A New Kind of Trivariate C! Macro-Element

Ming-Jun Lai ¥ and A. LeMéhauté

Abstract. We propose a construction of a trivariate C'' macro-element over

a special tetrahedral partition and compare our construction with known C*
macro-elements which are summarized in this paper. Also, we propose an im-

provement of the Alfeld construction of a C'! quintic macro-element such that
the new scheme is able to reproduce all polynomials of total degree < 5.

§1. Introduction

The study of trivariate spline functions was pioneered by 2eni(uzek, LeMéhauté,
Alfeld, Worsey, Farin among others. See references [ieniéek’73], [LeMehaute’84],
[Alfeld’84], [Worsey and Farin’87], and [Worsey and Piper’88]. Most of these results
involve the construction of trivariate C'! macro-elements over a tetrahedral partition
A or a refinement of A. They are generalizations of the well-known bivariate
C! quintic Argyris element, C'! Clough-Tocher element, or C! quadratic Powell-
Sabin element. In this paper we shall present a new kind of trivariate C'' macro-
element which is generalized from the bivariate C' cubic FVS elements ([Fraejis
en Veubeke’65] and [Sander’64]). Such an element has not been presented in the
literature so far to the best of our knowledge. The new C' macro-element offers
several advantages over the existing C'' macro-elements cited above. (See Remarks
4.1-4.3 and 4.10.)

To describe the new macro-element, we begin with a special tetrahedral par-
tition: Let O = (vy,va,---,v6) be an octahedron such that the three diagonals
of O intersect at a common point mo inside O as shown in Fig. 1. In this
case, v1,vz,v3,v4 are coplanar. So are vy, v4,v5,v¢ and vy, v3,v5,v6. In this pa-
per we shall restrict our attention to such tetrahedra which will be called centrical
octahedra. We will show how to partition some common 3D solids into a collec-
tion of centrical octahedra. (See Examples 4.6-4.10.) By adding the three planes
(v1,v3,v3,04), (V1,v3,05,06), and (ve,v4,vs,vs), we obtain 8 tetrahedra in O. Let
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Fig. 1. An octahedron and its tetrahedral partition

& be the collection of these eight tetrahedra. We shall use piecewise trivariate
polynomials of degree 5 over & to construct C'! macro-elements.

Instead of using traditional nodal values to describe the construction of macro-
elements, we shall use the B-form (cf. [de Boor’87]) to do so. Let us first briefly
introduce the B-form for trivariate polynomials. Let ¢ = (vy, vy, v3,v4) be a tetra-
hedron with nonzero volume. For any polynomial p of degree < 5, we write

p= Z ngkafju
i+j+k+e=5
‘ . 5 ke , . .
with Bl(z) = W/\i/\%/\?) Ay the Bézier polynomials of degree 5, where Ay, Ag,

A3, A4 are the barycentric coordinates of x with respect to t. This polynomial form
1s called the B-form. Note that the index 7 is associated with the first vertex v{ in
(v1,v3,v3,04), index j is associated with the second vertex vq, index k is associated
with the third vertex vs and index £ is associated with last vertex v4. The con-
ditions which ensure that two polynomials defined on two neighboring tetrahedra
join in a smooth fashion are called the smoothness conditions and may be given in
terms of the coefficients of polynomials in B-form. For t' = (vq,vs,v4,v5) which
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share a common face (vy,vs,v4) with ¢, let ¢ = Z cijijM. Then the C!
it j b k4l=5

smoothness conditions are as follows.

Lemma 1.1. Let p and g be two quintic polynomials defined on t and t' which
share a common face (v2,v3,v4). Then p and ¢ join in a C' fashion if and only if

t R . .
Co k= Cikeor JThk+HL=5

and

it = a1 k00 F B k100 7k er1,0 T 0 k00
for all v + j + k = 4, where (a, 3,7,6) is the vector of barycentric coordinates of
vs with respect to t = (vy,vy,vs3,v4). That is, vs = avy + fvy + yvs + vy and
a+pB4+~v+6=1.

We refer to [de Boor'87] for a proof of this lemma and the C* smoothness
conditions for k¥ > 2. In general, we shall use the B-form to express trivariate
piecewise polynomial (spline) functions of any degree. Let A be a collection of
tetrededra which is a triangulation in the sense that for any ¢t € A and ¢’ € A, the
intersection ¢ N ¢’ is either empty or their common vertex or their common edge or
their common face. Fix two integers r > —1 and d > r. Let

Sg(A) = {8 € CT(UteAt) . S|t < IPd Vit € A}

be the trivariate spline space of degree d and smoothness r, where IP; stands for
the space of all polynomials of degree < d. For each spline function s € Sd_l(A),
we shall write

_ 1 t
sle = Z CineBijke: VEEA
it+jtkt+i=d

with B-coefficients Cﬁju- For tetrahedron t = (v, v2,v3,v4), let

¢ = 11 + Jva + kvg + Loy
Z’]) ) d

be the domain point of ¢ associated with the index (¢, 7, k, ¢) with t+5+k+¢ = d. For
convenience, we shall associate cfju with ffjkf. We denote by Zg(A) := {(ff’j’k’f :
i+ j+k+L¢=dt e A} the collection of all domain points associated with
Sd_l(A). We shall use the concept of 3D minimal determining set which are a
simple generalization of those used in the study of bivariate splines (cf. [Alfeld and
Schumaker’87]). Let I" be a proper subset of Zy(A). T is a determining set for
a spline subspace S C Sd_l(A) if any spline function s € § whose B-coefficients
associated with the domain points in I' are zero is zero everywhere. I' is a minimal
determaining set if I’ is a determining set and the cardinality of T' is the smallest
possible.



The paper is organized as follows: We first construct our C! quintic macro-
elements over the special tetrahedral partition & in the next section. Then we shall
review the existing constructions of trivariate C'! macro-elements in §3. We use
the B-form to explain these constructions and provide an improved version of the
Alfeld C'! quintic macro-element so that all quintic polynomials can be reproduced
by using the modified macro-element. With the overview of the new and existing
macro-elements, we are able to give several comparisons on the dimensions, approx-
imation powers, and storages of these C'! macro-elements in §4. Finally, we remark
on how to partition some common 3D solids into a centrical octahedral partition.

§2. Construction of C'!' Quintic Macro-Element

Let O be a centrical octahedron and & the tetrahedral partition of Q. The macro-
element we are going to construct has the following smoothness properties: It is C'!
over the union of the eight tetrahedra of & and C? at the six vertices of O. Here, a
function s is said to be C? at a vertex v if s is twice differentiable at v. We denote
by 551’2(69) the space of all spline functions in S; (@) which are C! across each
interior triangular face of & and C? at vertices of O.

Next we need additional notation: letting e = (v1,v2) be an edge of ¢ and
f = (v1,v2,v3) be a face of ¢, we denote

Dfn(vl):{ff,]‘,k,ziiZd—m,i—l-j—l-k‘—l—ﬁzd},
ghle)={¢,pei+tji<myi+j+k+(=d}
Folf) =A& jpe: € <myit+j+k+L0=d}

for integer 0 < m < d. In this section, we fix d = 5. Similarly, we can define these

sets for other vertices, other edges and other faces of tetrahedron t. Let mo denote

the intersection of the three diagonals of O. We now specify the following subsets

to be formed into a minimal determining set I" for 551’2(69):

(1) For each vertex v € @ except for mo, let t, € & be a tetrahedron having v
as one of its vertices. Let S, := D;“ (v). We note that in terms of traditional
nodal values, the determination of the B-coefficients which are associated with
domain points in S, of any spline function s is equivalent to the assignments
of 0%s(v) for all |a| < 2, where a = (a1, a2, a3) with |a| := ay + a3 + a3 and

(2 (3 ()"

(2) For each boundary edge ¢ € &, let t. € & be a tetrahedron containing e.
Writing e = (u,v), let

S := £l (e)\ (DY (u) U DY (1))

We note that the determination of the B-coefficients associated with domain
points in S, of any spline function s may be replaced by the assignment of two
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normal derivatives of e which are perpendicular to each other at the midpoint
of e if the traditional nodal values are used.

(3) For each boundary face f € @, let t; € @ be a tetrahedron with f as one of
its faces. Writing f = (uy,uz,us) and ty = (u1, ug, us, uy), let

Sy= {531:1,1,17€If2,1,17£§{1,2,1}'
In terms of nodal values, the determination of the B-coefficients associated with
the domain points in Sy of spline functions is the same as the assignment of the
normal derivative of f at the three locations whose barycentric coordinates are
(2/5,2/5,1/5,0),(1/5,2/5,2/5,0),(2/5,1/5,2/5,0) with respect to t5. Here,
for convenience, we have arranged that the last index ¢ of B-coefficients cf’j,k’f
1s associated with mg.

(4) For mo, let to n,n = 1,---,8 be the 8 tetrahedra of &. For convenience, we
tO,n
i,5,k,

associated with mo. Let So := {fi’ol”"l’z,n = 1,---,8}. We note that the
domain points can also be associated with nodal values, but not needed here.
We now show that the set

r=JSulJsul]sruso

vEO e€O f€O

arrange that the last index ¢ of B-coefficients ¢ , of any spline function is

is a minimal determining set for 551’2(@). In fact, we have

Theorem 2.1. T' as defined above is a minimal determining set for 551’2(@) and
dim(S2* (@) =10 x 6 +2 x 1243 x 8 + 8 = 116.

Proof: We use the following figures to show that I' is a minimal determining set.
Note that we use the domain points to show the associated B-coefficients of spline
functions. Let {553;2’0@' +j+k+0=5n=1,---,8} be the domain points of over
all tetrahedra in @ with index ¢ being associated with mo. We call the collection
of the linear plane L, ¢ containing {55322,#@. +574+k=5—-4} forn=1,---,8
the (¢ 4+ 1)th layer around meo. For example, the first layer is the surface of the
octahedron O. For another example, the second layer is the collection of the planes
L, 1 containing 5:3;2,17i + 7+ k =4’s. In Fig. 2, the domain points on the first
layer are shown. The domain points on the second layer are displayed in Fig. 3 and
the domain points on the third layer are given in Fig. 4. Note that only the domain
points on the top half of the octahedron are shown. Only the domain points that
can be seen are displayed.

Assume that all B-coefficients associated with domain points in I' are set.
The B-coefficients marked with o’s in Figs 2, 3, 4 are uniquely determined either
since their domain points are in S, or by the C? smoothness conditions around
the vertex v using the known B-coefficients whose associated domain points are in
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(1). The B-coeflicients marked with ¢’s in Fig. 2 are uniquely determined either
since their domain points are in S, or by the C'! smoothness condition around
the edge e using the known coefficients determined from (1) and (2). Note that
the smoothness conditions in Lemma 1.1 involve ratios of the volumes of certain
tetrahedra with denominators being the volume of one of the given eight tetrahedra.
The B-coefficients marked with x’s in Fig. 3 are uniquely determined by the C'
smoothness condition using the known coefficients marked with ¢’s and o’s in Fig.
2. The B-coefficients marked with x’s in Figure 3 are determined since their domain
points are in (3). The coefficients marked with x’s in Fig. 4 are determined by
the C'! smoothness condition and the B-coefficients marked with o, x, and % in Fig.
3. Finally, the coefficients marked with A’s are determined in (4). We now claim
that the remaining B-coefficients are uniquely determined by the C! smoothness
conditions.

Fig. 2. Domain points (on the first layer) on the top half of an octahedron

Since the three diagonals of each octahedron intersect, we claim that the B-
coefficients marked with A’s determine the remaining B-coefficients as in the bi-
variate C'! cubic FVS element. To prove the claim, we only need to show that the
B-coefficient at m¢ is uniquely determined by the eight coefficients whose associated
domain points are in (4). For simplicity, we first assume that O is an octahedron
such that (vq,ve2,vs,v4), (v1,v3,05,06), (V2,v4,05,0s) are square. Thus, the coefli-
cients of any spline functions corresponding to the domain point set in (4) are at the
corners of the cube inside the octahedron as shown in Fig. 5. We now show how to
determine the 27 coefficients whose associated domain points located on and inside
the cube. For simplicity, let s; be a spline in SY (&) whose coefficients assocated with
the domain points in I' are all zero except for one of the eight domain points in (4)
which is 1. Then all the coefficients of s; are zeros except for the coeflicients on the
cube which are shown in Fig. 5. That is, ci’ol”ll’2 =1, c(t)’ol”ll’?) =1/2, ci’oo”ll’?) =1/2,
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Fig. 3. Domain points (on the second layer) on the top half of an octahedron

Fig. 4. Domain points (on the third layer) on the top half of an octahedron

ci,oi,lo,3 =1/2, Ci,od,lo,z; = 1/4, Cf),oi,lo,z; = 1/4, C(t),od,ll,zi = 1/4, and Cé,od,lo,ﬁ) =1/8. It is
easy to verify that sy is in S;’2(69) by using the smoothness condition (cf. Lemma
1.1). For a general octahedron in &, the cube will become a parallelepiped. The
nonzero coefficients of s; will be ci’ol”ll’2 =1, cé’ol”ll’?) =1/(1+a), Ci?d,ll,?, =1/(1+73),
t t t

01,01,10,3 = 1/(1 + ), C1,Od,10,4 = 1/((1 + B)(1 + 7)), Co,oi,lo,z; = 1/((1 + a)(1 + 7)),

co%itra = 1/((L+a)(1 + B)), and g%y 5 = 1/((1 + a)(L + B)(1 + 7)), where a, 5,
denote the ratios of the lengths of interior edges of O, i.e.

_ |{vz,mo0) _ [{ve,mo0) _ |{ve, mo)
O = 77—, 6 — 1/ \ Y=
[(v1,mo0)| [{va,m0)| [(vs,m0)
Similarly, we can construct other spline functions s;, + = 2, ..., 8 corresponding

to nonzero coefficients associated with the domain points in (4). Any linear combi-
nation of these eight spline functions determines the coefficient at mo. Therefore,
we have the claim. It follows that the spline function determined by the values in

T is globally C*.



<
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Fig. 5. Coefficients of spline function s; € 551’2(@)

To construct a basis for S;’2(69), we simply let s, € I' be the cardinal spline
function such that the coefficients of s. associated with domain points in I'\y are
zero while the coefficient of s, associated with + is one. It is easy to see that such
5~ 1s well defined in 551’2(%9) by using the smoothness conditions. They are linearly
independent. Thus, I' is a minimal set, and the dimension of 551’2(69) follows easily.
This completes the proof. O

Next we let A be a collection of centrical octahedra O;,7 = 1,..., N. Suppose
that A is regular in the sense that the intersection of any two octahedra O; and
O; is either an empty set, or their common face, or their common edge, or their
common vertex. Let &; be the eight tetrahedra obtained from O; as described in
§1, and let

L(A) = Ugil i

be the corresponding special tetrahedral partition. We will address how to use
such centrical octahedra with half-octahedra to partition several common polygonal
domains (cf. Examples 4.6-4.9). The above construction of C' quintic macro-
element can be applied to such special tetrahedral partitions. To be precise, let
S;’Q(L(A)) be the space of all spline functions in Sy '(L(A)) which is C' globally
and C? at each vertex of valei. Let Z5(L(A)) == {( f,j,k,f i+ 7+ k+0=51¢€
L(A)} be the domain set associated with S5 '(L(A)).
Let us describe a minimal determining set I' C Z5(L(A)) for Sa?(L(A)):
(1) For each vertex v € A, let t, € L(A) be a tetrahedron having v as one of its
vertices. Let S, := D;“ (v).
(2) For each edge e € A, let t. € L(A) be a tetrahedron containing e. Writing
e = (u,v), let

Se := & (e)\ (D5 (u) UDy (v))
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(3) For each triangular face f € A, let ty € L(A) be a tetrahedron with f as one
of its faces. Writing f = (uq,uz, us) and t5 = (uy, uz, us, uq), let

t t t
Sy= {52{1,1,17 flfz,l,la 51{1,2,1}-

(4) For octahedron O; of A, let t; ,,n = 1,---,8 be the 8 tetlahedla of 0O;. For

convenience, we arrange so that the last index ¢ of B-coefficients c k¢ of any

spline function is associated with me,. Let So, := {fl T12,n=1- -, 8}.

Theorem 2.2. Let

USUUSUUSfUUSO

vEA e€EN feA

Then T' is a minimal determining set for Sa”*(L(A)), and
dim S2*(L(A)) = 10V + 2E + 3F + 8N,

where V, E, F denote the numbers of all vertices, edges, and faces of A = {0;,1 =
1,--, N}

Proof: We first show that the I' is a determining set. Let s € S2*(L(A)) be a
spline function whose B-coefficients associated with domain points in I' are zero.
To see that s is identically zero, we look at s restricted to an octahedron O;. We
claim that s|o, = 0. Indeed, for each vertex v of O;, we know that the B-coefficients
of s associated with the domain points in S, are zero. These zero coefficients imply
that the coefficients of s associated with domain points in Di(v) are zero, either
by the default, i.e., the domain points are already in I' or by the C'* smoothness
conditions for those tetrahedra ¢t € &; that have v as one of its vertices.

For each edge e = (u,v) € O;, by the C'' smoothness condition or the default,
the zero coefficients of s asociated with the domain points in S, imply that the
coefficients of s associated with domain points in &f(e)\ (Di(u) U Di(v)) are zero,
for those tetrahedra t € §; that share e as one of its edges.

For each face f of O;, we write f = (u,v,w) and t = (u,v,w,me,). The zero
coefficients of s with domain points in Sy implies that the coefficients of s associated
with domain points £5 1 ;1,61 2.1.1,&1 1 2,1 are zero by default or the C'! smoothness
condition.

Together with the eight zero coefficients of s with domain points in So,, we
use Theorem 2.1 to conclude that s is equal to zero. The above discussion shows
that I" is a determining set.

To see that T is a minimal determining set, we construct a basis for S2*(L(A))
by letting s be a spline function whose coefficients associated with domain points
in I' are zero except for v and whose coefficient associated with v 1s 1. We then
use the C'! and C? smoothness conditions to determine the remaining coefficients.
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It is easy to show that such s. is well-defined and belongs to Si”*(L(A)). Then
the linear independence of s.,v € I' implies that I' is a minimal determining set.
Hence, the dimension of S;’Z(L(A)) follows immediately. O

It is easy to see that s, is locally supported. That is, the support of s, is the
union of all octahedra which share a common vertex v if v € S, or the union of
all octahedra which share a common edge e if v € S,, or the union of all octahedra
which share a common face f if ¥ € Sy, or the octahedron O; if v € So,.

Note that one can construct locally supported splines s, 3 € 551’2(L(A)) which
satisfies interpolation properties:

1, fu=vanda=p
o . )
0%sv,(u) = {0, otherwise
for @ = (a1, a3, as) with |a| < 2, where § = (f1,02,33) with |#] <2 and v is a
vertex of A. For simplicity, let V' also stand for the collection of all vertices of A.
It follows that for any twice differentiable function ¢, we can construct its C'! spline

interpolant as
Sg = Z Z 0%¢(v)sy.a-

vEV [a]<2

We remark that we are not able to construct a C'' macro-element over L(A)
using polynomials of degree strictly less than 5.

§3. Other Constructions of Trivariate C'! Macro-elements

In this section, we collect all the constructions (to our knowledge) of trivariate
C! macro-elements over tetrahedral partitions or some refinements of tetrahedral
partitions. We shall use the concept of minimal determining sets to explain these
constructions. The purpose of our discussion is to enable us to compare our macro-
elements with the existing ones.

3.1. C' Splines of Degree 9 over Tetrahedral Partitions

Let A be a tetrahedral partition of a polygonal domain in IR*. The first
construction of C'' macro-elements over tetrahedral partitions was obtained by
Zenitek in [Zeniéek'73]. See also [LeMéhauté’84]. In our notation, these macro-
elements are in 53’2’4(A) which is the space of all spline functions in S, '(A) that
are C'! over the union of all tetrahedra in A, C? around each edge of A, and C* at
each vertex of A. Here, a function s is said to be C'? around an edge if s is twice
differentiable at each point of e and C* at a vertex v if s is four times differentiable
at v. Let us briefly explain the construction in terms of minimal determining sets.

Let Zg(A) := {Efju,i +7+k+L=9,t € A} be the collection of the domain
points associated with Sg_l(A). In this subsection, we fix d = 9 in the definition of
D! (v),EL (e), and F! (f) as defined in §2. We shall specify the following domain

point sets to form a minimal determining set for 53’2’4(A) (cf. Fig. 6).
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(1)

For each vertex v € A, choose a tetrahedron ¢, in A such that ¢, contains v.
Let
Sy = fo (v).

We note that the determination of the coefficients of a spline s associated with
domain points in S, is equivalent to the assignment of all derivatives of order
4 of s at v. The domain points in Sy, , Sy, , Svs, Sv, are marked with o’s in Fig.
6.

For each edge e € A, choose a tetrahedron t. in A such that ¢, contains e.
Writing e = (u,v), we let

Se =& (e)\ (D (u) UDy (v))

The domain points in S, for all edges of a tetrahedron are marked with ¢’s in
Fig. 6.

For each face f € A, choose a tetrahedron t; in A containing f. Writing
f={(u,v,w) and ty = (u,v,w,x), we let

Sy =F(f)
\(DY (w) U DY (v) UDY (1) U &Y ((u,0)) U & ((0,0)) U EY ({u,0))).

The domain points in Sy for all faces are marked with +’s in Fig. 6.
For each tetrahedron ¢, let Sy be the remaining coefficients on ¢, i.e.,

St = {(t7l7]7k7£)7z > 27.] > 27k > 27£ > 2}

The domain points in Sy are marked with A’s in Fig. 6.

g
@)
'P
@ (@
Q
oO
@ o O
OO Co N
of o 0)
g OO
0] (@] Q

0 \‘\"

@, O /
.
V1Y o . cp
OO 0 .0 Q
< 050/ A §\
@, "
'D
‘

Fig. 6. Indication of domain point subsets on a tetrahedron

Qd Ql
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Let

r=Js.ulJsul]srulls.

vEA e€EA feA teA

Then it can be shown as in the previous section that I' forms a minimal determining
set. Using I', we can construct a basis s,y € I" for 53’2’4(A) as before. Thus, we
have

Theorem 3.1. Let A be a tetrahedral partition of a polygonal domain Q in R?.
Then there exists a locally supported basis for 53’2’4(A), and

dim S;**(A) = 35V 4 8E + TF + 4T,

where V, E, F,T denote the number of vertices, edges, faces, and tetrahedra of A.

It is well-known that one can use 53’2’4(A) to construct C'! spline interpolants.

We omit the details here.

3.2. The C' Quintic Macro-elements over Clough-Tocher Tetrahedral
Partition

Let A be a tetrahedral partition of a polygonal domain Q in R®. In [Alfeld’84],
Alfeld generalized the well-known bivariate Clough-Tocher split of triangles to the
trivariate setting. He split each tetrahedron ¢ into four subtetrahedra at the center
my of t using the triangular planes each of which consists an edge of ¢ and my.
For simplicity, we denote the refinement of a tetrahedral partition A by A(A). In
his paper [Alfeld’84], Alfeld constructed a kind of C'' quintic spline interpolant
over A(A). It is easy to see that his construction directly yields C' quintic macro-
elements. One of the properties of his interpolant is the reproduction of all trivariate
cubic polynomials. After modifying his construction of C'! quintic interpolatory
scheme, we find a new version of C'! quintic interpolants which are able to reproduce
all quintic polynomials. In this subsection, we discuss the improved version of the
Alfeld C! quintic interpolants. Let

S5 (A(A)) = {s € ST (A(A)) s € C(Q),s € CH(v),v € A5 € CFmy),t € A)

be the space of all spline functions which are C'! globally while C? at each vertex
of A and C? at the center m; of each tetrahedron t € A. Let

Ts(A(A)) = {€fjppi+ 7+ k+L=51€ A(A)}

be the collection of the domain points of S5 ' (A(A)).
To find a minimal determining set for the spline space 551’2’3(A)), we choose
the following domain points. (Note that we fix d = 5 when using the notation of

DL, (v), &L (e), and FL (f) in this subsection.)

(1) For each vertex v of A, choose a tetrahedron ¢, in A(A) containing v. Let
Sy = D;“ (v).
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(2) For each edge e of A, choose a tetrahedron t. in A(A) having an edge e.
Writing e = (u,v). Let

Se = & (e)\ (Dy (u) U Dy (v)) -

(3) For each face f of A, choose a tetrahedron ty in A(A) such that ¢4 contains
f. Writing f = (u,v,w) and ty = (f, z), let

[l ty ty
Sf = {52,1,1,17 1,2,1,1:61,1,2,1 S

(4) For each tetrahedron t = (u,v,w,z) € A, let my be the center of ¢ and t; =
(u,v,w,Mmy), ta = (v,w, 2, my), t3 = (w,u, x,my), and t4 = (u,v,x,m;) be four
tetrahedra in A(A) contained in ¢. Let

t t t t
St 1= {5111 1 275121 1 275131 1 275141 1 2}-

P R IR R 1 [ R

Theorem 3.2. Let A(A) be the Alfeld refinement of tetrahedral partition A. Then

r=Js.ulJsul]srulls

vEA e€EA feA teA

is a minimal determining set for Si'**(A(A)), and
dim S22 %(A(A)) = 10V + 2E + 3F + 4T,

where V, E, F,'T denote the number of all vertices, edges, faces, and tetrahedra of
A. Also, there exists a locally supported basis for S;’2’3(A(A)).

Proof: We use Figs. 7-9 to help explain that I' is a minimal determining set.
In these figures, we use the domain points to indicate the coefficients of spline
functions. Only domain points on one tetrahedron ¢ are shown. Let {ff:},k,zai +
J+k+L=5n=1---,4} be the domain points on four subtetrahedra in ¢t with
index € being associated with m;. We call the collection of the linear plane L, ¢
containing {fffj’k’f,i +j+k=5—/L}forn=1,---,4 the ({ + 1)th layer around
my. For example, the first layer is the surface of tetrahedron ¢. For simplicity,
only the coefficients which can be seen are displayed. In Fig. 7, the coefficients

c%ko,i +7+k=5mn=12234 on the first layer are shown. Fig. 8 shows the
coefficients cffj’k’l,i +7+k=4,0=1,2,3,4 on the second layer. and in Fig. 9 the
coefficients cffj’kﬂ,i +7+k=3,0=1,2 3,4 are displayed.

Assume that the coefficients of a spline function whose domain points are in
I' are determined. The coefficients marked with o’s are determined either in (1)
or using the C'? smoothness condition around the vertices based on the coefficients
already determined in (1). The coefficients marked with ¢’s are determined either
in (2) or using the C'' condition around edges based on the coefficients already
determined in (2). The coefficients marked with x’s in Fig. 8 are obtained by
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the C'! smoothness condition across the interior faces based on the coefficients
marked with o and ¢’s in Fig. 7. The coefficients marked with «’s are determined
either in (3) or using the C' smoothness condition across a face based on the
coefficients already determined in (3). The coefficients marked with x’s in Fig. 9
are determined using the C'!' smoothness condition across interior faces. Finally,
the coeflicients marked with A’s are determined in (4). The coefficients in Fig. 9
completely determine a cubic polynomial. Consequently, we obtain the coefficients
CE;M,Z’ =7+k+0=5/0>3n=1,2,3,4. Hence, the spline function determined
above is C'® at my. We have shown that the set T' is a determining set. That is,
if all the coefficients in I' are zero, the above arguments show that the remaining
coefficients of a spline have to be zero. Also, the arguments show that we can
construct a set of cardinal functions {s.,7 € I'} which are linear independent.
Thus T' is a minimal determining set. That is, the collection of all cardinal basis
functions form a basis for S;’Z’S(A(A)). Also, it is easy to see that all basis functions
are locally supported.

Fig. 7. Domain point (on the first layer) on the Alfeld split of a tetrahedron

The computation of the dimension of the spline space 551’2’3(A(A)) is straight-
forward. This completes the proof. O

Next we construct an interpolation scheme which is able to reproduce all poly-
nomials of degree < 5. We begin with the following

Lemma 3.3. Let T = (v1,v2,v3,v4) be a tetrahedron and vs be another point
which does not lie on any of four planes each of which is spanned by one of faces
of T. Given f; o, |a| < 1,0 =1,2,3,4,5, there exists a unique cubic polynomial p
satistfying the following interpolation conditions:

Dap(’l)i):fi’a,é:1,2,---,5, |Oé| Sl-
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Fig. 8. Domain point (on the second layer) on the Alfeld split of a tetrahedron

Fig. 9. Domain points (on the third layer) on the Alfeld split of a tetrahedron

This is a well-known result. We refer to [LeMéhauté’84] for a detailed proof.
We are now ready to describe an interpolation scheme.

For each edge e, let m. be the midpoint of e and let e; ; and ey » be two
directions which are perpendicular to e and are linearly independent to each other.
For each face f = (v1,v2,v3), let f1, f2, f3 be the three domain points {(ivy + jvs +
kvs)/5, (2,7, k) = (2,2,1),(1,2,2),(2,1,2)} on f. Let ny be a normal unit vector
of f. For each tetrahedron ¢, let m; be the center point of ¢t. Our interpolation
scheme is as follows: For a function g € C?*(Q), let S, € 551’2’3(A(A)) satisfy
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(1) For each vertex v of A,
D®Sy(v) = D%(v), Vl|a| <2
(2) For each edge e of A,
De, ;Sg(me) = De, ;9(me), 1=1,2;

Here, D., , denotes the derivative along direction ey ;, 1 = 1, 2;

(3) For each face f of A,

Here, D, denotes the derivative along direction ny.
(4) For each tetrahedron t,

DS, (mi) = D*g(my), V]a| < 1.

We use the interpolation conditions (1)—(3), C? smoothness conditions at the
vertices of A, C'' smoothness conditions around the edges and across the faces
of A to determine the coefficients of S;. Indeed, the interpolation conditions (1)
and C? smoothness conditions at the vertices of A determine the coefficients of
S, whose domain points are in Di(v) for each tetrahedron ¢ € A(A) which shares
vertex v for all vertices of A. We use the interpolation conditions (2) and C!
smoothness conditions to determine the coefficients whose domain points in &f(e)
for each tetrahedron t € A(A) which shares edge e for all edges of A. We then
use the interpolation conditions (3) and C! smoothness conditions to determine
the coefficients whose domain points in F{( f) for each tetrahedron ¢ € A(A) which
shares face f for all faces of A. To determine the remaining coefficients of S,
we consider S, restricted on tetrahedron ¢ € A. There are four interior edges in-
side ¢ connecting to the center m; of . By the C'! smoothness conditions around
each of the four interior edges, we obtain the coefficients whose associated domain
points are in the collection of {gfj,k,zvi +7+k= 3}\5{‘;1’1’2% =1,2,3,4 as well
as {€8 0 03 €80 03, €8 0 5,0 = 1,2,3,4}, where t4, £ = 1,2,3,4 denote the four sub-
tetrahedra of . Note that four of them in the first of the above two groups have
already been determined by the interpolation conditions in (1). The coefficients
just determined in the previous sentence can be converted to the function and first
order derivative values at four vertices of t. Together with the interpolation condi-
tions in (4), we can apply Lemma 3.3 to get a unique cubic polynomial p; satisfying
the interpolation conditions at the five vertices. We then find the coefficients of py
over four subtetrahedra t;’s and use these coeflicients for the remaining coefficients
of S;. It follows that S, is C* at m,. Thus we know S, € S;’Q’S(A(A)). In partic-
ular, Sy = ¢ for each polynomial g of degree < 5. This show that the interpolation
scheme improves the one in [Alfeld’84] which can reproduce only polynomials of
degree < 3.
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3.3. C'! Cubic Splines over Another Clough-Tocher Refinement of Tetra-
hedral Partitions

In [Worsey and Farin’87], Worsey and Farin split each tetrahedron of A even
further than Alfeld did. That is, they first split tetrahedron ¢ at its center m; of
the inscribed sphere of ¢ into four subtetrahedra by triangular planes each of which
consists of one edge of t and m;. Then for each interior face shared by two tetrahedra
t and #', they connect m; and my by a line which intersects the common face f
at ny and split the subtetrahedron of ¢ containing f into three subsubtetrahedra
using the triangular planes each of which consists of ny, m; and one vertex of f.
Similarly, they split the subtetrahedron of ' containing f into three subtetrahedra
in the same way. Since m; and my are the centers of the inscribed spheres, it is
always true that ny is strictly inside the face f. For a boundary face f, they split
the subtetrahedra of ¢ containing f into three subsubtetrahedra at the center ny
of f using triangular planes each of which consists of ny, my, and one vertex of f.
This is another 3D generalization of the well-known Clough-Tocher refinement of
triangulation. Let us use WF(A) to denote such a refinement.

In [Worsey and Farin’87], locally supported spline functions in Si(WF(A))
were constructed. In our notation, we specify the following two domain point sets
to be formed into a minimal determining set: Note that we fix d = 3 when we use
the notation D!, (v) and &f, (e) in this subsection.

(1) For each vertex v of A, choose a tetrahedron ¢, of WF(A) containing v. Let

Sy = D;” (v).

(2) For each edge e of A, choose a tetrahedron t. of WF(A) containing e. Writing
e = (u,v), let

S := &l (e)\ (D} (u) U DY (1))

Then letting T' = Uiea Sy U Ueea Se, we can prove that T' is a minimal deter-

mining set for S3(WF(A)). We leave the details to the interested reader. Thus,
we may summarize the results above in

Theorem 3.4. Let A be a tetrahedral partition and let W F(A) be the Worsey-
Farin refinement of A. Then the dimension of S3(W F(A)) is

dim S3(WF(A)) = 4V + 2E.

There exists a locally supported basis for S3(W F(A)). Furthermore, each spline
function in S§(WF(A)) is in C* at my for all t € A.

3.4. C'! Quadratic Splines on a Powell-Sabin Refinement

In [Worsey and Piper’88], Worsey and Piper refined each tetrahedron in A
even further than [Worsey and Farin’87] to construct C! spline functions using
piecewise quadratic polynomials. The tetrahedral partition has to satisfy a stringent
condition. For a general tetrahedral partition, their construction will not be in C'

globally.
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4. Remarks and Examples

We now compare the constructions of all C'! macro-elements. The only assump-
tion we make is that a polygonal domain  admits a partition using our centrical
octahedra. Let us say A = U,0;. To partition A into tetrahedra, we subdi-
vide each octahedron O; into four tetrahedra by triangular planes each of which
consists of one diagonal d; of O; and one of the other four vertices of O;, i.e., the
vertices of O; which are not on d;. Thus, O; = tloi Uto, 2 Uto,z Uto, 4, where
to,ij,) = 1,2,3,4 denote the four tetrahedra. Let T(A) denote the induced tetra-
hedral partition which consists of 4N tetrahedra. Recall that L(A) is the special
tetrahedral refinement of the octahedral partition A. Let V., E, F, N denote the
numbers of vertices, edges, faces, and octahedra of A and let Vi, Ep, Fp, Np de-
note the numbers of vertices, edges, faces, and tetrahedra in T(A). Note that
Vi=V.Er=E+ N,Fr=F+4N,Np =4N.

Remark 4.1. Under the assumption above, we have the following dimensions of
various C'! spline spaces:

dim S92 (T (A
dim S22 (A(T(A)
dim S3 (W F(T(A)

dim 551 2(L(A

35V + 8V + TFpr + 4N = 35V + 8E + TF + 52N,
10Vr +2E7 + 3Fr + 4N =10V + 2E 4+ 3F 4 30N,
AV +2E7 =4V 4+ 2E + 2N,
=10V +2E +3F +8N. O

)
)
)
)

The space Sy (WF(T(A\)) has the smallest dimension and also has the lowest ap-
proximation power (cf. Remark 4.2). The space with the second smallest dimension

is SYH(L(A)). O

Remark 4.2. Concerning the approximation order in the maximum norm, we may
use the well-known Bramble-Hilbert lemma to conclude the following:

dist( f, 1’2’3(A(T
dist(f, S3 (W F(T(A
dist(f, S5 (L(L))) < C|A[°.

Here, the approximation constants are dependent on the geometric shape of the
tetrahedral partition. Excluding the geometric factor, Se**(T(A)) has the highest
approximation power, but has the largest dimension (cf. Remark 4.1). Our spline
space S;’Q(L(A))) has the second highest approximation power and the second
smallest in dimension. O

Remark 4.3. We now compare the number of coefficients of any spline on one
octahedron using these four spline spaces. Let A be an octahedron and & be a
tetrahedral partition of A by splitting O into 8 subtetrahedra. Let T(A) be a

18



tetrahedral partition of A by splitting into 4 subtetrahedra. We have the following
cardinality formulae:

SY(T(A)) =630
SY(A(T(A))) = 382
SIWF(T(A)) = 276
SY(L(A)) = 231

For the purpose of evaluation, the smaller the cardinality the better. Thus, our
spline space S;’Z(L(A)) will be most efficient for evaluation. O

Remark 4.4. Awanou and Lai have implemented the improved Alfeld interpola-
tion scheme in [Awanou and Lai’02] in MATLAB. The computational experiments
show that the interpolation scheme does reproduce all quintic polynomials and has
excellent approximation properties. [

Remark 4.5. Lai and Wenston have implemented the Farin and Worsey C! cubic
spline space in MATLAB (cf. [Lai and Wenston’01]). They applied the spline space

for numerical solution of 3D biharmonic equations. O

We next discuss how to partition some bounded domain € in R® into centrical
octahedral partitions. In general, we need to combine several halves of octahe-
dra with the centrical octahedra to complete the task. Once we have a centrical
octahedral partition A of Q, we have a special tetrahedral refinement L(A) as dis-
cussed before. Let us use the following examples to illustrate how to partition some
common domains.

Example 4.6. Let Q = [0,1]® be a unit cube. Let v = (0.5,0.5,0.5)T. For each
edge e of ), let f. be the triangular plane spanned by e and v. We use all f. to
partition ). Thus, we obtain six half-octahedra which partition 2. Subdividing
each half-octahedron into four tetrahedra by two triangular faces each of which
consists of one diagonal of the square face and v, we obtain a tetrahedral partition of
Q. It is clear that such a tetrahedral partition admits our construction of C! quintic
spline functions. Indeed, for each half-octahedron O, let 1% i = 1,2,3,4 be the
four tetrahedra partitioning O. Writing 9% = (v, v;,vit1,mo) with (vi,v2,v3,v4)
being the square face of the half-octahedron O, we use a method similar to that in
§2 to choose domain points. That is, we choose S, for each vertex v of O. (In this
case, we have only 5 vertices instead of 6.) We choose S, for each boundary edge e
of O. (We will have 8 edges instead of 12 before.) We choose Sy for each triangular
face f of O. (There are 4 faces now.) Also, we choose Sp = {Si?l’fl’Z,i =1,2,3,4}.
In addition, we choose 12 more domain points fé’ol’fl’g, fé’o?;fl’l, é’ol’f?)’l,i =1,2,3,4 to
form a minimal determining set for 551’2(U?:1t0’i). The proof is the same as before
and we omit the details. O

Example 4.7. Let Q = [0,1]3. In general, we may subdivide § into many small
parallelepipeds by using planes parallel to the three coordinate planes, e.g., x=0.1,
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vy, x=0.9, y=0.1, ..., 0.9, z=0.1, ..., 0.9. We obtain 1000 parallelepipeds. We
then partition each parallelepiped as in Example 4.6 into six half-octahedra. Now
every pair of neighboring half-octahedra which share a common square face form
an octahedron. Then subdividing each octahedron into 8 tetrahedra as in §1 and
each half octahedron on the boundary of ) as in Example 4.6, we obtain a special
tetrahedral partition which admits our construction of C! quintic macro-elements.
It is clear that we can partition () using non-equally-spaced parallel planes. Also,
Q may be a rectangular parallelepiped. O

Example 4.8. Let Q) be a prism. To partition ) using octahedra, we add another
prism to ) such that the union of two prisms forms a rectangular parallelepiped £ .
Then we partition £y using the method in Example 4.7. Note that we use equally-
spaced parallel planes. This results in a tetrahedral partition L(A) of £y which
admits our construction of C! quintic spline space. In particular, the tetrahedral
partition €y induces a tetrahedral partition over the original Q). The restriction of
551’2(L(Ql)) on Q) is the desirable C'! quintic spline space over the prism. O

Example 4.9. Let Q) be a tetrahedron. To partition €2, we add another two
tetrahedra such that three tetrahedra form a prism €)y. Then we can use the

method in Example 4.8 to obtain L(A) of Q. Note that L(A) induces a tetrahedral

partition over the original Q2. O

Remark 4.10. For a general polygonal domain, we should use both tetrahedra
and octahedra to partition it and then combine the improved Alfeld interpolation
scheme and our C'! quintic macro-elements to build up a spline space S;’2. From
Remarks 4.1-4.3, such a mixed spline space will have the same approximation power
as the spline space based on the Alfeld C' quintic interpolation scheme, but will
have a smaller dimension and few coefficients. Thus, the mixed spline space will be
more efficient. 0
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