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SPHERICAL SPLINES
FOR DATA INTERPOLATION AND FITTING∗

V. BARAMIDZE† , M. J. LAI† , AND C. K. SHUM‡

Abstract. We study minimal energy interpolation and discrete and penalized least squares ap-
proximation problems on the unit sphere using nonhomogeneous spherical splines. Several numerical
experiments are conducted to compare approximating properties of homogeneous and nonhomoge-
neous splines. Our numerical experiments show that nonhomogeneous splines have certain advantages
over homogeneous splines.
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1. Introduction. Contemporary research in atmospheric sciences, geodesy, and
geophysics requires the use of global data heterogeneously distributed in space around
Earth. For spherical data interpolation/approximation, tensor products of univariate
splines are not a good choice, since data locations are not usually spaced over a regular
grid. Radial basis functions are not good candidates either, since the data values may
have no rotational symmetry.

Spherical Bernstein–Bézier splines (introduced in [1] and studied in [2] and [7]) are
well suited for scattered data interpolation/approximation problems. The spherical
spline functions have many properties in common with classical polynomial splines
over planar triangulations. Moreover, many spline interpolation and approximation
methods for planar scattered data problems have analogues in spherical setting [2].

One of the disadvantages of using homogeneous spherical splines is that spline
spaces of even and odd degrees have only zero function in common due to homogeneity
of the basis. More explicitly, the spline space Sr

d(Δ) of degree d and smoothness r
(defined in [2]) with d odd does not contain constant functions, and the spline space
Sr
d(Δ) with d even does not contain linear functions. Therefore in the homogeneous

spline spaces reproduction of polynomials of degree m ≤ d is not possible unless
m = d mod(2).

To overcome this disadvantage we propose a simultaneous employment of two
spaces Sr

d(Δ) and Sr
d−1(Δ), with one degree even and the other odd. A direct sum

of two spline spaces forms the larger nonhomogeneous spherical polynomial spline
space proposed by [10]. A simple structure of the resulting spline space allows us
to use methods developed for homogeneous splines in nonhomogeneous spline spaces.
The spline solution obtained via minimization over the larger space has in general
higher accuracy. In addition, spherical nonhomogeneous splines reproduce spherical
nonhomogeneous polynomials.
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In this paper we establish existence and uniqueness of homogeneous and non-
homogeneous spherical spline approximations. Moreover, we show how the use of a
powerful iterative algorithm [4] solving special linear systems leads to efficient com-
putation of spherical splines of arbitrary degree and smoothness.

The paper is organized as follows. In section 2 we discuss homogeneous spherical
polynomials and then introduce nonhomogeneous spherical polynomials. We review
properties necessary for the implementation of the computational algorithms which
are presented in sections 3, 4, 5. In section 3 we describe a minimal energy (ME)
interpolation method using both homogeneous and nonhomogeneous splines. We dis-
cuss discrete and penalized least squares spline approximation algorithms in sections 4
and 5. In each section we start with a description of the method, follow with a compu-
tational algorithm, and end with numerical examples. Some examples are designed to
demonstrate advantages of nonhomogeneous splines over homogeneous. In addition,
we solve real world data fitting problems and offer visual evaluation of the solutions.
One potential application of the development of spherical splines is in the investigation
of inverse problems arising in geophysics. Using heterogeneously distributed satellite
measurements from new satellite gravity missions such as GRACE (Gravity Recov-
ery and Climate Experiment) [14] we aim to obtain an alternative representation of
Earth’s gravity field and a more realistic description of the geopotential.

2. Preliminary. In this section we review several basic concepts, outline some
properties of spherical splines, explain computational algorithms for scattered data
interpolation and fitting, and present a numerical iterative technique for implemen-
tation of the algorithms. All the material in this preparatory section can be found
either in [1] and [2] or in [4].

Let us define spherical Bernstein–Bézier polynomials first. We begin with a con-
cept of homogeneity. A trivariate function f(v) is homogeneous of degree d if

f(αv) = αdf(v).(2.1)

Let Hd denote the space of trivariate homogeneous polynomials of degree d. That is,
Hd := span{xiyjzk, i + j + k = d}.

Let τ = 〈v1, v2, v3〉 be a nondegenerate spherical triangle; i.e., assume that the
area on the unit sphere bounded by the great circular arcs connecting v1 and v2,
v1 and v3, and v2 and v3 is not zero. Let b1(v), b2(v), and b3(v) be the spherical
barycentric coordinates of a point v ∈ S

2, i.e.,

v = b1(v)v1 + b2(v)v2 + b3(v)v3.

Linear independence of vectors v1, v2, and v3 ∈ R
3 imply that the bi’s are uniquely

determined. Clearly, the bi’s are linear functions of v. It was shown in [1] that the set

Bd
ijk(v) =

d!

i!j!k!
b1(v)

ib2(v)
jb3(v)

k, i + j + k = d,(2.2)

of Bernstein–Bézier basis polynomials of degree d forms a basis for Hd. It is easy
to see that Bd

ijk(v) is a homogeneous polynomial of degree d. Thus, when restricted

to S
2,

p(v) =
∑

i+j+k=d

cijkB
d
ijk(v)(2.3)

is called a homogeneous spherical Bernstein–Bézier (SBB)- polynomial of degree d.
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Due to this special representation, many properties of SBB polynomials are anal-
ogous to those of classical planar Bernstein–Bézier polynomials [1]. However, evaluat-
ing integrals of spherical polynomials is considerably more difficult than in the planar
setting. All integrals needed for our algorithms have to be evaluated numerically.

Let us now define nonhomogeneous spherical polynomials. It was shown in [10]
that Hd⊕Hd−1 restricted to the unit sphere is identical to the space Pd of all trivariate
polynomials of degree d restricted to the unit sphere. Therefore the set {Bd

ijk, i+ j +

k = d} ∪ {Bd−1
ijk , i + j + k = d − 1} on S

2 forms a basis for Pd|S2 . We can express a
nonhomogeneous spherical polynomial p in terms of SBB-basis functions as

p =
∑

i+j+k=d

aijkB
d
ijk(v) +

∑
i+j+k=d−1

cijkB
d−1
ijk (v).

With this definition it is easy to see that evaluating (de Casteljau’s algorithm), tak-
ing derivatives, and computing integrals of homogeneous polynomials can be easily
adapted for nonhomogeneous polynomials.

We are now ready to define spherical splines. Given a set V of points on the unit
sphere S

2 we can form a triangulation Δ, which may be a triangulation of a spherical
domain on S

2 or of the entire sphere. We will assume that Δ is regular in the sense
that any two triangles either do not intersect each other or share their common vertex
or their common edge. Let

Sr
d(Δ) := {s ∈ Cr(S2), s|τ ∈ Hd, τ ∈ Δ}

be the spherical spline space of degree d and smoothness r ≥ −1. Here

s|τ =
∑

i+j+k=d

cτijkB
d,τ
ijk (v).

The space of nonhomogeneous spherical splines is defined as

Nr
d (Δ) := {s ∈ Cr(S2), s|τ ∈ Pd, τ ∈ Δ}

with

s|τ =
∑

i+j+k=d

aτijkB
d,τ
ijk (v) +

∑
i+j+k=d−1

cτijkB
d−1,τ
ijk (v).

In general, we know neither the dimension of Sr
d(Δ) nor the construction of locally

supported basis functions such as finite elements for arbitrary d and r. However, the
lack of understanding of the dimension and construction of locally supported basis
functions of general spline spaces does not prevent us from using them for scattered
data interpolation and fitting. It is one of the purposes of this paper to show how to
use spherical splines of arbitrary d and r with d > r for scattered data interpolation
and fitting. The crucial step in the process is to solve a singular linear system arising
from the application of the Lagrange multipliers method [2] to the minimization. The
linear system has a form which is explained later in detail:[

A LT

L 0

] [
c
λ

]
=

[
F
G

]
.

It is necessary to derive a computational algorithm to efficiently obtain the vector c
containing coefficients of the spline solution. We use the following iterative method [4]:[

A LT

L −εI

] [
c(�+1)

λ(�+1)

]
=

[
F

G− ελ(�)

]
,
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for � = 0, 1, . . . , where ε > 0 is a fixed number, e.g., ε = 10−4, λ(�) is an iterative
solution of a Lagrange multiplier coefficient vector with λ0 = 0, and I is the identity
matrix. The above matrix iterative steps can in fact be rewritten as follows:(

A +
1

ε
LTL

)
c(�+1) = AFc(�) +

1

ε
LTG

with c(0) = 0. Note that the size of the above linear system is much smaller than
the original. The iterations converge very quickly as shown in the following theorem.
In our numerical experiments, a few iterations (less than 10) often suffice. A general
convergence theorem is proved in [4]. To state the convergence result, we need the
following definition.

Definition 2.1. Let A be a square matrix of size n× n and L be a rectangular
matrix of size m × n. We say a matrix A is positive definite with respect to L if
cTAc ≥ 0, and Ac = 0, Lc = 0 imply that c = 0.

Theorem 2.2. Suppose that A is symmetric and positive definite with respect to
L. Then the matrix A+ 1

εL
TL is always invertible for any ε > 0. Furthermore, there

exists a constant C such that

‖c(�+1) − c‖ ≤ Cε‖c(�) − c‖ for all � ≥ 0.

3. Minimal energy interpolation.

3.1. Energy functionals. Recall that V := {v ∈ S
2} is a set of points on the

unit sphere and {f(v), v ∈ V} is a set of spherical function values given at the locations
V. Let Δ be a regular spherical triangulation of S

2 with vertices V. For two integers
d and r let Sr

d(Δ) be the spline space of spherical homogeneous polynomials of degree
d and smoothness r.

We need to find a spline function s ∈ Sr
d(Δ) interpolating f at V. In general such

a spline is not unique. A typical way to use extra degrees of freedom is to minimize
a functional E(s) measuring smoothness of s. In [2] the energy functional

E(s) =

∫
S2

(Δ∗s)2dμ(3.1)

was used, where Δ∗ is the Laplace–Beltrami operator, μ is the Lebesgue measure on
S

2, and the integral in (3.1) is taken over the unit sphere. Note that the Laplace–
Beltrami operator annihilates constants only. We propose an alternative functional
motivated by Sobolev-type seminorms defined in [12]. Let

Eδ(s) =

∫
S2

∑
|α|=2

(Dαsδ)
2dμ.(3.2)

In (3.2) sδ is the unique homogeneous extension of s of degree δ to R
3 \ {0} defined

by sδ(v) = |v|δs( v
|v| ). If the degree d of the homogeneous spline space is even, we take

δ = 0; if odd, we take δ = 1. After evaluating second order partial derivatives, Dαsδ
are restricted to S

2 and are then integrated.
To establish existence and uniqueness of a spherical spline in Sr

d(Δ) interpolating
f and minimizing (3.2), we need the following.

Lemma 3.1. Let Δ be a spherical triangulation and suppose f 
= 0. Then
(1) E0(f) = 0 if and only if f is a constant,
(2) E1(f) = 0 if and only if f is a trivariate homogeneous linear polynomial

on S
2.
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Proof. If Eδ(f) = 0, then by the definition, Dαfδ = 0 on every triangle τ ∈ Δ.
Consider δ = 1. Since f1 is linear homogeneous, Dαf1 is homogeneous of degree −1,
and therefore, by the uniqueness of homogeneous extensions, (Dαf1|τ )−1 = Dαf1. On
the other hand, by the definition, (Dαf1|τ )−1(v) = |v|−1(Dαf1|τ )( v

|v| ). As we noted

above, Dαf1|τ = 0, and therefore Dαf1 = 0 as well. Hence f1 is a polynomial of degree
at most 1. Since it is a homogeneous linear function, f1 must be a homogeneous linear
polynomial on R

3. Therefore by the uniqueness of homogeneous extensions, f is a
linear homogeneous polynomial on τ . A similar proof works for δ = 0. The other
direction follows trivially from definition (3.2).

Let

Γ(f) := {s ∈ Sr
d(Δ) : s(v) = f(v) for all v ∈ V}

be the set of all splines in Sr
d(Δ) interpolating f at the vertices of triangulation Δ.

Let sf ∈ Γ(f) denote a spherical spline minimizing (3.2) over Γ(f).
Lemma 3.2. Suppose that Γ(f) is not empty. There exists a unique spline

sf ∈ Sr
d(Δ) interpolating f = 0 and minimizing (3.2) with δ = d mod(2).

Proof. Since Eδ(s) ≥ 0 for all s ∈ Sr
d(Δ), Eδ(sf ) = 0 is the absolute minimum of

Eδ achieved at sf = 0. To show the uniqueness, assume there is another s ∈ Γ(0) with
Eδ(s) = 0. We need to prove that s = sf . By our assumption, Eδ(s) = 0 on every
triangle τ ∈ Δ. By Lemma 3.1 s is either a linear homogeneous function (if d is odd)
or s is a constant (if d is even) on every triangle τ ∈ Δ. Since s interpolates 0 at the
vertices of each triangle, s = 0 on each triangle. Therefore s = sf .

Theorem 3.3. Let Δ be a regular triangulation of S
2 with vertices V and let

{f(v), v ∈ V} be given for some spherical function f . Then for any two positive
integers d, r with d ≥ 3r+2, there exists a unique spline sf ∈ Sr

d(Δ) interpolating the
values f and minimizing Eδ.

Proof. Since d ≥ 3r + 2, Γ(f) is not empty [3]. There exists an ME spline sf
interpolating f since Γ(f) is a nonempty closed convex set. To prove uniqueness
suppose there exists qf ∈ Γ(f) minimizing Eδ, i.e., Eδ(sf ) = Eδ(qf ). Since Eδ(sf + νs)
achieves its minimal value at ν = 0 over s ∈ Γ(0), we have

d

dν
Eδ(sf + νs)|ν=0 = 0,

which leads to ∑
|α|=2

∫
S2

(Dαsf,δ)(D
αsδ)dμ = 0

for s ∈ Γ(0). In particular for s = sf − qf we get∑
|α|=2

∫
S2

(Dαsf,δ)
2dμ =

∑
|α|=2

∫
S2

(Dαsf,δ)(D
αqf,δ)dμ.

Therefore,

Eδ(sf − qf ) = 0,

and by Lemma 3.2 sf − qf ≡ 0. This completes the proof.
To develop ME interpolation using nonhomogeneous splines, we fix integers d ≥ 1

and r ≥ 0 and recall that Nr
d (Δ) = Sr

d(Δ)⊕Sr
d−1(Δ). To simplify our notation let us
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assume that d is odd. We can present a spline function s ∈ Nr
d (Δ) as a sum s1 + s0,

where the subscript 1 indicates that s1 ∈ Sr
d(Δ) and that we use its linear extension

to compute derivatives. Similarly, the subscript 0 indicates that s0 ∈ Sr
d−1(Δ) and

that we work with its constant extension.
We define an energy functional which annihilates nonhomogeneous linear polyno-

mials as well as constants and homogeneous linear polynomials

E(s) = λ

∫
S2

∑
|α|=2

(Dαs1)
2dμ + (1 − λ)

∫
S2

∑
|α|=2

(Dαs0)
2dμ,(3.3)

with 0 < λ < 1.
Lemma 3.4. Choose degree d and smoothness r for a spline space Nr

d (Δ) as
above. Given a spherical function f let

Γ̃(f) := {s ∈ Nr
d (Δ) : s(v) = f(v) for all v ∈ V}

be the set of all splines in Nr
d (Δ) interpolating f at the vertices of triangulation Δ.

The spline sf = 0 ∈ Nr
d (Δ) is the unique spline interpolating f = 0 and minimizing

(3.3).
Proof. By the definition, 0 = sf = s1+s0, where s1|τ is a homogeneous polynomial

of degree d and s0|τ is a homogeneous polynomial of degree d − 1. Since Sr
d(Δ) ∩

Sr
d−1(Δ) = 0, s1 = 0 and s0 = 0. By definition (3.3), E(sf ) = 0. Since E(s) ≥ 0

for all s ∈ Nr
d (Δ), E(0) = 0 is the absolute minimum of E . To show the uniqueness,

assume there is qf ∈ Γ(0) with E(qf ) = 0. We need to show that qf = sf = 0.
As above, we know qf = q1 + q0 for some q1 ∈ Sr

d(Δ) and q0 ∈ Sr
d−1(Δ). Then

E1(q1) = 0 and E0(q0) = 0 on every triangle τ ∈ Δ. By Lemma 3.1 q1 is a linear
homogeneous polynomial and q0 is a constant on S

2. Therefore q1 + q0 is a trivariate
linear polynomial satisfying zero interpolation conditions over points v ∈ V, none of
which is the origin. By the linear independence of x, y, z, and 1, qf = 0 on every
triangle. Therefore qf = sf .

Theorem 3.5. Let Δ be a regular triangulation of S
2 with vertices V. Let {f(v),

v ∈ V} be the given set of data values. Then for any integers d ≥ 1, r ≥ 0 such that
d ≥ 3r + 2, there exists a unique spline sf ∈ Nr

d (Δ) interpolating values of f and
minimizing E.

Proof. The proof follows from Lemma 3.4 as in the proof of Theorem 3.3.

3.2. Computational algorithms. In this section we explain how to compute
ME spherical interpolating splines. We use a coefficient vector c := (cτijk, i+j+k = d,
τ ∈ Δ) to represent each spline function in Sr

d(Δ). To simplify the data management
we linearize the triple indices of SBB-coefficients cijk and correspondingly the indices
of SBB-basis functions Bd

ijk. From the properties of SBB-polynomials, we have

cd00 = f(v1), c0d0 = f(v2), c00d = f(v3)

for the vertices of each triangle τ ∈ Δ. We assemble interpolation conditions into a
matrix K, according to the order of the coefficient vector c. Then Kc = F is the
linear system of equations such that the coefficient vector c corresponds to a spline s
interpolating f at the data sites V.

To ensure the Cr continuity across each edge of Δ, we impose smoothness con-
ditions which can be found in [1]. Let M denote the smoothness matrix such that
Mc = 0 if and only if s ∈ Sr

d(Δ).
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Next fix δ = d mod(2). Define the energy matrix E by E = diag(Eτ , τ ∈ Δ).
Each block Eτ is associated with a triangle τ and contains the entries

Eij :=

∫
τ

∑
|α|=2

Dα(Bi)δD
α(Bj)δdμ,(3.4)

where Bi denotes a SBB-polynomial basis function (2.2) of degree d corresponding to
the order of the linearized triple indices (i, j, k), i + j + k = d.

The problem of minimizing (3.2) over Sr
d(Δ) can be formulated as follows:

Minimize cTEc subject to Mc = 0 and Kc = F.

Using the method of Lagrange multipliers, we must solve the linear system⎡⎣ E KT MT

K 0 0
M 0 0

⎤⎦⎡⎣ c
η
γ

⎤⎦ =

⎡⎣ 0
F
0

⎤⎦ .

Here γ and η are vectors of Lagrange multiplier coefficients. We obtain the least square
solution to the singular linear system above using the iterative method discussed in
section 2. Lemma 3.2 implies that E is symmetric and positive definite with respect
to [

K
M

]
.

By Theorem 2.2, the iterative method converges to the vector c, which is the coef-
ficient vector of the unique interpolating spline minimizing (3.2). This furnishes a
computational algorithm.

To solve the interpolation problem over Nr
d (Δ), we proceed similarly. Consider

s = s1 + s0 with splines s1 and s0 of degrees d and d−1, respectively. Order the coef-
ficients over each triangle τ as above and denote them by cτ1 and cτ0 . Let c̃ = (c1, c0),
with c1 := (cτ1 , τ ∈ Δ) and c0 := (cτ0 , τ ∈ Δ). We denote interpolation, smooth-
ness and energy matrices by K1, K0, M1, M0, E1, E0 correspondingly. Therefore
interpolation conditions for s are

K̃c̃ :=
[

K1 K0

] [ c1

c0

]
= F.

For s to be smooth we require both s1 and s0 to be smooth. The Cr smoothness
conditions for s are

M̃c̃ :=

[
M1 0
0 M0

] [
c1

c0

]
= 0.

With definition (3.3) it is clear that the energy matrix in this case is defined by

Ẽ =

[
λE1 0
0 (1 − λ)E0

]
.

Therefore s ∈ Nr
d (Δ) minimizes (3.3), interpolates f at the vertices of Δ, and is Cr

continuous if and only if the vector c̃ of its coefficients satisfies the system of linear
equations ⎡⎣ Ẽ K̃T M̃T

K̃ 0 0

M̃ 0 0

⎤⎦⎡⎣ c̃
γ
η

⎤⎦ =

⎡⎣ 0
F
0

⎤⎦ .
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Table 3.1

Linear and constant polynomial reproduction on eight triangles.

Sr
d(Δ1) \ f 1 x + z z + 1

S1
3(Δ1) 4.2265e− 01 1.1016e− 15 2.1144e− 01

S1
4(Δ1) 4.6629e− 15 2.5398e− 01 9.1140e− 02

N1
4 (Δ1) 6.4389e− 15 1.4950e− 15 1.5551e− 15

Fig. 3.1. Interpolation of z + 1 in S1
3 , S1

4 , and N1
4 from left to right.

As in the case of homogeneous splines, the linear system is singular. However, by
Lemma 3.4 we have the following.

Corollary 3.6. Ẽ is symmetric and positive definite with respect to[
K̃

M̃

]
.

Proof. Since E(s) = c̃T Ẽc̃ ≥ 0, c̃T Ẽc̃ = 0 implies that s is a linear polynomial.
Zero side conditions force s = 0. By the linear independence of the basis functions,
c̃ = 0.

Thus by Theorem 2.2, the application of the iterative scheme allows us to suc-
cessfully obtain its numerical solution.

3.3. Numerical experiments with ME splines. In this section we present
several examples on scattered data interpolation using the ME method.

Example 3.1. Let Δ1 be the triangulation of the entire sphere based on six
vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), and (0, 0,−1) and consisting
of eight triangles. We sample 1, x+ z and z + 1 at the six vertices, and compute ME
spline interpolants in spherical spline spaces S1

3(Δ), S1
4(Δ), and N1

4 (Δ).
The maximal relative errors

‖s(w) − f(w)‖∞
‖f(w)‖∞

are computed based on the errors at 5120 points w almost evenly spaced over S
2

and reported in Table 3.1. Note that not only linear and constant homogeneous
polynomials are reproduced in N1

4 (Δ), but a nonhomogeneous polynomial z + 1 is
reproduced as well. In Figure 3.1 we present a visualization of the results of the last
column of Table 3.1. It was shown in [1] that spherical linear functions are spheres
through the origin. As expected from the table, the first two surfaces are not spheres.
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Table 3.2

Dependence of ME splines on weights in E.

λ \ e(Δ) e(Δ1) e(Δ2) e(Δ3) e(Δ4)
0.1 9.4421e− 02 2.3349e− 02 2.2270e− 03 2.1254e− 04
0.2 9.4363e− 02 2.2691e− 02 1.7986e− 03 2.0737e− 04
0.3 9.4292e− 02 2.2085e− 02 1.7570e− 03 2.1420e− 04
0.4 9.4222e− 02 2.1608e− 02 1.9870e− 03 2.2644e− 04
0.5 9.4141e− 02 2.1168e− 02 2.1526e− 03 2.4197e− 04
0.6 9.4053e− 02 2.0780e− 02 2.4118e− 03 2.5990e− 04
0.7 9.3948e− 02 2.0461e− 02 2.7717e− 03 2.7978e− 04
0.8 9.3833e− 02 2.0265e− 02 3.1331e− 03 3.1210e− 04
0.9 9.3701e− 02 2.0109e− 02 3.5004e− 03 3.6150e− 04

Table 3.3

Convergence of various splines interpolating f .

Sr
d(Δ) \ e(Δ) e(Δ1) e(Δ2) e(Δ3) e(Δ4)

S1
3(Δ) 3.7879e− 01 6.5860e− 02 3.7846e− 03 2.9833e− 04

S1
4(Δ) 8.2341e− 02 1.9801e− 02 3.8708e− 03 4.1190e− 04

N1
4 (Δ) 9.3702e− 02 2.0109e− 02 1.7570e− 03 2.0737e− 04

Example 3.2. Next we investigate how the choice of λ affects the error in min-
imization over Nr

d (Δ). We interpolate f(x, y, z) = 1 + 0.3x8 + e0.2y3

in N1
4 (Δi),

i = 1, . . . , 4. The initial triangulation is Δ1. The triangulation Δ2 is obtained by bi-
secting the edges of Δ1 and splitting each triangle into four subtriangles. Similarly we
obtain uniform refinements Δ3 and Δ4. Each time, we evaluate the spline interpolant
at 5120 almost evenly spaced points w and list maximal relative errors

e(Δi) :=
‖s(w) − f(w)‖∞

‖f(w)‖∞
in Table 3.2. The results suggest that the errors on each Δi are almost the same for
all the values of λ.

Example 3.3. We compare the interpolation results for the function f(x, y, z) =

1 + 0.3x8 + e0.2y3

in nonhomogeneous and homogeneous spaces. We use Table 3.2
as a guide for the choice of λ. The results in Table 3.3 demonstrate that on finer
triangulations nonhomogeneous splines approximate the original function f better
than homogeneous splines.

Example 3.4. This is an example of scattered data spline interpolation. We are
given 868 points in R

3 (courtesy of Thomas Grandine at Boeing). We translate the
point cloud so that its center coincides with the origin and project translated points
onto the unit sphere. The projections give us locations on the sphere surface and the
distances between the origin and translated points give us corresponding experimental
function values. The locations on the sphere are triangulated, and the ME homoge-
neous cubic and quartic splines are computed as well as nonhomogeneous quartic
splines. In Figure 3.2 we present one of the solutions together with the translated
point cloud.

Example 3.5. We present an example of scattered data interpolation over the
Earth. We are given a satellite data set of simulated geopotential values (in m2/s2)
observed by the gravity mission satellite, CHAMP [13], along its orbit for two days.
The data collected amount to 5760 values. The CHAllenging Mini-satellite Payload
(CHAMP) is a German geoscience satellite, launched on July 15, 2000, with a cir-
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Fig. 3.2. ME spherical spline interpolant of the point cloud.

Fig. 3.3. CHAMP geopotential data and ME spherical spline interpolant.

cular orbit at an altitude of 450 km and orbital inclination of 87◦. The simulated
geopotential values are computed using a global geopotential model, EGM96 [11]. In
Figure 3.3 we show the set of CHAMP scattered potential values which are normal-
ized by the radius of the Earth and plotted over the unit sphere. The minimal energy
homogeneous spherical interpolatory spline surface is shown in Figure 3.3 (right). It
is clear that the spherical spline interpolates the given data and produces a reasonable
fitting of the given geopotential values.

4. Discrete least squares fitting.

4.1. Existence and uniqueness. When the given data set is extremely large,
e.g., n ≥ 10,000, and highly redundant, it is suitable to find a discrete least squares
(DLS) fitting to the given data instead of computing an interpolating spherical spline.
The DLS approximation problem in Sr

d(Δ) can be described as follows. Let V = {v�,
� = 1, . . . , n} be the given data sites over S

2 and Δ be a triangulation whose vertices
may not relate to the data locations. For a given degree d, we assume that the data
sites are rich enough in the following sense.

Definition 4.1. The data sites v�, � = 1, . . . , n, are said to be evenly distributed
over the triangulation Δ with respect to d if the matrix[

Bd,τ
ijk (v�)

]
i+j+k=d,v�∈τ

is of full rank for each τ ∈ Δ.
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Suppose that the given data values are from a function f , i.e., f(v�) =: f�, � =
1, . . . , n are given. The least squares functional is defined by

L(s) =

n∑
�=1

(s(v�) − f�)
2.(4.1)

A DLS spherical spline sf ∈ Sr
d(Δ) is the function minimizing L(s) over Sr

d(Δ), i.e.,

L(sf ) = min{L(s), s ∈ Sr
d(Δ)}.

Theorem 4.2. Suppose that the given data sites v�, � = 1, . . . , n, are evenly
distributed over Δ with respect to d. There exists a unique spline sf of degree d and
smoothness r minimizing (4.1).

Proof. Recall that any s ∈ Sr
d(Δ) can be written as

s(v)|τ =
∑

i+j+k=d

cτijkB
d,τ
ijk (v)

on a spherical triangle τ ∈ Δ. Let c = (cτijk, i + j + k = d, τ ∈ Δ) be the coefficient
vector of s. Note that

L(c) := L(s) =

n∑
�=1

|s(v�) − f�|2 =
∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

cτijkB
d,τ
ijk (v�) − f�

⎞⎠2

is a continuous convex function of c, L(0) = ‖f‖2
2 with f = (f�, � = 1, . . . , n) the data

value vector and ‖f‖2 := (
∑n

�=1 |f�|2)1/2 denoting the standard �2 norm of the vector
f . Consider A = {c, L(c) ≤ ‖f‖2

2} and let us show that A is a bounded and closed
set.

Fix any triangle τ ∈ Δ. For any c ∈ A we have∣∣∣∣∣∣
∑

i+j+k=d

cτijkB
d,τ
ijk (v�) − f�

∣∣∣∣∣∣
2

≤ ‖f‖2
2 for all v� ∈ τ.

It follows that ∣∣∣∣∣∣
∑

i+j+k=d

cτijkB
d,τ
ijk (v�)

∣∣∣∣∣∣ ≤ 2‖f‖2 for all v� ∈ τ.

Since the data sites are evenly distributed with respect to d, the matrix[
Bd,τ

ijk (v�)
]
i+j+k=d,v�∈τ

is of full rank and hence, there exists an index set Iτ ⊂ {1, . . . , n} such that the square

matrix Bτ = [Bd,τ
ijk (v�)]i+j+k=d,�∈Iτ is invertible. Therefore ‖(cτijk,i+j+k=d)‖2 ≤ Cτ ,

with Cτ a positive constant depending only on ‖f‖2 and the norm of the inverse
matrix of Bτ . Hence ‖c‖2 is bounded above and A is bounded. It is easy to see that
A is closed and that As := {c : Mc = 0} is also closed. Here Mc = 0 is the linear
system representing the smoothness conditions for Sr

d(Δ). Hence, the set A ∩ As is
compact, and there exists a cf ∈ A ∩As minimizing L(c).
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To show uniqueness of the solution cf , we assume that there exist two solutions
cf and ĉf . The convexity of L implies that for any 0 ≤ ν ≤ 1 a convex combination
cf + ν(ĉf − cf ) also minimizes L. Thus

d

dν
L(cf + ν(ĉf − cf ))

=
∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

(cτijk + ν(ĉτijk − cτijk))B
τ
ijk(v�) − f�)(ĉ

τ
ijk − cτijk)B

τ
ijk(v�)

⎞⎠
= ν

∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

(ĉτijk − cτijk)
2Bτ

ijk(v�)
2

⎞⎠
+

∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

cτijk(ĉ
τ
ijk − cτijk)B

τ
ijk(v�)

⎞⎠2

−
∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

f�(ĉ
τ
ijk − cτijk)B

τ
ijk(v�)

⎞⎠ = 0

for any 0 ≤ ν ≤ 1. Since this expression is independent of ν, we have

∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

(ĉτijk − cτijk)
2Bτ

ijk(v�)

⎞⎠2

= 0.

Since the data sites are evenly distributed over Δ, cf = ĉf .
For nonhomogeneous spherical splines DLS approximation can be treated simi-

larly. We seek a function s = s1 + s0 ∈ Nr
d (Δ) minimizing L(s).

For the nonhomogeneous case, Definition 4.1 has to be modified to take into
account that the basis functions in Nr

d (Δ) consist of homogeneous SBB-basis polyno-
mials of degrees d and d− 1.

Definition 4.3. The given data sites v�, � = 1, . . . , n, are said to be evenly
distributed over the triangulation Δ with respect to d if the matrix[

Bd,τ
ijk (v�)

Bd−1,τ
i′j′k′ (v�)

]
i+j+k=d,i′+j′+k′=d−1,v�∈τ

is of full rank for every τ ∈ Δ.
Theorem 4.4. Suppose that the given data locations v�, � = 1, . . . , n are evenly

distributed with respect to d. There exists a unique spline sf ∈ Nr
d (Δ) minimizing

(4.1).
Proof. The proof is similar to the proof of Theorem 4.2.

4.2. Computational algorithms. We first explain a computational algorithm
for the DLS fit in Sr

d(Δ). The Lagrange multipliers method leads to the linear system[
LTL MT

M 0

] [
c
η

]
=

[
LTF

0

]
,

where L is the observation matrix with entries Lij = Bj(vi), i = 1, . . . , n, and j
runs from 1 to #τ(d + 1)(d + 2)/2, where #τ denotes the number of triangles in Δ.
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Here, F is a vector of function values ordered as the spherical points v�, � = 1, . . . , n,
M is the Cr smoothness matrix, and η is a vector of Lagrange multipliers. The least
squares solution of this system is a vector c of coefficients of a homogeneous spline s
of degree d and smoothness r defined with respect to the spherical triangulation Δ
minimizing (4.1).

To find the DLS spline in Nr
d (Δ) we construct the observation matrix

L̃ =
[

L1 L0

]
and smoothness conditions M̃c̃ = 0 as in the previous section. Here L1 and L0 are
the observation matrices containing values of SBB-basis polynomials at the data sites
for the spaces S−1

d (Δ) and S−1
d−1(Δ). We therefore solve the linear system[

L̃T L̃ M̃T

M̃ 0

] [
c
η

]
=

[
L̃TF

0

]
,

where F contains given data values and η is a vector of Lagrange multiplier coefficients.
Theorem 4.5. Suppose that the given data sites v�, � = 1, . . . , n, are evenly

distributed over Δ with respect to d. The matrix L̃T L̃ is positive definite with respect
to M̃c̃ = 0.

Proof. If c̃T L̃T L̃c̃ = 0, then L̃c̃ = 0. Then L̃c̃|τ = 0 for every τ ∈ Δ, where L̃|τ
is of full rank and therefore c̃ = 0.

Note that similar considerations apply to the homogeneous case; i.e. it is easy to
see that the matrix LTL is positive definite with respect to Mc = 0.

Hence Theorem 2.2 can be applied to find the DLS fittings in both homogeneous
and nonhomogeneous spherical spline spaces.

4.3. Numerical experiments with DLS splines. The following are examples
of DLS approximation on the sphere.

Example 4.1. First we conduct experiments similar to the ones for ME splines
in S1

3(Δ1), S
1
4(Δ1), and N1

4 (Δ1). The total number of scattered data points is 1006.
Evaluation points and computation of errors are the same as in section 3.3. In addition
we test higher degree polynomials to demonstrate the ability of Nr

d (Δ) to reproduce
nonhomogeneous polynomials of degree d. Results are shown in Table 4.1.

Example 4.2. We illustrate the convergence of DLS splines approximating
f(x, y, z) = 1 + 0.3x8 + e0.2y3

in Table 4.2.
Example 4.3. We continue working with the data in Example 3.5. Recall Δ1 is a

triangulation based on six vertices and eight triangles as in Examples 3.1, 3.2, and 4.1.

Table 4.1

Polynomial reproduction over the unit sphere.

Sr
d(Δ1) \ f 1 x + z z + 1

S1
3(Δ1) 4.1063e− 01 5.3912e− 10 2.0543e− 01

S1
4(Δ1) 2.4365e− 09 6.3255e− 02 2.8532e− 02

N1
4 (Δ1) 9.4194e− 14 3.3859e− 12 9.9751e− 14

Sr
d(Δ1) \ f y2 + z y3 + z + 1 x4 + z + 1

S1
3(Δ1) 1.5315e− 01 1.8931e− 01 1.7120e− 01

S1
4(Δ1) 4.5673e− 02 2.8735e− 02 2.6810e− 02

N1
4 (Δ1) 1.1709e− 13 1.2950e− 13 1.5834e− 13



254 V. BARAMIDZE, M. J. LAI, AND C. K. SHUM

Table 4.2

Relative errors for splines approximating f .

Sr
d(Δ) \ e(Δ) e(Δ1) e(Δ2) e(Δ3)

S1
3(Δ) 3.4124e− 01 4.1755e− 02 3.6864e− 03

S1
4(Δ) 2.3321e− 02 1.8815e− 03 7.4771e− 04

N1
4 (Δ) 1.0102e− 02 1.8007e− 03 3.6840e− 04

Table 4.3

The relative errors for geodata approximating splines.

Sr
d(Δ) \ e(Δ) e(Δ1) e(Δ2) e(Δ3)

S1
3(Δ) 3.7228e− 01 2.0086e− 01 8.6921e− 02

S1
4(Δ) 2.9349e− 01 9.6814e− 02 4.5916e− 02

N1
4 (Δ) 2.0711e− 01 9.5309e− 02 3.1303e− 02

Table 4.4

The relative standard deviations for geodata approximating splines.

Sr
d(Δ) \ s(Δ) s(Δ1) s(Δ2) s(Δ3)

S1
3(Δ) 7.020e− 02 3.5489e− 02 1.3247e− 02

S1
4(Δ) 4.7324e− 02 1.4640e− 02 4.4683e− 03

N1
4 (Δ) 3.5713e− 02 1.1194e− 02 3.2933e− 03

Then Δ1 is refined uniformly twice to obtain Δ2 and Δ3. For each triangulation we
compute DLS spline solutions in the spaces S1

3(Δi), S
1
4(Δi), and N1

4 (Δi), i = 1, 2, 3.
In Table 4.3 we list errors of

e(Δi) :=
maxv∈V |s(v) − f(v)|

maxv∈V |f(v)|

for each of the computed splines over triangulation Δi. In Table 4.4 we list their
relative standard deviation values

s(Δi) :=
std|s(v) − f(v)|
maxv∈V |f(v)| .

5. Penalized least squares approximation.

5.1. Existence and uniqueness. Again we let V := {v�, � = 1, . . . , n} be a set
of sites on S

2 and {f�, � = 1, . . . , n} be the corresponding values for some function f .
We need to find a smooth surface resembling f . Another commonly used method in
this situation is called a penalized least squares (PLS) fit.

Let Δ be a regular triangulation of S
2 whose vertices W form a subset of the data

sites V. Consider the spline space Sr
d(Δ) of degree d and smoothness r. We look for

a spline solution sf ∈ Sr
d(Δ) satisfying

Pλ(sf ) = min{Pλ(s) : s ∈ Sr
d(Δ)},(5.1)

where λ is a positive weight and

Pλ(s) := L(s) + λEδ(s).(5.2)
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Here the DLS and ME functionals are as defined in (4.1) and (3.2), respectively. It
is clear that for large λ � 1, sf is close to ME splines, and for small λ � 1 the
solution sf is close to the DLS spline. One way to choose λ is by the cross validation
method [15]. We choose a small value for λ to get a good approximation, such as that
of the DLS fitting which in the planar setting has high approximation power [9].

Theorem 5.1. Fix λ > 0. Suppose the vertices W of Δ are part of the data sites
V and each triangle can be inscribed into a spherical cap of radius ≤ 1/2; i.e., the size
of every triangle |τ | is bounded above by 1. There exists a unique spline sf ∈ Sr

d(Δ)
minimizing (5.2).

Proof. Recall that any s ∈ Sr
d(Δ) can be written as

s(v)|τ =
∑

i+j+k=d

cτijkB
d,τ
ijk (v)

on a spherical triangle τ ∈ Δ. Let c = (cτijk, i + j + k = d, τ ∈ Δ) be the coefficient
vector of s. Recall that the energy functional E(s) can be expressed in terms of c as

E(s) = cTEc

with the entries of E defined in (3.4). The DLS functional L(s) is expressed as

L(s) =
n∑

�=1

|s(v�) − f�|2 =
∑
τ∈Δ

∑
v�∈τ

⎛⎝ ∑
i+j+k=d

cτijkB
τ
ijk(v�) − f�

⎞⎠2

= cTLTLc − 2fTLc + ‖f‖2
2,

with f = (f�, � = 1, . . . , n) being the vector of data values. Thus

Pλ(s) = λcTEc + cTLTLc − 2fTLc + ‖f‖2
2.

Note that Pλ(0) = ‖f‖2
2. Consider A = {c,Pλ(s) ≤ ‖f‖2

2}. Let us show that A is a
bounded and closed set so that the continuous function Pλ(s) has a minimum in A.

Fix c ∈ A and let s be the corresponding spline. Then Pλ(s) ≤ ‖f‖2
2. By the

definition of Pλ we must have λEδ(s) ≤ ‖f‖2
2. By Lemma 10 in [6] and Lemma 3.9 in [5]

the energy of a spline is equivalent to the square of its second order Sobolev seminorm
on every triangle of Δ and all norms of a spline on each triangle are equivalent; i.e.,
we have

|s|2,∞,τ ≤ C1√
λ
‖f‖2 and |s|′2,∞,τ ≤ C2√

λ
‖f‖2

with C1, C2 depending on degree d of the spline space and the smallest angle in τ .
Let rτ denote the center of the smallest spherical cap containing τ . Let Tτ be a plane
tangent to τ at rτ . Define τ̄ in this plane as a set of points {w : w

|w| ∈ τ}. Define

sδ(w) = |w|δs( w
|w| ) to be a homogeneous extension of s of degree δ and s̄δ to be its

restriction to τ̄ . Similarly define fδ and f̄δ. By Proposition 2.26 in [5]

|s̄1|2,∞,τ̄ ≤ C3|s|2,∞,τ and |s̄0|2,∞,τ̄ ≤ C4|s|′2,∞,τ .

Therefore

|s̄δ|2,∞,τ̄ ≤ C5√
λ
‖f‖2.(5.3)
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Since the vertices, say v1, v2, v3, of τ belong to W,

|s̄δ(v̄i)| ≤ |s̄δ(v̄i) − f̄δ(v̄i)| + |f̄δ(v̄i)|
≤ |vi|δ(|s(vi) − f(vi)| + |f(vi)|)
≤ C6((Pλ(s))1/2 + ‖f‖2) ≤ 2C6‖f‖2,

for C6 = max{|v�|δ : v� ∈ τ} ≤ 1/ cos(1/2) and i = 1, 2, 3. For any point v̄ in τ̄ we
need to show that s̄δ(v̄) is bounded. Use Taylor expansion to get

s̄δ(v̄1) = s̄δ(v̄) + ∇s̄δ(v̄) · (v̄1 − v̄) + O(|s̄δ|2,∞,τ̄ |τ̄ |2).(5.4)

Using similar expressions for v̄2 and v̄3 we get

s̄δ(v̄1) − s̄δ(v̄2) = ∇s̄δ(v̄) · (v̄1 − v̄2) + O(|s̄δ|2,∞,τ̄ |τ̄ |2),
s̄δ(v̄2) − s̄δ(v̄3) = ∇s̄δ(v̄) · (v̄2 − v̄3) + O(|s̄δ|2,∞,τ̄ |τ̄ |2).

Solving this linear system for ∇s̄δ, we get

Dxs̄δ(v̄) = O(|τ̄ |3|s̄δ|2,∞,τ̄/Aτ̄ ) + |s̄δ(v̄1)| + |s̄δ(v̄2)||τ̄ |/Aτ̄ ,
Dy s̄δ(v̄) = O(|τ̄ |3|s̄δ|2,∞,τ̄/Aτ̄ ) + |s̄δ(v̄1)| + |s̄δ(v̄2)||τ̄ |/Aτ̄ ,

where Aτ̄ denotes the area of τ̄ . Using these estimates for ∇s̄δ we get

|s̄δ(v̄)| ≤ C7((1 + |τ̄ | + |τ̄ |2/Aτ̄ )‖f‖2 + |τ̄ |4|s̄δ|2,∞,τ̄/Aτ̄ ).

Hence we use (5.3) and (5.4) to get

|s̄δ(v̄)| ≤ C8‖f‖2

with C8 depending on the size of τ . By the definition,

|s(v)| = |v̄|−δ|s̄δ(v̄)| ≤ Cτ̄‖f‖2

is bounded since |v̄| ≥ 1 and |τ̄ | is bounded. By the stability of SBB-basis [12], c
is bounded, and hence A is a bounded set. Since A is closed, it is compact. By the
definition, Pλ(s) is a continuous function of c and therefore Pλ attains its minimum
in A.

To show uniqueness of the minimizer sf suppose there exists ŝf with Pλ(sf ) =
Pλ(ŝf ). Since Pλ is a convex functional for any 0 ≤ ν ≤ 1,

Pλ(νsf + (1 − ν)ŝf ) ≤ νPλ(sf ) + (1 − ν)Pλ(ŝf ) = Pλ(sf ).

On the other hand, since Pλ achieves minimum value at sf ,

Pλ(sf ) ≤ Pλ(νsf + (1 − ν)ŝf ).

Therefore Pλ(ŝf + ν(sf − ŝf )) is a constant function of ν on [0, 1]. It follows that
d
dνPλ(ŝf + ν(sf − ŝf )) = 0 for all 0 ≤ ν ≤ 1, i.e.,

0 =
d

dν
Pλ(ŝf + ν(sf − ŝf ))

= 2λ(ĉf + ν(cf − ĉf ))TE(cf − ĉf )
+ 2(ĉf + ν(cf − ĉf ))TLTL(cf − ĉf ) − 2fTL(cf − ĉf ).
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The above holds for any ν in [0, 1]. It follows, as in Theorem 4.2, that

0 = 2λ(cf − ĉf )TE(cf − ĉf ) + 2(cf − ĉf )TLTL(cf − ĉf ).

Hence, we must have (cf − ĉf )TE(cf − ĉf ) = 0 and (cf − ĉf )TLTL(cf − ĉf ) = 0
since both E and LTL are nonnegative definite. Then E(sf − ŝf ) = 0 and therefore
sf − ŝf is a linear homogeneous polynomial, and sf (v�) − ŝf (v�) = 0 at every vertex
v� of Δ. Therefore sf = ŝf .

To solve the PLS problem using nonhomogeneous splines we work in Nr
d (Δ). We

have to replace the energy functional (3.2) in (5.2) by (3.3). For a spherical spline
function s = s1 + s0 define

Pλ(s) = L(s1 + s0) + λ1

∫
S2

∑
|α|=2

(Dαs1)
2dμ + λ0

∫
S2

∑
|α|=2

(Dαs0)
2dμ,(5.5)

with λ1 > 0, λ0 > 0.
Theorem 5.2. Fix λ1 > 0 and λ0 > 0. Suppose all vertices W of Δ are part

of the data sites V and max{|τ |, τ ∈ Δ} =: |Δ| ≤ 1. There exists a unique spline
sf ∈ Nr

d (Δ) minimizing (5.5).
Proof. The proof is similar to the proof of Theorem 5.1.

5.2. Computational algorithms. We first consider PLS fitting in Sr
d(Δ). By

the method of Lagrange multipliers, minimization of (5.2) over S−1
d (Δ) subject to the

smoothness Cr conditions in the matrix form Mc = 0 results in a system of linear
equations [

P MT

M 0

] [
c
η

]
=

[
LTF

0

]
.

Here P = LTL+λE and f is a vector of function values ordered as the spherical points
v�, � = 1, . . . , n, M is a smoothness matrix, and η is a vector of Lagrange multiplier
coefficients. The solution of this system is a vector c of coefficients of a homogeneous
spline s of degree d and smoothness r defined over the spherical triangulation Δ
minimizing (5.2). Note that the linear system is of the same form as the one in
section 2. We use the iterative scheme to compute an approximation of c.

To find the PLS spline in Nr
d (Δ) we construct the observation matrix L̃ and

smoothness conditions M̃c̃ = 0 as in the setting of DLS splines. We also assemble the
energy matrices E1 and E0 and solve the linear system[

P̃ M̃T

M̃ 0

] [
c̃
η

]
=

[
L̃T f
0

]
,

where P̃ in this case is

L̃T L̃ +

[
λ1E1 0

0 λ0E0

]
.

Corollary 5.3. The matrix P̃ is positive definite with respect to M̃c̃ = 0.
Proof. c̃T P̃c̃ = 0 implies that c̃T Ẽc̃ = 0. Therefore Pλ(s) = 0 implies that s is

a linear polynomial. L(s) = 0 as well, and therefore s interpolates f = 0 at every
vertex of Δ. Hence s = 0 and so is c̃ = 0.

Note that considerations of Corollary 5.3 apply to the homogeneous case, and
therefore we can efficiently obtain homogeneous PLS spline solutions as well.
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Table 5.1

The relative errors for PLS splines.

Sr
d(Δ) \ e(Δ) e(Δ̄1) e(Δ̄2) e(Δ̄3)

S1
3(Δ) 7.3001e− 01 2.5346e− 01 1.0829e− 01

S1
4(Δ) 3.2211e− 01 1.1959e− 01 4.4371e− 02

N1
4 (Δ) 2.5707e− 01 9.4001e− 02 4.2157e− 02

Table 5.2

The relative standard deviations for PLS splines.

Sr
d(Δ) \ s(Δ) s(Δ̄1) s(Δ̄2) s(Δ̄3)

S1
3(Δ) 1.3024e− 01 4.4337e− 02 1.4585e− 02

S1
4(Δ) 5.5051e− 02 1.7656e− 02 4.5250e− 03

N1
4 (Δ) 3.9482e− 02 1.3479e− 02 4.1267e− 03

5.3. Numerical experiments with PLS splines. In this section we present
an example of a PLS fitting similar to Example 4.3.

Example 5.1. Note that for PLS fit we require the data at the vertices of a trian-
gulation to be given. To deal with this requirement we modify the triangulation Δ1

by replacing its vertices by points in V closest to them. Denote the new triangulation
by Δ̄1. After refining Δ̄1 we again may not have the values of geopotential values
available at the vertices of the refined triangulation. We replace these vertices by
the points in V closest to them where values of geopotential are available. We call
this new triangulation Δ̄2. Similarly we obtain Δ̄3. That is, Δ̄i+1 is not exactly a
uniform refinement of Δ̄i. For each triangulation we compute PLS spline solutions
in the spaces S1

3(Δ̄i), S
1
4(Δ̄i), and N1

4 (Δ̄i), i = 1, 2, 3, with λ = λ1 = λ2 = 10−6. In
Table 5.1 we list relative error values

e(Δ̄i) :=
maxv∈V |s(v) − f(v)|

maxv∈V |f(v)|

for each of the computed splines over triangulation Δi. In Table 5.2 we list their
relative standard deviation values

s(Δ̄i) :=
std|s(v) − f(v)|
maxv∈V |f(v)| .
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