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Abstract This paper is concerned with the numerical approximation of the minimizer of the continuous Rudin-Osher-
Fatemi (ROF) model. A new projected gradient algorithm for computing a numerical solution of the ROF model in the
discrete setting is proposed. We show that the new algorithm converges. The solution of our discrete algorithm is then
used to construct a continuous piecewise linear spline which approximates the solution of the continuous ROF model
in the L2−norm. We show that if the noised image is in the space Lip(α,L2(Ω)), 0 < α ≤ 1, our piecewise linear
approximations converge to the solution of the ROF model. Finally, we demonstrate with numerical experiments that
the new algorithm is as good as the traditional projected gradient algorithm and Chambolle’s fixed point algorithm.

1 Introduction

Since the seminal work of Rudin, Osher, and Fatemi[13] total variation based model for image restoration have received
a great deal of attention. They are now used in image denoising, image deblurring, and image inpainting. In each case,
the problem is formulated as a minimization of a functional of the form

argmin |Du| (Ω) , subject to the constraints F (u) , (1.1)

where |Du| (Ω) is the total-variation of the function u on Ω, and F (u) is a suitable set of constraints satisfied by u, and
Ω ⊂ R2 is the domain of the image u. For image de-noising, the problem was formulated as follows: recover the true
image u from a contaminated version f = u + n, where n is a white noise with mean 0 and standard deviation σ. The
corresponding minimization problem is

argmin |Du| (Ω) subject to the constraints (1.2)ˆ
Ω

u(x)dx =

ˆ
Ω

f(x)dx and
ˆ
Ω

|u(x)− f(x)|2dx ≤ σ2. (1.3)

It was shown (cf. [6,13]) that problem (1.2) is equivalent to the following unconstrained minimization

argmin
u∈BV (Ω)

|Du| (Ω) +
1

2λ

ˆ
Ω

(u− f)2
dx (1.4)

where λ > 0 is a Lagrange multiplier, and BV (Ω) is the Banach space of functions of bounded variation. The existence
and uniqueness of the minimizer of the above problem was established in [1] and [6].

Ming-Jun Lai
Department of Mathematics
University of Georgia
Athens, GA 30602, USA
Tel.: +1706-542-2065
Fax: +1706-542-5907
E-mail: mjlai@math.uga.edu

Leopold Matamba Messi
Department of Mathematics
University of Georgia
Athens, GA 30602, USA
Tel.: +1706-542-5961
Fax: +1706-542-5907
E-mail: lmatamba@math.uga.edu



2 Ming-Jun Lai, Leopold Matamba Messi

To find numerical approximations of the solution of (1.4), one has to understand how to discretize the total variation
term |Du|(Ω). All the finite difference methods proposed in the literature are based on the following fact (see for
example [2,10] for details)

|Du| (Ω) =

ˆ
Ω

|∇u|dx =

ˆ
Ω

√(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

dx, ∀u ∈W1,1 (Ω) . (1.5)

As such, the total variation is then approximated using a combination of a quadrature formula for the integral, and a first
order finite difference approximation of the derivative.

Several algorithms to find approximations of the solution of problem (1.4) have been proposed and studied in the
literature. See for example [3,6,13]. Indeed, a time dependent nonlinear PDE associated with the Euler-Lagrange equa-
tion for (1.4) was used to approximate the minimizer of (1.4) and then solved by finite difference methods (cf. [13]) or
finite elements methods (cf. [7]).

In the discrete setting, a primal-dual algorithm (a popular approach in optimization) based on a straightforward
discretization of the TV term and L2 term was introduced by Chambolle in [?] for image denoising. Recently, Duval
et al [8] proposed a projected-gradient algorithm for the discrete L2−TV regularization to compute an approximation
of the minimizer. A numerical algorithm based on completely symmetric discretization of the TV term was studied in
[15]. In particular, the researchers in [15] were able to show that their numerical solution approximates the minimizer of
problem (1.4) in L2 norm. Furthermore, the convergence of the discrete solution of the finite difference method for time
dependent nonlinear PDE was recently established in [11]. These motivate us to study the convergence of the discrete
solutions of Chambolle algorithm and projected gradient algorithm to the solution of problem (1.4). After studying the
convergence issue of these two algorithms, we realize that one has to use a new discretization of the total variation term
which leads to a new version of the projected-gradient algorithm. With this new discretization, we are able to use the
solution in the discrete setting to construct a piecewise linear interpolatory spline which can be shown to approximate
the solution of the original problem (1.4).

Our contributions in this paper are the following: (1) we first prove the existence and uniqueness of the solution
based on the new discrete ROF functional (see Theorem 1); (2) We formulate a projected gradient algorithm for the new
minimization problem (cf. Algorithm 31) and prove its convergence (cf. Theorem 3); (3) We demonstrate numerically
that our new version of the projected-gradient algorithm performs slightly better than the original projected-gradient
algorithm in [5,8], and is at least as good as Chambolle’s fixed point iterative algorithm[4], as measured by the Peak
Signal to Noise Ratio (PSNR) (see Section 5); (4) We obtain an error bound in L2 (Ω) between the piecewise linear
interpolatory spline of the discrete solution and the solution of the continuous ROF model (see Theorem 2).

2 Preliminaries and Notations

In this section, we give preliminary results, and introduce the notations that we shall use in the paper.

2.1 Basic notations

Let Ω be an open subset of R2, we denote the indicator function of the set Ω by

1Ω(x) =

{
1, x ∈ Ω,
0, x /∈ Ω.

For a given η ∈ R2, we shall denote by τηΩ the image of the set Ω under the translation with the vector η, i.e

τηΩ := {x+ η : x ∈ Ω} .

For a function u : Ω → R, we denote by τηu the function whose domain is Ω ∩ τ−ηΩ and is defined by

τηu(x) = u(x+ η), x ∈ Ω ∩ τ−ηΩ.

Next, we recall the definitions of some functional spaces that are used in this work. Let 1 ≤ p <∞ be fixed. Lp (Ω)
is the standard Banach space of p−integrable functions

Lp (Ω) :=

{
u : Ω → R :

ˆ
Ω

|u(x)|pdx <∞
}
.

Lploc(Ω) is the set of functions u that are locally p−integrable, i.e

Lploc(Ω) =

{
u : Ω → R :

ˆ
K

|u(x)|pdx <∞, ∀K ⊂ Ω compact
}
.
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The norm of an element u ∈ Lp (Ω) is given by

‖u‖p =

(ˆ
Ω

|u(x)|pdx
)1/p

.

It is well known that the translation operator τη is a bounded linear operator from Lp (Ω) into Lp(Ω ∩ τ−ηΩ).
Let h > 0 be given. The p−modulus of continuity of order h, of a function u ∈ Lp (Ω), is defined by

ωp(u, h) = sup
|η|≤h

‖τηu− u‖p, (2.1)

where |η| stands for the Euclidean norm of η.
For u ∈ Lploc(Ω) and A a subset of Ω whose closure Ā ⊂ Ω is a compact, the p−modulus of continuity of u with

respect to A, denoted ωp(u, h)A, is given by

ωp(u, h)A = ωp(u1A, h). (2.2)

Let 0 < α ≤ 1. We denote Lip(α,L2 (Ω)) the subspace of L2 (Ω) defined by

Lip(α,L2 (Ω)) =

{
u ∈ L2 (Ω) : sup

h>0
h−αω2(u, h) <∞

}
.

2.2 A discretization of the ROF functional.

In the sequel Ω shall denote the unit square [0, 1]2 of R2. We subdivide Ω into (N − 1)2 square sub-domains of side
length h to get a uniform quadrangulation �h. A triangulation ∆h is then obtained from �h by splitting each square
into two triangles using the Northwest-Southeast diagonal as shown in Figure 1.

ωi,j ωi+1,j

ωi+1,j+1
ωi,j+1

T u
i,j

T d
i,j

Fig. 1: Type I triangulation of the domain Ω with vertexes ωi,j . Tui,j is the triangle with vertexes
〈ωi+1,j , ωi+1,j+1, ωi,j+1〉 and T di,j is the triangle with vertexes 〈ωi,j , ωi+1,j , ωi,j+1〉.

Let ω1,1 be the lower left corner of Ω. We denote the set of vertices of the triangulation ∆h by

Vh = Ω̄ ∩
{
ω1,1 + hZ2

}
:= {ωi,j : 1 ≤ i, j ≤ N},

and define a partition {Ωi,j} of Ω subordinate to Vh by

Ωi,j := Ω ∩
(
ωi,j + [−h/2, h/2]2

)
.

Let

Efλ(u) := |Du|(Ω) +
1

2λ

ˆ
Ω

(u− f)2dx. (2.3)
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Throughout the paper Efλ(u) will be referred to as the continuous ROF functional. We are interested in devising a
numerical scheme for computing an approximation of the minimizer of Efλ(u). However, since Du is a measure, dis-
cretizing Efλ(u) solely based on u is a delicate matter. Many researchers [5,12] have used the closed form of |Du|(Ω)

given in (1.5) to designed discretization scheme of the ROF functional Efλ(u) that combine a formal finite difference
approximation of ∇u with a quadrature approximation of the integral. Our discretization of the ROF functional Efλ(u)
has a similar flavor. We first discretize the total variation as follows

Jh(u) :=
∑

1≤i,j<N

h2

2

√∣∣∣∣ui+1,j − ui,j
h

∣∣∣∣2 +

∣∣∣∣ui,j+1 − ui,j
h

∣∣∣∣2

+
∑

1≤i,j<N

h2

2

√∣∣∣∣ui+1,j+1 − ui,j+1

h

∣∣∣∣2 +

∣∣∣∣ui+1,j+1 − ui+1,j

h

∣∣∣∣2, (2.4)

where ui,j is a suitable discretization of the function u at the vertexes of the triangulation ∆h. For example if u is a
continuous piecewise linear spline with respect to ∆h, on can easily show that Jh(u) = |Du|(Ω); this is the reason why
we use (2.4) to discretize |Du|(Ω). The resulting discrete ROF-functional Efλ,h(u) is given by

Efλ,h(u) := Jh(u) +
1

2λ

∑
1≤i,j≤N

h2
∣∣ui,j − fi,j∣∣2 , u ∈ RN×N (2.5)

where fi,j := f(ωi,j) is a suitable discretization on ∆h of the datum f . From this point onwards, Efλ,h(u) will be
referred to as the discrete ROF functional and the associated miniization problem

argmin
u∈RN×N

Efλ,h(u) (2.6)

shall be called the discrete ROF model.

2.3 Embedding and Projection Operators

We introduce various operators that will help us construct a piecewise linear approximation of the solution to the con-
tinuous L2−ROF model. In the previous section, we gave a formal discrete approximation of the ROF functional. We
now clarify how this discretization is obtained.

The sampling operator, Qh : L2 (Ω)→ RN×N , is defined by

(Qhf)i,j :=
1

h2

ˆ
Ωi,j

f(x)dx. (2.7)

Qh will also denote the projection of L2 (Ω) onto the linear space of piecewise constant function with respect to the
partition {Ω̄i,j : 1 ≤ i, j ≤ N} of Ω̄, in which case Qh is defined by

Qhf(y) := (Qhf)i,j =
1

h2

ˆ
Ωi,j

f(x)dx, for all y ∈ Ωi,j . (2.8)

Next, we denote by `2(Vh) the vector space RN×N endowed with the inner product

〈u, v〉h :=
N∑

i,j=1

h2ui,jvi,j , (2.9)

and the corresponding norm |u|h := 〈u, u〉1/2h . The following properties of Qh follows from Jensen’s Inequality.

Lemma 1 The sampling operator Qh defined above has the following properties

|Qhf |h ≤ ‖f‖2, and ‖Qhf‖2 ≤ ‖f‖2, for all f ∈ L2 (Ω) . (2.10)
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Next, we explain two methods of constructing a function of bounded variation from an element u ∈ `2(Vh). First,
we create a piecewise constant function defined on Ω via the partition {Ωi,j : 1 ≤ i, j ≤ N} as follows

Chu(y) = ui,j , if y ∈ Ωi,j . (2.11)

We denote by Ch : `2(Vh) → BV (Ω) the piecewise constant embedding of `2(Vh) into BV (Ω) defined by (2.11).
Second, we define a piecewise linear interpolatory operator. Ph : `2(Vh) → BV (Ω). For u ∈ `2(Vh), Phu is the
continuous piecewise linear polynomial defined by

Phu(y) =
∑

1≤i,j≤N
ui,jφi,j(y), (2.12)

with φi,j the continuous piecewise linear function such that

φi,j(ωi,j) = 1, and φi,j(ω) = 0, ω ∈ Vh \ ωi,j . (2.13)

With a slight abuse of notation, Ph will also denote the piecewise linear interpolation of functions of class Ck(Ω̄), k ≥
0 over the set Vh; in which case it will be defined by

Phf(y) =
∑

1≤i,j≤N
f(ωi,j)φi,j(y), y ∈ Ω, f ∈ Ck(Ω̄).

Lemma 2 Suppose that Ω is endowed with the triangulation ∆h. Then for all u ∈ `2(Vh), there holds

‖Chu‖2 = |u|`2(Vh) and ‖Phu‖2 ≤ 3|u|`2(Vh), (2.14)

‖Phu− Chu‖2 ≤ ω(u, 1)`2(Vh) (2.15)

where ω(u,m)`2(Vh) denotes the discrete modulus of smoothness of order m ∈ N and is defined by

ω(u,m)2
`2(Vh) = sup

α=(α1,α2)∈Z2,
max(|α1|,|α2|)≤m

∑
1≤i,i+α1≤N
1≤j,j+α2≤N

h2
∣∣ui+α1,j+α2

− ui,j
∣∣2 . (2.16)

Proof Let u ∈ `2(Vh) be given. The inequalities (2.14) follow from the definition of the Euclidean norm on `2(Vh) and
the fact that the area of the support of φi,j is at most 3|Ωi,j |. Next we prove the inequality (2.15). By definition, we have

‖Phu− Chu‖22 =
∑

1≤i,j≤N

ˆ
Ωi,j

|Phu(y)− Chu(y)|2 dy

≤
∑

1≤i,j≤N

ˆ
Ωi,j

∣∣∣∣∣∣
∑

1≤l,k≤N

(
ul,k − ui,j

)
φl,k(y)

∣∣∣∣∣∣
2

dy

≤
∑

1≤i,j≤N

∑
1≤l,k≤N

∣∣ul,k − ui,j∣∣2 ˆ
Ωi,j

φ2
l,k(y)dy

≤
∑

1≤i,j≤N

∑
1≤l≤N, |l−i|=1
1≤k≤N, |k−j|=1

|Ωi,j |
∣∣ul,k − ui,j∣∣2 ≤ ω(u, 1)2

`2(Vh),

which completes the proof. �

Remark 1 Let u ∈ RN×N be fixed, and let ω(u,m) be the modulus of continuity of u ∈ RN×N with respect to the
Euclidian norm |u| =

√
〈u, u〉. It is easy to see that

ω(u,m)`2(Vh) ≤ hω(u,m). (2.17)

2.4 Periodic Extension operators

In this section, we construct a periodic extension of u ∈ RN×N to Z2. We also present the construction of a periodic
extension to R2 of a function defined on Ω.
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The discrete periodic extension Let u ∈ RN×N be fixed. We construct a discrete function Ext(u) : Z2 → R defined in
two steps as follows:

1) First, we extend u into an element u2N ∈ R2N×2N as follows

u2N
i,j =


ui,j if 1 ≤ i, j ≤ N,
u2N−i+1,j if i > N, 1 ≤ j ≤ N,
ui,2N−j+1 if 1 ≤ i ≤ N, j > N,

u2N−i+1,2N−j+1 else.

(2.18)

2) Ext(u) is the periodic extension of u2N to all of Z2.

In the sequel, we will denote by u2N the restriction of the function Ext(u) to the set

Ψ2N := {(i, j) ∈ Z× Z : 1 ≤ i, j ≤ 2N} .

For α = (α1, α2) ∈ Z2 and u := (ui,j)i,j∈Z a discrete function, we define the translation ταu of u as follows:

(ταu)i,j = ui+α1,j+α2
, i, j ∈ Z.

The restriction of ταu to a set of the form ΨM := {(i, j) : 1 ≤ i, j ≤M} shall be denoted uMα .

The continuous periodic extension The construction of the periodic extension that follows was presented in [16,15]. Let
u : Ω → R be given. First, we extend u to u2Ω : [0, 2]2 → R by the formula

u2Ω(x1, x2) = u(x1, x2)1Ω(x1, x2) + u(2− x1, x2)1τ1,0Ω(x1, x2)

+ u(x1, 2− x2)1τ0,1Ω(x1, x2) + u(2− x1, 2− x2)1τ1,1Ω(x1, x2), (2.19)

where 1A denotes the indicator function of the set A, and τm,nΩ = {(x1 +m,x2 + n) : (x1, x2) ∈ Ω}. The extension
of u is the periodic function Ext(u) : R2 → R with period [0, 2]2 that coincides with u2Ω on [0, 2]2. Since Ω has
compact closure, it is easy to show that the continous periodic extension operator, Ext, maps Lp (Ω) into Lploc(R2).

Proposition 1 Suppose that f ∈ L2 (Ω). Then for any 0 < h� 1, we have

ω2(Ext(f), h)Ω1 ≤ Cω2(f, h), (2.20)

where C > 0 is a constant independent of f and Ω1 =
⋃

(m,n)∈Z2

|(m,n)|∞≤1

τ(m,n)Ω.

Proof Let f ∈ L2 (Ω) be given, and η ∈ R2 be fixed with |η| ≤ h. By definition

‖τη(Ext(f)1Ω1)− Ext(f)1Ω1‖22 =

ˆ
Ω1∩τ−ηΩ1

|Ext(f)(x+ η)− Ext(f)(x)|2dx

≤
∑

−1≤i,j≤1

∑
−1≤m≤1
|m−i|=1
−1≤n≤1
|n−j|=1

ˆ
τ(m,n)Ω∩τ(i,j)−ηΩ

|Ext(f)(x+ η)− Ext(f)(x)|2dx

≤ 2
∑

−1≤i,j≤1

ˆ
τ(i,j)(Ω∩τ−ηΩ)

|Ext(f)(x+ η)− Ext(f)(x)|2dx

≤ 18

ˆ
Ω∩τ−ηΩ

|f(x+ η)− f(x)|2dx = 18‖τηf − f‖22.

As a consequence, we have ω2(Ext(f), h)Ω1 ≤ 3
√

2ω2(f, h). �

Lemma 3 For any f ∈ L2 (Ω) and 0 < h� 1, there holds

‖f − ChQhf‖2 ≤ K ω2(f, h), (2.21)

where K > 0 is a constant independent of h.
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Proof By definition, we have

‖f − ChQhf‖2 =

 ∑
1≤i,j≤N

ˆ
Ωi,j

∣∣∣∣∣f(x)− 1

h2

ˆ
Ωi,j

f(y)dy

∣∣∣∣∣
2

dx

1/2

≤

 ∑
1≤i,j≤N

ˆ
Ωi,j

(
1

h2

ˆ
Ωi,j

|f(x)− f(y)| dy

)2

dx

1/2

≤

 ∑
1≤i,j≤N

ˆ
Ωi,j

(
4

h2

ˆ
{z : |z|≤

√
2h}
|Ext(f)(x)− Ext(f)(x+ z)| dz

)2

dx

1/2

=

ˆ
Ω

(
4

h2

ˆ
{z : |z|≤

√
2h}
|Ext(f)(x)− Ext(f)(x+ z)| dz

)2

dx

1/2

≤ 4

h2

ˆ
{z : |z|≤

√
2h}

(ˆ
Ω

|Ext(f)(x)− Ext(f)(x+ z)|2 dx
)1/2

dz

‖f − ChQhf‖2 ≤ 8πω2(Ext(f),
√

2h)Ω1 .

Inequality (2.21) follows from the latter inequality thanks to Proposition 1, and the fact that

ω2(Ext(f),
√

2h)Ω1 ≤ 2ω2(Ext(f), h)Ω1 .

�

3 A total variation based model for digital image denoising

In the sequel we treat gray-scale images of size N × N as rectangular matrices of dimension N × N and denote by
X := RN×N the manifold of gray-scale images of size N ×N .

3.1 The model and its properties

To compute the total variation of elements of X, we introduce two discrete gradient operators ∇+ = (∇x+,∇
y
+) and

∇− = (∇x−,∇
y
−), which are linear operators from X into Y := X ×X, defined by

(∇x+u)i,j =

{
0, if i = N or j = N

ui+1,j − ui,j otherwise;
(3.1)

(∇y+u)i,j =

{
0, if i = N or j = N

ui,j+1 − ui,j otherwise;
(3.2)

and

(∇x−u)i,j =

{
0, if i = 1 or j = 1

ui,j − ui−1,j otherwise;
(3.3)

(∇y−u)i,j =

{
0, if i = 1 or j = 1

ui,j − ui,j−1 otherwise.
(3.4)

We associate to the discrete gradient operators∇+ and∇− the discrete divergence operators, div+ := −∇∗+ : Y →
X and div− := −∇∗− : Y → X, defined respectively by

div+(p)i,j =

{
0 if i = N or j = N

p1
i,j otherwise

−

{
0 if i = 1 or j = N

p1
i−1,j otherwise

+

{
0 if i = N or j = N

p2
i,j otherwise

−

{
0 if i = N or j = 1

p2
i,j−1 otherwise
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and

div−(p)i,j =

{
0 if i = N or j = 1

p1
i+1,j otherwise

−

{
0 if i = 1 or j = 1

p1
i,j otherwise

+

{
0 if i = 1 or j = N

p2
i,j+1 otherwise

−

{
0 if i = 1 or j = 1

p2
i,j otherwise

The total variation of a gray-scale image u ∈ X is then defined by

J(u) :=
1

2

∑
1≤i≤N
1≤j≤N

(∣∣(∇+u)i,j
∣∣+ ∣∣(∇−u)i,j

∣∣) , (3.5)

where for an element p := (pi,j) := (p1
i,j , p

2
i,j) ∈ Y ,

∣∣pi,j∣∣ is the Euclidean norm of pij := (p1
i,j , p

2
i,j) in R2.

Consequently, the digital ROF-functional is given by

Efd,λ(u) := J(u) +
1

2λ
|u− f |2, (3.6)

where ‖ · ‖X is the Euclidean norm on X = RN×N , and f ∈ X.
Since the functional Efd,λ(u) is strictly convex and coercive, it follows (cf. [9, Proposition 1.2, page 35]) that the

minimization problem argmin
u∈X

Efd,λ(u) has a unique solution. Henceforth, we will refer to the problem

argmin
u∈X

Efd,λ(u) (3.7)

as the digital ROF-model.
The next result, similar to the one proved in [15,16], shows that problem (3.7) is stable under small perturbations in

the datum f .

Lemma 4 (Stability) Let uf be the minimizer of Efd,λ(u) and ug the minimizer of Egd,λ(u). Then

|uf − ug| ≤ |f − g|. (3.8)

We now prove a technical lemma that asserts that the discrete ROF model is compatible with translation of the datum
f .

Lemma 5 Let f ∈ RN×N be fixed and uf be the minimizer of the functional Efd,λ(u). Then, u2N
f is a minimizer of

Ef
2N

d,λ (u). Moreover, for any α ∈ Z2 such that |α|∞ = 1, the minimizer of Ef
2N
α

d,λ (u) is u2N
f,α, the restriction of ταuf to

Ψ2N .

Proof We first show that u2N
f = argmin

u∈R2N×2N

Ef
2N

d,λ (u). It is easy to see that for all u ∈ RN×N , we have

Ef
2N

d,λ (u2N ) = 4Efd,λ(u)

Furthermore, for every u ∈ R2N×2N , there exists xu ∈ RN×N such that Ef
2N

d,λ (u) ≥ Ef
2N

d,λ (x2N
u ). In effect, letting

xu be the constant vector that equals ui0,j0 with (i0, j0) ∈ argmin
1≤i,j≤N

|ui,j − fi,j |, it is easy to verify that Ef
2N

d,λ (u) ≥

Ef
2N

d,λ (x2N
u ). Consequently,

min
u∈R2N×2N

Ef
2N

d,λ (u) = min
u∈RN×N

Ef
2N

d,λ (u2N ) = 4 min
u∈RN×N

Efd,λ(u).

Hence, u2N
f is the minimizer of Ef

2N

d,λ (u) with respect to R2N×2N .
Next let α ∈ Z2 with |α|∞ = 1. For clarity of the argument, we fix α = (1, 0). An argument identical to the one

above shows that
min

u∈R2N×2N
E
f2N
α

d,λ (u) = min
u∈RN×N

E
f2N
α

d,λ (u2N
α ).

Let k ∈ N be fixed. Then, for any periodic discrete function g with period [1, 2N ]× [1, 2N ], we have

k2Eg
2N

d,λ (u2N
g ) = Eg

2Nk

d,λ (u2Nk
g ) = min

u∈R2Nk×2Nk
Eg

2Nk

d,λ (u), (3.9)
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where ug is the minimizer of Eg
2N

d,λ (u), and u2Nk
g is the restriction of the periodic (with period [1, 2N ] × [1, 2N ])

extension of ug to [1, 2Nk]× [1, 2Nk]. Moreover, for any u ∈ RN×N , there holds

E
g2Nkα

d,λ (u2Nk
α ) = Eg

2Nk

d,λ (u2Nk)− kD(u), (3.10)

where
D(u) =

∑
1≤j<N

(|∇+(u)1,j |+ |∇−(u)1,j |) . (3.11)

Let y ∈ RN×N be such that y2N
α = argmin

u∈R2N×2N

E
f2N
α

d,λ (u). We want to prove that y2N
α = u2N

f,α, i.e Ef
2N
α

d,λ (u2N
f,α) ≤

E
f2N
α

d,λ (y2N
α ). Let us consider the minimization problem associated to f2Nk

α . Since u2N
f is the minimizer of Ef

2N

λ (u),
we have

k2E
f2N
α

d,λ (y2N
α ) = E

f2Nk
α

d,λ (y2Nk
α )

= Ef
2Nk

d,λ (y2Nk)− kD(y) by equation (3.10)

≥ Ef
2Nk

d,λ (u2Nk
f )− kD(y) by equation (3.9)

≥ Ef
2Nk
α

d,λ (u2Nk
f,α ) + k(D(uf )−D(y)) by equation (3.10)

k2E
f2N
α

d,λ (y2N
α ) ≥ k2E

f2N
α

d,λ (u2N
f,α) + k(D(uf )−D(y)) by equation (3.9).

Dividing the last inequality above by k2, we obtain

E
f2N
α

d,λ (y2N
α ) ≥ Ef

2N
α

d,λ (u2N
f,α) +

(D(uf )−D(y))

k
, ∀k ∈ N, k ≥ 1. (3.12)

Passing to the limit as k →∞ in (3.12) yields Ef
2N
α

d,λ (y2N
α ) ≥ Ef

2N
α

d,λ (u2N
f,α). Thus, u2N

f,α = argmin
u∈RN×N

E
f2N
α

d,λ (u2N
α ).

Our argument above works mutatis mutandis for any α := (α1, α2) with one of the components being zero. For α ∈
{(1, 1), (1,−1), (−1, 1), (−1,−1)}, the proof follows from the previous case by observing that τα = τ(α1,0) ◦ τ(0,α2).
�

Remark 2 We observe that for any u ∈ RN×N

Efλ,h(u) = h2E
f/h
d,λ/h2(u/h). (3.13)

Therefore, Lemma 4 and Lemma 5 remain valid for the functional Efλ,h(u). The equation (3.13) gives the relation
between the discrete ROF functional (2.5) and the digital ROF functional (3.6).

3.2 Primal-Dual formulation

We establish the primal-dual formulation of the minimization problem associated to the functional Efd,λ(u). We also
prove the existence and uniqueness of the minimizer. First, we establish an alternate formula for the discrete total
variation J(u) defined in (3.5). By Riesz representation Theorem, we can rewrite the discrete total variation J(u) above
in the following form:

J(u) =
1

2

∑
1≤i≤N
1≤j≤N

sup
pi,j∈R2, |pi,j |≤1

〈(∇+u)i,j , pi,j〉+ sup
qi,j∈R2, |qi,j |≤1

〈(∇−u)i,j , qi,j〉

=
1

2
sup

p∈Y, |p|∞≤1

〈∇+u, p〉Y +
1

2
sup

q∈Y, |q|∞≤1

〈∇−u, q〉Y

=
1

2
sup

p∈Y, |p|∞≤1

〈u,−div+(p)〉X +
1

2
sup

q∈Y, |q|∞≤1

〈u,−div−(q)〉X

J(u) = sup
p∈Y, |p|∞≤1
q∈Y, |q|∞≤1

−〈u, 1

2
div+(p) +

1

2
div−(q)〉X (3.14)
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where for p = (p1, p2) and q = (q1, q2) in Y ,

〈p, q〉Y =
∑

1≤i,j≤N
p1
i,jq

1
i,j + p2

i,jq
2
i,j , and |p|∞ = max

i,j

√
(p1
ij)

2 + (p2
ij)

2.

Therefore, the minimization problem (3.7) is equivalent to the following saddle-point problem

argmin
u∈X

sup
p∈Y, |p|∞≤1
q∈Y, |q|∞≤1

−〈u, 1

2
div+(p) +

1

2
div−(q)〉X +

1

2λ
|u− f |2. (3.15)

The saddle-point problem (3.15) above is referred to as the primal-dual formulation of problem (3.7), with primal
variable u and dual variable p.

Let
BY = {p ∈ Y : |p|∞ ≤ 1},

and L(u : p, q) be the functional defined on X × Y × Y by

L (u; p, q) := −〈u, 1

2
div+(p) +

1

2
div−(q)〉+ 1

2λ
|u− f |2. (3.16)

We have the following result for the existence of a solution to problem (3.15).

Lemma 6 The functional L : X × Y × Y → R defined by (3.16) has a saddle point (ū; p̄, q̄) in the set X ×BY ×BY .
Furthermore the component ū of any saddle point of L is the solution of the minimization problem (3.7).

Proof We observe that L(u; p, q) is a strictly convex quadratic function in u and linear in (p, q). Moreover, both the
mappings u 7→ L(u; p, q) and (p, q) 7→ L(u; p, q) are Gâteaux-differentiable, with derivatives

∂uL(u; p, q) = −1

2
(div+(p) + div−(q))− 1

λ
(u− f) , (3.17)

∂p,qL(u; p, q) =

[
1

2
∇+u,

1

2
∇−u

]
. (3.18)

Let

ū = f +
λ

2
(div+(p̄) + div−(q̄)) , (3.19)

with
(p̄, q̄) ∈ argmin

p,q∈BY
|λ (div+(p) + div−(q)) + 2f |2. (3.20)

We show that (ū; p̄, q̄) is a saddle-point for L(u; p, q) with respect to the set X × BY × BY . To this end, it suffices to
check that

〈∂uL(ū; p̄, q̄), u− ū〉 ≥ 0, ∀u ∈ X
〈∂p,qL(ū; p̄, q̄), (p− p̄, q − q̄)〉 ≤ 0, ∀ p, q ∈ BY .

which follows by definition of ū and (p̄, q̄). In effect, by definition of ū, we have ∂uL(ū; p̄, q̄) = 0. Thus,

〈∂uL(ū; p̄, q̄), u− ū〉 = 0, ∀u ∈ X.

Next, it is easy to see that for all p, q ∈ Y we have

〈∂p,qL(ū; p̄, q̄), (p− p̄, q − q̄)〉 = − 1

2λ
〈λ(div+ p̄+ div− q̄) + 2f, λ(div+(p− p̄) + div−(q − q̄))〉.

Now, we recall that λ(div+(p̄) + div−(q̄)) is the orthogonal projection of −2f onto the closed convex set λK. Conse-
quently, by the characterization of the orthogonal projection, we have

〈λ(div+ p̄+ div− q̄) + 2f, λ(div+(p− p̄) + div−(q − q̄))〉 ≥ 0, ∀ p, q ∈ BY .

Hence, by (3.18)
∂p,qL(ū; p̄, q̄), (p− p̄, q − q̄)〉 ≤ 0 for all p, q ∈ BY .

�
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Remark 3 If (ū; p̄, q̄) is a saddle-point of L(u; p, q) with respect to the set X ×BY ×BY , then

L(ū; p̄, q̄) = inf
u∈X

J(u) +
1

2λ
|u− f |2 = J(ū) +

1

2λ
|ū− f |2

= max
p,q∈BY

2

λ
|f |2 − λ

8

∣∣∣∣div+(p) + div−(q) +
2f

λ

∣∣∣∣2 .
Hence, for any saddle-point (ū; p̄, q̄) of L(u; p, q), we have

(p̄, q̄) ∈ argmin
p,q∈BY

|λ (div+(p) + div−(q)) + 2f |2.

We have proved the following characterization of a minimizer of the discrete ROF functional Efd,λ.

Theorem 1 A vector u ∈ X is the solution of problem (3.7) if and only if 2 (u− f) is the orthogonal projection of −2f
onto the closed convex set

λK := {λ [div+(p) + div−(q)] : p, q ∈ BY } . (3.21)

Furthermore, the solution u is given by

u = f +
λ

2
(div+(p̄) + div−(q̄)) ,

with (p̄, q̄) ∈ argmin
p,q∈BY

|λ (div+(p) + div−(q)) + 2f |2.

For a closed convex subset A of a Euclidean space, we denote by πA the orthogonal projection onto A. In particular
for A = BY , it can be shown that

πBY (p)i,j =

(
p1
i,j

max(1, |pi,j |)
,

p2
i,j

max(1, |pi,j |)

)
, 1 ≤ i, j ≤ N. (3.22)

The formula above follows from the observation that BY is the cartesian product of unit disks of R2, and R2 can be
isometrically embedded in Y , with both spaces endowed with their natural Euclidian norms. Therefore, for 1 ≤ i, j ≤ N ,
πBY (p)i,j is the orthogonal projection of pi,j = (p1

i,j , p
2
i,j) onto the unit disk of R2, given by (3.22).

The following result is a straightforward consequence of the characterization of minimizers of a Gâteaux-differentiable
function and forms the basis of our projected-gradient algorithm.

Proposition 2 If (p̄, q̄) ∈ argmin
p,q∈BY

|λ (div+(p) + div−(q)) + 2f |2, then for any τ > 0, there holds

{
p̄ = πBY (p̄+ τ∇+ [div+(p̄) + div−(q̄) + 2f/λ]) ,

q̄ = πBY (q̄ + τ∇− [div+(p̄) + div−(q̄) + 2f/λ]) .
(3.23)

Proof Let (p̄, q̄) ∈ argmin
p,q∈BY

|λ(div+(p) + div−(q) + 2f)|2 be fixed. Then,

p̄ ∈ argmin
p∈BY

|div+(p) + div−(q̄) + 2f/λ|2,

q̄ ∈ argmin
q∈BY

|div+(p̄) + div−(q) + 2f/λ)|2.

We notice that the mappings p 7→ |div+(p) + div−(q̄) + 2f/λ|2 and q 7→ |div+(p̄) + div−(q) + 2f/λ|2 are Gâteaux-
differentiable with differentials

−∇+(div+(p) + div−(q̄) + 2f/λ) and −∇−(div+(p̄) + div−(q) + 2f/λ),

respectively. Therefore (see [9, Proposition 2.1, page 37]), we have

〈−∇+(div+(p̄) + div−(q̄) + 2f/λ), p− p̄〉 ≥ 0, ∀p ∈ BY ,
〈−∇−(div+(p̄) + div−(q̄) + 2f/λ), q − q̄〉 ≥ 0, ∀q ∈ BY .

It then follows that for any τ > 0

〈p̄− [p̄+ τ∇+(div+(p̄) + div−(q̄) + 2f/λ)] , p− p̄〉 ≥ 0, ∀ p ∈ BY ,
〈q̄ − [q̄ + τ∇−(div+(p̄) + div−(q̄) + 2f/λ)] , q − q̄〉 ≥ 0, ∀ q ∈ BY ,

which is equivalent to (3.23). �
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3.3 A projected gradient algorithm

By Theorem 1, computing the minimizer of the discrete ROF functional Efd,λ(u) is equivalent to projecting −2f onto
the set λK defined by (3.21). In view of Proposition 2, we propose a projected gradient algorithm for computing the
projection of −2f onto λK. We prove the convergence of the proposed algorithm by adapting the argument used in [8].

Algorithm 31 (Projected-Gradient) Let τ > 0 be fixed. For n = 0, let p0 = q0 = 0.

Step 1: Compute un

un = f +
λ

2
[div+(pn) + div−(qn)] . (3.24)

Step 2: Compute pn+1 and qn+1{
pn+1 = πBY (pn + τ∇+ [div+(pn) + div−(qn) + 2f/λ]) ,

qn+1 = πBY (qn + τ∇− [div+(pn) + div−(qn) + 2f/λ]) ,
(3.25)

with πBY given by the equation (3.22).
Step 3: Increment n by 1, then go back to step 1.

We have the following convergence result for Algorithm 31.

Proposition 3 If 0 < τ < 1/8, then Algorithm 31 converges. More precisely, for any (p̄, q̄) satisfying (3.20), we have
lim
n→∞

(div+(pn) + div−(qn)) = div+(p̄) + div−(q̄).

Proof Let (p̄, q̄) satisfying (3.23) be fixed and τ > 0 be given. Since the projection mapping πBY is non-expansive, we
infer from (3.23) that

|pn+1 − p̄|2 + |qn+1 − q̄|2 ≤ ‖Id− τA‖(|pn − p̄|2 + |qn − q̄|2),

where A : Y × Y → Y × Y is the linear operator

A :=

(
−∇+ div+ −∇+ div−
−∇− div+ −∇− div−

)
.

Consequently, as long as τ > 0 is such that κ := ‖Id− τA‖ = 1, we get∣∣∣∣(pn+1 − p̄
qn+1 − q̄

)∣∣∣∣ ≤ ∣∣∣∣(pn − p̄qn − q̄

)∣∣∣∣ , ∀n ≥ 0. (3.26)

Next, we show that κ = 1 for 0 < τ < 1/8. We note to begin that A is self-adjoint and nonnegative definite. Indeed
for p, q ∈ Y , we have〈

A

(
p

q

)
,

(
p

q

)〉
Y×Y

= 〈−∇+(div+(p) + div−(q)), p〉Y + 〈−∇−(div+(p) + div−(q)), q〉Y

= 〈div+(p) + div−(q),div+(p)〉X + 〈div+(p) + div−(q),div−(q)〉X
= 〈div+(p) + div−(q),div+(p) + div−(q)〉X ≥ 0.

Thus, Y × Y = ker(A)
⊥
⊕ F ,where F is the closure if Im(A). Moreover, all of the eigenvalues of A are nonnegative

and

κ = max(1, |1− τ‖A‖|),

where ‖A‖ denotes the spectral norm of A (the largest eigenvalue of A). So, for any τ such that 0 < τ ≤ 2/‖A‖, we
have ‖Id− τA‖ = 1. Now, we compute an upper-bound for ‖A‖.

We recall that by definition

‖A‖2 = sup
(p,q) 6=(0,0)

〈
A

(
p

q

)
, A

(
p

q

)〉
Y×Y

|p|2 + |q|2 .
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By Cauchy-Schwarz inequality and the definition of the norm of a linear operator, we have

‖A‖2 = sup
(p,q) 6=(0,0)

〈
A

(
p

q

)
, A

(
p

q

)〉
Y×Y

|p|2 + |q|2

≤ sup
(p,q) 6=(0,0)

(‖∇+‖2 + ‖∇−‖2)|div+(p) + div−(q)|2

|p|2 + |q|2

≤ (‖∇+‖2 + ‖∇−‖2) sup
(p,q) 6=(0,0)

‖div+ ‖2|p|2 + 2‖div+ ‖‖div− ‖|p||q|+ ‖div− ‖2|q|2

|p|2 + |q|2

≤ 2(‖∇+‖2 + ‖∇−‖2) max(‖div+ ‖2, ‖div− ‖2)

Thus, it is the case that
‖A‖ ≤

√
2(‖∇+‖2 + ‖∇−‖2) max(‖div+ ‖2, ‖div− ‖2). (3.27)

By definition of div+, for all u ∈ X and all p ∈ Y

〈∇+u,∇+u〉Y = 〈u,−div+(∇+u)〉X
〈div+(p),div+(p)〉X = 〈p,−∇+(div+(p))〉Y .

Consequently, by Cauchy-Schwarz inequality and the definition of the norm of a linear operator, we obtain

‖∇+‖2 ≤ ‖div+ ‖ · ‖∇+‖ and ‖div+ ‖2 ≤ ‖∇+‖ · ‖div+ ‖

which shows that ‖∇+‖ = ‖div+ ‖. A similar argument shows that ‖∇−‖ = ‖div− ‖. Now, for u ∈ X,

‖∇+u‖2 =
∑

1≤i,j≤N−1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

≤ 2
∑

1≤i,j≤N−1

u2
i+1,j + 2u2

i,j + u2
i,j+1 ≤ 8‖u‖2.

Hence, ‖∇+‖2 ≤ 8. A similar argument shows that ‖div− ‖2 = ‖∇−‖2 ≤ 8. Thus, by (3.27) we have that

‖A‖ ≤ 16. (3.28)

Therefore, for any 0 < τ < 1/8, there holds the inequality κ = ‖Id− τA‖ = 1.
We now show that the sequence (div+(pn) + div−(qn))n≥0 converges by showing that all of its convergent sub-

sequences have the same limit. Let (div+(pnk) + div−(qnk))k≥0 be a convergent subsequence. There exists a further
subsequence, which we denote again by nk, such that pnk → p̃ and qnk → q̃. Since the projection πBY is non-expansive,
it follows from (3.25) and (3.26) that pnk+1 → p̂, qnk+1 → q̂, and∣∣∣∣(p̂− p̄q̂ − q̄

)∣∣∣∣ =

∣∣∣∣(p̃− p̄q̃ − q̄

)∣∣∣∣ ,
where | · | is the Euclidean norm on Y ×Y induced by the Euclidean norm of Y . As a consequence of the above equality
and the equation {

p̂ = πBY (p̃+ τ∇+(div+(p̃) + div−(q̃))) ,

q̂ = πBY (q̃ + τ∇−(div+(p̃) + div−(q̃))) ,

we have ∣∣∣∣(p̃− p̄q̃ − q̄

)∣∣∣∣2 =

∣∣∣∣(p̂− p̄q̂ − q̄

)∣∣∣∣2 ≤ ∣∣∣∣(Id− τA)

(
p̃− p̄
q̃ − q̄

)∣∣∣∣2
≤

∣∣∣∣∣
(
p̃− p̄
q̃ − q̄

)
ker(A)

∣∣∣∣∣
2

+ |1− τ‖A‖|2
∣∣∣∣(p̃− p̄q̃ − q̄

)
F

∣∣∣∣2
<

∣∣∣∣(p̃− p̄q̃ − q̄

)∣∣∣∣2 if
(
p̃− p̄
q̃ − q̄

)
/∈ ker(A) and 0 < τ < 1/8.

But the latter inequality is nonsense. Thus,
(
p̃− p̄
q̃ − q̄

)
∈ ker(A), or equivalently,

div+(p̃− p̄) + div−(q̃ − q̄) ∈ ker(∇+) ∩ ker(∇−)
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Indeed, by definition of the divergence operators

|div+(p̃− p̄) + div−(q̃ − q̄)|2 =− 〈p̃− p̄,∇+ (div+(p̃− p̄) + div−(q̃ − q̄))〉Y
− 〈q̃ − q̄,∇− (div+(p̃− p̄) + div−(q̃ − q̄))〉Y

=− 〈p̃− p̄, 0〉Y − 〈q̃ − q̄, 0〉Y = 0.

Hence, div+(p̃− p̄) + div−(q̃ − q̄) = 0, or equivalently, div+(p̃) + div−(q̃) = div+(p̄) + div−(q̄). We have shown
that any convergent subsequence of (div+(pn) + div−(qn))n≥0 converges to div+(p̄) + div−(q̄), thus the sequence
(div+(pn) + div−(qn))n≥0 converges to div+(p̄) + div−(q̄). �

Remark 4 One may obtain an alternating version of Algorithm 31 by modifying the second step as follows{
pn+1 = πBY (pn + τ∇+ [div+(pn) + div−(qn) + 2f/λ]) ,

qn+1 = πBY (qn + τ∇− [div+(pn+1) + div−(qn) + 2f/λ]) .
(3.29)

While the proof of convergence of the alternating version of Algorithm 31 is still eluding us, the numerical experiments
suggest that one should be able to prove a convergence result for 0 < τ < 1/4.

4 Numerical Approximation of the continuous ROF model

In this section, we study how to approximate the minimizer of the continuous ROF model

uf = argmin
u∈BV (Ω)

Efλ(u), (4.1)

where Efλ(u) is defined in (2.3)
Our approach consists in extending the minimizer zf,h of the discrete ROF functional (2.5) associated withQhf into

a continuous piecewise linear polynomial Phzf,h with respect to the triangulation ∆h. We shall obtain an error bound
in L2 (Ω) between Phzf,h and uf .

To begin, we recall the following standard fact about the ROF functional (cf. [16,15]), and provide a proof for
convenience.

Lemma 7 Let uf ∈ BV (Ω) be the minimizer of the functional Efλ(u) defined by (2.3). Then, for any v ∈ BV (Ω), there
holds ∥∥v − uf∥∥2

2
≤ 2λ

(
Efλ(v)− Efλ(uf )

)
. (4.2)

Moreover,
Efλ(uf ) =

1

2λ
(‖f‖22 − ‖uf‖22). (4.3)

Proof Since uf is the minimizer of Efλ(u) and Efλ is convex, it follows that 0 ∈ ∂Efλ(uf ). Since, ∂Efλ(uf ) =
∂|Duf |(Ω) + (uf − f)/λ, we infer that (f − uf )/λ ∈ ∂|Duf |(Ω). Thus, for any v ∈ BV (Ω), we have

|Dv| (Ω)−
∣∣Duf ∣∣ (Ω) ≥ 〈

f − uf
λ

, v − uf 〉. (4.4)

As a consequence, we have

Efλ(v)− Efλ(uf ) = |Dv| (Ω)−
∣∣Duf ∣∣ (Ω) +

1

2λ

(
‖v − f‖22 − ‖uf − f‖22

)
≥ 〈

f − uf
λ

, v − uf 〉+ 〈
uf − f
λ

, v − uf 〉+
1

2λ
‖v − uf‖22

Efλ(v)− Efλ(uf ) ≥ 1

2λ
‖v − uf‖22.

To show the equality (4.3), we choose v in (4.4) to be equal to 0 and 2uf , respectively. Using the fact that the total

variation functional is positively 1-homogeneous, we infer that |Duf |(Ω) = 〈
f − uf
λ

, uf 〉. Therefore

Efλ(uf ) = 〈
f − uf
λ

, uf 〉+ 〈
f − uf
λ

,
f − uf

2
〉 =

1

2λ
(‖f‖22 − ‖uf‖22).

�
The next result is an upper bound of the difference between the energy of the discrete minimizer and the energy of

its piecewise linear interpolation.
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Lemma 8 Let f ∈ L2 (Ω) be given, and zf,h the minimizer of the functional Efλ,h(u). Then

Efλ(Phzf,h)− Efλ,h(zf,h) ≤ C

2λ

[
hω(zf,h, 1) + ω2(f, h)

]
, (4.5)

where C is a positive constant depending on f and λ.

Proof Since Jh(zf,h) = |DPhzf,h|(Ω), we have

2λ
(
Efλ(Phzf,h)− Efλ,h(zf,h

)
= ‖Phzf,h − f‖22 − ‖Chzf,h − ChQhf‖22

≤ ‖Phzf,h − Chzf,h‖
(
‖Phzf,h − Chzf,h‖2 + 2‖Chzf,h − f‖2

)
+ ‖Chzf,h − f‖2 − ‖Chzf,h − ChQhf‖22

Now, let us find an upper bound for the difference ‖Chzf,h − f‖22 − ‖Chzf,h − ChQhf‖22.

‖Chzf,h − f‖22 − ‖Chzf,h − ChQhf‖22 =

ˆ
Ω

(
|Chzf,h(x)− f(x)|2 − |Chzf,h(x)− ChQhf(x)|2

)
dx

=

ˆ
Ω

(ChQhf(x)− f(x))
(
2Chzf,h(x)− ChQhf(x)− f(x)

)
dx

≤ ‖ChQhf − f‖2‖2Chzf,h − ChQhf − f‖2.

The inequality (4.5) follows from Lemma 2 together with (2.17), and Lemma 3 by observing that

‖2Chzf,h − ChQhf − f‖2 ≤ 4‖f‖2 and ‖Chzf,h − f‖2 ≤ 2‖f‖2.

�
Let Ω1 := {x ∈ R2 : dist(x,Ω) < 1}. We denote by ūf an extension (see [2, Proposition 3.21 page 131]) of uf to

a function in BV (R2) such that ūf = 0 in R2 \Ω1, and |Dūf |(∂Ω) = 0. Let

ρ(x) = c exp

(
1

|x|2 − 1

)
1{|x|≤1}(x), x ∈ R2

be the standard convolution kernel, and {ρε}ε>0 the ensuing family of mollifiers. The constant c > 0 in the definition of
ρ above is chosen such that

´
ρ(x)dx = 1. For ε > 0 fixed, we denote by ūεf := ρε ∗ ūf the ε-mollification of ūf . Then,

it is known that (see [2,10])
|Dūεf |(Ω) ≤ |Dūf |(Ω̄) = |Dūf |(Ω) = |Duf |(Ω). (4.6)

Lemma 9 Suppose f ∈ L2 (Ω). Let uf be the minimizer of the ROF-functional Efλ(u), and zf,h the minimizer of the
discrete ROF-functional Efλ,h(u). Then, for any 0 < α < 1 and for h� 1

Efλ,h(zf,h) ≤ Efλ(uf ) +K1h
(1−α)/2 +K2‖ūhf − ūf‖2 (4.7)

where ūhf is the hα/4−mollification of ūf , K1 and K2 are positive constants that depend only on λ,Ω, and f .

Proof Let ε > 0 be fixed. By definition of zf,h, we have

Efλ,h(zf,h) ≤ Efλ,h(Qhū
ε
f ) = Jh(Qhū

ε
f ) +

1

2λ
‖ChQhūεf − ChQhf‖

2
2. (4.8)

Moreover by definition of the operators Ch and Qh, it is easy to establish that

‖ChQhūεf − ChQhf‖
2
2 ≤ ‖ūεf − f‖

2
2

≤ ‖uf − f‖22 + ‖ūεf − ūf‖2
(
2‖uf − f‖2 + ‖ūεf − ūf‖2

)
≤ ‖uf − f‖22 + 6‖f‖2‖ūεf − ūf‖2 using (4.3). (4.9)

Next, we obtain an upper bound on Jh(Qhū
ε
f ). By definition

Jh(Qhū
ε
f ) =

∑
1≤i,j<N

h2

2

√∣∣∣∣ (Qhūεf )i+1,j − (Qhū
ε
f )i,j

h

∣∣∣∣2 +

∣∣∣∣ (Qhūεf )i,j+1 − (Qhū
ε
f )i,j

h

∣∣∣∣2

+
∑

1≤i,j<N

h2

2

√∣∣∣∣ (Qhūεf )i+1,j+1 − (Qhū
ε
f )i,j+1

h

∣∣∣∣2 +

∣∣∣∣ (Qhūεf )i+1,j+1 − (Qhū
ε
f )i+1,j

h

∣∣∣∣2. (4.10)
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Now, let 1 ≤ i, j < N be fixed. Then, by the Taylor formula, we have

(Qhū
ε
f )i+1,j − (Qhū

ε
f )i,j

h
=

1

h2

ˆ
Ωi,j

ūεf (x1 + h, x2)− ūεf (x1, x2)

h
dx

=
1

h2

ˆ
Ωi,j

(
∂ūεf
∂x1

(x) +
h

2

ˆ 1

0

∂2ūεf

∂x2
1

(x1 + th, x2)dt

)
dx.

Thanks to Jensen’s inequality, we infer from the latter equation that∣∣∣∣ (Qhūεf )i+1,j − (Qhū
ε
f )i,j

h

∣∣∣∣2 ≤ 1

h2

ˆ
Ωi,j

∣∣∣∣∂ūεf∂x1
(x)

∣∣∣∣2 dx+B1
ij(h), (4.11)

where B1
i,j(h) is given by

B1
i,j(h) =

1

h

ˆ
Ωi,j

ˆ 1

0

∣∣∣∣∣∂ūεf∂x1
(x)

∂2ūεf

∂x2
1

(x1 + th, x2)

∣∣∣∣∣ dtdx+
1

4

ˆ
Ωi,j

ˆ 1

0

∣∣∣∣∣∂2ūεf

∂x2
1

(x1 + th, x2)

∣∣∣∣∣
2

dtdx. (4.12)

Exchanging the order of integration and using Cauchy-Schwarz inequality, we obtain an upper bound on B1
i,j(h) as

follows:

B1
i,j(h) ≤ 1

h

ˆ
Ωi,j

∣∣∣∣∂ūεf∂x1
(x)

∣∣∣∣2 dx+
2 + h

4

ˆ
Ωi,j∪Ωi+1,j

∣∣∣∣∣∂2ūεf

∂x2
1

(x)

∣∣∣∣∣
2

dx

 . (4.13)

Similarly, we can show that∣∣∣∣ (Qhūεf )i,j+1 − (Qhū
ε
f )i,j

h

∣∣∣∣2 ≤ 1

h2

ˆ
Ωi,j

∣∣∣∣∂ūεf∂x2
(x)

∣∣∣∣2 dx+B2
ij(h), (4.14)

with B2
ij(h) defined by

B2
i,j(h) =

1

h

ˆ
Ωi,j

ˆ 1

0

∣∣∣∣∣∂ūεf∂x2
(x)

∂2ūεf

∂x2
2

(x1, x2 + th)

∣∣∣∣∣ dtdx+
1

4

ˆ
Ωi,j

ˆ 1

0

∣∣∣∣∣∂2ūεf

∂x2
2

(x1, x2 + th)

∣∣∣∣∣
2

dtdx, (4.15)

and satisfying the inequality

B2
i,j(h) ≤ 1

h

ˆ
Ωi,j

∣∣∣∣∂ūεf∂x2

∣∣∣∣2 dx+
2 + h

4

ˆ
Ωi,j∪Ωi,j+1

∣∣∣∣∣∂2ūεf

∂x2
2

∣∣∣∣∣
2

dx

 . (4.16)

Combining (4.11) and (4.14) in equation (4.10), and using Jensen’s inequality, we obtain for h� 1

Jh(Qhū
ε
f ) ≤ |Dūεf |(Ω) + h1/2

|Dūεf |(Ω) + 2

ˆ
Ω

√√√√∣∣∣∣∣∂2ūεf

∂x2
1

∣∣∣∣∣
2

+

∣∣∣∣∣∂2ūεf

∂x2
2

∣∣∣∣∣
2

dx


≤ |Duf |(Ω) + h1/2

(
|Duf |(Ω) + 2

ˆ
Ω

∣∣∣∣∣∂2ūεf

∂x2
1

∣∣∣∣∣+
∣∣∣∣∣∂2ūεf

∂x2
2

∣∣∣∣∣ dx
)

by (4.6). (4.17)

Now, using the isometric embedding of L1 (Ω) into the space of Radon measure, we have for i = 1, 2

ˆ
Ω

∣∣∣∣∣∂2ūεf

∂x2
i

∣∣∣∣∣ dx = sup
φ∈C(Ω̄)
‖φ‖∞≤1

ˆ
Ω

∂2ūεf

∂x2
i

φdx = sup
φ∈C(Ω̄)‖φ‖∞≤1

ˆ
Ω

ūf

(
∂2ρε

∂x2
i

∗ φ
)
dx

≤ sup
φ∈C(Ω̄)
‖φ‖∞≤1

‖uf‖2
∥∥∥∥∂2ρε

∂x2
i

∗ φ
∥∥∥∥

2

≤ K

ε2
, with K = ‖uf‖2

∥∥∥∥∂2ρ

∂x2
i

∥∥∥∥
2

. (4.18)

Substituting the latter inequality into (4.17) gives

Jh(Qhū
ε
f ) ≤ (1 +

√
h)|Duf |(Ω) +K

√
h

ε2
. (4.19)

Finally, letting ε = hα/4 with α < 1 and combining (4.19) and (4.9), we get

Efλ,h(zf,h) ≤ Efλ(uf ) +K1h
(1−α)/2 +K2‖ūhf − ūf‖2,

where ūhf is the hα/4−mollification of ūf , and the K′is are positive constants depending only on Ω, λ, and f . �
We are now ready to establish an error bound for the L2−norm of Phzf,h − uf .
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Theorem 2 Let uf be the minimizer of the ROF functional Efλ(u) in BV (Ω), and zf,h the minimizer of the discrete
ROF functional Efλ,h(u). Then, for any 0 < α < 1 and 0 < h� 1

‖Phzf,h − uf‖22 ≤ K3 ω2(f, h) +K4h
1−α

2 +K5‖ūhf − ūf‖2, (4.20)

where K3, K4, and K5 are positive constants independent of h.

Proof Using (4.2), we have∥∥Phzf,h − uf∥∥2

2
≤ 2λ

(
Efλ(Phzf,h)− Efλ(uf )

)
= 2λ

(
Efλ(Phzf,h)− Efλ,h(zf,h) + Efλ,h(zf,h)− Efλ(uf )

)
Now, thanks to the Lemmas 8 and 9, i.e., (4.5) and (4.7), we have that∥∥Phzf,h − uf∥∥2

2
≤ C(hω(zf,h, 1) + ω2(f, h)) + 2λ(K1h

(1−α)/2 +K2‖ūhf − ūf‖2). (4.21)

Next, we notice that by Lemmas 4 and 5, we have

ω(zf,h, 1)2 = sup
α=(α1,α2)
|α|∞=1

∑
1≤i+α1≤N
1≤j+α2≤N

|(zf,h)i+α1,j+α2
− (zf,h)i,j |2

≤ sup
α=(α1,α2)
|α|∞=1

|z2N
f,h,α − z

2N
f,h|

2

≤ sup
α=(α1,α2)
|α|∞=1

|(Qhf)2N
α − (Qhf)2N |2, by (3.8)

≤ 2 sup
α=(α1,α2)
|α1|+|α2|=1

|(Qhf)2N
α − (Qhf)2N |2

ω(zf,h, 1)2 ≤ 8 sup
α=(α1,α2)
|α1|+|α2|=1

∑
1≤i+α1≤N
1≤j+α2≤N

|(Qhf)i+α1,j+α2
− (Qhf)i,j |2.

From the latter inequality, the definition of Qhf , and Jensen’s inequality, we obtain

ω(zf,h, 1)2 ≤ 8 sup
α=(α1,α2)
|α1|+|α2|=1

∑
1≤i+α1≤N
1≤j+α2≤N

|(Qhf)i+α1,j+α2
− (Qhf)i,j |2

≤ 8 sup
α=(α1,α2)
|α1|+|α2|=1

∑
1≤i+α1≤N
1≤j+α2≤N

1

h2

ˆ
Ωi,j

|f(x+ αh)− f(x)|2dx

≤ 8

h2
sup

α=(α1,α2)
|α1|+|α2|=1

ˆ
Ωα

|f(x+ αh)− f(x)|2dx ≤ 8

h2
ω2(f, h)2.

Thus, we have

hω(zf,h, 1) ≤ 4ω2(f, h). (4.22)

Finally, we combine the inequalities (4.21) and (4.22), to obtain inequality (4.20) with K3 = 5C, K4 = 2λK1, and
K5 = 2λK2. �

Corollary 1 Let 0 < β ≤ 1 be given. If f ∈ Lip(β,L2 (Ω)), then ‖Phzf, h− uf‖2 → 0 as h→ 0.

Proof Suppose that f ∈ Lip(β,L2 (Ω)). There exists Mβ > 0 such that for any 0 < h� 1, h−βω2(f, h) ≤ Mβ . As a
consequence, (4.20) becomes with α = β/2

‖Phzf,h − uf‖22 ≤ K3Mβh
β +K4h

(2−β)/4 +K5‖ūhf − ūf‖2.

Since ‖ūhf − ūf‖2 → 0 as h→ 0, we infer that ‖Phzf,h − uf‖2 → 0 as h→ 0, and the proof is complete. �
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Fig. 2: Convergence of ALG1, ALG2 and ALG3 for the image in Figure 3a with σ = 25 and λ = 1/13. In algorithms
ALG1 and ALG2 we set τ = 0.025, while τ = 0.0125 in ALG3. In this case we used the value of λ that gave the best
PSNRs for our choices of τ .
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5 Numerical experiments

In this section, we report the result of the numerical experiments with Algorithm 31. We compare the performance of the
algorithm proposed above to Chambolle’s fixed-point algorithm proposed in [4], and the projected-gradient algorithm
proposed in [5]. The test images used are presented in Figure 3. We shall use the following abbreviations to identify the
three algorithms under consideration here.

ALG1: The fixed point iterative algorithm described in [4].
ALG2: The projected-gradient algorithm described in [5,8].
ALG3: The projected-gradient algorithm presented in Algorithm 31.

It should be noted that in our tests, we did not attempt to choose the parameters τ and λ for optimal performance of the
algorithms.

Table 1 through Table 4 below show the capability of Algorithm 31 to remove noise for various noise level. The
inputs for all three algorithms are obtained by adding a zero mean Gaussian noise with standard deviation σ to the
images in Figure 3. Our experiments show that the new projected gradient algorithm, Algorithm 31, is slightly more
efficient than ALG2. Finally in Figure 2, we show the asymptotic behavior of the three algorithms: ALG1, ALG2, and
ALG3. All of the three algorithms display the same asymptotic behavior as the number of iterations goes to infinity.
Of course, this agreement of asymptotic behaviors is expected since all three algorithms – in the discrete setting – were
proved to converge to the solution of the ROF model.
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Fig. 3: The images used in the numerical experiments. The images in the top row are of size 256× 256, while those in
the bottom row have resolution 512× 512.
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Table 1: Comparison of the algorithms using the image in Figure 3a. Each algorithm is terminated when the difference
between the Mean Square Error (MSE) at two consecutive steps is less than 10−8.

σ λ τ ALG1 ALG2 τ ALG3

15 1/24 31.1792 31.1607 31.1947

20 1/16 0.250 29.6780 29.6486 0.125 29.6798

15 1/24 31.1790 31.1620 31.1953

20 1/16 0.200 29.6778 29.6502 0.100 29.6812

15 1/24 31.1789 31.1621 31.1953

20 1/16 0.150 29.6777 29.6504 0.075 29.6815

15 1/24 31.1786 31.1622 31.1954

20 1/16 0.100 29.6775 29.6507 0.500 29.6817

15 1/24 31.1782 31.1621 31.1952

20 1/16 0.050 29.6772 29.6507 0.025 29.6819

Table 2: Comparison of the Algorithms using the image in Figure 3b. Each algorithm is terminated when the difference
between the Mean Square Error (MSE) at two consecutive steps is less than 10−8.

σ λ τ ALG1 ALG2 τ ALG3

15 1/24 31.8309 31.8136 31.8461

20 1/16 0.250 30.4052 30.3592 0.125 30.3937

15 1/24 31.8305 31.8456 31.8695

20 1/16 0.200 30.4049 30.3952 0.100 30.4219

15 1/24 31.8300 31.8430 31.8676

20 1/16 0.150 30.4043 30.3960 0.075 30.4219

15 1/24 31.8294 31.8424 31.8666

20 1/16 0.100 30.4035 30.3966 0.500 30.4223

15 1/24 31.8287 31.8414 31.8655

20 1/16 0.050 30.4027 30.3971 0.025 30.4225

Table 3: Comparison of the Algorithms using the image in Figure 3c. Each algorithm is terminated when the difference
between the Mean Square Error (MSE) at two consecutive steps is less than 10−8.

σ λ τ ALG1 ALG2 τ ALG3

15 1/24 31.3389 31.3582 31.4086

20 1/16 0.250 29.8443 29.8624 0.125 29.8998

15 1/24 31.3222 31.3561 31.4052

20 1/16 0.200 29.8332 29.8615 0.100 29.8980

15 1/24 31.3076 31.3445 31.3929

20 1/16 0.150 29.8126 29.8484 0.075 29.8846

15 1/24 31.2741 31.3234 31.3708

20 1/16 0.100 29.7792 29.8224 0.050 29.8620

15 1/24 31.1943 31.2709 31.3161

20 1/16 0.050 29.7071 29.7708 0.025 29.8089
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Table 4: Comparison of the Algorithms using the image in Figure 3d. Each algorithm is terminated when the difference
between the Mean Square Error (MSE) at two consecutive steps is less than 10−8.

σ λ τ ALG1 ALG2 τ ALG3

15 1/24 30.5134 30.3148 30.3527

20 1/16 0.250 29.1672 28.9448 0.125 28.9745

15 1/24 30.5132 30.4803 30.5157

20 1/16 0.200 29.1663 29.1092 0.100 29.1317

15 1/24 30.5128 30.4795 30.5157

20 1/16 0.150 29.1657 29.1088 0.075 29.1317

15 1/24 30.5125 30.4795 30.5154

20 1/16 0.100 29.1650 29.1084 0.050 29.1317

15 1/24 30.5121 30.4791 30.5148

20 1/16 0.050 29.1642 29.1078 0.025 29.1312
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