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Abstract

We present a convergent analysis of a finite difference scheme for the time de-
pendent partial different equation called gradient flow associated with the Rudin-
Osher-Fetami model. We devise an iterative algorithm to compute the solution of
the finite difference scheme and prove the convergence of the iterative algorithm.
Finally computational experiments are shown to demonstrate the convergence of the
finite difference scheme. An application for image denoising is given.

1 Introduction

The well-known ROF model may be approximated in the following way

min
u∈BV(Ω)

∫
Ω

√
ε+ |∇u|2dx+

1

2λ

∫
Ω

|u− f |2dx. (1)

As ε > 0, the above minimizing functional is differentiable. Thus, the Euler-Lagrange
equation associated with the above minimization is

div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) = 0. (2)
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Solution of this partial differential equation can be further approximated. Let us consider
the time evolution version of the PDE:

d
dt
u = div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) ∈ ΩT

∂
∂n
u = 0 on ∂ΩT

u(·, 0) = u0(·), Ω,

(3)

where f is given a noised image, ΩT = [0, T ) × Ω, ∂
∂n

is the outward normal derivative
operator. It is called the gradient flow of (1). When ε = 0, it is called TV flow. Similar
partial differential equations also appear in geometry analysis. See references, e.g., [12],
[11], [2], [3], [4], and the references therein. The existence, uniqueness, stability of the weak
solutions to these time dependent PDE were studied in the literature mentioned above.
Numerical solution of the PDE (3) using finite elements has been discussed in [9] and
[8]. In particular, the researchers showed that the finite element solution exists, is unique,
is convergent to the weak solution of the PDE (3), the rate of convergence under some
sufficient conditions, and the computation is stable. A fixed point iterative algorithm for
the associated system of nonlinear equations was discussed in [16] and its convergence was
studied in [6]. Although the finite difference solution of the time dependent PDE (3) has
been the method of choice for image denoising (e.g. See [15]), no convergence of the finite
difference solution to the weak solution of the PDE has been established in the literature
so far to the best of the authors’ knowledge. See also [7].

The purpose of this paper is to establish the convergence of the discrete solution ob-
tained from a finite difference scheme for (3) to the weak solution. See our Theorem 3.1
in Section 3. Then we discuss how to numerically solve the time dependent PDE (3) by
using our finite difference scheme. As the finite difference scheme is a system of nonlinear
equations, we shall derive an iterative algorithm and show that the iterative solutions are
convergent.

For convenience, let Ω = [0, 1] × [0, 1]. We let N > 0 be a positive integer and divide
Ω by equally-spaced points xi = ih and yj = jh for 0 ≤ i, j ≤ N − 1 where h = 1/N . For
any f(x, y) defined on Ω, let fhi,j = f(xi, yj) if f is a continuous function on Ω. Otherwise,
fh will be defined as in (9). We shall use two different divided differences ∇+ and ∇− to
approximate the gradient operator. That is,

∇+fhi,j =

(
fhi+1,j − fhi,j

h
,
fhi,j+1 − fhi,j

h

)

and

∇−fhi,j =

(
fhi,j − fhi−1,j

h
,
fhi,j − fhi,j−1

h

)
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for all 0 ≤ i, j ≤ N − 1 with fh−1,j = fh0,j, f
h
N,j = fhN−1,j for all j and fhi,−1 = fhi,0, f

h
i,N =

fhi,N−1 for all i. Furthermore, we define discrete divergence operators div+ and div− to
approximate the continuous divergence operator, i.e.,

div+(fhi,j, g
h
i,j) =


fh0,j/h i = 0, 0 ≤ j ≤ N − 1

(fhi,j − fhi−1,j)/h 0 < i < N − 1, 0 ≤ j ≤ N − 1

−fhi−2,j/h i = N − 1, 0 ≤ j ≤ N − 1

+


ghi,0/h j = 0, 0 ≤ i ≤ N − 1

(ghi,j − ghi,j−1)/h 0 < j < N − 1, 0 ≤ i ≤ N − 1

−ghi,j−2/h j = N − 1, 0 ≤ i ≤ N − 1

for all 0 ≤ i, j ≤ N − 1 and similarly for div−. By their definitions, we have for every
p ∈ RN×N × RN×N and u ∈ RN×N

〈− div+ p, u〉 = 〈p,∇+u〉, 〈− div− p, u〉 = 〈p,∇−u〉.

With these notations, we are able to define a finite difference scheme for numerical
solution of the time dependent PDE (3).

d
dt
ui,j = 1

2
div+

(
∇+ui,j√

ε+ |∇+ui,j|2

)

+1
2

div−

(
∇−ui,j√

ε+ |∇−ui,j|2

)
− 1

λ
(ui,j − fhi,j) 0 ≤ i, j ≤ N − 1, t ∈ [0, T ]

∂
∂n
ui,j = 0 i = 0, N, 0 ≤ j ≤ N − 1;

j = 0, N, 0 ≤ i ≤ N − 1,

u(xi, yj, 0) = uh0(xi, yj), 0 ≤ i, j ≤ N − 1,

(4)

where uh0 is a discretization of the initial value u0 according to (9). Next we discretize the
time domain [0, T ] by equally-spaced points tk = k∆t, ∆t = T/M . We approximate the
d
dt
ui,j by (uki,j − uk−1

i,j )/∆t to have the fully discrete version of finite difference scheme:

1
∆t

(uki,j − uk−1
i,j ) = 1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2


+1

2
div−

 ∇−uki,j√
ε+ |∇−uki,j|2

− 1
λ
(uki,j − fhi,j) 0 ≤ i, j ≤ N − 1, 1 ≤ k ≤M

∂
∂n
uki,j = 0 i = 0, N, 0 ≤ j ≤ N − 1;

j = 0, N, 0 ≤ i ≤ N − 1, 0 ≤ k ≤M

u(xi, yj, 0) = uh0(xi, yj), 0 ≤ i, j ≤ N − 1.

(5)
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Remark 1.1 In our numerical scheme, the discrete variation for any array uk := {ukij, 0 ≤
i, j ≤ N} is in fact defined by

|uk|DBV =
1

2

∑
i,j

√
ε+ |∇+uki,j|2 +

1

2

∑
i,j

√
ε+ |∇−uki,j|2.

This way of defining discrete variation makes it possible to connect discrete and continuous
variations by the observation that |U |BV = |uk|DBV where U is a piecewise linear function
obtained by interpolating uk over grids on Ω which will be detailed in Section 3. The nu-
merical scheme is constructed from the Euler-Lagrange equation of the following variation
problem

arg minEk(v)

for each step k where

Ek(v) =
1

2

∑
i,j

√
ε+ |∇+vi,j|2 h2 +

1

2

∑
i,j

√
ε+ |∇−vi,j|2 h2

+
1

2λ

∑
i,j

(vi,j − fhi,j)2 h2 +
1

2∆t

∑
i,j

(vi,j − uk−1
i,j )2 h2

for all arrays {vi,j}, 0 ≤ i, j ≤ N − 1.

We shall first show that the above scheme has a uniqueness solution. Then we show
the solution in (5) converges to the weak solution of time dependent PDE (3). These will
be done in the next 2 sections. Next we shall explain how to numerically solve this system
of nonlinear equations in §4. We report our computational results in §5. Finally we give a
few remarks the last section.

2 Preliminary Results

We introduce a weak formulation of PDE (3) that is suggested by [9].

Definition 2.1 We say that u ∈ L1([0, T ],BV(Ω)) is a weak solution of (3) if u satisfies
the initial value and boundary conditions in (3) and for any w ∈ L1([0, T ],W 1,1(Ω)) with
∂
∂n
w(x, t) = 0 for all (t, x) ∈ [0, T )× ∂Ω,∫ s

0

∫
Ω

d

dt
uwdxdt+

∫ s

0

∫
Ω

∇u · ∇w√
ε+ |∇u|2

+
1

λ

∫ s

0

∫
Ω

(u− f)wdxdt = 0, (6)

for any s ∈ (0, T ].

It is known (cf. [9]) there exists a unique weak solution U∗ satisfying the above weak
formulation. U∗ is in fact in L∞((0, T ],BV(Ω)) if u0 ∈ BV(Ω) and f ∈ L2(Ω). Following
the ideas in [12], the researchers in [9] further showed the weak solution can be characterized
by the following inequality.
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Theorem 2.1 Let u be a weak solution as in Definition 2.1. Then u satisfies the following
inequality: for any s ∈ (0, T ],∫ s

0

∫
Ω

d

dt
v(v − u)dxdt+

∫ s

0

(J(v)− J(u))dt

≥ 1

2

[∫
Ω

(v(x, s)− u(x, s))2dx−
∫

Ω

(v(x, 0)− u0(x, 0))2dx

]
(7)

for all v ∈ L1([0, T ],W 1,1(Ω)) with ∂
∂n
v(x, t) = 0 for all (t, x) ∈ [0, T )× ∂Ω, where

J(u) =

∫
Ω

√
ε+ |∇u(x, t)|2dx+

1

2λ

∫
Ω

|f(x, t)− u(x, t)|2dx. (8)

On the other hand, if a function u ∈ L1((0, T ],BV(Ω)) satisfies the above inequality (7),
then u is a weak solution.

Regarding to the solution of finite difference scheme (5), we prove some basic properties
in this section. To this end, we assume that the initial data for our numerical scheme
{fhi,j, 0 ≤ i, j ≤ N − 1} is a discretization of the initial data for PDE (3). Specifically
assuming the region Ω = [0, 1]× [0, 1] is partitioned evenly into N by N grids with a grid
size of h = 1/N , we discretize any function in L2(Ω) by

fhi,j =
1

h2

∫ (i+1)h

ih

∫ (j+1)h

jh

f(x) dx, 0 ≤ i, j ≤ N − 1 (9)

and suppose that the pixel value on each grid at index (i, j) is fhi,j. In the next section we
sometimes denote by PNf a related piecewise constant function defined on Ω for which

(PNf)(x) = fhi,j, x ∈ [ih, (i+ 1)h]× [jh, (j + 1)h]. (10)

Let us start with the following existence and uniqueness theorem.

Theorem 2.2 Fix N > 0 and M > 0. There exists a unique array uki,j, 0 ≤ i, j ≤
N − 1, 0 ≤ k ≤M satisfying the above system (5) of nonlinear equations.

Proof. We define a variation functional that is a discretized version of (8)

Jh(v) =
1

2

∑
i,j

√
ε+ |∇+vi,j|2 h2 +

1

2

∑
i,j

√
ε+ |∇−vi,j|2 h2 +

1

2λ

∑
i,j

(vi,j − fhi,j)2 h2, (11)

and the discrete energy functional

Eh(v) = Jh(v) +
1

2∆t

∑
i,j

(vi,j − uk−1
i,j )2 h2 (12)
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for all arrays vi,j, 0 ≤ i, j ≤ N − 1.
The Euler-Lagrange equation for the following minimization problem

min
v
Eh(v) (13)

is

uki,j − uk−1
i,j

∆t
− 1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

− 1

2
div−

 ∇−uki,j√
ε+ |∇−uki,j|2


+

1

λ
(uki,j − fhi,j) = 0, 0 ≤ i, j ≤ N − 1, 1 ≤ k ≤M (14)

The existence and uniqueness of uki,j follows from the strict convexity of the functional Jh

and Eh.
The following property is a characterization of the discrete solution of (5).

Lemma 2.1 Suppose that array {uki,j, 0 ≤ i, j ≤ N − 1, 0 ≤ k ≤ M} is a solution of the
finite difference scheme (5). Then uki,j satisfies the following inequality

∑
i,j

uki,j − uk−1
i,j

∆t
(vi,j − uki,j) +

1

2

(∑
i,j

√
ε+ |∇+vi,j|2 −

∑
i,j

√
ε+ |∇+uki,j|2

)
+

1

2

(∑
i,j

√
ε+ |∇−vi,j|2 −

∑
i,j

√
ε+ |∇−uki,j|2

)
+

1

2λ

∑
i,j

(vi,j − fhi,j)2 − 1

2λ

∑
i,j

(uki,j − fhi,j)2

≥ 0 (15)

for all arrays vi,j that satisfies the Neumann boundary condition. On the other hand, if an
array {uki,j, 0 ≤ i, j ≤ N −1, 0 ≤ k ≤M} satisfies the above inequality for all vi,j satisfying
the discrete Neumann boundary condition in (5), then array {uki,j, 0 ≤ i, j ≤ N − 1} is a
solution of (5).

Proof. From the Euler-Lagrange equation (14),

uk−1
i,j − uki,j

∆t
= −1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

− 1

2
div−

 ∇−uki,j√
ε+ |∇−uki,j|2


+

1

λ
(uki,j − fhi,j)

= ∂Jh(uki,j)

The result follows from the definition of subgradient ∂Jh(uk).
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The following result shows that the computation of finite difference scheme (5) is stable.
For the simplicity of the notations, we define the discrete L2 norms in analogue of standard
L2 norms. Assuming {ui,j} is an array, we define

‖u‖ :=

{∑
i,j

(ui,j)
2 h2

}1/2

.

Theorem 2.3 Let {ukf , 0 ≤ k ≤ M} be the solution of the system of nonlinear equa-

tions (5) associated with fh with initial value u0
f . Similarly, let {ukg , 0 ≤ k ≤ M} be the

corresponding solution of (5) associated with gh with initial value u0
g. Then

‖ukf − ukg‖ ≤ max{‖u0
f − u0

g‖, ‖fh − gh‖}, 1 ≤ k ≤M. (16)

Proof. We prove by induction. It is obvious true for k = 0. Assume the inequality holds
for k − 1. Rearrange the L2 terms in (13). We have ukf is the minimizer of the following
problem.

min
v

h2

2

∑
i,j

√
ε+ |∇+vi,j|2 +

h2

2

∑
i,j

√
ε+ |∇−vi,j|2 + (µ1 + µ2)

∥∥v − (k1f
h + k2u

k−1
f

)∥∥2

(17)

where µ1 = 1/(2λ), µ2 = 1/2∆t, and k1 = µ1/(µ1 + µ2), k2 = µ2/(µ1 + µ2). By standard
stability property of the minimization problem (17)(cf. [13])∥∥ukf − ukg∥∥ ≤ ∥∥(k1f

h + k2u
k−1
f

)
−
(
k1g

h + k2u
k−1
g

)∥∥
≤ k1‖fh − gh‖+ k2

∥∥uk−1
f − uk−1

g

∥∥
≤ max

{
‖fh − gh‖,

∥∥uk−1
f − uk−1

g

∥∥}
≤ max

{
‖fh − gh‖,

∥∥u0
f − u0

g

∥∥} .
Remark 2.1 As a direct deduction, if gh = u0

g = 0, the solution ukg is also zero for all k,
then

‖ukf‖ ≤ max{‖u0
f‖, ‖fh‖}, 1 ≤ k ≤M. (18)

3 Main Result and Its Proof

In this section, we shall show that the solution of the finite difference scheme (5) converges
to the solution of the gradient flow (3). We suppose that the array {uki,j, 0 ≤ i, j ≤
N − 1, 0 ≤ k ≤M} is the solution of (5).
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We first define a mapping of the array {uki,j, 0 ≤ i, j ≤ N − 1, 0 ≤ k ≤M} in the form
of a piecewise linear interpolant of uki,j.

Let ∆N be the following type of triangulation of Ω = [0, 1] × [0, 1] with vertices
((i + 1/2)h, (j + 1/2)h), 0 ≤ i, j ≤ N − 1. Suppose the base functions of the continu-
ous linear finite element space S0

1(∆N) are {φi,j(x), (i, j) ∈ Z2}, where φi,j is a scaled and
translated standard continuous linear box spline function φ(x) based on three directions
e1 = (1, 0), e2(0, 1) and e3 = (−1, 1), i.e. φi,j(x) := φ(x/h − (i + 1/2, j + 1/2)) for any
(i, j) ∈ Z2.
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Fig. 1. A triangulation
For any k, we define piecewise linear function UN,M(x, tk) on Ω by

UN,M(x, tk) =
N−1∑
i,j=0

uki,jφi,j(x).

Having defined UN,M(·, tk) for k = 0, · · · ,M on Ω, we further define UN,M(·, t) for tk−1 ≤
t ≤ tk by linear interpolating UN,M(·, tk−1) and UN,M(·, tk) on interval [tk−1, tk]. That is,

UN,M(·, t) =
t− tk−1

∆t
UN,M(·, tk) +

tk − t
∆t

UN,M(·, tk−1).

We next need a sequence of useful lemmas in order to show that the solution of finite
difference scheme (5) converges to the weak solution (6). We first show that the interpolant
UN,M(·, t) is TV monotone (We abuse a bit the notation of TV here since our J(·) includes
not only a variation term but also an extra L2 term). In the following discussion, we need
to replace the L2 integral in (8) by a discrete summation with some error. In addition
to PNf , the piecewise constant projection of f as defined in (10), we let P̃Nu(·, tk) be a
piecewise constant function defined by

P̃Nu(x, tk) = uki,j x ∈ [ih, (i+ 1)h]× [jh, (j + 1)h].

Replacing f and UN,M(·, tk) by PNf and P̃NUN,M respectively, we have

1

2λ

∫
Ω

(UN,M(·, tk)− f)2 =
1

2λ

∫
Ω

(P̃UN,M − PNf)2 + Err =
∑
i,j

(uki,j − fhi,j)2 h2 + Err

with error term Err. It is a standard analysis that the error term converges to zero as
PNf → f in L2(Ω) and by using Lemma 3.5 to be given later in this section. We omit the
detail here.
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Lemma 3.1

J(UN,M(·, tk))) ≤ J(UN,M(·, t)) +O(Err), tk−1 ≤ t ≤ tk. (19)

Proof. The proof is straightforward. First, it is easy to verify that the continuous variation
J(UN,M(·, tk)) equals the discrete variation Jh(uk) up to the error term Err. Define

u(t) := UN,M(·, t) =
t− tk−1

∆t
uk +

tk − t
∆t

uk−1, tk−1 ≤ t ≤ tk.

To prove (19) is equivalent to prove

Jh(uk) ≤ Jh(u(t)) +O(Err), tk−1 ≤ t ≤ tk. (20)

Since uk is the minimizer of the following functional

Eh(v) = Jh(v) +
1

2∆t
‖uk−1 − v‖2

we have

Jh(uk) +
1

2∆t
‖uk−1 − uk‖2 ≤ Jh(u(t)) +

1

2∆t
‖uk−1 − u(t)‖2. (21)

For each term in the summation of the L2 square term

∣∣uk−1 − u(t)
∣∣ =

∣∣∣∣uk−1 − t− tk−1

∆t
uk +

tk − t
∆t

uk−1

∣∣∣∣
=
t− tk−1

∆t

∣∣uk − uk−1
∣∣ ≤ ∣∣uk − uk−1

∣∣ .
Then

1

2∆t
‖uk−1 − u(t)‖2 ≤ 1

2∆t
‖uk−1 − uk−1‖2.

We conclude (20) from (21) and thus,

J(UN,M(·, tk)) = Jh(uk) + Err ≤ Jh(u(t)) + Err = J(UN,M(·, t)) +O(Err).

This completes the proof.

Lemma 3.2 Suppose u0 ∈ W 1,1(Ω), f ∈ L2(Ω). Then ‖ d
dt
UN,M‖L2(ΩT ) < C for a positive

constant C only depending on u0 and f .

Proof. From the Euler-Lagrange equation (14)

uk−1 − uk

∆t
= ∂Jh(uk)

9



The equation holds element-wise at each index (i, j). For the equation at each index (i, j),
we multiply both sides by uk−1

i,j − uki,j and add the equations for all (i, j). We use inner
product notation to write the result in a concise way.〈

uk−1 − uk

∆t
, uk−1 − uk

〉
=
〈
∂Jh(uk), uk−1 − uk

〉
By the definition of sub-differential ∂Jh(uk)〈

uk−1 − uk

∆t
, uk−1 − uk

〉
=
〈
∂Jh(uk), uk−1 − uk

〉
≤ Jh(uk−1)− Jh(uk).

Note that
dUN,M
dt

=
uk−1 − uk

∆t
, tk−1 < t < tk.

We have

1

∆t
‖uk−1 − uk‖2 ≤ Jh(uk−1)− Jh(uk), 1 ≤ k ≤M.

Add the above inequalities for k = 1, · · · ,M ,

M∑
k=1

1

∆t
‖uk−1 − uk‖2 ≤ Jh(u0)− Jh(uM). (22)

It equals ∥∥∥∥dUN,Mdt

∥∥∥∥2

L2(ΩT )

≤ Jh(u0)− Jh(uM) ≤ Jh(u0).

Here u0 = uh0 by the initial values. Note that Jh(uh0) is bounded by a positive constant
independent of h when u0 ∈ W 1,1(Ω). This completes the proof.

Lemma 3.3 Suppose u0, f ∈ L2(Ω). Then ‖UN,M‖L2(ΩT ) ≤ C for a constant C only
dependent on f and u0. Furthermore, ‖UN,M(·, t)‖L2(Ω) ≤ C for a positive constant C
independent of t ∈ [0, T ].

Proof. We use (18) to bound ‖UN,M‖L2(ΩT ) and ‖UN,M(·, t)‖L2(Ω). Recall u0
f = u0. Letting

10



C = max{‖u0
f‖, ‖fh‖}, we have

‖UN,M‖2
L2(ΩT ) =

∫ T

0

‖UN,M(·, t)‖2
L2(Ω) dt

=
M∑
k=1

∫ tk

tk−1

∥∥∥∥(t− tk−1)UN,M(·, tk) + (tk − t)UN,M(·, tk−1)

∆t

∥∥∥∥2

L2(Ω)

dt

≤
M∑
k=1

∫ tk

tk−1

‖UN,M(·, tk)‖2
L2(Ω) + ‖UN,M(·, tk−1)‖2

L2(Ω) dt

≤
M∑
k=1

∫ tk

tk−1

‖uk‖2 + ‖uk−1‖2 dt ≤ 2TC2.

As discussed above, for each t ∈ [0, T ], the integrand is ‖UN,M(·, t)‖2
L2(Ω) which is less than

or equal to 2C2 by (18). These complete the proof.
In image analysis, the input image usually does not have much regularity. For example,

most natural images do not even have weak derivatives. Therefore, to model images, we
introduce the notation of Lipschitz space, and treat images as elements in this space.

Definition 3.1 Let α ∈ (0, 1] be a real number. A function f ∈ Lip(α,L2(Ω)) if f ∈ L2(Ω)
and the following quantity

|f |Lip(α,L2(Ω)) := sup
|h|≤1

‖f(·)− f(·+ h)‖L2(Ωh)

|h|α
(23)

is finite, where Ωh := {x ∈ Ω, x + th ∈ Ω,∀t ∈ [0, 1]}. We let ‖f‖Lip(α,L2(Ω)) = ‖f‖L2(Ω) +
|f |Lip(α,L2(Ω)).

The parameter α is related to the “smoothness” of functions in the Lipschitz space.
Smoother functions belong to Lipschitz spaces with larger α values. For example, a func-
tion of bounded variation is a function in Lip(1, L2(Ω)).

Lemma 3.4 Define translation operators T1,0 and T0,1 by

(T1,0u
k)i,j = uki+1,j 0 ≤ i, j ≤ N − 1

(T0,1u
k)i,j = uki,j+1 0 ≤ i, j ≤ N − 1

Then ∥∥T1,0u
k − uk

∥∥ ≤ (‖u0‖Lip(α,L2) + ‖f‖Lip(α,L2))h
α

and similarly ∥∥T0,1u
k − uk

∥∥ ≤ (‖u0‖Lip(α,L2) + ‖f‖Lip(α,L2))h
α.

11



Proof. We only prove the first inequality. Recall the Euler-Lagrange equation that

uk−1 − uk

∆t
= ∂Jh(uk).

We write the equation element-wisely as

uki,j − uk−1
i,j

∆t
=

1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

+
1

2
div−

 ∇−uki,j√
ε+ |∇−uki,j|2

− 1

λ
(uki,j − fhi,j).

Then subtract the equation at index (i + 1, j) from the same equation at index (i, j) for
0 ≤ i ≤ N − 2.

uki+1,j − uki,j
∆t

−
uk−1
i+1,j − uk−1

i,j

∆t
= F (∇+uki+1,j,∇+uki,j) + F (∇−uki+1,j,∇−uki,j)

− 1

λ
(uki+1,j − uki,j) +

1

λ
(fhi+1,j − fhi,j) (24)

where F (∇+uki+1,j,∇+uki,j) is defined by

F (∇+uki+1,j,∇+uki,j) =
1

2
div+

 ∇+uki+1,j√
ε+ |∇+uki+1,j|2

− 1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

 .

Equation (24) only holds for 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1. Although equation (24) is not
defined for i = N − 1, we can set ukN+1,j = ukN,j and fN+1,j = fN,j, and equation (24) still
holds. We multiply (24) by uki+1,j−uki,j and add all resulting equations for 0 ≤ i, j ≤ N −1
to have

1

∆t

N−1∑
i,j=0

(uki+1,j − uki,j)2

=
1

∆t

N−1∑
i,j=0

(uk−1
i+1,j − uk−1

i,j )(uki+1,j − uki,j)

+
N−1∑
i,j=0

F (∇+uki+1,j,∇+uki,j)(u
k
i+1,j − uki.j) +

N−1∑
i,j=0

F (∇−uki+1,j,∇−uki,j)(uki+1,j − uki.j)

−
N−1∑
i,j=0

1

λ
(uki+1,j − uki,j)2 +

N−1∑
i,j=0

1

λ
(fhi+1,j − fhi,j)(uki+1,j − uki,j).
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We show next that the second term is no greater than zero. The third term can be proved
to be nonpositive similarly. By definition of F ,

N−1∑
i,j=0

F (∇+uki+1,j,∇+uki,j)(u
k
i+1,j − uki,j)

=
N−1∑
i,j=0

1

2
div+

 ∇+uki+1,j√
ε+ |∇+uki+1,j|2

 (uki+1,j − uki,j)−
N−1∑
i,j=0

1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

 (uki+1,j − uki,j).

We use the discrete divergence operators and gradient operators to get

N−1∑
i.j=0

F (∇+uki+1,j,∇+uki,j)(u
k
i+1,j − uki,j)

=
1

2

N−1∑
i,j=0

div+

 ∇+uki+1,j√
ε+ |∇+uki+1,j|2

− div+

 ∇+uki,j√
ε+ |∇+uki,j|2

 (uki+1,j − uki,j)

= −1

2

N−1∑
i,j=0

 ∇+uki+1,j√
ε+ |∇+uki+1,j|2

−
 ∇+uki,j√

ε+ |∇+uki,j|2

 · (∇+uki+1,j −∇+uki,j)

−
N−1∑
j=0

|∇+uk0,j|2√
ε+ |∇+uk0,j|2

Each term in the first sum is non-negative due to the fact that for any x, y ∈ R2,(
x√

ε+ |x|2
− y√

ε+ |x|2

)
· (x− y) ≥ 0

By similar arguments, one has

N−1∑
i,j=0

F (∇−uki+1,j,∇−uki,j)(uki+1,j − uki,j) ≤ 0

It follows

1

∆t

N−1∑
i,j=0

(uki+1,j − uki,j)2

≤ 1

∆t

N−1∑
i,j=0

(uk−1
i+1,j − uk−1

i,j )(uki+1,j − uki,j)

−
N−1∑
i,j=0

1

λ
(uki+1,j − uki,j)2 +

N−1∑
i,j=0

1

λ
(fhi+1,j − fhi,j)(uki+1,j − uki,j).

13



We rewrite the sums in form of discrete integrals and discrete inner products, and apply
Cauchy-Schwarz inequality

1

∆t
‖T1,0u

k − uk‖2

≤ 1

∆t

〈
T1,0u

k−1 − uk−1, T1,0u
k − uk

〉
− 1

λ
‖T1,0u

k − uk‖2 +
1

λ

〈
T1,0f − f, T1,0u

k − uk
〉

≤ 1

2∆t
‖T1,0u

k−1 − uk−1‖2 +
1

2∆t
‖T1,0u

k − uk‖2

− 1

2λ
‖T1,0u

k − uk‖2 +
1

2λ
‖T1,0f − f‖2.

Rearrange and combine similar terms to have

(
1

∆t
+

1

λ
)‖T1,0u

k − uk‖2 ≤ 1

∆t
‖T1,0u

k−1 − uk−1‖2 +
1

λ
‖T1,0f − f‖2. (25)

We now prove the following inequality by induction

‖T1,0u
k − uk‖2 ≤ max{‖T1,0u

0 − u0‖2, ‖T1,0f − f‖2}. (26)

It is obvious true for k = 0. Assuming the inequality holds for k − 1, one can easily see
that it also holds for k by (25). Therefore, one has

‖T1,0u
k − uk‖ ≤ ‖T1,0u

0 − u0‖+ ‖T1,0f − f‖
≤ (‖u0‖Lip(α,L2) + ‖f‖Lip(α,L2))h

α.

This completes the proof.
We also define a piecewise constant function UN,M(·, t) in a similar way to the definition

of UN,M(·, t). First we define for k = 0, · · · ,M

UN,M(x, tk) = uki,j, ∀x ∈ [ih, (i+ 1)h]× [jh, (j + 1)h].

Then we define UN,M(·, t) for tk−1 ≤ t ≤ tk by interpolating U(·, tk−1) and U(·, tk):

U(·, t) =
t− tk−1

∆t
U(·, tk) +

tk − t
∆t

U(·, tk−1).

We are now ready to show

Lemma 3.5 Suppose f, u0 ∈ Lip(α,L2(Ω)). Then

‖UN,M − UN,M‖L2(ΩT ) ≤ C
√
T (‖u0‖Lip(α,L2) + ‖f‖Lip(α,L2))h

α

for a positive constant C dependent only on f and u0.
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Proof. Let g(x, t) = UN,M(x, t) − UN,M(x, t). For any x, g(x, t) is a linear function of t.
A direct calculation shows∫ tk

tk−1

‖g(x, t)‖2
L2(Ω) dt ≤

1

2

(
‖g(x, tk)‖2

L2(Ω) + ‖g(x, tk−1)‖2
L2(Ω)

)
(tk − tk−1).

Adding the inequality for k = 1, · · · ,M , we have∫ T

0

‖g(x, t)‖2
L2(Ω) dt ≤ ∆t

M∑
k=0

‖g(x, tk)‖2
L2(Ω). (27)

Then we only need to bound ‖g(x, tk)‖. We note that g(x, t) is a piecewise linear function
of x on each sub-grid Ωi,j := [ih, (i + 1)h] × [jh, (j + 1)h], 0 ≤ i, j ≤ N − 1 for any t.
Tedious calculation gives

‖g(x, tk)‖2
L2(Ω) =

∑
i,j

∫
Ωi,j

|UN,M(x, tk)− UN,M(x, tk)|2

≤
∑
i,j

Ch2
(∣∣uki+1,j − uki,j

∣∣2 +
∣∣uki,j+1 − uki,j

∣∣2 +
∣∣uki−1,j − uki,j

∣∣2 +
∣∣uki,j−1 − uki,j

∣∣2)
≤ C

(∥∥T1,0u
k − uk

∥∥2
+
∥∥T0,1u

k − uk
∥∥2
)

≤ 2C(‖f‖Lip(α,L2) + ‖u0‖Lip(α,L2))
2h2α.

The last line follows from Lemma 3.4. We substitute the bound for the ‖g(x, tk)‖L2(Ω) in
inequality (27) to complete the proof.

Finally we are ready to prove the main result of this section.

Theorem 3.1 Suppose that u0 ∈ W 1,1(Ω), f ∈ L2(Ω). Furthermore, suppose that f ∈
Lip(α,L2(Ω)). If we choose ∆t = o(hα), then there exists a function U∗ in L2(ΩT ) so that
UN,M converge to U∗ weakly as N,M →∞ and U∗ is the weak solution of (3).

Proof. By Lemma 3.3, there exists a weakly convergent subsequence of {UN,M , N ≥
1,M ≥ 1} in L2(ΩT ). For convenience, we assume the whole sequence converges to
U∗ ∈ L2(ΩT ) weakly. We now show U∗ is the weak solution of the gradient flow as in
Definition 2.1. As the weak solution is unique, the whole sequence {UN,M , N ≥ 1,M ≥ 1}
converges weakly to U∗.

Let us outline the main ideas of the proof. By using Theorem 2.1, we need to show
that U∗ satisfies the following inequality:∫ s

0

∫
Ω

d

dt
v(v − U∗)dxdt+

∫ s

0

(J(v)− J(U∗))dt

≥ 1

2

[∫
Ω

(v(x, s)− U∗(x, s))2dx−
∫

Ω

(v(x, 0)− u0(x, 0))2dx

]
(28)
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for all v ∈ L1([0, T ],W 1,1(Ω)) with ∂
∂n
v(x, t) = 0 for all (t, x) ∈ [0, T )× ∂Ω, where

J(u) =

∫
Ω

√
ε+ |∇u(x, t)|2dx+

1

2λ

∫
Ω

|f(x, t)− u(x, t)|2dx.

By the lower semi-continuity of J , Fatou’s lemma and standard weak convergence, we have∫ s

0

∫
Ω

d

dt
v(v − U∗)dxdt+

∫ s

0

(J(v)− J(U∗))dt

≥ lim inf
N,M→∞

[∫ s

0

∫
Ω

d

dt
v(v − UN,M)dxdt+

∫ s

0

(J(v)− J(UN,M))dt

]
. (29)

By the Banach-Steinhaus theorem,

lim inf
N,M→∞

1

2

[∫
Ω

(v(x, s)− UN,M(x, s))2dx−
∫

Ω

(v(x, 0)− u0(x, 0))2dx

]
≥ 1

2

[∫
Ω

(v(x, s)− U∗(x, s))2dx−
∫

Ω

(v(x, 0)− u0(x, 0))2dx

]
. (30)

Indeed, in (30), v(x, s) − UN,M(x, s) is convergent weakly to v(x, s) − U∗(x, s) in L2(ΩT )
and for all s ∈ [0, T ], v(x, s) − UN,M(x, s) is convergent weakly to v(x, s) − U∗(x, s) in
L2(Ω). They define linear functionals on L2(Ω) for all s ∈ [0, T ]. By the Banach-Steinhaus
theorem, the norm of the linear function satisfies the following inequality∫

Ω

(v(x, s)− U∗(x, s))2dx ≤ lim inf
N,M→∞

∫
Ω

(v(x, s)− UN,M(x, s))2dx

for almost all s ∈ [0, T ].
We now prove the following inequality to finish the proof.∫ s

0

∫
Ω

d

dt
v(v − UN,M)dxdt+

∫ s

0

(J(v)− J(UN,M))dt

≥ 1

2

[∫
Ω

(v(x, s)− UN,M(x, s))2dx−
∫

Ω

(v(x, 0)− u0(x, 0))2dx

]
− ErrorN,M

where ErrorN,M > 0 is an error term that goes to zero as N,M →∞. It’s straightforward
to verify(cf. [9]) that the above inequality is equivalent to∫ s

0

∫
Ω

d

dt
UN,M(v − UN,M)dxdt+

∫ s

0

(J(v)− J(UN,M))dt ≥ −ErrorN,M . (31)

Recall that S0
1(∆N) is the finite element space associated with triangulation ∆N . We

replace the original W 1,1 test function v(·, t) in (31) with a test function v′(·, t) that is in
L1([0, T ], S0

1(∆N)) which introduces another error eN,M .

eN,M =

∫ s

0

∫
Ω

d

dt
UN,M(v − v′) + J(v)− J(v′).
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It is easy to show eN,M tends to zero as N,M go to infinity by standard density argumen-
tation based on linear finite element approximation property (cf. Theorem 4.4.20 in [5]).
Thus we only need to prove∫ s

0

[∫
Ω

d

dt
UN,M(v − UN,M)dx+ (J(v)− J(UN,M))

]
dt ≥ −ErrorN,M (32)

for all test functions v in L1([0, T ], S0
1(∆N)) where ErrorN,M tends to zero as N,M →∞.

Let us verify the key inequality (32). Consider the integrand of the left side of (32) for
t = tk. For a continuous piecewise linear function v(·, tk) ∈ S0

1(∆N), assuming v(·, tk) =∑
i,j v

k
i,jφi,j, we have

J(v(·, tk)) =
h2

2

∑
i,j

√
ε+ |∇+vki,j|2 +

h2

2

∑
i,j

√
ε+ |∇−vki,j|2 +

1

2λ

∫
Ω

(v(·, tk)− f)2 (33)

We need to replace the continuous integral in (33) by a discrete summation with some
error. Let P̃Nv(·, tk) be a piecewise constant function defined by

P̃Nv(x, tk) = vki,j x ∈ [ih, (i+ 1)h]× [jh, (j + 1)h]

as before and PNf be the piecewise constant projection of f as defined in (10). Replacing
f and v by PNf and P̃Nv respectively, we have

1

2λ

∫
Ω

(v(·, tk)− f)2 =
1

2λ

∑
i,j

(vki,j − fhi,j)2 h2 +
1

2λ

∫
Ω

((v(·, tk)− f)2 − (P̃Nv(·, tk)− PNf)2).

It is a standard analysis that the second term on the right-hand side converges to zero
as PNf → f and P̃Nv → v in L2(Ω). We omit the detail here. Thus, we write

1

2λ

∫
Ω

(v(·, tk)− f)2 =
1

2λ

∑
i,j

(vki,j − fhi,j)2 h2 + Err1,

where Err1 denotes the error dependent on N that is convergent to zero when N → ∞.
Similarly, we have

1

2λ

∫
Ω

(UN,M(·, tk)− f)2 =
1

2λ

∑
i,j

(uki,j − fhi,j)2 h2 + Err2.

with error term Err2 that converges to zero as N →∞ by Lemma 3.5.
We remind the reader that that for t ∈ (tk−1, tk),

d

dt
UN,M(·, t) =

UN,M(·, tk)− UN,M(·, tk−1)

∆t
. (34)
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Then∫
Ω

d

dt
UN,M(v − UN,M)dx =

∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(v(·, tk)− UN,M(·, tk))dx.

Replacing v, UN,M by P̃Nv, UN,M respectively, we have∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(v(·, tk)− UN,M(·, tk))

=

∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(P̃Nv(·, tk)− UN,M(·, tk))dx+

Err3

∆t

=
∑
i,j

uki,j − uk−1
i,j

∆t
(vi,j − uki,j)h2 +

Err3

∆t
,

where Err3 stands for another error term that can be bounded by Lemma 3.5. Note that
we have to use Cauchy-Schwarz inequality to show that Err3 goes to zero at the rate of
hα. By one of the assumptions, we know Err3/∆t→ 0 when N →∞.

We put all the estimates above together to have∫
Ω

d

dt
UN,M(·, tk)(v(·, tk)− UN,M(·, tk))dx+ J(v(·, tk))− J(UN,M(·, tk))

=
∑
i,j

uki,j − uk−1
i,j

∆t
(vki,j − uki,j)h2+

1

2

∑
i,j

√
ε+ |∇+vki,j|2 h2 +

1

2

∑
i,j

√
ε+ |∇−vki,j|2 h2 +

1

2λ

∑
i,j

(vki,j − fhi,j)2 h2

−1

2

∑
i,j

√
ε+ |∇+uki,j|2 h2 − 1

2

√
ε+ |∇−uki,j|2 h2 − 1

2λ

∑
i,j

(uki,j − fhi,j)2 h2

+
Err3

∆t
+ Err1 − Err2

Note that the summation of the first 7 terms on the right-hand side above are nonnegative
by inequality (15) in Lemma 2.1. Then∫

Ω

d

dt
UN,M(·, tk)(v(·, tk)− UN,M(·, tk))dx+ J(v(·, tk))− J(UN,M(·, tk))

≥ Err3

∆t
+ Err1 − Err2.

Thus the integrand on the left-hand side of the inequality (32) for t = tk is bigger than a
small term which will go to zero. .

Now we consider the integrand on the left-hand side of the inequality when t ∈ (tk−1, tk).
Note that

UN,M(·, t) = UN,M(·, tk−1)(tk − t)/∆t+ UN,M(·, tk)(t− tk−1)/∆t
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Without loss of generality, we consider the integration over [0, T ] instead of [0, s]. By using
(34), we have∫ T

0

∫
Ω

d

dt
UN,M(v(·, t)− UN,M(·.t)) dxdt

=
M∑
k=1

∫ tk

tk−1

∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(v(·, t)− UN,M(·, t)) dxdt

=
M∑
k=1

∫ tk

tk−1

∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(v(·, t)− UN,M(·, tk) dxdt+ Err4.

We bound Err4 by

|Err4|

≤ 2
M∑
k=1

∫ tk

tk−1

∫
Ω

∣∣∣∣UN,M(·, tk)− UN,M(·, tk−1)

∆t
(UN,M(·, tk)− UN,M(·, tk−1))

tk − t
∆t

∣∣∣∣ dxdt.
≤

M∑
k=1

∫
Ω

∣∣∣∣UN,M(·, tk)− UN,M(·, tk−1)

∆t
(UN,M(·, tk)− UN,M(·, tk−1)) dx

∣∣∣∣∆t
= ∆t

∥∥∥∥dUN,Mdt

∥∥∥∥2

L2(ΩT )

≤ C∆t,

where the last inequality comes from Lemma 3.2.
For the variation term, we write∫ T

0

J(v(·, t))− J(UN,M(·, t))

=
M∑
k=1

∫ tk

tk−1

J(v(·, t))− J(UN,M(·, t)) dt

=
M∑
k=1

∫ tk

tk−1

J(v(·, t))− J(UN,M(·, tk)) dt+ Err5

with

Err5 =
M∑
k=1

∫ tk

tk−1

J(UN,M(·, t))− J(UN,M(·, tk)) dt.

To bound Err5, we use the convexity of J and the monotonicity of the variation term
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described in Lemma 3.1,

|Err5|

≤
M∑
k=1

∫ tk

tk−1

∣∣∣∣t− tk−1

∆t
J(UN,M(·, tk)) +

tk − t
∆t

(JN,M(·, tk−1))− J(UN,M(·, tk))
∣∣∣∣ dt

=
M∑
k=1

|J(UN,M(·, tk−1)− J(UN,M(·, tk))|
∫ tk

tk−1

tk − t
∆t

dt

≤
M∑
k=1

2|Err|∆t = 2T |Err|.

We conclude that Err5 tends to zero as Err approaches zero. Collecting these results
together, we proved inequality (32). Indeed, the detail with s = T can be explained as
follows. Letting

Err6 :=
M∑
k=1

∫ tk

tk−1

[∫
Ω

d

dt
UN,M(·, tk)(v(·, t)− v(·, tk))dx+ J(v(·, t))− J(v(·, tk))

]
dt,

the left-hand side of (32) with s = T is written∫ T

0

∫
Ω

d

dt
UN,M(v − UN,M)dxdt+

∫ T

0

(J(v)− J(UN,M))dt

=
M∑
k=1

∫ tk

tk−1

∫
Ω

UN,M(·, tk)− UN,M(·, tk−1)

∆t
(v(·, t)− UN,M(·, tk) dxdt+ Err4

+
M∑
k=1

∫ tk

tk−1

J(v(·, t))− J(UN,M(·, tk)) dt+ Err5

=
M∑
k=1

∫ tk

tk−1

[∫
Ω

d

dt
UN,M(·, tk)(v(·, tk)− UN,M(·, tk))dx+ J(v(·, tk))− J(UN,M(·, tk))

]
dt+ Err4

+ Err5 +
M∑
k=1

∫ tk

tk−1

[∫
Ω

d

dt
UN,M(·, tk)(v(·, t)− v(·, tk))dx+ J(v(·, t))− J(v(·, tk))

]
dt

≥T Err3

∆t
+ TErr1 − TErr2 + Err4 + Err5 + Err6.

As we have already shown that the first 5 terms go to zero as N,M →∞. The remaining
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part is to show that Err6 → 0. To this end, by using Cauchy-Schwarz’s inequality,

Err6 ≤
M∑
k=1

∫ tk

tk−1

‖ d
dt
UN,M(·, tk)‖2‖v(·, t)− v(·, tk)‖2dt

+
M∑
k=1

∫ tk

tk−1

[∫
Ω

|∇v(·, t)−∇v(·, tk)|dx+
C

λ
‖v(·, t)− v(·, tk)‖L2(Ω)

]
dt, (35)

where C is a constant dependent on f and ‖UN,M(·, t)‖L2(Ω) which is bounded independent
of t by Lemma 3.3. Now the first summation in the above (35) is

M∑
k=1

∫ tk

tk−1

‖ d
dt
UN,M(·, tk)‖2‖v(·, t)− v(·, tk)‖2dt

≤
M∑
k=1

‖uk − uk−1‖2
1

4t

∫ tk

tk−1

‖v(·, t)− v(·, tk)‖2dt

≤
√
M4t‖ d

dt
UN,M‖2 max

1≤k≤M

1

4t

∫ tk

tk−1

‖v(·, t)− v(·, tk)‖2dt

≤
√
TC max

1≤k≤M

1

4t

∫ tk

tk−1

‖v(·, t)− v(·, tk)‖2dt→ 0

for all v ∈ C([0, T ], S0
1(4N)), where we have used Lemma 3.2. The two terms in the

second summation in the (35) go to zero for all v ∈ C([0, T ], S0
1(4N)) because they are

approximated by their piecewise constant functions. That is, Err6 goes to zero for all
v ∈ L1([0, T ], S0

1(4N)) and hence, (32) holds for all such functions. These complete the
proof.

4 Numerical Solution of Our Finite Difference Scheme

The system (5) of nonlinear equations has been solved by many methods as explained in
[16]. In [6], the researchers provided an analysis of a fixed point method proposed in [16]
based on auxiliary variable and functionals and proved that the iterative method converges.
In this section, we mainly present another method to show the convergence of the fixed
point method. From notation simplicity, we assume the grid size h = 1 in this section that
has no influence in the convergence analysis of our algorithm.

First of all, let us explain the fixed point method. Recall that we need to solve {uki,j, 0 ≤
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i, j ≤ N − 1} from the following equations

uki,j − uk−1
i,j

∆t
− 1

2
div+

 ∇+uki,j√
ε+ |∇+uki,j|2

− 1

2
div−

 ∇−uki,j√
ε+ |∇−uki,j|2


+

1

λ
(uki,j − fhi,j) = 0, 0 ≤ i, j ≤ N − 1,

assuming that we have the solution {uk−1
i,j , 0 ≤ i, j ≤ N − 1}. Let us define an iterative

algorithm to compute uki,j.

Algorithm 4.1 Starting with v0
i,j = uk−1

i,j , 0 ≤ i, j ≤ N − 1, for ` = 1, 2, · · · ,, we compute

v`i,j − uk−1
i,j

∆t
=

1

2
div+

 ∇+v`i,j√
ε+ |∇+v`−1

i,j |2

+
1

2
div−

 ∇−v`i,j√
ε+ |∇−v`−1

i,j |2


− 1

λ
(v`i,j − fhi,j), 0 ≤ i, j ≤ N − 1, (36)

together with boundary conditions in (5).

We now show that the iterative solutions {v`i,j, 0 ≤ i, j ≤ N − 1}, ` ≥ 0 converge.
Indeed, we first have

Lemma 4.1 There exists a positive constant C dependent only on f and initial values
uk−1
i,j such that

‖v`‖2 :=
∑
i,j

|v`i,j|2 ≤ C (37)

for all ` ≥ 1.

Proof. Multiplying v`i,j to the equation (36) and summing over i, j = 0, · · · , N − 1, we
have

‖v`‖2

∆t
=

1

∆t

∑
i,j

uk−1
i,j v

`
i,j −

1

2

∑
i,j

∇+v`i,j∇+v`i,j√
ε+ |∇+v`−1

i,j |2

−1

2

∑
i,j

∇−v`i,j∇−v`i,j√
ε+ |∇−v`−1

i,j |2
− 1

λ
‖v`‖2 +

1

λ

∑
i,j

fhi,jv
`
i,j.

By using the Cauchy-Schwarz equality, it follows that

(
1

∆t
+

1

λ
)‖v`‖2 ≤ 1

∆t
‖uk−1

i,j ‖‖v`‖+
1

λ
‖fh‖‖v`‖.
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Hence, ‖v`‖ is bounded by a constant C independent of `.
It follows that the sequence of vectors {v`i,j, 0 ≤ i, j ≤ N − 1}, ` ≥ 1 contains a

convergent subsequence. Let us say the vectors v`ki,j, 0 ≤ i, j ≤ N − 1 converge to v∗i,j, 0 ≤
i, j ≤ N − 1. Next we claim that the whole sequence converges. To prove this claim, we
recall the energy functional

Eh(v) = Jh(v) +
1

2∆t

∑
i,j

(vi,j − uk−1
i,j )2. (38)

where

Jh(v) =
1

2

∑
i,j

√
ε+ |∇+vi,j|2 +

1

2

∑
i,j

√
ε+ |∇−vi,j|2 +

1

2λ

∑
i,j

(vi,j − fhi,j)2. (39)

Let us prove the following lemma

Lemma 4.2 For all ` ≥ 1, we have

1

2λ
‖v` − v`−1‖2 ≤ E(v`−1)− E(v`).

Proof. Fix ` ≥ 1. For the terms in E(v`−1)− E(v`), we first consider

1

2∆t

∑
i,j

(v`−1
i,j − uk−1

i,j )2 − 1

2∆t

∑
i,j

(v`i,j − uk−1
i,j )2

=
1

2∆t

∑
i,j

(v`−1
i,j − v`i,j)2 +

1

∆t

∑
i,j

(v`i,j − uk−1
i,j )(v`−1

i,j − v`i,j). (40)

To estimate the second term on the right-hand side of the equation above, we multiply
v`−1
i,j − v`i,j to the equation (36) and sum over i, j = 0, · · · , N − 1 to have

1

∆t

∑
i,j

(v`i,j − uk−1
i,j )(v`−1

i,j − v`i,j)

= −1

2

∑
i,j

∇+v`i,j∇+(v`−1
i,j − v`i,j)√

ε+ |∇+v`−1
i,j |2

− 1

2

∑
i,j

∇−v`i,j∇−(v`−1
i,j − v`i,j)√

ε+ |∇−v`−1
i,j |2

− 1

λ

∑
i,j

(v`i,j − fhi,j)(v`−1
i,j − v`i,j).

Note that it is easy to see

−1

2

∑
i,j

∇+v`i,j∇+(v`−1
i,j − v`i,j)√

ε+ |∇+v`−1
i,j |2

≥ −1

4

∑
i,j

∇+v`−1
i,j ∇+v`−1

i,j√
ε+ |∇+v`−1

i,j |2
+

1

4

∑
i,j

∇+v`i,j∇+v`i,j√
ε+ |∇+v`−1

i,j |2
.

23



Similar for other term involving ∇−.
Next we consider

1

2λ

∑
i,j

(v`−1
i,j − fhi,j)2 − 1

2λ

∑
i,j

(v`i,j − fhi,j)2

=
1

2λ

∑
i,j

(v`−1
i,j − v`i,j)(v`−1

i,j + v`i,j − 2fhi,j)

=
1

2λ

∑
i,j

(v`−1
i,j − v`i,j)2 +

1

λ

∑
i,j

(v`i,j − fhi,j)(v`−1
i,j − v`i,j). (41)

Finally we can easily verify the following inequality

1

2

∑
i,j

√
ε+ |∇+v`−1

i,j |2 −
1

2

∑
i,j

√
ε+ |∇+v`i,j|2

≥ 1

4

∑
i,j

∇+v`−1
i,j ∇+v`−1

i,j√
ε+ |∇+v`−1

i,j |2
− 1

4

∑
i,j

∇+v`i,j∇+v`i,j√
ε+ |∇+v`−1

i,j |2
. (42)

Similar for the terms involving ∇−. We now add all equalities and inequalities (40), (41),
(42) together to have

E(v`−1)− E(v`) ≥ 1

2λ

∑
i,j

(v`−1
i,j − v`i,j)2. (43)

This completes the proof.
We are now ready to prove the main result in this subsection.

Theorem 4.1 The iterative solutions defined in Algorithm 4.1 converge to the solution of
(5) for any fixed k ≥ 1.

Proof. We have already shown that the iterative solution vectors {v`i,j, 0 ≤ i, j ≤ N − 1}
have a convergent subsequence {v`ki,j, 0 ≤ i, j ≤ N − 1}, k = 1, 2, · · · to a vector v∗. It is

easy to see that the energies E(v`k), k ≥ 1 are also convergent to E(v∗). By Lemma 4.2, we
know that energies E(v`) are decreasing for all ` and hence, E(v`k+1) decrease to E(v∗).
By using Lemma 4.2 again, we see ‖v`k+1 − v`k‖2 ≤ 2λ(E(v`k − E(v`k+1) → 0. Thus,
v`k+1, k ≥ 1 are also convergent to v∗. The uniqueness of the solution of (5) implies that
v∗ is the solution vector {uki,j, 0 ≤ i, j ≤ N − 1}.

5 Computational Results

We have implemented our iterative algorithm in the previous section in MATLAB. Let us
report two numerical examples.
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Example 5.1 In this example, we tested the proposed algorithm on two exact functions:

u1(x, t) =
100 cos(πx/50) cos(πy/50)

t+ 1

and

u2(x, t) =
100 cos(πx/50) cos(πy/50)

e0.2t
.

It is a straightforward to calculate from the time dependent PDE to find out the corre-
sponding function f with λ > 0. They are

f1(x, t) =
100 cos(πx/50) cos(πy/50)

1 + t
− λ100 cos(πx/50) cos(πy/50)

(1 + t)2

+
λ100(π/50)2 cos(πx/50) cos(πy/50)/(1 + t)

(
2ε+ (2π)2

(1+t)2
(sin2(πx/50) + sin2(πy/50))

)
(
ε+ (2π)2/(1 + t)2(sin2(πx/50) cos2(πy/50) + cos2(πx/50) sin2(πy/50))

)3/2

for (x, y) ∈ [0, 50]× [0, 50], and t ∈ [0, 19] and

f2(x, t) =
100 cos(πx/50) cos(πy/50)

e0.2t
− λ20 cos(πx/50) cos(πy/50)

e0.2t

+
λ100(π/50)2 cos(πx/50) cos(πy/50)e−0.2t

(
2ε+ (2π)2e−0.4t(sin2(πx/50) + sin2(πy/50))

)(
ε+ (2π)2e−0.4t(sin2(πx/50) cos2(πy/50) + cos2(πx/50) sin2(πy/50))

)3/2

with (x, y) ∈ [0, 50] × [0, 50], and t ∈ [0, 15]. For discretization of the space domain, a
uniform mesh with ∆x = ∆y = 1 was used, leading to a total number 50× 50 grids points.
On the time domain, we used a uniform step size ∆t = 0.019, which leads to a total
number of 1000 steps. We use u1(x, y, 0) = 100 cos(πx/50) cos(πy/50) as an initial value.
We choose the final time T1 = 19 with u1(x, y, T1) = 5 cos(πx/50) cos(πy/50). We use a
uniform time step with step size ∆t = 0.019 and do 1000 steps. In each step, we do 10
iterations. Similarly, for u2, we use the final time T2 = 15 with the same initial value and do
1000 steps in time. In Figure 1, we show the graph of the function 5 cos(πx/50) cos(πy/50)
which is the final time for u1 and u2. In Figure 2, we show the relative and maximum errors
of numerical solutions from Algorithm 4.1 and the exact solution u1(x, t) and u2(x, t).

Example 5.2 In this Example, we use the algorithm to remove the noised from images.
For comparison, we also provide denoised images by using a standard Perona-Malik PDE
method with diffusivity function c(s) = 1/

√
1 + s. A Gaussian noise with σ2 = 20 is added

to the clean image of LENA and BARBARA. The PSNR of the noised images is 22.11.
The two denoised images are shown in Figures 3 and 4. The left one is done by the PM
method and the right one is based on our finite difference scheme. To test our method we
in fact divided each of noised image into several small blocks, denoise each block and add
them together. From these examples, we can see that our finite difference scheme works as
the same or slightly better than the Perona-Malik method.
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Figure 1: Plot of the function u(x, y) = 5 cos(πx/50) cos(πy/50) at the final time.

Relative Errors Maximum Errors

Figure 2: The error curves of red dash lines are associated with u1 and the error curve of
blue solid lines are associated with u2.
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Figure 3: The denoised images by the PM method and the denoised image (right) by our
finite difference scheme

Figure 4: The denoised images by the PM method and the denoised image (right) by our
finite difference scheme

27



6 Remarks

We end this paper with a few remarks.

Remark 6.1 P. Perona and J. Malik proposed a non-stationary PDE model in [14] to
remove noises by using anisotropic diffusion. For a given noised image f , we find an
improved image u by solving the following non-stationary PDE model with initial value f
over time t ∈ [0, T ): 

∂u
∂t

= div(c(|∇u|2)∇u), in Ω× (0, T )
∂u
∂n

= 0, on ∂Ω× (0, T ),

u(0, x) = f(x), in Ω,

(44)

where c(s) : [0,+∞) 7→ [0,+∞) is a diffusive function which is a decreasing function
satisfying c(0) = 1 and lims→+∞ c(s) = 0. The following is a list of commonly used
diffusive functions:

• c(s) = 1/
√

1 + s/λ which is called Charbonnier diffusivity.

• c(s) = 1/(1 + s/λ) which was used in [14]. We may call it Perona-Malik diffusivity.

• c(s) = exp(−c/λ) which is the standard Gaussian diffusivity function.

• c(s) = (1 + s/λ)β−1/2 for β ∈ (0, 1/2).

For a fixed c(s), we solve u(T, x) for a large T such that the restored image u(T, x) is a
satisfactory one. If we let T sufficiently large, u(T, x) starts a degradation such as some
edges are lost or severally blurred.

It is clear when using the Charbonnier diffusivity, i.e., c(s) = 1/
√
ε+ s, the PDE in

(44) is very similar to the one in (3) with two distinct differences: one is λ in (3) is
∞ and the other one is to use the noised image f as an initial value. Our convergence
analysis discussed in the previous two sections can be applied to the PM model with the
special diffusive function c(s). In addition, the convexity of anti-derivative of c(s) plays a
significant role in our analysis. For other diffusive functions, e.g., Perona-Malik diffusive
function, we notice that the function C(s) such that C ′(s) = c(s) = 1/(1 + s/λ) is not
convex when s > λ. When s ≤ λ, i.e. |∇u| ≤ λ for t ∈ [0, T ] for some T > 0, C(s) is
convex and our analysis can be used to show that the corresponding finite difference method
is convergent.

Remark 6.2 Our convergence analysis is independent of ε. Thus, we can let ε = 0. Also,
we can replace the integral with coefficient 1/(2λ) by the boundary integral. Then the time
dependent PDE is associated with evolutionary surfaces with prescribed mean curvature as
in [12] and [11]. Our analysis can be used to show that the corresponding finite difference
method for evolutionary surfaces of prescribed mean curvature is convergent to the pseudo-
solution.
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Remark 6.3 It is interesting to know the convergence rate of the finite difference solution
to the weak solution of (3). The convergence rate of the fully discrete finite element solution
was established in [8] under a high regularity assumption on the noised image f , i.e.,
f ∈ L∞((0, T ];W 1,∞(Ω)) and a very high regularity condition on domain Ω, i.e. ∂Ω ∈ C3.
In general, an image function may not have such a high regularity. We hope to reduce
the assumption on the regularities and give an estimate of convergence rate for the finite
element solutions. These have to be left to the interested reader.

Acknowledgement 6.1 The authors would like to thank Leopold Matamba Messi for sev-
eral suggestions which improve the readability of this paper.
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