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Abstract. We use techniques from compressive sensing to design a local clustering algorithm by treating the4
cluster indicator vector as a sparse solution to a linear system whose coefficient matrix is the graph5
Laplacian. If the graph is drawn from the Stochastic Block Model we are able to prove that the6
fraction of misclassified vertices goes to zero as the size of the graph increases. Numerical experiments7
on simulated and real-life graphs demonstrate the effectiveness and speed of our approach. Finally,8
we explore the application of our algorithm to semi-supervised learning.9
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1. Introduction. Finding clusters is a problem of primary interest when analyzing net-13

works. This is because vertices which are in the same cluster can reasonably be assumed14

to have some latent similarity. Thus, clustering techniques can be used to find communities15

in social networks [25, 45] functionally similar molecules in protein-protein interaction net-16

works [33], or deduce political affiliation from a network of blogs connected by hyperlinks [3].17

Moreover, even data sets which are not presented as graphs can profitably be studied by first18

creating an auxiliary graph (such as a k-nearest-neighbors graph) and then applying graph19

clustering techniques. This has been successfully applied to image segmentation [42], natural20

language processing [19] and differentiating types of breast cancer [21].21

22

We shall informally think of a cluster as a subset of vertices, C ⊂ V with many edges23

between vertices in C, and few edges to the rest of the graph, Cc. For a toy example,24

consider the college football network of Girvan and Newman [25], represented in Figure 1.25

The vertices of this network correspond to the 115 colleges fielding (American) football teams26

that played in NCAA Division 1A in Fall 2000. Two vertices are connected by an edge if27

they played against one another during the regular season. As can be seen from either the28

graph or the adjacency matrix, this graph contains clusters. In this case, the underlying29

similarity responsible for the clusters are the conferences to which the teams belong. Despite30

the simplicity of this graph, it exhibits two subtle clustering related phenomena. The first is the31

presence of background vertices, illustrated in black. These correspond to the five independent32

schools - Central Florida, Connecticut, Navy, Notre Dame and Utah State. These schools do33

not belong to any conference, and thus should not be placed into any cluster. The second34

is the presence of clusters at multiple scales. For example, the cluster corresponding to the35
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2 M.-J. LAI AND D. MCKENZIE

South Eastern Conference (shown in red) could be further divided into two equally sized sub-36

clusters, both of which form cliques. In the context of this problem, this would reveal further37

valuable information, as the two sub-clusters correspond to the East and West Divisions of38

this Conference. Hence it is of practical importance to have clustering algorithms which can39

be set to find clusters of different sizes, and which are not forced to assign background vertices40

to a cluster.41

Figure 1: Two representations of the college football network of [25]

Of course many real-world graphs of interest today are significantly larger than the college42

football network. For truly massive graphs it can be computationally intractable to partition43

the entire vertex set into clusters. Moreover, if one is only interested in the cluster containing44

several vertices of interest, this is unnecessary. Thus, in the last decade or so, there has been45

intensive research into local clustering algorithms (see, for example, [43, 27, 31, 38]) loosely46

defined to be algorithms with complexity proportional to the size of the cluster, not the whole47

graph.48

49

In this paper we introduce a two-step local clustering algorithm, drawing on ideas from the50

signal processing field of compressive sensing. Our algorithm, which we call Semi-Supervised51

Cluster Pursuit (SSCP), is computationally efficient, provably accurate, able to find clusters at52

multiple scales and is not confounded by the presence of background vertices. We prove that53

for graphs drawn from the Stochastic Block Model (SBM) our algorithm misclassifies at most54

o(n0) vertices, where n0 is the size of the cluster of interest. We further show that, under cer-55

tain assumptions on the parameters of the SBM, SSCP runs in O(log3(n)n) operations. Finally56

we verify, via extensive experimentation on real and artificial graphs, that the performance of57

our algorithm is comparable, and some cases exceeds, that of many state-of-the-art algorithms.58

In the interest of reproducibility, we make all our code available at: danielmckenzie.github.io.59

60

The rest of this paper is laid out as follows. In the remainder of §1, we introduce some61

notation and review the existing literature. In §2 we introduce the SSCP algorithm and include62

a brief overview of the theory of Compressive Sensing. Most of the technical work of this paper63

This manuscript is for review purposes only.

danielmckenzie.github.io


CLUSTERING VIA COMPRESSIVE SENSING 3

is in §3, where we prove the weak consistency of SSCP. We relegate several particularly technical64

results to an appendix. Finally in §4 we provide extensive numerical experiments.65

1.1. Notation and Definitions. We restrict our attention to finite, simple, undirected66

graphs G = (V,E), possibly with edge weights. We identify the vertex set V with the integers67

[n] := {1, . . . , n} and denote an edge between vertices i and j as {i, j} ∈ E. The (possibly68

weighted) adjacency matrix of G will be denoted as A. By di we mean the degree of the69

i-th vertex, computed as di =
∑

j Aij . For quantities such as di (and later λi and ri) that70

are indexed by i ∈ [n], let dmax := maxi di and similarly dmin := mini di. Denote by D the71

diagonal matrix whose (i, i) entry is di.72

Definition 1.1 (Laplacians of graphs). The normalized, random walk Laplacian is defined as73

L = I−D−1A. We shall simply refer to it as the Laplacian. The signless Laplacian is defined74

as L+ = I+D−1A while the normalized, symmetric Laplacian is: Lsym := I−D−1/2AD−1/2.75

76

For any S ⊂ V , we denote by GS the induced sub-graph with vertices S and edges all {i, j} ∈ E77

with i, j ∈ S. For any S ⊂ [n] we define an indicator vector 1S ∈ Rn by (1S)i = 1 if i ∈ S and78

(1S)i = 0 otherwise. |S| will always denote the cardinality of S. For any matrix B, by BS we79

mean the submatrix of B consisting of the columns bi for all i ∈ S. Suppose for every n we80

have a probabilistic model G(n) of graphs on n vertices containing a cluster C(n), for example81

the stochastic block model introduced in the next section. Let A be any algorithm for graph82

clustering problem with output C#. We say that A is weakly consistent if83

P
[∣∣∣C#∆C(n)

∣∣∣ / ∣∣∣C(n)
∣∣∣ ≤ o(1)

]
= 1− o(1),84

where for any two sets A and B, A∆B := (A \ (A ∩B)) ∪ (B \ (A ∩B)) denotes their sym-85

metric difference. Note this is analogous to the almost exact recovery condition for partitioned86

clustering given in [1]. See [27] for a slightly different formulation of this problem.87

1.2. Random Graphs. In order to study how well our algorithm performs, it is useful to88

have a statistical model of graph with latent clusters. The model we shall use in this paper is89

the Stochastic Block Model (SBM). As pointed out elsewhere (for example in [1]), the SBM90

strikes a good balance between theoretical tractability and realistically modelling real-world91

networks.92

Definition 1.2. Let n = (n1, . . . , nk) be a vector of positive integers, and let P be a k × k93

symmetric matrix with Pab ∈ [0, 1] for all a, b. We say a graph G = (V,E) is drawn from94

SBM(n, P ) (and shall write G ∼ SBM(n, P )) if there exists a latent partition V = C1∪C2 . . .∪95

Ck with |Ci| = ni such that any vertices i ∈ Ca and j ∈ Cb are connected by an edge with96

probability Pab, and all edges are inserted independently.97

In [1] and elsewhere, a slightly more general definition is given where it is only required98

that the expected value of |Ca| is na, but the above shall suffice for our purposes. In the99

special case where all the na are equal, Paa = p for all a and Pab = q for all a 6= b we say that100

G is drawn from the Symmetric Stochastic Block Model, and write G ∼ SSBM(n, k, p, q). In101

this case the clusters are all of size n0 := n/k. We will also use a simpler model of random102

graph, the Erdős - Rènyi (ER) graph.103
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4 M.-J. LAI AND D. MCKENZIE

Definition 1.3. We say G = (V,E) is drawn from ER(n, p) (written G ∼ ER(n, p)) if104

P[{i, j} ∈ E] = p for i, j ∈ [n].105

Note that if G ∼ SSBM(n, k, p, q) then for all a ∈ [k] GCa ∼ ER(n, p). We shall use this106

simple observation repeatedly.107

Remark 1.4. Certainly, the Stochastic Block Model is not the only model of random graph108

studied with regards to clustering. In [32], Lancichinetti, Fortunato and Radicchi proposed a109

set of models designed to display certain phenomena — such as overlapping communities and110

a wide range of degrees — that are observed in real-world networks. In [5], random graphs are111

generated using a preferential attachment rule, generating a power-law degree distribution,112

which is often empirically observed in real-world networks. It would be an interesting topic113

for future research to investigate how our algorithm applies to such models.114

1.3. Some Existing Related Work. Local community detection algorithms (also known115

as Cluster Extraction algorithms in the statistics literature) seek to find a “good” cluster C#116

given a set of seed vertices Γ. In the computer science literature it is usually required that117

Γ ⊂ C# (this is the case for HKGrow and Losp++) while in the statistics literature this is not118

always the case (see ESSC). If desired, this procedure can be iterated a (possibly predefined,119

possibly data-determined) number of times, finding clusters C1, . . . , Ck while not requiring120

that they cover the vertex set. Depending on the algorithm, the Ca may be allowed to121

overlap. The set of vertices not assigned a cluster is referred to as the background vertices.122

That is, V background := V \
⋃k
a=1Ca. We review several such algorithms here.123

The Extraction of Statistically Significant Communities (ESSC) algorithm. The key insight124

behind this approach is to view communities as fixed points of the update rule:125

(1.1) S(B) := {u ∈ V : u is strongly connected to B} where B ⊂ V126

In [46] the idea of a vertex being strongly connected to a set is formalized as a procedure127

analogous to a statistical p-test. Precisely, denote by G0 the graph under consideration, and128

let d0(u : B) denote the number of edges between a vertex u and a set of vertices B. Assume129

a null-model for graphs, G on the same vertex set and with the same degree sequence, but130

without any a priori cluster structure. Let d̂(u : B) be a random variable denoting the number131

of edges between u and B for graphs drawn from G. If the probability of d̂(u : B) being larger132

than the value d0(u : B) is smaller than some threshold value α (usually taken to be 0.05)133

then say that u is strongly connected to B. Thus (1.1) can be written as:134

(1.2) S(B) =
{
u ∈ V : P

[
d̂(u : B) ≥ d0(u : B)

]
≤ α

}
.135

The authors in [46] show that, if G is taken to be the configuration model, then d0(u : B) is136

approximately a binomial random variable, hence the probability in the update rule can be137

easily computed. The algorithm is initialized with a set of seed vertices B0 consisting of the138

highest degree vertex and its neighbors. The update rule (1.2) is then used: Bn+1 = S(Bn),139

until Bn+1 = Bn or a maximum number of iterations is reached. This resulting cluster is then140

removed and the process may be repeated, terminating when the empty set is returned as a141

fixed point of the update rule (1.2). No theoretical guarantee of success is given in [46], but142

experimental results suggest that the algorithm works well.143
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The HKGrow algorithm. This algorithm, introduced in [31], is part of a family of cluster144

extraction algorithms known as diffusion methods. HKGrow is based on the idea that if one145

unit of heat is initially distributed over a small set of seed vertices, and then allowed to spread146

over the graph via the heat equation, it will concentrate in the cluster containing the seed147

vertices. More formally, for any seed set S ⊂ V , let s = 1
|S|1S and define h = exp (−tL) s :=148 (∑∞

k=0(−t)kLk/k!
)
s, for an appropriate value of t to be specified by the user. Normalize h149

by degree: v = D−1h, and let j1, . . . , jn be a permutation of [n] such that vj1 ≥ vj2 ≥ . . . , vjn .150

HKGrow returns the cluster defined as C# = {j1, . . . , jk∗} where151

(1.3) k∗ = arg max{Cond({j1, . . . , jk}) for k = 1, . . . , n}152

For any subset of vertices U ⊂ V , Cond(U) denotes its conductance, defined as follows. Let153

δU := {{i, j} ∈ E : i ∈ U and j /∈ U} denote the boundary of U and let Vol(U) =
∑

i∈U di154

denote its volume, then Cond(U) = |δU |/Vol(U). From work of Chung [15] it is known that155

if S is contained in a set of low conductance then C# will be of similarly low conductance.156

Experimental results provided in [31] verify this, and show that the performance of HKGrow is157

on par with the Pagerank diffusion method of [4].158

The LOSP++ algorithm. This algorithm is a representative of the family of Local Spectral159

Methods (see also LEMON [34] and LOSP [26]). LOSP++, introduced in [27], works as follows.160

Given a set of seed vertices S, first extract a subgraph G̃ from G which is very likely to contain161

the community C which contains S. Let Ã denote the adjacency matrix of G̃ and denote by162

N the random walk transition matrix N = D−1Ã. Define p0 = s = 1
|S|1S and let pi = N ip0163

denote the distribution of the i-th step of the random walk with initial distribution p0. For164

small values of d and k, to be fixed by the user, construct the matrix V
(k)
d = [pk, . . . ,pk+d−1].165

Now let y# denote the solution to the linear programming problem:166

argmin ‖y‖1 such that: y ∈ range(V k
d ), y ≥ 0, yi ≥ 1/|S| for all i ∈ S.167

For a user specified size parameter n̂0, define C# to be the set of indices of the n0 largest168

entries in y#. In [27] both theoretical and experimental arguments that C# will be a low169

conductance cluster containing S are given.170

171

There are certainly other algorithms that fall under the local community detection/ cluster172

extraction umbrella, such as Nibble [43], algorithms which seek to optimize a local modularity173

score [48] and locally-biased spectral methods [38].174

1.3.1. Fundamental Bounds for Recovery. Recent work of Abbe, Sandon and others has175

culminated in a theoretical bound beyond which it is impossible to detect cluster membership176

in the SBM with accuracy better than that of a random guess:177

Theorem 1.5 (See [2]). Exact recovery in the SSBM(n, k, a log(n)/n, b log(n)/n) is solvable178

if
1

k

(√
a−
√
b
)2

> 1 and not solvable if
1

k

(√
a−
√
b
)2

< 1. Moreover, when exact recovery179

is possible, there exist efficient algorithms to do so.180

There exist analogous statements for graphs drawn from the non-symmetric block model.181

This motivates us to consider values of p and q of the form c log(n)/n in our theoretical182
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6 M.-J. LAI AND D. MCKENZIE

analysis of SSCP (see §3) although our current analysis requires an additional factor in p,183

p = aω log(n)/n where ω is any function of n such that ω →∞. In our numerical experiments,184

we take ω = log(n). Removing this extra factor is an interesting problem for future research.185

2. The SSCP Algorithm. Our algorithm was inspired by a serendipitous observation186

that the problem of determining the indicator vector, 1C , of a cluster C can be rephrased as187

a compressive sensing problem. Before elaborating on this, let us briefly review some of the188

pertinent results of this field of signal processing.189

2.1. Compressive Sensing. Candés, Donoho and their collaborators in [20, 11, 12] initial-190

ized the study of compressive sensing, which offers theoretical analysis and algorithmic tools191

for solving the minimization problem:192

(2.1) argmin‖Φx− y‖2 subject to ‖x‖0 ≤ s193

In the case where Φ ∈ Rm×n withm << n, making the linear system Φx = y underdetermined.194

For any v ∈ Rn, define ‖v‖0 := |supp(v)| = |{i : vi 6= 0}|. The matrix Φ is typically referred195

to as a sensing matrix. There are many algorithms (e.g. [6, 7, 10, 23]) to solve problem (2.1),196

but the one we shall focus on is the SubspacePursuit algorithm introduced in [18]:197

Algorithm 2.1 SubspacePursuit ([18])

Inputs: y, Φ and an integer s ≥ 1

Initialization:
(1) T 0 = Ls(Φ>y).
(2) x0 = argmin{‖y − ΦT 0x‖2 : supp(x) ⊂ T 0}
(3) r0 = y − ΦT 0x0

Iteration:
for k = 1 : m do

(1) T̂ k = T k−1 ∪ Ls
(
Φ>rk−1

)
(2) u = argmin{‖y − ΦT̂kx‖2 : x ∈ RN and supp(x) ⊂ T̂ k}
(3) T k = Ls(u) and xk = Hs(u)
(4) rk = y − ΦTkxk

end for

Here Ls(·) and Hs(·) are thresholding operators:198

Ls(v) := {i ∈ [n] : vi among s largest-in-magnitude entries in v}199

Hs(v)i :=

{
vi if i ∈ Ls(v)
0 otherwise

200
201

In quantifying when (2.1) has a unique solution, the following constant is often used (see [22])202

203

Definition 2.1. The s Restricted Isometry Constant (s-RIC) of Φ ∈ Rm×n, written δs(Φ),204

is defined to be the smallest value of δ > 0 such that, for all x ∈ Rn with ‖x‖0 ≤ s, we have:205

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22.206
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If δs(Φ) < 1 we often say that Φ has the Restricted Isometry Property (RIP).207

Lemma 2.2. For any Ω ⊂ [n] with |Ω| ≥ s one can easily check that δs(ΦΩ) ≤ δs(Φ).208

Proof. This follows most easily from an alternative characterization of δs (see Chpt. 6 of209

[22]): that is, δs(Φ) = max
S⊂[n],|S|≤s

‖Φ>SΦS − I‖2. Indeed, we have210

δs(ΦΩ) = max
S′⊂Ω,|S′|≤s

‖Φ>S′ΦS′ − I‖2 ≤ max
S⊂[n],|S|≤s

‖Φ>SΦS − I‖2 = δs(Φ)211

One of the reasons for the remarkable usefulness of compressive sensing is its robustness to212

error, both additive (i.e. in y) and multiplicative (i.e. in Φ). More precisely, suppose that a213

signal ŷ = Φ̂x∗ is acquired, but that we do not know the sensing matrix Φ̂ precisely. Instead,214

we have access only to Φ = Φ̂ +M , for some small perturbation M . This models the scenario215

where a sensing matrix Φ is designed, and then implemented in hardware (for example as an216

MRI coil) where a certain amount of error becomes unavoidable. Suppose further that there217

is a small amount of noise in the measurement process, so that the signal we actually receive218

is y = ŷ + e. Can one hope to approximate a sparse vector x∗ from y well, given only Φ?219

This question is answered in the affirmative by several authors, starting with the work of [28].220

For SubspacePursuit, we have the following result of Li:221

Theorem 2.3. Let x∗, y ŷ, Φ and Φ̂ be as above and suppose that ‖x∗‖0 ≤ s. For any222

t ∈ [n], let δt := δt(Φ). Define the following constants:223

εy := ‖e‖2/‖ŷ‖2 and εsΦ = ‖M‖s2/‖Φ̂‖s2224

where for any matrix B, ‖B‖(s)2 := max{‖BS‖2 : S ⊂ [n] and |S| = s}. Define further:225

ρ =

√
2δ2

3s(1 + δ2
3s)

1− δ2
3s

and τ =
(
√

2 + 2)δ3s√
1− δ2

3s

(1− δ3s)(1− ρ) +
2
√

2 + 1

(1− δ3s)(1− ρ)
226

Assume δ3s ≤ 0.4859 and let xm be the output of SubspacePursuit applied to problem (2.1)227

after m iterations. Then:228

‖x∗ − xm‖2
‖x∗‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy).229

Proof. This is Corollary 1 in [35]. Note that our convention on hats is different to theirs230

— our Φ is their Φ̂, hence our ρ is their ρ̂ and so on.231

2.2. Cluster Extraction as Compressive Sensing. The eigenvectors of the Laplacian L232

are the key ingredient in Spectral Clustering algorithms. The following theorem is usually233

used in theoretical justifications of their success:234

Theorem 2.4. Let C1, . . . , Ck denote the connected components of a graph G. Then the235

cluster indicator vectors 1C1 , . . . ,1Ck
form a basis for the kernel of L.236

Proof. See proposition 4 of [36].237
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Now suppose thatG has clusters C1, . . . , Ck. By definition, clusters have few edges between238

them, and so it is useful to write G as the union of two edge-disjoint subgraphs, defined as fol-239

lows: let Gin = (V,Ein) have only in-cluster edges, Ein = {{i, j} ∈ E : i, j ∈ Ca for a ∈ [k]} ,240

and let Gout = (V,Eout) consist only of the out-of-cluster edges, {{i, j} ∈ E : i ∈ Ca and241

j ∈ Cb for a 6= b}. Denote by Ain and Lin (resp. Aout and Lout) the adjacency matrix and242

Laplacian of Gin (resp. Gout). Similarly, din
i (resp. dout

i ) shall denote the degree of the vertex243

i in the graph Gin (resp. Gout). Note that C1, . . . , Ck are now the connected components of244

Gin, and so Lin1Ca = 0 for all a ∈ [k].245

246

As G = Gin∪Gout we have A = Ain +Aout and di = din
i +dout

i . For future reference, define247

ri := dout
i /din

i . It is not the case that L = Lin +Lout, but we shall show in §3 that L = Lin +M248

with ‖M‖2 << ‖Lin‖2. Without loss of generality assume that v1 ∈ C1 and denote n1 = |C1|.249

Let `i (resp. `ini , `out
i and `+i ) denote the i-th column of L (resp. Lin, Lout and L+). Then:250

(2.2) 0 = Lin1C1 = [`in1 , L
in
−1]

[
1

1C1\{1}

]
= `in1 + Lin

−11C1\{1}251

or in other words, 1C1\{1} is a solution to the linear system Lin
−1x = −`in1 . This system is252

underdetermined, but crucially ‖1C1\{1}‖0 = n1 − 1. That is, as long as C1 is not too large,253

1C1\{1} is sparse. Thus we may hope to recover 1C1\{1} exactly by solving the problem:254

argmin
{
‖Lin
−1x + `in1 ‖2 subject to ‖x‖0 ≤ n1 − 1

}
.255

Of course we do not have access to Lin. Instead, we have L, a noisy version of Lin. However,256

given that L = Lin +M , we may hope to use the results of §2.1, particularly Theorem 2.3, to257

show that if x# is the solution to:258

(2.3) argmin {‖L−1x + `1‖2 subject to ‖x‖0 ≤ n1 − 1}259

then x# ≈ 1C1\{1}. Unfortunately problem (2.3) turns out to be poorly conditioned, as260

δn1−1(L) ≈ 1. Thus, we propose a two-stage approach. In the first stage (Algorithm 2.2) we261

determine a superset Ω ⊃ C1 of size (1 + ε)n1 while in the second stage (Algorithm 2.3) we262

extract C1 from Ω by solving a compressive sensing problem to find a vector supported on the263

complement of C1 in Ω. Specifically, observe that if C1 ⊂ Ω, then 0 = Lin1C1 = Lin
Ω1C1 . It264

follows that:265

(2.4) Lin
Ω1Ω = Lin

Ω

(
1C1 + 1Ω\C1

)
= 0 + Lin

Ω1Ω\C1
⇒ Lin

Ω1Ω\C1
= Lin

Ω1Ω.266

Equivalently, if yin := Lin
Ω1Ω =

∑
i∈Ω `i then 1Ω\C1

is the solution to267

(2.5) argmin{‖Lin
Ωx− yin‖2 : ‖x‖0 ≤ εn1}268

This problem is better conditioned, as we shall show that δεn1(LΩ) = ε + o(1). Clearly once269

1Ω\C1
is known, we can find C1 as Ω \ supp

(
1Ω\C1

)
. In §3, we shall show that if we replace270

Lin
Ω and yin with LΩ and y :=

∑
i∈Ω `i and let x# denote the solution to:271

(2.6) argmin{‖LΩx− y‖2 : ‖x‖0 ≤ εn1}272
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Then x# ≈ 1Ω\C1
and supp(x#) ≈ Ω \C1. We now describe our algorithm in pseudocode. In273

line 3 of Algorithm 2.2, L̃s denotes the thresholding operator defined as274

L̃s(v) = {i ∈ [n] : vi among s largest entries in v}.275

Algorithm 2.2 Semi-Supervised Thresholding

Input: Adjacency matrix A, a thresholding parameter ε ∈ (0, 1), Γ ⊂ C and n̂0 ≈ |C|
Compute L+ = I +D−1A and compute b =

∑
i∈Γ `

+
i .

Let v = (L+
Γc)
>b

Define Ω̃ = L̃(1+ε)n̂0
(v)

Output: Ω = Ω̃ ∪ Γ

Algorithm 2.3 ClusterPursuit

Input: Adjacency matrix A ∈ Rn×n, rejection parameter R ∈ (0, 1), Ω and sparsity pa-
rameter s
Compute L = I −D−1A and compute y =

∑
i∈Ω `i. Let xm be the solution to

(2.7) argmin{‖LΩx− y‖2 : ‖x‖0 ≤ s}

obtained after m = O(log(n)) iterations of SubspacePursuit
Output: C# = Ω \W , where W# = {i : xmi > R}.

Remark 2.5. Several comments on the parameters of Algorithms 2.2 and 2.3 are in order.276

A natural choice of R is R = 0, in which case W# is simply the (non-negative) support of277

x. If |C| is known, then setting n̂0 = |C| in Algorithm 2.2 and s = ε|C| in Algorithm 2.4 is278

natural, as |Ω\C| = εn̂0. In practice, the size of C is only approximately known, and we have279

found greater success with setting n̂0 to be an upper bound on the expected size of |C|, while280

setting s = 1.2εn̂0 and R ≈ 0.5. This allows ClusterPursuit to explore a greater range of281

cluster sizes, as |W#| is between 0 and s for any R > 0, hence |C#| is between |Ω| and |Ω|−s.282

That m can be taken to be O(log(n)) will follow from the proof of Theorem 3.15. In practice,283

we set m = 5 log(n).284

Algorithm 2.4 Semi-Supervised Cluster Pursuit (SSCP)

Input: Adjacency matrix A, parameters ε, R ∈ (0, 1), Γ ⊂ C, n̂0 ≈ |C| and s ≈ εn̂0.
Step 1 Perform Algorithm 2.2 with input (A, ε,Γ, n̂0) to obtain Ω.
Step 2 Perform Algorithm 2.3 (ClusterPursuit) with input (A,R,Ω, s) to obtain C#.
Output: C#

3. Theoretical Analysis. In this section we prove that SSCP is weakly consistent for the285

SSBM. Without loss of generality we assume we are trying to extract C1. Our main result is:286
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10 M.-J. LAI AND D. MCKENZIE

Theorem 3.1. Let G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 for ω such that ω → ∞ as287

n → ∞, q = b log(n)/n for b constant and k = O(1). Let Γ be a set of gn0 vertices drawn288

uniformly at random from C1, where g ∈ (0, 1) is independent of n0. Fix any ε ∈ (0, 0.15), set289

R = 0, n̂0 = n0 and s = εn0. Let C#
1 denote the output of SSCP run with these inputs. Then:290

P


∣∣∣C1∆C#

1

∣∣∣
|C1|

≤ o(1)

 = 1− o(1).291

Proof. In Theorem 3.8 we show that Algorithm 2.2 returns an Ω containing a fraction292

1 − o(1) of the vertices of C1 with probability 1 − o(1). Theorem 3.15 will then show that293

given such an Ω, ClusterPursuit will output a cluster C#
1 such that |C#

1 ∆C1| = o(n0) with294

probability 1− o(1), completing the proof.295

Henceforth, when an event happens with probability 1 − o(1), we shall say it happens296

almost surely, or a.s.. Note that if a finite collection of events happen almost surely, then297

their intersection also occurs almost surely. We shall use this observation repeatedly.298

3.1. Concentration in Erdős - Rènyi Graphs. The proof of Theorem 3.1 relies on two299

concentration phenomena in Erdős - Rènyi graphs. The first is that the maximum and mini-300

mum degrees of an Erdős - Rènyi graph are within a small deviation of their expected value,301

a.s. The second is that the second eigenvalue of the Laplacian of an ER graph is within an302

o(1) term of its expected value, a.s.303

Theorem 3.2 (see [8, 9]). Let G ∼ ER(n, q) with q = (b + o(1)) log(n)/n. There exist a304

function η∆(b) satisfying 0 < η∆(b) < 1 and limb→∞ η∆(b) = 0 such that305

dmax(G) = (1 + η∆(b))b log n+ o(1) ≤ 2b log(n) + o(1) a.s.306

Theorem 3.3 (see [24], Theorem 3.4 (ii)). If G ∼ ER(n0, p) with p = ω log(n0)/n0 where307

ω →∞, then dmin(G) = (1− o(1))ω log(n0) and dmax(G) = (1 + o(1))ω log(n0) a.s.308

Theorem 3.4. Suppose that G ∼ ER(n0, p) with p = ω log(n0) where ω → ∞. Then we309

have almost surely (1) λmax(A) ≤ (1 +o(1))ω log(n0); (2) λi(A) ≤ o(ω log(n0)) for λi < λmax;310

and (3) |λi(L)− 1| ≤

√
6 log(2n0)

ω log(n0)
= o(1) for all i > 1.311

Proof. See Theorems 3 and 4 in [16]. In their notation, m = wmin = pn0 = ω log n0. Their312

results refer to Lsym, but one can easily show that Lsym and L have the same spectrum.313

3.2. Reducing from the SBM to the ER model. Let Gin and Gout be as in §2.2. If314

G ∼ SSBM(n, k, p, q) then Gin consists of k disjoint i.i.d graphs, GCa ∼ ER(n0, p). The graph315

Gout is not an Erdős - Rènyi graph, as there is 0 probability of it containing an edge between316

two vertices in the same cluster (because we have removed them). However, we can profitably317

think of Gout as a subgraph of some G̃out ∼ ER(n, q). In particular, any upper bounds on the318

degrees of vertices in G̃out are automatically bounds on the degrees in Gout. Thus, we have319

the following corollaries of Theorems 3.3 and 3.2:320
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Corollary 3.5. If G ∼ SSBM(n, k, p, q) with q = b log(n)/n, doutmax(G) ≤ 2b log n+ o(1) a.s.321

Proof. Consider Gout as a subgraph of G̃out ∼ ER(n, q) and apply Theorem 3.2322

Corollary 3.6. If G ∼ SSBM(n, k, p, q) with k = O(1) and p = ω log(n0)/n0 where ω →∞,323

then dinmin(G) = (1− o(1))ω log(n0) and dinmax(G) = (1 + o(1))ω log(n0) a.s.324

Proof. If i ∈ Ca then din
i = di(Ga), where Ga = GCa ∼ ER(n0, p). Clearly:325

din
max(G) = max

i
din
i = max

a
dmax(Ga)326

By Theorem 3.3, dmax(Ga) = (1 + on0(1))ω log(n0) a.s. Note that the dmax(Ga) are i.i.d327

random variables, and since we are taking a maximum over k = O(1) of them, it follows that328

maxa dmax(Ga) ≤ (1+on0(1))ω log(n0) a.s. Moreover, as n0 = n/k, on0(1) = on(1). The proof329

for din
min(G) is similar.330

Corollary 3.7. G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 where ω → ∞, q = b log(n)/n331

and k = O(1). Recall that ri := douti /dini . Then rmax ≤ doutmax/d
in
min = o(1) a.s.332

Proof. First of all, it is clear that for any i, dout
i /din

i ≤ dout
max/d

in
min. From Corollaries 3.5333

and 3.6 we have:334

dout
max

din
min

≤ 2b log n+ o(1)

(1− o(1))ω log(n0)
=

2b log n+ o(1)

(1− o(1))ω(log(n)− log(k))
as n = kn0335

=
2b+ o(1)

(1− o(1))ω(1− o(1))
= o(1) since k = O(1) and ω →∞336

337

3.3. Reliably Finding Supersets. Let Ω denote the output of Algorithm 2.2, run with338

inputs as in Theorem 3.1. Further, let U = C1 \ (C1 ∩ Ω) denote the “missed” indices, and339

W = Ω \ (C1 ∩ Ω) denote the “bad” indices (i.e. vertices in Ω that are not in C1). Let340

|U | = un0, in which case |W | = (ε+ u)n0, as by construction |Ω| = (1 + ε)n0. We prove that341

u = o(1):342

Theorem 3.8. Let G ∼ SSBM(n, k, p, q) with k = O(1), p = ω log(n0)/n0 with ω →∞ and343

q = b log(n)/n. Let Γ ⊂ C1 with |Γ| = gn0 for some constant g ∈ (0, 1). For any ε > 0, if Ω344

is the output of Algorithm 2.2, with inputs ε, Γ and n0, then |C1 \ (C1 ∩ Ω) | = o(n0).345

Proof. As in line 3 of Algorithm 2.2, define v := (L+
Γc)
>b, where b =

∑
i∈Γ `

+
i . Observe:346

(3.1)
(

(L+)T `+j

)
i

= 〈`+i , `
+
j 〉 =

(
1

di
+

1

dj

)
Aij +

n∑
k=1

AikAkj
d2
k

.347

By the definition of the thresholding operator L(·), we must have vi ≤ vj for every i ∈ U348

and j ∈W . We sum first over W and then sum over U to have349

(ε+ u)n0vi ≤
∑
j∈W

vj and (ε+ u)n0

∑
i∈U

vi ≤ un0

∑
j∈W

vj ,350
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12 M.-J. LAI AND D. MCKENZIE

respectively. It follows that:351

(3.2)
∑
i∈U

vi ≤
u

ε+ u

∑
j∈W

vj ≤
∑
j∈W

vj .352

Looking ahead, we shall show that if inequality (3.2) holds then u = o(1). Now:353

∑
i∈U

vi =
∑
i∈U

(
(L+

Γc)
>b
)
i

=
∑
i∈U

∑
j∈Γ

(L+
Γc)
>`+j


i

=
∑
i∈U

∑
j∈Γ

〈`+i , `
+
j 〉.354

From equation (3.1) we deduce that 〈`+i , `
+
j 〉 ≥

∑n
k=1

AikAkj

d2k
. Moreover:355

n∑
k=1

AikAkj
d2
k

≥ 1

d2
max

n∑
k=1

AikAkj ≥
1

d2
max

∑
k∈C1

AikAkj356

and so:357

(3.3)
∑
i∈U

vi ≥
1

d2
max

∑
i∈U

∑
j∈Γ

∑
k∈C1

AikAkj358

The triple sum above is precisely the number of length two paths from U to Γ contained in359

the Erdős - Rènyi graph GC1 ∼ ER(n0, p). In [14] a neat formula for this quantity, which they360

call it e2(U,Γ), is given. Specifically, they show that for any family of graphs Gp such that for361

G ∼ Gp we have λ1(A) = (1 + o(1))pn and λi(A) = o(pn) for i ≥ 2, then for any X,Y ⊂ V :362 ∣∣e2(X,Y )− p2n|X||Y |
∣∣ = o(p2n3)363

As the aforementioned condition on the eigenvalues of A holds for ER(n0, p) a.s. (see Theorem364

3.4) we conclude that365 ∑
i∈U

∑
j∈Γ

∑
k∈C1

AikAkj = e2(U,Γ) ≥ p2n0|U ||Γ| − o(p2n3
0) a.s.366

=

(
ω2 log2(n0)

n2
0

)
n0(un0)(gn0)− o

(
ω2 log2(n0)

n2
0

n3
0

)
367

= ugω2 log2(n0)n0 − o(ω2 log2(n0)n0).368369

By Corollaries 3.5 and 3.6 above, dmax ≤ din
max + dout

max ≤ (1 + o(1))ω log(n0) + 2b log n +370

o(1) = (1 + o(1))ω log(n0) a.s.. Putting this all together we get that:371

(3.4)
∑
i∈U

vi ≥ ugn0 − o(n0) a.s.372

We now consider the right hand side of (3.2). Rewrite the sum as an inner product:373 ∑
j∈W

vj =
∑
j∈W

1vj = 〈1W ,v〉.374
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In a similar vein, rewrite b =
∑

i∈Γ `
+
i = L+1Γ. Now recall that v = (L+)

>
b = (L+)

>
L+1Γ.375

It follows that:376 ∑
j∈W

vj = 〈1W ,v〉 = 〈1W ,
(
L+
)>
L+1Γ〉 = 〈L+1W , L

+1Γ〉377

Split L+ into four submatrices as follows:378

L1 ∈ Rn0×n0 : L1
ij = L+

ij for i, j ∈ C1;379

L2 ∈ Rn0×(n−n0) : L2
ij = L+

ij for i ∈ C1, j /∈ C1;380

L3 ∈ R(n−n0)×n0 : L3
ij = L+

ij for i /∈ C1, j ∈ C1;381

L4 ∈ R(n−n0)×(n−n0) : L4
ij = L+

ij for i, j ∈ Cc1.382
383

If we imagine the vertices to be ordered such that C = {1, . . . , n0} and Cc1 = {n0 + 1, . . . , n}384

then this decomposition looks like L+ =
[
L1 L2

L3 L4

]
. Because W ⊂ Cc and Γ ⊂ C:385

L+1Γ =

[
L11Γ

L31Γ

]
and L+1W =

[
L21W
L41W

]
.386

Hence, we have 〈L+1W , L
+1Γ〉 = 〈L21W , L

11Γ〉 + 〈L41W , L
31Γ〉. In the lemma below, we387

provide bounds on ‖Li‖1 and ‖Li‖∞ for i = 1, . . . , 4. We use these bounds to finish the proof:388

〈L21W , L
11Γ〉 ≤ ‖L21W ‖∞‖L11Γ‖1 ≤ ‖L2‖∞‖1W ‖∞‖L1‖1‖1Γ‖1 ≤ (o(1))(1)(2)|Γ|,389

〈L41W , L
31Γ〉 ≤ ‖L41W ‖∞‖L31Γ‖1 ≤ ‖L4‖∞‖1W ‖∞‖L3‖1‖1Γ‖1 ≤ (2 + o(1))(1)(o(1))|Γ|.390391

Both terms are bounded by g (o(n0)). Hence:392 ∑
j∈W

vj = 〈L+1W , L
+1Γ〉 = 〈L21W , L

11Γ〉+ 〈L41W , L
31Γ〉 = g (o(n0))393

Returning to (3.2), we have ugn0 − o(1) ≤ g (o(n0)) and so u ≤ o(1) + o(1/n0) = o(1) a.s.394

Lemma 3.9. Let L1, L2, L3 and L4 be as in the above proof. Then ‖L2‖∞, ‖L3‖1 ≤ o(1),395

‖L1‖1 ≤ 2 and ‖L4‖∞ ≤ 2 + o(1) a.s.396

Proof. For any matrix B, ‖B‖1 = maxi
∑

j |Bij | and ‖B‖∞ = maxj
∑

i |Bij |. Now:397

‖L2‖∞ = max
j∈Cc

1

∑
i∈C1

∣∣∣L+
ij

∣∣∣ = max
j∈Cc

1

∑
i∈C1

Aout
ij

di
≤ 1

dmin
max
j∈Cc

1

dout
j ≤ dout

max

dmin
= o(1) by Corollary 3.7398

and the proof for ‖L3‖1 is very similar. For L1:399

‖L1‖1 = max
i∈C1

∑
j∈C1

∣∣∣L+
ij

∣∣∣ = max
i∈C1

1 +
∑
j∈C1

Ain
ij

di

 = max
i∈C1

(
1 +

din
i

di

)
≤ 2400
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while for L4:401

‖L4‖∞ = max
j∈Cc

1

∑
i∈Cc

1

∣∣∣L+
ij

∣∣∣ = max
j∈Cc

1

1 +
∑
i∈Cc

1

Ain
ij

di

 ≤ max
j∈Cc

1

1 +
1

din
min

∑
i∈Cc

1

Ain
ij

 ≤ 1 +
din

max

din
min

402

and by Corollary 3.6, din
max/d

in
min = (1 + o(1))/(1− o(1)) = 1 + o(1).403

3.4. Extracting C1 from Ω. As mentioned in §2.2, it is not the case that L = Lin +Lout.404

Instead, we write L = Lin +M , where M can be thought of as a perturbation, or error, term:405

406

Theorem 3.10. Suppose that G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 with ω → ∞,407

q = b log(n)/n and k = O(1). Then ‖M‖2 ≤ o(1).408

Proof. Letting δij denote the Kronecker delta symbol, observe that409

Lij := δij −
1

di
Aij = δij −

1

din
i + dout

i

(
Ain
ij +Aout

ij

)
.410

We shall use the following easily verifiable one dimensional version of the Woodbury formula:411

1

din
i + dout

i

=
1

din
i

− 1

din
i

(
ri

ri + 1

)
412

Thus:413

Lij = δij −
(

1

din
i

− 1

din
i

(
ri

ri + 1

))(
Ain
ij +Aout

ij

)
414

=

(
δij −

1

din
i

Ain
ij

)
− 1

din
i

Aout
ij +

1

din
i

(
ri

ri + 1

)(
Ain
ij +Aout

ij

)
415

= Lin
ij −

1

din
i

(
1− ri

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij416

= Lin
ij −

1

din
i

(
1

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij .417

418

That is, Mij = − 1
dini

(
1

ri+1

)
Aout
ij + 1

dini

(
ri
ri+1

)
Ain
ij . To bound the spectral norm we use Gersh-419

gorin’s disks, noting that Mii = 0 for all i:420

‖M‖2 = max
i
{|λi| : λi eigenvalue of M} ≤ max

i

∑
j

|Mij |421

= max
i

1

din
i

(
1

ri + 1

)∑
j

Aout
ij +

1

din
i

(
ri

ri + 1

)∑
j

Ain
ij422

= max
i

{
1

din
i

(
1

ri + 1

)
(dout
i ) +

1

din
i

(
ri

ri + 1

)
(din
i )

}
423

= max
i

{(
ri

ri + 1

)
+

(
ri

ri + 1

)}
≤ 2rmax = o(1) a.s. by Corollary 3.7424

425
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Recall that ClusterPursuit works by running SubspacePursuit for m iterations on the426

compressive sensing problem: argmin{‖LΩx − y‖2 : ‖x‖0 ≤ s} to obtain xm, and then427

obtaining an approximation to W = Ω \ (C1 ∩ Ω) by considering the support of xm. We now428

use the theory of §2.1 to show that this is a provably good approximation. From equation429

(2.5) we have that 1Ω\C1
is a solution to:430

argmin{‖Lin
Ωx− yin‖2 : ‖x‖0 ≤ εn0}431

Under the assumption that |Ω| = (1 + ε)n0 and C1 ⊂ Ω. What if C1 is not completely432

contained in Ω?433

Lemma 3.11. Suppose that |C1 \ (Ω ∩ C1) | = o(n0). Then434

Lin
Ω 1Ω\(Ω∩C1) = Lin

Ω 1Ω + e1435

where ‖e‖2 = o(
√
n0).436

Proof. Let U := C1 \ (Ω ∩ C1) and W := Ω \ (Ω ∩ C1). Then437

(3.5) Lin1Ω +Lin1U = Lin (1C1∩Ω + 1W ) +Lin1U = Lin (1C1∩Ω + 1U ) +Lin1W = 0 +Lin1W438

as 1C1∩Ω + 1U = 1C1 . Letting e1 = Lin1U we have the result as ‖e1‖2 ≤ ‖Lin‖2‖1U‖2 =439

(2)(
√
|U |) = 2o(

√
n0)440

Of course we do not have access to yin, only y. In the next lemma we prove that this441

introduces an error term with `2 norm of order o(
√
n0).442

Lemma 3.12. Let y :=
∑

i∈Ω `i and yin =
∑

i∈Ω `
in
i . Then y = yin + e2 with ‖e2‖2 =443

o(
√
n0)444

Proof. Clearly e2 := y−yin = L1Ω−Lin1Ω = M1Ω. By Theorem 3.10, ‖M‖2 ≤ o(1). So445

‖e2‖2 ≤ ‖M‖2‖1Ω‖2 ≤ o(1)
(√

(1 + ε)n0

)
= o(
√
n0).446

The net result of Lemma 3.11 and 3.12 is that Lin
Ω1Ω\Ω∩C1

= yin− e2 + e1 =: yin + e with447

‖e‖2 = o(
√
n0). In the notation of Theorem 2.3, we think of LΩ as Φ, the noisy measurement448

matrix, and Lin
Ω as Φ̂. Similarly, we think of yin as ŷ, and the y defined above as the noisy449

signal.450

Theorem 3.13. Let G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 and q = b log(n)/n, where451

ω → ∞. Suppose further that k = O(1). For any t = γn0 with γ ∈ (0, 1), δt(LΩ) ≤ γ + o(1)452

almost surely.453

Proof. This proof is deferred to the appendix.454

Finally, we compute the various constants necessary to apply Theorem 2.3.455

Lemma 3.14. Let G ∼ SSBM(n, k, p, q) with p = ω ln(n)/n and q = b ln(n)/n where ω →456

∞. Suppose further that k = O(1). For any s = εn0 with 0 < ε < 0.15, we have that457

ρ ≤ 0.8751 ,τ = O(1) and εsΦ, εy = o(1) a.s. (these quantities are all defined in Theorem 2.3).458
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Proof. We leave the proof to the appendix.459

Putting all of the above together, we can show that ClusterPursuit succeeds, i.e. if C#
1460

is the output and C1 is the true cluster, then |C1∆C#
1 | = o(n0).461

Theorem 3.15. Let G ∼ SSBM(n, k, p, q) with k = O(1) and p = ω log(n0)/n0, q =462

b log(n)/n, where ω → ∞. Suppose that, for ε < 0.15, Ω ⊂ [n] is such that |Ω| = (1 + ε)n0463

and |C1 \ (Ω∩C1)| = o(n0). Let C#
1 denote the output of ClusterPursuit with inputs R = 0,464

Ω and s = εn0. Then |C#
1 ∆C1| = o(n0) a.s.465

Proof. By Theorem 3.13, δs := δs(LΩ) ≤ ε + o(1) and δ3s := δ3s(LΩ) ≤ 3ε + o(1). Since466

3ε < 0.45, we may take the o(1) term to be small enough such that δ3s(LΩ) ≤ 0.45. We now467

appeal to Theorem 2.3, using the values of ρ, τ, εΦ and εy computed in Lemma 3.14. Let xm468

denote the output of SubspacePursuit run for m iterations on the problem469

(3.6) argmin{‖LΩx− y‖2 : ‖x‖0 ≤ εn0}.470

By Theorem 2.3, we have that471

‖1Ω\(Ω∩C1) − xm‖2
‖1Ω\(Ω∩C1)‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy)472

By Lemma 3.14, the second term on the right-hand side is o(1). Taking m = logρ(1/n) =473

O(log(n)), we obtain that ρm = 1/n = o(1) and so:474

‖1Ω\(Ω∩C1) − xm‖2
‖1Ω\(Ω∩C1)‖2

≤ o(1)475

As before, define U = C1\(Ω∩C1). By assumption |U | = o(n0). It follows that |Ω\(Ω∩C1)| =476

|Ω| − |Ω ∩ C1| = (1 + ε)n0 − (n0 − |U |) = εn0 + o(n0). Hence ‖1Ω\(Ω∩C1)‖2 =
√
εn0 + o(

√
n0)477

and thus:478

‖1Ω\(Ω∩C1) − xm‖2 ≤ o(
√
n0).479

From the following lemma, it follows that |supp(xm)∆ (Ω \ (Ω ∩ C1)) | = o(n0), and con-480

sequently, as C#
1 = Ω \ supp(xm) we have that |C#

1 ∆(Ω∩C1)| = o(n0). Accounting for U , we481

have that482

|C#∆C1| = |C#∆(Ω ∩ C1)|+ |U | = o(n0) + o(n0) = o(n0) a.s.483

Lemma 3.16. Let T ⊂ [n] and v ∈ Rn. If ‖1T − v‖2 ≤ D and | supp(v)| ≤ |T | then484

|T∆supp(v)| ≤ 2D2.485

Proof. Recall that T∆supp(v) = (T \ (T ∩ supp(v))) ∪ (supp(v) \ (T ∩ supp(v))) and486

these two sets are disjoint. Now:487

|T \ (T ∩ supp(v))| = |T | − |T ∩ supp(v)|488

and |supp(v) \ (T ∩ supp(v))| = |supp(v)| − |T ∩ supp(v)| ≤ |T | − |T ∩ supp(v)|489

⇒|T∆supp(v)| ≤ 2 (|T | − |T ∩ supp(v)|) = 2 (T \ (T ∩ supp(v))) .490491
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But T \ (T ∩ supp(v)) cannot be too large as:492

D ≥ ‖1T − v‖2 ≥ ‖ (1T − v) |T\(T∩supp(v))‖2 = ‖1T\(T∩supp(v))‖2 =
√
|T \ (T ∩ supp(v)) |.493

Thus |T \ (T ∩ supp(v)) | ≤ D2, and the result follows.494

3.5. Computational Complexity. Here we bound the operation count required by SSCP.495

For continuity, we focus on the case where G ∼ SSBM(n, k, p, q) with parameters as in Theo-496

rem 3.1. Our analysis is inspired by the analysis of a similar algorithm, CoSaMP, in [37].497

Theorem 3.17. Suppose SSCP is run on G ∼ SSBM(n, k, p, q) with parameters exactly as498

in Theorem 3.1. If ω = O(log(n)), then SSCP requires O(n log3(n)) operations.499

Proof. Assume throughout that A is stored as a sparse matrix. There are three main steps500

in SSCP, namely: (1) Computing L and L+; (2) The thresholding step of Algorithm 2; and (3)501

Solving the sparse recovery problem at the heart of ClusterPursuit using SubspacePursuit.502

We shall bound the complexity of each of these individually.503

(1) Computing each di requires di ≤ dmax additions. This is done n times to compute D,504

requiring O(dmaxn) operations. As D is diagonal, the cost of computing D−1A is equal to505

the number of non-zero entries in A, which is bounded by dmaxn. By Corollaries 3.5 and 3.6,506

dmax ≤ din
max + dout

max = (1 + o(1))ω log(n0) + 2b log(n) + o(1) = O(ω log(n)). Hence computing507

L and L+ require O(ω log(n)n) operations.508

(2) Sorting the entries of a vector v in decreasing order, and then selecting the (1 + ε)n0-509

largest of them, as in line 4 of Algorithm 2.2, takes at most O(n log(n) operations ([37]). Hence510

the computational cost of determining Ω̃ = L̃(1+ε)n̂0
(v) is dominated by the cost of computing511

v :=
(
L+

Γc

)>
b. Each row of

(
L+

Γc

)>
contains at most dmax +1 ≤ O(ω log(n)) non-zero entries,512

hence this matrix-vector multiply requires at most O(ω log(n)n) computations.513

(3) The computational cost of solving the perturbed sparse recovery problem (2.5) using514

SubspacePursuit is equal to the number of iterations, m, times the cost of each iteration.515

The cost of each iteration is determined by calculating the cost of each step in the iterative516

part of SubspacePursuit (see Algorithm 2.1):517

(3.1) Computing Ls(L>Ωrk−1) is dominated by the cost of the matrix-vector multiply L>Ωrk−1.518

Each row of L>Ω has at most dmax non-zero entries, hence the cost of this step is519

O(ω log(n)n).520

(3.2) Solving the least square problem in step (2) is the most computationally expensive521

step. We recommend using an iterative method, such as conjugate gradient (in our522

implementation we use MATLAB’s backslash operation). Fortunately, as pointed out523

in [37], the matrix in question, LΩ|T̂k = LT̂k is extremely well conditioned. This is524

because |T̂ k| = 2s and by assumption δ2s(L) ≤ δ3s(L). As in the proof of Theorem525

3.15, we may assume that δ3s(L) ≤ 0.45, for large enough n. By [37], specifically526

Proposition 3.1 and the discussion of §5, this implies that the condition number is527

small:528

κ(L>
T̂kL

T̂k) :=
λmax(L>

T̂k
LT̂k)

λmin(L>
T̂k
LT̂k)

≤ 1 + δ2s

1− δ2s
≤ 2.64529
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The upshot of this is that it only requires a constant number of iterations of conjugate530

gradient to approximate the solution to the least-squares problem, u, to within an531

acceptable tolerance. The cost of each iteration of conjugate gradient is equal to the532

cost of a matrix vector multiply by LT̂k or L>
T̂k

, which is O(ω log(n)n).533

(3.3) The cost of sorting and thresholding (step (3)) is O(n log(n)).534

(3.4) Finally the cost of computing the new residual rk in step (4) is dominated by the matrix535

vector multiply L>
Tkr

k, hence is O(ω log(n)n).536

Thus the cost of a single iteration of SubspacePursuit is O(ω log(n)n). By the proof of537

Theorem 3.15, it suffices to take m = O(log(n)), hence the cost of running SubspacePursuit538

is O(ω log2(n)n).539

It follows that the computational cost of SSCP is dominated by the SubspacePursuit step,540

and is O(ω log2(n)n). If ω = O(log(n)), then O(ω log2(n)n) = O(log3(n)n).541

4. Experimental Results.542

4.1. Implementation of algorithms. All algorithms considered were run in MATLAB.543

SSCP. The implementation of SSCP used is available as the function SSCPMain. We set the544

parameters ε = 0.2, R = 0.5 and s = 1.2εn̂0. Unless otherwise indicated, n̂0 was set to be the545

true size of the cluster of interest.546

ESSC. The algorithm we refer to as ESSC is technically the sub-routine referred to as547

Community-Search on pg. 1863 of [46] and as Main.Search in the R package for ESSC (avail-548

able at http://jdwilson-statistics.com/publications/). We use a MATLAB implementation of549

this algorithm written by the second author. We compared the accuracy and run time of our550

MATLAB version to that of the R version, and found them to be nearly identical. We set the551

maximum number of iterations to 50 and the parameter α = 0.05552

LOSP++. We use the MATLAB implementation provided by the authors of [27], available553

at https://github.com/KunHe2015/LOSP. We use a diffusion parameter α = 0.1 and the554

“light lazy” random walk. As for SSCP, n̂0 is set to be the true size of the cluster of interest,555

unless otherwise indicated.556

HKGrow. We use the MATLAB implementation of this algorithm available at https://557

www.cs.purdue.edu/homes/dgleich/codes/hkgrow/. This implementation requires no input558

parameters.559

The size of the seed set Γ given to SSCP, LOSP++ and HKGrow is gn0, where g ∈ (0, 0.1)560

and n0 is the true size of the cluster of interest. ESSC is seeded with the neighborhood of the561

highest degree vertex in the cluster of interest, as done in [46], unless otherwise indicated.562

4.2. Measures of cluster quality. When there exists a known, ground truth cluster563

C, we measure the accuracy of cluster extraction using the Jaccard Index : Jac(C,C#) :=564 ∣∣C ∩ C#
∣∣ / ∣∣C ∪ C#

∣∣. The maximum value of Jac(C,C#) is 1, and this occurs when C = C#.565

The Jaccard index has a minimum value of 0, which is achieved when C and C# are disjoint.566

We shall also have occasion to use conductance as a measure of cluster quality, as defined in567

§2.1. Note that lower values of conductance indicate better clusters.568

4.3. The Synthetic Data sets. We consider graphs drawn from three different stochastic569

block models. In all cases we take g = 0.02. In experiment 1, we consider graphs drawn from570

SBM(n, P1), where n = (n1, 10n1) and in experiment 2 we draw graphs from SBM(n, P2)571
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where again n = (n1, 10n1). The connection probability matrices are:572

P1 =

[
3 log2(n)/n log(n)/n
log(n)/n 3 log2(n)/n

]
and P2 =

[
5 log2(n)/n log(n)/(2n)
log(n)/(2n) log(n)/(2n)

]
.573

In experiment 3 we use the symmetric SBM, SSBM(n, k, p, q) for k = 10, n = 10n1,574

p = 3(log(n))2/n and q = log(n)/n. See Figure 2 for a visualization of the adjacency matrices,575

rearranged so as to reveal the latent clusters. In all cases we focus on extracting the smaller576

cluster, C1 (although in the third experiment all clusters are the same size). In all cases, we577

vary the size of C1, namely n1, from 100 to 600.578

Figure 2: The adjacency matrices of typical graphs for each of the three benchmarks, permuted
to reveal the ground truth clusters. From left to right: Experiments 1–3

SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time
n1 = 100 0.84 0.03 0.93 0.007 0.73 0.03 0.75 19.05
n1 = 200 0.88 0.12 1.00 0.02 0.76 0.08 0.75 97.96
n1 = 300 0.91 0.22 1.00 0.02 0.80 0.18 - -
n1 = 400 0.92 0.44 1.00 0.02 0.81 0.31 - -
n1 = 500 0.95 0.74 1 0.02 0.88 0.51 - -

Table 1: Results of Experiment 1 - one small cluster and one large cluster. Note that ESSC

did not finish running in a reasonable time for n1 ≥ 300.

SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time
n1 = 200 0.76 0.02 0.29 0.02 0.91 0.03 0.76 0.41
n1 = 300 0.75 0.02 0.30 0.03 0.93 0.01 0.79 0.87
n1 = 400 0.72 0.04 0.09 0.04 0.94 0.02 0.80 1.40
n1 = 500 0.71 0.03 0.09 0.05 0.96 0.04 0.81 2.00
n1 = 600 0.69 0.06 0.11 0.07 0.97 0.05 0.84 2.67

Table 2: Results of Experiment 2 - one cluster with many background vertices
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SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time
n1 = 100 0.73 0.01 0.34 0.02 0.66 0.03 0.79 0.32
n1 = 200 0.85 0.04 0.84 0.01 0.78 0.01 0.70 1.21
n1 = 300 0.88 0.08 1 0.02 0.81 0.05 0.80 2.34
n1 = 400 0.92 0.22 1 0.03 0.84 0.1 0.99 2.49
n1 = 500 0.94 0.34 1 0.03 0.87 0.13 0.94 6.6

Table 3: Results of Experiment 3 - ten identical clusters

Remark 4.1. The precise values of the coefficients of log2(n)/n and log(n)/n in all experi-579

ments are essentially arbitrary, and varying them does not qualitatively effect our results. The580

interested reader is invited to investigate further—all benchmarking scripts used are contained581

in the SSCP package.582

4.4. The Real Data Sets. The facebook100 dataset consists of anonymized Facebook583

“friendship” networks at 100 American universities, and was first introduced and studied in584

[45]. It contains, for each college or university, a graph whose vertices correspond to under-585

graduates with a Facebook account at that institution. Edges connect students who were586

friends on Facebook the day (in September 2005) the data was collected. Certain demo-587

graphic markers (year of entry, gender, residence, high school etc.) were also collected in an588

anonymized format. We focus on four schools, California Institute of Technology (Caltech),589

Rice, University of California, Santa Cruz (UCSC) and Smith College, identified by Traud et.590

al. ([45]) as being most strongly clustered by residence. We treat the residence assignments591

as the ground truth clusters. We note that there are always some students whose residen-592

tial affiliation is unknown; we treat these as background vertices. For each cluster, we run593

each algorithm ten times, each time with a different set of uniformly randomly selected seed594

vertices. For SSSCP, HKGrow and LOSP++ the seed set consists of g(size of cluster) vertices,595

where g = 0.05 for Smith and Caltech while g = 0.02 for Rice and UCSC. For ESSC, the596

seed set is the neighborhood of a certain vertex in the ground truth cluster. We tried taking597

this vertex to be the highest degree vertex in the cluster (as in [46]) as well as selecting this598

vertex uniformly at random. Experimentally, we observed better results for the latter, so we599

report these. We note that for the larger networks (i.e. Smith, Rice and UCSC) ESSC did not600

converge within a reasonable amount of time. The results reported in Table 5 are averaged601

over all clusters, and over all ten independent trials for each cluster.602

Vertices Clusters Max cluster size Min cluster size Mean cluster size
Caltech 769 8 99 44 74.63
Smith 2970 36 113 12 70.17
Rice 4087 9 414 382 396

UCSC 8991 10 925 622 773.7

Table 4: Basic properties of the four social networks studied.
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SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time
Caltech 0.43 0.01 0.27 0.004 0.38 0.01 0.43 3.72
Smith 0.33 0.02 0.06 0.02 0.31 0.04 - -
Rice 0.39 0.14 0.43 0.03 0.42 0.10 - -

UCSC 0.28 0.35 0.16 0.04 0.28 0.31 - -

Table 5: Results for four social networks from the facebook100 data set. Quantities displayed
are averaged over ten independent trials per cluster and over all clusters.

The polblogs data set This data set consists of 1224 political blogs collected in the603

leadup to the 2004 U.S presidential election by Adamic and Glance [3]. Vertices are connected604

if there is a hyperlink between them. The political leanings of the blogs — liberal vs. conser-605

vative — were recorded, and it was shown in [3] that partitioning the vertices into two clusters,606

C lib and Ccons based on political leaning gives a good clustering. However as noted by several607

authors, e.g. [39] and [46], the structure of this network is actually a bit more complicated.608

For example, Olhede and Wolfe [39] suggest that the community structure of this network can609

more accurately be described by 17 smaller communities of approximately 70 vertices each. In610

this experiment, we investigate the ability of SSCP to find clusters at different scales. We seed611

SSCP, LOSP++ and HKGrow with ten vertices. We attempted to run ESSC seeded, as in the other612

experiments, with the neighbourhood of a vertex but did not observe good results.1 However,613

when we gave ESSC the same set of seed vertices as the other algorithms we observed much614

better performance, and so it is these results we report. For SSCP and LOSP++, we try two615

different scale parameters: n̂0 equal to the true size of the liberal cluster, and also n̂0 = 80,616

based on the suggestion of Olhede and Wolfe [39] mentioned earlier. For both values of n̂0,617

we conduct ten independent trials. In each trial the seed set Γ is drawn uniformly at random618

from the set of liberal vertices with high degree (that is, degree greater than 10) The results619

are recorded in Table 6. We repeat this process for the conservative vertices. Note that when620

n̂0 = 80, no ground truth is available so we use conductance as our measure of cluster quality.621

ESSC took approximately 9 seconds for each run, SSCP took approximately 0.08 seconds, while622

HKGrow and LOSP++ took approximately 0.02 seconds.623

SSCP HKGrow LOSP++ ESSC

Cond. n̄0 σ Cond. n̄0 σ Cond. n̄0 σ Cond. n̄0 σ
Lib. large 0.31 571.7 9.25 0.14 482.8 72.9 0.17 588 - 0.09 495.2 11.41
Lib. small 2.77 72 0 - - - 1.52 75 - - - -
Cons. large 0.19 612 6.32 0.09 639.9 27.46 0.18 636 - 0.09 601 13.95
Cons. small 3.39 72 0 - - - 2.13 75 - - - -

Table 6: Results for the polblogs data set. n̄0 (resp. σ) denotes the mean of (resp. standard
deviation in) the sizes of clusters found.

The MNIST Data set This data set, available at http://yann.lecun.com/exdb/mnist/,624

1The failure of ESSC here is easily explainable. Recall that ESSC is designed to extract significant commu-
nities, and is not forced to return a community containing the seed set. For this data set, ESSC gravitated
towards the cluster of conservative vertices, even when seeded with the neighborhood of a liberal vertex
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consists of 60, 000 training and 10, 000 test images of handwritten digits. We do not consider625

the full data set, but rather sample 20, 000 images at random from the training set. We do this626

so that all three algorithms run in a reasonable amount of time. We perform an elementary627

preprocessing step, which we now describe. After performing PCA on the set of images, we628

retain only the 50 leading principal components to obtain a feature vector xi for each image.629

We then form an affinity matrix A using the local scaling of Zelnik-Manor and Perona [47].630

Specifically:631

Ãij =

{
exp

(
−‖xi−xj‖22

σiσj

)
if xj is one of xi’s K nearest neighbors

0 otherwise
632

where σi is a local scaling parameter: σi = ‖xi − x[r,i]‖2 and x[r,i] denotes the r-th nearest633

point to xi.634

SSCP HKGrow LOSP++

Jaccard Time Jaccard Time Jaccard Time
g = 0.01 0.80 3.11 0.63 0.05 0.67 0.93
g = 0.02 0.84 3.65 0.65 0.05 0.66 1.61
g = 0.05 0.90 3.65 0.75 0.06 0.75 3.48

Table 7: Results for the MNIST data set, averaged over ten independent trials per digit and
over all ten digits. The size of the seed sets is always g × (size of cluster).

Following [29], we set K = 15 and r = 7. Finally, as the matrix Ã is not symmetric, we635

symmetrize by defining A = Ã>Ã, which we interpret as a weighted adjacency matrix. As636

there are 10 digits, there are naturally 10 clusters in the graph defined by A. For each digit,637

we run 10 trials of SSCP, HKGrow and LOSP++ seeded with g(size of cluster) images selected638

uniformly at random from the cluster, for g = 0.01, 0.02 and 0.05. We do not test ESSC as639

it is not designed to handle weighted graphs2. SSCP and LOSP++ are given the exact cluster640

size as n̂0. We present the Jaccard indices and run times, averaged over the ten independent641

trials and over all ten clusters, in Table 7.642

Semi-Supervised classification of the MNIST dataset The problem of separating643

a data set into a predefined number of classes, given a small subset of labeled data (i.e.644

data points whose class memberships are known) is known in the machine learning literature645

as semi-supervised learning, and is a problem of growing interest. Here, we demonstrate646

that SSCP can be used as the core of an effective and efficient semi-supervised classifier. We647

implement an iterated version of SSCP (available in the SSCP package as ISSCP2) described648

in pseudocode as Algorithm 4.1. As before, k will denote the number of classes/clusters. Let649

Γa ⊂ Ca denote the labeled data in the a-th class. ISSCP2 takes as input an adjacency matrix650

A, which we compute using the same preprocessing step as the previous MNIST experiment,651

the labeled data {Γ1, . . . ,Γk} and estimates {n̂1, . . . , n̂k} of the sizes of C1, . . . , Ck. For the652

2 Recently, the authors learned of the thesis of Palowitch [40], which extends the ESSC framework to weighted
networks. However, it requires one to specify a null-model of graph resembling the data, except without any
clusters, and it is not always clear how to do so in practice
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call to SSCP when finding the a-th cluster, we fix the parameters as ε = 0.2, R = 0.4 and653

s = 1.2εn̂a. We experiment with setting n̂a to be the true size of Ca and n̂a = n/k for all a,654

and observe that it affects the classification accuracy only slightly.655

Note that SSCP, as an extractive algorithm is a priori at an innate disadvantage for a656

multi-class classification problem, because when it is finding the a-th cluster, it only “sees”657

the labeled data Γa. We remedy this by running a subroutine we call HeavyEdges prior to658

extracting any of the clusters. This function re-weights edges between labeled vertices as659

follows. For i, j ∈ Γa, set w(i, j) = 5. For i ∈ Γa and j ∈ Γb with a 6= b, set w(i, j) = 0.660

Leave all other edges unaltered. Empirically we found that including HeavyEdges boosts the661

classification accuracy of ISSCP2 by about 1%.662

Algorithm 4.1 Iterated Semi-Supervised Cluster Pursuit (ISSCP2)

Input: Adjacency matrix A, Γa ⊂ Ca and n̂a ≈ |Ca| for a = 1, . . . k.
Step 1 A = HeavyEdges(A). Set G(1) = G and A(1) = A.
Step 2
for a = 1 : k − 1 do

C#
a = SSCP(A(a), ε = 0.2, R = 0.4,Γa, n̂0 = n̂a, s = 1.2εn̂a).

Let G(a) be the induced subgraph on V (a−1) \ C#
a with the adjacency matrix A(a).

end for
Step 3 Let Ωk = V \

⋃k−1
a=1 C

#
a . Find C#

k as C#
k = ClusterPursuit(A,R = 0.4,Ωk, s =

1.2εn̂k)

Step 4 (Optional) Define V background = V \
⋃k
a=1C

#
a .

for s = 1 :
∣∣V background

∣∣ do

For vertex is ∈ V background let ã = argmaxka=1

∑
j∈Ca

Aisj

Let C#
ã = C#

ã ∪ {is}
end for
Output: {C#

1 , . . . , C
#
k }

In Table 8 we report the classification accuracy of ISSCP2, run using the optional fourth663

step, applied to the entire MNIST data set (test + training, so 70, 000 images). In Table 9 we664

also detail the accuracy of other semi-supervised learning algorithms on the same data set.665

Remark 4.2. We note that ISSCP2 will have an advantage over the other methods listed666

in Table 9 in the following scenario. Suppose instead of a clean data set like MNIST, one667

is trying to use semi-supervised classification on a data set containing data points which are668

corrupted beyond classifiability, or data points which do not fit into any of the classes (e.g.669

if several hundred pictures of handwritten letters were accidentally included into the MNIST670

data set). ISSCP2, run without Step 4, is not forced to assign a class to these outliers. Instead,671

it will just declare them to be background vertices in the graph. This is in contrast with all672

the other methods listed, which are forced to assign a class to every data point.673
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n̂0 = exact sizes n̂0 = n/k
g = 0.01 96.82% 95.53%
g = 0.02 97.42% 96.73%
g = 0.03 97.56% 96.79%
g = 0.04 97.58% 96.92%
g = 0.05 97.64% 97.06%

Table 8: Accuracy of classification
of MNIST data using ISSCP2 when
given exact and approximate cluster
sizes.

Method Labelled Accuracy
TSVM [17] 1000 95.62%

Deep Generative Model [30] 1000 97.13%
ISSCP2 1000 97.15%

Auction Dynamics [29] 700 97.43%
Ladder Networks [41] 1000 99.16%

Table 9: Comparing ISSCP2 to other, state-of-
the-art, semi-supervised methods on MNIST.

4.5. The effect of the parameter n̂0. In this section we test how accurate SSCP is when674

n̂0 differs significantly from the true cluster size, |C|. We rerun SSCP on graphs generated675

using the same SBM parameters as Experiments 1–3, (denoted as “two clusters”, “cluster +676

background” and “ten clusters” respectively in Table 10, with inputs ε = 0.2, R = 0.5 and677

s = 1.2εn̂0. In each case, the true size of the cluster of interest, n1, is set to be 400. We then678

vary n̂0 from 300 to 500. In Table 10, we present the Jaccard index and the conductance,679

averaged over ten independent trials, for each of these experiments. Recall that high Jaccard680

index indicates a good cluster, while low conductance indicates a good cluster. Note that681

while the Jaccard index is calculated with respect to the ground truth, conductance only682

takes into account the vertices in the cluster found and the network topology. Thus, Table 10683

suggests a data driven approach to finding the optimal cluster size — simply vary n0, record684

the conductance, and look for a local minimum. We emphasize that unlike LOSP++, SSCP is685

not forced to output a cluster of size precisely n̂0.686

n̂0 = 300 n̂0 = 350 n̂0 = 400 n̂0 = 450 n̂0 = 500
Jac. Cond. Jac. Cond. Jac. Cond. Jac. Cond. Jac. Cond.

Two Clusters 0.71 0.77 0.84 0.58 0.86 0.55 0.80 0.61 0.76 0.65
Cluster + background 0.44 0.92 0.52 0.63 0.72 0.33 0.81 0.20 0.75 0.19

Ten Clusters 0.72 0.71 0.86 0.51 0.93 0.43 0.87 0.50 0.80 0.58

Table 10: Using SSCP, with s = 1.2εn̂0 to find C1 of size n1 = 400. In the ‘Two clusters’ and
‘Ten clusters’ cases, there is a clear minimum of conductance when n̂0 = n1.

4.6. Discussion. Over both synthetic and real data sets, the performance of SSCP is687

remarkably consistent, in both run-time and accuracy. Whereas HKGrow and ESSC both have688

types of graph for which they perform poorly (The ‘one small and one large cluster’ graph689

of Experiment 1 for ESSC, and the ‘one cluster plus background’ graph of Experiment 2 for690

HKGrow), the accuracy of SSCP is never the worst, and is frequently the best. Moreover, unlike691

ESSC, the run-time of SSCP depends only on the size of the graph, not its topology. Although692

the performance of LOSP++ in extracting small clusters from the polblogs data set is slightly693

better, SSCP handles this challenge well, demonstrating that it is capable of extracting clusters694

at different scales from heterogeneous networks. Finally, the accuracy of SSCP on weighted695

graphs, e.g. the MNIST data set, is markedly better than that of the other algorithms tested.696
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A. RIP for Graph Laplacians. In this section we prove Theorem 3.13 and Lemma 3.14.697

We proceed via a series of lemmas. We first show that the RIP holds for L whenG ∼ ER(n0, p).698

We then show that it still holds when G is a disjoint union of Erdős - Rènyi graphs, equiva-699

lently when G ∼ SSBM(n, k, p, 0). Finally, we extend to the case where G ∼ SSBM(n, k, p, q)700

via a perturbation argument.701

702

Lemma A.1. Let G be any connected graph on n0 vertices, and let t < n0. Then:703

δt(L) ≤ max{1− λ2
2

(
dmin

dmax
− dmax

dmin

t

n0

)
, 1− λ2

max}.704

Proof. Recall that the t-Restricted Isometry Constant δt(L) is the smallest δ such that,705

for any v with |supp(v)| ≤ t and ‖v‖2 = 1:706

(1− δ) ≤ ‖Lv‖22 ≤ (1 + δ).707

We shall prove the theorem by showing that, for any such v, ‖Lv‖2 ≤ λmax and ‖Lv‖2 ≥708

λ2
2

(
dmin
dmax

− dmax
dmin

t
n0

)
. The first bound is straightforward:709

‖Lv‖2 ≤ ‖L‖2‖v‖2 = λmax(1) = λmax710

The second bound requires some work. Recall that L = I − D−1A. This matrix is not711

symmetric, but Lsym = I −D−1/2AD−1/2 is. Moreover, Lsym = D1/2LD−1/2, and so L and712

Lsym have the same eigenvalues. Let w1, . . . ,wn0 be an orthonormal eigenbasis for Lsym. These713

eigenvectors are well studied (see, for example, [13]) and in particular w1 = 1√
vol(G)

D1/21714

where 1 is the all-ones vector, and vol(G) =
∑

i∈V di. Observe that:715

Lv = D−1/2
(
D1/2LD−1/2

)
D1/2v = D−1/2LsymD1/2v = D−1/2Lsymz,716

where z := D1/2v. It follows that:717

(A.1) ‖Lv‖2 = ‖D−1/2Lsymz‖2 ≥
1√
dmax

‖Lsymz‖2.718

Express z in terms of the orthonormal basis {w1, . . . ,wn}, namely z =
∑n0

i=1 αiwi. Then:719

‖Lsymz‖22 = ‖
n0∑
i=1

αiλiwi‖22 = ‖
n0∑
i=2

αiλiwi‖22 ≥ λ2
2

(
n0∑
i=2

α2
i

)
720

721

and
∑n0

i=2 α
2
i = ‖z‖22 − α2

1. We now bound ‖z‖2 and α1.722

‖z‖22 = ‖D1/2v‖22 ≥
(√

dmin

)2
‖v‖22 = dmin723
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while:724

α1 = 〈z,w1〉 = 〈D1/2v,
1√

vol(G)
D1/21〉 =

1√
vol(G)

〈v, D1〉 ≤ dmax√
vol(G)

〈v,1〉.725

We now use the assumptions on v. Specifically 〈v,1〉 ≤ ‖v‖1 ≤
√
t‖v‖2 =

√
t and so726

α1 ≤ dmax

√
t√

vol(G)
≤ dmax

√
t√

dminn0
=

dmax√
dmin

√
t

√
n0
.727

Returning to equation (A.1):728

‖Lv‖22 ≥
1

dmax
‖Lsymz‖22 ≥

1

dmax
λ2

2

(
dmin −

d2
max

dmin

t

n0

)
= λ2

2

(
dmin

dmax
− dmax

dmin

t

n0

)
.729

Lemma A.2. Suppose that G ∼ ER(n0, p) with p = ω ln(n0)/n0 for some ω → ∞. Then730

δt(L) ≤ t/n0 + o(1) a.s.731

Proof. This is a simple consequence of Lemma A.1. If G is as in the hypothesis then732

dmin = (1− o(1))n0p and dmax = (1 + o(1))n0p a.s. by Theorem 3.3. Moreover λ2 ≥ 1− o(1)733

and λn0 ≤ 1 + o(1) a.s. by Theorem 3.4. Hence:734

λ2
2

(
dmin

dmax
− dmax

dmin

t

n0

)
≥ (1− o(1))2

(
(1− o(1))n0p

(1 + o(1))n0p
− (1 + o(1))n0p

(1− o(1))n0p

t

n0

)
735

≥ (1− o(1))

(
1− o(1)

1 + o(1)
− 1 + o(1)

1− o(1)

t

n0

)
736

= (1− o(1))

(
1− o(1)− (1 + o(1))

t

n0

)
737

= 1

(
1− t

n0
− o(1)

)
− o(1) = 1− t

n0
− o(1) a.s.738

739

Hence by Lemma A.1, we have that740

δt(L) ≤ max

{
1−

(
1− t

n0
− o(1)

)
, o(1)

}
=

t

n0
+ o(1) a.s.741

Lemma A.3. Suppose that G ∼ SSBM(n, k, p, 0) with k = O(1), then δt(L) ≤ t
n0

+o(1) a.s.742

Proof. Because q = 0, there are no inter-cluster edges, and G is a disjoint union of sub-743

graphs G1, . . . , Gk, each drawn independently from ER(n0, p). It follows that L is block744

diagonal, with blocks L1, . . . , Lk, where La is the Laplacian of Ga. For a block diagonal ma-745

trix, one can easily check that δt(L) = maxa δt(La). By Lemma A.2, δt(La) ≤ t/n0 + o(1) a.s.746

As k = O(1), by the union bound, maxa δt(La) ≤ t
n0

+ o(1) a.s.747

We shall finish the argument by appealing to the following theorem of Herman and748

Strohmer. Recall that for any matrix B, ‖B‖2,t := max{‖BT ‖2 : T ⊂ [n] and |T | = t}749

This manuscript is for review purposes only.



CLUSTERING VIA COMPRESSIVE SENSING 27

Theorem A.4 ([28]). Suppose that Φ = Φ̂ + M . Let δ̂t and δt denote the t restricted750

isometry constants of Φ̂ and Φ respectively and recall that εtΦ := ‖M‖2,t/‖Φ̂‖2,t. Then:751

δt ≤ (1 + δ̂t)
(
1 + εtΦ

)2 − 1.752

Proof. (of Theorem 3.13) Recall that, if G ∼ SSBM(n, k, p, q) and L denotes the Laplacian753

of G, then we may write L = Lin + M where Lin is the Laplacian of the in-cluster subgraph754

Gin ∼ SSBM(n, k, p, 0) and ‖M‖2 ≤ o(1) by Theorem 3.10. By Lemma A.3 δ̂t := δt(L
in) ≤755

t/n0 + o(1) a.s. Observe that, for any matrix B,756

‖B‖2,t := max
T⊂[n]
|T |=t

‖BT ‖2 = max
T⊂[n]
|T |=t

σmax(BT ),757

where σmax(BT ) denotes the maximum singular value of BT . By the interlacing theorem for758

singular values ([44]), λt−1(B) ≤ σmax(BT ) ≤ λt(B) ≤ λmax(B) and so ‖M‖2,t ≤ ‖M‖2 ≤759

o(1) a.s. by Theorem 3.10. Similarly, ‖Lin‖2,t ≥ λt−1(Lin). The eigenvalues of Lin are760

the eigenvalues of the La, counted with multiplicity. In particular, as long as t > k + 1 3,761

λt−1(Lin) ≥ mina λ2(La). By theorem 3.4, λ2(La) ≥ 1 − o(1) a.s., and as k = O(1), we may762

apply the union bound to obtain ‖Lin‖2,t ≥ 1− o(1) a.s. Hence:763

(A.2) εtΦ :=
‖M‖2,t
‖Lin‖2,t

≤ o(1)

1− o(1)
= o(1) a.s.764

Applying theorem A.4:765

δt(L) ≤
(

1 +
t

n0
+ o(1)

)
(1 + o(1))2 − 1 =

(
1 +

t

n0
+ o(1)

)
(1 + o(1))− 1766

=

(
1 +

t

n0
+ o(1)

)
− 1 =

t

n0
+ o(1) = γ + o(1) if t = γn0767

768

Proof. (Of lemma 3.14) That εtΦ = o(1) was shown in the proof of Theorem 3.13 (see769

equation (A.2)). Here, εy := ‖e‖2/‖yin‖2 where ‖e‖2 = o(n0) by Lemma 3.11 and 3.12.770

Rearranging equation (3.5) we get that yin = Lin1Ω = Lin (1U − 1W ) where U := C1\(Ω ∩ C1)771

and W := Ω \ (Ω ∩ C1). As in the proof of theorem 3.15, |U | = o(n0) and |W | = εn0 + o(n0),772

hence ‖1U − 1W ‖0 = o(n0) + εn0 + o(n0) ≤ 2εn0 for n0 large enough. It follows that:773

‖yin‖22 = ‖Lin (1U − 1W ) ‖22 ≥ (1− δ2εn0)‖1U − 1W ‖22 ≥ (2ε+ o(1)) (εn0 + o(n0))774

Where the bound on δ2εn0 = δ2εn0(Lin) comes from Lemma A.3. As ε is fixed, we obtain775

εy =
o(n0)

2ε2n0 + o(n0)
= o(1)776

Note that the sparsity input for SubspacePursuit, namely s, is set equal to εn0. As ε < 0.15777

by assumption, it follows that δ3εn0 < 0.45 + o(1). For n large enough, we may assume that778

δ3εn0 ≤ 0.45. It follows from direct calculation that ρ ≤ 0.8751 and τ ≤ 55.8490.779

3 In the set up we are considering, t is proportional to n, while k is fixed, thus this will always be the case
for n large enough
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