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Abstract
We prove a null space property for the uniqueness of the sparse solution vectors

recovered from a minimization in `p quasi-norm subject to multiple systems of linear
equations, where p ∈ (0, 1]. Furthermore, we show that the null space property is
equivalent to the null space property for the standard `p minimization subject to a
single linear system. This answers the questions raised in [Foucart and Gribonval’09,
[18]]. Finally we explain that when the restricted isometry cnstant δ2s+1 < 1, then
the `p minimization will find the s-sparse solution if p > 0 is small enough.

1 Introduction
Recently, one of the central problems in the compressed sensing for the sparse solution
recovery of under-determined linear systems has been extended to the sparse solution
vectors for multiple measurement vectors (MMV). That is, letting A be a sensing matrix
of size m×N with m� N and given multiple measurement vectors b(k), k = 1, · · · , r, we
are looking for solution vectors x(k), 1, · · · , r such that

Ax(k) = b(k), k = 1, · · · , r (1)

and the vectors x(k), k = 1, · · · , r are jointly sparse, i.e. have nonzero entries at the same
locations and have as few nonzero entries as possible. Such problems arise in source localiza-
tion (cf. [23]), neuromagnetic imaging (cf. [13]), and equalization of sparse communication
channels (cf. [14, 16]).
∗mjlai@math.uga.edu. This author is partly supported by the National Science Foundation under grant
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A popular approach to find the sparse solution for multiple measurement vectors
(MMV) is to solve the following optimization:

minimize
x(k) ∈ RN

k = 1, · · · , r

{

(
N∑

j=1

‖(x1,j, · · · , xr,j)‖pq

)1/p

: subject toAx(k) = b(k), k = 1, · · · , r},

(2)

where x(k) = (xk,1, · · · , xk,N)T for all k = 1, · · · , r and ‖(x1, · · · , xr)‖q =
(∑r

j=1 |xj|q
)1/q

is
the standard `q norm for q ≥ 1 and p ≥ 1. Clearly, it is a generalization of the standard `1
minimization approach for the sparse solution. That is, when r = 1, one finds the sparse
solution x solving the following minimization problem:

minimize
x ∈ RN {‖x‖1 : subject toAx = b}, (3)

where ‖x‖p =
(∑N

j=1 |xj|p
)1/p

is the standard `p norm for p ≥ 1. Such a minimization
problem (3) has been studied for many years. See, e.g. [8] and [19] and references therein.
In the literature, there are also several studies for various combinations of p ≥ 1 and q ≥ 1
in (2). See, e.g., references [14], [11], [23], [26]–[27].

In particular, the well-known null space property (cf. [15] and [20]) for the standard `1
minimization has been extended to this setting (2) for multiple measurement vectors. In
[3], the following result is proved.

Theorem 1.1 Let A be a real matrix of m×N and S ⊂ {1, 2, · · · , N} be a fixed index set.
Denote by Sc the complement set of S in {1, 2, · · · , N}. Let ‖ · ‖ be any norm. Then all
x(k) with support x(k) in S for k = 1, · · · , r can be uniquely recovered using the following

minimize
x(k) ∈ RN

k = 1, · · · , r

{
N∑

j=1

‖(x1,j, · · · , xr,j)‖ : subject toAx(k) = b(k), k = 1, · · · , r} (4)

if and only if all vectors (u(1), · · · ,u(r)) ∈ (N(A))r\{(0, 0, · · · , 0)} satisfy the following∑
j∈S

‖(u1,j, · · · , ur,j)‖ <
∑
j∈Sc

‖(u1,j, · · · , ur,j)‖, (5)

where N(A) stands for the null space of A.

In [18], Foucart and Gribonval studied the MMV setting when r = 2, q = 2 and
p = 1. They gave another nice explanation of the problem of MMV. When r = 2, one
can view that the sparse solution x(1) and x(2) are two components of a complex solution
y = x(1) + ix(2) of Ay = c with c = b(1) + ib(2). Then they recognize that the null
space property for Ay = c for the solution as complex vector is the same as the null space
property for Ax = b for solution as real vector. That is, they proved the following
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Theorem 1.2 Let A be a matrix of size m × N and S ⊂ {1, · · · , N} be the support of
the sparse vector y. The complex null space property: for any u ∈ N(A),w ∈ N(A) with
(u,w) 6= 0, ∑

j∈S

√
u2

j + w2
j <

∑
j∈Sc

√
u2

j + w2
j , (6)

where u = (u1, u2, · · · , uN)T and w = (w1, w2, · · · , wN)T is equivalent to the following
standard null space property: for any u in the null space N(A) with u 6= 0,∑

j∈S

|uj| <
∑
j∈Sc

|uj|. (7)

Furthermore, the researchers in [18] raised two questions. One is to extend their result
from r = 2 to any r ≥ 3 and the other one is what happen when q = 2 and p < 1. These
motivate us to study the joint sparse solution recovery.

The study of the `1 minimization in (3) was generalized to the following `p setting:

min
x∈RN
{‖x‖pp, Ax = b} (8)

for a fixed number p ∈ (0, 1] (see for instance, [20], [9] and [19]), in which ‖x‖p =(∑N
j=1 |xj|p

)1/p

is the standard `p quasi-norm when p ∈ (0, 1). Therefore, we may consider
a joint recovery from multiple measurement vectors via

minimize
N∑

j=1

(√
x2

1,j + · · ·+ x2
r,j

)p

: subject to Ax(1) = b(1), · · · , Ax(r) = b(r) (9)

for a given 0 < p ≤ 1, where x(k) = (xk,1, · · · , xk,N)T ∈ RN for all k = 1, · · · , r, and this is
actually (2) for when q = 2. Note that when p → 0+, we have

(√
x2

1,j + · · ·+ x2
r,j

)p

→ 1

if any of x1,j, · · · , xr,j is nonzero and hence,

N∑
i=1

(√
x2

1,j + · · ·+ x2
r,j

)p

→ s

which is the joint sparsity of the solution vectors x(k), k = 1, · · · , r. Thus, the minimization
in (9) makes sense. In fact, the minimization (9) has one advantage over the minimization
in (2) when p = q = 1. That is, a few measurements are needed for exact recovery by using
the `p minimization with p < 1 than the standard `1 convex minmization. Indeed, in [9],
Chartrand demonstrated this fact by numerical examples with Gaussian random matrices
and in [10], Chartrand and Staneva showed in theory that the `p minimization (8) can
recover the exact sparse solution by using a less number of measurements when p → 0+

than the standard convex `1 minimization. In Section 3 we will give a weaker condition
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on the sensing matrix for the exact recovery by using the minimization (9) when r ≥ 2.
However, when p < 1, the `p minimization is a nonconvex minimization. Its computation
is not as well understood as that of the `1 minimization. Indeed, the `1 minimization
is convex and is equivalent to the standard linear programming problem which has two
matured computational approaches: the interior point method and the simplex method.

In this paper we mainly prove the following

Theorem 1.3 Let A be a real matrix of size m×N and S ⊂ {1, 2, · · · , N} be a fixed index
set. Fix p ∈ (0, 1] and r ≥ 1. Then the following conditions are equivalent:
(a) All x(k) with support in S for k = 1, · · · , r can be uniquely recovered using (9) ;
(b) For all vectors

(
u(1), · · · ,u(r)

)
∈ (N(A))r\{(0, 0, · · · , 0)}∑

j∈S

(√
u2

1,j + · · ·+ u2
r,j

)p

<
∑
j∈Sc

(√
u2

1,j + · · ·+ u2
r,j

)p

; (10)

(c) For all vector z ∈ N(A) with z 6= 0,∑
j∈S

|zj|p <
∑
j∈Sc

|zj|p, (11)

where z = (z1, · · · , zN)T ∈ RN .

That is, it is enough to check (11) for all z ∈ N(A) in order to see the uniqueness of
the joint sparse solution vectors. This significantly reduces the complexity of verification
of (10). Also, our results extend the results in Theorem 1.1 from the norm in it to the
quasi-norm. These results completely answer the questions raised in [18].

The paper is organized as follows. In addition to the Introduction above, we shall prove
the main results in the next section. Finally, we end the paper with some remarks in §3,
where we explain that the proof in [18] can not be extended to prove the second part of
the main results in Theorem 1.3.

2 The Proof of Theorem 1.3
We divide the proof of Theorem 1.3 into two parts. The first part is to show that (10) is
an if and only if condition for the uniqueness of the joint sparse solution vectors, i.e. (a)
and (b) are equivalent. The proof is a straightforward generalization of the arguments in
[21]. We spell out the detail as follows.

Let x(k), k = 1, · · · r be the joint sparse solution vectors of the minimization (9) with the
assumption that the support of each x(k) are contained in S. For any vectors u(1), · · · ,u(r)

in N(A) with an assumption that they are not simultaneously zero, we easily have, for
0 < p ≤ 1,∑

j∈S

‖(x1,j, · · · , xr,j)‖p2 ≤
∑
j∈S

‖(u1,j, · · · , ur,j)‖p2 +
∑
j∈S

‖(x1,j + u1,j, · · · , xr,j + ur,j)‖p2 (12)
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since 0 < p ≤ 1. By the property (10), we have∑
j∈S

‖(x1,j, · · · , xr,j)‖p2 <
∑
j∈Sc

‖(u1,j, · · · , ur,j)‖p2 +
∑
j∈S

‖(x1,j + u1,j, · · · , xr,j + ur,j)‖p2. (13)

But the support of the vectors x(k), k = 1, · · · , r is contained in S. Hence,

N∑
j=1

‖(x1,j, · · · , xr,j)‖p2 =
∑
j∈S

‖(x1,j, · · · , xr,j)‖p2

<
∑
j∈Sc

‖(u1,j, · · · , ur,j)‖p2 +
∑
j∈S

‖(x1,j + u1,j, · · · , xr,j + ur,j)‖p2

=
∑
j∈Sc

‖(x1,j + u1,j, · · · , xr,j + ur,j)‖p2 +
∑
j∈S

‖(x1,j + u1,j, · · · , xr,j + ur,j)‖p2.

So x(k), k = 1, · · · r are the unique solution to the minimization problem (9).
For the converse, assume that there are vectors u(1), · · · ,u(r) in N(A) which do not

satisfy (10). Let us say u(1), · · · ,u(r) are in N(A) which are not all zero vectors satisfying∑
j∈S

(√
u2

1,j + · · ·+ u2
r,j

)p

≥
∑
j∈Sc

(√
u2

1,j + · · ·+ u2
r,j

)p

. (14)

We can choose x(k) ∈ RN such that the entries of x(k) restricted on S are equal to those of
u(k), and the remaining entries are zeros. Then for multiple measurement vectors b(k) :=
Ax(k), k = 1, · · · , r,

Ax(k) = Ax(k) − Au(k) = A
(
x(k) − u(k)

)
and

N∑
j=1

‖(x1,j, x2,j, · · · , xr,j)‖p2 =
∑
j∈S

‖(x1,j, x2,j, · · · , xr,j)‖p2

=
∑
j∈S

‖(u1,j, u2,j, · · · , ur,j)‖p2

≥
∑
j∈Sc

‖(u1,j, u2,j, · · · , ur,j)‖p2

=
∑
j∈S

‖(x1,j − u1,j, x2,j − u2,j, · · · , xr,j − ur,j)‖p2

which contradicts with the uniqueness of the recovery of the new measurement vectors
Ax(k), k = 1, · · · , r. This finishes the proof for the equivalence between (a) and (b).

To prove the second part of the main theorem, let us first show the following
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Lemma 2.1 Let S ⊂ {1, 2, · · · , N} be an index set with |S| = s. Given 0 < p ≤ 1 and a
matrix B ∈ R2×N with columns c1, c2, · · · , cN ∈ R2, if

‖(x, y)BS‖p < ‖(x, y)BSc‖p (15)

for all (x, y) ∈ R2 \ {(0, 0)}, then∑
k∈S

‖ck‖p2 <
∑
k∈Sc

‖ck‖p2 . (16)

Proof. For convenience, let B =: (bi,j)2×N . Without loss of generality we can assume
S := {1, 2, · · · , s}. We show (16) holds for s = 1 first.

If s = 1, by the assumption of Lemma 2.1,

|b1,1x+ b2,1y|p = ‖(x, y)BS‖p < ‖(x, y)BSc‖p =
N∑

j=2

|b1,jx+ b2,jy|p (17)

for all (x, y) ∈ R2\{(0, 0)}. Choosing x = b1,1√
b21,1+b22,j

and y = b2,1√
b21,j+b22,1

in (17) and applying

the Cauchy-Schwartz inequality, we have

(√
b21,1 + b22,1

)p

<
N∑

j=2

∣∣∣∣∣∣ 1√
b21,1 + b22,1

(b1,jb1,1 + b2,jb2,1)

∣∣∣∣∣∣
p

≤
N∑

j=2

(√
b21,j + b22,j

)p

.

Thus the claim (16) for s = 1 follows.
For the case when s ≥ 2, we have

s∑
j=1

|b1,jx+ b2,jy|p <
N∑

j=s+1

|b1,jx+ b2,jy|p (18)

for all (x, y) ∈ R2 \ {(0, 0)} by the assumption.

Let vj :=

(
b1,j√

b21,j+b22,j

,
b2,j√

b21,j+b22,j

)
∈ S1 for j = 1, 2, · · · , N , where S1 stands for the unit

circle. Then (18) becomes

s∑
j=1

(√
b21,j + b22,j

)p

|〈vj, ξ〉|p <
N∑

j=s+1

(√
b21,j + b22,j

)p

|〈vj, ξ〉|p (19)
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for all unit vector ξ ∈ S1. Taking the integral of (19) over S1, we have

s∑
j=1

(√
b21,j + b22,j

)p
∫
S1

|〈vj, ξ〉|p dξ <
N∑

j=s+1

(√
b21,j + b22,j

)p
∫
S1

|〈vj, ξ〉|p dξ. (20)

Note that
∫

S1 |〈·, ξ〉|p dξ is a rotation invariant function from the perspective of integral
geometry (cf. [1], [2], and [22]). That is,

∫
S1 |〈vj, ξ〉|p dξ is constant independent of j. In

fact we have

Lemma 2.2 Fix r ≥ 2. For any p > 0,∫
Sr−1

|〈v, ξ〉|p dξ = C

for all v ∈ Sr−1, where C > 0 is a constant dependent only on p.

Proof. Let U be an orthogonal transformation of Rr. Then for any v ∈ Sr−1, the sphere
of the unit ball in Rr, we have

〈U (v) , ξ〉 =
〈
v, U−1 (ξ)

〉
(21)

for all ξ ∈ Sr−1. It follows from Riesz representation theorem that

Sr−1 = {U (v) : U ∈ O (r)} , (22)

where O (r) denotes the set of all r × r orthogonal matrices. By change of variables and
using the fact that |det (U−1)| = 1, we get∫

Sr−1 |〈U (v) , ξ〉|p dξ =
∫

Sr−1 |〈v, U−1 (ξ)〉|p dξ
=

∫
Sr−1 |〈v, U−1 (ξ)〉|p dU−1 (ξ)

=
∫

Sr−1 |〈v, ξ〉|p dξ
(23)

for all U ∈ O(r). Thus we see that
∫

Sr−1 |〈v, ξ〉|p dξ ≡ C for some C > 0 and for all
v ∈ Sr−1.

Therefore we apply Lemma 2.2 to (20) to get

s∑
j=1

(√
b21,j + b22,j

)p

<

N∑
j=s+1

(√
b21,j + b22,j

)p

. (24)

With cj = [b1,j, b2,j]
T for j = 1, · · · , N , we complete the proof of Lemma 2.1.

We are now ready to prove the second part of Theorem 1.3 in case r = 2 and p ∈ (0, 1).
That is, we need to show that the real null space property: for any z ∈ N(A) with z 6= 0,

‖zS‖p < ‖zSc‖p (25)
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is equivalent to the complex null space property: for any (v,w) in (N(A))2\{(0,0)},∑
j∈S

(√
v2

j + w2
j

)p

<
∑
j∈Sc

(√
v2

j + w2
j

)p

, (26)

for all 0 < p < 1. Note that when p = 1, this was proved in [18].
Assume that we have (25). For any pair (v,w) of vectors in (N(A))2\(0, 0), we let

B = [v,w]T be a matrix in R2×N . Without loss of generality, we may assume that v
and w are linearly independent. For any real numbers x, y, z = xv + yw is in N(A), the
null space property (25) implies (15) for all x, y with (x, y) 6= (0, 0). The conclusion of
Lemma 2.1 implies the null space property (26) for r = 2.

It is obvious one can get (25) from (26) by choosing zero vector for the complex part
of a nonzero vector in N(A). See [3] for the case when p = 1. These complete the proof
for r = 2. We now extend our arguments to the setting r > 2.

We first generalize the proof of Lemma 2.1 to have a general comparison theorem for
any matrix B ∈ Rr×N for r ≥ 3. Specifically, we have

Theorem 2.1 (Comparison Theorem) Let S ⊂ {1, 2, · · · , N} be an index set with
|S| = s. Given 0 < p ≤ 1 and a matrix B = [bij]1≤i≤r,1≤j≤N ∈ Rr×N , if

‖(x1, x2, · · · , xr)BS‖p < ‖(x1, x2, · · · , xr)BSc‖p (27)

for all (x1, · · · , xr) ∈ Rr\{(0, · · · , 0)}, then∑
j∈S

(√
b21,j + · · ·+ b2r,j

)p

<
∑
j∈Sc

(√
b21,j + · · ·+ b2r,j

)p

. (28)

Proof. Let us rewrite (27) as follows.∑
j∈S

|b1,jx1 + · · ·+ br,jxr|p <
∑
j∈Sc

|b1,jx1 + · · ·+ br,jxr|p (29)

for all (x1, x2, · · · , xr) ∈ Rr \ {(0, 0, · · · , 0)}. Normalizing (b1,j, · · · , br,j), we let vj :=
1√

b21,j+···+b2r,j

(b1,j, · · · , br,j). Then we have

∑
j∈S

(√
b21,j + · · ·+ b2r,j

)p

|〈vj, ξ〉|p <
∑
j∈Sc

(√
b21,j + · · ·+ b2r,j

)p

|〈vj, ξ〉|p (30)

for all vector ξ = (x1, x2, · · · , xr) ∈ Rr \ {(0, 0, · · · , 0)}.
Taking the integral of (30) over the unit (r − 1)-sphere Sr−1, we have∑

j∈S

(√
b21,j + · · ·+ b2r,j

)p ∫
Sr−1 |〈vj, ξ〉|p dξ

<
∑

j∈Sc

(√
b21,j + · · ·+ b2r,j

)p ∫
Sr−1 |〈vj, ξ〉|p dξ.

(31)
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By using Lemma 2.2,
∫

Sr−1 |〈·, ξ〉|p dξ is a positive constant. Therefore, (28) follows.
Thus we have proved the general comparison theorem for any matrix B ∈ Rr×N for r ≥ 3.

The remaining arguments are similar to the case r = 2. Assume that we have (25)
r ≥ 3. For any

(
u(1), u(2), · · · , u(r)

)
of vectors in (N(A))r\{(0, 0, · · · ,0)}, we let B =

[u(1), · · · ,u(r)]T be a matrix in Rr×N . For any (x1, x2, · · · , xr) ∈ Rr \ {(0, 0, · · · , 0)},
z = (x1, x2, · · · , xr)B is in N(A) \ {0}, the null space property (25) implies (27) for all
(x1, x2, · · · , xr) ∈ Rr \ {(0, 0, · · · , 0)}. The conclusion (28) of Theorem 2.1 implies the
null space property (26) for r ≥ 3. The above discussions show that (c) implies (b) in
Theorem 1.3 for r ≥ 3.

On the other hand, we know that it is trivial to get (c) from (b), because we can just
choose

(
u(1), u(2), · · · , u(r)

)
=
(
u(1), 0 · · · , 0

)
∈ (N(A))r\{(0, 0, · · · , 0)}. Hence (b) and

(c) are equivalent, and thus we have completed the proof of the main theorem.

3 A Condition for the Exact Recovery using (9)
We now present a sufficient condition to recover the exact sparse solution by using the `q
minimization (9). Let us start with r = 1, the setting of single measurement vectors by
reviewing some related literature. Let αs and βs be the best constants such that

αs‖x‖2 ≤ ‖Ax‖2 ≤ βs‖x‖2, ∀x ∈ RN with ‖x‖0 ≤ s.

In terms of the well-known restricted isometry constant δs (cf. [7] and [6]), we have
α2

s = 1 − δs and β2
s = 1 + δs. Thus, αs > 0 is equivalent to δs < 1. It is easy to see

that αs > 0 is a necessary condition to ensure that the sparse solution of linear system
Ax = b can be found by solving a s× s sub-linear system. Note that αs is monotonically
decreasing as s increase. That is, if α2s+2 > 0, we have αs > 0. In this case, we have

γ2s+2 =
β2

2s+2

α2
2s+2

< ∞ since β2s+2 ≤ ‖A‖2. By Corollary 2.2 in [19], every s sparse solution

is exactly recovered by using the `p minimization for p > 0 small enough. Furthermore, if
α2s+1 > 0, Corollary 2 of [9] showed that the solution of the `p minimization is the exact
solution for a p ∈ (0, 1). As α2

2s+1 = 1 − δ2s+1, this implies that as long as δ2s+1 < 1, the
`p minimization method can find the s-sparse solution.

We now consider the case r ≥ 2. Let X = [x1, · · · ,xr] be a matrix of columns x(i) =
(xi,1, xi,2, · · · , xi,N)T for i = 1, · · · , r. We use the Frobenius norm, i.e.,

‖X‖F =

(
N∑

j=1

(x1,j)
2 + · · ·+ (xr,j)

2

)1/2

.

Also, let

‖X‖2,p =

(
N∑

j=1

(
(x1,j)

2 + · · ·+ (xr,j)
2
)p/2

)1/p
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be the (2, p)-norm for matrix X when p ≤ 1. Note that ‖X‖2,p is a quasi-norm for
0 < p < 1. We have

Theorem 3.1 For any measurement matrix A, if there is an integer s such that α2s+1 > 0
or δ2s+1 < 1, then the minimizer of (9) is the joint s sparse solution satisfying (1) if p > 0
small enough.

Proof. Let X∗ = [x∗,1, · · · ,x∗,r] be the minimizer of (9) and X = [x(1), · · · ,x(r)] be the
joint s- sparse solution satisfying (1). Then each column of V = X − X∗ is in the null
space of A. Writing V = [(vj,1, · · · , vj,r), j = 1, · · · , N ], we let

uj = (vj,1)
2 + · · ·+ (vj,r)

2, j = 1, · · · , N

and u = (u1, u2, · · · , uN)T . We divide the indices set {1, · · · , N} into S0 ∪ S1 ∪ S2 ∪ · · ·
with S0 being the index set of nonzero entries of the s sparse solution X and for j ≥ 1, Sj

being the s+1 largest entries of the vector u over the index set (S0∪· · ·∪Sj−1)
c, where Sc

0

stands for the complement of S0 in {1, 2, · · · , N} and similar for (S0 ∪ · · · ∪ Sj−1)
c. Note

that AV = 0 and AVS0∪S1 = −AV(S0∪S1)c . We have

α2s+1‖VS0‖F ≤ α2s+1‖VS0 + VS1‖F ≤ ‖AVS0∪S1‖F

=

(
r∑

i=1

〈AV (i)
(S0∪S1,i)c , AV

(i)
(S0∪S1,i)c〉

)1/2

≤

(
r∑

i=1

∑
j,k≥2

‖AV (i)
Sj
‖2‖AVSk

‖2

)1/2

≤ βs+1

(
r∑

i=1

∑
j,k≥2

‖V (i)
Sj
‖2‖V (i)

Sk
‖2

)1/2

≤ βs+1

(∑
j,k≥2

‖uSj
‖2‖uSk

‖2

)1/2

= βs+1

∑
j≥2

‖uSj
‖2.

It is easy to see that ‖uSj
‖2 ≤

√
s+ 1‖uSj

‖∞ ≤ (s+ 1)1/2−1/p‖uSj−1
‖p for j ≥ 2. Thus we

have ∑
j≥2

‖uSj
‖2 ≤ (s+ 1)1/2−1/p‖uSc

0
‖p.

Note that ‖uSc
0
‖p = ‖VSc

0
‖2,p. By a standard derivation (cf. [19]), we have ‖VSc

0
‖2,p ≤

‖VS0‖2,p and by Cauchy-Schwartz inequality, ‖VS0‖2,p ≤ s1/p−1/2‖VS0‖F . Combining these
inequalities above yields

‖VS0‖F ≤
βs+1

α2s+1

(
s

s+ 1

)1/p−1/2

‖VS0‖F .
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When p is small enough the right-hand side of the above inequality can be strictly smaller
than ‖VS0‖F which forces VS0 = 0. Then by ‖VSc

0
‖2,p ≤ ‖VS0‖2,p, we have VSc

0
= 0 and thus,

X∗ = X.
That is, the minimizer of (9) is the joint sparse solution satisfying (1) under the as-

sumption δ2s+1 < 1 on the sensing matrix A as long as p is small enough. That is, if
all submatrices with 2s + 1 columns of A is of full rank, we have α2s+1 > 0 and hence,
δ2s+1 < 1. However, by the `1 minimization approach, one has to make δ2s very small, e.g.,
δ2s <

√
2− 1 ≈ 0.414(cf. [5]) and δ2s < 2/(3 +

√
3) ≈ 0.4531 (cf. [19]) in order to find the

s-sparse solution. More slightly better sufficient conditions on δ2s can be found in [17], [4],
and [23].

Acknowledgement 1 We would like to thank the anonymous reviewers for their valuable
comments which helped greatly improve the presentation of paper.
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