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Abstract

We study a time dependent partial differential equation(PDE) which arises from classic models in
ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence,
uniqueness and stability of the discrete weak solutions will be discussed. We use bivariate splines to
approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed
to solve this PDE. A Convergence analysis of the algorithm is presented. Finally, we present some
simulations of population development over some irregular domains.

1 Introduction

Empirical evidence shows that the structure of environments and spatial scale can systematically influ-
ence population development and interactions in a way that can be described by mathematical models
[13, 15]. The first serious attempt to model population dynamics is credited to Malthus in 1798 [26],
who hypothesized that human populations grow geometrically while resources grow arithmetically, thus
eventually reaching a point in which the population could not be sustained any more; this linear growth
model is problematic since it allows unbounded population increase. A major refinement was introduced
by Verhulst in 1838 [32] by means of a density-dependent logistic term in Malthus’ model, predicting popu-
lation growth if resources were available or population decay if population surpassed resources; this model
takes the form ṗ = r0p(1 − p/k), where p represents population density, r0 is the rate of growth, and k
represents the carrying capacity. Fisher [11] used in 1937 a diffusion operator to study the propagation
of advantageous genes in population; the same year, Kolmogorov and his collaborators [17] studied the
following reaction-diffusion equations in the one-dimensional setting:

ṗ = Dpxx + kp(1− p) and ṗ = Dpxx + F (p), (1.1)

where F (p) satisfies F (p) ≥ 0, F (0) = F (1) = 0, f ′(0) > 0, F ′(1) < 0 for p ∈ [0, 1].
The logistic model has been central to the modern study of population dispersal in spatial domains

[24, 6]. Skellam’s influential paper [30] in 1951, introduced a variation in Kolmogorov’s equation for
the study of phytoplankton; the resulting model was pt = d∆p+ c1(x, y)p− c2(x, y)p2. This basic form of
population dispersal is applicable in many notable cases ranging from population dispersal to recent models
of information diffusion in online social networks [?]. Nevertheless, Skellam’s model is too simplistic in most
practical cases; it assumes that lack of interactions with other species, and that populations can grow at the
same rate at low and high densities. An important refinement to Kolgomorov’s model was introduced by
Lewis and Kareiva in 1993 [23]. The correlation hypothesized by Allee in 1938 between population size and
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mean individual fitness [1], was represented in Lewis and Kareiva’s model by pt = d∆p+r0p(1−p/k)(p−σ),
where σ represents the population below the carrying capacity below which the population growth is
negative. This is the foundation of the model we study in this paper.

More precisely, we are interested in solution of the following nonlinear time dependent partial differential
equation: Letting Ω ⊂ R2 be a polygonal domain and ΩT = Ω× (0, T ],

dp(x, t)

dt
= div (D(p,x)∇p(x, t))) + F (p(x, t)), x = (x, y) ∈ Ω, t ∈ [0, T ]

p(x, t) ≥ 0, x ∈ Ω, t ∈ [0, T ]

p(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]

p(x, 0) = p0, x ∈ Ω,

(1.2)

where D(p,x) is a diffusive term, e.g. D(p,x) = D > 0 and F (p) is a growth function, e.g. F (p) = Ap(1−p)
which is a standard logistic growth function with A being a nonnegative weighted function over Ω. In this
paper, we shall mainly study F (p) = Ap(1− p)(p− σ), where σ is a positive constant in [0, 1) and A(x, y)
are nonnegative functions on Ω× [0, T ).

Exact solutions to Kolmogorov’s equation (1.1) have been found [27]. However, there does not appear
to exist an exact solution to the diffusion logistic model with Allee effect; while asymptotics and speed
of diffusion waves have been found analytically, the solutions to this problem (1.2) over different domains
remain mostly numerical. Lewis and Kareiva [23] used finite differences; The researchers in [28] used
a second-order finite elements method; In [29] finite elements were used in a model that incorporated
geographic features and population dispersal. In this paper, we would like to present another numerical
solution to the diffusion logistic problem with Allee effect. This solution is based on bivariate spline
functions over triangulations. The bivariate spline functions have been studied for more than 20 years
(see a monograph [21] for theory of bivariate splines) and they are mature enough for numerical solution
of various linear and nonlinear PDE, e.g. 2D Navier-Stokes equations. See [4], [22], [18], [19], and [14].
They will enable us to effectively model a population density development over any arbitrary domain. An
advantage to use bivariate splines is they are able to generate a smooth density surface over the domain
easily. The differentiability can be useful for some applications which involves the rate of changes of
population along different direction at any location inside the domain.

Our numerical solution of this PDE is slightly different from the classic approach in a few ways. Instead
of defining a weak solution in terms of test functions defined on domain ΩT = Ω×(0, T ], we define a discrete
weak solution of the PDE using test functions defined on Ω together with the first order divided difference
in time. See Definition 3.1. Another difference from the classic approach is that we use an optimization
approach to establish the existence, uniqueness, stability and other properties of this discrete weak solution.
We shall use bivariate splines to approximate the discrete weak solution using the discrete weak solution
in the finite dimensional spline space. We are able to show that spline discrete weak solution converges to
the discrete weak solution in H1(Ω) as the size of underlying triangulation goes to zero.

It is clear that there are three nonlinearities in (1.2): the nonlinear diffusive term D(p,x), the nonlinear
growth function F (p) and nonlinearity condition 0 ≤ p(x, t) ≤ 1 for all x, t which is essential to the theory
presented. We have to design a convergent computational algorithm to find bivariate spline solutions and
establish how well our bivariate spline solutions are close to the exact discrete weak solution. We implement
our computational algorithm in MATLAB. With the numerical solution, we are able to simulate how a
population disperses over the area Ω of interest. In particular, we are able to see how the Allee constant
σ plays a significant role in the population development.

2 Preliminaries

For the sake of completeness, we list a number of lemmas used in this paper, which are special cases of
well-known results.
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Lemma 2.1. For a, b ≥ 0 and any α > 0 we have

ab ≤ α

2
a2 +

1

2α
b2

Lemma 2.2 (Ladyzhenskaya’s Inequality). For any p ∈ H1
0 (Ω) for Ω ⊂ R2 we have the following inequality.

‖p‖L4 ≤ C‖p‖1/2
L2 ‖∇p‖

1/2
L2

Theorem 2.1 (Rellich-Kondrachov). Suppose that Ω is bounded with Lipschitz boundary. Then we have
the following compact injection:

H1(Ω) ⊂ L2(Ω)

That is, any bounded sequence in H1(Ω) has a subsequence which converges to an L2(Ω) function in L2

norm.

Theorem 2.2 (General Sobolev Inequality). If p ∈ H2(Ω), then p ∈ C0,γ, the space of Hölder continuous
functions with any exponent 0 < γ < 1. Furthermore,

||p||C0,γ(Ω) ≤ C ||p||H2(Ω)

where C is a constant independent of p.

Preliminary on bivariate splines can be found in the Appendix of this paper. Mainly we use the theory
in [21] and computational schemes in [4]. As our PDE (1.2) is nonlinear, we have to extend the MATLAB
codes used in [4] to handle this nonlinear PDE discussed in this paper.

3 The Basic Properties of the Discrete Weak Solution

Let us begin with a discrete weak solution of the partial differential equation (1.2). It is a standard
calculation from (1.2) to have, for any q ∈ H1

0 (Ω),∫
Ω

dp(x, t)

dt
q(x)dx = −

∫
Ω
D(x)∇p(x, t) · ∇q(x)dx +

∫
Ω
A(x)F (p(x, t))q(x)dx. (3.1)

Consider t ∈ [0, T ] and 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T . We approximate dp(x,t)
dt by its divided

difference, i.e., dp(x,ti)
dt ≈ (p(x, ti)− p(x, ti−1))/h with h = ti − ti−1. The above equation becomes∫

Ω
p(x, ti)q(x)dx + h

∫
Ω
D(x)∇p(x, ti) · ∇q(x)dx

− h
∫

Ω
A(x)F (p(x, ti))q(x)dx =

∫
Ω
p(x, ti−1)q(x)dx, ∀q ∈ H1

0 (Ω). (3.2)

We introduce the following concept of the PDE solution:

Definition 3.1. Any solution to the above equation (3.2) for a fixed h > 0 is called a discrete weak solution
of (1.2).

Let us first show that the discrete weak solution is a good approximation of the exact solution. Indeed,
we have

Theorem 3.1. Let p(x, t) be the classic solution and ph(x, t) be the discrete weak solution dependent on
h > 0. Suppose that p(x, t) is twice differentiable with respect to t. Then∫

Ω
|p(x, ti)− ph(x, ti)|2dx ≤ Ch, ∀i = 0, · · · ,m+ 1, (3.3)

as h = T/(m+ 1)→ 0, where C > 0 is a constant independent of h.
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Proof. By Taylor expansion, we have

p(x, ti)

dt
=
p(x, ti)− p(x, ti−1)

h
+O(h).

Using (3.1) and (3.2), we have∫
Ω

dp(x, ti)

dt
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx = 0.

That is, ∫
Ω

p(x, ti)− p(x, ti−1)

h
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx = O(h).

Letting q = p(x, ti)− ph(x, ti) in the above inequality, we have∫
Ω
|p(x, ti)− ph(x, ti)|2dx = O(h2) +

∫
Ω

(p(x, ti−1)− ph(x, ti−1)(p(x, ti)− ph(x, ti))

≤ 1

2

∫
Ω
|p(x, ti)− ph(x, ti)|2dx +

1

2

∫
Ω
|p(x, ti−1)− ph(x, ti−1)|2dx +O(h2).

It follows that ∫
Ω
|p(x, ti)− ph(x, ti)|2dx ≤

∫
Ω
|p(x, ti−1)− ph(x, ti−1)|2dx +O(2h2).

We add them together for i = 1, · · · , k to have∫
Ω
|p(x, tk)− ph(x, tk)|2dx ≤ O(2kh2).

for k = 1, · · · ,m + 1. Note that (m + 1)h = T . So we have
∫

Ω |p(x, tk) − ph(x, tk)|2dx ≤ O(h) for all
0 ≤ k ≤ m+ 1. This completes the proof.

Let A = {p ∈ H1
0 (Ω), 0 ≤ p(x, y) for a.e. (x, y) ∈ Ω} be the set of admissible functions. Here Ω ⊂ R2

is an open, bounded domain with Lipschitz boundary. That is, we look for a population density in the
admissible set p ∈ A which satisfies the following equation:∫

Ω
pq dx + h

∫
Ω
D(x)∇p · ∇q dx =

∫
Ω
p̂q dx + h

∫
Ω
pF (p)q dx ∀q ∈ H1

0 (Ω) (3.4)

where 0 < K ≤ D(x) ≤ K2 is a diffusive factor and

F (p) = A(x)(1− p)(p− σ) (3.5)

which models population growth with an Allee effect. Here A(x) is a given nonnegative function bounded
by M and σ ∈ (0, 1) and p̂ ∈ A is a given admissible function.

We would like to see that the equation (3.4) has a unique solution. In order to do that, we note that the
discrete weak formulation is the Euler-Lagrange equation of the following energy minimization problem.

min
p∈A

E(p) = min
H1

0 (Ω),p≥0

∫
Ω
p2 dx + h

∫
Ω
D(x)|∇p|2 dx− h

∫
Ω
G(p) dx−

∫
Ω
p̂p dx (3.6)

where

G(p) =

∫ p

0
ξF (ξ) dξ

In order to show that the functional has a minimizer, we need a lower bound for its image.
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Lemma 3.1. Suppose we choose h <
1

M
. Then for any function p ∈ A the energy functional given in

(3.6) satisfies
E(p) ≥ C ||p||2H1

0 (Ω) − ||p̂||
2
2

for some constant C > 0. In particular, inf
p∈A

E(p) ≥ − ||p̂||22 > −∞.

Proof. First we will present an upper bound for one of the terms.

G(p) =

∫ p

0
ξF (ξ) dξ ≤M

∫ p

0
ξ dξ =

M

2
p2∫

Ω
G(p) dx ≤ M

2
||p||22

Now we prove the lower bound for the entire functional. We use the Cauchy-Schwarz inequality, the upper
bound for G(p) we just established and D(x) ≥ K.

E(p) ≥ ||p||22 + hK ||∇p||22 −
hM

2
||p||22 − ||p̂||2 ||p||2

=

(
1− hM

2

)
||p||22 + hK ||∇p||22 − ||p̂||2 ||p||2

Use our assumption for h in this lemma and Lemma 2.1 on the last term with α = 2.

≥ 1

2
||p||22 + hK ||∇p||22 − ||p̂||

2
2 −

1

4
||p||22

≥ min

{
1

4
, hK

}
||p||2H1

0 (Ω) − ||p̂||
2
2

Lemma 3.2. If h < 1/M , the energy functional in (3.6) is weakly lower semi-continuous on H1(Ω). That
is, if pk → p∗ weakly in H1(Ω), then

E(p∗) ≤ lim inf
k→∞

E(pk)

Proof. Set m := lim inf
k→∞

E(pk). By passing to a subsequence we can assume that E(pk)−m < 1/k. That is,

lim
k→∞

E(pk) = m. Any weakly convergent sequence is bounded inH1(Ω) norm, so by the Rellich-Kondrachov

theorem (Theorem 2.1), we can pass to another subsequence which converges strongly in L2(Ω). Taking
one last subsequence, we can assume that pk → p∗ a.e. in Ω.

Fix ε > 0. By Egoroff’s theorem there exists a measurable set Uε such that pk → p∗ uniformly on Uε
and |Ω− Uε| < ε. Also write

Vε =

{
x ∈ Ω

∣∣∣∣|p∗(x)|+ |∇p∗(x)| < 1

ε

}
(3.7)

Then |Ω− Vε| → 0 as ε→ 0. Let Oε = Uε ∩ Vε and note that

|Ω−Oε| = |(Ω− Uε) ∪ (Ω− Vε)| ≤ |Ω− Uε|+ |Ω− Vε| → 0 as ε→ 0

Now

E(pk) +

∫
Ω
p̂pk dx =

∫
Ω
p2
k + hD(x)|∇pk|2 − hG(pk) dx
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From the proof of Lemma 3.1 we know that the right-hand side is nonnegative.

≥
∫
Oε

p2
k + hD(x)|∇pk|2 − hG(pk) dx

Since the function η : Rn → R given by η(x) = |x|2 is convex, it follows that

≥
∫
Oε

p2
k + hD(x)

(
|∇p∗|2 + 2∇p∗ · (∇pk −∇p∗)

)
− hG(pk) dx

E(pk) +

∫
Ω
p̂pk dx ≥

∫
Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx +

∫
Oε

2hD(x)∇p∗ · (∇pk −∇p∗) dx (3.8)

Recall equation (3.7) and note that in the first integral every term is bounded above. In addition, pk → p∗

uniformly on Oε and G is an absolutely continuous function, so G(pk)→ G(p∗) uniformly on Oε. Thus,

lim
k→∞

∫
Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx =

∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx (3.9)

As for the second integral, note that ∇pk → ∇p∗ weakly in L2(Ω;Rn). Since hD(x)∇p∗ ∈ L2(Ω;Rn) it
follows that

lim
k→∞

∫
Oε

2hD(x)∇p∗ · (∇pk −∇p∗) dx = 0 (3.10)

We then take limits as k →∞ on both sides of (3.8) and as a result of ( 3.9) and (3.10), we have

m+

∫
Ω
p̂p∗ dx ≥

∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx

m ≥
∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx−
∫

Ω
p̂p∗ dx

Now we take the limit as ε→ 0. Since the integrand is nonnegative and Oε ↑ Ω, the monotone convergence
theorem guarantees that

m ≥
∫

Ω
(p∗)2 + hD(x)|∇p∗|2 − hG(p∗)− p̂p∗ dx

m ≥ E(p∗)

Theorem 3.2. There exists a function p∗ ∈ A which minimizes the energy functional E(p) defined in
(3.6).

Proof. Set m := inf
p∈A

E(p) and choose a minimizing sequence {pk}. Then E(pk) → m. As a result of

Lemma 3.1 we know that
||pk||H1

0 (Ω) ≤ E(pk) + ||p̂||22
E(pk) → m, so sup

k
E(pk) < ∞. Thus, the minimizing sequence is bounded in H1

0 (Ω). Since H1
0 (Ω) is

weakly compact, there exists a subsequence pk which converges weakly to some function p∗ ∈ H1
0 (Ω). We’d

like to know that p∗ is also in the admissible set A. By the Rellich-Kondrachov theorem (Theorem 2.1),
we can pass to a subsequence which converges strongly in L2(Ω). By taking another subsequence, we can
assume that pk → p∗ a.e., so we conclude that p∗ ≥ 0 a.e. That is, p∗ is in the admissible set A.

It remains to show that p∗ is a minimizer of E(p). Lemma 3.2 assures us that

E(p∗) ≤ lim inf
k→∞

E(pk) = m (3.11)

Since p∗ ∈ A, we have m ≤ E(p). Together with (3.11), this implies that E(p∗) = m = min
p∈A

E(p).
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Lemma 3.3. If h is small enough so that

2− hM − hM ′pmax > 0

then the functional E(p) defined in (3.6) is µ-strongly convex. That is, ∃µ > 0 such that

E(y) ≥ E(x) + 〈∇E(x), x− y〉+
µ

2
||x− y||22

where 〈∇E(x), x− y〉 is the Gâteaux derivative of E at the point x in the direction x− y.

Proof. We use an equivalent formulation of µ-strong convexity. It is enough to show that ∀q ∈ O we have

∂2E(p, q) ≥ µ ||q||22

We compute the second Gâteaux derivative. Let q ∈ H1
0 (Ω). Then the second derivative is given by F ′′(0).

F(t) = E(p+ tq)

F ′(t) =

∫
Ω

2(p+ tq)q dx + 2h

∫
Ω
D(x)∇(p+ tq) · ∇q dx− h

∫
Ω

(p+ tq)F (p+ tq)q dx−
∫

Ω
p̂q

F ′′(t) = 2

∫
Ω
q2 dx + 2h

∫
Ω
D(x)|∇q|2 dx− h

∫
Ω
F (p+ qt)q2 + (p+ tq)F ′(p+ tq)q2 dx

∂2E(p, q) = F ′′(0) = 2 ||q||22 + 2h

∫
Ω
D(x)|∇q|2 dx− h

∫
Ω
F (p)q2 − h

∫
Ω
pF ′(p)q2 dx

≥ 2 ||q||22 − hM ||q||
2
2 − hM

′pmax ||q||22
= (2− hM − hM ′pmax) ||q||22

as desired.

Theorem 3.3. The energy functional in (3.6) has a unique minimizer.

Proof. Suppose p and p̃ are both minimizers of E(p). Then for any q ∈ H1
0 (Ω) we have

〈∇E(p, q)〉 = 〈∇E(p̃, q)〉 = 0

By Lemma 3.3 the following two inequalities hold.

E(p) ≥ E(p̃) +
µ

2
||p− p̃||22

E(p̃) ≥ E(p) +
µ

2
||p− p̃||22

Add the two inequalities.

0 ≥ µ ||p− p̃||22

Thus, p = p̃ a.e.

Theorem 3.4. A function p ∈ A is the minimizer of (3.6) if and only if p is a discrete weak solution to
(3.4).

Remark 3.1. Theorem 3.4 implies that there exists a unique discrete weak solution to (3.4).
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Lemma 3.4. The minimizer p∗ of the energy functional (3.6), hereby denoted by Ep̂, is stable with respect
to perturbations in p̂. In particular, if we let q∗ be the minimizer associated with the energy functional

Eq̂(q) =

∫
Ω
q2 dx + h

∫
Ω
D(x)|∇q|2 dx− h

∫
Ω
G(q) dx−

∫
Ω
q̂q dx

then we are assured that

||p∗ − q∗||2 ≤
1

µ
||p̂− q̂||2

Proof. Since p∗ is the minimizer, we know ∂Ep̂(p
∗, ν) = 0 for all ν. Similarly, ∂Eq̂(q

∗, ν) = 0 for all ν. As
a result of Lemma 3.3 we get the following two inequalities.

Ep̂(q
∗) ≥ Ep̂(p∗) +

µ

2
‖p∗ − q∗‖22

Eq̂(p
∗) ≥ Eq̂(q∗) +

µ

2
‖p∗ − q∗‖22

We add the two inequalities. After some cancellation we obtain the following inequality.

−〈p̂, q∗〉 − 〈q̂, p∗〉 ≥ −〈p̂, p∗〉 − 〈q̂, q∗〉+ µ‖p∗ − q∗‖22
〈p̂, p∗ − q∗〉 − 〈q̂, p∗ − q∗〉 ≥ µ‖p∗ − q∗‖22

〈p̂− q̂, p∗ − q∗〉 ≥ µ‖p∗ − q∗‖22

We use the Cauchy-Schwarz’s inequality to conclude

‖p∗ − q∗‖2 ≤
1

µ
‖p̂− q̂‖2

which is the desired inequality.

4 Bivariate Spline Approximation of the Discrete Weak Solution

4.1 The Discrete Weak Solution in Finite Dimensional Space

So far we have established that there exists a unique discrete weak solution to the problem posed in (3.4).
Our next goal is to find an approximate solution in a finite-dimensional spline space. That is, we will
approximate p and p̂ by using the spline space Srd(4) defined as follows.

Definition 4.1 (Spline Space). Let 4 be a given triangulation of a domain Ω. Then we define the spline
space of smoothness r and degree d over 4 by,

Srd(4) = {s ∈ Cr(Ω) | s|T ∈ Pd, ∀ T ∈ 4},

where Pd is the space of polynomials of degree at most d.

We shall denote the basis of this space as {φj}1≤j≤n. We now set out to find p∗ ∈ Srd(4) which satisfies
the following equation.∫

Ω
pq dx + h

∫
Ω
D(x)∇p · ∇q dx =

∫
Ω
p̂q dx + h

∫
Ω
pF (p)q dx ∀q ∈ Srd(4) (4.1)

Theorem 4.1. If h is small enough, then there exists p∗ ∈ Srd(4) which satisfies (4.1).
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Proof. The proof of this theorem is constructive and we only give an overview of the construction here.
The detail is contained in the rest of this subsection and the next subsection. We first devise an iterative
computational scheme. Each iteration requires solving a simple linear equation, for which we can guarantee
the existence of such iterative solution. We then show that this sequence of iterative solutions actually
forms a Cauchy sequence. Thus, the sequence converges to a spline in Srd(4) which is a finite dimensional,
and hence a complete space. Finally, by simply taking limits as the number of iteration goes to infinity,
we demonstrate that we get a discrete weak spline solution satisfying (4.1).

We shall need the following

Theorem 4.2. The weak solution of (4.1) is unique.

Proof. The proof is analogous to the one in Theorem 3.3. Detail is omitted here.

4.2 Our Computational Scheme

At each time step ti, we have to solve the nonlinear problem (4.1). Our approach is to linearize the equation
using a fixed-point method.

Algorithm 4.1. Writing p̂ = p(x, i− 1) or p̂ = p0(x), the initial value, find p(k) := p(i,k), k ≥ 1 such that∫
Ω
p(k)q + hD

∫
Ω
∇p(k) · ∇q = 〈p̂, q〉+ h

∫
Ω
p(k)F

(
p(k−1)

)
q dx ∀q ∈ Srd(4) (4.2)

for k = 1, 2, · · · , until a given accuracy for ‖p(k) − p(k−1)‖ is met.

Remark 4.1. We stated in the outline of the proof for Theorem 4.1 that we will show the sequence of p(k)

is Cauchy and hence converges to a limit p∗ ∈ Srd(4). Note that in (4.2), we can take the limit as k →∞
of both sides and obtain precisely (4.1). This requires the use of the Dominated Convergence Theorem and
so we prove boundedness of all the iterates in Theorem 4.3.

Lemma 4.1. Given splines p(k−1) and p̂, there exists a unique spline solution for p(k) in equation (4.2).

Proof. Let φj be any spline basis function. Any spline function in Srd(4) can be written as
∑n

i=1 ciφi. Let
φj be any spline basis function. Let ~c be the vector of coefficients for p(k) and ~p be the vector of coefficients
for p̂. Define the following matrices.

M(i, j) :=

∫
Ω
φiφj dx

KD(i, j) :=

∫
Ω
D(x)∇φi · ∇φj dx

MF (p(k−1))(i, j) :=

∫
Ω
F (p(k−1))φiφj dx

Note that all these matrices are symmetric. In addition, M is positive-definite.
We have to solve (4.2) for each q ∈ Srd(4), but it’s sufficient to solve for each basis spline φj . Thus,

we have n equations and n unknowns in the coefficient vector, which is equivalent to the following linear
system.

M~c+ hKD~c = M~p+ hMF (p(k−1))~c(
M + hKD − hMF (p(k−1))

)
~c = M~p

Let L = M + hKD − hMF (p(k−1)). M is positive-definite and invertible. If h is small enough, L is also

invertible. Thus, we can solve for ~c, the spline coefficients of p(k).
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Theorem 4.3. If h < 1/M , then the successive solutions p(k) of the equation (4.2) satisfy∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
≤ 1

1− hM
||p̂||2 (4.3)∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣
2
≤ 1√

hK

√∣∣∣∣p(k)
∣∣∣∣

2

(
||p̂||2 − (1− hM)

∣∣∣∣p(k)
∣∣∣∣

2

)
(4.4)

If we substitute the estimate from (4.3) into (4.4), we obtain a bound which is less sharp but is independent
of k. ∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣
2
≤ 1√

hK

√∣∣∣∣p(k)
∣∣∣∣

2
||p̂||2 ≤

1√
hK(1− hM)

||p̂||2

Proof. Substitute q = p into (4.2). Then∣∣∣∣∣∣p(k)
∣∣∣∣∣∣2

2
+ h

∫
Ω
D(x)|∇p(k)|2 dx︸ ︷︷ ︸

≥0

= 〈p̂, p(k)〉+ h

∫
Ω
F (p(k−1))(p(k))2 dx

Use the Cauchy-Schwarz inequality and the fact that F (p) ≤M for any p.∣∣∣∣∣∣p(k)
∣∣∣∣∣∣2

2
≤ ||p̂||2

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
+ hM

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣2

2∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
≤ ||p̂||2 + hM

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
≤ 1

1− hM
||p̂||2

Now we prove the bound for ∇p(k) by substituting q = p once more into (4.2).∣∣∣∣∣∣p(k)
∣∣∣∣∣∣2

2
+ h

∫
Ω
D(x)|∇p(k)|2 dx = 〈p̂, p(k)〉+ h

∫
Ω
F (p(k−1))(p(k))2 dx∣∣∣∣∣∣p(k)

∣∣∣∣∣∣2
2

+ hK
∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣2
2
≤ ||p̂||2

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
+ hM

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣2

2

hK
∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣2
2
≤ ||p̂||2

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2
−
∣∣∣∣∣∣p(k)

∣∣∣∣∣∣2
2

+ hM
∣∣∣∣∣∣p(k)

∣∣∣∣∣∣2
2

hK
∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣p(k)

∣∣∣∣∣∣
2

(
||p̂||2 − (1− hM)

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣

2

)
∣∣∣∣∣∣∇p(k)

∣∣∣∣∣∣
2
≤ 1√

hK

√∣∣∣∣p(k)
∣∣∣∣

2

(
||p̂||2 − (1− hM)

∣∣∣∣p(k)
∣∣∣∣

2

)

Remark 4.2. The constant in the bound for ∇p(k), which can be found under the square root, is non-
negative as a result of the bound for p(k). In fact, it can be very close to zero.

Remark 4.3. Since we are now working within a finite-dimensional space, all norms are equivalent. As a
result, we have just established that p and its derivatives are bounded functions. That is,∣∣∣∣∣∣p(k)

∣∣∣∣∣∣
∞
≤ C

1− hM
||p̂||2

Theorem 4.4. If h is small enough so that

hL
C

(1− hM)2
||p̂||2 < 1
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where C is the constant from Remark 4.3, then successive iterates of (4.2) are Cauchy in L2(Ω). That is,∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣

2
≤ α

∣∣∣∣∣∣p(k−1) − p(k−2)
∣∣∣∣∣∣

2

where 0 < α < 1.

Proof. Take two successive solutions which satisfy the following equations.∫
Ω
p(k)q dx + h

∫
Ω
D(x)∇p(k) · ∇q dx =

∫
Ω
p̂q dx + h

∫
Ω
p(k)F (p(k−1))q dx∫

Ω
p(k−1)q dx + h

∫
Ω
D(x)∇p(k−1) · ∇q dx =

∫
Ω
p̂q dx + h

∫
Ω
p(k−1)F (p(k−2))q dx

Subtract the two equations and substitute q = p(k) − p(k−1).∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣2

2
+ h

∫
Ω
D(x)|∇p(k) −∇p(k−1)|2 dx︸ ︷︷ ︸

≥0

= h

∫
Ω

(
F (p(k−1))p(k) − F (p(k−2))p(k−1)

)
(p(k) − p(k−1)) dx

Add and subtract F (p(k−1)) and rearrange.∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣2

2
≤ h

∫
Ω
F (p(k−1))

(
p(k) − p(k−1)

)2

+ h

∫
Ω

(
F (p(k−1))− F (p(k−2))

)
p(k−1)(p(k) − p(k−1)) dx

Use remark 4.3 to bound |p(k−1)|.∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣2

2
≤ hM

∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣2

2

+ h
C

1− hM
||p̂||2

∫
Ω

∣∣∣F (p(k−1))− F (p(k−2))
∣∣∣ ∣∣∣p(k) − p(k−1)

∣∣∣ dx
(1− hM)

∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣2

2
≤ h C

1− hM
||p̂||2

∫
Ω

∣∣∣F (p(k−1))− F (p(k−2))
∣∣∣ ∣∣∣p(k) − p(k−1)

∣∣∣ dx
F (p) is a differentiable function and by Remark 4.3, it has a bounded derivative on the compact interval[
0, sup

k

∣∣∣∣∣∣p(k)
∣∣∣∣∣∣
∞

]
. Thus, F (p) is Lipschitz continuous with constant LF .

≤ hLF
C

1− hM
||p̂||2

∫
Ω

∣∣∣p(k−1) − p(k−2)
∣∣∣ ∣∣∣p(k) − p(k−1)

∣∣∣ dx
Apply the Cauchy-Schwartz inequality.

(1− hM)
∣∣∣∣∣∣p(k) − p(k−1)

∣∣∣∣∣∣2
2
≤ hLF

C

1− hM
||p̂||2

∣∣∣∣∣∣p(k−1) − p(k−2)
∣∣∣∣∣∣

2

∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣

2∣∣∣∣∣∣p(k) − p(k−1)
∣∣∣∣∣∣

2
≤ hLF

C

(1− hM)2
||p̂||

∣∣∣∣∣∣p(k−1) − p(k−2)
∣∣∣∣∣∣

2

We can choose an h small enough so that α = hL
C

(1− hM)2
satisfies 0 < α < 1.
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4.3 Bivariate Spline Approximation to the Discrete Weak Solution in Sobolev Space

In this subsection, we show that the spline solutions obtained above are a good approximation to the weak
solution in (3.4). Let p∗ be the weak solution of (3.4) and let S∗ be the spline solution which is the limit
of the iterative solutions from Algorithm 4.1. By using Lemma 3.3 and noting that ∇E(p∗, q) = 0 for any
q ∈ H1

0 (Ω), we have

E(S∗)− E(p∗) ≥ µ

2
||S∗ − p∗||22 (4.5)

Let Sp∗ be the quasi-interpolant of p∗ in the spline space Srd(4) as in the Appendix. Since S∗ is the
minimizer of (3.6) with respect to all q ∈ Srd(4), we conclude that E(Sp∗) > E(S∗). Together with (4.5)
we can write

µ

2
||S∗ − p∗||22 ≤ E(Sp∗)− E(p∗) (4.6)

Theorem 4.5. Suppose that h > 0 is small enough and p∗, the weak solution of (3.4), is in Hm+1(Ω) with
m ≥ 1. Then S∗, the limit of the iterative solutions from Algorithm 4.1, approximates p∗ in the following
sense:

||S∗ − p∗||2 ≤ C|4|
m|p∗|m+1,2,Ω (4.7)

where C is a constant.

Proof. We rewrite equation (4.6)

µ

2
||S∗ − p∗||22 ≤

∫
Ω
S2
p∗ − (p∗)2 dx + h

∫
Ω
D(x)

(
|∇Sp∗ |2 − |∇p∗|2

)
dx + h

∫
Ω
G(p∗)−G(Sp∗) dx

=

∫
Ω

(Sp∗ − p∗)(Sp∗ + p∗) dx + h

∫
Ω
D(x)(∇Sp∗ −∇p∗) · (∇Sp∗ +∇p∗) dx

+ h

∫
Ω
G(p∗)−G(Sp∗) dx

G is a differentiable function by construction. Since p∗ ∈ H2(Ω), by Theorem 2.2 we conclude that p∗

is Hölder continuous and hence it has some maximal value M∗ on the compact set Ω. Analogously, we
can conclude the same for Sp∗ . As a result, G′(p) has a maximum value on the compact set [0,M∗] and
so G is Lipschitz continuous with some constant LG. Continuing where we left off above, we use the
Cauchy-Schwarz inequality and LG:

≤ ||Sp∗ − p∗||2 ||Sp∗ + p∗||2 + hK2 ||∇Sp∗ −∇p∗||2 ||∇Sp∗ +∇p∗||2 + hLG

∫
Ω
|p∗ − Sp∗ | dx

≤ C1 ||Sp∗ − p∗||2 + hK2C2 ||∇Sp∗ −∇p∗||2 + hLG|Ω|1/2 ||p∗ − Sp∗ ||2

where C1 = ||Sp∗ ||2 + ||p∗||2, C2 = ||∇Sp∗ ||2 + ||∇p∗||2.
By the approximation property of bivariate spline spaces, Theorem 6.1 in the Appendix, we can write

||Sp∗ − p∗||2 ≤ C3|4|2|p∗|2,2,Ω
||∇Sp∗ −∇p∗||2 ≤ C4|4||p∗|2,2,Ω

where |4| is the length of the longest edge in the triangulation and C3 and C4 are constants independent
of p∗.

As a corollary, we have that E(Sp∗)− E(p∗)→ 0 as |4| → 0.
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5 Numerical Simulation and Computational Results

We have implemented the computational scheme discussed in the previous section in MATLAB. In this
section we will show some of our computational results. Since no exact solutions to this PDE were known,
we modify the equation by adding an appropriate forcing term. By doing so we can force any twice
differentiable function p(x, t) to be a solution. Then we can make sure our algorithm recovers it for any
given just p(x, 0), the initial condition. In this way, we are able to verify that our MATLAB code works.
Then we remove the forcing term and use the resulting MATLAB code to numerically solve (1.2) for various
initial conditions, various diffusive factor D(x), and Allee constant σ.

Although in this paper we focused on the theory for Dirichlet zero boundary condition, the theory holds
equally well for Neumann boundary conditions. We tested both boundary conditions numerically. Let us
present some of our numerical results.

5.1 Dirichlet Boundary with Forcing

In order to make sure that our implementation works, we use a few test functions over a rectangular domain
Ω = [0, 1] × [0, 1]. These test functions are not weak solutions to the PDE in (3.4), but instead they are
the exact solutions to the following modified PDE with forcing term.

dp(x, t)

dt
= div (D(x)∇p(x, t))) + p(x, t)F (p(x, t)) + f(x, t), x = (x, y) ∈ Ω ⊂ R2, t ≥ 0, (5.1)

where f(x, t) can be computed by using Mathematica. The weak solution p satisfies∫
Ω
p(x, ti)q(x)dx + h

∫
Ω
D(x)∇p(x, ti) · ∇q(x)dx

=

∫
Ω
p(x, ti−1)q(x)dx +

∫
Ω
p(x, ti)F (p(x, ti)dx +

∫
Ω
f(x, ti)q(x)dx. (5.2)

We then ran our MATALB code to recover the function p using bivariate splines of degree d and recorded
the maximal error in population density at some fixed time on a 100 by 100 grid. The numerical results are
given in Tables 1, 2, where d is the spline degree and |4| is the number of triangles in the triangulation,
h is the size of the time step, T refers to how far in time we have evolved. In all cases A(x) = 1 and the
domain is Ω = [0, 1]× [0, 1].

Table 1: d = 5, T = 5, p(t, x) =
13x(x− 1)y(y − 1)

1 + t
,D(x) = 1/200.

h\|4| 2 8 32 128 512

5× 10−2 0.039429 0.032977 0.034431 0.034433 0.034433
5× 10−3 0.054059 0.0041368 0.0033432 0.0033453 0.0033454
5× 10−4 0.055708 0.0055911 3.3120e-004 3.3343e-004 3.3353e-004
5× 10−5 0.055873 0.0057463 3.1034e-005 3.3341e-005

In Table 1 we see that in order to reduce the error, it is necessary to reduce both h and the size of the
triangulation. A refinement in just one of these parameters, usually has diminishing returns. The error
decreases roughly like O(h).

In Table 2 we complicate the model further by using diffusion which varies inside Ω.
In Table 3 we use a solution which is not a polynomial and hence is not exactly representable in spline

space.

13



Table 2: d = 5, T = 1, p(t, x) =
13x(x− 1)y(y − 1)

1 + t
,D(x, y) =

1

200
e−(x−.5)2−(y−.5)2 .

h\|4| 2 8 32 128

5× 10−2 0.019157 0.016883 0.016599 0.016599
5× 10−3 0.0046455 0.0019749 0.0016833 0.0016832
5× 10−4 0.0043546 4.7506e-04 1.6861e-04 1.6852e-04

Table 3: d = 5, T = 1, p(t, x) =
sin(πx) sin(πx)

1 + t
,D(x) = 1/200.

h\|4| 2 8 32 128

5× 10−2 0.01982 0.019187 0.018405 0.018398
5× 10−3 0.005989 0.0026479 0.0018789 0.0018710
5× 10−4 0.005609 9.6351e-04 1.962e-04 1.8732e-04

5.2 Several Simulations of Population Development

From the previous subsection, we have seen that our MATLAB code works well. Thus we removed the
forcing terms and ran simulations of the solution of (1.2) for various initial conditions and parameters. We
shall use the following two domains shown with a triangulation in Fig. 1

Figure 1: Two Domains with Triangulation for Simulation

We provide several examples to show how various growth functions affect the rate at which the solution
reaches the asymptotically stable constant solution of p(x, y) = 1 or p(x, y) = 0.

Figures 2 through 5 show several 3D renders of how solutions grow over time over two domains indicated
in Fig 1. Each subfigure shows four equally-spaced time slices, plotted on the same xy-axes, one on top of
each other, allowing the reader to observe how the solution grows over time. In addition, each figure shows
the effect of varying the Allee threshold σ. In order to make the difference in the behavior of the solution
clearer, each figure ranges from t = 0 to t = T , where T is a specified final time.

Figures 6 through show average population over time over a city of Mali. Each subfigure corresponds to
a certain set of initial conditions for the PDE, while separating the cases by the choice for σ, emphasizing
the effect σ has on the rate at which the population reaches an asymptotically stable solution.

We can observe some expected behavior from the solutions presented in Figure 2. The initial condition

14



(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.5

Figure 2: Donut-shape domain. Constant growth and diffusion. Various Allee effect thresholds σ. T = 90.
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15

Figure 3: City of Bandiagara, Mali. Constant growth and diffusion. Various Allee effect thresholds σ.
Here T = 20.
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15

Figure 4: City of Bandiagara, Mali. Constant diffusion. Various Allee effect thresholds. Growth function
is piecewise-constant with triple magnitude for patches near the city’s river. Here T = 20.
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15

Figure 5: City of Bandiagara, Mali. Same as Figure 4 but the initial condition has a much higher total
population. Here T = 20.
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(a) Average population plot for simulations in Figure 2. (b) Average population plot for simulations in Figure 3.

(c) Average population plot for simulations in Figure 4. (d) Average population plot for simulations in Figure 5.

Figure 6: Average population density in Ω plotted over time for each of the four preceding figures.
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is uniformly p = 0.1 on a large portion of Ω with an isolated bump function in one corner. In Figure 2b the
second time slice shows the population has become extinct on the area where p = 0.1. At the same time
the bump grows to population capacity and eventually spreads life into formerly dead areas. We observe
similar results in Figure 2c, but the rate at which the population grows has been severely diminished. In
Figure 2d, the threshold σ is so high that the population becomes extinct everywhere and very quickly.
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6 Appendix: Preliminary on Bivariate Splines

In this section, we explain bivariate spline functions of any degree d and smoothness r ≥ 1 over arbitrary
triangulation 4. Most of the following discussion can be found in [21]. We outline these functions here
just for convenience. Let Ω be a polygonal domain in R2 and 4 a triangulation of Ω. That is, 4 is a finite
collection of triangles T ⊂ Ω such that ∪T∈4T = Ω and the intersection of any two triangles is either the
empty set, a common edge, or a common vertex. For each T ∈ 4, let |T | denote the length of the longest
edge of T , and let ρT be the radius of the inscribed circle of T . The longest edge length in the triangulation
4 is denoted by |4| and is referred to as the size of the triangulation. For any triangulation 4 we define
its shape parameter by

κ4 :=
|4|
ρ4

, (6.1)
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where ρ4 is the minimum of the radii of the in-circles of the triangles of 4. The shape parameter for a
single triangle, κT , satisfies

κT :=
|T |
ρT
≤ 2

tan(θT /2)
≤ 2

sin(θT /2)
, (6.2)

where θT is the smallest angle in the triangle T . The shape of a given triangulation affects how well we can
approximate a function over the triangulation. Hence we have the following definition of a β-quasi-uniform
triangulation.

Definition 6.1 (β-Quasi-Uniform Triangulation). Let 0 < β <∞. A triangulation 4 is a β-quasi-uniform
triangulation provided that

|4|
ρ4
≤ β.

Once we have a triangulation, we define the spline space of degree d and smoothness r over that
triangulation as follows:

Definition 6.2 (Spline Space). Let 4 be a given triangulation of a domain Ω. Then we define the spline
space of smoothness r and degree d over 4 by,

Srd(4) = {s ∈ Cr(Ω) | s|T ∈ Pd, ∀ T ∈ 4},

where Pd is the space of polynomials of degree at most d.

We next explain how to represent a spline function in Srd(4). Let T = 〈(x1, y1), (x2, y2), (x3, y3)〉. For
any point (x, y), let b1, b2, b3 be the solution of

x = b1x1 + b2x2 + b3x3

y = b1y1 + b2y2 + b3y3

1 = b1 + b2 + b3.

(b1, b2, b3) is the so-called barycentric coordinates of (x, y) with respect to T . Note that bi is a linear
polynomial of (x, y) for i = 1, 2, 3. Fix a degree d > 0. For i+ j + k = d, let

BT
ijk(x, y) =

d!

i!j!k!
bi1b

j
2b
k
3

which is called Bernstein-Bézier polynomial. Let

S|T =
∑

i+j+k=d

cTijkB
T
ijk(x, y).

We use s = (cTijk, i+ j + k = d, T ∈ 4) to represent the coefficient vector for spline function S ∈ S−1
d (4).

In order to make S ∈ S0
d(4), we have to construct a smoothness matrix H such that Hs = 0 ensure that

S is a continuous function. Such a smoothness matrix is known and in fact it is known for any smoothness
r ≥ 0 (cf. [10]).

Note that Bernstein-Bézier representation of spline functions is very convenient for basic evaluation,
derivatives and integration. We use the de Casteljau algorithm to evaluate a Bernstein-Bézier polynomial
at any point inside the triangle. It is a simple and stable computation. See [21]. Let T = 〈v1,v2,v3〉 and
S|T =

∑
i+j+k=d cijkBijk(x, y). Then the directional derivative Dv2−v1S|T is

Dv2−v1S|T = d
∑

i+j+k=d−1

(ci,j+1,k − ci+1,j,k)Bijk(x, y).
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Similar for Dv3−v1S|T . Dx and Dy are linearly combinations of these two directional derivatives. Let s be
a spline in Srd(4) with s|T =

∑
i+j+k=d c

T
ijkBijk(x, y), T ∈ 4. Then∫

Ω
s(x, y)dxdy =

∑
T∈4

AT(
d+2

2

) ∑
i+j+k=d

cTijk.

If p =
∑

i+j+k=d aijkBijk(x, y) and q =
∑

i+j+k=d bijkBijk(x, y) over a triangle T , then∫
T
p(x, y)q(x, y)dxdy = a>Mdb,

where a = (aijk, i+ j + k = d)>, b = (bijk, i+ j + k = d)>, Md is a symmetric matrix with known entries
(a formula for these entries is known (cf. [21]). These elementary operations have been implemented in
MATLAB. See [4]. Many different linear and nonlinear partial differential equations have been solved by
using these bivariate spline functions. See [22], [4], [14].

When d ≥ 3r + 2 the spline space Srd(4) possesses an optimal approximation order which is achieved
by the use of a quasi-interpolation operator. Let ‖f‖Lp(Ω) denote the usual Lp norm of f over Ω, |f |m,p,Ω
denotes the Lp norm of the mth derivatives of f over Ω, and Wm+1

p (Ω) stands for the usual Sobolev space
over Ω.

To define the quasi-interpolation operator we need linear functionals {λijk,T }i+j+k=d, T ∈ 4 which are
based on values of f at the set of domain points over triangles in 4, that is

λijk,T (f) =
∑
|ν|=d

aijkν f(ξTν ), (6.3)

where ξTν = (ivT1 + jvT2 + kvT3 )/d for ν = (i, j, k) with i + j + k = d and vi, i = 1, 2, 3 are vertexes of
triangle T .

A quasi-interpolation operator of f is defined by

Qf :=
∑
T∈4

∑
i+j+k=d

λijk,T (f)BT
ijk. (6.4)

Now, we are ready to state a theorem on optimal approximation order (cf. [20] and [21]).

Theorem 6.1 (Optimal Approximation Order). Assume d ≥ 3r + 2 and let 4 be a triangulation of Ω.
Then there exists a quasi-interpolatory operator Qf ∈ Srd(4) mapping f ∈ L1(Ω) into Srd(4) such that Qf
achieves the optimal approximation order: if f ∈Wm+1

p (Ω),

‖Dα
xD

β
y (Qf − f)‖Lp(Ω) ≤ C|4|m+1−α−β|f |m+1,p,Ω (6.5)

for all α + β ≤ m + 1 with 0 ≤ m ≤ d, where Dx and Dy denote the derivatives with respect to the first
and second variables and the constant C depends only on the degree d and the smallest angle θ4 and may
be dependent on the Lipschitz condition on the boundary of Ω.

We sometimes need to use the so-called Markov inequality to compare the size of the derivative of a
polynomial with the size of the polynomial itself on a given triangle t. As a spline function is a piecewise
polynomial function, this inequality can be also applied to any spline function. See [21] for a proof.

Theorem 6.2. Let t := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞. Then there exists a constant K
depending only on d such that for every polynomial p ∈ Pd, and any nonnegative integers α and β with
0 ≤ α+ β ≤ d,

‖Dα
1D

β
2 p‖q,t ≤

K

ρα+β
t

‖p‖q,t, 0 ≤ α+ β ≤ d, (6.6)

where ρt denotes the radius of the largest circle inscribed in t.
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