AMS JOURNAL STYLE
Volume 00, Number 0, Xxxx 2004

TRIVARIATE SPLINE APPROXIMATIONS OF
3D NAVIER-STOKES EQUATIONS

GERARD AWANOU AND MING-JUN LAI

ABSTRACT. We present numerical approximations of the 3D steady state Navier
Stokes equations in velocity-pressure formulation using trivariate splines of ar-
bitrary degree d and arbitrary smoothness r with r < d. Using functional argu-
ments, we derive the discrete Navier-Stokes equations in terms of B-coefficients
of trivariate splines over a tetrahedral partition of any given polygonal domain.
Smoothness conditions, boundary conditions and the divergence-free condi-
tion are enforced through Lagrange multipliers. The pressure is computed by
solving a Poisson equation with Neumann boundary conditions. We have im-
plemented this approach in MATLAB and present numerical evidence of the
convergence rate as well as experiments on the lid driven cavity flow problem

1. INTRODUCTION

There are many computational methods available in the literature for the numer-
ical solution of the 3D Navier-Stokes equations. New and more efficient methods
are being developed to increase the power of computational flow simulations. To
achieve significant improvements for the quality of computer simulations for real-life
problems is not only dependent on the continuously increasing computing power,
but also the approximation power of the numerical methods. In this paper, we
propose to use trivariate spline functions for the numerical solution of 3D Navier-
Stokes equations. Our approach is like the finite element method using tetrahedra
to approximate any given domain and using piecewise polynomials over tetrahedral
partitions to approximate the solution of the Navier-Stokes equations. The main
features are:

(1) No macro-element or locally supported spline functions are constructed; It is very
difficult to construct and implement C* finite elements in R3. Indeed since the
first finite element in R? (cf. [Z]) was introduced, very few other macro-elements
have appeared.

(2) Polynomials of high degrees can be easily used to get better approximation prop-
erties (cf. [ALW]);

(3) Smoothness can be imposed in a flexible way across the domain at places where
the solution is expected to be smooth. For example, the solution of the steady
state Navier-Stokes equations is H? inside the domain and H! near the boundary

(ct. [SD);
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(4) The mass and stiffness matrices can be assembled easily and these processes can
be done in parallel;

(5) When the weak solution to the Navier-Stokes equations is strong, it satisfies the
divergence-free condition exactly;

(6) The matrices that arise from our method are singular which is an important
difference from the classical finite element method (cf. [B] and [FG]). We will
discuss the special structure of these matrices later.

The paper is organized as follows: In §2, we first introduce trivariate spline spaces
and in particular, the B-form representation of spline functions over tetrahedral
partitions. We use the trivariate splines to discretize the steady state Navier-Stokes
equations. The method of Lagrange multipliers leads to linear systems of form

o 2l[e]=lel

where A is singular. Let us point out that the existence and uniqueness of the
solution ¢ will be proved in §3 and §4 in the situations of the 3D Stokes equations
and 3D Navier-Stokes equations. We then discuss how to solve the above system
of equations. This can be done in at least two ways: by computing a least squares
solution or by using a variant of the augmented Lagrangian algorithm (cf. [FG]). In
83 we discuss the spline solution of the 3D Stokes and Navier-Stokes equations. It is
there that we fully explain our method. In §4, we discuss the spline approximations
of the 3D Navier-Stokes equations and discuss the convergence of two numerical
methods for solving the discrete nonlinear equations. In §5, we present numeri-
cal results for the 3D Stokes equations which demonstrate the convergence of the
scheme when the degree of the spline increases and/or the underlying tetrahedral
partition is refined. Finally we test our MATLAB programs on the lid driven cavity
flow problem.

2. PRELIMINARIES

2.1. Trivariate Spline Functions. Given a bounded domain 2 € R3? with
piecewise planar boundary, let 7 be a tetrahedral partition of Q. Let d > 1 and
r > 0 be two fixed integers. We introduce the spline spaces

SyT)={s€C"(Q), sl € Py, Vt€ T},

where P, denotes the space of trivariate polynomials of total degree d, i.e., the
collection of all functions

(21) P(»’U,yaz) = Z aijkxiyjzka
0<i+j+k<d

with ayj; real numbers.

In this paper, the B-form representation of splines on tetrahedra will be used (cf.
[deB] and [F]). This enables us to efficiently handle the smoothness conditions which
ensure that a piecewise polynomial function s € C"(2). Also there are a convenient
formula based on the B-form representation for integration over tetrahedra.

Let T = (v1,v2,v3,v4) be a non degenerate tetrahedron with v; = (z;,y;, 2:),
i=1,2,3,4. It is well known that every point v = (z,y, z) can be written uniquely
in the form

(22) vV = bl'Ul + b2'l)2 + b3'l)3 + b4’U4,
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with
(23) bi +by+b3+by=1.

Here, by, by, b3 and by are called the barycentric coordinates of the point v = (x,y, 2)
relative to the tetrahedron T'. Moreover each b; is a linear polynomial in z,y, 2.
We next introduce the Bernstein-Bézier polynomials of degree d as follows

B¢ !

ijn (V) = mbibgbf{bﬁ, i+j+k+l=d

Clearly, they are polynomials of degree d since each b; is a linear polynomial. In
fact, the set
Bd:{B;jjkl(xayaz)a i+j+k+l:d}

is a basis for the space of polynomials P4. As a consequence any polynomial p of
degree d on T can be written uniquely in terms of ijkl’s, ie.,

(2.4) p= Y, cijuBhu
i+j+hti=d

The representation (2.4) for polynomials is referred to as the B-form. We next
define the associated set of domain points of degree d over the tetrahedron T' to be:

1 + jua + kvs + lvg
d

(2.5) Da,r = {&ijm = Ji+j+k+1=d}.
For each spline function s € S%(7), since s restricted to each tetrahedron T' € T is
a polynomial of degree d, we may write

_ T pd
slr = Z CijuBijr, TET.
itjt+h+i=d

Such a representation is called the B-form representation of the spline function
s (cf. [de Boor’87]). We denote by ¢ := {cj,,i +j+k+1=d,T € T} the
B-coefficient vector of s.

The following result is well known and will be used for approximation of functions
over tetrahedra. See [CY] for a proof.

Theorem 2.1. There is a unique polynomial p of degree d that interpolates any
given function f on a tetrahedron T = (v1,v2,v3,v4) over the domain points in

(2.5).

The restriction of a trivariate polynomial p of degree d on a face of a tetrahedron
T is a bivariate polynomial and can be written in B-form

~  Bd
Z Cijk Biji, (v),
i+j+k=d
where

d!
(v) = ik

B, bbbk,
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and by, by and bz are the barycentric coordinates of v with respect to the face. For
example, given the trivariate polynomial p on a tetrahedron T = (v, va, v3, v4)

— d
p= Y, ciuBiu,
i+j+k+i=d

the polynomial

— d
9= E : cijko Bijro
i+j+k=d

is a bivariate polynomial. In fact, Bf;,(v) = gfj . (v) for every v € (v1,v2,v3). This
suggests that there is a linear embedding R which maps the B-coefficient vector ¢ of
the spline s to its coeflicients on the triangular faces on the boundary of €. Further-
more, similar to Theorem 2.1, a bivariate polynomial p of degree d is uniquely deter-
mined on a triangle (v1, v2,v3) by its values at the domain points &;jx = M’;Lk”‘*
That is, given a function g defined on a triangular face (vy, v2,v3), there is a unique
polynomial p, with coefficients c;;;, interpolating g at the domain points &;;1’s. Note
that each coefficient c;ji is a linear combination of the values of g at the domain

points &;;i’s. Let G be a vector of c”k,z +j+k=d,T € 0, we may set

Rc =G

to encode the condition that a spline function s € S(A) satisfies the boundary
condition s = g on 9N approximately.

We next discuss how to take derivatives of polynomials in B-form. We start with
formulas for the directional derivatives of p in a direction defined by a vector u.

We have: 0
d—1
Dyp=d Z z]kl( )szkl ’
i+j+k+l=d—1

with a = (a3, a2, as3,a4), a1 + a2 + as + a4 = 0 and

1
Ciih (@) = @1Cipn gkt + 02Ch 41,k + Q3Ci k11, F QaCig1 kit
Here, the a;, i = 1,...,4 are the so-called T-coordinates of u. That is, if u
= v1 — ve is a direction vector with (a,as,as,as) and (81, B2, B3, 84) being the
barycentric coordinates of v; and vy with respect to T, the T-coordinates of u are
Bi —ai,i =1,...,4. In general, we have

(2.6) DIp) = Gy 2 Chn@BEI),
it jtk+l=d—m

with the following recurrence relation
1 -1
(@) = e}y (@) + ol (a)
1
+ b3cz s k-})-1 (@) + b4c(,rj k ;4—1(3)

It is not difficult to see that there are matrices D,, D, and D, which map the
B-coefficient vector ¢ of any spline function s € S%(7) to the B-coefficient vectors

of %s 66 s, 828 That is, D,c is the B-coefficient vector of 88375 € ST H(T).

There are precise formulas for integrals and inner product of polynomials in
B-form (cf. [CL]). For convenience, we include these formulas here.
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Lemma 2.2. Let p be a polynomial of degree d with B-coefficients cijri, © + j +
k+1=d on a tetrahedron T. Then

volume of T
/p($7y7z)dxdydz = W Z Cijkl -
T 3 i+j+k+l=d

Lemma 2.3. Let g be another polynomial with B-coefficients d;jp,i+j5+k+1=d,
the inner product of p and q over T is given by
(2.7

p(@,9, 2)a(, y, 2)dwdydz = 2me of t
T

(D57

i+r\[(j+s\[(k+t\[l+u
Z Cijkidrstu| . . P ik
itjthktli=d g J

r4s+ttu=d
The inner product formula can also be written in the form

/p(l';y, Z)q(:[;’y’ z)d.'L‘dydz — volume oft
T

“(2d\ (2d+3\
(2)(57)
where ¢ and d encode the B-coefficients of p and q respectively and G is a symmetric

square matriz with binomial coefficients as in (2.7).

cfad,

The process for computing inner products of polynomials in B-form can be car-
ried out for the product of three polynomials p, ¢, and r of degree di,d> and d3
which leads to the following useful integration formula for the nonlinear term in
the Navier-Stokes equations.

Lemma 2.4. Let p,q, and r be polynomials of degrees dy,ds, and d3, respectively.
Then

_ wolume of t x (dy + dy + d3)!
/Tp(w,y,z)q(w,y,z)r(w,y,z) drdydz = sy g} (P )
X Z eﬁwnécTGu,V,n,éda

ptv+r+0=ds

where matrices Gy,u,x,5 are a matriz of size mi X my with my = dim(Py,), mo =
dlm(sz) fO'f‘ any [, V;"€76 with prv+e+ 0= d3) ¢ = (c;ll,uné)lt-i-lf-i-n-i-é:du d=
(cimé)u_i_,,_i_,g_,_(;:@ and e = (Ciuna)u+v+n+6:ds encode the B-coefficients of p,q and
r, respectively. (Details can be found in [A].)

We next discuss the smoothness conditions for a spline function s in S7(7).
These are conditions on the coefficients of s that will assure that s has certain
global smoothness properties; they are well known and are given in the following

Theorem 2.5. Lett = (v, v2,v3,v4) and t’ = (v1,vs,v3,0v5) be two tetrahedra with
common face (v1,v2,v3). Then s is of class C" on t Ut if and only if

2 — t m _ . . _
C'ijkm - E : Cz'+p,j+u,'y+n,6Bu,u,n,6(1}5)7 m = 07 R SO el B k=d—m.
ptv+Kr+I=m

For a proof, see [deB]. This suggests that there is a matrix H such that s is in
C"(Q) if and only if
Hc =0,

where ¢ encodes the B-coefficients of s.
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2.2. Solving the Systems of Equations. Our discretizations lead to linear
systems of type

@ 5 2] l= 6]

with A singular and appropriate matrices L and vectors F' and G.

For the problems at hand, the approximate solution encoded in ¢ is unique so
computing a least squares solution of the above system would allow to retrieve c¢. To
reduce the number of unknowns we have considered the following algorithm which
can be found in [G]. For k = 0,1,..., with an initial guess A(*), e.g., A(©) = 0, and
I the identity matrix of R™, consider the following sequence of problems:

T A )\(k-‘rl) F
(29) [—d L] [fc(k“)] = {G — eA® ] '
It follows that 1 1
(A+ =L"L)eW = F+ =L7G - LT\,
€ €

and 1 1
(A+ ZLTL)e® D) = Ac® 4 Z17G.

€ €
In [G] it is assumed that A is invertible. However we have:

Theorem 2.6. Let A=A, + A, where A, = $(A + AT) is the symmetric part of
Aand A, = %(A — AT) is the anti-symmetric part of A. Furthermore,suppose that
A, is positive definite with respect to L, that is, xT A;x =0 and Lx = 0 imply that
x = 0. Then for any € > 0, the matriz

1
A+ =LTL
€

is invertible.

Proof. To see that the matrix A+ %LTL is invertible, we first note that for any vec-
tor x of appropriate size, x! A,x = 0. Indeed, xTA4,x = —xTATx = —(4,x)Tx =
—xT A,x. Suppose that (4 + LLTL)x = 0. We have

1
0=x"(A+-LTL)x
€
1
=xTA,x + =(Lx)" Lx.
€
It follows that xTA,x = 0 and Lx = 0. Since A, is positive definite with respect
to L, x =0. O

The following algorithm can then be applied in the framework of Theorem 2.6.

Algorithm 2.7. Fiz e > 0. Given an initial guess %) € Im(L), we define ¢V by

W =AU+ lLTL)—I(F + g LTA)
€ €
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and iteratively define
1
(2.10) kD) = (4 4 lLTL)*l(Ac(’“) +=L7G),
€ €

for k=1,2,..., where Im(L) is the range of L.

We have noticed that this algorithm converges very fast. It can be shown that
(cf. [G])
lle — ¢V < Celle — M|,

for kK > 1 and a constant C' > 0. A detailed discussion of this convergence rate
can be found in [AL]. (See also [ALW] for a proof of the convergence when A is
symmetric).

3. SPLINE APPROXIMATIONS OF THE STOKES EQUATIONS

In this section, we consider spline approximations of the 3D Stokes equations
in velocity-pressure formulation. The pressure is eliminated from the equations by
using a space of velocity fields which are divergence free. The later is discretized by
means of trivariate splines of any given degree and any specified smoothness. We
then minimize the energy functional associated with the variational problem over
this set of splines to get the velocity vector. The pressure term is computed by
solving a Poisson problem with Neumann boundary condition.

For an incompressible viscous fluid in a bounded domain € of R?, the Stokes
equations are

—vAu+Vp= fin Q
(3.1) divu= 0in Q
u= gon 0N
The unknowns here are the velocity u = (uy,us,us3)” of the fluid and the pressure p;
v is the kinematic viscosity, f = (f1, f2, f3) represents the externally applied forces

(e.g. gravity) and g = (91, 92,93) the velocity at the boundary which satisfies the
compatibility condition

(3:2) /mg-nzo,

by the divergence theorem.
Let
Vo = {v € Hy()* such that div v =0}.

The weak formulation of the Stokes equations is to find u € H'(Q)? satisfying
u = g on the boundary and

V/Vu-VV:/f-v, Vv € V.
Q Q

Since the equations involve Vp, the pressure is determined up to an additive con-
stant. To have uniqueness, one can require it to have zero mean. We therefore
introduce

12Q) = {pe L2(9>,/Qp=0}.

The following existence and uniqueness results are known (cf. [GR]).
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Theorem 3.1. Let Q) be a bounded and connected open subset of R® with a Lip-
schitz continuous boundary 0. For £ € H1(Q)? and g € H%(6Q)3 satisfying
the compatibility condition (3.2), there exists a unique (u,p) € H' ()3 x L%(Q)
satisfying the Stokes equations (3.1). Moreover letting

Vo={ue H' Q> u=gon 00, divu=0 inQ},

the velocity u is the unique minimizer in Vy of the functional

J(u)zg/QVu-Vu—/Qf-u.

We now consider spline approximations of the velocity vector field u. Let d > 1
and 7 > 0 be two given integers and S C SJ(7) be a spline subspace over a
tetrahedral partition 7 of Q consisting of spline functions which are C" inside
and C° near the boundary Q. Recall from §2.1 that there is a matrix H such that
if s € S with B-coefficient vector ¢, then

He =0.

Also recall from §2.1 that there is a matrix R which maps ¢ to the B-coefficients of
s on the boundary of 2 and Rc = G represents the boundary condition, i.e., s = g
on the boundary approximately.

To approximate the velocity vector u = (u1,us,us3), we let sy = (s1, 82, 3) be
the spline approximating vector with s; € S satisfying Hc; = 0, R(c;) = G(g;) for
1 =1,2,3, where s; is an approximant of u; and c¢; denotes the B-coefficient vector
of s;. Then the discrete analogue of the condition div u = 0 can be given by

chl + DyCQ + D203 = 0,

0s;
where D, is the matrix mapping c¢; to the B-coefficient vector of a—’ as explained
xz

in §2.1. For convenience, let

H

0 0 R 0 0
= H 0], R=[0 R 0], G=(G(g),G(g2),G(g3)"
0 H 0 0 R

and

Furthermore, let

H 0
L=|R| andG= |G
D 0

The spline approximation of the solution of the 3D Stokes equations is therefore
the minimizer of the functional J over

S, ={ce (RY)3 Lc =G},
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where N = dn with d = (d+3) being the dimension of P; and n the number of
tetrahedra in 7.

Next we give an expression of J in terms of c. Let sy, be the spline approximation
of f; which is the spline function in S9(7) interpolating f; at the domain points of
degree d over each tetrahedron ¢t € 7. The spline interpolant sy, can be identified
by its B-coefficient vector F;. Let

M= (/Bng)
t lal=d,|8|=d

be the local mass matrix which can be easily computed based on Lemma (2.3)
and denote by M the corresponding global mass matrix which is a block diagonal

matrix of M? r € T. Then / fisj ~ / 57,8 = (Fj)TMcj. Similarly, let
Q Q

= ( / VBgVBg)
t la|=d,|8|=d

be the local stiffness matrix which can also be computed easily using Lemma 2.3
again after using the derivative formula mentioned above. We also denote by K the
global stiffness matrix which is a block diagonal matrix of K¢,¢t C n7. We have

3
J(81,32783)=J(C1,C2,C3):gzz Z & ]ﬂ/VBdVBﬂ

J=1t€T |a|=d,|B|=d

3
“YY X fachs [ BB
j=1teT t

lal=d,|8]=d
TKt t ZZ TMt t
3

(c;) Ke; =Y (Fy)" Mc;,

1 j=1

[
| R
(]

i 1teT

I
N R
Ingl

J

where ¢; = (cf,t € T) = (c}4,|8] = d,t € T) be the B-coefficient vector of
sj,j = 1,2,3. For simplicity, let ¢ = (c,c2,c3)7,

B M 0 0 o K 0 0
F=(F,F”FK)Y, M=|0 M 0 and K=|0 K 0
0 0 M 0 0 K

With these notations, we have
J(c) = gchc —FTMe.

The spline approximation problem is to minimize J over (R™)3 under the constraint
Lc = G. By the theory of Lagrange multipliers, there is A such that

vKe + LTA\ = MF,
Le = G.
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LT vK|[A| _[MF
IR

Existence and uniqueness of the discrete solution c follows from classical argu-
ments. Therefore it can be computed by retrieving a least squares solution of the
above system. We should also notice here that K is positive definite with respect
to L since ¢T Kc is the Dirichlet integral of the spline vector encoded in c. To say
that it is zero implies that its components are piecewise constants. The condition
Lc = 0 says that they are continuous and zero on the boundary so they vanish.
By Theorem 2.6, Algorithm 2.7 can be applied to compute an approximation of c.
This furnishes a numerical method for 3D Stokes equations.

Finally, we discuss the computation of the pressure term. Assuming that u is
smooth and taking the divergence of the first equation in (3.1), we get

or

—Ap=—divf
since div u = 0. This equation is supplied with Neumann boundary conditions

@ZVp-n:f-n+V(Au)-n, on OfL.
On

Note that the compatibility condition for this Neumann problem is clearly satisfied.

Indeed,
/—divf+/ f-n—i—y(Au)-n:/ v(Au) -n
Q o0 o0

=/VdivAu

Q

/Adivu
Q

=v
= (]’
using the divergence theorem.

We use the approach presented above to solve this Poisson problem with Neu-

mann boundary conditions. Recall that we are seeking the pressure in

13Q) = {pe L2<n>,/9p=0}.

Again we can use the spline space S as an approximating space. For a spline
approximation s, of p with B-coefficient vector ¢, its integral over a tetrahedron is
simply the sum of its B-coefficients (cf. Lemma, 2.2), hence the spline approximation
of [, p =0 can be written

Uc=0,

for a vector U of size N which consists of repeated volumes of all tetrahedra. The
pressure is also the solution of a minimization problem, namely, minimizing

Q) = %/Q|Vv|2—/9(— div f)v—/99(f-n+V(Au)-n)v

over LZ(Q).
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We now write @ in terms of c,,. Let F}, be an approximant of —div f computed
by first interpolating f;,4 = 1,2,3 and G, interpolate f - n + v(Au) - n on the
boundary. The later is computed by using the spline approximation s, of the
solution u of the Stokes equations. Recall that Rc, encodes the B-coefficients of
the spline approximation ¢, of p on the boundary. We have

1
Q(cp) = i(cp)Tch — F] Mc, — G} MyRey,
where M} is the mass matrix for the bivariate splines of degree d over the triangles

of 9. By the Lagrange multiplier method, we need to solve the following linear
system:

U HT K[\ MF, + RT My(RG))
0 0 H||Xx|= 0
0 0 UJ|e 0

Identical considerations as for the Stokes equations apply here so we can use Algo-
rithm 2.7 discussed in §2.2 to solve the above system.

4. SPLINE APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS

The Navier-Stokes equations which govern the motion of an incompressible vis-
cous fluid in a bounded domain Q of R? are

3
—VAU+ZUj§—u+Vp:f in €,
=1 O

(4.1)
div u=0 in Q

u=g on 0f).

The unknowns here are the velocity u = (u,us,us3)” of the fluid and the pressure
p. The kinematic viscosity v and f = (f1, f, f3) which represents the externally
applied forces (e.g. gravity) are given. The stress on the fluid is encoded in the
nonlinear term. In view of the divergence theorem, g must satisfy the compatibility
condition

(4.2) /¢9le11:0

where n is the unit outer normal to 0.

Formally, by taking the scalar product of the first equation in (4.1) with v €
HL(Q) satisfying div v = 0, we get the weak form of the Navier-Stokes equations:
Find u € H'(Q)? such that

3
ou

v Vu-Vv+E /U'—-VZ/f-V, Vv €

/Q = Ja 7 Ox; Q °

divu=20 in
u=g on 012,

where Vy = {v € H}(Q)?, div v = 0}. The following existence and uniqueness
results are well known (cf. [GR]).
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Theorem 4.1. Let Q be a bounded connected open subset of R® with a Lipschitz
continuous boundary. For f € H-'(Q)% and g € HY/?(90)? satisfying (4.2), the
problem: find (u,p) € H'(Q)* x L2(Q2) such that the Navier-Stokes equations (4.1)
hold has a unique solution provided that v is sufficiently large or f is sufficiently
small.

Unlike the linear case, this problem cannot be cast directly as a minimization
problem. We shall first compute the velocity vector field and then the pressure
term. The difference with the previous section is the presence of the nonlinear
term. Let us introduce the bilinear form a defined by

a(u,v):/Vu-Vv
Q

and the trilinear form b defined by

3
Odu
(4.3) b(w;u,v) = Z/Qw]T% - V.
Jj=1

We have seen that o
a(u,v) = c'Kd,

when the components of u and v are in S and ¢ and d encode their B-coefficients.
Similarly let e encode the B-coefficient vector of the spline function w with compo-
nents in S. Tedious computations, (cf. [A] for details), show that there is a matrix

B(e) such that
(4.4) b(w;u,v) = (B(e)c)'d = d"B(e)ec.
Recall that o
S, = {c € (RV)*,Le = G},
and let
So = {c € (RY)3, Lc = 0}.
The spline approximation of the weak solution of the 3D Navier-Stokes equations
is to find ¢ € S, such that

(4.5) veTKd + (B(c)c)Td = dTMF,
for alld € Sp.
If one considers the following linear functional in d, for a fixed c,
J(d) = (ve" K + (B(c)e)" — FT"M)d,
we have
J(d) =0,

for all d satisfying Ld = 0. This implies the existence of a Lagrange multiplier A
such that - o
veTK + (B(c)e)T + \TL =FTM.
In summary the spline approximation ¢ must satisfy
vKc+ B(c)c + LT\ = MF
(4.6) .
Le =G.

The proof of the following existence and uniqueness of the discrete solution ¢
follows classical lines. We refer to [GR]. (Additional details can be found in [A].)
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Theorem 4.2. The above equations (4.6) have a unique solution c provided the
spline vector encoded in F has a sufficiently small L?> norm or v is sufficiently large.

We next derive two methods to linearize the nonlinear equations (4.6), using a
simple iteration algorithm and by Newton’s method.

Algorithm 4.3 (A simple iteration algorithm). Let (c(®, \(9)) be the solution
of the linear problem (i.e. the associated Stokes equations) and for n = 0,1,...,
define (c™tD X+ as the solution of

vKc™) 4 B(c™M)ctD) 4 LTACHD = J7F
(4.7) L) _ &

We use Algorithm 2.7 to find the approximate solutions of the above Algorithm
4.3. We can use the iterative algorithm described in §2.2 since B(c(™) is anti-
symmetric for any ¢(™ and K is symmetric, non negative and positive definite with
respect to L.

To apply Newton’s method to solve (4.6), we consider the mapping I defined by

T:(c,)\) —= (vKc+ B(c)e + LYX — MF,Lc — G).

and seek to solve I'(c,\) = 0. We write X(™ = (c(®,A(™) and let X be the
solution of the linear problem. Then we define X(™*+1) such that

I (X)X — X)) = _(X(™).

Thanks to the bilinearity of the mapping (c,d) — B(c)d, the above equality leads

to
vEKc(ntl) + E(c(n))c(nﬂ) + E(c(nﬂ) _ c(n))c(n) + LT+ — JfF

Le™t) = G.
It can be shown that B(c(™) — ¢(™)c(™ can be written B(c(™)(c("+1) — ¢(m)

with B(c(™)c™ = B(c(™)c(™ for some matrix B(c(™) (cf. [A] for details). We
have our second algorithm

Algorithm 4.4 (Newton’s method). Let (c(%), A\(©)) be the solution of the lin-

ear problem (i.e. the associated Stokes equations) and for n = 0,1,2,... define
(et X)) g5 the solution of
(4.8)
vEKc™) 4 B(c™)ctD) 4 B(c™)c™tD) 4 LT = I[F + B(c(™)c™
Let) = G.

For the linear system (4.8), we can use Algorithm 2.7 because B(c(™) is anti-
symmetric and vK + B(c(™) (and consequently its symmetric part) is positive
definite with respect to L for v sufficiently large. Indeed for a spline with B-
coefficients encoded in x which satisfy Lx = 0,

X" Kx +x"B(c™)x 2 vC||x|lin ) = Cille™ |l @ysl Xl (aye-
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But since the sequence (c(™) is bounded ( its convergence is stated below), there’s
C5 > 0 for which ||c(")||H1(Q)s < Cs, S0

XTKX =+ XTE(C("))X > (I/C — 0102)”)(”%11 (Q)3>

which proves what was claimed.

We have the following convergence results for the above algorithms. They can
be proved using some techniques which can be found in [K]. In the later paper,
Lagrange multipliers are used only to enforce the divergence free condition. (Addi-
tional details can be found in [A].)

Theorem 4.5. The equations (4.7) have a unique solution "t and for the
unique solution c of (4.6), c("t) satisfies the following estimate

1€+ — ¢l [ @ys < Alle™ —ellm @y,

for a constant v < 1. As a consequence c(nt1) converges to c.

Theorem 4.6. There exists r > 0 such that if ||c — c°|[g1()s < 7, that is, the

initial guess c® is sufficiently closed to the solution c, there is a unique c{™t1)

solution of (4.8) such that ||c —c¢™||g1qys < 7 for all n with ||c — ™V || g1 qys <
f (4.8) I H1(Q) HY (@) <
Hle— c(")||%{1(9)3. Moreover, if there is ) < 1 such that ||c — || g1 (q)s = r1, then

c™ converges to cquadratically.

Finally, we discuss the spline approximations of the pressure. Like in the previous
section, the pressure satisfies a Poisson equation which is obtained by taking the
divergence of the first equation in (4.1). That is,

—Ap=—divf + div (u-V)u.
This equation is supplied with Neumann boundary conditions

g—p =Vp-n=f-n+v(Au) - n—((u-V)u)-n

n

which is solved numerically for p using the techniques described in the end of the
previous section. We thus omit the details here.

5. COMPUTATIONAL EXPERIMENTS

We have implemented the methods discussed in the previous two sections in
MATLAB. We present several computational experiments on our trivariate spline
method for numerical solutions of the Stokes and the Navier-Stokes equations in the
next subsections. The second subsection is devoted to our numerical experiments on
the lid driven cavity flow problem. The velocity profiles agree with the ones found
in the literature. Throughout this section, we use continuous splines to approximate
components of the velocity and elements of S}(Q) for the pressure.

5.1. Computational Experiments on the 3D Stokes Equations. Let 2 C
R? be a cube with sides of length 1. This domain is first subdivided into six tetra-
hedra forming a tetrahedral partition 7;. We also uniformly refine each tetrahedron
in 77 in eight sub-tetrahedra, forming 7. We compute the right-hand sides of the
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Stokes equations using the test vectors below and feed them into our MATLAB
code. The maximum errors of the spline solutions against these artificial exact
solutions are tabulated in Tables 1 and 2. In Figures 1, and 2, we plot the L2 and
H' norm of the errors versus the degree of the spline interpolant. Here n7; and
n7> is the number of tetrahedra in 77 and 75. The errors E are of form C x d* for
a constant C' and real number a. We found these constants by a least squares log
fit of log (E) = log(C) + n log(d). We consider the v ector field u = (u1,us2,us)
with a pressure p.
u; = —exp(x + 2y + 3z2)

uz =2 exp(z + 2y + 3z2)
uz = —exp(x + 2y + 3z2)
p=z(1—-1x)z(1 - 2).

Table 1. Approximation Errors from Trivariate Spline Spaces on 7;

degrees |u; Us us3 [

3 3.3633x10 5.9431x10 4.0397x10 1.3466 x10°

4 1.7010x10 4.4374x10 3.5368x10 3.8562 x102

5 2.3804 7.3711 5.9629 9.8470 x10*

6 3.9620x 1071 1.2238 1.0311 2.7404 x10!

7 6.7456x 102 1.9789 x10~! 1.6260x10~! 6.8411

Rate 1.56x107 d—9829 13.22x107 496293 |2.32x107 d—9-546% [8.50 x106 471353

Table 2. Approximation Errors from Trivariate Spline Spaces on 7

degrees |u; Uo us p

3 1.5083x10 1.8709%10 1.5222x10 4.4382 x10?
4 9.4142x107! 2.2094 1.8373 3.5278 x 10"
5 9.1619x 1072 2.2322x10~1 2.0176x107! 5.8199
6 8.5128x1073 2.3520x 1072 1.9276x 1072 7.1884 x107!
Rate 0.31x106 d—11-5631 |1.24x107 d—11-1692 [1,09x107 d—11-1991 |1.05%107 4—9-1064

5.2. Lid Driven Cavity Flow Problem. Our final numerical experiment is the
calculation of a flow in a cavity. The cavity domain 2 is the unit cube and the
flow is caused by a tangential velocity applied to the side y = 1. We assume that
all external forces vanish. Since they are independent of time, the flow limits to a
steady state modelled by (4.1).For the boundary conditions, we take g = (g1, g2, g3)
with go = g3 = 0 and g; = 0 except on the side y = 1 where g1 = 1. We have
displayed the configuration of the flow for Reynolds number 400, in the center plane
z = % using the first and second component of the velocity, Fig. 3, in the center
plane z = % using the second and third components, Fig. 4 and finally in the center
plane y = % using the first and third components, Fig. 5. We used continuous
splines of degree 7 over the cube subdivided into twelve tetrahedra. These results
agree with the ones of [WS] who used 3D tensor product of univariate piecewise
quadratic polynomial splines over 17 equally-spaced knots in [0, 1].
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25 T

0 I
3 35 4 4.5 5 5.5 6 6.5 7

Fig. 1 The errors in the L2 norm versus degrees on
T1 (rate=1.6777 x 107 d=2-8%62) and T, (rate=7.7013 x 10% 4—11-8503)
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Fig. 2 The errors in the H' norm versus degrees on
Ti (rate=2.5842 x 107 d=8-6017) and 7, (rate=3.2237 x 107 d~10-7257)
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