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tical implementation of the global splines are presented for a homogeneous case as
well as a non-homogeneous. Error bounds are derived for the global splines in terms
of Sobolev type spherical semi-norms. Multiple star technique is studied for the
minimal energy interpolation problem. Numerical summary supporting theoretical
considerations is provided.

Index words: Spherical splines, Interpolation-on-the-sphere



Spherical Splines

for

Scattered Data Fitting

by

Victoria Baramidze

B.A., Tbilisi State University, Georgia, 1993

M.A.M.S., University of Georgia, 1998

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2005



c© 2005

Victoria Baramidze

All Rights Reserved



Spherical Splines

for

Scattered Data Fitting

by

Victoria Baramidze

Approved:

Major Professor: Ming Jun Lai

Committee: E. Azoff

M. Adams

R. Varley

P. Wenston

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2005



Acknowledgments

I would like to thank my advisor, Professor Ming Jun Lai, for his perceptive advice

and continuous assistance. I wish to express my sincere appreciation to the graduate

committee for constant support and encouragement.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Spherical triangulations . . . . . . . . . . . . . . . . 12

2.2 Spherical barycentric coordinates . . . . . . . . . . 17
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Chapter 1

Introduction

Suppose we are given a set V of locations on the unit sphere S2 in R3 along with

real numbers f(v), v ∈ V associated with these locations. We seek a smooth function

defined on S2 interpolating or approximating these data. This constitutes a scattered

data interpolation/approximation problem on the unit sphere. In this dissertation

we solve the problem using spherical splines: piecewise spherical polynomials.

Data fitting problems have applications in geodesy, geometric surface design,

food science, etc. Let us describe some examples.

Figure 1.1: Cubic minimal energy spline interpolating apple data.

Example 1. In this example we measure Cartesian coordinates of points on the

surface of an apple with the center of the coordinate system approximately corre-

sponding to the center mass of the apple. Normalized coordinate triples produce

scattered locations on the unit sphere. Distances from the origin to the points on

1
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the surface are the function values corresponding to the locations. In Fig. 1.1 (left)

we show sampled points and directions in which they project onto the sphere. On the

right we display a spherical spline interpolating the point cloud, which is a surface

of an apple.

Figure 1.2: Minimal energy cubic spline interpolating data on S2.

Example 2. Consider Dirichlet’s interior problem for the Laplace’s equation on the

unit ball 



∆V = 0 inside S2

V |S2 = f.

Given an arbitrary function f on S2 we need to determine a function V harmonic

inside S2 and assuming the values of f on S2 . The exact solution V to the interior

problem |u| < 1 can be presented in terms of Poisson integral (cf. [Evans’98])

V (u) =
1 − |u|2

4π

∫

S2

f(v)

|u − v|3dσ(v). (1.1)

In practice the boundary function f may be available only as a discrete finite set of

measurements at some scattered locations on S2. Having a spline approximation s

of f (see Fig. 1.2) we can obtain

Vs(u) =
1 − |u|2

4π

∫

S2

s(v)

|u − v|3dσ(v) (1.2)
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the approximation of V at any point interior to S2. By the maximum principle the

error of this approximation is bounded by the error in the approximation of f by s:

‖V − Vs‖∞, inside S2 ≤ ‖f − s‖∞,S2

it is therefore essential to find a good approximation of f .

Example 3. In this example we are modeling a part of an aircraft from a point cloud

in R3. Translate the cloud so that its center is located at the origin. Then directions

from the origin to each point give us locations on the unit sphere, and distances

between the origin and each point in the cloud give us the corresponding experi-

mental function values. Note that the data locations do not have tensor structure,

and therefore this fitting problem cannot be solved by tensor product splines. We

solve the interpolation problem on a spherical triangulation using minimal energy

method and display the spherical spline together with the point cloud in Fig. 1.3.

Figure 1.3: Minimal energy cubic interpolant of the point cloud

Example 4. Consider a blueberry exposed to convective heat [11]. A food scientist

is interested in modeling the berry as it dries. The process can be described by heat

equations with convective boundary conditions. Moisture and temperature on the

surface are sampled at several locations and can be approximated everywhere on the
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surface by spherical splines. Consider a general homogeneous heat equation

ut(v, t) − ∆u(v, t) = 0

on the unit ball in R3 and time interval (0, T ] with an initial condition

u(v, 0) = u0(v), v ∈ B1(0) ∈ R
3

and a boundary condition

u(v, t) = g(v), v ∈ S2.

Using the Euler time discretization method [5] we subdivide the time interval (0, T ]

into n subintervals of equal length h = T/n with the right-hand side endpoints

tk := kh, k = 1, ..., n. Denote uk(v) := u(v, tk). The time derivative is approximated

by a forward difference

ut(v, tk) ≈
uk(v) − uk−1(v)

h

therefore we obtain an iterational scheme

−h∆uk(v) + uk(v) = uk−1(v).

This is a second order elliptic nonhomogeneous equation on the unit ball where

uk−1(v) is known at the k-th step and uk(v) is to be solved for. The time discretization

of the boundary conditions leads to

uk(v)|S2 = g(v), k = 1, .., n.

Therefore at every time step we need to solve the problem

−∆U(v) + w2U(v) = F (v), v ∈ B1(0)

subject to the boundary conditions

U(v)|S2 = G(v).
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The function F (v) is known everywhere on B1(0). The boundary conditions G(v) in

the berry problem are given as a set of scattered points coupled with heat/moisture

values. These values can be approximated by spherical splines.

There are various ways to approximate scattered data on the sphere available

in the literature, for example, [13]. Let us review two approaches for solving this

problem. One approach is using splines on the plane and another spherical harmonics.

The first step in approximating functions is to identify an approximating space well

suited for the problem at hand.

Since the data fitting problem is well studied on the plane it is natural to attempt

to map the sphere onto a planar rectangular region [0, 2π]×[0, π] in terms of spherical

coordinates (θ, φ) and use well-known planar techniques to solve the problem. Note

that we would like to use polynomial functions since their approximating properties

are powerful and they are easy to compute along with their derivatives and integrals.

It is not difficult to see what type of difficulties arise in this case. Functions on

the sphere are naturally periodic, and polynomials in (θ, φ) are not. We need to

pose extra conditions along the boundaries θ = 0, θ = 2π to ensure continuity

and differentiability of the resulting functions. The poles also pose a threat to the

smoothness of the solution, as each of the poles on the sphere is mapped to entire

line segment in (θ, φ) plane. Therefore the solution must be constant along the lines

φ = 0 and φ = π.

A classical approach to the problem is to use spherical harmonics. It is obvious

that for computational purposes one has to cut off the tail of the series and to have a

finite number of coefficients to compute. The spherical harmonics are naturally peri-

odic on the sphere and have powerful approximation properties. One disadvantage

of using the spherical harmonics arises when one has to code applications involving

them. The trigonometric polynomial representation of spherical harmonics requires

a change from Cartesian coordinates to spherical coordinates. The formulas are not
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very convenient for coding: implicit formulas depend on the degree in such a way

that it cannot be passed to a program as a parameter. Another disadvantage of using

spherical harmonics for fitting problems is their global support; even a small change

in a value of a coefficient will affect the resulting function everywhere else on the

sphere. Also oscillatory behavior of the harmonics as their degree increases may not

be desirable for applications.

A relatively new approach is to use spherical splines. A spherical spline is a

piecewise polynomial function defined on a spherical triangulation. Let τ be a spher-

ical triangle with vertices v1, v2, v3. A homogeneous spherical Bernstein-Bézier (BB)

polynomial p is defined on τ by

p =
∑

i+j+k

cijkB
d
ijk,

where

Bd
ijk(v) =

d!

i!j!k!
b1(v)ib2(v)jb3(v)k, i + j + k = d,

are called BB basis functions of degree d and bi’s satisfying

3∑

i=1

bi(v)vi = v

are called spherical barycentric coordinates of v with respect to τ . To construct

spherical splines we operate with BB-polynomials restricted to the domain of their

definition τ , i.e. a spherical spline is a smooth piecewise BB-polynomial. A collection

of all spherical splines of degree d and smoothness r defined on a triangulation ∆ is

denoted by Sr
d(∆) and is called a spline space of degree d and smoothness r.

The BB spherical splines are analogous to the well known bivariate Bernstein-

Bézier splines defined on planar triangulations. The bivariate BB splines are very

convenient in solving data fitting problems. They have many attractive properties,

such as derivative and integral representations, evaluation and subdivision algo-

rithms, easy implementable smoothness conditions. The BB planar splines are wildly
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used in numerical methods for solving PDE’s as well. Many of these properties are

carried over to the spherical splines, which makes them a great tool in solving fitting

problems on the sphere.

Let us now describe methods using BB spherical splines for solving data fitting

problem. Note that with the polynomial definition above to solve the interpolation

problem means to find appropriate values for the coefficients cijk, i + j + k = d for

every triangle. Local methods, such as Finite Element, assign values to the coeffi-

cients independently of the values on any other triangle. These methods are very

fast and relatively simple. However they require more information than is often

available. For example to construct a quintic C1 macro-element for every triangle we

need to know the function values at the vertices of τ , certain first and second order

directional derivatives at the vertices, and first order directional derivatives at the

midpoints of edges, totaling 21 data for every single triangle. These derivative values

are estimated locally from the data available. Naturally, the approximation power of

such a method depends on the accuracy of the derivative estimates, which may not

be very high from the global point of view. Another disadvantage of using macro-

elements is that they are degree dependent, i.e. for every degree and smoothness one

has to construct and therefore program a new macro-element [14].

Alternatively there are global techniques for solving the interpolation/fitting

problem. The three widely used methods [3] are:

Minimal energy interpolation,

Discrete least squares approximation,

Penalized least squares approximation.

These methods require simultaneous involvement of all coefficients of the spline. For

the minimal energy interpolation problem we are given a set of locations V ∈ S2 and

corresponding values f(v), v ∈ V. We need to find a function s ∈ Sr
d(∆) satisfying

s(v) = f(v), v ∈ V. To find a unique interpolating spline we minimize an energy
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functional

Eδ(f) =

∫

S2

∑

|α|=2

(Dαfδ)
2 (1.3)

over the set

Γf := {s ∈ Sr
d(∆) : s(v) = f(v), ∀v ∈ V}.

Here fδ is a homogeneous extension of f to R3\{0} to be defined later.

In [3] the authors discussed several choices for the functional E above. We defined

(1.3) by analogy with the bivariate thin plate energy functional. The necessary

adjustment is to take a homogeneous extension of f to R3\{0} of degree δ prior

to differentiation. The value of δ is taken to be 1 if d is odd and 0 if d is even. This

choice allows reproduction of linear homogeneous functions in odd degree spline

spaces, and reproduction of constants in even degree spaces.

In case of discrete least squares splines a given data set is extremely large, e.g.,

n ≥ 10, 000 and highly redundant. Let L(s) be the discrete squares functional

L(s) =
∑

v∈V

(s(v) − f(v))2.

The discrete least squares spherical spline Sf ∈ Sr
d(∆) is the function which mini-

mizes the quantity L(s), s ∈ Sr
d(∆), i.e.

L(Sf) = min{L(s) : s ∈ Sr
d(∆)}.

Penalized least squares fitting is used when data locations are not uniformly

spaced over S2 and interpolation is not required. Let ∆ be a regular triangulation

of the unit sphere S2 whose vertices form a subset of V. We seek a spline solution

Sf ∈ Sr
d(∆) satisfying

Pλ(Sf ) = min{Pλ(s) : s ∈ Sr
d(∆)}

where λ is a positive weight and

Pλ(s) := L(s) + λEδ(s).
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Here L is the least squares functional and Eδ is the energy functional defined in (1.3).

For the spherical fitting problems these methods were first introduced in [3]. To

obtain the unknown spline coefficients c := {cτ
ijk, i + j + k = d, τ ∈ ∆} in every case

we have to solve a linear system of equations in the form


 A LT

L 0




 c

η


 =


 F

G


 ,

where η is a vector of Lagrange multiplier coefficients. In [3] the global methods

above were tested in cubic spaces. Authors note that high running time is devoted

to solving associated linear system. These were solved by public domain matrix

solvers, for example Y12M package. For the global methods the size of the linear

system is the main determinator of the amount of space and time needed to run

the program, and they were not able to run substantially larger problems. To deal

with these restrictions we have two suggestions. One: the linear system can be solved

using an iterational algorithm [6]


 A LT

L −ǫI




 c(ℓ+1)

λ(ℓ+1)


 =


 F

G − ǫλ(ℓ)


 ,

for ℓ = 0, 1, 2, · · · , where ǫ > 0 is a fixed number, e.g. ǫ = 10−4, λ(ℓ) is iterative

solution of a Lagrange multiplier with λ0 = 0 and I is the identity matrix. The

above matrix iterative steps can in fact be rewritten as follows:

(A +
1

ǫ
LT L)c(ℓ+1) = AFc(ℓ) +

1

ǫ
LT G

with c(0) = 0.

It is proved in [6] that the matrix A + 1
ǫ
LT L is always invertible for any ǫ > 0

if A is symmetric and positive definite with respect to L in the sense that Ac = 0

and Lc = 0 imply that c = 0. Also, under the assumption that A is symmetric and

positive definite with respect to L, the vectors c(ℓ) converge to the solution c: there
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exists a constant C such that

‖c(ℓ+1) − c‖ ≤ Cǫ‖c(ℓ) − c‖

for all ℓ [6]. One of the advantages of this iterative method over the least square

approach is that it involves only the inverse of the matrix A + 1
ǫ
LT L instead of the

SVD of the entire coefficient matrix of the singular linear system which is apparently

more expensive.

Two: we apply the minimal energy interpolation method on certain subdomains

of S2. Having data locations V construct a triangulation ∆. Divide ∆ into clusters

Ωi, i = 1, .., n. Enlarge each cluster by attaching adjacent triangles to create Ωi,k.

Find the minimal energy interpolant sf,i,k on each Ωi,k, then use its restriction to Ωi

for the overall solution. We show that as the number k of triangle rings around Ωi

increases, the subdomain spline converges to the global minimal energy interpolant.

We remark, that one of disadvantages of using homogeneous spherical splines is

that spline spaces of even and odd degrees have only the zero function in common

due to homogeneity of the basis. More explicitly, Sr
d(∆) with d odd does not con-

tain constant functions, and Sr
d(∆), d even, does not contain linear functions. It is

well-known that on planar triangulations minimal energy splines with functionals

involving second-order differential operators are capable of reproducing constants

and linear functions. This is however not the case for homogeneous spherical splines,

since Sr
d(∆), d odd, simply does not contain constant polynomials. Therefore only

homogeneous linear functions can be reproduced. Similarly, if d is even, we can only

reproduce constants. Analogous problems hold in the case of discrete and penalized

least square approximations.

It turns out that non-homogeneous splines can be constructed easily from the

homogeneous splines, since on the unit sphere [19] the space Pd of polynomials of
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degree d has a direct sum decomposition

Hd ⊕Hd−1 = Pd

into two spaces Hd and Hd−1 of homogeneous polynomials. Nonhomogeneous spline

spaces allow reproduction of nonhomogeneous polynomials.

The dissertation is organized as follows. In Chapter 2 we introduce definitions

and concepts related to spherical triangulations. We define spherical BB polynomials

and thoroughly study their properties. We define a spherical analog of Sobolev spaces

and associated semi-norms. A brief description of local bases and important results

concerning quasi-interpolants are presented as well. These considerations set the

foundation for error bounds derived in Chapter 3. The results of this chapter are

applied to demonstrate the approximation power of the multiple star technique in

Chapter 4. Chapter 5 is devoted to practical issues related to implementation of the

global methods and multiple star technique. We conclude by presenting numerical

experiments in Chapter 6.



Chapter 2

Preliminaries

2.1 Spherical triangulations

In this section we introduce basic notation and definitions used throughout the

dissertation. Let S2 denote the unit sphere in R3. Given two points u, v on S2 that

are not antipodal the shortest curve connecting them is an arc ûv of the the great

circle through them. Given three points v1, v2 and v3 on S2 such that the vectors

v1,v2,v3 form a basis for R3, a spherical triangle τ is a domain bounded by the arcs

v̂1v2, v̂2v3 and v̂3v1, which are called edges of the spherical triangle τ . The points

v1, v2 and v3 are called vertices of τ .

Given a set V of points on S2 we can form a triangulation ∆: a collection of

spherical triangles. We will assume that the triangulation ∆ is regular in the sense

that any two triangles do not intersect each other or else share either a common

vertex or a common edge and every edge of ∆ is shared by exactly two triangles.

Under the assumption that ∆ is regular we can state the following properties of

∆.

• For ∆ to exist the cardinality of V must be at least 4.

• The number of vertices #V and the number of triangles #T are related as

#T = 2(#V − 2).

• The number #E of edges of ∆ is related to the number of triangles as #E =

3#T/2.

12
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As for any spline space we need a notion of the size of a spherical partition.

Given a spherical triangle τ let |τ | denote the diameter of the smallest spherical

cap containing τ and let ρτ denote the diameter of the largest spherical cap contained

in τ . Then

|∆| = max{|τ |, τ ∈ ∆}

ρ∆ = min{ρτ , τ ∈ ∆}

are correspondingly the diameter of the largest triangle in ∆ and the diameter of

the smallest spherical cap inscribed in ∆.

Definition 2.1. Let β be a positive real number. A triangulation ∆ is said to be

β-quasi-uniform provided that

|∆|
ρ∆

≤ β.

It is well-known that in the planar case, the smallest angle of a quasi-uniform

triangulation is bounded below by 1/β [20]. We make use of a concept of a nat-

ural radial projection developed in [23] to relate properties of planar quasi-uniform

triangulations to the spherical ones. It will be clear from our construction that we

need to bound triangulation size. In order for the results of [23] to be applicable we

choose this bound to be 1.

Figure 2.1: Radial projection.
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Fix a spherical triangle τ with |τ | ≤ 1. Define rτ to be the center of a spherical

cap of smallest possible radius containing τ , and let Tτ be the tangent plane touching

S2 at rτ . We define the radial projection from Tτ into S2 by

w := Rτ w̄ :=
w̄

|w̄| ∈ S2, w̄ ∈ Tτ .

Since Rτ is one-to-one, R−1
τ is well-defined. Let τ̄ be the image of τ under R−1

τ . Let

ρτ̄ and |τ̄ | be diameters of the inscribed and outscribed circles of τ̄ correspondingly.

It is not too difficult to check that

|τ | ≤ |τ̄ | ≤ K1|τ |,

K−1
2 ρτ ≤ ρτ̄ ≤ K2ρτ , (2.1)

for some positive constants K1 and K2 (cf. [23]). However we make use of the fol-

lowing

Lemma 2.1. Let τ be a spherical triangle with |τ | ≤ 1. Let τ̄ denote the image of τ

under the map R−1
τ . Then

2 tan
|τ |
2

= |τ̄ | (2.2)

and

2 tan
ρτ

2
≤ ρτ̄ . (2.3)

Proof. By the definition of Rτ the center of the smallest spherical cap containing τ

is the center of the circle outscribing τ̄ . Let v̄ be one of the vertices of τ̄ . The center

of the unit sphere O, v̄ and rτ form a right triangle with the leg Orτ of length 1,

the leg v̄rτ having length
|τ̄ |
2

and the angle ∠v̄Orτ having radian measurement
|τ |
2

.

Then (2.2) follows immediately.

The largest spherical cap σ contained in τ is mapped onto an ellipse ǫ in the

plane Tτ which is contained in τ̄ . The largest circle σ̄ contained in τ̄ has a radius
ρτ̄

2

greater than or equal to rǫ - the radius of the largest circle contained in the ellipse.

Let o be the center of σ and v be any point on the boundary δσ of the cap. Let ō
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and v̄ be the images of o and v under R−1
τ correspondingly. Then rǫ can defined by

rǫ := minv∈δσ{|ō − v̄|}. Note now that

|ō − v̄| ≥ tan |o − v|, ∀v ∈ δσ.

Therefore

ρτ̄

2
≥ rǫ ≥ tan

ρτ

2

and we have (2.3).

Note that since great circles are mapped into straight lines under the inverse of

the radial projection Rτ , any cluster of spherical triangles ω with |ω| ≤ 1 is mapped

into a planar triangulation ω̄.

Lemma 2.2. Let ∆ be a β-quasi-uniform triangulation of the unit sphere with |∆| ≤

1. Let Θ∆ denote the smallest angle of ∆. There exists a constant A1 such that

Θ∆ ≥ 1

A1β
. (2.4)

Proof. Fix a spherical triangle τ ∈ ∆ and construct the radial projection Rτ . By

Lemma 2.1 we have

|τ̄ |
ρτ̄

≤ tan |τ |
2

tan ρτ

2

≤ 2 tan
1

2
β.

Since τ̄ is a planar triangle, its every angle is bounded below by 1
A1β

with A1 :=

2 tan 1
2
. Since the corresponding spherical angles are even greater (2.4) follows.

We will need another lemma comparing areas Aτ of spherical triangles to the size

parameters |∆| and ρ∆ characterizing spherical triangulations.

Lemma 2.3. For every spherical triangle τ ∈ ∆ with |∆| ≤ 1

πρ2
∆

5
≤ Aτ ≤ π|∆|2

4
. (2.5)

Proof. The area Aτ of a spherical triangle is bounded above by the area of the

smallest spherical cap containing τ . The diameter of this cap is |τ |. Without loss of
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generality we assume that the center of this cap is located at the north pole. Then

Aτ ≤
∫ 2π

0

∫ |τ |/2

0

sin ηdηdθ = 2π(1 − cos(|τ |/2)) ≤ π
|∆|2
4

.

Similarly, Aτ is bounded below by the area of the largest spherical cap contained in

τ , which by the definition has a diameter ρτ . Therefore

Aτ ≥ 2π(1 − cos(ρτ/2)) ≥ πρ2
∆

5
.

Another result that we need concerning β-quasi-uniform triangulations is a bound

on the number of triangles nk in the k-th disk around τ . We denote the union of all

triangles in ∆ that share the vertex v by star1(v). Define recursively

starℓ(v) := ∪{star1(w) : w is a vertex of starℓ−1(v)}, ℓ > 1,

and

starℓ(τ) := ∪{starℓ(w) : w is a vertex of τ}, ℓ > 1.

Lemma 2.4. Suppose ∆ is a β-quasi-uniform triangulation such that |∆| ≤ 1. Then

for any triangle τ ∈ ∆ and any k ≥ 0 the number nk of triangles in stark(τ) is

nk ≤ 5β2

4
(2k + 1)2, (2.6)

and

nk ≥ 2

πβ2
(2k + 1)2. (2.7)

Proof. Note that stark(τ) is contained in a spherical cap of radius R = (2k + 1) |∆|
2

and area AR = 2π(1 − cos R). By Lemma 2.3 we have

πρ2
∆

5
≤ Aτ .

Then

nk
πρ2

∆

5
≤ AR = 2π(1 − cos R) ≤ πR2.
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Therefore

nk ≤ 5β2(2k + 1)2

4
.

On the other hand stark(τ) contains a spherical cap of radius r = (2k + 1)ρ∆

2
and

area Ar = 2π(1 − cos r). Then by Lemma 2.3

2r2 ≤ 2π(1 − cos r) = Ar ≤ nk
π|∆|2

4
,

therefore

nk ≥ 2(2k + 1)2

πβ2
.

2.2 Spherical barycentric coordinates

In this section we define an analog of planar barycentric coordinates on the sphere

and analyze some of their properties. We start by introducing a special set of coor-

dinates in R3 which will be used later to construct barycentric coordinates on the

sphere.

Definition 2.2. Let V := {v1,v2,v3} be a basis for R3. We call

T := {v ∈ R3 : v = b1v1 + b2v2 + b3v3, bi ≥ 0} (2.8)

the trihedron generated by V . Each v ∈ R3 can be written in the form

v = b1v1 + b2v2 + b3v3. (2.9)

We call b1, b2, b3 the trihedral coordinates of v with respect to V . Equation (2.9)

defining the trihedral coordinates can be written as a system of three equations for

bi’s: 


vx
1 vx

2 vx
3

vy
1 vy

2 vy
3

vz
1 vz

2 vz
3







b1

b2

b3




=




vx

vy

vz




,
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where vx denotes the x-coordinate of v, etc. The matrix above is nonsingular since

v1,v2,v3 are linearly independent. Using Cramer’s rule we immediately have

b1 =
det(v, v2, v3)

det(v1, v2, v3)
, b2 =

det(v1, v, v3)

det(v1, v2, v3)
, b3 =

det(v1, v2, v)

det(v1, v2, v3)
, (2.10)

where

det(v1, v2, v3) = det




vx
1 vx

2 vx
3

vy
1 vy

2 vy
3

vz
1 vz

2 vz
3




and so forth. Equations above show that the bi’s are ratios of volumes of tetrahedra.

The concept of homogeneity plays an important role in the construction of spline

functions we are going to use. Let us present a formal definition and relate it to

trihedral coordinates.

Definition 2.3. A trivariate function F is said to be homogeneous of degree n

provided that for every real number α 6= 0,

F (αv) = αnF (v), v ∈ R3\{0}. (2.11)

Clearly, for all α ∈ R, bi(αv) = αbi(v), i = 1, 2, 3, which implies that the bi’s are

homogeneous linear functions of v of degree of homogeneity 1.

We summaries some additional properties of trihedral coordinates in the fol-

lowing

Lemma 2.5.

1) {bi(v), i = 1, 2, 3} is a linearly independent set,

2) If L is the space of trivariate linear homogeneous polynomials, then L =

span{b1, b2, b3},

3) bi(vj) = δij, i, j = 1, 2, 3,

4) bi(v) > 0 for all v in the interior of trihedron T ,

Proof.
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1) Suppose there are scalars α1, α2, α3 such that

α1b1(v) + α2b2(v) + α3b3(v) = 0, ∀v ∈ R3. (2.12)

Define v0 := α1v1 + α2v2 + α3v3. By uniqueness of trihedral coordinates, we must

have

αi = bi(v0), i = 1, 2, 3.

Then (2.12) implies
3∑

i=1

α2
i = 0,

and thus αi = 0, i = 1, 2, 3.

2) Since bi’s are homogeneous linear functions, clearly

span{b1, b2, b3} ⊂ L

Let P (x, y, z) = ax + by + cz + d ∈ L. Since P (x, y, z) is linearly homogeneous

P (αx, αy, αz) = αP (x, y, z), ∀α ∈ R. Choose α 6= 1. Then we must have

α(ax + by + cz) + d = α(ax + by + cz) + αd

and thus d = 0. Then P (x, y, z) = ax + by + cz, and L = span{x, y, z}. Since x, y, z

are linearly independent dim(L) = 3. Since b1, b2, b3 are linearly independent and

dim(span{b1, b2, b3}) = 3, L = span{b1, b2, b3}.

3) Consider for some vj, j = 1, 2, 3,

vj =

3∑

i=1

bi(vj)vi.

Then

(bj(vj) − 1)vj +

3∑

i=1,i6=j

bi(vj)vi = 0.

Since vi’s are linearly independent we must have

bj(vj) = 1
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bi(vj) = 0, i 6= j.

4) If bi(v) = 0 for some i, then v =
∑3

j=1,j 6=i bj(v)vj. Hence v ∈ span{bj , j 6= i}, thus

v is not in the interior of T . Thus if v is in the interior of T we must have bi(v) 6= 0

for all i. By the definition of T bi(v) > 0 for i = 1, 2, 3, and all v in the interior of

T .

Theorem 2.6. Let R be any nonsingular matrix. Then

bR
i (Rv) = bi(v), i = 1, 2, 3, (2.13)

where bR
i are the trihedral coordinates of Rv with respect to {Rv1, Rv2, Rv3}.

Proof. Multiplying (2.9) by R, we have

Rv = b1Rv1 + b2Rv2 + b3Rv3.

Theorem 2.7. The three planes spanned by pairs of the vi’s divide R3 into eight

trihedra. The functions b1, b2, b3 have constant signs on each of the eight trihedra.

In particular, v ∈ T if and only if bi ≥ 0, i = 1, 2, 3.

Proof. Let T ijk denote a trihedron generated by {(−1)iv1, (−1)jv2, (−1)kv3},

i, j, k ∈ {0, 1}. Note that T 000 = T and each of the eight trihedra can be described

this way. Fix i, j, k. We show that for all v in the interior of T ijk b000
1 (b1(v) with

respect to T ) has a constant sign.

Let bijk
1 be the first trihedral coordinate of v in the interior of T ijk with respect to

T ijk. Note that by Lemma 2.5, bijk
1 (v) > 0 for any such v. Then

bijk
1 (v) =

det(v, (−1)jv2, (−1)kv3)

det((−1)iv1, (−1)jv2, (−1)kv3)

= (−1)i det(v, v2, v3)

det(v1, v2, v3)
= (−1)ib000

1 (v).
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Since bijk
1 (v) > 0 by above b000

1 has a constant sign in the interior of T ijk.

Next we define spherical barycentric coordinates and relate their properties to

the set of trihedral coordinates.

The intersection of S2 with the trihedron T generated by V is a spherical triangle

τ .

Definition 2.4. The spherical barycentric coordinates of a point v on S2 relative

to τ are the unique real numbers b1, b2, b3 such that

v = b1v1 + b2v2 + b3v3. (2.14)

It is clear that the spherical barycentric coordinates of a point v with respect to τ

are exactly the same as the trihedral coordinates of v with respect to T . This implies

they have the following properties:

Lemma 2.8.

1) bi(vj) = δij , i, j = 1, 2, 3,

2) For all v in the interior of τ , bi(v) > 0,

3) In contrast to the usual barycentric coordinates on the planar triangles which

always sum to 1, b1(v) + b2(v) + b3(v) > 1, if v ∈ τ and v 6= v1, v2, v3,

4) If the edges of a spherical triangle τ are extended to great circles, the sphere is

divided into eight regions. The spherical barycentric coordinates b1, b2, b3 have

constant signs on each of these eight regions,

5) If a point v lies on an edge of τ , then one of its spherical barycentric coordinates

vanishes. The remaining two spherical barycentric coordinates are ratios of

sines of geodesic distances, rather then ratios of geodesic distances,

6) Spherical barycentric coordinates are infinitely differentiable functions of v,
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7) The spherical barycentric coordinates of a point v on the sphere relative to one

spherical triangle τ can be computed from those relative to another spherical

triangle by matrix multiplication,

8) The bi are ratios of volumes of tetrahedra,

9) The spherical barycentric coordinates of a point v are invariant under rotation,

i.e., they depend only on the relative positions of v and v1, v2, v3 to each other,

10) The span of the spherical barycentric coordinates b1(v), b2(v), b3(v) relative to

any triangle is always the three-dimensional linear space obtained by restricting

the space L of linear homogeneous polynomials on R3 to the sphere S2, and is

thus independent of the triangle.

Proof. Apply Lemma 2.5, Theorem 2.6 and Theorem 2.7.

We now show that spherical barycentric coordinates can also be expressed in

terms of certain natural angles associated with the geometry. Let ni denote the unit

normal vectors to the planes Pi := span(V \vi), i = 1, 2, 3. The orientation of these

vectors is chosen to be consistent with the orientation of the vectors vi relative to

Pi, i.e.,

sgn det(v1, v2, v3) = sgn det(n1, v2, v3) =

sgn det(v1, n2, v3) = sgn det(v1, v2, n3).

For a point v ∈ S2, let the angles αi, βi, be defined by the dot products

sin αi := v · ni, sin βi := vi · ni, i = 1, 2, 3.

The αi represent oriented angles between the vector v and the planes Pi, while the

βi are the analogous angles between vi and Pi. For nontrivial spherical triangles,

det(v1, v2, v3) 6= 0, and therefore sin βi 6= 0, i = 1, 2, 3.
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Theorem 2.9. The spherical barycentric coordinates of a point v ∈ S2 with respect

to a triangle τ are given by

bi(v) =
sin αi

sin βi

, i = 1, 2, 3. (2.15)

Proof. Let i, j,k denote the unit coordinate vectors and ‖ · ‖ the usual Euclidean

norm. Define

d1 := det




i vx
2 vx

3

j vy
2 vy

3

k vz
2 vz

3




,

d2 := det




vx
1 i vx

3

vy
1 j vy

3

vz
1 k vz

3




,

d3 := det




vx
1 vx

2 i

vy
1 vy

2 j

vz
1 vz

2 k




.

Then n1 = di/‖di‖, and thus

sin αi

sin βi
=

v · ni

vi · ni

=
v · di/‖di‖
vi · di/‖di‖

=
v · di

vi · di

. (2.16)

It is easy to check that

vi · di = det(v1, v2, v3), i = 1, 2, 3,

and that

v · d1 = det(v, v2, v3),

v · d2 = det(v1, v, v3),

v · d3 = det(v1, v2, v).

Then by (2.16) and the property (2.10) of trihedral coordinates we get (2.15).

Lemma 2.10. Let C be the unit circle in R2 centered at the origin, and let A be
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a circular arc with vertices v1 6= v2 which are not antipodal. Let b1, b2 denote the

circular barycentric coordinates of v ∈ C relative to A. Then

b1(v) =
sin(θ2 − θ)

sin(θ2 − θ1)
,

b2(v) =
sin(θ − θ1)

sin(θ2 − θ1)
, (2.17)

where θ, θ1, θ2 are the polar coordinates of v,v1,v2 respectively.

Proof. Since

v1 = (cos θ1, sin θ1)
T

v2 = (cos θ2, sin θ2)
T

v = (cos θ , sin θ )T

and

v = b1v1 + b2v2,

the circular barycentric coordinates of v are solving the system:

 cos θ1 cos θ2

sin θ1 sin θ2




 b1

b2


 =


 cos θ

sin θ


 .

We immediately get the result.

Theorem 2.11. For each i = 1, 2, 3, let Ci be the great circle passing through the

points v ∈ S2 and vi ∈ V , and let yi denote the intersection of Ci with the edge of τ

opposite to vi. Then the spherical barycentric coordinates of v can be computed as

bi =
sin δi

sin(δi + γi)
, i = 1, 2, 3, (2.18)

where δi is the signed geodesic distance (measured along Ci) from yi to v, and γi is

the signed geodesic distance from v to vi.

Proof. It suffices to prove (2.18) for i = 1. By Lemma 2.10 if v ∈ C1 it can be

expressed relatively to y1 and v1 as:

v =
sin δ1

sin(δ1 + γ1)
v1 +

sin γ1

sin(δ1 + γ1)
y1.



25

By the same lemma we can write y1 as a linear combination of v2 and v3 only. Then

by the uniqueness of barycentric coordinates

b1 =
sin δ1

sin(δ1 + γ1)
.

Similarly, we can show the result for i = 2, 3.

2.3 Homogeneous Bernstein-Bézier polynomials

Let Pd denote the space of polynomials of total degree d on R3. Recall that the

dimension of Pd is
(

d+3
3

)
and that the set of classical Bernstein polynomials

Bd
ijkl(v) :=

d!

i!j!k!ℓ!
bi
1b

j
2b

k
3b

ℓ
4, i + j + k + ℓ = d (2.19)

forms a basis for Pd (cf. [2]).

Let Hd denote the space of polynomials of degree d which are homogeneous of

degree d.

Lemma 2.12. The space Hd is an
(

d+2
2

)
dimensional subspace of Pd. Moreover, if we

choose v4 to be the origin in the above construction of the Bernstein polynomials,

then the set {Bd
ijk0 : i + j + k = d} forms a basis for Hd.

Proof. Let f, g ∈ Hd, and α ∈ R. Then

(i) (f + g)(αv) = f(αv) + g(αv) = αf(v) + αg(v) = α(f + g)(v)

(ii) ∀β ∈ R, βf(αv) = βαf(v) = α(βf)(v).

Thus Hd is a subspace of Pd.

Let f =
∑

0≤i+j+k≤d cijkx
iyizk be in Hd. Since f is homogeneous of degree d we

must have for all α ∈ R

αd
∑

0≤i+j+k≤d

cijkx
iyizk =

∑

0≤i+j+k≤d

αi+j+kcijkx
iyizk

and thus
∑

0≤i+j+k≤d

(αd − αi+j+k)cijkx
iyizk = 0.
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Since {xi, yi, zk, 0 ≤ i + j + k ≤ d} is a linearly independent set

(αd − αi+j+k)cijk = 0 (2.20)

Choose α 6= 1. Then (2.20) implies

cijk = 0, ∀i + j + k 6= d,

and

f =
∑

i+j+k=d

cijkx
iyizk.

It follows that {xi, yi, zk, i + j + k = d} spans Hd and thus dim(Hd) =
(

d+2
2

)
.

Next, we show that the set {Bn
ijk0 : i + j + k = d} forms a basis for Hd. Since

{Bd
ijkl : i + j + k + ℓ = d} is a linearly independent set, so is {Bd

ijk0 : i + j + k = d}.

Each Bd
ijk0 is a homogeneous polynomial of degree d, thus

span{Bd
ijk0 : i + j + k = d} ⊂ Hd.

Since

dim{span{Bd
ijk0 : i + j + k = d}} =

(
d + 2

2

)
= dim(Hd)

the proof is complete.

For ease of notation, it is convenient to drop the last subscript and introduce the

following definition.

Definition 2.5. Let T be a trihedron generated by {v1, v2, v3}, and let b1(v), b2(v),

b3(v) denote the trihedral coordinates as functions of v ∈ R3. Given an integer d ≥ 0,

we define the homogeneous Bernstein-Bézier basis polynomials of degree d on T to

be the set of polynomials

Bd
ijk(v) :=

d!

i!j!k!
bi
1(v)bj

2(v)bk
3(v), i + j + k = d. (2.21)

We call

P (v) :=
∑

i+j+k=d

cijkB
d
ijk(v) (2.22)
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a homogeneous Bernstein-Bézier (HBB-) polynomial of degree d.

Many properties of classical, planar, Bernstein-Bézier polynomials hold for HBB-

polynomials. We present several of major importance.

For example, to evaluate P at points in R3 we have classical de Casteljau algo-

rithm:

Theorem 2.13. Suppose we want to evaluate the HBB-polynomial at a point w

with trihedral coordinates b1, b2, b3.

Set c0
ijk := cijk, i + j + k = d.

For ℓ = 1 to d

For i + j + k = d − ℓ

cℓ
ijk := b1c

ℓ−1
i+1,j,k + b2c

ℓ−1
i,j+1,k + b3c

ℓ−1
i,j,k+1.

Then P (w) = cd
000.

Proof. Let B0
000(w) = 1. Suppose

cℓ−1
ijk =

∑

r+s+t=ℓ−1

ci+r,j+s,k+tB
ℓ−1
rst (w)

for some ℓ and all i, j, k such that i + j + k = d − ℓ + 1. By the definition

cℓ
ijk = b1c

ℓ−1
i+1,j,k + b2c

ℓ−1
i,j+1,k + b3c

ℓ−1
i,j,k+1 = b1

∑

r+s+t=ℓ−1

ci+1+r,j+s,k+tB
ℓ−1
rst +

b2

∑

r+s+t=ℓ−1

ci+r,j+1+s,k+tB
ℓ−1
rst + b3

∑

r+s+t=ℓ−1

ci+r,j+s,k+1+tB
ℓ−1
rst =

∑

r+s+t=ℓ−1

(b1ci+1+r,j+s,k+t + b2ci+r,j+1+s,k+t + b3ci+r,j+s,k+1+t)
(ℓ − 1)!

r!s!t!
br
1b

s
2b

t
3 =

∑

r+s+t=ℓ−1

ci+1+r,j+s,k+tb
r+1
1 bs

2b
t
3

(ℓ − 1)!

r!s!t!
+

∑

r+s+t=ℓ−1

ci+r,j+1+s,k+tb
r
1b

s+1
2 bt

3

(ℓ − 1)!

r!s!t!
+

∑

r+s+t=ℓ−1

ci+r,j+s,k+1+tb
r
1b

s
2b

t+1
3

(ℓ − 1)!

r!s!t!
=

∑

r+1+s+t=ℓ

r + 1

ℓ
ci+1+r,j+s,k+tb

r+1
1 bs

2b
t
3

ℓ!

(r + 1)!s!t!
+
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∑

r+1+s+t=ℓ

s + 1

ℓ
ci+r,j+1+s,k+tb

r
1b

s+1
2 bt

3

ℓ!

r!(s + 1)!t!
+

∑

r+1+s+t=ℓ

t + 1

ℓ
ci+r,j+s,k+1+tb

r
1b

s
2b

t+1
3

ℓ!

r!s!(t + 1)!
=

∑

r′+s+t=ℓ

r′

ℓ
ci+r′,j+s,k+tb

r′

1 bs
2b

t
3

ℓ!

r′!s!t!
+

∑

r+s′+t=ℓ

s′

ℓ
ci+r,j+s′,k+tb

r
1b

s′

2 bt
3

ℓ!

r!s′!t!
+

∑

r+s+t′=ℓ

t′

ℓ
ci+r,j+s,k+t′b

r
1b

s
2b

t′

3

ℓ!

r!s!t′!
=

∑

r+s+t=ℓ

r + s + t

ℓ
ci+r,j+s,k+tB

ℓ
rst =

∑

r+s+t=ℓ

ci+r,j+s,k+tB
ℓ
rst .

Then

cd
000 =

∑

r+s+t=d

cr,s,tB
d
rst(w) = P (w).

The following is the analog of the classical subdivision algorithm for bivariate

BB-polynomials.

Theorem 2.14. Let {cℓ
ijk} be the coefficients produced by de Casteljau algorithm

using trihedral coordinates b1, b2, b3 of a point w ∈ T with vertices {v1, v2, v3}. Then

P (v) =





∑
i+j+k=d ci

0,j,kB
d
ijk;1(v), v ∈ T1 = {w, v2, v3}

∑
i+j+k=d cj

i,0,kB
d
ijk;2(v), v ∈ T2 = {v1, w, v3}

∑
i+j+k=d ck

i,j,0B
d
ijk;3(v), v ∈ T3 = {v1, v2, w},

(2.23)

where Bd
ijk;ν are Bernstein-Bézier polynomials associated with the trihedron Tν , ν =

1, 2, 3.

Proof. Suppose v ∈ T1, and

P (v) =
∑

i+j+k=d

ci,j,kB
d
ijk(v) (2.24)

with respect to T , and

P (v) =
∑

i+j+k=d

ci,j,k;1B
d
ijk;1(v)
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with respect to T1. We claim that cijk;1 = ci
0,j,k. The trihedral coordinates of w with

respect to T are determined by

w = a1v1 + a2v2 + a3v3.

The trihedral coordinates of v with respect to T are determined by

v = b1v1 + b2v2 + b3v3

and with respect to T1 are determined by

v = c1w + c2v2 + c3v3.

Then

v = c1(a1v1 + a2v2 + a3v3) + c2v2 + c3v3 =

c1a1v1 + (c1a2 + c2)v2 + (c1a3 + c3)v3.

The uniqueness of barycentric coordinates implies that

b1 = c1a1,

b2 = c1a2 + c2,

b3 = c1a3 + c3.

By (2.24)

P (v) =
∑

i+j+k=d

cijk
d!

i!j!k!
bi
1b

j
2b

k
3 =

∑

i+j+k=d

cijk
d!

i!j!k!
ci
1a

i
1(c1a2 + c2)

j(c1a3 + c3)
k.

Using binomial expansion and rearranging the terms we get

P (v) =
∑

i+j+k=d

cijk
d!

i!j!k!
ci
1a

i
1(
∑

r+s=j

j!

r!s!
cr
1a

r
2c

s
2)(

∑

ℓ+m=k

k!

ℓ!m!
cl
1a

l
3c

m
3 ) =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

cijk
d!

i!r!s!ℓ!m!
ci+r+ℓ
1 cs

2c
m
3 ai

1a
r
2a

ℓ
3 =
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∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

cijk
(i + r + ℓ)!

i!r!ℓ!
Bd

i+r+ℓ,s,m;1a
i
1a

r
2a

ℓ
3 =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

ci,r+s,ℓ+m
(i + r + ℓ)!

i!r!ℓ!
ai

1a
r
2a

l
3B

d
i+r+ℓ,s,m;1 =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

ci,r+s,ℓ+mBi+r+ℓ
i,r,ℓ Bd

i+r+ℓ,s,m;1.

Introducing a new index of summation p = i + r + ℓ, and since

∑

i+r+ℓ=p

ci,r+s,ℓ+mBi+r+ℓ
i,r,ℓ = ci+r+ℓ

0,s,m

we have

P (v) =
∑

p+s+m=d

(
∑

i+r+ℓ=p

ci,r+s,ℓ+mBp
i,r,m)Bd

p,s,m;1 =

∑

p+s+m=d

Cp
0,s,mBd

p,s,m;1.

Similar proof works for v ∈ T2 and for v ∈ T3.

We now establish necessary and sufficient conditions for two HBB-polynomials

to join together smoothly across a plane trough the origin in the sense that the poly-

nomials and their usual directional derivatives as trivariate functions are continuous

as we cross the plane.

Theorem 2.15. Let T and T̂ be trihedra generated by vertices V = {v1,v2,v3}

and V̂ = {v2,v3,v4}. Let

P (v) =
∑

i+j+k=d

cijkB
d
ijk(v)

and

P̂ (v) =
∑

i+j+k=d

ĉijkB̂
d
ijk(v),

where {Bd
ijkl} and {B̂d

ijkl} are the Bernstein-Bézier basis functions associated with

T and T̂ . Then P and P̂ and all of their derivatives up to order m agree on the face

shared by T and T̂ if and only if

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4) (2.25)
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for all i = 0, ..., m and all j, k such that i + j + k = d.

Proof. Suppose

Q(v) =
∑

i+j+k+ℓ=d

CijklB
d
ijkl(v) (2.26)

and

Q̂(v) =
∑

i+j+k+ℓ=d

ĈijklB̂
d
ijkl(v), (2.27)

where

Cijkl :=





cijk, if ℓ = 0

0, otherwise
(2.28)

and

Ĉijkl :=





ĉijk, if ℓ = 0

0, otherwise
(2.29)

and Bd
ijkl(v) are the usual BB-polynomials of degree d associated with the trihe-

dron with vertices {v1, v2, v3, 0} and B̂d
ijkl(v) are those associated with the trihedron

with vertices {v4, v2, v3, 0}. It is well-known that these polynomials join with Cm

continuity if and only if

Ĉijkl =
∑

r+s+t+u=i

Cr,j+s,k+t,ℓ+uB
i
rstu(v4), i = 0, ..., m. (2.30)

In view of (2.28, 2.29) we can choose ℓ = u = 0. In this case, (2.30) holds if and only

if (2.25) holds. But P = Q and P̂ = Q̂, proof is complete.

2.4 Spherical Bernstein-Bézier polynomials

In this section we discuss properties of BB-polynomials restricted to the sphere S2.

We start by stating the existence of homogeneous extensions.

Lemma 2.16. Suppose f is a function defined on S2 and let t ∈ R. Then

Ft(v) := ‖v‖tf(v/‖v‖) (2.31)
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is the unique homogeneous extension of f of degree t to all of R3\{0}, i.e., Ft|S2 = f ,

and Ft is homogeneous of degree t.

Proof. The assertion is an immediate consequence of the definition.

Definition 2.6. The restriction of an HBB-polynomial of degree d to the points on

the unit sphere is called a spherical Bernstein-Bézier (SBB-) polynomial of degree

d.

Many properties of SBB-polynomials follow naturally from the properties of

HBB-polynomials.

Theorem 2.17. The polynomials {Bd
ijk, i + j + k = d} restricted to S2 are linearly

independent.

Proof. Suppose

P (v) =
∑

i+j+k=n

cijkB
d
ijk(v) = 0

for all v ∈ S2. By Lemma 2.16 there exists the unique homogeneous extension of

P (v) to all of R3 of degree d. Then P (v) = 0 for all v ∈ R3. The linear independence

of the Bd
ijk’s implies that cijk = 0, i + j + k = d and thus the Bd

ijk’s restricted to S2

are linearly independent.

De Casteljau and subdivision algorithms can also be applied to the restricted

polynomials.

We now consider the question when two polynomials on adjoining surface trian-

gles join smoothly across a common edge e.

Theorem 2.18. Suppose Q and Q̂ are polynomials as in (2.26) and (2.27) and let

τ and τ̂ be the surface triangles with a common edge e. Then the restrictions of Q

and Q̂ to S2, P and P̂ , along with their derivatives up to order m join continuously

along e, i.e., for every point v ∈ e and every curve c ∈ Ŝ crossing e at v,

Dj
cP (v) = Dj

cP̂ (v), j = 0, ..., m, (2.32)
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if and only if

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4), (2.33)

for all i = 0, ..., m and all j, k such that i + j + k = d.

Proof. Suppose (2.32) holds for all v ∈ e and for all c ∈ S2 crossing e at v. Since P

and P̂ are polynomials of degree d, by Lemma 2.16 there exist unique homogeneous

extensions of degree d which thus must be our Q and Q̂. Since Q|S2 = P and Q̂|S2 = P̂

Dj
cQ(v) = Dj

cQ̂(v), j = 0, ..., m, (2.34)

for every point v ∈ e and every curve c ∈ S2 crossing e at v. Now we claim that

(2.34) holds for any v on the common face of tetrahedras corresponding to τ and τ̂ .

Let v belong to the common face of T and T̂ . Clearly, if v 6= 0, there exist v′ ∈ e

and λ ∈ R, such that v = λv′. Since Q and Q̂ are homogeneous of degree d

Q(v) = Q(λv′) = λdQ(v′),

and similarly for Q̂. Then we have

Dj
cQ(v) = λdDj

cQ(v′) = λdDj
cQ̂(v′) = Dj

cQ̂(v), j = 0, ..., m.

By the Theorem 2.15

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4).

For the other direction, suppose (2.33) holds. Then by Theorem 2.15 Q(v) and Q̂(v)

join smoothly across the common face, i.e.,

DjQ(v) = DjQ̂(v), j = 0, ..., m, (2.35)

for any v on the face. This condition holds for any curve on the common face and

thus for the edge e as well. Since Q(v)|e = P (v) and Q̂(v)|e = P̂ (v) (2.35) holds for

the restrictions. In particular,

∇P (v) = ∇P̂ (v), v ∈ e.



34

Now let c be a curve on the sphere-like surface S2, then by the chain rule

∇P (v) = ∇cDcP (v) = ∇cDcP̂ (v) = ∇P̂ (v),

and so on. Thus we have the result for any v ∈ e and any curve c crossing e at v.

Now we turn to a question how to compute derivatives of spherical functions and

in particular SBB-polynomials. Let us define what we mean by the derivatives of a

spherical function.

Definition 2.7. We define the directional derivative Dgf of f at a point v ∈ S2 by

Dgf(v) := DgF (v) = gT∇F (v), (2.36)

where F is some homogeneous extension of f , and ∇F is the gradient of the trivariate

function F .

While a polynomial of degree d has a natural homogeneous extension to R3, a

general function f on S2 has infinitely many different extensions. The value of its

derivative may depend on which extension we take. The following result identifies

an important case where it does not matter which extension we take.

Lemma 2.19. Suppose f is a function on S2 and g is a tangent vector to S2 at a point

v. Then the value of Dgf(v) can be computed from (2.36) using any homogeneous

extension of f .

Proof. Let F be a homogeneous extension of f , and let C be a C1 smooth curve on

S2 passing through the point v, parameterized by a parameter θ such that C(θ) = v

and C ′(θ) = g for θ = 0. By the chain rule we obtain

df(C(θ))

dθ
|θ=0 =

dF (C(θ))

dθ
|θ=0 = gT∇F (v) = DgF (v).

This shows that DgF (v) does not depend on the degree of homogeneity of F since

the left-hand side clearly depends only on f = F |S2.
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Let us continue with directional derivatives of barycentric coordinates.

Lemma 2.20. Let g be a given unit vector in R3. Then

Dgbi = bi(g). (2.37)

Proof. Say i = 1. Let τ = {v1, v2, v3} and v ∈ S2. By (2.36) and (5.3)

Dgb1 = gT∇b1 =
det(g, v2, v3)

det(v1, v2, v3)
= b1(g).

Proposition 2.21. Suppose P is an SBB-polynomial. Then

DgP (v) = bT (g)∇bP, (2.38)

where

∇b := (
∂

∂b1
,

∂

∂b2
,

∂

∂b3
)T . (2.39)

Proof. By the definition

DgP (v) = gT∇P (v) = gT




∂b1
∂x

∂b2
∂x

∂b3
∂x

∂b1
∂y

∂b2
∂y

∂b3
∂y

∂b1
∂z

∂b2
∂z

∂b3
∂z







∂P
∂b1

∂P
∂b2

∂P
∂b3




=




gT∇b1

gT∇b2

gT∇b3




T

∇bP =




b1(g)

b2(g)

b3(g)




T

∇bP.

We now turn to the problem of computing higher derivatives of SBB-polynomials.

Let c0
ijk := cijk be the Bézier coefficients of P of degree d, and let g1, ..., gm, 1 ≤ m ≤

d, be a set of direction vectors. For each 1 ≤ ℓ ≤ m, let cℓ
ijk, i + j + k = d − ℓ, be

the intermediate values obtained in carrying out de Casteljau algorithm using b(gℓ).

That is, cℓ
ijk is obtained from the recursion

cℓ
ijk = b1(gℓ)c

ℓ−1
i+1,j,k + b2(gℓ)c

ℓ−1
i,j+1,k + b1(gℓ)c

ℓ−1
i,j,k+1, ℓ = 1, ..., m.
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It follows that cℓ
ijk depend on the vectors g1, ..., gℓ, but not on their ordering.

Theorem 2.22. For any 0 ≤ m ≤ d,

Dg1,...,gmP (v) := Dg1
· · ·DgmP (v) =

d!

(d − m)!

∑

i+j+k=d−m

cm
ijkB

d−m
ijk (v). (2.40)

Proof. By Lemma 2.19, for i + j + k = d,

Dg1
Bd

ijk(v) =
d!

i!j!k!
[ibi−1

1 bj
2b

k
3Dg1

b1 + jbi
1b

j−1
2 bk

3Dg1
b2 + kbi

1b
j
2b

k−1
3 Dg1

b3] =

d[Bd−1
i−1,j,k(v)b1(g1) + Bd−1

i,j−1,k(v)b2(g1) + Bd−1
i,j,k−1(v)b3(g1)].

Substituting this in

Dg1
P (v) =

∑

i+j+k=d

cijkDg1
Bd

ijk(v)

and rearranging terms we get (2.40) for m = 1. The general result follows by induc-

tion.

It is clear from the properties of trihedral coordinates that the values of an SBB-

polynomial P at the vertices of its domain triangle are given by P (v1) = cd00, P (v2) =

c0d0, P (v3) = c00d. The derivatives of P at the vertices of τ also have a simple form.

Proposition 2.23. For all 0 ≤ m ≤ d,

Dg1,...,gmP (v1) =
d!

(d − m)!
cm
d−m,0,0,

Dg1,...,gmP (v2) =
d!

(d − m)!
cm
0,d−m,0,

Dg1,...,gmP (v3) =
d!

(d − m)!
cm
0,0,d−m. (2.41)

Proof. Consider P (v1). By Theorem 2.22

Dg1,...,gmP (v1) =
d!

(d − m)!

∑

i+j+k=d−m

cm
ijkB

d−m
ijk (v1),

where

Bd−m
ijk (v1) =

(d − m)!

i!j!k!
b1(v1)

ib2(v1)
jb3(v1)

k =
(d − m)!

i!j!k!
1i0j0k = 1,
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if i = d − m, j = 0, k = 0 and is 0 otherwise. Thus

Dg1,...,gmP (v1) =
d!

(d − m)!
cm
d−m,0,0.

In many applications it is necessary to compute integrals of piecewise polynomial

functions. Evaluating integrals of spherical polynomials is considerably more difficult

than in the planar case. Recall that for planar triangles, the integral of a Bernstein

basis polynomial of degree d is equal to the area of the corresponding triangle divided

by d + 1. Thus, the value of the integral does not depend on the particular basis

polynomial or on the precise shape of the triangle. Unfortunately, this attractive

property does not carry over to spherical polynomials. In general, for two different

triangles, the values of the integrals are different unless the two triangles are similar.

Moreover, the integrals of the Bernstein basis polynomials of degree d associated

with a single triangle are also different in general.

To compute integrals in this case we propose a mapping of a surface triangle τ

to a planar triangle τ̄ by means of radial projection defined in Section 2.1. This will

enable us to use a standard integration technique for planar triangles.

Lemma 2.24. Let τ be a spherical triangle and τ̄ its radial projection as in Section

2.1. Suppose |τ | ≤ 1 and Rτ denotes the radial projection defined by Rτ ω̄ := ω̄
|ω̄| for

ω̄ ∈ τ̄ . If σ and σ̄ denote the Lebesgue measures on τ and τ̄ correspondingly then

∫

τ

f(ω)dσ(ω) =

∫

τ̄

f(Rτ ω̄)|ω̄|−3dσ̄(ω̄). (2.42)

Proof. Without loss of generality assume that the tangent plane Tτ is z = 1. Recall

that ω̄
|ω̄|

= ω, and for ω = (x, y, z) we can write ω̄ = (x′, y′, 1) with x′ = x/z and

y′ = y/z. Then dσ̄ = dx′dy′. For the spherical measure recall that dσ = sin φdφdθ,

where φ and θ are spherical coordinates of ω defined by

x = cos θ sin φ

y = sin θ sin φ
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z = cos φ.

Therefore

x′ = cos θ tan φ

y′ = sin θ tan φ.

We can compute the partial derivatives

∂x′

∂θ
= − sin θ tanφ,

∂x′

∂φ
= cos θ sec2 φ,

∂y′

∂θ
= cos θ tan φ,

∂y′

∂φ
= sin θ sec2 φ.

Then

|∂(x′, y′)

∂(θ, φ)
| =

sin φ

cos3 φ

and hence using cos φ = z = |ω̄|−1 we get (2.42).

2.5 Non-homogeneous spherical polynomials

Let us now define non-homogeneous spherical polynomials and trace their properties

to the properties outlined above for homogeneous polynomials.

It was shown in [19] that Hd ⊕ Hd−1 restricted to the unit sphere is identical

to the space Pd of trivariate non-homogeneous polynomials of degree d restricted to

the unit sphere. Therefore the set {Bd
ijk, i + j + k = d} ∪ {Bd−1

ijk , i + j + k = d− 1}

forms a basis for Pd. We can express a non-homogeneous spherical polynomial P in

terms of BB-basis functions as

P (v) =
∑

i+j+k=d

aijkB
d
ijk(v) +

∑

i+j+k=d−1

cijkB
d−1
ijk (v).
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With this definition it is easy to see that evaluating (de Casteljau’s algorithm),

taking derivatives and computing integrals with homogeneous polynomials can be

easily adapted for non-homogeneous polynomials.

2.6 Spherical Sobolev Space Semi-norms

In this section we start by following the construction in [23] to define Sobolev-

type norms and semi-norms for functions on the unit sphere. This construction uses

a concept of a homogeneous extension. Recall that a trivariate function f(v) is

homogeneous of degree n if

f(αv) = αnf(v), ∀v ∈ R3\{0}, α 6= 0. (2.43)

Recall next that by Lemma 2.16, every spherical function f has a unique homoge-

neous extension of degree n to R3\{0} defined by

fn(u) = |u|nf
(

u

|u|

)
. (2.44)

Let Ω be a domain on S2 such that |Ω| ≤ 1, and let Ω̄ denote the image of Ω under

the inverse radial projection as defined in Section 2.1. We will be relating properties

of a spherical function f defined on Ω to the properties of its homogeneous extension

fn restricted to Ω̄. Such a restriction is denoted by f̄n.

Fix 1 ≤ p ≤ ∞, k nonnegative integer and let B denote an open set in R2. Recall

that the corresponding classical Sobolev space W k,p(B) is the space of functions on

B whose derivatives up to order k belong to Lp(B) [1]. A norm on W k,p(B) can be

defined as

‖g‖k,p,B :=
∑

γ1+γ2≤k

||Dγ1

ξ Dγ2

η g‖p,B, (2.45)

where Dγ1

ξ Dγ2
η = ∂γ1+γ2

∂ξγ1∂ηγ2
.
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Suppose that {(Γj, φj)} is an atlas for Ω. Let {αj} be a partition of unity subor-

dinate to the atlas. We define spherical Sobolev spaces W k,p(Ω) as follows:

W k,p(Ω) := {f : (αjf) ◦ φ−1
j ∈ W k,p(φj(Γj)), for all j}. (2.46)

Let f ∈ W k,p(Ω). Then

|f |k,p,Ω :=
∑

|α|=k

‖Dαfk−1‖p,Ω (2.47)

is a Sobolev-type semi-norm of f on W k,p(Ω). Here ‖Dαfk−1‖p,Ω is understood as

the Lp-norm of the restriction of the trivariate function Dαfk−1 to Ω.

In addition to the semi-norm defined above we will use another semi-norm defined

analogously to it:

|f |′k,p,Ω :=
∑

|α|=k

‖Dαfk−2‖p,Ω (2.48)

Lemma 2.25. Let f ∈ W k,p(Ω) for some k ≥ 1 with |Ω| ≤ 1. Then (Dαfk−2)|Ω ∈

Lp(Ω) for all multi-indices α such that |α| = k.

Proof. By Lemma 3.3 [23] (Dβfk−2)|Ω ∈ Lp(Ω) for all |β| = k − 1 and

Dβ1

x Dβ2

y Dβ3

z fk−2 = (−z)−β3

β3∑

ℓ=0

(
β3

ℓ

)
xℓyβ3−ℓDβ1+ℓ

x Dβ2+β3−ℓ
y fk−2

for |β| = β1 + β2 + β3 = k − 1. Then

DxD
βfk−2 = (−z)−β3(β3

β3−1∑

ℓ=0

(
β3 − 1

ℓ

)
xℓyβ3−ℓ−1Dβ1+ℓ+1

x Dβ2+β3−ℓ−1
y +

β3∑

ℓ=0

(
β3

ℓ

)
xℓyβ3−ℓDβ1+ℓ+1

x Dβ2+β3−ℓ
y )fk−2.

Recall from Lemma 3.3 [23] that |
(

β3

ℓ

)
xℓyβ3−ℓ| ≤ (|x|+ |y|)β3 ≤ (2MΩ)β3. Since z = 1

‖Dβ1+1
x Dβ2

y Dβ3

z fk−2‖p,Ω̄ ≤ β3(2MΩ)β3−1

β3−1∑

ℓ=0

‖Dβ1+ℓ+1
x Dβ2+β3−ℓ−1

y fk−2‖p,Ω̄+

(2MΩ)β3

β3∑

ℓ=0

‖Dβ1+ℓ+1
x Dβ2+β3−ℓ

y fk−2‖p,Ω̄ = β3(2MΩ)β3−1
∑

γ1+γ2=k−1

‖Dγ1

x Dγ2

y f̄k−2‖p,Ω̄+
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(2MΩ)β3

∑

γ1+γ2=k

‖Dγ1

x Dγ2

y f̄k−2‖p,Ω̄ ≤ β3(2MΩ)β3−1‖f̄k−2‖k−1,p,Ω̄ + (2MΩ)β3‖f̄k−2‖k,p,Ω̄

for every f ∈ W k,p(Ω).

Similarly,

DyD
βfk−2 = (−z)−β3(

β3−1∑

ℓ=0

β3

(
β3 − 1

ℓ

)
xℓyβ3−ℓ−1Dβ1+ℓ

x Dβ2+β3−ℓ
y +

β3∑

ℓ=0

(
β3

ℓ

)
xℓyβ3−ℓDβ1+ℓ

x Dβ2+β3−ℓ+1
y )fk−2

and

‖Dβ1

x Dβ2+1
y Dβ3

z fk−2‖p,Ω̄ ≤ β3(2MΩ)β3−1‖f̄k−2‖k−1,p,Ω̄ + (2MΩ)β3‖f̄k−2‖k,p,Ω̄.

Finally,

DzD
βfk−2 = (−z)−β3−1(

β3∑

ℓ=0

β3

(
β3

ℓ

)
xℓyβ3−ℓDβ1+ℓ

x Dβ2+β3−ℓ
y +

β3∑

ℓ=0

(
β3

ℓ

)
xℓ+1yβ3−ℓDβ1+ℓ+1

x Dβ2+β3−ℓ
y +

β3∑

ℓ=0

(
β3

ℓ

)
xℓyβ3−ℓ+1Dβ1+ℓ

x Dβ2+β3−ℓ+1
y )fk−2

and therefore

‖Dβ1

x Dβ2

y Dβ3+1
z fk−2‖p,Ω̄ ≤ β3(2MΩ)β3‖f̄k−2‖k−1,p,Ω̄ + (2MΩ)β3+1‖f̄k−2‖k,p,Ω̄,

since |x| ≤ MΩ and |y| ≤ MΩ. By Lemma 3.2 [23] f̄k−1 ∈ Wk,p(Ω̄). Hence

‖Dαfk−2‖p,Ω̄ < ∞ for every |α| = k. By Lemma 3.1 [23] ‖Dαfk−2‖p,Ω < ∞ as

well.

Our next result relates Sobolev-type semi-norms for a spherical function f defined

on Ω with Sobolev type semi-norms of corresponding planar functions f̄k−2, f̄k−1

defined on Ω̄.



42

Proposition 2.26. There exist positive constants A2, A3, A4, A5 and A6 depending

only on k and p such that for every f ∈ Wk,p(Ω)

A2|f |k,p,Ω ≤ |f̄k−1|k,p,Ω̄ ≤ A3|f |k,p,Ω (2.49)

and

A4|f̄k−2|k,p,Ω̄ ≤ |f |′k,p,Ω ≤ A5|f̄k−2|k−1,p,Ω̄ + A6|f̄k−2|k,p,Ω̄. (2.50)

Proof. The first assertion is Proposition 3.4 in [23]. The proof of (2.50) is similar

and follows from Lemma 2.25.

Our next proposition shows that the semi-norms defined by (2.47) and (2.48)

annihilate certain homogeneous polynomials.

Proposition 2.27. Suppose Ω is an open connected subset of S2. Let f ∈ W k,p(Ω)

and k ≥ 2. |f |k,p,Ω = 0 if and only if f is a homogeneous spherical polynomial of

degree k − 1. |f |′k,p,Ω = 0 if and only if f is a homogeneous spherical polynomial of

degree k − 2.

Proof. The first part of this proposition is Proposition 3.5 in [23]. For the second

assertion note first that if f is a homogeneous spherical polynomial of degree k − 2,

then so is its (k− 2)nd extension. Then all of the partial derivatives of fk−2 of order

k are zero. Suppose now |f |′k,p,Ω = 0. Then for every multi-index α with |α| = k

Dαfk−2|Ω = 0. Denote g = Dαfk−2|Ω and consider the homogeneous extension of

g of degree −2. Since fk−2 is homogeneous of degree k − 2 and |α| = k, Dαfk−2

is homogeneous of degree −2. By the uniqueness of homogeneous extension g−2 =

Dαfk−2. On the other hand by the definition g−2(v) = |v|−2g(v/|v|) and thus g−2 is

zero on R3\{0}. Therefore Dαfk−2 = 0 on R3\{0}. Therefore fk−2 is a polynomial

of degree at most k − 1. The homogeneity of fk−2 implies that fk−2 is in fact a

homogeneous polynomial of degree exactly k − 2. Therefore so is f .
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2.7 Basic inequalities

Given a homogeneous trivariate polynomial P in BB form (2.22), let c be a vector

of its coefficients. Let ‖c‖∞,τ and ‖c‖p,τ denote its ℓ∞ and ℓp norms on a spherical

triangle τ respectively.

Lemma 2.28. Any homogeneous polynomial P of degree d in Bernstein-Bézier form

(2.22) with respect to a spherical triangle τ with |τ | ≤ 1 satisfies the property

A7 ‖c‖∞,τ ≤ ‖P‖∞,τ ≤ A8‖c‖∞,τ (2.51)

and

A9A
1/p
τ ‖c‖p,τ ≤ ‖P‖p,τ ≤ A8A

1/p
τ ‖c‖p,τ (2.52)

for any 1 ≤ p < ∞. Here A7, A8 are positive constants independent of τ , P and p.

A9 depends d, p and the smallest angle of τ .

Proof. Proof of (2.51) can be found in [23]. For (2.52) fix 1 ≤ p < ∞. By Lemma

4.4 in [23] there exists a positive constant K3 depending on d, p and the smallest

angle Θτ of τ such that

A−1/p
τ ‖P‖p,τ ≤ ‖P‖∞,τ ≤ K3A

−1/p
τ ‖P‖p,τ . (2.53)

Then using (2.51) we get

A
1/p
τ

K3
A7

(
d + 2

2

)−1/p

‖c‖p,τ ≤ A
1/p
τ

K3
A7‖c‖∞,τ ≤ A

1/p
τ

K3
‖P‖∞,τ ≤ ‖P‖p,τ .

Similarly, by (2.53)

‖P‖p,τ ≤ A1/p
τ ‖P‖∞,τ ≤ A8A

1/p
τ ‖c‖∞,τ ≤ A8A

1/p
τ ‖c‖p,τ .

Therefore we obtain (2.52) with A9 := A7

K3

(
d+2
2

)−1/p
.

Next we need Markov-type inequalities.

Lemma 2.29. Let P be a trivariate homogeneous polynomial of degree d defined on
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a spherical triangle τ with |τ | ≤ 1. There exist constants A10, A′
10 depending on d

and Θτ only, and A11, A′
11 depending on d, such that

|P |k,∞,τ ≤ A10

(tan ρτ

2
)k
‖P‖∞,τ ,

|P |′k,∞,τ ≤ A′
10

(tan ρτ

2
)k
‖P‖∞,τ , (2.54)

and

|P |k,p,τ ≤ A11

(tan ρτ

2
)k
‖P‖p,τ ,

|P |′k,p,τ ≤ A′
11

(tan ρτ

2
)k
‖P‖p,τ (2.55)

for 1 ≤ p < ∞. Here ρτ is a the diameter of the largest spherical cap contained in τ .

Proof. For the first equation in (2.55) we modify the proof of Proposition 4.3 in

[23] by replacing (2.1) with (2.3). Similar proof works for the second equation with

the key inequality using Lemma 3.6 [23]

|P |′k,p,Ω ≤ A5|P̄k−2|k−1,p,Ω̄ + A6|P̄k−2|k,p,Ω̄ ≤

max{A5, A6}‖P̄k−2‖k,p,Ω̄ ≤

max{A5, A6}K4‖P̄d‖k,p,Ω̄.

To prove (2.54) we apply (2.53) to both sides of (2.55) to get

|P |k,∞,τ ≤ A11K5

(tan ρτ

2
)k
‖P‖∞,τ

for some K5 depending on d − k and Θ∆.

Finally we express a bound on the values of certain spherical functions in terms

of its 2nd Sobolev semi-norm over a spherical triangle.

Lemma 2.30. Let τ be a spherical triangle such that |τ | ≤ 1 and suppose f ∈ W 2,p(τ)

vanishes at the vertices of τ , that is f(vi) = 0, i = 1, 2, 3. Then for all v ∈ τ ,

|f(v)| ≤ A12

(
tan

|τ |
2

)2

|f |2,∞,τ ,
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|f(v)| ≤ A′
12

(
tan

|τ |
2

)2

|f |′2,∞,τ (2.56)

for some positive constants A12, A′
12 independent of f and τ . Moreover, if f is a

homogeneous polynomial of degree d, then

|f(v)| ≤ A13A
−1/p
τ

(
tan

|τ |
2

)2

|f |2,p,τ

|f(v)| ≤ A′
13A

−1/p
τ

(
tan

|τ |
2

)2

|f |′2,p,τ (2.57)

for some positive constants A13, A′
13 dependent only on d, p and the smallest angle

in τ .

Proof. Let Rτ be the radial projection defined before. Let v̄i, i = 1, 2, 3 denote the

vertices of a planar triangle τ̄ , which is the image of τ under the inverse of Rτ and

v̄ = R−1
τ v for v ∈ τ . Recall that |τ̄ | = 2 tan |τ |

2
by Lemma 2.1.

Let fδ(v) = |v|δf
(

v
|v|

)
be the homogeneous extension of f to R3\{0} of degree

δ = 0 or 1, and let f̄δ denote its restriction to the planar triangle τ̄ . By Lemma

3.2 in [23], f̄δ belongs to W 2,p(τ̄ ). Note also that f̄δ(v̄i) = |v̄i|δf(vi) = 0, i = 1, 2, 3.

Therefore by Lemma 6.1 in [15], we have for every v̄ ∈ τ̄

|f̄δ(v̄)| ≤ 12|τ̄ |2|f̄δ|2,∞,τ̄ . (2.58)

Since f(v) = f̄δ(v̄)
|v̄|δ and |v̄|δ ≥ 1 for all v̄ ∈ τ̄ ,

|f(v)| ≤ |f̄δ(v̄)| ≤ 48

(
tan

|τ |
2

)2

|f̄δ|2,∞,τ̄ ,

by (2.58). By Proposition 2.26 we get (2.57) with A12 = 48K6 and A′
12 = 48K7.

If f is a homogeneous polynomial, then its second derivatives are homogeneous

polynomials and by (2.53) we have

|f |2,∞,τ ≤ K8A
−1/p
τ |f |2,p,τ

and

|f |′2,∞,τ ≤ K8A
−1/p
τ |f |′2,p,τ
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for some K8 depending on d, p and the smallest angle in τ . Hence

|f(v)| ≤ 48K6

(
tan

|τ |
2

)2

|f |2,∞,τ ≤ A13A
−1/p
τ

(
tan

|τ |
2

)2

|f |2,p,τ

and

|f(v)| ≤ A′
13A

−1/p
τ

(
tan

|τ |
2

)2

|f |′2,p,τ .

This completes the proof with A13 = 48K6K8 and A′
13 = 48K7K8.

2.8 Stable local basis

We now describe the stable local bases that the spline spaces poses. We shall use

the spline spaces that have a local basis to solve the interpolation problem on the

sphere.

Let

D := ∪τ∈∆{ξτ
ijk, i + j + k = d}, (2.59)

with ξτ
ijk := iu+jv+kw

d
for τ =< u, v, w > be the set of domain points associated

with ∆ and d. It is well known that each spline in S0
d(∆) is uniquely determined by

associating one Bézier coefficient with each domain point. A subset M ⊂ D is called

a minimal determining set for Sr
d(∆) if the values of the coefficients of s ∈ Sr

d(∆)

associated with domain points in M uniquely determine all of the coefficients of s.

Definition 2.8. A basis {Bξ}ξ∈M for a space S of splines on a triangulation ∆ is

a stable local basis, if there exists an integer ℓ and constants 0 < C1 < C2 < ∞

depending only on d and the smallest angle θ∆ in the triangulation ∆ such that

1) for each ξ ∈ M, supp(Bξ) ⊆ starℓ(vξ) for some vξ of ∆,

2) for all {cξ}ξ∈M,

C1maxξ∈M|cξ| ≤ ‖
∑

ξ∈M

cξBξ‖∞,S2 ≤ C2maxξ∈M|cξ|. (2.60)
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A construction of a stable local basis using the Bernstein-Bézier representation of

splines in Sr
d(∆) when d ≥ 3r +2 is outlined in [23] with a reference to [10]. Given a

minimal determining set, we can construct a basis {Bξ}ξ∈M for Sr
d(∆) by requiring

µηBξ = δξ,η, η ∈ M, (2.61)

where µη is the linear functional which picks the coefficient associated with the

domain point η. In particular, Bξ has the property that the coefficient associated

with ξ is 1 while the coefficients associated with all other points in M are zero. The

remaining coefficients of Bξ are computed using smoothness conditions.

For any given spline space Sr
d(∆), there are many possible choices for a minimal

determining set M. A choice of M presented in [10] leads to a basis with the fol-

lowing properties, where for each ξ, Ωξ := supp(Bξ) and τξ is the triangle in which

ξ lies.

Proposition 2.31. Let {Bξ}ξ∈M be the basis for Sr
d(∆) corresponding to the min-

imal determining set M described in [10]. Then there exist constants C3, ..., C9

depending only on d, p and the minimal angle in ∆ such that for each ξ ∈ M,

1) there exists a vertex vξ ∈ ∆ such that Ωξ ⊆ star3(vξ),

2) ‖Bξ‖∞,S2 ≤ C3,

3) |µξs| ≤ C4‖s‖∞,τξ
, for all s ∈ Sr

d(∆),

4) |µξs| ≤ C5A
−1/p
τξ ‖s‖p,τξ

, for all s ∈ Sr
d(∆), and for every τ ∈ ∆,

5) ‖Bξ‖p,τ ≤ C6A
1/p
τ ,

6) #Iτ ≤ C7, where Iτ := {ξ : τ ⊂ Ωξ},

7) |Bξ|k,∞,τ ≤ C8ρ
−k
τ , for all 0 ≤ k ≤ d

8) |Bξ|k,p,τ ≤ C9ρ
−k
τ A

1/p
τ , for all 0 ≤ k ≤ d.
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The proof of the above lemma can be found in [23] with δ = k − 1 used for 7) and

8). It works the same way with δ = k − 2 by means of the results presented in

Sections 2.6 and 2.7. Further analysis of the proof of 8) of the above lemma leads to

a refinement of 8) as follows. Using (2.1) instead of (2.3) in [23] one gets

|Bξ|k,p,τ ≤ C9

(
tan

ρτ

2

)−k

A1/p
τ (2.62)

with C9 = A7C6.

It was shown in [23] that with the basis defined above one can construct a quasi-

interpolation operator Q : Lp(S
2) → Sr

d(∆) which achieves the optimal approx-

imation property. Indeed, extend the linear functionals µξ to all of Lp(S
2) using

Hahn-Banach theorem. Then for every f ∈ Lp(τξ),

|µξf | ≤ C5A
−1/p
τξ

‖f‖p,τξ
, ξ ∈ M. (2.63)

This inequality implies that for each ξ, the carrier of the extended functional µξ is

contained in τξ, i.e., if f ≡ 0 on τξ, then µξf = 0. With (2.62) in mind we modify

the proof of Proposition 5.2 in [23] accordingly to get the following

Proposition 2.32. For each f ∈ Lp(S
2), let

Qf :=
∑

ξ∈M

(µξf)Bξ. (2.64)

Then Qg = g for all g ∈ Hd(S
2). Moreover, there exists a constant C10 depending

only on d, p and the smallest angle in ∆ such that for each triangle τ ∈ ∆,

|Qf |k,p,τ ≤ C10

(
tan

ρτ

2

)−k

‖f‖p,Ωτ , (2.65)

where Ωτ := ∪ξ∈Iτ Ωξ and Iτ := {ξ : τ ⊂ Ωξ}.

Proof. The proof can be found in [23].

Theorem 4.2 in [23] states the existence of a spherical polynomial of degree d

approximating f ∈ W d+1,p(τ) for |τ | ≤ 1 satisfying

|f − s|k,p,τ ≤ K ′
9|τ |d+1−k|f |d+1,p,τ .
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for some positive constant K9 depending on d, p and the smallest angle of τ . With

a little modification in the proof we can see that in fact

|f − s|k,p,τ ≤ K9(tan
|τ |
2

)d+1−k|f |d+1,p,τ (2.66)

for a positive constant K9 depending on d, p and the smallest angle of τ . Using this

inequality we can prove the following result.

Theorem 2.33. Suppose τ ∈ ∆ is a spherical triangle with |τ | ≤ 1. Let f ∈

W m+1,p(τ) for 0 ≤ m ≤ d such that (d − m)mod 2 = 0. There exists a spherical

homogeneous polynomial s of degree d such that for every 0 ≤ k ≤ m

|f − s|k,p,τ ≤ C11

(
tan

|τ |
2

)m+1−k

|f |m+1,p,τ . (2.67)

Here C11 is a constant that depends on p, m and θ∆. Moreover

|f − s|k,p,Ωτ ≤ C11

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ . (2.68)

Here T ′ is the largest triangle in Ωτ , i.e. |T | = max{|T | : T ∈ Ωτ}.

Proof. Fix m. By Theorem 4.2 in [23], there exists a spherical homogeneous poly-

nomial s′ of degree m such that for every 0 ≤ k ≤ m

|f − s′|k,p,τ ≤ C11|τ |m+1−k|f |m+1,p,τ . (2.69)

If we slightly modify the proof of Theorem 4.2 [23], i.e. replace (2.1) by (2.2), we

can get

|f − s′|k,p,τ ≤ C11

(
tan

|τ |
2

)m+1−k

|f |m+1,p,τ . (2.70)

Since (d − m)mod 2 = 0, s = |v|d−ms′ is a homogeneous spherical polynomial of

degree d. Since on the unit sphere s′ ≡ s, their k−1-st extensions are the same, and

we have (2.67). To get (2.68), sum (2.67) over triangles in Ωτ . This completes the

proof.

Theorem 2.34. Let ∆ be a β-quasi-uniform spherical triangulation with |∆| ≤ 1.
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Let 1 ≤ p ≤ ∞, d ≥ 3r + 2, and 0 ≤ k ≤ d. Then there exists a constant C12

depending only on d, p and the smallest angle in ∆, such that

|f − Qf |k,p,τ ≤ C12

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ , (2.71)

for all f ∈ W m+1,p(S2) and all τ ∈ ∆. Moreover, there exists a constant C13 such

that

|f − Qf |k,p,S2 ≤ C13

(
tan

|∆|
2

)m+1−k

|f |m+1,p,S2, (2.72)

for all f ∈ W m+1,p(S2) and all 0 ≤ k ≤ d such that Qf ∈ W k,p(S2). Here m is taken

between 0 and d with (d − m) mod 2 = 0.

Proof. Let τ ∈ ∆ with |τ | ≤ 1. By Theorem 2.33 there exists a spherical homoge-

neous polynomial s of degree d such that (2.67) holds. By the linearity of Q and the

fact that Q reproduces polynomials of degree d we can write

|f − Qf |k,p,τ ≤ |f − s|k,p,τ + |Q(f − s)|k,p,τ .

We now consider the last term in the above inequality. By (2.65)

|Q(f − s)|k,p,τ ≤ C10

(
tan

ρτ

2

)−k

‖f − s‖p,Ωτ .

Since ∆ is assumed to be β-quasi-uniform |ρτ | ≥ |T ′|
β

and therefore

tan
ρτ

2
≥ tan

|T ′|
2β

≥ 1

β2
tan

|T ′|
2

.

By Theorem 2.33

|Q(f − s)|k,p,τ ≤ C10C11(β)2k

(
tan

|T ′|
2

)−k (
tan

|T ′|
2

)m+1

|f |m+1,p,Ωτ

≤ C10C11(β)2k

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ .

Therefore we get (2.71) with C12 = C11(1 + C10β
2k).

To prove (2.72), we sum (2.71) over all triangles in ∆.

|f − Qf |k,p,S2 =
∑

τ∈∆

|f − Qf |k,p,τ ≤ C12

(
tan

|∆|
2

)m+1−k∑

τ∈∆

|f |m+1,p,Ωτ
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≤ C12

(
tan

|∆|
2

)m+1−k∑

τ∈∆

∑

τ ′⊂Ωτ

|f |k,p,τ ′

= C12

(
tan

|∆|
2

)m+1−k ∑

τ ′∈∆

#{τ : τ ′ ⊂ Ωτ}|f |m+1,p,τ ′

≤ C12K10

(
tan

|∆|
2

)m+1−k ∑

τ ′∈∆

|f |m+1,p,τ ′.

Here K10 := max{#{τ : τ ′ ⊂ Ωτ}, τ ′ ∈ ∆} which is bounded by Lemma 2.4.

Therefore (2.72) holds with C13 = C12K10. This completes the proof.

Corollary 2.35. Let ∆ be a β-quasi-uniform spherical triangulation with |∆| ≤ 1.

Let 1 ≤ p ≤ ∞, d ≥ 3r + 2, and 0 ≤ k ≤ d. Then there exists a constant C14

depending only on d, p and the smallest angle in ∆, such that

|f − Qf |′k,p,τ ≤ C14

k∑

ℓ=0

(
tan

|T ′|
2

)m+1−ℓ

|f |m+1,p,Ωτ , (2.73)

for all f ∈ W m+1,p(S2) and all τ ∈ ∆. Moreover, there exists a constant C15 such

that

|f − Qf |′k,p,S2 ≤ C15

k∑

ℓ=0

(
tan

|∆|
2

)m+1−ℓ

|f |m+1,p,S2, (2.74)

for all f ∈ W m+1,p(S2) and all 0 ≤ k ≤ d such that Qf ∈ W k,p(S2). Here m is taken

between 0 and d with (d − m) mod 2 = 0.

Proof. The key step in the proof is to note that by Proposition 2.26 for any function

h

|h|′k,p,τ ≤ A5|h̄k−2|k−1,p,τ̄ + A6|h̄k−2|k,p,τ̄ ≤ max{A5, A6}‖h̄k−2‖k,p,τ̄ .

By Lemma 3.6 [23] ‖h̄k−2‖k,p,τ̄ ≤ K9‖h̄k−1‖k,p,τ̄ . Then

|h|′k,p,τ ≤ max{A5, A6}K9(|h̄k−1|k,p,τ̄ + ‖h̄k−1‖k−1,p,τ̄).

By Proposition 2.26 and Lemma 3.6 [23]

|h|′k,p,τ ≤ max{A5, A6}K9(A2|h|k,p,τ + K11‖h̄k−2‖k−1,p,τ̄).
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Repeating the process and choosing a suitable constant we obtain for h = f − Qf :

|f − Qf |′k,p,τ ≤ K12

k∑

ℓ=0

|f − Qf |ℓ,p,τ .

By Theorem 2.34 for each 0 ≤ ℓ ≤ k

|f − Qf |ℓ,p,τ ≤ C12

(
tan

|T ′|
2

)m+1−ℓ

|f |m+1,p,Ωτ

and we have (2.73). To obtain (2.74) we sum over triangles in ∆.



Chapter 3

Global Spline Approximation on the Sphere

3.1 Minimal energy interpolating spline. Linear extension.

Suppose we are given values {f(v), v ∈ V} of an unknown function f at a set V of

scattered points on the unit sphere. To find a homogeneous spline approximation

of f , we choose a linear space S ⊆ Sr
d(∆) of polynomial splines of degree d and

smoothness r defined on a triangulation ∆ with vertices at the points of V. Define

Γ(f) := {s ∈ S : s(v) = f(v), v ∈ V}

to be the set of all splines in S that interpolate f at the points in V. Assume that

S is big enough, so that Γ(f) is not empty. We choose a spline Sf such that

E(Sf) = min
s∈Γ(f)

E(s), (3.1)

where for a spherical triangle τ ∈ ∆

Eτ (s) :=
∑

|α|=2

‖Dαs1‖2
2,τ (3.2)

and

E(s) :=
∑

τ∈∆

Eτ (s). (3.3)

Here s1 is the linear homogeneous extension of s to R3\{0}, α is a triple index with

entries running through x, y, z, e.g., D(1,1,1) = DxDyDz, and ‖ · ‖2,τ is the usual L2

norm on τ . We call Sf the minimal energy interpolation spline. Let B(S2) be the set

of all bounded real-valued functions on the sphere. Define

X := {f ∈ B(S2) : f |τ ∈ C3(τ), ∀τ ∈ ∆}.

53
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For each triangle τ ∈ ∆, let

〈f, g〉τ :=

∫

τ

∑

|α|=2

Dαf1 Dαg1.

Then

〈f, g〉 := 〈f, g〉S2 =
∑

τ∈∆

〈f, g〉τ

is a semi-definite inner product on X . Let ‖f‖τ and ‖f‖ be the associated semi-

norms. We refer to them as energy or X -norms.

It is easy to see that 〈·, ·〉 is an inner product on the linear space

W := {s ∈ S : s(v) = 0, v ∈ V}. (3.4)

Indeed, if 〈w, w〉 = 0 for some w ∈ W, then w is a linear homogeneous polynomial

on ∆ and since w vanishes at all vertices, w ≡ 0. Since W is finite-dimensional, it

follows that W equipped with the inner product 〈·, ·〉 is a Hilbert space.

Given f , suppose sf is any spline in the set Γ(f) defined above. Then it is easy to

see that the solution Sf to the minimal energy problem is equal to sf −Psf , where

P is the linear projector P : X → W defined by

E(f − Pf) = min
w∈W

E(f − w), (3.5)

for all f ∈ X . Since W is a Hilbert space with respect to 〈·, ·〉, Pf is uniquely defined

and characterized by

〈f −Pf, w〉 = 0, ∀w ∈ W. (3.6)

Moreover

‖Pf‖ ≤ ‖f‖ (3.7)

for all f ∈ X .

We now establish a lemma showing the equivalence of certain semi-norms on the

space X defined above.
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Lemma 3.1. Let τ be a spherical triangle with |τ | ≤ 1 and let f ∈ X . Let Eτ be the

functional defined in (3.2). There exists a positive constant D1 such that

D1|f |22,2,τ ≤ Eτ (f) ≤ |f |22,2,τ , ∀f ∈ X . (3.8)

Proof. By the definition

|f |22,2,τ =


∑

|α|=2

‖Dαf1‖2,τ




2

≥
∑

|α|=2

‖Dαf1‖2
2,τ = Eτ (f).

Since the number of elements in the sum (3.2) is 9,

|f |22,2,τ =


∑

|α|=2

‖Dαf1‖2,τ




2

≤ 9
∑

|α|=2

‖Dαf1‖2
2,τ = 9 Eτ (f).

Next we establish a reproductive property of the energy functional Eτ .

Lemma 3.2. Let τ be a spherical triangle with |τ | ≤ 1. Suppose f ∈ X . Then

Eτ (f) = 0 if and only if f is a trivariate homogeneous linear polynomial on τ .

Proof. If f is a trivariate linear homogeneous polynomial, so is its linear exten-

sion. Naturally its second order derivatives vanish on R3. If Eτ (f) = 0, then for

every α with |α| = 2 we have Dαf1|τ = 0. Since f1 is linear homogeneous, Dαf1

is homogeneous of degree −1, therefore, by the uniqueness of homogeneous exten-

sions (Dαf1|τ )−1 = Dαf1. On the other hand, by the definition (Dαf1|τ )−1(v) =

|v|−1(Dαf1|τ )
(

v
|v|

)
. As we noted above Dαf1|τ = 0, and therefore Dαf1 = 0 on R3.

Hence f1 is a polynomial of degree at most 1. Since it is a homogeneous linear func-

tion f1 must be a homogeneous linear polynomial on R3. Therefore by the uniqueness

of a homogeneous extension f is a linear homogeneous polynomial on τ .

In addition to Lemma 3.2 we need to establish the equivalence of energy and L2

norms on the Hilbert space W.

Theorem 3.3. Suppose S ⊆ S0
d(∆) is a spline space defined on a β-quasi-uniform

triangulation ∆ with |∆| ≤ 1. Let W be the associated Hilbert space (3.4). There



56

exist constants 0 < D2 ≤ D3 < ∞ depending only d and β such that

D2‖s‖2
2,S2 ≤

(
tan

|∆|
2

)4

‖s‖2 ≤ D3‖s‖2
2,S2, (3.9)

for all s ∈ W.

Proof. By Lemmas 2.30 and 3.1 for every s ∈ W
∫

τ

|s|2 ≤ A2
13

(
tan

|τ |
2

)4

|s|22,2,τ ≤ D1
−1A2

13

(
tan

|τ |
2

)4

Eτ (s).

Summing over all τ ∈ ∆ we get

∫

S2

|s|2 ≤ D1
−1A2

13

(
tan

|∆|
2

)4

E(s).

By Lemma 3.1 and Lemma 2.29

Eτ (s) ≤ |s|22,2,τ ≤ A2
11

(tan ρτ

2
)4
‖s‖2

2,τ .

Sum over τ ∈ ∆ to get

E(s) ≤ A2
11

(tan ρ∆

2
)4
‖s‖2

2,S2.

Since ∆ is β-quasi-uniform |ρ∆| ≥ |∆|
β

and therefore

tan
ρ∆

2
≥ tan

|∆|
2β

≥ 1

β2

(
tan

|∆|
2

)
.

Then

E(s) ≤ A2
11β

8

(tan ∆
2
)4
‖s‖2

2,S2.

Let D2 := D1A
−2
13 and D3 := A2

11β
8 to get the result.

Next we want to show that under certain conditions on S, the X -norm on the

Hilbert space W is also equivalent to a certain coefficient norm.

Corollary 3.4. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-uniform

triangulation ∆, and that {Bξ}ξ∈M is a stable local basis for S defined in Proposition

2.31. Then {Bξ}ξ∈N is a Riesz basis (with respect to the X -norm) for the linear

space W defined in (3.4). Here N is the subset of the minimal determining set M
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excluding the set of vertices V of ∆. In particular, there exist positive constants

D4, D5 depending on d, β and ℓ such that

D4 min
τ∈∆

Aτ

∑

ξ∈N

|cξ|2 ≤
(

tan
|∆|
2

)4

‖
∑

ξ∈N

cξBξ‖2 ≤ D5 max
τ∈∆

Aτ

∑

ξ∈N

|cξ|2, (3.10)

for all {cξ}ξ∈N .

Proof. Let us note first that for any spline s ∈ W, s =
∑

ξ∈M cξBξ =
∑

ξ∈N cξBξ

due to the zero interpolating conditions and (2.64). Denote Nτ := {ξ : τ ⊆

supp(Bξ)}, the set of domain points ξ with the support of corresponding basis

functions Bξ containing τ . By Proposition 2.31, 4) there exists a positive constant

C5 depending only on d and θ∆, such that for each coefficient

|cξ′|2 ≤ C2
5A

−1
τ

∫

τ

|s|2,

where τ contains ξ′. Note that since basis functions have local support, s|τ =
∑

ξ∈Nτ
cξBξ. Therefore

∑

ξ∈N∩τ

|cξ|2 ≤ C2
5

(
d + 2

2

)
A−1

τ

∫

τ

|
∑

ξ∈Nτ

cξBξ|2.

Then summing over τ ∈ ∆

1(
d+2
2

)
C2

5

min
τ∈∆

Aτ

∑

ξ∈N

|cξ|2 ≤
∫

S2

|
∑

ξ∈N

cξBξ|2. (3.11)

Similarly, by Proposition 2.31, 5) there exists a positive constant C6, depending only

on d and θ∆, such that ∫

τ

|Bξ|2 ≤ C2
6Aτ

for any ξ and τ . Then

∫

τ

|
∑

ξ∈Nτ

cξBξ|2 ≤
∫

τ

∑

ξ∈Nτ

|cξ|2
∑

ξ∈Nτ

|Bξ|2 ≤ nℓ(τ)

(
d + 2

2

)
C2

6Aτ

∑

ξ∈Nτ

|cξ|2,

where nℓ(τ) is the number of triangles in starℓ(τ). Summing over triangles in ∆

∫

S2

|
∑

ξ∈N

cξBξ|2 ≤ max
τ∈∆

Aτ

(
d + 2

2

)
C2

6

∑

τ∈∆

nℓ(τ)
∑

ξ∈Nτ

|cξ|2.
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Since Nτ ⊆ {ξ ∈ starℓ(τ)}
∫

S2

|
∑

ξ∈N

cξBξ|2 ≤
(

d + 2

2

)
C2

6 max
τ∈∆

Aτn
2
ℓ

∑

ξ∈N

|cξ|2,

where nℓ := maxτ∈∆{nℓ(τ)}. By Lemma 2.4

nℓ ≤
5β2(2ℓ + 1)2

4
.

Hence ∫

S2

|
∑

ξ∈N

cξBξ|2 ≤ K12 max
τ∈∆

Aτ

∑

ξ∈N

|cξ|2, (3.12)

with K12 depending on d, β and ℓ. By Theorem 3.3, and (3.11), (3.12) above, we get

D2(
d+2
2

)
C2

5

min
τ∈∆

Aτ

∑

ξ∈N

|cξ|2 ≤
(

tan
|∆|
2

)4

‖s‖2 ≤ D3K12 max
τ∈∆

Aτ

∑

ξ∈N

|cξ|2.

Therefore, we obtain (3.10) with D4 = D2

(d+2

2 )C2
5

and D5 = D3K12.

Next, we estimate X -norm of the projection operator P in (3.6) outside of support

of f ∈ X . Here we follow a similar result for bivariate splines that can be found in

[16], making several adjustments for the spherical splines. Before we proceed with

the result we need the following lemma, which can be found in [9].

Lemma 3.5. If the sequence {ai}∞i=1 satisfies

|am| ≥ γ
∑

j≥m+1

|aj|

for all m ≥ 0 and some γ ∈ (0, 1), then

|am| ≤ a0
(1 − γ)m

γ
.

Proof. See [9].

It is established in Section 5 of [23] that {Bξ}ξ∈M is a local basis with a local

support size ℓ equal to 3. The following theorem, however, holds in general for any

fixed ℓ.
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Theorem 3.6. There exist constants 0 < σ < 1 and D6, depending only on ℓ, d, β,

such that for any triangle T ∈ ∆ and any function f ∈ X with supp(f) ⊆ T

‖Pf‖τ ≤ D6σ
k‖f‖, (3.13)

whenever τ ∈ star2(k+2)ℓ+1(T )\star2(k+1)ℓ+1(T ) and k ≥ 1.

Proof. Let

MT
0 : = {ξ ∈ M : supp(Bξ) ∩ T 6= ∅},

MT
k : = {ξ ∈ M : supp(Bξ) ∩ star2kℓ(T ) 6= ∅},

N T
0 : = MT

0 ,

N T
k : = MT

k \MT
k−1.

Suppose Pf =
∑

ξ∈M cξBξ, and let

uk :=
∑

ξ∈MT
k

cξBξ, wk := Pf − uk, ak :=
∑

ξ∈NT
k

c2
ξ ,

for k ≥ 0. Since Pf ∈ W, by Corollary 3.4

∑

j≥k+1

aj =
∑

ξ 6∈MT
k

c2
ξ ≤

(
tan

|∆|
2

)4

(D4 min
τ∈∆

Aτ )
−1‖wk‖2.

Note that wk ∈ W as well, then using (3.6) we have 〈f − Pf, wk〉 = 0. Moreover,

〈f, wk〉 = 0, since supp(f) ⊆ T and supp(wk) lies outside T . In fact, supp(wk) ∩

∪ξ∈MT
k−1

supp(Bξ) = ∅ for k ≥ 1, it follows that

‖wk‖2 = 〈Pf − uk, wk〉 = 〈f − uk, wk〉 = −〈uk, wk〉 =

−〈
∑

ξ∈NT
k

cξBξ, wk〉 ≤ ‖
∑

ξ∈NT
k

cξBξ‖ ‖wk‖,

and therefore by (3.10)

‖wk‖2 ≤ ‖
∑

ξ∈NT
k

cξBξ‖2 ≤ D5 maxτ∈∆ Aτ

(tan |∆|
2

)4
ak.
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Hence
∑

j≥k+1

aj ≤
D5

D4

maxτ∈∆ Aτ

minτ∈∆ Aτ
ak.

By Lemma 2.3

maxτ∈∆ Aτ

minτ∈∆ Aτ

≤ 5

4

|∆|2
ρ2

∆

≤ 5

4
β2,

and thus
∑

j≥k+1

aj ≤
5D5β

2

4D4
ak.

Let γ := 4D4

4D4+5D5β2 . Then by Lemma 3.5

ak ≤ a0
(1 − γ)k

γ
=

a0

γ
σ2k,

with σ :=
√

1 − γ. It is easy to see that both γ and σ are positive and bounded

above by 1. Since (3.7) holds for f , by Corollary 3.4 we have

a0 ≤
∑

j≥0

aj =
∑

ξ∈M

c2
ξ ≤

(tan |∆|
2

)4

D4 minτ∈∆ Aτ
‖Pf‖2 ≤ (tan |∆|

2
)4

D4 minτ∈∆ Aτ
‖f‖2.

Let τ ∈ star2(k+2)ℓ+1(T )\star2(k+1)ℓ+1(T ) for some k ≥ 1. If ξ ∈ MT
k , then

supp(Bξ) ⊆ star2(k+1)ℓ(T ), and therefore τ ∩ supp(Bξ) = ∅. Using (3.10) again,

‖Pf · χτ‖2 ≤ ‖
∑

ξ 6∈MT
k

cξBξ‖2 ≤

D5 maxτ∈∆ Aτ

(tan |∆|
2

)4

∑

ξ 6∈MT
k

c2
ξ =

D5 maxτ∈∆ Aτ

(tan |∆|
2

)4

∑

j≥k+1

aj ≤
5D2

5β
2

4γD2
4

σ2k‖f‖2.

We obtained (3.13) with D6 =
√

5
4γ

D5β
D4

.

As a consequence of the last result, we can now compare Sobolev semi-norms

of Pf and f . Analogous result for bivariate polynomials can be found in [15], and

similar proof holds.

Theorem 3.7. There exists a constant D7 depending only on d, ℓ and β, such that

for every f ∈ X

|Pf |2,∞,S2 ≤ D7|f |2,∞,S2. (3.14)
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Proof. Let τ be a fixed triangle in ∆, and let

Ωτ
0 := star4ℓ+1(τ), Ωτ

k := star2(k+2)ℓ+1(τ)\star2(k+1)ℓ+1(τ).

Let nk denote the number of triangles in Ωτ
k, k ≥ 0. For a homogeneous polynomial

of degree with d we have by Lemma 3.1 and (2.53)

‖P‖2
τ ≥ D1|P |22,2,τ ≥ D1Aτ

K2
13

|P |22,∞,τ ,

for K13 depending on d and Θτ . Similarly, for any function f ∈ X and any triangle

τ ∈ ∆ by Lemma 3.1 and (2.56) we have

‖f‖2
τ ≤ Aτ |f |22,∞,τ . (3.15)

Write f =
∑

τ∈∆ fτ with supp(fτ ) ⊆ τ . Since P is a linear operator,

|Pf |2,∞,τ ≤
∑

τ∈∆

|Pfτ |2,∞,τ ≤ K13

(D1Aτ )1/2

∑

τ∈∆

‖Pfτ‖τ .

Then by (3.13), (3.7) and (3.15)

|Pf |2,∞,τ ≤ K13

(D1Aτ )1/2

∑

k≥0

∑

τ∈Ωτ
k

‖Pfτ‖τ

≤ K13

(D1Aτ )1/2
(
∑

τ∈Ωτ
0

‖fτ‖ +
∑

k≥1

∑

T∈Ωτ
k

D6σ
k‖fτ‖)

≤ K13

(D1Aτ )1/2
(max

τ∈∆
A

1/2
T )(n0 + D6

∑

k≥1

σknk)|f |2,∞,τ .

By Lemma 2.4 each nk is bounded by a constant depending on β and k. Since σ < 1,

and number of rings around τ is bounded
∑

k≥1 σk < ∞. Also, as above

maxτ∈∆ A
1/2
τ

minτ∈∆ A
1/2
τ

≤
√

5

4

|∆|
ρ∆

≤
√

5

4
β

by Lemma 2.3. Then (3.14) follows by taking the supremum over all τ ∈ ∆.

We are finally in a position to prove the main result of this section.

Theorem 3.8. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-uniform
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triangulation ∆ with |∆| ≤ 1, d ≥ 3r + 2. For d odd there exists a constant D8

depending only on d and β, such that the minimal energy interpolant Sf , defined in

(2.73), satisfies

‖f − Sf‖∞,S2 ≤ D8

(
tan

|∆|
2

)2

|f |2,∞,S2, (3.16)

for all f ∈ C2(S2). For d even there exist constants D9 and D10 depending only on

d and β, such that the minimal energy interpolant Sf satisfies

‖f − Sf‖∞,S2 ≤ D9

(
tan

|∆|
2

)2

|f |2,∞,S2 + D10

(
tan

|∆|
2

)3

|f |3,∞,S2, (3.17)

for all f ∈ C3(S2).

Proof. Given a function f ∈ X , let sf ∈ Γ(f) be the quasi-interpolant defined in

Section 2.8. If d is odd by Theorem 2.34 there exists a constant C13 depending on d

and the smallest angle of ∆ such that

‖f − sf‖∞,S2 ≤ C13

(
tan

|∆|
2

)2

|f |2,∞,S2, (3.18)

and

|f − sf |2,∞,S2 ≤ C13|f |2,∞,S2.

Then

|sf |2,∞,S2 ≤ |f − sf |2,∞,S2 + |f |2,∞,S2

≤ (C13 + 1)|f |2,∞,S2. (3.19)

Since Psf = sf − Sf , by Theorem 3.7

|sf − Sf |2,∞,S2 = |Psf |2,∞,S2 ≤ D7|sf |2,∞,S2,

and by (3.19)

|sf − Sf |2,∞,S2 ≤ D7(C13 + 1)|f |2,∞,S2.

Since both Sf and sf interpolate f , their difference satisfies the hypothesis of Lemma

2.30 and thus

‖sf − Sf‖∞,S2 ≤ A8

(
tan

|∆|
2

)2

|sf − Sf |2,∞,S2
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≤ A8D7(C13 + 1)

(
tan

|∆|
2

)2

|f |2,∞,S2.

Then by (3.18)

‖f − Sf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖sf − Sf‖∞,S2

≤ C13

(
tan

|∆|
2

)2

|f |2,∞,S2 + A8D7(C13 + 1)

(
tan

|∆|
2

)2

|f |2,∞,S2

= D8

(
tan

|∆|
2

)2

|f |2,∞,S2

With D8 = C13 + A8D7(C13 + 1) we get the desired result. Similarly, if d is even by

Theorem 2.34 there exists a constant C13 depending on d and the smallest angle of

∆ such that

‖f − sf‖∞,S2 ≤ C13

(
tan

|∆|
2

)3

|f |3,∞,S2, (3.20)

and

|f − sf |2,∞,S2 ≤ C13

(
tan

|∆|
2

)
|f |3,∞,S2.

Then

|sf |2,∞,S2 ≤ |f − sf |2,∞,S2 + |f |2,∞,S2

≤ C13

(
tan

|∆|
2

)
|f |3,∞,S2 + |f |2,∞,S2. (3.21)

Since Psf = sf − Sf , by Theorem 3.7

|sf − Sf |2,∞,S2 = |Psf |2,∞,S2 ≤ D7|sf |2,∞,S2,

and by (3.19)

|sf − Sf |2,∞,S2 ≤ D7

(
C13

(
tan

|∆|
2

)
|f |3,∞,S2 + |f |2,∞,S2

)
.

Since both Sf and sf interpolate f , their difference satisfies the hypothesis of Lemma

2.30 and thus

‖sf − Sf‖∞,S2 ≤ A8

(
tan

|∆|
2

)2

|sf − Sf |2,∞,S2
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≤ A8D7

(
tan

|∆|
2

)2(
C13

(
tan

|∆|
2

)
|f |3,∞,S2 + |f |2,∞,S2

)
.

Then by (3.20)

‖f − Sf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖sf − Sf‖∞,S2

≤ D9

(
tan

|∆|
2

)2

|f |2,∞,S2 + D10

(
tan

|∆|
2

)3

|f |3,∞,S2

and we get the desired result.

3.2 Constant extensions

In this section we derive error bounds for interpolating splines minimizing the energy

functional defined in terms of constant extensions. Such a functional allows repro-

duction of homogeneous polynomials of even degree by even degree splines. Let us

begin by reintroducing our notation and deriving results similar to those in the

previous section.

Suppose we are given values {f(v), v ∈ V} of an unknown function f at a set V

of scattered points on the unit sphere. To find a homogeneous spline approximation

of f , we choose a linear space S ⊆ Sr
d(∆) of polynomial splines of degree d and

smoothness r defined on a triangulation ∆ with vertices at the points of V. Let

Γ(f) := {s ∈ S : s(v) = f(v), v ∈ V}

be the set of all splines in S that interpolate f at the points of V. Assume that S is

big enough so that Γ(f) is not empty. We choose a spline Sf such that

E ′(Sf) = min
s∈Γ(f)

E ′(s), (3.22)

where for a spherical triangle τ ∈ ∆

E ′
τ (s) :=

∑

|α|=2

‖Dαs0‖2
2,τ (3.23)
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and

E ′(s) :=
∑

τ∈∆

E ′
τ (s). (3.24)

Here s0 is the constant homogeneous extension of s to R3\{0}. We call Sf the

minimal energy interpolating spline. Again, let

X := {f ∈ B(S2) : f |τ ∈ C3(τ), ∀τ ∈ ∆},

where B(S2) is the set of all bounded real-valued functions on the sphere. For each

triangle τ ∈ ∆, define

〈f, g〉′τ :=

∫

τ

∑

|α|=2

Dαf0 Dαg0.

Then

〈f, g〉′ := 〈f, g〉′
S2 =

∑

τ∈∆

〈f, g〉′τ

is a semi-definite inner product on X . Let ‖·‖′τ and ‖·‖′ be the associated semi-norms.

Again, 〈·, ·〉′ is an inner product on the linear space

W := {s ∈ S : s(v) = 0, v ∈ V}. (3.25)

Since W is finite-dimensional, it follows that W equipped with the inner product

〈·, ·〉′ is a Hilbert space.

For given f let sf be any spline in the set Γ(f). The solution Sf to the minimal

energy problem is equal to sf − Psf , where P is the linear projector P : X → W

defined for f ∈ X by

E ′(f − Pf) = min
w∈W

E ′(f − w). (3.26)

Since W is a Hilbert space with respect to 〈·, ·〉′, Pf is uniquely defined and char-

acterized by

〈f − Pf, w〉′ = 0, ∀w ∈ W. (3.27)

Moreover

‖Pf‖′ ≤ ‖f‖′ (3.28)
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for all f ∈ X .

We now establish a lemma showing the equivalence of certain semi-norms on the

space X defined above.

Lemma 3.9. Let τ be a spherical triangle with |τ | ≤ 1 and f ∈ X . Let E ′
τ be the

functional defined in (3.23). There exists a positive constant D′
1 such that

D′
1(|f |′2,2,τ)

2 ≤ E ′
τ(f) ≤ (|f |′2,2,τ)

2. (3.29)

Proof. Similar to the proof of Lemma 3.1.

Next we establish reproductive property of the energy functional E ′
τ .

Lemma 3.10. Let τ be a spherical triangle with |τ | ≤ 1. Suppose f ∈ X . Then

E ′
τ (f) = 0 if and only if f is a constant on τ .

Proof. Similar to the proof of Lemma 3.2.

Next we establish the equivalence of energy and L2 norms on the Hilbert space

W.

Theorem 3.11. Suppose S ⊆ S0
d(∆) is a spline space defined on a β-quasi-uniform

triangulation ∆ with |∆| ≤ 1, and let W be the associated Hilbert space (3.25).

Then there exist constants 0 < D′
2 < D′

3 < ∞ depending only d and β such that

D′
2‖s‖2

2,S2 ≤
(

tan
|∆|
2

)4

(‖s‖′)2 ≤ D′
3‖s‖2

2,S2, (3.30)

for all s ∈ W.

Proof. Similar to the proof of Theorem 3.3.

Corollary 3.12. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-

uniform triangulation ∆, and that {Bξ}ξ∈M is a stable local basis for S defined in

Proposition 2.31. Then {Bξ}ξ∈N is a Riesz basis (with respect to the X -norm) for the

linear space W defined in (3.25). Here N is the subset of the minimal determining set

M excluding the set of vertices V of ∆. In particular, there exist positive constants
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D′
4, D

′
5 depending on d, β, and ℓ such that

D′
4 min

τ∈∆
Aτ

∑

ξ∈N

|cξ|2 ≤
(

tan
|∆|
2

)4
(
‖
∑

ξ∈N

cξBξ‖′
)2

≤ D′
5 max

τ∈∆
Aτ

∑

ξ∈N

|cξ|2, (3.31)

for all {cξ}ξ∈N .

Proof. Similar to Corollary 3.4.

Next, we estimate X -norm of the projection operator P in (3.27) outside of

support of f ∈ X .

Theorem 3.13. There exist constants 0 < σ′ < 1 and D′
6, depending only on ℓ,

d, β, such that for any triangle T ∈ ∆ and any function f ∈ X with supp(f) ⊆ T

‖Pf‖′τ ≤ D′
6(σ

′)k‖f‖′, (3.32)

whenever τ ∈ star2(k+2)ℓ+1(T )\star2(k+1)ℓ+1(T ) and k ≥ 1.

Proof. Similar to Theorem 3.6.

As a consequence of the last result, we can now compare Sobolev semi-norms of

Pf and f .

Theorem 3.14. There exists a constant D′
7 depending only on d, ℓ and β, such that

for every f ∈ X

|Pf |′2,∞,S2 ≤ D′
7|f |′2,∞,S2. (3.33)

Proof. Similar to Theorem 3.7.

We are finally in a position to prove the main result of this section.

Theorem 3.15. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-uniform

triangulation ∆ with |∆| ≤ 1, d ≥ 3r + 2. If d is even there exist constants D′
8 and

D′
9 depending only on d and β, such that the minimal energy interpolant Sf , defined

in (3.23), satisfies

‖f − Sf‖∞,S2 ≤ D′
8

(
tan

|∆|
2

)3

|f |3,∞,S2 + D′
9

(
tan

|∆|
2

)2

|f |′2,∞,S2, (3.34)
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for all f ∈ C3(S2). If d is odd then Sf minimizing (3.23) satisfies

‖f − Sf‖∞,S2 ≤ D′
10

(
tan

|∆|
2

)2

|f |2,∞,S2 + D′
9

(
tan

|∆|
2

)2

|f |′2,∞,S2. (3.35)

for all f ∈ C2(S2).

Proof. Given a function f ∈ X , let sf ∈ Γ(f) be the quasi-interpolant defined in

Section 2.8. If d is even by Theorem 2.34 there exists a constant C13 depending on

d and the smallest angle of ∆ such that

‖f − sf‖∞,S2 ≤ C13

(
tan

|∆|
2

)3

|f |3,∞,S2, (3.36)

and by Corollary 2.35

|f − sf |′2,∞,S2 ≤ C15

2∑

ℓ=0

(
tan

|∆|
2

)3−ℓ

|f |3,∞,S2.

Then

|sf |′2,∞,S2 ≤ |f − sf |′2,∞,S2 + |f |′2,∞,S2

≤ C15

2∑

ℓ=0

(
tan

|∆|
2

)3−ℓ

|f |3,∞,S2 + |f |′2,∞,S2. (3.37)

Since Psf = sf − Sf , by Theorem 3.14

|sf − Sf |′2,∞,S2 = |Psf |′2,∞,S2 ≤ D′
7|sf |′2,∞,S2,

and by (3.37)

|sf − Sf |′2,∞,S2 ≤ D′
7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)3−ℓ

|f |3,∞,S2 + |f |′2,∞,S2

)
.

Since both Sf and sf interpolate f , their difference satisfies the hypothesis of Lemma

2.30 and thus

‖sf − Sf‖∞,S2 ≤ A′
8

(
tan

|∆|
2

)2

|sf − Sf |′2,∞,S2

≤ A′
8D7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)5−ℓ

|f |3,∞,S2 +

(
tan

|∆|
2

)2

|f |′2,∞,S2

)
.
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Then by (3.36)

‖f − Sf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖sf − Sf‖∞,S2

≤ C13

(
tan

|∆|
2

)3

|f |3,∞,S2

+ A′
8D7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)5−ℓ

|f |3,∞,S2 +

(
tan

|∆|
2

)2

|f |′2,∞,S2

)

≤ D′
8

(
tan

|∆|
2

)3

|f |3,∞,S2 + D′
9

(
tan

|∆|
2

)2

|f |′2,∞,S2.

If d is odd by Theorem 2.34 there exists a constant C13 depending on d and the

smallest angle of ∆ such that

‖f − sf‖∞,S2 ≤ C13

(
tan

|∆|
2

)2

|f |2,∞,S2, (3.38)

and by Corollary 2.35

|f − sf |′2,∞,S2 ≤ C15

2∑

ℓ=0

(
tan

|∆|
2

)2−ℓ

|f |2,∞,S2.

Then

|sf |′2,∞,S2 ≤ |f − sf |′2,∞,S2 + |f |′2,∞,S2

≤ C15

2∑

ℓ=0

(
tan

|∆|
2

)2−ℓ

|f |2,∞,S2 + |f |′2,∞,S2. (3.39)

Since Psf = sf − Sf , by Theorem 3.14

|sf − Sf |′2,∞,S2 = |Psf |′2,∞,S2 ≤ D′
7|sf |′2,∞,S2,

and by (3.39)

|sf − Sf |′2,∞,S2 ≤ D′
7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)2−ℓ

|f |2,∞,S2 + |f |′2,∞,S2

)
.

Since both Sf and sf interpolate f , their difference satisfies the hypothesis of Lemma

2.30 and thus

‖sf − Sf‖∞,S2 ≤ A′
8

(
tan

|∆|
2

)2

|sf − Sf |′2,∞,S2
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≤ A′
8D7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)4−ℓ

|f |2,∞,S2 +

(
tan

|∆|
2

)2

|f |′2,∞,S2

)
.

Then by (3.38)

‖f − Sf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖sf − Sf‖∞,S2

≤ C13

(
tan

|∆|
2

)2

|f |2,∞,S2

+ A′
8D7

(
C15

2∑

ℓ=0

(
tan

|∆|
2

)4−ℓ

|f |2,∞,S2 +

(
tan

|∆|
2

)2

|f |′2,∞,S2

)

≤ D′
8

(
tan

|∆|
2

)2

|f |2,∞,S2 + D′
9

(
tan

|∆|
2

)2

|f |′2,∞,S2.

The constants are taken D′
8 = C13 + 3A′

8D7C15 and D′
9 = A′

8D7.

3.3 Discrete Least Squares Splines

In this section we derive error bounds for the discrete least squares spline approxi-

mation on the sphere. Suppose V = {vi, i = 1, · · · , n} are the given data sites over

the unit sphere S2 and ∆ is a triangulation of S2 whose vertices may not relate to

the data sites. Fix a spline space S ⊆ Sr
d(∆). Let

X := {f ∈ B(S2) : f |τ ∈ Cm(τ), ∀τ ∈ ∆},

for some m ≤ d. Given a function f in X we are interested in error bounds for

f − Sf , where Sf is defined by

‖f − Sf‖ = mins∈S‖f − s‖. (3.40)

We refer to Sf as the discrete least squares spline approximating f . Here ‖ · ‖ is the

ℓ2 norm corresponding to

〈f, g〉 =

n∑

i=1

f(vi)g(vi), (3.41)

which is a semi-definite inner product on X . Note that 〈·, ·〉 has the following prop-

erties.

Lemma 3.16. Let f, g ∈ X . For 〈·, ·〉 defined in (3.41) we have
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1) 〈f, g〉 = 0, whenever fg = 0 on S2;

2) ‖f‖ ≤ ‖g‖, whenever |f(v)| ≤ |g(v)|, ∀v ∈ S2;

3) f · χτ ∈ X , for every f ∈ X and τ ∈ ∆;

4) f =
∑

τ∈∆ fτ for some fτ ∈ X with supp(fτ ) ⊆ τ ;

5) ‖f · χτ‖ ≤ G1‖f‖∞,τ and ‖fτ‖ ≤ G1‖f‖∞,τ for every f ∈ X and τ ∈ ∆.

Here G1 is a positive constant independent of f and τ .

Proof. 1)-3) follow directly from the definitions of X and 〈·, ·〉. Next note that

fτ := f · χτ satisfies 4). For 5) let G1 :=
√

max#{V ∩ τ} and consider

‖f · χτ‖2 =
∑

V∩τ

|f(v)|2 ≤
∑

V∩τ

‖f‖2
∞,τ ≤ G2

1‖f‖2
∞,τ .

Now we can establish the following result similar to Corollaries 3.4 and 3.12.

Lemma 3.17. Let {Bξ}ξ∈M be the basis for S corresponding to the minimal deter-

mining set M introduced in Section 2.8. Suppose that the data set V has a property

that for every s ∈ S and every τ ∈ ∆

G2‖s‖∞,τ ≤ (
∑

V∩τ

s(v)2)1/2 = ‖s · χτ‖ (3.42)

for some positive constant G2. Then there exist positive constants G3, G4 depending

on d, ℓ and the smallest angle of ∆ such that

G3

∑

ξ∈M

|cξ|2 ≤ ‖
∑

ξ∈M

cξBξ‖2 ≤ G4

∑

ξ∈M

|cξ|2, (3.43)

for all {cξ}ξ∈M.

Proof. Let s =
∑

ξ∈M cξBξ. By Proposition 2.31 3) there exists a constant C4

depending on d and the smallest angle of ∆ such that

∑

ξ∈M

c2
ξ ≤ C2

4

∑

ξ∈M

‖s‖2
∞,τξ

.
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Recall that τξ is a triangle in ∆ containing ξ. By property (3.42) above we have

G2
2‖s‖2

∞,τξ
≤ ‖s · χτξ

‖2.

Note that there may be more than one domain point η ∈ M in τξ. Let K14 =

maxτ∈∆#{ξ ∈ M : τ ∩ supp(Bξ) 6= ∅}. As we see in the proof of Corollary 3.4 K14

depends on d, ℓ and β. Then

∑

ξ∈M

c2
ξ ≤ C2

4G
−2
2

∑

ξ∈M

‖s · χτξ
‖2 ≤ C2

4G
−2
2 K14‖s‖2.

Therefore we have the left hand side of (3.43) with G3 = C−2
4 G2

2K
−1
14 . Now let

Mτ := {ξ ∈ M : ‖Bξ · χτ‖ > 0}. Then #Mτ ≤ K14, and using Lemma 3.16 5) and

Proposition 2.31 2) we get

‖s‖2 ≤
∑

τ∈∆

‖s · χτ‖2 =
∑

τ∈∆

∥∥∥∥∥

(∑

ξ∈Mτ

cξBξ

)
· χτ

∥∥∥∥∥

2

≤ G2
1

∑

τ∈∆

∥∥∥∥∥

(∑

ξ∈Mτ

cξBξ

)∥∥∥∥∥

2

∞,τ

≤ G2
1C3

∑

τ∈∆

(∑

ξ∈Mτ

|cξ|
)2

≤ G2
1C3

∑

τ∈∆

#Mτ

∑

ξ∈Mτ

|cξ|2 ≤ G2
1C3K14

∑

τ∈∆

∑

ξ∈Mτ

|cξ|2.

Since in the last sum ξ may be repeated more than once let K15 := maxξ∈M#{τ ∈

∆ : ‖Bξ · χτ‖ > 0}. Then

‖s‖2 ≤ G2
1C3K14K15

∑

ξ∈M

|cξ|2

and the proof is complete.

Define a projection operator P : X− > S by Pf = Sf . Note that

〈Sf − f, s〉 = 0, ∀s ∈ S. (3.44)
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The next result is similar to Theorems 3.6 and 3.13.

Theorem 3.18. Suppose that the data set V satisfies the property (3.42). There

exist constants 0 < σ < 1 and G5, depending only on d, β and ℓ such that for any

triangle T ∈ ∆ and any function f ∈ X with supp(f) ⊆ T

‖Pf · χτ‖ ≤ G5σ
k‖f‖, (3.45)

whenever τ ∈ star2(k+2)ℓ+1(T )\star2(k+1)ℓ+1(T ) with k ≥ 1.

Proof. Proof is similar to the one of Theorem 3.6. Let

MT
0 : = {ξ ∈ M : supp(Bξ) ∩ T 6= ∅},

MT
k : = {ξ ∈ M : supp(Bξ) ∩ star2kℓ(T ) 6= ∅},

N T
0 : = MT

0 ,

N T
k : = MT

k \MT
k−1.

Suppose Pf =
∑

ξ∈M cξBξ, and let

uk :=
∑

ξ∈MT
k

cξBξ, wk := Pf − uk, ak :=
∑

ξ∈NT
k

c2
ξ ,

for k ≥ 0. Since Pf ∈ S, by Lemma 3.17

∑

j≥k+1

aj =
∑

ξ 6∈MT
k

c2
ξ ≤ G−1

3 ‖wk‖2.

Note that since wk ∈ S, using (3.44) we have 〈f − Pf, wk〉 = 0. Moreover,

〈f, wk〉 = 0, since supp(f) ⊆ T and supp(wk) lies outside T . In fact, supp(wk) ∩

∪ξ∈MT
k−1

supp(Bξ) = ∅ for k ≥ 1, it follows that

‖wk‖2 = 〈Pf − uk, wk〉 = 〈f − uk, wk〉 = −〈uk, wk〉 =

−〈
∑

ξ∈NT
k

cξBξ, wk〉 ≤ ‖
∑

ξ∈NT
k

cξBξ‖ ‖wk‖,

and therefore by (3.43)

‖wk‖2 ≤ ‖
∑

ξ∈NT
k

cξBξ‖2 ≤ G4

∑

ξ∈NT
k

|cξ|2 = G4 ak.
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Hence
∑

j≥k+1

aj ≤ G−1
3 G4 ak.

Let γ := G3

G4
. Then by Lemma 3.5

ak ≤ a0
(1 − γ)k

γ
=

a0

γ
σ2k,

with σ :=
√

1 − γ. It is easy to see that both γ and σ are positive and bounded

above by 1. Note that (3.44) implies that ‖Pf‖ ≤ ‖f‖ for every f ∈ X . By Lemma

3.17

a0 ≤
∑

j≥0

aj =
∑

ξ∈M

c2
ξ ≤ G−1

3 ‖Pf‖2 ≤ G−1
3 ‖f‖2.

Let τ ∈ star2(k+2)ℓ+1(T )\star2(k+1)ℓ+1(T ) for some k ≥ 1. If ξ ∈ MT
k , then

supp(Bξ) ⊆ star2(k+1)ℓ(T ), and therefore τ ∩ supp(Bξ) = ∅. Using Lemma 3.17

again we obtain

‖Pf · χτ‖2 ≤ ‖
∑

ξ 6∈MT
k

cξBξ‖2 ≤

G4

∑

ξ 6∈MT
k

|cξ|2 = G4

∑

j≥k+1

aj ≤
G2

4

G2
3γ

σ2k‖f‖2.

We are now ready to compare the supremum norms of f and Pf .

Theorem 3.19. Suppose that the data set V satisfies the property (3.42). Suppose

∆ is a β-quasi-uniform triangulation with |∆| ≤ 1. The projection P defined by

(3.40) satisfies

‖Pf‖∞,S2 ≤ G6‖f‖∞,S2

and therefore

‖P‖∞,S2 ≤ G6. (3.46)

G6 depends on d, ℓ and β.

Proof. Let τ be a fixed triangle in ∆, and let

Ωτ
0 := star4ℓ+1(τ), Ωτ

k := star2(k+2)ℓ+1(τ)\star2(k+1)ℓ+1(τ)
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(where ℓ = 3). Let mk denote the maximal number of triangles in Ωτ
k, k ≥ 0. By

Lemma 2.4

mk ≤ 5β2

4
(4(k + 2)ℓ + 2)2 − 2

πβ2
(4(k + 1)ℓ + 2)2.

Write f =
∑

T∈∆ fT with supp(fT ) ∈ T and consider

∑

T∈∆

‖PfT · χτ‖ =
∑

k≥0

∑

T∈Ωτ
k

‖PfT · χτ‖ ≤
∑

T∈Ωτ
0

‖fT‖ +
∑

k≥1

∑

T∈Ωτ
k

G5σ
k‖fT‖.

By Lemma 3.16 5)

∑

T∈∆

‖PfT · χτ‖ ≤ G1(m0 + G5

∑

k≥1

σkmk)‖f‖∞,S2. (3.47)

Since P is a linear operator using (3.42) we get

‖Pf‖∞,τ ≤
∑

T∈∆

‖PfT‖∞,τ ≤ G−1
2

∑

T∈∆

‖PfT · χτ‖.

Then (3.47) implies

‖Pf‖∞,τ ≤ G1

G2
(m0 + G5

∑

k≥1

σkmk)‖f‖∞,S2.

Taking the supremum over all τ ∈ ∆ and all f ∈ X we get (3.46) with G6 =

G1

G2
(m0 + G5

∑
k≥1 σkmk) depending on d and β.

We are finally in the position to prove the main result of this section.

Theorem 3.20. Let ∆ be a β-quasi-uniform spherical triangulation with |∆| ≤ 1.

Suppose that the data set V satisfies the property (3.42). Let d ≥ 3r + 2, and

0 ≤ m ≤ d. Then there exists a constant G7 depending only on d and the smallest

angle in ∆, such that for every function f in W m+1,∞(S2)

‖f − Pf‖∞,S2 ≤ G7

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2. (3.48)

Here m is taken to satisfy (d − m) mod 2 = 0.

Proof. Let sf be a quasi-interpolant defined in Section 2.8. Since sf is a homoge-

neous polynomial of degree d, Psf = sf and therefore

‖f − Pf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖sf − Pf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖Psf −Pf‖∞,S2.
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Since P is linear

‖f −Pf‖∞,S2 ≤ ‖f − sf‖∞,S2 + ‖P(sf − f)‖∞,S2 ≤ (1 + ‖P‖∞,S2)‖f − sf‖∞,S2.

By Theorem 2.34

‖f − sf‖∞,S2 ≤ C13

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2.

By Theorem 3.18 ‖P‖∞,S2 ≤ G6. Therefore

‖f −Pf‖∞,S2 ≤ G7

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2

with G7 = (1 + G6)C13 depending only on d, p and the smallest angle in ∆.

Note that if Pf is the discrete least squares solution approximating f in a spline

space of odd degree d then the convergence rate for a function f ∈ W 2,∞(S2) is

quadratic. If we are working in a space of even degree then for f ∈ W 2,∞(S2), m

must be even, m+1 odd, and therefore we can at most get linear convergence. Higher

convergence rate will be expected for functions of higher smoothness.

3.4 Penalized least squares splines

In this section we discuss the last of the three global data fitting methods: penalized

least squares approximation. A general penalized least squares problem was treated

in [18] and can be stated as follows below.

Let X ,Y and S be linear spaces of functions on Rn where S ⊆ Y ⊆ X . Suppose

‖ · ‖X : X → R and ‖ · ‖Y : Y → R are semi-norms induced by semi-definite inner

products 〈·, ·〉 on X and [·, ·] on Y respectively. Given f ∈ X and λ > 0 we seek

Sλ,f ∈ S such that

Φ(Sλ,f ) = mins∈SΦ(s),

where

Φ(s) := ‖f − s‖2
X + λ‖s‖2

Y .
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Then Sλ,f is called a penalized least squares fit of f corresponding to λ.

Let us introduce a non-penalized least squares fit as well. Sf ∈ S is called a

non-penalized least squares fit of f if

‖f − Sf‖2
X = mins∈S‖f − s‖2

X .

Let us present here a version of the result in [18], which we will be needing in our

work.

Theorem 3.21. Suppose X ,Y ,S are function spaces on some set Ω ∈ Rn. Suppose

X ⊆ L∞(Ω) and let

KS := sup{‖s‖Y‖s‖X
: s ∈ S, s 6= 0} < ∞,

kS := sup{‖s‖∞,Ω

‖s‖X
: s ∈ S, s 6= 0} < ∞.

Then

‖Sf − Sλ,f‖∞,Ω ≤ λ kSKS‖Sf‖Y .

Proof. Recall that

〈f − Sf , s〉 = 0, ∀s ∈ S,

and note that Sλ,f is characterized by

〈f − Sλ,f , s〉 = λ[Sλ,f , s], ∀s ∈ S.

Subtracting the two equations we obtain

〈Sf − Sλ,f , s〉 = λ[Sλ,f , s], ∀s ∈ S.

In particular, let s = Sf − Sλ,f , then

0 ≤ ‖Sf − Sλ,f‖2
X = λ[Sλ,f , Sf − Sλ,f ] = λ[Sλ,f , Sf ] − λ[Sλ,f , Sλ,f ], (3.49)

from what follows

[Sλ,f , Sλ,f ] ≤ [Sλ,f , Sf ].
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By Cauchy-Schwarz inequality

[Sλ,f , Sf ] ≤ ‖Sλ,f‖Y‖Sf‖Y ,

therefore

‖Sλ,f‖2
Y = [Sλ,f , Sλ,f ] ≤ ‖Sλ,f‖Y‖Sf‖Y .

Dividing both sides by the Y-norm of Sλ,f we get

‖Sλ,f‖Y ≤ ‖Sf‖Y . (3.50)

In addition, (3.49) implies

‖Sf − Sλ,f‖2
X ≤ λ[Sλ,f , Sf ] ≤ λ‖Sλ,f‖Y‖Sf‖Y ≤ λ‖Sf‖Y

by (3.50). On the other hand (3.49) and Cauchy-Schwarz inequality imply

‖Sf − Sλ,f‖2
X = λ[Sλ,f , Sf − Sλ,f ] ≤ λ‖Sλ,f‖Y‖Sf − Sλ,f‖Y .

By the definition of KS and (3.50) in the last inequality we get

‖Sf − Sλ,f‖2
X ≤ λ‖Sf‖YKS‖Sf − Sλ,f‖X .

Dividing both sides by the X -norm of Sf − Sλ,f we get

‖Sf − Sλ,f‖X ≤ λKS‖Sf‖Y .

By the definition of kS we finally obtain

‖Sf − Sλ,f‖∞,Ω ≤ λ kSKS‖Sf‖Y .

Let us now describe the framework for penalized least squares splines on spherical

triangulations. Suppose we are given a set V of locations on the unit sphere along

with corresponding values {f(v), v ∈ V} for some function f . Let ∆ be a regular

triangulation of the sphere S2 whose vertices form a subset of the data sites V.
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Consider the spline space Sr
d(∆) of degree d and smoothness r with 3r + 2 ≤ d. We

seek a spline function Sλ,f ∈ Sr
d(∆) satisfying

Pλ(Sλ,f) = min{Pλ(s) : s ∈ Sr
d(∆)}, (3.51)

where λ is a positive weight and

Pλ(s) := L(s) + λE(s) (3.52)

or

P ′
λ(s) := L(s) + λE ′(s). (3.53)

Here the least squares functional L and energy functionals E , E ′ are defined in

previous sections. Let

X := {f ∈ B(S2) : f |τ ∈ Cm(τ), ∀τ ∈ ∆},

for some m ≤ d, Y := X and S ⊆ Sr
d(∆). Then the semi-definite inner products on

X and Y are defined as

〈f, g〉 :=
∑

v∈V

f(v)g(v),

[f, g] :=

∫

S2

∑

|α|=2

Dαf1D
αg1

and

[f, g]′ :=

∫

S2

∑

|α|=2

Dαf0D
αg0.

Define a linear operator Qλ : X → S by Qλf := Sλ,f . We need to investigate the

behavior of ‖f − Qλf‖∞,S2 as a function of λ and the approximation properties of

S.

Note now, that the non-penalized least squares spline Sf is in fact the discrete

least squares spline minimizing

L(s) =
∑

v∈V

(s(v) − f(v))2



80

over the splines s ∈ S.

Theorem 3.22. Let ∆ be a β-quasi-uniform triangulation of the sphere S2 whose

vertices form a subset of the data sites V and |∆| ≤ 1. Suppose that the data set V

has a property that for every s ∈ Sr
d(∆) and every τ ∈ ∆

F1‖s‖∞,τ ≤
(∑

V∩τ

s(v)2

)1/2

= ‖s · χτ‖X (3.54)

for some positive constant F1. Let Sλ,f be the spline minimizing Pλ. Then

‖f − Sλ,f‖∞,S2 ≤ F2

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2 + F3λ‖f‖∞,S2. (3.55)

for every function f in W m+1,∞(S2). Here m is taken between 0 and d with (d −

m) mod 2 = 0, the constants F2, F3 depend on d, λ, F1, ρ∆, β and cardinality of V.

Proof. For any s ∈ S

‖s‖2
Y = E(s)

and then by Lemma 3.1

Eτ (s) ≤ |s|22,2,τ .

Since s is a homogeneous polynomial of degree d By Lemma 2.29

|s|22,2,τ ≤ K2
16

(tan ρτ

2
)4
‖s‖2

2,τ

for some constant K16 depending on d. By Lemma 4.4 [23]

‖s‖2
2,τ ≤ Aτ‖s‖2

∞,τ .

Then

‖s‖2
Y =

∑

τ∈∆

‖s|τ‖2
Y ≤

∑

τ∈∆

AτK
2
16

(tan ρτ

2
)4
‖s‖2

∞,τ .

Since ρ∆ ≤ ρτ

‖s‖2
Y ≤ K2

16

(tan ρ∆

2
)4

(∑

τ∈∆

Aτ

)
‖s‖2

∞,S2 ≤ K2
164π

(tan ρ∆

2
)4
‖s‖2

∞,S2,
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and therefore

‖s‖Y ≤ K16

√
4π

(tan ρ∆

2
)2
‖s‖∞,S2.

By (3.54)

‖s‖∞,τ ≤ F−1
1 ‖s · χτ‖X ≤ F−1

1 ‖s‖X

and therefore

‖s‖∞,S2 ≤ F−1
1 ‖s‖X . (3.56)

Then

‖s‖Y ≤ K16

√
4π

F1(tan ρ∆

2
)2
‖s‖X ,

and hence

KS := sup{‖s‖Y‖s‖X
: s ∈ S, s 6= 0} ≤ K16

√
4π

F1(tan ρ∆

2
)2

.

Also, equation (3.56) implies that

kS := sup{‖s‖∞,S2

‖s‖X
: s ∈ S, s 6= 0} ≤ F−1

1 .

In addition, since

‖s‖2
X =

∑

τ∈∆

‖s · χτ‖2
X =

∑

τ∈∆

∑

v∈V∩τ

s(v)2 ≤
∑

τ∈∆

nτ‖s‖2
∞,τ ,

where nτ := #{V ∩ τ}. Therefore

‖s‖X ≤
√

#V‖s‖∞,S2.

Then by Theorem 3.21

‖Sf − Sλ,f‖∞,S2 ≤ λ kSKS‖Sf‖Y .

By the definition of KS

‖Sf − Sλ,f‖∞,S2 ≤ λ kSK2
S‖Sf‖X ,

and finally

‖Sf − Sλ,f‖∞,S2 ≤ λ kSK2
S

√
#V‖Sf‖∞,S2.
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By the triangle inequality

‖Sf‖∞,S2 ≤ ‖Sf − f‖∞,S2 + ‖f‖∞,S2

and therefore

‖Sf − Sλ,f‖∞,S2 ≤ λ K17(‖Sf − f‖∞,S2 + ‖f‖∞,S2),

with K17 = kSK2
S

√
#V. By Theorem 3.20 there exists a constant K18 depending

only on d and the smallest angle in ∆, such that for every function f in W m+1,∞(S2)

‖Sf − f‖∞,S2 ≤ K18

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2

for any m between 0 and d with (d − m) mod 2 = 0. Since

‖f − Sλ,f‖∞,S2 ≤ ‖Sf − Sλ,f‖∞,S2 + ‖Sf − f‖∞,S2,

we obtain

‖f − Sλ,f‖∞,S2 ≤ (λ K17 + 1)‖Sf − f‖∞,S2 + λ K17‖f‖∞,S2

≤ (λ K17 + 1)K18

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2 + λ K17‖f‖∞,S2.

Therefore we have (3.55) with F2 = (λ K17 + 1)K18 and F3 = K17.

Next we prove a similar theorem for the penalized least squares functional P ′
λ.

Theorem 3.23. Let ∆ be a β-quasi-uniform triangulation of the sphere S2 whose

vertices form a subset of the data sites V and |∆| ≤ 1. Suppose that the data set V

has a property that for every s ∈ Sr
d(∆) and every τ ∈ ∆

F1‖s‖∞,τ ≤
(∑

V∩τ

s(v)2

)1/2

= ‖s · χτ‖X (3.57)

for some positive constant F1. Let Sλ,f be the spline minimizing P ′
λ. Then

‖f − Sλ,f‖∞,S2 ≤ F ′
2

(
tan

|∆|
2

)m+1

|f |m+1,∞,S2 + F ′
3λ‖f‖∞,S2. (3.58)
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for every function f in W m+1,∞(S2). Here m is taken between 0 and d with (d −

m) mod 2 = 0. The constants F ′
2, F

′
3 depend on d, λ, F1, ρ∆, β and cardinality of V.

Proof. The proof is similar to the one of Theorem 3.22. For any s ∈ S

‖s‖2
Y = E ′(s)

and then by Lemma 3.9

E ′
τ(s) ≤ (|s|′2,2,τ)

2.

Since s is a homogeneous polynomial of degree d By Lemma 2.29

|s|′2,2,τ ≤ K ′
16

(tan ρτ

2
)2
‖s‖2,τ

for some constant K ′
16 depending on d. From this point the proof continues as in the

previous theorem.



Chapter 4

Multiple Star Technique for Minimal Energy Interpolation

4.1 Linear Extensions

The minimal energy method described in Section 3.1 is not very practicable for large

data sets. We propose to use an analog of a domain decomposition technique studied

in [8]. We proceed as follows.

Divide the spherical domain Ω into several smaller non-overlapping sub-domains

Ωi, i = 1, ..., n along the edges of an existing triangulation ∆ of Ω. Fix k ≥ 1 and

let q = 2(k + 1)ℓ + 1. Here ℓ is the parameter reflecting local support of the basis

functions Bξ discussed in Section 2.8. Let starq(Ωi) be an enlarged sub-domain Ωi

defined recursively as

starq(Ωi) := ∪{T ∈ ∆, T ∩ starq−1(Ωi) 6= ∅} (4.1)

and star0(Ωi) := Ωi.

We solve the scattered data interpolation problem over each starq(Ωi) for each

i. Let sf,i,k be the minimal energy solution over starq(Ωi). That is, let Si,k be the

collection of splines in S restricted to starq(Ωi) and

Γ(f, i, k) := {s ∈ Si,k, s(v) = f(v), ∀v ∈ starq(Ωi) ∩ V}.

Then sf,i,k ∈ Si,k is the spline satisfying

Ei,k(sf,i,k) = min{Ei,k(s), s ∈ Γ(f, i, k)}, (4.2)

84
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where

Ei,k(s) = Estarq
(Ωi)

(s) (4.3)

defined as in (3.8). We are to show that sf,i,k|Ωi
approximates the global minimal

energy spline (3.4) Sf |Ωi
very well. The following lemma plays crucial role in the

proof of the main result.

Lemma 4.1. Let W be a Hilbert space of spline functions defined on a triangulation

∆ of a spherical domain Ω associated with the inner product 〈·, ·〉Ω and the norm

‖ · ‖Ω defined in Section 3.1. Let B be the local stable basis discussed in Section 2.8.

Let ω be a cluster of triangles in ∆. Suppose s is a function in W satisfying

〈s, u〉 = 0, ∀u ∈ W, supp(u) ⊂ Ω\ω. (4.4)

Then for any triangle τ outside of starq(ω), there exist constants 0 < σ < 1 and H1

depending only ℓ, d and β such that

‖sχτ‖Ω ≤ H1σ
k‖s‖Ω. (4.5)

Proof. Note that s ∈ W implies Ps = s. Then the hypothesis is equivalent to

the one in Theorem 3.6 with the only difference that we work with the cluster of

triangles ω and not with a single triangle. The proof however holds word to word.

In the proof of the main result we also need to use a concept of a natural exten-

sion. For a spline function s defined on some cluster of triangles ω in ∆ we can

write

s =
∑

ξ∈M:Bξ|ω 6=0

cξBξ|ω.

If we replace Bξ|ω in the above by Bξ we obtain the natural extension s̃ of s.

Lemma 4.2. Let ∆ be a β-quasi-uniform triangulation of S2, and let ω be a cluster

of triangles in ∆. For a spline function s defined on ω let s̃ be its natural extension

to all of S2. There exists a constant H2 depending on d and the minimal angle in ∆,
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Θ∆, such that

|s̃|k,∞,ω ≤ H2

(
tan

ρ∆

2

)−k

‖s‖∞,S2 (4.6)

for k ≤ d.

Proof. By Lemma 2.29, taking supremum over triangles in ω we get

|s̃|k,∞,ω ≤ K19

(
tan

ρ∆

2

)−k

‖s̃‖∞,ω,

for some K19 depending on d and Θ∆. By Proposition 2.31 2) and definition of s̃

‖s̃‖∞,ω ≤ ‖c‖∞,S2

∑

ξ∈M:Bξ|ω 6=0

‖Bξ‖∞,S2 ≤ K20K21‖c‖∞,S2

for some K20 depending on d and Θ∆ and K21 = #{ξ ∈ M : Bξ|ω 6= 0}. Since s̃ and

s have the same coefficients and by Proposition 2.31 3)

‖s̃‖∞,ω ≤ K20K21‖c‖∞,S2 ≤ K20K21K22‖s‖∞,S2.

for some K22 depending on d and Θ∆. We obtain (4.6) with H2 = K19K20K21K22.

We are ready to prove our main result.

Theorem 4.3. Suppose we are given data values f(v), v ∈ V. Let Sf be the global

minimal energy interpolating spline satisfying (3.2). Let sf,i,k be the minimal energy

interpolating spline over starq(Ωi) satisfying (4.3). Then there exists a constant σ ∈

(0, 1) such that for q = 2(k + 1)ℓ + 1, k ≥ 1

‖Sf − sf,i,k‖2,Ωi
≤ H3σ

k

(
tan

|∆|
2

)2

(H4|f |2,∞,S2 + H5‖f‖∞,S2) , (4.7)

if f ∈ C2(S2) and d is odd. Here H3, H4 are constants depending on d and β, and

H5 in addition depends on ρ∆. If f ∈ C3(S2) and d is even then

‖Sf − sf,i,k‖2,Ωi
≤ H3σ

k

(
tan

|∆|
2

)2

(H6|f |2,∞,S2 + H7|f |3,∞,S2 + H5‖f‖∞,S2) , (4.8)

for positive constants H6 depending on d and β, and H7 in addition depending on

|∆|.
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Proof. To simplify our notation let us denote Ωq,i := starq(Ωi). Recall from Section

3.1 that

W := {s ∈ S : s(v) = 0, v ∈ V}.

is a Hilbert space with respect to the inner product 〈·, ·〉S2. Note that

〈Sf , u〉S2 = 0

for all u ∈ W. Indeed, ES2(Sf +αu) achieves its minimum when α = 0, the derivative

with respect to α at α = 0 implies the result. Let

Wi,k := {s|Ωq,i
: s ∈ S, s(v) = 0, ∀v ∈ Ωq,i ∩ V},

be equipped with the inner product 〈·, ·〉Ωq,i
. Then

〈sf,i,k, u〉Ωq,i
= 0

for all u ∈ Wi,k. In addition,

〈Sf − sf,i,k, u〉S2 = 0

for all u ∈ W such that supp(u) ⊂ Ωq,i. With ω = S2\Ωq,i, for any τ ∈ Ωi, by Lemma

4.1,

‖(Sf − sf,i,k)χτ‖S2 ≤ H1σ
k‖Sf − s̃f,i,k‖S2.

Here s̃f,i,k is the natural extension of sf,i,k on S2. Then

‖Sf − sf,i,k‖Ωi
=
∑

τ∈Ωi

‖(Sf − sf,i,k)χτ‖S2 ≤ H1

∑

τ∈Ωi

σk‖Sf − s̃f,i,k‖S2.

Let mi denote the number of triangles in Ωi. Then

‖Sf − sf,i,k‖Ωi
≤ H1σ

kmi‖Sf − s̃f,i,k‖S2.

To have a better estimate of ‖Sf −sf,i,k‖Ωi
we may extend sf,i,k in a more convenient

way. Let S̃f,i,k be the natural extension of the spline Sf |
S2\Ωq+ℓ,i

to S2. Let ŝf,i,k =
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s̃f,i,k + S̃f,i,k. Note that supp(s̃f,i,k) and supp(S̃f,i,k) are disjoint and then we can

replace s̃f,i,k above by ŝf,i,k to get

‖Sf − sf,i,k‖Ωi
≤ H1σ

kmi‖Sf − ŝf,i,k‖S2. (4.9)

Consider the usual L2 norm

‖Sf − ŝf,i,k‖2,S2 = ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i
≤ ‖Sf − ŝf,i,k‖2,Ωq,i

+‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
≤ ‖Sf − f‖2,Ωq,i

+‖f − sf,i,k‖2,Ωq,i
+ ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i

.

Since

‖Sf − f‖2,Ωq,i
≤ A

1/2
Ωq,i

‖Sf − f‖∞,Ωq,i

and both Sf − f and sf,i,k − f satisfy the hypothesis of Theorem 3.8, we have

‖Sf − f‖2,Ωq,i
+ ‖f − sf,i,k‖2,Ωq,i

≤ 2A
1/2
Ωq,i

K23

(
tan

|∆|
2

)2

|f |2,∞,S2

for f ∈ C2(S2) and d odd. If f ∈ C3(S2) and d is even then

‖Sf − f‖2,Ωq,i
+ ‖f − sf,i,k‖2,Ωq,i

≤ 2A
1/2
Ωq,i

(
K24

(
tan

|∆|
2

)2

|f |2,∞,S2 + K25

(
tan

|∆|
2

)3

|f |3,∞,S2

)
.

Consider ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
. By Lemma 2.30 since both Sf and ŝf,i,k are in Γ(f),

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i

≤ A
1/2
Ωq+ℓ,i

‖Sf − ŝf,i,k‖∞,Ωq+ℓ,i\Ωq,i

≤ A
1/2
Ωq+ℓ,i

K26

(
tan

|∆|
2

)2

|Sf − ŝf,i,k|2,∞,Ωq+ℓ,i\Ωq,i
,

for some K26. Using the definition of ŝf,i,k we get

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i

≤ A
1/2
Ωq+ℓ,i

K26

(
tan

|∆|
2

)2 (
|Sf |2,∞,S2 + |S̃f,i,k|2,∞,Ωq+ℓ,i\Ωq,i

+ |s̃f,i,k|2,∞,Ωq+ℓ,i\Ωq,i

)
.
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By Lemma 2.29 and Lemma 4.2

|Sf |2,∞,S2 + |S̃f,i,k|2,∞,Ωq+ℓ,i\Ωq,i
+ |s̃f,i,k|2,∞,Ωq+ℓ,i\Ωq,i

≤ (tan
ρ∆

2
)−2(K27‖Sf‖∞,S2 + H2‖Sf‖∞,S2 + H2‖sf,i,k‖∞,S2),

for some K27 depending on d and Θ∆. By Theorem 3.8, if f ∈ C2(S2) and d is odd

‖Sf‖∞,S2 ≤ ‖f‖∞,S2 + K23

(
tan

|∆|
2

)2

|f |2,∞,S2

and

‖sf,i,k‖∞,S2 ≤ ‖f‖∞,S2 + K23(tan
|∆|
2

)2|f |2,∞,S2.

If f ∈ C3(S2) and d is even

‖Sf‖∞,S2 ≤ ‖f‖∞,S2 + K24

(
tan

|∆|
2

)2

|f |2,∞,S2 + K25

(
tan

|∆|
2

)3

|f |3,∞,S2

and

‖sf,i,k‖∞,S2 ≤ ‖f‖∞,S2 + K24(tan
|∆|
2

)2|f |2,∞,S2 + K25

(
tan

|∆|
2

)3

|f |3,∞,S2.

Hence

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i

≤ (K27 + 2H2)K26A
1/2
Ωq+ℓ,i

(
tan |∆|/2

tan ρ∆/2
)2

(
K23

(
tan

|∆|
2

)2

|f |2,∞,S2 + ‖f‖∞,S2

)

and therefore

‖Sf − ŝf,i,k‖2,S2 ≤ A
1/2
Ωq+ℓ,i

(
tan

|∆|
2

)2

(K23K28|f |2,∞,S2 + K29‖f‖∞,S2)

for f ∈ C2(S2) and d odd. Here for convenience we denote K28 = 2 + K26(K27 +

2H2)(
tan |∆|/2
tan ρ∆/2

)2 and K29 = K26(K27+2H2)

(tan
ρ∆
2

)2
. Similarly for f ∈ C3(S2) and d even we get

‖Sf − ŝf,i,k‖2,S2 ≤ A
1/2
Ωq+ℓ,i

(
tan

|∆|
2

)2

(
K24K28|f |2,∞,S2 + K25K28

(
tan

|∆|
2

)
|f |3,∞,S2 + K29‖f‖∞,S2

)
.
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Apply Theorem 3.3 to (4.9) to see that

‖Sf − sf,i,k‖2,Ωi
≤ K30

(
tan

|∆|
2

)2

‖Sf − sf,i,k‖Ωi

≤ K30H1miσ
k

(
tan

|∆|
2

)2

‖Sf − ŝf,i,k‖S2

≤ K30K31H1miσ
k‖Sf − ŝf,i,k‖2,S2 ,

for some K30, K31 depending on d and β. Then for f ∈ C2(S2) and d odd

‖Sf − sf,i,k‖2,Ωi
≤ H3σ

k

(
tan

|∆|
2

)2

(H4|f |2,∞,S2 + H5‖f‖∞,S2).

with H3 = K30K31H1miA
1/2
Ωq+ℓ,i

, H4 = K23K28and H5 = K29. Similarly for f ∈ C3(S2)

and d even we obtain

‖Sf − sf,i,k‖2,Ωi
≤ H3σ

k

(
tan

|∆|
2

)2

(H6|f |2,∞,S2 + H7|f |3,∞,S2 + H5‖f‖∞,S2).

with H6 = K24K28 and H7 = K25K28. This completes the proof of Theorem 4.3.

4.2 Constant Extensions

We complete this chapter by deriving similar error bounds for the multiple star

technique applied to the global interpolating splines minimizing E ′ defined in Section

3.2. Similar to Lemma 4.1 we have as in Theorem 3.13

Lemma 4.4. Let W be a Hilbert space of spline functions defined on a triangulation

∆ of a spherical domain Ω associated with the inner product 〈·, ·〉Ω and the norm

‖ · ‖Ω defined in Section 3.1. Let B be the local stable basis discussed in Section 2.8.

Let ω be a cluster of triangles in ∆. Suppose s is a function in W satisfying

〈s, u〉 = 0, ∀u ∈ W, supp(u) ⊂ Ω\ω. (4.10)

Then for any triangle τ outside of starq(ω), there exist constants 0 < σ′ < 1 and H ′
1

depending only on ℓ, d and β such that

‖sχτ‖′Ω ≤ H ′
1(σ

′)k‖s‖′Ω. (4.11)
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Recall the concept of a natural extension. For a spline function s defined on some

cluster of triangles ω in ∆ we can write

s =
∑

ξ∈M:Bξ|ω 6=0

cξBξ|ω.

If we replace Bξ|ω in the above by Bξ we obtain the natural extension s̃ of s. We

have, similar to Lemma 4.2,

Lemma 4.5. Let ∆ be a β-quasi-uniform triangulation of S2, and let ω be a cluster

of triangles in ∆. For a spline function s defined on ω let s̃ be its natural extension

to all of S2. There exists a constant H ′
2 depending on d and the minimal angle in ∆,

Θ∆, such that

|s̃|′k,∞,ω ≤ H ′
2

(
tan

ρ∆

2

)−k

‖s‖∞,S2 (4.12)

for k ≤ d.

Proof. Similar to the proof of Lemma 4.2.

In the proof of the main theorem of this section we use the same ideas as in

the previous section. Naturally, the results are different since we are minimizing a

different energy functional.

Theorem 4.6. Suppose we are given data values f(v), v ∈ V. Let Sf be the global

interpolating spline minimizing (3.23). Let sf,i,k be the minimal energy interpolating

spline over starq(Ωi) satisfying

E ′
i,k(sf,i,k) = min{E ′

i,k(s), s ∈ Γ(f, i, k)}. (4.13)

Then there exists a constant σ ∈ (0, 1) such that for q = 2(k + 1)ℓ + 1, k ≥ 1

‖Sf − sf,i,k‖2,Ωi
≤ H ′

3(σ
′)k

(
tan

|∆|
2

)2

(H ′
4|f |2,∞,S2 + H ′

5|f |′2,∞,S2 + H ′
6‖f‖∞,S2),

(4.14)
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if f ∈ C2(S2) and d is odd. Here H ′
3, H

′
4, H

′
5 are constants depending on d and β,

and H ′
6 additionally depends on ρ∆. If f ∈ C3(S2) and d is even then

‖Sf − sf,i,k‖2,Ωi
≤ H ′

3(σ
′)k

(
tan

|∆|
2

)2

(H ′
5|f |′2,∞,S2 + H ′

7|f |3,∞,S2 + H ′
6‖f‖∞,S2),

(4.15)

for a positive constant H ′
7 depending on d, β and the size of the largest triangle in

∆.

Proof. To simplify our notation let us denote Ωq,i := starq(Ωi). Recall from Section

3.2 that

W := {s ∈ S : s(v) = 0, v ∈ V}.

is a Hilbert space with respect to the inner product 〈·, ·〉S2. Note that

〈Sf , u〉S2 = 0

for all u ∈ W. Indeed, ES2(Sf +αu) achieves its minimum when α = 0, the derivative

with respect to α at α = 0 implies the result. Let

Wi,k := {s|Ωq,i
: s ∈ S, s(v) = 0, ∀v ∈ Ωq,i ∩ V},

be equipped with the inner product 〈·, ·〉Ωq,i
. Then

〈sf,i,k, u〉Ωq,i
= 0

for all u ∈ Wi,k. In addition,

〈Sf − sf,i,k, u〉S2 = 0

for all u ∈ W such that supp(u) ⊂ Ωq,i. With ω = S2\Ωq,i, for any τ ∈ Ωi, by Lemma

4.4,

‖(Sf − sf,i,k)χτ‖′S2 ≤ H ′
1(σ

′)k‖Sf − s̃f,i,k‖′S2.

Here s̃f,i,k is the natural extension of sf,i,k on S2. Then

‖Sf − sf,i,k‖′Ωi
=
∑

τ∈Ωi

‖(Sf − sf,i,k)χτ‖′S2 ≤ H ′
1

∑

τ∈Ωi

(σ′)k‖Sf − s̃f,i,k‖′S2.
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Let mi denote the number of triangles in Ωi. Then

‖Sf − sf,i,k‖′Ωi
≤ H ′

1(σ
′)kmi‖Sf − s̃f,i,k‖′S2 .

To have a better estimate of ‖Sf − sf,i,k‖′Ωi
we extend sf,i,k in a more convenient

way. Let S̃f,i,k be the natural extension of the spline Sf |
S2\Ωq+ℓ,i

to S2. Let ŝf,i,k =

s̃f,i,k + S̃f,i,k. Note that supp(s̃f,i,k) and supp(S̃f,i,k) are disjoint and then we can

replace s̃f,i,k above by ŝf,i,k to get

‖Sf − sf,i,k‖′Ωi
≤ H ′

1(σ
′)kmi‖Sf − ŝf,i,k‖′S2 . (4.16)

Consider the usual L2 norm

‖Sf − ŝf,i,k‖2,S2 = ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i
≤ ‖Sf − ŝf,i,k‖2,Ωq,i

+‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
≤ ‖Sf − f‖2,Ωq,i

+‖f − sf,i,k‖2,Ωq,i
+ ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i

.

Since

‖Sf − f‖2,Ωq,i
≤ A

1/2
Ωq,i

‖Sf − f‖∞,Ωq,i

and both Sf − f and sf,i,k − f satisfy the hypothesis of Theorem 3.15, we have

‖Sf − f‖2,Ωq,i
+ ‖f − sf,i,k‖2,Ωq,i

≤

2 A
1/2
Ωq,i

(
K ′

22

(
tan

|∆|
2

)2

|f |2,∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2

)
,

for f ∈ C2(S2) and d odd. If f ∈ C3(S2) and d is even then

‖Sf − f‖2,Ωq,i
+ ‖f − sf,i,k‖2,Ωq,i

≤

2 A
1/2
Ωq,i

(
K ′

24

(
tan

|∆|
2

)3

|f |3,∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2

)
.

Consider ‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
. By Lemma 2.30 in since both Sf and ŝf,i,k are in

Γ(f),

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
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≤ A
1/2
Ωq+ℓ,i

‖Sf − ŝf,i,k‖∞,Ωq+ℓ,i\Ωq,i

≤ A
1/2
Ωq+ℓ,i

K ′
25

(
tan

|∆|
2

)2

|Sf − ŝf,i,k|′2,∞,Ωq+ℓ,i\Ωq,i
,

for some K ′
25. Using the definition of ŝf,i,k we get

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
≤ A

1/2
Ωq+ℓ,i

K ′
25

(
tan

|∆|
2

)2 (
|Sf |′2,∞,S2 + |S̃f,i,k|′2,∞,Ωq+ℓ,i\Ωq,i

+ |s̃f,i,k|′2,∞,Ωq+ℓ,i\Ωq,i

)
.

By Lemma 2.29 and Lemma 4.5

|Sf |′2,∞,S2 + |S̃f,i,k|′2,∞,Ωq+ℓ,i\Ωq,i
+ |s̃f,i,k|′2,∞,Ωq+ℓ,i\Ωq,i

≤
(
tan

ρ∆

2

)−2

(K ′
26‖Sf‖∞,S2 + H ′

2‖Sf‖∞,S2 + H ′
2‖sf,i,k‖∞,S2),

for some K ′
26 depending on d and Θ∆. By Theorem 3.15, if f ∈ C2(S2) and d is odd

‖Sf‖∞,S2 ≤ ‖f‖∞,S2 + K ′
22

(
tan

|∆|
2

)2

|f |2,∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2

and

‖sf,i,k‖∞,S2 ≤ ‖f‖∞,S2 + K ′
22(tan

|∆|
2

)2|f |2,∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2.

If f ∈ C3(S2) and d is even

‖Sf‖∞,S2 ≤ ‖f‖∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2 + K ′
24

(
tan

|∆|
2

)3

|f |3,∞,S2

and

‖sf,i,k‖∞,S2 ≤ ‖f‖∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2 + K ′
24

(
tan

|∆|
2

)3

|f |3,∞,S2.

Hence

‖Sf − ŝf,i,k‖2,Ωq+ℓ,i\Ωq,i
≤ (K ′

26 + 2H ′
2)K

′
25A

1/2
Ωq+ℓ,i

(
tan |∆|/2

tan ρ∆/2

)2

(
K ′

22(tan
|∆|
2

)2|f |2,∞,S2 + K ′
23

(
tan

|∆|
2

)2

|f |′2,∞,S2 + ‖f‖∞,S2

)
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and therefore

‖Sf − ŝf,i,k‖2,S2 ≤ A
1/2
Ωq+ℓ,i

(
tan

|∆|
2

)2

(K ′
22K

′
27|f |2,∞,S2 + K ′

23K
′
27|f |′2,∞,S2 + K ′

28‖f‖∞,S2),

for f ∈ C2(S2) and d odd. Here for convenience we denote K ′
27 := 2 + K ′

25(K
′
26 +

2H ′
2)(

tan |∆|/2
tan ρ∆/2

)2, K ′
28 :=

K ′
25(K ′

26+2H′
2)

(tan
ρ∆
2

)2
. Similarly for f ∈ C3(S2) and d even we get

‖Sf − ŝf,i,k‖2,S2 ≤ A
1/2
Ωq+ℓ,i

(
tan

|∆|
2

)2

(
K ′

23K
′
27|f |′2,∞,S2 + K ′

24K
′
27

(
tan

|∆|
2

)
|f |3,∞,S2 + K ′

28‖f‖∞,S2

)
.

Apply Theorem 3.3 to both sides of (4.16) to see that

‖Sf − sf,i,k‖2,Ωi
≤ K ′

29

(
tan

|∆|
2

)2

‖Sf − sf,i,k‖′Ωi

≤ K ′
29H

′
1mi(σ

′)k

(
tan

|∆|
2

)2

‖Sf − ŝf,i,k‖′S2

≤ K ′
30K

′
29H

′
1mi(σ

′)k‖Sf − ŝf,i,k‖2,S2,

for some K ′
29, K

′
30 depending on d and β. Then for f ∈ C2(S2) and d odd

‖Sf − sf,i,k‖2,Ωi
≤ H ′

3(σ
′)k

(
tan

|∆|
2

)2

(H ′
4|f |2,∞,S2 + H ′

5|f |′2,∞,S2 + H ′
6‖f‖∞,S2).

with H ′
3 = K ′

29K
′
30H

′
1miA

1/2
Ωq+ℓ,i

, H ′
4 = K ′

22K
′
27, H ′

5 = K ′
23K

′
27 and H ′

6 = K ′
28. Simi-

larly for f ∈ C3(S2) and d even we obtain

‖Sf − sf,i,k‖2,Ωi
≤ H ′

3(σ
′)k

(
tan

|∆|
2

)2

(H ′
5|f |′2,∞,S2 + H ′

7|f |3,∞,S2 + H ′
6‖f‖∞,S2).

with H ′
7 = K ′

24K
′
27 tan |∆|

2
. This completes the proof of Theorem 4.6.



Chapter 5

Computational Details

In this chapter we describe in detail how the global approximation methods are

implemented in practice.

5.1 Minimal Energy Interpolation

Given V := {v ∈ S2} a set of points on the unit sphere with real numbers {f(v), v ∈

V} construct a regular spherical triangulation ∆. For d ≥ 1 and r ≥ 0, two integers

with 3r + 2 ≤ d, define S−1
d (∆) to be the space of homogeneous splines of degree d

and smoothness −1, i.e.

S−1
d (∆) := {s : s|τ ∈ Hd, ∀τ ∈ ∆}.

Then let

Sr
d(∆) := S−1

d (∆) ∩ Cr(S2).

It is shown in [4] that for d ≥ 3r + 2 there is more than one interpolating spline.

A typical way to use the extra degrees of freedom is to minimize a functional E(s)

measuring smoothness of s. Let

Eδ(s) =

∫

S2

(♦sδ)
T (♦sδ)dσ, (5.1)

96
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where ♦ is a vector of second order differential operators defined for a trivariate

function h by

♦h =




D2
xxh

D2
yyh

D2
zzh

√
2D2

xyh
√

2D2
xzh

√
2D2

yzh




.

In (5.1) sδ is the unique homogeneous extension of s of degree δ to R3\{0} defined by

sδ = |v|δs( v
|v|). As we discussed in Chapter 3 we use δ = 0 or δ = 1. After evaluation

♦sδ is restricted to the unit sphere and then integrated.

To establish existence and uniqueness of an interpolating spherical spline in

Sr
d(∆) which minimizes (5.1), we need the following

Lemma 5.1. Let ∆ be a spherical triangulation and suppose f 6= 0. Then

1) E1(f) = 0 if and only if f is a trivariate homogeneous linear polynomial on S2,

2) E0(f) = 0 if and only if f is a constant polynomial.

Proof. Lemmas 3.2 and 3.10.

Recall that

Γ(f) := {s ∈ Sr
d(∆) : s(v) = f(v), ∀v ∈ V}

is the set of all splines in Sr
d(∆) interpolating f at the vertices of triangulation ∆.

Let Sf ∈ Γ(f) denote a spherical spline minimizing (5.1) over Γ(f).

Lemma 5.2. There exists a unique spline s0 ∈ Sr
d(∆) interpolating f = 0 and

minimizing (5.1) with δ = d mod(2).

Proof. Since Eδ(s) ≥ 0 for all s ∈ Sr
d(∆), Eδ(s0) = 0 is the absolute minimum

of Eδ at s0 = 0. To show the uniqueness, assume there is another s ∈ Γ(0) with

Eδ(s) = 0. We need to prove that s = s0. By our assumption, Eδ(s) = 0 on every
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triangle τ ∈ ∆. By Lemma 5.1 s is either a linear homogeneous function (if d is odd)

or s is a constant (if d is even) on every triangle τ ∈ ∆. Since s interpolates 0 at the

vertices of each triangle, s = 0 on each triangle. Therefore s = s0.

Theorem 5.3. Let ∆ be a regular triangulation of the unit sphere with vertices V

and {f(v), v ∈ V} be given for some spherical function f . Then for any two positive

integers d, r with d ≥ 3r + 2, there exists a unique spline Sf ∈ Sr
d(∆) interpolating

the values of f and minimizing Eδ.

Proof. Since d ≥ 3r + 2, Γ(f) is not empty (cf. [4]). There exists a minimal energy

spline Sf interpolating f since Γ(f) is a nonempty closed convex set. To prove

uniqueness suppose that there exists another spline Qf ∈ Γ(f) minimizing Eδ, i.e.

Eδ(Sf ) = Eδ(Qf ). Since Eδ(Sf +νs) achieves its minimal value at ν = 0 over s ∈ Γ(0),

we have

d

dν
Eδ(Sf + νs)|ν=0 = 0,

which leads to ∫

S2

(♦Sf,δ)
T (♦s)dσ = 0

for s ∈ Γ(0). Using s = Sf − Qf we get

∫

S2

(♦Sf,δ)
T (♦Sf,δ)dσ =

∫

S2

(♦Sf,δ)
T (♦Qf,δ)dσ.

Therefore,

Eδ(Sf − Qf ) = 0,

and by Lemma 5.2 Sf − Qf ≡ 0. This completes the proof.

Now we explain how to compute minimal energy interpolating spherical splines.

We use a coefficient vector c to represent each spline function in Sr
d(∆)

s|τ =
∑

i+j+k=d

cτ
ijkB

d,τ
ijk , τ ∈ ∆

c := (cτ
ijk), i + j + k = d, τ ∈ ∆.



99

To simplify the data management we linearize the triple indices of BB-coefficients

cijk and correspondingly the indices of BB-basis functions Bd
ijk. From the properties

of SBB-polynomials, we have

cd00 = f(v1), c0d0 = f(v2), c00d = f(v3)

on each triangle τ ∈ ∆. We can then assemble interpolation conditions into a matrix

K, according to the order in which the coefficient vector c is organized. Then Kc = F

is the linear system of equations such that a coefficient vector c solving it corresponds

to a spline s interpolating f at the data sites V.

To ensure the Cr continuity across each edge of ∆, we impose smoothness con-

ditions, i.e., the conditions in Theorem 2.18, for every edge of ∆. Let M denote the

smoothness matrix such that

Mc = 0

if and only if s ∈ Sr
d(∆).

Next fix δ = d mod(2). The problem of minimizing (5.1) over Sr
d(∆) can be

formulated as follows:

minimize cT Ec, subject to Mc = 0 and Kc = F .

Here the energy matrix E is defined as follows. E = diag(Eτ , τ ∈ ∆) is a diago-

nally block matrix. Each block Eτ is associated with a triangle τ and contains the

following entries

Eτ
ij :=

∫

τ

♦(Bi)
T
δ ♦(Bj)δdσ, (5.2)

where Bi denotes a BB-polynomial basis function (2.19) of degree d corresponding

to the order of the linearized triple indices (i, j, k), i + j + k = d.

By the method of Lagrange multipliers, we need to solve the linear system



E KT MT

K 0 0

M 0 0







c

η

γ




=




0

F

0




.
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Here γ and η are vectors of Lagrange multiplier coefficients. Note that E is a sin-

gular matrix. We obtain the least squares solution of the linear system by using the

iterative method discussed in Chapter 1 and studied in [6]. Lemma 5.2 implies that

E is symmetric and nonnegative definite with respect to L = (K; M). Thus, the iter-

ative method converges to the vector c, which is the coefficient vector of the unique

interpolating spline minimizing (5.1). This furnishes a computational algorithm.

For interpolating non-homogeneous splines we choose integers d and r ≥ 0 and

define

N r
d (∆) = Sr

d(∆) ⊕ Sr
d−1(∆).

Then

N r
d (∆) = {s : s|τ ∈ Pd, ∀τ ∈ ∆} ∩ Cr(S2).

To simplify out notation, we assume that d is an odd integer and write s = s1+s0

for a nonhomogeneous spline s. The subscript 1 indicates that s1 is a spline of odd

degree and that we use its extension of degree 1 to compute derivatives. Similarly,

the subscript 0 reminds us that s0 is a spline of even degree, and that we use its

constant extension to compute derivatives.

Define a new energy functional which annihilates non-homogeneous linear poly-

nomials as well as constants and homogeneous linear polynomials:

E(s) = λ

∫

S2

(♦s1)
T (♦s1)dσ + (1 − λ)

∫

S2

(♦s0)
T (♦s0)dσ, (5.3)

with 0 < λ < 1.

Lemma 5.4. Choose degree d and smoothness r for a spline space N r
d (∆) as above.

Given a spherical function f let

Γ̃(f) := {s ∈ N r
d (∆) : s(v) = f(v), ∀v ∈ V}
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be the set of all splines in N r
d (∆) interpolating f at the vertices of triangulation ∆.

Then there exists a unique spline s = 0 ∈ N r
d (∆) interpolating f = 0 and minimizing

(5.3).

Proof. Suppose that s = 0. By the definition s = s1 + s0, where s1|τ is a homoge-

neous polynomial of degree d and s0|τ is a homogeneous polynomial of degree d− 1.

Since Sr
d(∆) ∩ Sr

d−1(∆) = 0, s1 = 0 and s0 = 0. By the definition (5.3), E(0) = 0.

Since E(s) ≥ 0 for all s ∈ N r
d (∆), E(0) = 0 is the absolute minimum of E . To show

the uniqueness, assume there is q ∈ Γ(0) with E(q) = 0. We need to show that

q = s. As above we know q = q1 + q0 for some q1 ∈ Sr
d(∆) and q0 ∈ Sr

d−1(∆). Then

E1(q1) = 0 and E0(q0) = 0 on every triangle τ ∈ ∆. By Lemma 5.1 q1 is a linear

homogeneous function and q0 is a constant on R3. Therefore q1 + q0 is a trivariate

linear function satisfying zero interpolation conditions over points v ∈ V none of

which is the origin. By the linear independence of x, y, z and 1, q = 0 on every

triangle. Therefore q = s.

With the above lemma, we are ready to prove

Theorem 5.5. Let ∆ be a regular triangulation of the unit sphere with vertices V.

Let {f(v), v ∈ V} be the given set of data values. Then for any integers d ≥ 1, r ≥ 0

such that with d ≥ 3r + 2, there exists a unique spline Sf ∈ N r
d (∆) interpolating

values f and minimizing E .

Proof. First, Γ̃(f) is not empty since d ≥ 3r + 2 (cf. [4]). Then there exists a

minimal energy interpolating spline Sf ∈ Γ̃(f) since Γ̃(f) is a nonempty convex set.

The uniqueness of Sf follows from Lemma 5.4 as in the proof of Theorem 5.3.

To set the linear system for interpolation problem over N r
d (∆), we can do the

following. Consider s = s1 + s0 with splines s1 and s0 of degrees d and d − 1,

respectively. Order the coefficients of the splines over each triangle τ as above and

denote them by cτ
1 and cτ

0 . Let

c = (c1, c0)



102

with c1 := (cτ
1, τ ∈ ∆) and c0 := (cτ

0, τ ∈ ∆). Then we can denote interpolation,

smoothness and energy matrices by K1, K0, M1, M0, E1, E0 accordingly. We

obtain the following interpolation conditions for s

Kc :=
[

K1 K0

]

 c1

c0


 = F.

For s to be smooth we require both s1 and s0 to be smooth. Thus the requirement

of Cr smoothness is expressed in the form of the linear system

Mc :=


 M1 0

0 M0




 c1

c0


 = 0.

With the definition of (5.3) it is clear that the energy matrix in this case can be

defined by

E =


 λE1 0

0 (1 − λ)E0


 .

Therefore s ∈ Sr
d(∆) ⊕ Sr

d−1(∆) minimizes (5.3), interpolates f at vertices of ∆,

and is Cr continuous if and only if the vector c of its coefficients satisfies the linear

system 


E KT MT

K 0 0

M 0 0







c

γ

η




=




0

F

0




.

The linear system is again singular. However the application of the iterative scheme

allows us to successfully obtain the least squares solution since

Theorem 5.6. E is symmetric and positive definite with respect to


 K

M


.

Proof. Since E(s) = cTEc ≥ 0, cTEc = 0 implies that s is a linear polynomial.

Zero side conditions force s = 0. By the linear independence of basis functions c = 0.
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5.2 Discrete Least Squares Fitting

When the given data set is extremely large, e.g., n ≥ 10, 000 and highly redundant,

we find a discrete least squares fitting to the given data instead of computing an

interpolating spherical spline.

Let V = {vℓ, ℓ = 1, · · · , n} be the given data sites over the unit sphere and let ∆

be a triangulation of S2 whose vertices may not relate to the data sites. For given

degree d, we have to assume that the data sites are rich enough in the following

sense.

Definition 5.1. The data sites vℓ, ℓ = 1, · · · , n are said to be evenly distributed

over the triangulation ∆ with respect to d if the matrix

[
Bd,τ

ijk(vℓ)
]

i+j+k=d,vℓ∈τ

is of full rank for each τ ∈ ∆.

Suppose that the given data values are from a function f , i.e., f(vℓ), ℓ = 1, · · · , n

are given. Let L(s) be the least squares functional

L(s) =

n∑

ℓ=1

(s(vℓ) − f(vℓ))
2. (5.4)

The discrete least squares spherical spline Sf ∈ Sr
d(∆) is the function in Sr

d(∆) which

minimizes the quantity L(s), s ∈ Sr
d(∆).

Theorem 5.7 . Suppose that the given data sites vℓ, ℓ = 1, · · · , n are evenly dis-

tributed over ∆ with respect to d. Then there exists a unique spline Sf ∈ Sr
d(∆) of

degree d and smoothness r approximating given data values fℓ = f(vℓ), ℓ = 1, · · · , n

in the sense that it minimizing discrete least squares functional (5.4).

Proof. Recall that any s ∈ Sr
d(∆) can be written as

s(v)|τ =
∑

i+j+k=d

cτ
ijkB

τ
ijk(v),
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on a spherical triangle τ ∈ ∆. Let c = (cτ
ijk, i + j + k = d, τ ∈ ∆) be the coefficient

vector of s. Note that

L(c) := L(s) =
n∑

ℓ=1

|s(vℓ) − fℓ|2 =
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

cτ
ijkB

τ
ijk(vℓ) − fℓ)

2

is a function of c and that L(0) = ‖f‖2
2, with f = (fℓ, ℓ = 1, · · · , n) being the data

value vector, and ‖f‖2 := (
n∑

ℓ=1

|fℓ|2)1/2 denoting the standard ℓ2 norm of the vector

f . Consider

A = {c, L(c) ≤ ‖f‖2
2}.

Let us show that A is a bounded and closed set.

Fix any triangle τ ∈ ∆. For any c ∈ A we have

|
∑

i+j+k=d

cτ
ijkB

τ
ijk(vℓ) − fℓ|2 ≤ ‖f‖2

2, ∀vℓ ∈ τ.

It follows that

|
∑

i+j+k=d

cτ
ijkB

τ
ijk(vℓ)| ≤ 2‖f‖2, ∀vℓ ∈ τ.

Since the data sites are evenly distributed, the matrix

[
Bτ

ijk(vℓ)
]
i+j+k=d,vℓ∈τ

is of full rank and hence, there exists an index set Iτ ⊂ {1, 2, · · · , n} such that the

square matrix

Bτ = [Bijk(vℓ)]i+j+k=d,ℓ∈Iτ

is invertible. Therefore

‖(cτ
ijk,i+j+k=d)‖2 ≤ Cτ ,

with Cτ being a positive constant depending only on ‖f‖2 and the norm of the

inverse matrix of Bτ . Hence ‖c‖2 is bounded above and A is bounded. It is easy to

see that A is closed and that As := {c : Mc = 0} is also closed where Mc = 0 are
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the linear system representing the smoothness conditions for Sr
d(∆). Hence, the set

A ∩ As is compact.

It is clear that L(s) is a continuous function of c. Therefore, there exists a cf ∈

A ∩ As minimizing L(s).

To show the uniqueness of the solution cf , we note that L(s) is a convex function

and assume that there two solutions cf and ĉf . Then convexity of L(s) implies that

for any 0 ≤ ν ≤ 1 a convex combination cf + ν(ĉf − cf) also minimizes L(s). Thus

1/2
d

dν
L(cf + ν(ĉf − cf))

=
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

(cτ
ijk + ν(ĉτ

ijk − cτ
ijk))B

τ
ijk(vℓ) − fℓ)(ĉ

τ
ijk − cτ

ijk)B
τ
ijk(vℓ)

= ν
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

(ĉτ
ijk − cτ

ijk)
2Bτ

ijk(vℓ)
2

+
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

cτ
ijk(ĉ

τ
ijk − cτ

ijk)B
τ
ijk(vℓ)

2

−
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

fℓ(ĉ
τ
ijk − cτ

ijk)B
τ
ijk(vℓ) = 0

for any 0 ≤ ν ≤ 1. Note that

∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

cτ
ijk(ĉ

τ
ijk − cτ

ijk)B
τ
ijk(vℓ)

2

−
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

fℓ(ĉ
τ
ijk − cτ

ijk)B
τ
ijk(vℓ) = 0

at ν = 0. Sice it is independent of ν it must be 0 for all ν. It follows that

∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

(ĉτ
ijk − cτ

ijk)
2Bτ

ijk(vℓ))
2 = 0.

Since the data sites are evenly distributed over each τ ∈ ∆, cf = ĉf . This completes

the proof.

We first explain a computational algorithm for the application of the discrete least

squares method in Sr
d(∆). The Lagrange multipliers method implies the following

linear system: 
 LT L MT

M 0




 c

η


 =


 LT F

0


 ,
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where L is the observation matrix with entries Lij = Bj(vi), i = 1, · · · , n and j runs

from 1 to T (d + 1)(d + 2)/2 where T denotes the number of triangles in ∆. Here,

F is a vector of function values ordered as the spherical locations vℓ, ℓ = 1, · · · , n,

M is smoothness matrix and η is a vector of Lagrange multipliers. The solution of

this system is a vector c of coefficients of a homogeneous spline s of degree d and

smoothness r defined with respect to the spherical triangulation ∆ minimizing (5.4).

For non-homogeneous spherical splines, the discrete least squares approximation

problem can be treated similarly. We seek a function s = s1+s0 ∈ N r
d (∆) minimizing

L(s) (5.4).

Note that the Definition 5.1 applied to the non-homogeneous case has to take

into account that the basis functions in N r
d (∆) consist of homogeneous BB-basis

polynomials of degrees d and d − 1.

Definition 5.2. The given data sites vℓ, ℓ = 1, · · · , n are said to be evenly dis-

tributed over the triangulation ∆ with respect to d if the matrix

LT := [Bd,τ
i1j1k1(vℓ) Bd−1,τ

i2j2k2(vℓ)]i1+j1+k1=d,i2+j2+k2=d−1,vℓ∈τ ,

is of full rank for every τ ∈ ∆.

Theorem 5.8. Suppose that the given data locations vℓ, ℓ = 1, · · · , n are evenly

distributed with respect to d. Then there exists a unique spline Sf ∈ N r
d (∆) of degree

d and smoothness r approximating given data values fℓ, ℓ = 1, · · · , n and minimizing

discrete least squares functional (5.4).

Proof. Similar to that of Theorem 5.7.

To find the discrete least squares spline in N r
d (∆) we construct the observation

matrix

L =
[

L1 L0

]
,
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and assemble smoothness conditions Mc = 0 with

M =


 M1 0

0 M0




as in the previous section. Here L1 and L0 are the observation matrices containing

values of BB-basis polynomials at the data sites for the spaces S−1
d (∆) and S−1

d−1(∆).

We therefore need to solve the linear system

 LTL MT

M 0




 c

η


 =


 LT F

0


 ,

where F contains given data values and η is a vector of Lagrange multiplier coeffi-

cients.

Theorem 5.9. The matrix LTL is positive definite with respect to Mc = 0.

Proof. It is clear that cTLT Lc ≥ 0 for all c. Suppose cTLT Lc = 0 for some c. Then

Lc = 0. Since L is of full rank c = 0.

5.3 Penalized Least Squares Approximation

Again we let V := {vℓ, ℓ = 1, · · · , n} be a set of sites on the unit sphere and

{fℓ, ℓ = 1, · · · , n} be the corresponding values for some function f . We need to find

a smooth surface resembling f . Another commonly used method in this situation is

the penalized least squares fit.

As in the previous section, let ∆ be a regular triangulation of the unit sphere S2

whose vertices may not relate to the data sites in V. Consider the spline space Sr
d(∆)

of degree d and smoothness r with r < d. We look for a spline solution Sf ∈ Sr
d(∆)

satisfying

Pλ(Sf) = min{Pλ(s) : s ∈ Sr
d(∆)}, (5.5)

where λ is a positive weight and

Pλ(s) := L(s) + λEδ(s). (5.6)
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Here the least squares functional and the energy functional are defined in (5.4)

and (5.3), respectively. It is clear that for large λ ≫ 1, Sf is close to minimal

energy splines, and for small λ ≪ 1 the solution Sf is close to the discrete least

squares spline. One way to choose λ is the cross validation method (cf. [24]). Our

recommendation is to choose a small value for λ to get a good approximation, like

that of the discrete least squares fitting.

Let us first prove existence and uniqueness of the penalized least squares solution

in a homogeneous spherical spline space Sr
d(∆).

Theorem 5.10. Fix λ > 0. Suppose all vertices W of ∆ are part of the data sites

V and |∆| ≤ 1. There exists a unique spline Sf ∈ Sr
d(∆) minimizing (5.6).

Proof. Recall that any s ∈ Sr
d(∆) can be written as

s(v)|τ =
∑

i+j+k=d

cτ
ijkB

τ
ijk(v)

on a spherical triangle τ ∈ ∆. Let c = (cτ
ijk, i + j + k = d, τ ∈ ∆) be the coefficient

vector of s. Recall that the energy functional E(s) can be expressed in terms of c as

E(s) = cT Ec

with the entries of E defined in (5.2). The discrete least squares functional L(s) is

expressed as

L(s) =

n∑

ℓ=1

|s(vℓ) − fℓ|2 =
∑

τ∈∆

∑

vℓ∈τ

(
∑

i+j+k=d

cτ
ijkB

τ
ijk(vℓ) − fℓ)

2

= cT LT Lc − 2fTLc + ‖f‖2
2,

with f = (fℓ, ℓ = 1, · · · , n) being a data value vector. Thus

Pλ(s) = λcTEc + cT LT Lc − 2fT Lc + ‖f‖2
2.

Note that Pλ(0) = ‖f‖2
2. Consider

A = {c,Pλ(s) ≤ ‖f‖2
2}.
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Let us show that A is a bounded and closed set so that the continuous function

Pλ(s) must have a minimum in A.

Fix c ∈ A and let s be the corresponding spline. Then Pλ(s) ≤ ‖f‖2
2. By the

definition of Pλ we must have λEδ(s) ≤ ‖f‖2
2. By Lemmas 3.1, 3.9 and 2.53 the

energy of a spline is equivalent to the square of its second order supremum Sobolev

seminorm on every triangle of ∆, i.e. we have

|s|2,∞,τ ≤ J1√
λ
‖f‖2

and

|s|′2,∞,τ ≤ J2√
λ
‖f‖2

with J1, J2 depending on degree d of the spline space and the smallest angle in τ . Let

rτ denote the center of the smallest spherical cap containing τ . Let Tτ be a plane

tangent to τ at rτ . Define τ̄ in this plane as a set of points {w : w
|w|

∈ τ}. Define

sδ(w) = |w|δs( w
|w|) to be a homogeneous extension of s of degree δ and s̄δ to be its

restriction to τ̄ . Similarly define fδ and f̄δ. By Proposition 2.26

|s̄1|2,∞,τ̄ ≤ J3|s|2,∞,τ ,

and

|s̄0|2,∞,τ̄ ≤ J4|s|′2,∞,τ .

Therefore

|s̄δ|2,∞,τ̄ ≤ J5√
λ
‖f‖2.

Since the vertices, say v1, v2, v3, of τ belong to W

|s̄δ(v̄i)| ≤ |s̄δ(v̄i) − f̄δ(v̄i)| + |f̄δ(v̄i)|

≤ max{|vℓ| : vℓ ∈ τ}((
∑

vℓ∈τ

|s(vℓ) − f(vℓ)|2)1/2 + ‖f‖2)

≤ J6((Pλ(s))
1/2 + ‖f‖2) ≤ 2J6‖f‖2,
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for J6 = max{|vℓ| : vℓ ∈ τ} and i = 1, 2, 3. For any point v̄ in τ̄ we use Taylor

expansion to get

s̄δ(v̄1) = s̄δ(v̄) + ∇s̄δ(v̄) · (v̄1 − v̄) + O(|s̄δ|2,∞,τ̄ |τ̄ |2)

where |τ̄ | denotes the size of τ̄ . Using similar expressions for v̄2 and v̄3 we get

s̄δ(v̄1) − s̄δ(v̄2) = ∇s̄δ(v̄) · (v̄1 − v̄2) + O(|s̄δ|2,∞,τ̄ |τ̄ |2),

s̄δ(v̄2) − s̄δ(v̄3) = ∇s̄δ(v̄) · (v̄2 − v̄3) + O(|s̄δ|2,∞,τ̄ |τ̄ |2).

Solving this linear system for ∇s̄δ, we get

Dxs̄δ(v̄) = O(|τ̄ |3|s̄δ|2,∞,τ̄/Aτ̄) + |s̄δ(v̄1)| + |s̄δ(v̄2)||τ̄ |/Aτ̄ ,

Dy s̄δ(v̄) = O(|τ̄ |3|s̄δ|2,∞,τ̄/Aτ̄) + |s̄δ(v̄1)| + |s̄δ(v̄2)||τ̄ |/Aτ̄ ,

where Aτ̄ denotes the area of τ̄ . Using these estimates for ∇s̄δ we get

|s̄δ(v̄)| ≤ J7((1 + |τ̄ | + |τ̄ |2/Aτ̄ )‖f‖2 + |τ̄ |4|s̄δ|2,∞,τ̄/Aτ̄ ).

Hence we have

|s̄δ(v̄)| ≤ J8‖f‖2

for J8 depending on τ . By the definition

|s(v)| = |v̄|−δ|s̄δ(v̄)| ≤ J9‖f‖2

is bounded since |τ | is bounded. By the stability of BB basis c is bounded, and A is a

bounded set. Since A is closed, it is compact. By the definition Pλ(s) is a continuous

function of c. Hence Pλ attains its minimum over A.

To show uniqueness of the minimizer Sf suppose there exists Ŝf with Pλ(Sf) =

Pλ(Ŝf). Since Pλ is a convex functional for any 0 ≤ ν ≤ 1

Pλ(νSf + (1 − ν)Ŝf) ≤ νPλ(Sf) + (1 − ν)Pλ(Ŝf) = Pλ(Sf).
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On the other hand, since Pλ achieves minimum value at Sf

Pλ(Sf ) ≤ Pλ(νSf + (1 − ν)Ŝf ).

Therefore Pλ(Ŝf + ν(Sf − Ŝf)) is a constant function of ν on [0, 1]. It follows that

d
dν
Pλ(Ŝf + ν(Sf − Ŝf)) = 0 for all 0 ≤ ν ≤ 1, i.e.

0 =
d

dν
Pλ(Ŝf + ν(Sf − Ŝf))

= 2λ(ĉf + ν(cf − ĉf))
T E(cf − ĉf )

+ 2(ĉf + ν(cf − ĉf))
T LT L(cf − ĉf ) − 2fT L(cf − ĉf).

Note that at ν = 0 we get

0 = 2λ(ĉf)
T E(cf − ĉf) + 2(ĉf)

T LT L(cf − ĉf) − 2fT L(cf − ĉf).

Therefore

0 = 2λν(cf − ĉf)
T E(cf − ĉf) + 2ν(cf − ĉf)

T LT L(cf − ĉf).

Hence, we must have (cf − ĉf)
T E(cf − ĉf ) = 0 and (cf − ĉf )

T LT L(cf − ĉf) = 0

since both E and LT L are nonnegative definite. Then E(Sf − Ŝf ) = 0 and therefore

Sf − Ŝf is a linear homogeneous polynomial, and Sf(vℓ)− Ŝf (vℓ) = 0 at every vertex

vℓ of ∆. Therefore Sf = Ŝf .

To solve the penalized least squares problem using non-homogeneous splines we

work in N r
d (∆) = Sr

d(∆) ⊕ Sr
d−1(∆). We have to replace the energy functional (5.1)

in (5.6) by (5.3). For a spherical spline function s = s1 + s0 define

Pλ(s) = L(s1 + s0) + λ1

∫

S2

(♦s1)
T (♦s1)dσ + λ2

∫

S2

(♦s0)
T (♦s0)dσ, (5.7)

with λ1 > 0, λ2 > 0.

Theorem 5.11. Fix λ1 > 0 and λ2 > 0. Suppose all vertices W of ∆ are part of

the data sites V and |∆| ≤ 1. There exists a unique spline Sf ∈ N r
d (∆) minimizing

(5.7).
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Proof. The proof is similar to the proof of Theorem 5.8.

We first consider the penalized least squares linear system in Sr
d(∆). By the

method of Lagrange multipliers, minimization of (5.6) over S−1
d (∆) subject to the

smoothness Cr conditions in the matrix form Mc = 0 results in a system of linear

equations 
 P MT

M 0




 c

η


 =


 LT F

0


 .

Here P = LT L + λE and F is a vector of function values ordered as the spherical

points vℓ, ℓ = 1, · · · , n, M is the smoothness matrix and η is a vector of Lagrange

multiplier coefficients. The solution of this system is a vector c of coefficients of

the homogeneous spline s of degree d and smoothness r defined over the spherical

triangulation ∆ which minimizes (5.6). Note that the linear system has the same

form as the one in Sections 5.1 and 5.2. We use the iterative scheme to compute an

approximation of c.

To find the minimal penalized least squares spline in N r
d (∆) we construct the

observation matrix

L =
[

L1 L0

]
,

and assemble smoothness conditions Mc = 0 with

M =


 M1 0

0 M0




as in the setting of discrete least squares splines. Here L1 and L0 are the observation

matrices containing values of BB-basis polynomials at the data sites for the spaces

S−1
d (∆) and S−1

d−1(∆), respectively. We construct the energy matrices E1 and E0 and

solve the linear system


 P MT

M 0




 c

η


 =


 LT F

0


 ,
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where P in this case is

LTL +


 λ1E1 0

0 λ2E0


 .

Theorem 5.12. The matrix P is positive definite with respect to Mc = 0.

Proof. The proof is a combination of Theorem 5.3 and Theorem 5.6. We omit the

details.

5.4 Multiple star technique

Given V := {v ∈ S2} a set of points on the unit sphere with numbers {f(v), v ∈ V},

construct a regular triangulation ∆ of S2. For d ≥ 1 and r ≥ 0, two integers with

3r + 2 ≤ d, define S−1
d (∆) be the space of homogeneous splines of degree d and

smoothness −1, i.e.

S−1
d (∆) := {s : s|τ ∈ Hd, ∀τ ∈ ∆}.

Let a sub-domain of S2 be a single triangle τ ∈ ∆. Fix k ≥ 1 and let q = 2(k+1)ℓ+1.

Here ℓ is the parameter reflecting local support of the basis functions Bξ discussed

in Section 2.8. Recall that starq(τ) is an enlarged sub-domain defined as

starq(τ) := ∪{T ∈ ∆, T ∩ starq−1(τ) 6= ∅} (5.8)

and star0(τ) = τ .

To solve the scattered data interpolation problem over each starq(τ), τ ∈ ∆, we

consider the space Sr
d(starq(τ)) = S−1

d (starq(τ)) ∩ Cr(starq(τ)). Suppose E, K, M

are the matrices as in Section 5.1 expressing energy, smoothness and interpolation

conditions. Let Vτ be the subset of V contained in starq(τ), ǫτ the subset of interior

edges and ∆τ triangles of starq(τ). Then the energy matrix for the sub-domain

interpolating problem Eτ consists of blocks corresponding to triangles in ∆τ , i.e.

Eτ = E(∆τ ). The smoothness matrix Mτ for the sub-domain picks up the rows of

M corresponding to ǫτ and columns corresponding to ∆τ . Finally the matrix Kτ of
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the interpolation conditions for the sub-domain consists of rows of K corresponding

to Vτ and columns corresponding to ∆τ . Therefore the minimal energy interpolating

spline Sf,τ,q over starq(τ) has a coefficient vector c solving the linear system




Eτ KT
τ MT

τ

Kτ 0 0

Mτ 0 0







c

η

γ




=




0

Fτ

0




.

Here Fτ is a vector consisting of elements of F corresponding to Vτ to satisfy the

interpolation conditions, η and γ are vectors of Lagrange multiplier coefficients.

To establish existence and uniqueness of a spherical spline in Sr
d(starq(τ)) which

minimizes

Eδ,τ,q(s) :=
∑

T∈starq
(τ)

∑

|α|=2

‖Dαsδ‖2
2,T (5.9)

we need the following

Lemma 5.13. Let ∆ be a spherical triangulation and suppose f 6= 0. Then

1) E1,τ,q(f) = 0 if and only if f is a trivariate homogeneous linear polynomial on

starq(τ),

2) E0,τ,q(f) = 0 if and only if f is a constant polynomial.

Proof. Proof is similar to that of Lemma 5.1.

We also have a result analogous to Lemma 5.2.

Lemma 5.14. There exists a unique spline s0 ∈ Sr
d(starq(τ)) interpolating f = 0

and minimizing (5.9) with δ = d mod(2).

Proof. Similar to the proof of Lemma 5.2.

We can therefore conclude by

Theorem 5.15. Let ∆ be a regular triangulation of the unit sphere with vertices

V and {f(v), v ∈ V} be given for some spherical function f . Then for any positive

integers d, r, k with d ≥ 3r + 2, k ≥ 1, and a triangle τ ∈ ∆ there exists a unique



115

spline Sf,τ,q ∈ Sr
d(starq(τ)) interpolating the values of f and minimizing Eδ,τ,q. Here

q = 2(k + 1)ℓ + 1.

Proof. As in Theorem 5.3.

Even though we obtain spline coefficient vector c for a cluster of triangles sur-

rounding τ to assemble our final spline solution we only use the part of this vector

corresponding to τ itself. The solution therefore is not smooth, it is not even contin-

uous. The smoothness conditions in case of reasonably high k are usually satisfied

with 10−4 accuracy. These discontinuities across edges of ∆ are not visible to the

human eye and might be acceptable.



Chapter 6

Numerical Investigation

6.1 Numerical Experiments for Minimal Energy interpolation

Example 1. The following table contains comparison of the results on the minimal

energy spline interpolation in S1
3(∆), S1

4(∆) and S1
3(∆) ⊕ S1

4(∆). We interpolate 1,

x+ z and z +1 on 6 points corresponding to the unit directions and their antipodes.

Let ∆1 denote the corresponding triangulation.

Sr
d(∆1) \ f 1 x + z z + 1

S1
3(∆1) 4.2265e − 01 1.1016e − 15 2.1144e − 01

S1
4(∆1) 4.6629e − 15 2.5398e − 01 0.9114e − 01

N1
4 (∆1) 0.6439e − 14 1.4950e − 15 1.5551e − 15

Table 6.1: Linear and constant polynomial reproduction on 8 triangles.

We evaluate the splines at 5120 points w almost evenly spaced over S2 and list

the relative errors ‖s(w)−f(w)‖∞
‖f(w)‖∞

in Table 6.1.

Not only linear and constant homogeneous polynomials are reproduced in

S1
3(∆) ⊕ S1

4(∆), a non-homogeneous polynomial z + 1 is reproduced as well. In

Figure 6.1 we present a visualization of the results in the last column of Table 6.1.

It was shown in [Alfeld, Neamtu, and Schumaker’96] that spherical linear functions

are spheres through the origin. As expected from the table first two surfaces are not

spheres.

Example 2. Next we investigate how the choice of λ affects the error of our approx-

imation. We interpolate a general function f(x, y, z) = 1 + 0.3x8 + e0.2y3

. The initial

116
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Figure 6.1: Reproduction of z + 1 in S1
3 , S1

4 and S1
3 ⊕ S1

4 from left to right.

triangulation is ∆1. The triangulation ∆2 is obtained by bisecting the edges of ∆1

and splitting each triangle into four sub-triangles. Similarly we obtain the uniform

refinements ∆3 and ∆4. Each time we evaluate the spline interpolant at 5120 evenly

spaced points w and list the relative errors e := ‖s(w)−f(w)‖∞
‖f(w)‖∞

in Table 6.2.

λ \ ∆ ∆1 ∆2 ∆3 ∆4

0.1 0.9442e − 01 2.3349e − 02 2.2270e − 03 2.1254e − 04
0.2 0.9436e − 01 2.2691e − 02 1.7986e − 03 2.0737e − 04
0.3 0.9429e − 01 2.2085e − 02 1.7570e − 03 2.1420e − 04
0.4 0.9422e − 01 2.1608e − 02 1.9870e − 03 2.2644e − 04
0.5 0.9414e − 01 2.1168e − 02 2.1526e − 03 2.4197e − 04
0.6 0.9405e − 01 2.0780e − 02 2.4118e − 03 2.5990e − 04
0.7 0.9395e − 01 2.0461e − 02 2.7717e − 03 2.7978e − 04
0.8 0.9383e − 01 2.0265e − 02 3.1331e − 03 3.1210e − 04
0.9 0.9370e − 01 2.0109e − 02 3.5004e − 03 3.6150e − 04

Table 6.2: Dependence of minimal energy splines on weights in E .

The results suggest that the error depends on the values of λ for a fixed tri-

angulation. However, the same value of λ may not be the best choice for different

triangulations.
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Example 3. Next we compare the interpolation results for the function f(x, y, z) =

1+0.3x8 + e0.2y3

in non-homogeneous and homogeneous spaces. We use Table 6.2 as

a guide for the choice of λ. The results demonstrate that non-homogeneous splines

approximate the original function f better than homogeneous splines on finer trian-

gulations.

Sr
d(∆) \ e(∆) e(∆1) e(∆2) e(∆3) e(∆4)

S1
3(∆) 3.7879e − 01 0.6586e − 01 3.7846e − 03 2.9833e − 04

S1
4(∆) 0.8234e − 01 0.1980e − 01 3.8708e − 03 4.1190e − 04

N1
4 (∆) 0.9370e − 01 2.0109e − 02 1.7570e − 03 2.0737e − 04

Table 6.3: Convergence of splines interpolating f .

6.2 Numerical Experiments for Discrete Least Squares Method

Example 1. First we conduct experiments similar to the ones for minimal energy

splines in S1
3(∆1), S1

4(∆1) and S1
3(∆1) ⊕ S1

4(∆1). Total number of points is 1006,

triangulation is based on 6. Evaluation points and computation of errors are the

same as in Section 6.1. In addition we test higher degree polynomials. Not only

the direct sum space is capable of reproducing both constant and a homogeneous

linear function, it reproduces a non-homogeneous linear functions, which was not

possible in either one of the homogeneous spline spaces. Moreover, homogeneous

polynomials of odd degrees up to 3 can be reproduced by cubic splines minimizing

the least squares functional, and homogeneous polynomials of even degrees up to 4

can be reproduced by quartic splines. Since S1
3 ∩ S1

4 = 0, we cannot reproduce non-

homogeneous functions or polynomials of degrees different from degree of spline.

In the direct sum space however, all polynomials of degrees up to 4 odd or even,

homogeneous or non-homogeneous, are reproduced, see Table 6.4.
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Sr
d(∆1) \ f 1 x + z z + 1

S1
3(∆1) 4.1063e − 01 0.5391e − 09 2.0543e − 01

S1
4(∆1) 2.4365e − 09 0.6325e − 01 2.8532e − 02

N1
4 (∆1) 0.9419e − 13 3.3859e − 12 0.9975e − 13

Sr
d(∆1) \ f y2 + z y3 + z + 1 x4 + z + 1

S1
3(∆1) 1.5315e − 01 1.8931e − 01 1.7120e − 01

S1
4(∆1) 4.5673e − 02 2.8735e − 02 2.6810e − 02

N1
4 (∆1) 1.1709e − 13 1.2950e − 13 1.5834e − 13

Table 6.4: Polynomial reproduction on 8 triangles.

Example 2. We illustrate convergence of discrete least squares splines approxi-

mating f(x, y, z) = 1 + 0.3x8 + e0.2y3

in Table 6.5.

Sr
d(∆) \ e(∆) e(∆1) e(∆2) e(∆3)

S1
3(∆) 3.4124e − 01 4.1755e − 02 3.6864e − 03

S1
4(∆) 2.3321e − 02 1.8815e − 03 0.7477e − 03

N1
4 (∆) 1.0102e − 02 1.8007e − 03 3.6840e − 04

Table 6.5: The relative error of splines approximating f .

Example 3. Our last example in this section is a scattered data approximation

problem. The values of geopotential f are measured at scattered locations V of a

sphere-like surface by a satellite at a fixed height above the surface of Earth. We run

three similar experiments. In the first one we use the data collected over the period

of two days amounting to 5760 values, in the second - four days, total of 11520 values

and in the last - six day data of 17280 values. In every experiment we start with

a triangulation ∆1 based on six vertices and consisting of eight triangles as in the

examples 1, 2, Section 6.1 and 1, Section 6.2. Then ∆1 is refined uniformly twice

to obtain ∆2 and ∆3. For each triangulation we compute the discrete least squares
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spline solution in the spaces S1
3(∆i), S1

4(∆i) and S1
3(∆i) ⊕ S1

4(∆i), i = 1, 2, 3. In

Tables 6.6, 6.7, 6.8 we list error values of the form e := maxv∈V |s(v)−f(v)|
maxv∈V |f(v)| for each of

the computed splines. In Tables 6.9, 6.10, 6.11 we list relative standard deviation

values s := std|s(v)−f(v)|
maxv∈V |f(v)| for each of the computed splines.

Sr
d(∆) \ e(∆) e(∆1) e(∆2) e(∆3)

S1
3(∆) 3.7228e − 01 2.0086e − 01 0.8692e − 01

S1
4(∆) 2.9349e − 01 0.9681e − 01 4.5916e − 02

N1
4 (∆) 2.0711e − 01 0.9531e − 01 3.1303e − 02

Table 6.6: The relative error for geodata approximating splines, two days data.
Sr

d(∆) \ e(∆) e(∆1) e(∆2) e(∆3)
S1

3(∆) 3.7295e − 01 2.0141e − 01 0.8665e − 01
S1

4(∆) 2.9409e − 01 0.9709e − 01 4.5073e − 02
N1

4 (∆) 2.0840e − 01 0.9633e − 01 3.2144e − 02

Table 6.7: The relative error for geodata approximating splines, four days data.
Sr

d(∆) \ e(∆) e(∆1) e(∆2) e(∆3)
S1

3(∆) 3.7309e − 01 2.0726e − 01 0.8653e − 01
S1

4(∆) 2.9444e − 01 0.9726e − 01 4.6654e − 02
N1

4 (∆) 2.0853e − 01 0.9296e − 01 3.1735e − 02

Table 6.8: The relative error for geodata approximating splines, six days data.

6.3 Numerical Experiments for Penalized Least Squares Method

Example 1. Our first example in this section is similar to Example 3 of Section 6.2.

The values of geopotential f are measured at scattered locations V of a sphere-like

surface by a satellite at a fixed height above the surface of Earth. Note that for the

penalized least square fit we require the data at the vertices of a triangulation to be

given. To deal with this requirement and to have other conditions of the experiment

satisfied closely to the conditions in the discrete least square experiment we start

with the triangulation ∆1 and replace the vertices of this triangulation by the existing

points closest to these vertices. We call this new triangulation ∆̄1. After refining ∆̄1
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Sr
d(∆) \ s(∆) s(∆1) s(∆2) s(∆3)

S1
3(∆) 0.7020e − 01 3.5489e − 02 1.3247e − 02

S1
4(∆) 4.7324e − 02 1.4640e − 02 4.4683e − 03

N1
4 (∆) 3.5713e − 02 1.1194e − 02 3.2933e − 03

Table 6.9: The relative standard deviation for geodata approximating splines, two
days data.

Sr
d(∆) \ s(∆) s(∆1) s(∆2) s(∆3)

S1
3(∆) 0.7017e − 01 3.5522e − 02 1.3257e − 02

S1
4(∆) 4.7357e − 02 1.4591e − 02 4.4739e − 03

N1
4 (∆) 3.5802e − 02 1.1937e − 02 3.3873e − 03

Table 6.10: The relative standard deviation for geodata approximating splines, four
days data.

Sr
d(∆) \ s(∆) s(∆1) s(∆2) (∆3)

S1
3(∆) 0.7012e − 01 3.5571e − 02 1.3248e − 02

S1
4(∆) 4.7390e − 02 1.4574e − 02 4.4851e − 03

N1
4 (∆) 3.5843e − 02 1.1902e − 02 3.2954e − 03

Table 6.11: The relative standard deviation for geodata approximating splines, six
days data.

we again may not have the values of geopotential available at the vertices of the

refined triangulation. We replace these vertices by the points closest to them where

values of geopotential are available. We call this new triangulation ∆̄2. Similarly we

obtain ∆̄3. Therefore ∆̄i+1 is not exactly a uniform refinement of ∆̄i, i = 1, 2, but

only the closest possible approximation of the uniform refinement available under

the circumstances. Again, we run three similar experiments over the periods of two,

four and six days. Since the smaller data sets are contained in larger data sets we

use the triangulations ∆̄i, i = 1, 2, 3 in all three experiments. For each data set we

compute the penalized least square spline solutions in the spaces S1
3(∆̄i), S1

4(∆̄i)

and N1
3 (∆̄i), i = 1, 2, 3 with λ = λ1 = λ0 = 10−6. In Tables 6.12, 6.13, 6.14 we list
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relative error values e := maxv∈V |s(v)−f(v)|
maxv∈V |f(v)|

for each of the computed splines. In Tables

6.15, 6.16, 6.17 we list relative standard deviation values s := std|s(v)−f(v)|
maxv∈V |f(v)| for each

of the computed splines.

Sr
d(∆) \ e(∆) e(∆̄1) e(∆̄2) e(∆̄3)

S1
3(∆) 0.7300e − 00 2.5346e − 01 1.0829e − 01

S1
4(∆) 3.2211e − 01 1.1959e − 01 4.4371e − 02

N1
4 (∆) 2.5707e − 01 0.9400e − 01 4.2157e − 02

Table 6.12: The relative error for geodata approximating splines, two days data.
Sr

d(∆) \ e(∆) e(∆̄1) e(∆̄2) e(∆̄3)
S1

3(∆) 0.6864e − 00 2.6187e − 01 1.0842e − 01
S1

4(∆) 4.7046e − 01 1.1939e − 01 4.3390e − 02
N1

4 (∆) 2.5714e − 01 0.9341e − 01 4.0303e − 02

Table 6.13: The relative error for geodata approximating splines, four days data.
Sr

d(∆) \ e(∆) e(∆̄1) e(∆̄2) e(∆̄3)
S1

3(∆) 0.6415e − 00 2.6219e − 01 1.0997e − 01
S1

4(∆) 3.1738e − 01 1.1977e − 01 4.3965e − 02
N1

4 (∆) 2.5742e − 01 0.9315e − 01 4.1752e − 02

Table 6.14: The relative error for geodata approximating splines, six days data.

Figure 6.2: A total triangulations based on all data locations.

Example 2. In this example we would like to demonstrate advantages of using

penalized least square method in a case of non-uniformly distributed data locations.
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Sr
d(∆) \ s(∆) s(∆̄1) s(∆̄2) s(∆̄3)

S1
3(∆) 1.3024e − 01 4.4337e − 02 1.4585e − 02

S1
4(∆) 0.5505e − 01 1.7656e − 02 4.5250e − 03

N1
4 (∆) 3.9482e − 02 1.3479e − 02 4.1267e − 03

Table 6.15: The relative standard deviation for geodata approximating splines, two
days data.

Sr
d(∆) \ s(∆) s(∆̄1) s(∆̄2) s(∆̄3)

S1
3(∆) 1.2101e − 01 4.4362e − 02 1.4602e − 02

S1
4(∆) 0.7660e − 01 1.7673e − 02 4.5167e − 03

N1
4 (∆) 3.9588e − 02 1.3315e − 02 3.9346e − 03

Table 6.16: The relative standard deviation for geodata approximating splines, four
days data.

Sr
d(∆) \ s(∆) s(∆̄1) s(∆̄2) s(∆̄3)

S1
3(∆) 1.1283e − 01 4.4367e − 02 1.4606e − 02

S1
4(∆) 0.5497e − 01 1.7672e − 02 4.5290e − 03

N1
4 (∆) 3.9638e − 02 1.3240e − 02 3.8623e − 03

Table 6.17: The relative standard deviation for geodata approximating splines, six
days data.

In Figure 6.2 we present 302 locations around the globe where average daily tem-

peratures are available on May 29 of 2004 and a triangulation ∆e based on all these

locations. This is the kind of triangulation we have to use for the minimal energy

interpolating splines. While such a triangulation is not unique, it is obvious that

sharp angles and non-uniform partition size are unavoidable. More precisely, let us

test all three methods against the function f(x, y, z) = 1 + 0.3x8 + e0.2y3

sampled at

the given temperature locations.

As mentioned above we can compute the minimal energy interpolating cubic

spline on the triangulation in Figure 6.2. The minimal energy spline overshoots and

therefore is not satisfactory. We can try to remove some of the data locations to come
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up with a suitable triangulation. We construct such a triangulation ∆me consisting

of 22 triangles. The rest of the data is not used for the minimal energy splines.

However there is no need to ignore any data if we use the penalized least square

method on the same triangulation. In the Table 6.18 below we list the relative errors

of the form e := maxv∈V |s(v)−f(v)|
maxv∈V |f(v)| , where the set V is the collection of all data

locations, i.e. it is the set used for PLS approximation. We compare the methods

in various spline spaces. Results are similar for the higher degrees. These results

Method S1
8(∆me) S1

9(∆me) N1
9 (∆me)

ME 0.7057e − 01 0.7724e − 01 0.6868e − 01
PLS 5.0675e − 04 5.7879e − 04 5.0820e − 04

Table 6.18: The relative error for interpolating and approximating splines.

are to be expected since the PLS method minimizes the sum of squared errors at

the data locations, therefore to make this experiment complete we evaluate both

splines at the arbitrary 5120 points more or less uniformly spread throughout the

sphere. The results are presented in Table 6.19. As seen from this table the results

Method S1
8(∆me) S1

9(∆me) N1
9 (∆me)

ME 1.0159e − 01 1.1798e − 01 1.0065e − 01
PLS 0.8882e − 01 0.9786e − 01 0.8564e − 01

Table 6.19: The relative error for interpolating and approximating splines.

are better for PLS again. Overall the two tables suggest that we use PLS method

for the temperature experiment.

Next let us compare the discrete and penalized least squares methods. For the

discrete least square method we need to fulfill the requirement of evenly distributed

data, which leads to a lower bound on the number of points inside of every triangle.

That is in the ocean areas where data is sparse triangles must be large. On the other
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hand, splines of lower degree do not have enough flexibility on overcrowded triangles,

therefore we need finer triangulation over the regions with dense data. Again, such

triangulation will have non-uniform partition size and triangles with thin angles.

We tried to construct a suitable triangulation which would balance the uniform

data distribution requirement and the comparable triangle sizes. In addition, even

though it is not necessary for DLS that the vertices of the triangulation are a subset

of the data locations, we need to fulfill this requirement to implement PLS and to

compare the two methods.

We have constructed a triangulation ∆d that works for some lower degree splines

as illustrated in Table 6.20. As degree increases we have DLS splines overshooting,

and it may not be possible to construct a triangulation suitable for a degree arbitrary

high. This is not an issue for the PLS method.

The methods are tested against the same function, and the error values listed in

this table are computed over 5120 points.

Method S1
3(∆d) S1

4(∆d) N1
4 (∆d)

DLS 1.4502e − 00 0.4738e − 01 5.2904e − 02
PLS 1.4502e − 00 0.4766e − 01 0.4897e − 01
Method S1

4(∆d) S1
5(∆d) N1

5 (∆d)
DLS 0.4738e − 01 4.0410e − 00 3.7860e + 01
PLS 0.4766e − 01 1.1364e − 00 0.4492e − 01
Method S1

5(∆d) S1
6(∆d) N1

6 (∆d)
DLS 4.0410e − 00 1.0184e − 00 1.5193e + 04
PLS 1.1364e − 00 0.7403e − 01 0.6520e − 01

Table 6.20: The relative error for DLS and PLS approximating splines.

With these results in mind we prepare for the temperature data testing. The

experiment is set as follows.

To apply penalized least square method all we have to ensure is that a trian-

gulation to be constructed is based on some subset of locations. In Figure 6.3 we
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Figure 6.3: A total triangulation based on a subset of data locations.

show such a triangulation, call it ∆p, based on 13 vertices. This triangulation we use

in further experiments. Note that triangles in ∆p have comparable diameters and

angles.

Relative error values e := maxv∈V |s(v)−f(v)|
maxv∈V |f(v)| for PLS spline solutions of various

degrees are presented in Table 6.21. In all cases we used λ = λ1 = λ0 = 10−6.

Spline Space S1
7(∆p) S1

8(∆p) N1
8 (∆p)

Error 1.2970e − 01 1.1002e − 01 1.0659e − 01
Spline Space S1

8(∆p) S1
9(∆p) N1

9 (∆p)
Error 1.1002e − 01 0.9679e − 01 0.9270e − 01
Spline Space S1

9(∆p) S1
10(∆p) N1

10(∆p)
Error 0.9679e − 01 0.8418e − 01 0.8343e − 01
Spline Space S1

10(∆p) S1
11(∆p) N1

11(∆p)
Error 0.8418e − 01 0.8036e − 01 0.8018e − 01
Spline Space S1

11(∆p) S1
12(∆p) N1

12(∆p)
Error 0.8036e − 01 0.7755e − 01 0.7721e − 01

Table 6.21: The relative error for temperature approximating splines.
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6.4 Numerical Experiments for Multiple Star Technique

The first test we conduct illustrates the convergence of the minimal energy interpo-

lating spline to a given smooth function. The following are our test functions.

f1(x, y, z) = sin7(θ) cos(θ) sin(7φ)

f2(x, y, z) = sin8(θ) sin(8φ)

f3(x, y, z) = sin25(θ) sin(25θ)

All of them are harmonic on the sphere. We start with a triangulation ∆0 of eight

congruent triangles and then uniformly refine it several times to get new triangula-

tions ∆1, ∆2, ∆3, · · · , . That is, ∆n is the uniform refinement of ∆n−1. ∆1 contains 66

vertices and 128 triangles. ∆2 has 258 vertices and 512 triangles. ∆3 consists of 1026

vertices and 2048 triangles and finally ∆4 contains 4098 vertices and 8172 triangles.

We use our multiple star method with Ωi’s being triangles in ∆ and Si,k being

spaces of quintic C1 splines. Then we estimate the accuracy of the method by eval-

uating the spline approximation and the exact functions over 24,000 points almost

evenly distributed over the sphere and taking the maximum absolute value of the

differences. The maximum errors are listed in Table 6.22.

f\i ∆1 ∆2 ∆3 ∆4

f1 3.7500e − 01 1.2835e − 02 1.67039e − 03 9.7385e − 04
f2 1.0368e − 00 4.5470e − 02 7.13533e − 03 3.8240e − 03
f3 1.7303e − 00 2.0809e − 00 3.54561e − 01 3.7372e − 02

Table 6.22: Maximum errors of C1 cubic interpolating splines over various triangu-
lations.
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