..., n} is i.i.d. and the infinite the sequence (〈φi, X`〉〈φj, X`〉), ` =
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1, 2, ... is integrable. Now, further assume that E(‖Xl‖2) ≤ B < ∞. Then by Cauchy-

Schwartz we have

E(〈φi, Xl〉〈φj, Xl〉) ≤ E(‖φi‖‖φj‖‖Xl‖2) ≤ B2‖φi‖‖φj‖ < ∞.

The last inequality follows because all of the basis functions φj can be chosen such that

they are bounded in L2(D) independently of the triangulation [Lai and Schumaker’07, (21)].

Hence by the Strong Law of Large Numbers we have

1

n

n∑

`=1

〈φi, X`〉〈φj, X`〉 − E(〈φi, X〉〈φj, X〉) → 0

almost surely for all i and j. To obtain the theorem for a global rate of convergence we need

the following lemma [Golub and Van Loan’89, (18)].

Lemma 4.0.1. Let A be an invertible matrix and Ã be a perturbation of A satisfying

‖A−1‖ ‖A − Ã‖ < 1. Suppose that x and x̃ are the exact solutions of Ax = b and Ãx̃ = b̃,

respectively. Then

‖x− x̃‖
‖x‖ ≤ κ(A)

1− κ(A)‖A−Ã‖
‖A‖

[
‖A− Ã‖
‖A‖ +

‖b− b̃‖
‖b‖

]
.

Here, κ(A) denotes the condition number of matrix A.

We also need Hoeffding’s exponential inequality [Bosq’98, (4)].

Lemma 4.0.2 (Hoeffding). Let {ξl}n
l=1 be n independent random variables. Suppose that

there exists a positive number M such that for each i, |ξl| ≤ M < ∞ almost surely. Then

P

(∣∣∣∣∣
1

n

n∑

`=1

(ξl − E(ξl))

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− nδ2

2M2

)
(4.25)

for δ > 0.

Theorem 4.0.5. Suppose that X`, ` = 1, · · · , n are independent and identically distributed

and X` is bounded almost surely. Suppose that the ε` are independent and bounded almost
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surely. Assume that f(X) is a bounded linear functional. Then Ŝα,n converges to Sα in

probability with convergence rate in

P

(
‖Sα − S̃α,n‖

‖Sα‖ ≥ δ

)
≤ 4m2 exp

(
− nγ2δ2

32κ(A)2m2M2

)
+ 2m exp

(
− nγ2δ2

128κ(A)2M2
b

)

+2m exp

(
− nγ2δ2

128κ(A)2M2
ε

)
. (4.26)

Proof. The we find the rate of convergence by applying Lemma 4.0.2, Hoeffding’s exponential

inequality. To implement Lemma 4.0.1, we use the maximum norm for the matrix A − Ân

and the vector b− b̂n. We start with A− Ân. Define ξl = 〈φi, Xl〉〈φj, Xl〉 then the ξl are i.i.d

random variables bounded by

M = max
ij

max
`
|〈φi, X`〉〈φj, X`〉| ≤ max

ij
max

`
‖φi‖‖φj‖‖X`‖2.

That is, for each i, |ξl| ≤ M < ∞ almost surely. We write

Ân − A = [aij]1≤i,j≤m =

[
1

n

n∑

`=1

〈φi, X`〉〈φj, X`〉 − E(〈φi, X〉〈φj, X〉)
]

i,j=1,...,m

and then by Lemma 4.0.2,

P (‖[aij]1≤i,j≤m‖∞ ≥ δ) = P

(
max

1≤i≤m

m∑
j=1

|aij| ≥ δ

)

≤
m∑

i=1

P

(
m∑

j=1

|aij| ≥ δ

)

≤
m∑

i=1

m∑
j=1

P (|aij| ≥ δ/m))

≤ 2m2 exp

(
− nδ2

2m2M2

)
. (4.27)

We estimate the entries of b− b̂n in a similar way, by letting bj = b1
j + b2

j with

b1
j =

1

n

n∑

`=1

f(X`)〈φj, X`〉 − E(f(X)〈φj, X〉)

and

b2
j =

1

n

n∑

`=1

〈φj, ε`X`〉.
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Then we can break up the probability by

P (|bj| ≥ δ) ≤ P (|b1
j | ≥ δ/2) + P (|b2

j | ≥ δ/2).

We know that the functional f is bounded, and thus |f(X`)| ≤ F‖X`‖ for some constant F .

By Lemma 4.0.2, we have

P
(|b1

j | ≥ δ/2
) ≤ 2 exp

(
− nδ2

8M2
b

)
,

where

Mb = max
j
|f(X`)〈φj, X`〉| ≤ F‖X`‖‖φj‖ ‖X`‖

which is a finite quantity since ‖X`‖ is bounded almost surely. For b2
j , we recall that the

random noises ε` are bounded almost surely and let ξ` = 〈φj, ε`X`〉. Then we apply Lemma

4.0.2 to have

P
(|b2

j | ≥ δ/2
) ≤ 2 exp

(
− nδ2

8M2
ε

)

where

Mε = max
j
|〈φj, ε`X`〉| ≤ max

j
‖φj‖|ε`|‖X`‖

which is finite under the assumption that both ‖X`‖ and |ε`| are bounded almost surely.

Thus we have

P
(
‖b− b̂n‖∞ ≥ δ

)
≤

m∑
j=1

P (|bj| ≥ δ) ≤ 2m exp

(
− nδ2

8M2
b

)
+ 2m exp

(
− nδ2

8M2
ε

)
. (4.28)

Now that we have bounds on ‖Â− A‖ and ‖b̂− b‖, use Lemma 2.1.4 to obtain

P

(
‖Sα − S̃α,n‖

‖Sα‖ ≥ δ

)
≤ P

(‖c− c̃n‖
‖c‖ ≥ γδ

)

where γ =
√

C1

C2
. Let β = ‖c−c̃n‖

‖c‖ , η = ‖A−Ân‖
‖A‖ and θ = ‖b−b̂n‖

‖b‖ then Lemma 4.0.1 yields

β ≤ κ(A)

1− κ(A)η
(η + θ). (4.29)

We also note that for κ(A)η ≤ 1
2
, we have 1− κ(A)η ≥ 1− 1

2
which implies

κ(A)

1− κ(A)η
≤ 2κ(A). (4.30)
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Now,

P (β ≥ γδ) ≤ P (β ≥ γδ, κ(A)η ≤ 1/2) + P (β ≥ γδ, κ(A)η ≥ 1/2)

≤ P

(
κ(A)

1− κ(A)η
(η + θ) ≥ γδ, κ(A)η ≤ 1/2

)
+ P (κ(A)η ≥ 1/2)

≤ P

(
(η + θ) ≥ γδ

2κ(A)

)
+ P (κ(A)η ≥ 1/2)

≤ P

(
η ≥ γδ

4κ(A)

)
+ P

(
θ ≥ γδ

4κ(A)

)
+ P

(
η ≥ γδ

2κ(A)

)

≤ 2P

(
η ≥ γδ

4κ(A)

)
+ P

(
θ ≥ γδ

4κ(A)

)

for all δ ≤ 1. By (4.27) and (4.28) we have

P

(
‖Sα − S̃α,n‖

‖Sα‖ ≥ δ

)
≤ 2P

(
η ≥ γδ

4κ(A)

)
+ P

(
θ ≥ γδ

4κ(A)

)

= 2P

(
‖A− Ân‖
‖A‖ ≥ γδ

4κ(A)

)
+ P

(
‖b− b̂n‖
‖b‖ ≥ γδ

4κ(A)

)

= 2


2m2 exp


−

n
(

γδ
4κ(A)

)2

2m2M2





 + 2m exp


−

n
(

γδ
4κ(A)

)2

8M2
b




+2m exp


−

n
(

γδ
4κ(A)

)2

8M2
ε




= 4m2 exp

(
− nγ2δ2

32κ(A)2m2M2

)
+ 2m exp

(
− nγ2δ2

128κ(A)2M2
b

)

+2m exp

(
− nγ2δ2

128κ(A)2M2
ε

)
.

We also want to consider the case where ε`’s are Gaussian noise. We will need the following

lemma.

Lemma 4.0.3. Suppose that ε` is a Gaussian noise N(0, σ2
` ) for ` = 1, . . . , n. Then

P

(∣∣∣∣∣
1

n

n∑

`=1

ε`

∣∣∣∣∣ > δ

)
≤ 2 exp

(
− n2δ2

2
∑n

`=1 σ2
`

)
. (4.31)

Now, we have a theorem for Gaussian noise similar to Theorem 4.0.5.
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Theorem 4.0.6. Suppose that X`, ` = 1, · · · , n are independent and identically distributed

random variables and ‖X`‖ are bounded almost surely. Suppose ε` are independent and iden-

tically distributed Gaussian noise N(0, σ2) and f(X) is a bounded linear functional. Then

Ŝα,n converges to Sα in probability with convergence rate

P

(
‖Sα − S̃α,n‖

‖Sα‖ ≥ δ

)
≤ 4m2 exp

(
− nγ2δ2

32κ(A)2m2M2

)
+ 2m exp

(
− nγ2δ2

128κ(A)2M2
b

)

+2m exp

(
− nγ2δ2

128κ(A)2σ2C2

)
. (4.32)

Proof. Using Lemma 4.0.3 when the ε` are i.i.d Gaussian noises N(0, σ2), we have

P

(∣∣∣∣∣
1

n

n∑

`=1

(ε`Y`))

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− nδ2

2σ2C2

)

for δ > 0 with the assumption that Y` are independent random variables which are bounded

by C, ‖Y`‖ ≤ C. Now to obtain the result (4.32), repeat the proof of Theorem 4.0.5 with

P
(
‖b− b̂n‖∞ ≥ δ

)
≤

m∑
j=1

P (|bj| ≥ δ) ≤ 2m exp

(
− nδ2

8M2
b

)
+ 2 exp

(
− nδ2

2σ2C2

)
. (4.33)

instead of (4.28).

Now we consider the cases where we observe X over a set of design points sk, k = 1, . . . , N

in D. We create a surface to represent X from the given data by constructing SX , the

penalized least square fit of X. To do this we assume that sk are evenly distributed over 4
of D with respect to Sr

d(4). We look for the αD that solves the minimization problem (4.4):

αD = arg min
β∈H

E [
(f(X) + ε− 〈β, SX〉)2

]
.

First, we note that αD approximates α. We can see this by defining the strictly convex and

continuous function

F (β) = E [
(f(X) + ε− 〈β,X)2

]

and an approximation to F , as |4| → 0:

FD(β) = E [
(f(X) + ε− 〈β, SX〉)2

]
.
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Since strictly convex functions have unique minimizers we have αD approximating α.

Indeed, if αD → β 6= α, then

F (α) < F (β) = FD(β) + η1 = FD(αD) + η1 + η2 ≤ FD(α) + η1 + η2 = F (αD) + η1 + η2 + η3

for arbitrary small η1 + η2 + η3. We would get the contradiction F (α) < F (α).

Again we are trying to find a minimum in the infinite dimensional Hilbert space H

so we approximate solution in the finite spline space Sr
d(4). We approximate the solution

SαD
∈ Sr

d(4) of αS by solving (4.5)

SαD
= arg min

β∈Sr
d(4)

E [
(f(X) + ε− 〈β, SX〉)2

]
.

Let {φ1, . . . , φm} be a basis for Sr
d(4), then we SαD

=
∑m

j=1 cS,jφj where the coefficient

vector cD = (cS,1, . . . , cS,m)T satisfies the linear system

ADcD = bD

where AD is the matrix A in the continuous case evaluated at SX instead of X. That is,

AD is an m×m matrix with entries E(〈φi, SX〉〈φj, SX〉) for i, j = 1, . . . , m. Similarly, bD is

a vector of length m with entries E((f(X) + ε)〈φj, SX〉) for j = 1, . . . , m. The matrix, AD

converges to the matrix A as |4| → 0 by Theorem 2.1.14:

‖SX −X‖∞,D ≤ C|4|ν |X|ν,∞,D

for X ∈ W ν
2 (D) with ν ≥ r > 0, and thus

E(〈φi, SX〉〈φj, SX〉) → E(〈φi, X〉〈φj, X〉)

as SX → X.

The next theorem states how well SαD
approximates αD in terms of |4|, the size of

triangulation.

Theorem 4.0.7. Suppose that E(‖X‖2) < ∞ and suppose α ∈ Cr(D) for r ≥ 0. Then the

solution SαD
from the minimization problem (4.5) approximates αS in the following sense:

E((〈αD − SαD
, SX〉)2) ≤ C|4|2r (4.34)
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for a constant C dependent on E(‖X‖2), where |4| is the maximal length of the edges of 4.

Proof. Similar to the proof of Theorem 4.0.3, we let {φ1, . . . , φm} denote a basis for Sr
d(4)

and take {φj, j = m + 1, m + 2, . . .} to be a basis of the orthogonal complement space of

Sr
d(4) in H as before. Then we can write

αD =
∞∑

j=1

cD,jφj.

Note that the minimization in (4.4) yields

E(〈αD, SX〉〈φj, SX〉) = E((f(X) + ε)〈φj, SX〉)

for all j = 1, 2, . . . while the minimization in (4.5) gives

E(〈SαS
, SX〉〈φj, SX〉) = E((f(X) + ε)〈φj, SX〉)

for all j = 1, 2, . . . ,m. Subtraction yields,

E(〈αD − SαD
, SX〉〈φj, SX〉) = 0 (4.35)

for all j = 1, 2, . . . , m. Let QαD
be the quasi-interpolatory spline in Sr

d(4) which achieves

the optimal order of approximation of αD from Sr
d(4). Then by (4.35) and and the Cauchy

Schwartz inequality we have

E((〈αD − SαD
, SX〉)2) = E(〈αD − SαD

, SX〉〈αD − SαD
, SX〉)

= E(〈αD − SαD
, SX〉〈αD − SαD

+ QαD
−QαD

, SX〉)

= E((〈αD − SαD
, SX〉)(〈αD −QαD

, SX〉+ 〈QαD
− SαD

, SX〉))

= E
(

(〈α− SαD
, SX〉)

(
〈αD −QαD

a, SX〉+

〈
m∑

j=1

(aj − cj)φj, SX

〉))

= E
(

(〈αD − SαD
, SX〉)

(
〈αD −QαD

, SX〉+
m∑

j=1

(aj − cj) 〈φj, SX〉
))

= E(〈αD − SαD
, SX〉〈αD −QαD

, SX〉)

≤ (E((〈αD − SαD
, SX〉)2))1/2E((〈αD −QαD

, SX〉)2)1/2.
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Yielding

E((〈αD − SαD
, SX〉)2) ≤ E((〈αD −QαD

, SX〉)2) ≤ ‖αD −QαD
‖2E(‖SX‖2).

The convergence of SX to X implies that E(‖SX‖2) is bounded by a constant dependent on

E(‖X‖2). The approximation of the quasi-interpolant QαS
of αS in Theorem 2.1.14 yields

(4.34).

The empirical estimate of SαD
based on discrete observations of random surfaces Xi, i =

1, . . . , n. is given by solving the minimization problem:

S̃αD,n = arg min
β∈Sr

d(4)

1

n

n∑
i=1

(f(Xi) + εi − 〈β, SXi
〉)2.

Again, we can expand S̃α,n in terms of the basis functions of Sr
d(4) as S̃α,n =

∑m
i=1 c̃n,iφi

where the coefficient vector c̃n = (c̃n,i, i = 1, . . . , m) satisfies the linear system

Ãnc̃n = b̃n,

where

Ãn =

[
1

n

n∑

`=1

〈φi, SX`
〉〈φj, SX`

〉
]

i,j=1,...,m

where SX`
is the penalized least squares fit of X` and

b̃n =

[
1

n

n∑

`=1

f(X`)〈φj, SX`
〉+

1

n

n∑

`=1

〈φj, ε`SX`
〉
]

j=1,...,m

.

Now we argue that S̃α,n converges to Ŝα,n. To do this, we implement Lemma 4.0.1, we use

the maximum norm for the matrix Ân − Ãn and the vector b̂n − b̃n. We start with Ân − Ãn:

Ãn − Ân =

[
1

n

n∑

`=1

〈φi, SX`
〉〈φj, SX`

〉 − 1

n

n∑

`=1

〈φi, X`〉〈φj, X`〉
]

i,j=1,...,m

=

[
1

n

n∑

`=1

〈φi, SX`
〉〈φj, SX`

〉 − 〈φi, X`〉〈φj, X`〉
]

i,j=1,...,m

=

[
1

n

n∑

`=1

〈φi, SX`
−X`〉〈φj, SX`

−X`〉
]

i,j=1,...,m
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Taking the norm yields,

∥∥∥Ãn − Ân

∥∥∥
∞

= max
i

m∑
j=1

∣∣∣∣∣
1

n

n∑

`=1

〈φi, SX`
−X`〉〈φj, SX`

−X`〉
∣∣∣∣∣

≤ max
i

m∑
j=1

1

n

n∑

`=1

|〈φi, SX`
−X`〉〈φj, SX`

−X`〉|

≤ max
i

m∑
j=1

max
`
|〈φi, SX`

−X`〉〈φj, SX`
−X`〉|

≤ m max
i,j

max
`
|〈φi, SX`

−X`〉〈φj, SX`
−X`〉|

≤ m max
i,j

max
`
‖φi‖‖φj‖‖SX`

−X`‖2.

Hence ‖Ãn − Ân‖∞ = O(|4|ν−2) since SX`
− X` = O(|4|ν) by Theorem 2.1.14. So if ν is

sufficiently large then ‖Ãn − Ân‖∞ → 0 as ‖4‖ → 0.

Similarly, we estimate the entries of b̂n − b̃n

‖b̂n − b̃n‖∞ =

∥∥∥∥∥
1

n

n∑

`=1

f(X`)〈φj, X`〉 − 1

n

n∑

`=1

f(X`)〈φj, SX`
〉
∥∥∥∥∥
∞

=

∥∥∥∥∥
1

n

n∑

`=1

f(X`)〈φj, X` − SX`
〉
∥∥∥∥∥
∞

≤ max
j,`

|f(X`)〈φj, X` − SX`
〉|

≤ max
j,`

F‖X`‖‖φj‖‖X` − SX`
‖.

Thus b̃n − b̂n also converges to 0. Now, we apply Lemma 4.0.1 as we did in the proof of

Theorem 4.26 to see that S̃α,n converges to Ŝα,n as |4| → 0.



Chapter 5

Brute Force Extension

So far we have discussed functional linear models, a regression model where the explanatory

variable is a random function and the response is a real random variable. There are many

cases where we may want to predict values for locations where there are no measurements.

In this chapter, we consider the case when the explanatory and response variables are both

random surfaces. We define the model by convolution:

Y (s) = G(s, t) ∗X(t) =

∫

D
G(s, t)X(t)dt, (5.1)

where D a polygonal domain in R2 and G(s, t) is some function in H×H. We usually take H

to be L2(D). For this application, we assume we are given a function F such that F = G∗X

for some function G. The objective is to recover the function G.

For our research, we will need a tensor product version of Theorem 2.1.14. For conve-

nience, we use a special instance of the quasi-interpolatory operator to illustrate the main

ideas. That is, when

aijk
ν =





1 if ν = ijk

0 otherwise

in (2.58), we have the following quasi-interpolatory operator

Qf :=
∑

T∈4

∑

i+j+k=d

f(ξijk)B
T
ijk. (5.2)

We will need the following lemma for the proof of the analog of Theorem 2.1.14.

Lemma 5.0.4. Let F (s, t) be a function in H ×H and define for a fixed s ∈ R2,

RF (s, t) =
∑

T∈4

∑

i+j+k=d

F (ξijk, s)B
T
ijk(t). (5.3)

55
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Then

|F (s, t)−RF (s, t)| ≤ |4|d+1|F (s, ·)|d+1. (5.4)

Proof. First note that by Theorem 2.1.14 we have

‖Qf − f‖ ≤ |4|d+1|f |d+1 (5.5)

for a quasi-interpolatory spline defined in (2.52). We can utilize the inequality in (5.5) since

for a fixed s we are only comparing the difference in one variable. To see how well we are

approximating in t, we consider the following difference for a fixed s, and apply Theorem

2.1.14

|F (s, t)−RF (s, t)] =

∣∣∣∣∣F (s, t)−
∑

T∈4

∑

i+j+k=d

F (ξijk, s)B
T
ijk(t)

∣∣∣∣∣
≤ |4|d+1|Ft(s, ·)|d+1.

With the above lemma, we are ready for the analog of Theorem 2.1.14.

Theorem 5.0.8. Let F (s, t) ∈ H × H and let QF (s, t) be the special case of quasi-

interpolatory spline defined for the tensor product of two splines:

QF =
∑

T ′

∑

i′+j′+k′=d

∑
T

∑

i+j+k=d

F (ξijk, ξ
′
i′j′k′)B

T
ijk(t)B

T ′
i′j′k′(s). (5.6)

Then

|F (s, t)−QF (s, t)| ≤ 2|4|d+1 max{|F (s, ·)|d+1, |F (·, t)|d+1}. (5.7)

Proof. Define the function RF as in (5.3). First, note that

|RF (s, t)−QF (s, t)|

=

∣∣∣∣∣
∑

T∈4

∑

i+j+k=d

F (ξijk, s)B
T
ijk(t)−

∑

T ′

∑

i′+j′+k′=d

∑
T

∑

i+j+k=d

F (ξijk, ξ
′
i′j′k′)B

T
ijk(t)B

T ′
ijk(s)

∣∣∣∣∣

=

∣∣∣∣∣
∑

T∈4

∑

i+j+k=d

BT
ijk(t)

(
F (ξijk, s)−

∑

T ′

∑

i′+j′+k′=d

F (ξijk, ξ
′
i′j′k′)B

T ′
ijk(s)

)∣∣∣∣∣ (5.8)

≤
∣∣∣∣∣F (ξijk, s)−

∑

T ′

∑

i′+j′+k′=d

F (ξijk, ξ
′
i′j′k′)B

T ′
ijk(s)

∣∣∣∣∣ (5.9)

= |4|d+1|F (·, t)|d+1,s.
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In (5.8), we used the partition of unity property of splines and for (5.9) we applied Lemma

5.0.4. We apply Lemma 5.0.4 again to obtain:

|F (s, t)−QF (s, t)| = |F (s, t)−RF (s, t) + RF (s, t)−QF (s, t)|

≤ |F (s, t)−RF (s, t)|+ |RF (s, t)−QF (s, t)|

≤ |4|d+1|F (s, ·)|d+1,t + |4|d+1|F (·, t)|d+1,s

≤ 2|4|d+1 max{|F (s, ·)|d+1,t, |F (·, t)|d+1,s}.

Now, consider the model given in (5.1). The solution to the model, G, is given by solving

the following minimization problem:

G = arg min
β∈H×H

E
(∫

s∈D
(F (X)(s)− β(s, ·) ∗X(·))2 ds

)
. (5.10)

However, it is impossible solve the above minimization problem because we have an infinite

dimensional Hilbert space H. To find an approximation to the solution, we can choose a

spline space Sr
d(4) for some integers r and d with r < d. By Theorem 2.1.14, it is dense in

H as |4| → 0 and Sr
d(4)× Sr

d(4) is dense in H ×H by Theorem 5.5. Hence we look for an

approximation to G, in the finite dimensional space SG ∈ Sr
d(4)× Sr

d(4), such that

SG = arg min
β∈Sr

d(4)×Sr
d(4)

E
(∫

s∈D
(F (X)(s)− β(s, ·) ∗X(·))2 ds

)
. (5.11)

Theorem 5.0.9. Suppose that only the zero spline in Sr
d(4) is orthogonal to the collection

X ⊂ H. Then solution to (5.11) has a unique solution in Sr
d(4)× Sr

d(4).

Proof. We start by simplifying SG ∗X:

SG ∗X =

∫

D
X(t)SG(s, t)dt

=

∫

D
X(t)

∑
i,j

ci,jφi(s)φj(t)dt

=
∑
i,j

ci,jφi(s)

∫

D
X(t)φj(t)dt

=
∑
i,j

ci,jφi(s)〈X,φj〉.



58

We want to find the coefficient vector the minimizes the difference in (5.11). For simplicity,

we write the difference as a function of the coefficient vector:

F(ci,j) = E



∫

D

(
F (X)(s)−

∑
i,j

ci,jφi(s)〈X,φj〉
)2

ds


 . (5.12)

Hence by differentiation we have

∂F
∂cl,k

= 2E
(∫

D

(
F (X)(s)−

∑
i,j

ci,jφi(s)〈X, φj〉
)

(φl(s)〈X, φk〉) ds

)

= 2E
(∫

D

(
F (X)(s)φl(s)〈X,φk〉 −

∑
i,j

ci,jφi(s)〈X,φj〉φl(s)〈X, φk〉
)

ds

)
.

Then ∂F
∂cl,k

= 0 implies

E
(∫

D
(F (XJ)(s)φl(s)〈XJ , φk〉) ds

)
= E

(∫

D

(∑
i,j

ci,jφi(s)〈XJ , φj〉φl(s)〈XJ , φk〉
)

ds

)

(5.13)

for all 0 ≤ l, k ≤ m. We rewrite this as a linear system Ac = b where c is the vector of

coefficients, A is an m2 ×m2 matrix with entries

E
(∫

D
(φi(s)〈X, φj〉φl(s)〈X, φk〉) ds

)

and b is a vector of the form

E
(∫

D
(F (X)(s)φl(s)〈X, φk〉) ds

)
.

To solve the linear system, we need to find the conditions for which A is invertible. We know

that A is invertible, if it is of full rank and the only solution to vT Av = 0 is v = 0. Let v be

an arbitrary vector then we have

vT Av = E
(∫

D

(∑

l,k

∑
i,j

vi,j (φi(s)〈X, φj〉φl(s)〈X,φk〉) vl,k

)
ds

)

= E
(∫

D

(∑

l,k

φl(s)〈X,φk〉vl,k

∑
i,j

vi,jφi(s)〈X, φj〉
)

ds

)

= E



∫

D

(∑
i,j

vi,jφi(s)〈X,φj〉
)2

ds


 = 0.
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To have vT Av = 0 then for all s ∈ D we have

∑
i,j

vi,jφi(s)〈X, φj〉 =
∑

i

(∑
j

vij〈X, φj〉
)

φi(s) = 0. (5.14)

The {φi} form a basis for the spline space Sr
d(4)× Sr

d(4) hence the only solution (5.14) is

for all the coefficients to be zero, that is

∑
j

vij〈X,φj〉 = 0 (5.15)

for all X ∈ X . By our assumption that only the zero spline is orthogonal to X therefore

〈X,φj〉 6= 0 which implies that the only way vAvT = 0 is for v = 0.

Now that we know when there exists a unique solution to (5.11), we want to know how

well SG approximates G in terms of |4|.

Theorem 5.0.10. Suppose that E(‖X‖2) < ∞ and G ∈ Cd+1(D). Then the solution SG from

the minimization problem (5.11) approximates G in the following sense

E
(∫

((G− SG) ∗X)2ds

)
≤ (

2|4|d+1 max{|G(s, ·)|d+1, |G(·, t)|d+1}
)2 E (‖X‖2) . (5.16)

Proof. Since we choose Sr
d(4)×Sr

d(4) to be dense in H ×H as |4| → 0 based on Theorem

5.0.11, we look for an approximation SG of G that satisfies (5.11). We need to show that SG

approximates G. Let {φ1, . . . , φm} be a basis for Sr
d(4), and {φj, j = m+1,m+2, . . .} be a

basis of the orthogonal complement space of Sr
d(4) in H. Then for any function G ∈ H ×H

we can express G by

G =
m×m∑
i,j=1

cijφi(t)φi(s) +
m∑

i=1

∑
j≥m+1

dijφi(t)φj(s) (5.17)

+
∑

i≥m+1

m∑
j=1

dijφi(t)φj(s) +
∑

i≥m+1

∑
j≥m+1

dijφi(t)φj(s).

To simplify (5.17), let {ϕi(s, t), i = 1, . . . ,m2} be the basis elements for Sr
d(4) × Sr

d(4)

and let {ϕi(s, t), i = m2 + 1,m2 + 2, . . .} be a basis of the orthogonal complement space of
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Sr
d(4) × Sr

d(4) in H × H then we expand G in terms of the basis elements {ϕi(s, t), i =

1, 2, . . .}. By minimizing (5.10) we have

E
(∫

s∈D
f(X)(s)(X ∗ ϕi(s, t))ds

)
= E

(∫

s∈D
(X ∗G(s, t))(X ∗ ϕi(s, t))ds

)
(5.18)

for all i. Similarly when we minimize (5.11) we obtain

E
(∫

s∈D
f(X)(s)(X ∗ ϕi(s, t))ds

)
= E

(∫

s∈D
(X ∗ SG(s, t))(X ∗ ϕi(s, t))ds

)
(5.19)

for i = 1, . . . ,m2. Subtraction of (5.19) from (5.18) yields:

0 = E
∫

X ∗ (G(s, t)− SG(s, t))(X ∗ ϕi(s, t))ds (5.20)

for i = 1, . . . ,m2. Let QG =
∑m2

j=1 ajϕj(s, t) be the quasi-interpolatory spline in Sr
d(4) ×

Sr
d(4) which achieves the optimal order of approximation of G from Sr

d(4)× Sr
d(4). Then

E
(∫

((G− SG) ∗X)2ds

)

= E
(∫

(X ∗ (G− SG))(X ∗ (G− SG))ds

)

= E
(∫

(X ∗ (G− SG))(X ∗ (G−QG + QG − SG)ds

)

= E
(∫

(X ∗ (G− SG))(X ∗ (G−QG))ds

)
By (5.20)

≤ E
(√∫

((G− SG) ∗X)2ds

√∫
((G−QG) ∗X)2ds

)

≤
√
E

(∫
((G− SG) ∗X)2ds

)
E

(∫
((G−QG) ∗X)2ds

)
.

Squaring both sides yields,

E
(∫

((G− SG) ∗X)2ds

)2

≤ E
(∫

((G− SG) ∗X)2ds

)
E

(∫
((G−QG) ∗X)2ds

)
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and thus we have

E
(∫

((G− SG) ∗X)2ds

)
≤ E

(∫
((G−QG) ∗X)2ds

)

= E (‖(G−QG) ∗X‖2)

≤ E (‖(G−QG)‖2 ‖X‖2)

=

∫

D
‖(G−QG)‖2 ‖X‖2 P (X)dX

= ‖(G−QG)‖2

∫

D
‖X‖2 P (X)dX

= ‖(G−QG)‖2 E (‖X‖2)

where P (X) is the probability density function for the random surfaces in X . Therefore by

Theorem 5.0.8 we have

E
(∫

((G− SG) ∗X)2ds

)
≤ ‖(G−QG)‖2 E (‖X‖2)

≤ (
2|4|d+1 max{|G(s, ·)|d+1, |G(·, t)|d+1}

)2 E (‖X‖2) .

Now we consider the empirical estimate of SG. Let X`, ` = 1, . . . , n a sample of be

random surfaces in X such that only the zero spline function in the space Sr
d(4)× Sr

d(4) is

orthogonal to the subspace spanned by {X1, . . . , Xn}. Then the empirical estimate of SG is

ŜG,n = arg min
β∈Sr

d(4)×Sr
d(4)

1

n

n∑

l=1

(∫

s∈D
(F (X`(·))(s)− β(s, ·) ∗X`)

2 ds

)
. (5.21)

Theorem 5.0.11. Suppose that only the zero spline function in the spline space Sr
d(4) is

perpendicular to the subspace span{X1, · · · , Xn} except on an event whose probability pn

goes to zero as n → +∞. Then, with probability 1− pn, there exists a unique Ŝα,n ∈ Sr
d(4)

minimizing (5.21).

Proof. Again, we can write

ŜG,n ∗X =
∑
i,j

ĉi,jφi(s)〈X,φj〉.
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We want to find the coefficient vector the minimizes the difference in (5.21). For simplicity,

we write the difference as a function of the coefficient vector:

F(ĉi,j) =
1

n

n∑

`=1

∫

s∈D

(
F (X`)(s)−

∑
i,j

ĉi,jφi(s)〈X`, φj〉
)2

ds. (5.22)

Hence by differentiation we have

∂F
∂ĉl,k

= 2
1

n

n∑

`=1

∫

s∈D

(
F (X`)(s)−

∑
i,j

ĉi,jφi(s)〈X`, φj〉
)

(φl(s)〈X`, φk〉) ds

= 2
1

n

n∑

`=1

∫

s∈D

(
F (X`)(s)φl(s)〈X`, φk〉 −

∑
i,j

ĉi,jφi(s)〈X`, φj〉φl(s)〈X`, φk〉
)

ds.

Then ∂F
∂ĉl,k

= 0 implies

1

n

n∑

`=1

∫

s∈D
(F (X`)(s)φl(s)〈X`, φk〉) ds =

1

n

n∑

`=1

∫

s∈D

(∑
i,j

ĉi,jφi(s)〈X`, φj〉φl(s)〈X`, φk〉
)

ds

(5.23)

for all 0 ≤ l, k ≤ m. We rewrite the above as a linear system Ac = b where c is the vector of

coefficients, A is an m2 ×m2 matrix with entries

1

n

n∑

`=1

∫

s∈D
(φi(s)〈X`, φj〉φl(s)〈X`, φk〉) ds

and b is a vector of the form

1

n

n∑

`=1

∫

s∈D
(F (X`)(s)φl(s)〈X`, φk〉) ds.

To solve the linear system, we need to find the conditions for which A is invertible. We know

that A is invertible if it is of full rank and the only solution to vT Av = 0 is v = 0. Let v be

an arbitrary vector then we have

vT Av =
1

n

n∑

`=1

∫

s∈D

(∑

l,k

∑
i,j

vi,j (φi(s)〈X`, φj〉φl(s)〈X`, φk〉) vl,k

)
ds

=
1

n

n∑

`=1

∫

s∈D

(∑

l,m

φl(s)〈X`, φm〉vl,m

∑
i,j

vi,jφi(s)〈X`, φj〉
)

ds

=
1

n

n∑

`=1

∫

s∈D

(∑
i,j

vi,jφi(s)〈X`, φj〉
)2

ds = 0.
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To have vT Av = 0 then for all s ∈ D we have

∑
i,j

vi,jφi(s)〈X`, φj〉 =
∑

i

(∑
j

vij〈X`, φj〉
)

φi(s) = 0. (5.24)

The {φi} form a basis for the spline space Sr
d(4)× Sr

d(4) hence the only solution (5.24) is

for all the coefficients to be zero, that is

∑
j

vij〈X`, φj〉 = 0 (5.25)

for all `. By our assumption that only the zero spline is orthogonal to X except for an even

whose probability pn goes to zero as n → +∞. Therefore 〈X`, φj〉 6= 0 which implies that

the only way vAvT = 0 is for v = 0.

Now, we consider the case when we approximate linear functions based on discrete obser-

vations. For applications, we will only know X over some given points in the domain D.

That is, we will have observations of X over designated points sk, k = 1, . . . , N in D. Let

SX be the penalized least squares fit of X over the designated points sk. We consider GD

that solves the following minimization problem:

GD = arg min
β∈H×H

E
(

N∑

k=1

(F (X)(sk)− β(sk, ·) ∗ SX(·))2

)
. (5.26)

Heuristically we can see that GD converges to G as the observation locations become dense

in D and as |4| → 0. We also look for an approximation SGD
∈ Sr

d(4)× Sr
d(4) of GD such

that

SGD
= arg min

β∈Sr
d(4)×Sr

d(4)
E

(
N∑

k=1

(F (X)(sk)− β(sk, ·) ∗ SX(·))2

)
. (5.27)

Now, we can write SGD
as SGD

=
∑m2

j=1 cDϕj(s, t) where {ϕi(s, t), i = 1, . . . , m2} is a basis

for Sr
d(4)× Sr

d(4). Then the coefficient vector cD satisfies the following relation:

ADcD = bD

where where AD is an m2 ×m2 matrix with entries

E
(

N∑

k=1

(φi(sk)〈SX , φj〉φl(sk)〈SX , φm〉) ds

)
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and bD is a vector of the form

E
(

N∑

k=1

(F (X)(s)φl(s)〈SX , φm〉) ds

)
.

We want to show that AD → A that is

E
(

N∑

k=1

(φi(s)〈SX , φj〉φl(s)〈SX , φm〉) ds

)
→ E

(∫

s∈D
(φi(s)〈X, φj〉φl(s)〈X, φm〉) ds

)

We know that SX → X as |4| → 0 by Theorem 2.1.14.

In the following theorem we show that SGD
is a good approximation for GD.

Theorem 5.0.12. Suppose that E(‖SX‖2) < ∞ and GD ∈ Cd+1(D). Then the solution SGD

from the minimization problem (5.27) approximates GD in the following sense

E
(

N∑

k=1

((GD − SGD
) ∗ SX)2ds

)
≤ C

(
2|4|d+1 max{|G(s, ·)|d+1, |G(·, t)|d+1}

)2
(5.28)

where C is a constant dependent on E(‖X‖2).

Proof. By Theorem 5.0.11, we choose Sr
d(4)×Sr

d(4) to be dense in H ×H as |4| → 0 and

look for an approximation SGD
of GD that satisfies (5.27). To show that SGD

approximates

GD we simplify (5.17) by letting {ϕi(s, t), i = 1, . . . , m2} be the basis elements for Sr
d(4)×

Sr
d(4) and let {ϕi(s, t), i = m2 + 1,m2 + 2, . . .} be a basis of the orthogonal complement

space of Sr
d(4)× Sr

d(4) in H ×H. By minimizing (5.26) we have

E
(

N∑

k=1

f(X)(sk)(SX ∗ ϕi(sk, t))

)
= E

(
N∑

k=1

(SX ∗GD(sk, t))(SX ∗ ϕi(sk, t))

)
(5.29)

for all i. Similarly when we minimize (5.27) we obtain

E
(

N∑

k=1

f(X)(sk)(SX ∗ ϕi(sk, t))

)
= E

(
N∑

k=1

(SX ∗ SGD
(sk, t))(SX ∗ ϕi(sk, t))

)
(5.30)

for i = 1, . . . ,m2. Subtraction of (5.30) from (5.29) yields:

0 = E
(

N∑

k=1

(SX ∗ (GD(sk, t)− SGD
(sk, t)))(SX ∗ ϕi(sk, t))

)
(5.31)
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for i = 1, . . . , m2. Let QGD
=

∑m2

j=1 ajϕj(s, t) be the quasi-interpolatory spline in Sr
d(4) ×

Sr
d(4) which achieves the optimal order of approximation of GD from Sr

d(4)×Sr
d(4). Then

E
(

n∑

k=1

((GD(sk, t)− SGD
(sk, t)) ∗ SX)2

)

= E
(

n∑

k=1

((GD − SGD
) ∗ SX)(GD − SGD

) ∗ SX)

)

= E
(

n∑

k=1

((GD − SGD
) ∗ SX)((GD −QGD

+ QGD
− SGD

) ∗ SX)

)

= E
(

n∑

k=1

((GD − SGD
) ∗ SX)((GD −QGD

) ∗ SX)

)
By (5.31)

≤ E



√√√√
n∑

k=1

((GD − SGD
) ∗ SX)2

√√√√
n∑

k=1

((GD −QGD
) ∗ SX)2




≤
√√√√E

(
n∑

k=1

((GD − SGD
) ∗ SX)2

)
E

(
n∑

k=1

((GD −QGD
) ∗ SX)2

)
.

Squaring both sides yields,

E
(

n∑

k=1

((GD(sk, t)− SGD
(sk, t)) ∗ SX)2

)2

≤ E
(

n∑

k=1

((GD − SGD
) ∗ SX)2

)
E

(
n∑

k=1

((GD −QGD
) ∗ SX)2

)
.

Hence we have

E
(

N∑

k=1

((GD(sk, t)− SGD
(sk, t)) ∗ SX)2

)
≤ E

(
N∑

k=1

((GD −QGD
) ∗ SX)2

)

= E (‖(GD −QGD
) ∗ SX‖2)

≤ E (‖(GD −QGD
)‖2 ‖SX‖2)

= ‖(GD −QGD
)‖2 E (‖SX‖2) .

Therefore by Theorem 5.0.8 we have

E
(

N∑

k=1

((GD − SGD
) ∗ SX)2ds

)
≤ ‖(GD −QGD

)‖2 E (‖SX‖2)

≤ (
2|4|d+1 max{|G(s, ·)|d+1, |G(·, t)|d+1}

)2 E(‖SX‖2).
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Since SX converges to X implies that E(‖SX‖2) is bounded by a constant dependent on

E(‖X‖2), this yields the result

E
(

N∑

k=1

((GD − SGD
) ∗ SX)2ds

)
≤ C

(
2|4|d+1 max{|G(s, ·)|d+1, |G(·, t)|d+1}

)2
.

Now we consider the empirical estimate of SGD
. Let X`, ` = 1, . . . , n a sample of be

random surfaces in X such that only the zero spline function in the space Sr
d(4)× Sr

d(4) is

orthogonal to the subspace spanned by {X1, . . . , Xn}. Then the empirical estimate of SGD
is

S̃GD,n = arg min
β∈Sr

d(4)×Sr
d(4)

1

n

n∑

`=1

N∑

k=1

(F (X`(·))(sk)− β(sk, ·) ∗ SX`
(·))2 . (5.32)

Theorem 5.0.13. Suppose that only the zero spline in Sr
d(4) is orthogonal to the collection

of approximations of X ∈ H. Then solution to (5.32) has a unique solution in Sr
d(4)×Sr

d(4).

Proof. We start by writing S̃GD,n ∗X =
∑

i,j c̃i,jφi(s)〈X, φj〉. We want to find the coefficient

vector the minimizes the difference in (5.32). As we have done before, we write the difference

as a function of the coefficient vector:

F( ˜ci,j) =
1

n

n∑

`=1

N∑

k=1

(
F (X`)(sk)−

∑
i,j

ci,jφi(sk)〈SX`
, φj〉

)2

. (5.33)

Hence by differentiation we have

∂F
∂cl,t

= 2
1

n

n∑

`=1

N∑

k=1

(
F (X`)(sk)−

∑
i,j

ci,jφi(sk)〈SX`
, φj〉

)
(φl(sk)〈SX`

, φt〉)

= 2
1

n

n∑

`=1

N∑

k=1

(
F (X`)(sk)φl(sk)〈X`, φt〉 −

∑
i,j

ci,jφi(sk)〈SX`
, φj〉φl(sk)〈SX`

, φt〉
)

.

Then ∂F
∂cl,t

= 0 implies

1

n

n∑

`=1

N∑

k=1

F (X`)(sk)φl(sk)〈SX`
, φt〉 =

1

n

n∑

`=1

N∑

k=1

∑
i,j

ci,jφi(sk)〈SX`
, φj〉φl(sk)〈SX`

, φt〉 (5.34)

for all 0 ≤ l, t ≤ n.We can rewrite this as a linear system Ãc̃ = b̃ where c̃ is the vector of

coefficients, Ã is an m2 ×m2 matrix with entries

1

n

n∑

`=1

N∑

k=1

φi(sk)〈SX`
, φj〉φl(sk)〈SX`

, φt〉
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and b is a vector of the form

1

n

n∑

`=1

N∑

k=1

F (X`)(sk)φl(sk)〈SX`
, φt〉.

To solve the linear system above we need to find the conditions for which Ã is invertible. We

know that Ã is invertible if it is of full rank and the only solution to vT Ãv = 0 is v = 0. Let

v be an arbitrary vector then we have

vT Av =
1

n

n∑

`=1

∑

k

∑

l,t

∑
i,j

vi,j

(∑

k

φi(sk)〈SX`
, φj〉φl(sk)〈SX`

, φt〉
)

vl,t

=
1

n

m∑

`=1

∑

k

∑

l,m

φl(sk)〈SX`
, φt〉vl,t

∑
i,j

vi,jφi(sk)〈SX`
, φj〉

=
1

n

n∑

`=1

∑

k

(∑
i,j

vi,jφi(sk)〈SX`
, φj〉

)2

= 0.

To have vT Av = 0 then for all sk ∈ D we have

∑
i,j

vi,jφi(sk)〈SX`
, φj〉 =

∑
i

(∑
j

vij〈SX`
, φj〉

)
φi(sk) = 0. (5.35)

The {φi} form a basis for the spline space Sr
d(4) hence the only solution (5.35) is for all the

coefficients to be zero, that is
∑

j

vij〈SX`
, φj〉 = 0, (5.36)

for ` = 1, 2, . . . , n. By our assumption that only the zero spline is orthogonal to X therefore

〈SX`
, φj〉 6= 0

which implies that the only way vÃvT = 0 is for v = 0.



Chapter 6

Numerical Experiments

In this chapter, we use the autoregressive and brute force methods to forecast the ground-

level ozone concentrations at three locations: Atlanta, Boston and Cincinnati. We assume

that the level of ozone for a given time of day in one specific city is a linear functional of the

previous days’ ozone concentrations measured over the geographical region containing the

city of interest. For example, we would assume that today’s ozone concentration in Atlanta

at 9:00 a.m. is a linear functional of all the ozone values in the southeast up to 9:00 a.m.

yesterday. Thus we can implement our two methods to make our forecasts. We let f(X) be

the hourly ozone concentration at a particular city of interest and X is the ozone concentra-

tion distribution over a geographical region containing the city of interest at the same hour

of the previous day. Our domain is the continental United States and our design points are

the Environment Protection Agency (EPA) stations where the ozone values are collected.

For our numerical experiments, we have scaled the domain into [0, 1]× [0, 1], see Figure 6.1.

We have almost 1000 EPA stations in our data set. For each station, we are given hourly

ozone concentration values for three months in 2005. Some data values are missing but not

very many. The missing values do not affect our computation because the missing values are

filled when we approximate the surface. Below is a brief outline of the numerical experiments.

Step 1) For each hour of data, we create the approximation to Xi by using the penal-

ized least squares method (2.63) with penalty λ = 10−2 over the spline space with degree

5 and smoothness 1, S1
5(4). We call this approximation SXi

. We also collect Yi the ozone

concentrations at the location of interest one day ahead of Xi.

68
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Figure 6.1: Locations of EPA stations and a Triangulation

Step 2) Then we use one of our two methods, either autoregressive or brute force, to

find for the spline function S̃α,24N that solves the following minimization problem

min
s∈S1

5

1

24N

24N∑
i=1

(Yi − 〈s, SXi
〉)2

where N is the number of days used for learning. For example, if we want to predict Friday’s

ozone concentration in Atlanta by using Monday, Tuesday, Wednesday and Thursday’s ozone

concentrations, we would have N = 4.

Step 3) We make a prediction for a given day by evaluating the function S̃α,24N from

Step 2 at on the previous days ozone concentration distribution. This gives us the prediction

for that time the next day. For example, we use ozone distribution surfaces from Thursday
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as the input for our function S̃α,24N to make a prediction for Friday.

Bivariate spline theory says the smaller the triangulation size, the better the approxi-

mation of any function α ∈ H, see Theorem 2.1.14. In the following numerical experiments,

we use a subset of the continental United States as our domain and three different sizes of

triangulations. For each day that we predict we show eight to fifteen days learning. That is,

the number of days refers to the number of previous days of data used to create S̃α,24N . So

for eight days of learning, we have N = 8.

6.1 Atlanta

In Figure 6.2 are the triangulations used for the Atlanta ozone forecasts.

6.1.1 The Brute Force Method for Prediction at Atlanta

We first show our numerical experimental results using our brute force approach. In the

following graphs, we show the exact measurement(green line), predictions based on triangu-

lation 1 (the blue ·), based on triangulation 2 (the red +), and based on triangulation 3 (the

black ×) as in Figs 6.3– 6.17.
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Figure 6.2: Three different sizes of triangulation of the southeast part of U.S.
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12 Day 13 Day 14 Day 15 Day

Figure 6.3: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 1, 2005 in Atlanta

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.4: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 2, 2005 in Atlanta
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Figure 6.5: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 3, 2005 in Atlanta
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Figure 6.6: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 4, 2005 in Atlanta
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Figure 6.7: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 5, 2005 in Atlanta
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Figure 6.8: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 6, 2005 in Atlanta
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Figure 6.9: Brute force predictions (blue ·, red +, and black ×) and exact measurement(green
line) on Sept. 7, 2005 in Atlanta
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Figure 6.10: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Atlanta
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Figure 6.11: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Atlanta
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Figure 6.12: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Atlanta
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Figure 6.13: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Atlanta
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Figure 6.14: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Atlanta
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Figure 6.15: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Atlanta
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Figure 6.16: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Atlanta



79

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.17: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Atlanta
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Figure 6.18: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 1, 2005 in Atlanta

6.1.2 The Autoregressive Approach for Prediction at Atlanta

We now show our numerical experimental results using our autoregressive approach. In the

following graphs, we show the exact measurement(green line), predictions based on trian-

gulation 1 (the red +), based on triangulation 2 (the black ×) and based on triangulation

3 (the blue ·) as in Figs 6.18– 6.32. We only use the first two eigenvalues to compute the

predictions.
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Figure 6.19: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 2, 2005 in Atlanta
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Figure 6.20: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 3, 2005 in Atlanta
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Figure 6.21: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 4, 2005 in Atlanta
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Figure 6.22: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 5, 2005 in Atlanta
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Figure 6.23: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 6, 2005 in Atlanta
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Figure 6.24: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 7, 2005 in Atlanta
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Figure 6.25: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Atlanta
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Figure 6.26: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Atlanta
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Figure 6.27: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Atlanta
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Figure 6.28: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Atlanta
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Figure 6.29: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Atlanta
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Figure 6.30: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Atlanta
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Figure 6.31: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Atlanta
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Figure 6.32: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Atlanta
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6.2 Boston

In Figure 6.33 are the triangulations used for the Boston ozone forecasts.
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Figure 6.33: Three different sizes of triangulation of the northeast part of U.S.
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6.2.1 The Brute Force Method for Prediction at Boston

We first show our numerical experimental results using our brute force approach. In the

following graphs, we show the exact measurement(green line), predictions based on triangu-

lation 1 (the blue ·), based on triangulation 2 (the red +), and based on triangulation 3 (the

black ×) as in Figs 6.34– 6.48.
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12 Day 13 Day 14 Day 15 Day

Figure 6.34: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 1, 2005 in Boston
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Figure 6.35: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 2, 2005 in Boston
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Figure 6.36: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 3, 2005 in Boston
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Figure 6.37: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 4, 2005 in Boston
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Figure 6.38: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 5, 2005 in Boston
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Figure 6.39: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 6, 2005 in Boston
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Figure 6.40: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 7, 2005 in Boston
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Figure 6.41: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Boston
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Figure 6.42: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Boston
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Figure 6.43: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Boston
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Figure 6.44: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Boston
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Figure 6.45: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Boston
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Figure 6.46: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Boston
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Figure 6.47: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Boston
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Figure 6.48: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Boston
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Figure 6.49: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 1, 2005 in Boston

6.2.2 The Autoregressive Approach for Prediction at Boston

We now show our numerical experimental results using our autoregressive approach. In the

following graphs, we show the exact measurement(green line), predictions based on triangu-

lation 1 (the red +), based on triangulation 2 (the black ×) and based on triangulation 3

(the blue ·) as in Figs 6.49– 6.63. We only use the first seven eigenvalues to compute the

predictions.
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Figure 6.50: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 2, 2005 in Boston
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Figure 6.51: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 3, 2005 in Boston
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Figure 6.52: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 4, 2005 in Boston
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Figure 6.53: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 5, 2005 in Boston
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Figure 6.54: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 6, 2005 in Boston
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Figure 6.55: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 7, 2005 in Boston
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Figure 6.56: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Boston
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Figure 6.57: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Boston
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Figure 6.58: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Boston
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Figure 6.59: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Boston
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Figure 6.60: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Boston
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Figure 6.61: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Boston
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Figure 6.62: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Boston

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.63: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Boston
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6.3 Cincinnati

In Figure 6.64 are the triangulations used for the Cincinnati ozone forecasts.
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Figure 6.64: Three different sizes of triangulation of the northeast part of U.S.
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6.3.1 The Brute Force Method for Prediction at Cincinnati

We first show our numerical experimental results using our brute force approach. In the

following graphs, we show the exact measurement(green line), predictions based on triangu-

lation 1 (the blue ·), based on triangulation 2 (the red +), and based on triangulation 3 (the

black ×) as in Figs 6.65– 6.79.

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.65: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 1, 2005 in Cincinnati
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Figure 6.66: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 2, 2005 in Cincinnati

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.67: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 3, 2005 in Cincinnati
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Figure 6.68: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 4, 2005 in Cincinnati

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.69: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 5, 2005 in Cincinnati
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Figure 6.70: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 6, 2005 in Cincinnati
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12 Day 13 Day 14 Day 15 Day

Figure 6.71: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 7, 2005 in Cincinnati
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Figure 6.72: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Cincinnati
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Figure 6.73: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Cincinnati
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Figure 6.74: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Cincinnati
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Figure 6.75: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Cincinnati
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Figure 6.76: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Cincinnati
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Figure 6.77: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Cincinnati
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Figure 6.78: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Cincinnati
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12 Day 13 Day 14 Day 15 Day

Figure 6.79: Brute force predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Cincinnati
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Figure 6.80: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 1, 2005 in Cincinnati

6.3.2 The Autoregressive Approach for Prediction at Cincinnati

We now show our numerical experimental results using our autoregressive approach. In the

following graphs, we show the exact measurement(green line), predictions based on trian-

gulation 1 (the red +), based on triangulation 2 (the black ×) and based on triangulation

3 (the blue ·) as in Figs 6.80– 6.94. We only use the first two eigenvalues to compute the

predictions.
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Figure 6.81: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 2, 2005 in Cincinnati

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.82: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 3, 2005 in Cincinnati
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Figure 6.83: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 4, 2005 in Cincinnati
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Figure 6.84: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 5, 2005 in Cincinnati
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Figure 6.85: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 6, 2005 in Cincinnati
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Figure 6.86: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 7, 2005 in Cincinnati
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Figure 6.87: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 8, 2005 in Cincinnati
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Figure 6.88: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 9, 2005 in Cincinnati
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Figure 6.89: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 10, 2005 in Cincinnati
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Figure 6.90: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 11, 2005 in Cincinnati
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Figure 6.91: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 12, 2005 in Cincinnati
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Figure 6.92: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 13, 2005 in Cincinnati
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Figure 6.93: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 14, 2005 in Cincinnati

8 Day 9 Day 10 Day 11 Day

12 Day 13 Day 14 Day 15 Day

Figure 6.94: Autoregressive predictions (blue ·, red +, and black ×) and exact measure-
ment(green line) on Sept. 15, 2005 in Cincinnati



Chapter 7

Conclusion

7.1 Similarities and Differences Between the Two Approaches

Theoretically, the autoregressive approach is quite different from the brute force method.

The autoregressive approach uses the covariance matrix and cross covariance of the data

and implements eigenvalue decompositions and orthogonal expansions to solve the problem.

While the brute force method uses the fact that the spline spaces become dense in L2(D) and

the assumption that the random surfaces, the Xi, are linearly independent. We note that

this assumption on the random surfaces may not be realistic. However, the computational

algorithms for both approaches are very similar.

Recall for the brute force method, we compute the empirical estimator of Sα based on

discrete observations of random surfaces Xi, i = 1, . . . , n. The empirical estimator S̃α,n ∈
Sr

d(4) with d ≥ 3r + 2, is the solution of the following

min
β∈Sr

d(4)

1

n

n∑
i=1

(f(Xi) + εi − 〈β, SXi
〉)2.

We take {φ1, . . . , φm} to be a basis for Sr
d(4) then the solution of the above minimization

is given by S̃α,n =
∑m

i=1 c̃n,iφi with coefficient vector c̃n = (c̃n,i, i = 1, . . . , m) satisfying

Ãnc̃n = b̃n, where

Ãn =

[
1

n

n∑

`=1

〈φi, SX`
〉〈φj, SX`

〉
]

i,j=1,...,m

,

where SX`
is the penalized least squares fit of X` and

b̃n =

[
1

n

n∑

`=1

f(X`)〈φj, SX`
〉+

1

n

n∑

`=1

〈φj, ε`SX`
〉
]

j=1,...,m

.
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The second summation can be treated as zero as n −→ +∞ as ε` are sampled from a random

variable with mean zero and independent of X`.

For the autoregressive approach, we take the spline approximation of the covariance

operator Γ̃n:

Γ̃n(x) =
1

n

n∑

`=1

〈SX`
, x〉SX`

(7.1)

from (3.12). For any x =
∑m

i=1 ciφi, the operator Γ̃n maps x into Sr
d(4) as

Γ̃n(x) =
n∑

i=1

ci
1

n

n∑

`=1

〈SX`
, φi〉SX`

.

Therefore the matrix associated with the covariance operator in this finite dimensional space

Sr
d(4) is [

1

n

n∑

`=1

〈SX`
, φi〉〈SX`

, φj〉
]

1≤i,j≤m

.

which is the matrix Ãn above if the spline spaces are the same. Similarly, for spline approx-

imation ∆̃n of the empirical estimator ∆n of ∆,

∆̃n(x) =
m∑

i=1

ci
1

n

n∑

`=1

〈X̃`, φi〉Y`, (7.2)

and the vector representation of ∆̃n is

[
1

n

n∑

`=1

〈SX`
, φi〉Yi

]

1≤i≤n

which is the b̃n above. Hence if we use all eigenvalues and eigenvectors of the covariance

matrix Ãn to invert the covariance operator in the autoregressive approach then the solution

is the same as the brute force approach. However, our numerical results show that the

autoregressive approach uses only a few principal eigenvalues and vectors to compute the

g̃PCA.

In particular, if one uses a continuous S0
5(4) for Hk, the covariance matrix will not be

the same as Ãn nor is the cross covariance. In this situation, we may use the penalized least

squares fit to find a smoother version g̃SPCA in Sr
d(4).
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7.2 Summary of Numerical Experiments

As the theory suggests, the brute force method works well for Atlanta and Cincinnati, espe-

cially over triangulation 3 when the size of the triangulation, |4| is reduced. The brute

force predictions are consistent for the various learning periods tested. The predictions are

not widely different based on the number of previous days used to create the prediction. In

each case the predictions are close to the exact measurements and the closeness to the exact

measurements occurs in almost all fifteen days we tested from September 1 to September

15. For the autoregressive approach, we use only the first two eigenvalues in the Atlanta and

Cincinnati predictions and get good results. The predictions generated by the two methods

are very similar. So similar that there is not enough distinction in the numerical experiments

to say which one is better.

When the size of triangulation is smaller, the predictions get better for both the brute

force and the autoregressive approaches. Although, due to the limitation of the data set,

we can not let the size of triangulation be too small or we would have too many triangles

without data.

From a practical standpoint, the brute force method is easier to implement. While the

autoregressive approach requires one to learn how many eigenvalues are needed to make a

good prediction. Several days of testing would be needed to learn how to best choose the

eigenvalues and even then it is debatable how many would be “best.” Indeed, there exist

several methods for choosing the number of eigenvalues. For example one method suggests

finding the “knee” in the plot of the eigenvalues. However, we have observed the decay of

the eigenvalues and could not find a “knee” if the values of all 819 eigenvalues are plotted

on a normal scale. If they are plotted in a logarithmic scale then there are several “knees.”

Determining how many eigenvalues to use for the best prediction is not an easy task and

requires further study. For our results we always use a set number of eigenvalues for a given

location (Atlanta 2, Cincinnati 2, Boston 7). We see that the autoregressive prediction does

not do a good job for September 14 and September 15 in Atlanta. However, if we use more
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eigenvalues, the prediction can improve. This leaves us to question when do we need more

eigenvalues and why.

In theory, the longer the learning period, the better the prediction should be. However,

the numerical results varied based on our experiments. We have experimented the predictions

based on twenty one to thirty six days. The predictions get better for a few days but most

days the predictions get worse. This may be due to fact that the longer learning period

includes the more variety of ozone concentration curve patterns.

There are several ways to extend the models in Chapters 3 and 4 in several ways. One

may want to predict the ozone values a few days out. That is, we want to predict the day

after tomorrow using all the ozone values up to today. To do this, we view the ozone values

on the day after tomorrow in one location as a linear functional of the ozone distribution

over the a region of the United States. We may also want to include another variable that

influences ozone concentrations such as temperature. To do this we would want to develop

a model that can consider a covariant. We may also have a reason to believe that the day of

the week we are predicting is important and hence we may want to give a weight the same

days of the week that are encompassed in the learning phase. To do this we could consider

weighting different time lags in the current models.

For future research, we can implement the brute force models in Chapters 4 and 5 to

predict the paths of hurricanes. For this application, we want to use a model where both

the explanatory and response variables are random surfaces. Using such a model allows us

to predict values for locations where there are no measurements. For hurricane tracking, we

could use barometric pressure data to create an input surface and then implement the model

in Chapter 5 acquire an output surface of barometric pressures. Or we could run the model

in Chapters 4 for several locations and fit a surface through the prediction results. The path

of the hurricane is tracked by identifying eye of hurricane, where the barometric pressure is

lowest. As new measurements become available, the models are quickly and easily updated

to consider the new information. If we can improve the prediction of hurricane movement
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within fifty miles of its exact position, we could save peoples’ lives, towns and money. The

improved predictions give people more time to plan efficient evacuations and secure their

homes and businesses for the storm surges and flooding that follow hurricane landfall.
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