SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND ÁKOS MAGYAR

ABSTRACT. Let Δ be a non-degenerate simplex on k vertices. We prove that there exits a threshold $s_k < k$ such that any set $A \subseteq \mathbb{R}^k$ of Hausdorff dimension $\dim A \ge s_k$ necessarily contains a similar copy of the simplex Δ .

1. INTRODUCTION.

A classical problem of geometric Ramsey theory is to show that a sufficiently large sets contain a given geometric conguration. The underlying settings can be the Euclidean space, the integer lattice of vector spaces over finite fields. By a geometric configuration we understand the family of finite point sets obtained from a given finite set $F \subseteq \mathbb{R}^k$ via translations, rotations and dilations.

If largeness means positive Lebesgue density, then it is known that large sets in \mathbb{R}^k contain a translated and rotated copy of all sufficiently large dilates of any non-degenerate simplex Δ with k vertices [2]. However if by largeness one understands only large Hausdorff dimension s < k, then this question is less understood, in fact the only affirmative result in this direction is given by Iosevich-Liu [5].

In the other direction, a construction due to Keleti [6] shows that there exists set $A \subseteq \mathbb{R}$ of full Hausdorff dimension which do not contain any non-trivial 3-term arithmetic progression. In two dimensions an example due to Falconer [3] and Maga [8] shows that there exists set $A \subseteq \mathbb{R}^2$ of Hausdorff dimension 2, which do not contain the vertices of an equilateral triangle, or more generally a non-trivial similar copy of a given non-degenerate triangle. It seems plausible that examples of such sets exist in all dimensions [4].

The aim of this short note is to show that however measurable sets $A \subseteq \mathbb{R}^k$ of sufficiently large Hausdorff dimension s < k contain a similar copy of any given non-degenerate k-simplex whose eccentricity is controlled. Our arguments make use of and show some similarity to those of Lyall-Magyar [7] and we extend out results to bounded degree distance graphs. For the special case of a path (or chain) similar but somewhat stronger results were obtained in [1].

2. Main results.

Let $V = \{v_1, \ldots, v_k\} \subseteq \mathbb{R}^k$ be a non-degenerate k-simplex, a set of k vertices which are in general position spanning a k-1-dimensional affine subspace. For $1 \leq j \leq k$ let $r_j(V)$ be the distance of one a vertex v_j to the affine subspace spanned by the remaining vertices v_i , $i \neq j$ and define $r(V) := \min_{1 \leq j \leq k} r_j(V)$. Let d(V) denote the diameter of the simplex, which is also the maximum distance between two vertices. Then the quantity $\delta(V) := r(V)/d(V)$, which is positive if and only if V is non-degenerate, measures how close the simplex V is to being degenerate. We say that a simplex V' is similar to V, if $V' = x + \lambda \cdot U(V)$ for some $x \in \mathbb{R}^k$, $\lambda > 0$ and $U \in SO(k)$, that is if V' is obtained from V by a translation, dilation and rotation.

Theorem 1. Let $k \in \mathbb{N}$, $\delta > 0$. There exists $s_0 = s_0(k, \delta) < k$ such that if E is a compact subset of \mathbb{R}^k of Hausdorff dimension dim $E \ge s_0$, then E contains vertices of a simplex V' similar to V, for any non-degenerate k-simplex V with $\delta(V) \ge \delta$.

Note that the dimension condition is sharp for k = 2 as a construction due to Maga [8] shows the existence of a set $E \subseteq \mathbb{R}^2$ with dim(E) = 2 which does not contain any equilateral triangle or more generally a similar copy of any given triangle.

A distance graph is a connected finite graph embedded in Euclidean space, with a set of vertices $V = \{v_0, v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$ and a set of edges $E \subseteq \{(i, j); 0 \le i < j \le n\}$. We say that a graph $\Gamma = (V, E)$ has degree at most k if $|V_j| \le k$ for all $1 \le j \le n$, where $V_j = |\{v_i : (i, j) \in E\}|$. The graph Γ is called *proper* if the sets $V_j \cup \{v_j\}$ are in general position. Let $r(\Gamma)$ be the minimum of the distances from the vertices v_j to the corresponding affine subspace spanned by the sets V_j and note that $r(\Gamma) > 0$ if Γ is proper. Let $d(\Gamma)$ denote length of the longest edge of Γ and let $\delta(\Gamma) := r(\Gamma)/d(\Gamma)$.

We say that a distance graph $\Gamma' = (V', E)$ is *isometric* to Γ , and write $\Gamma' \simeq \Gamma$ if there is a one-one and onto mapping $\phi : V \to V'$ so that $|\phi(v_i) - \phi(v_j)| = |v_i - v_j|$ for all $(i, j) \in E$. One may picture Γ' obtained from Γ by a translation followed by rotating the edges around the vertices, if possible. By $\lambda \cdot \Gamma$ we mean the dilate of the distance graph Γ by a factor $\lambda > 0$ and we say that Γ' is *similar* to Γ if Γ' is isometric to $\lambda \cdot \Gamma$.

Theorem 2. Let $\delta > 0$, $n \ge 1$, $1 \le k < d$ and let E be a compact subset of \mathbb{R}^k of Hausdorff dimension s < d. There exists $s_0 = s_0(n, d, \delta) < d$ such if $s \ge s_0$ then E contains a distance graph Γ' similar to Γ , for any proper distance graph $\Gamma = (V, E)$ of degree at most k, with $V \subseteq \mathbb{R}^d$, |V| = n and $\delta(\Gamma) \ge \delta$. Note that Theorem 2 implies Theorem 1 as a non-degenerate simplex is a proper distance graph of degree at most k - 1.

3. Proof of Theorem 1.

Let $E \subseteq B(0,1)$ be a compact subset of the unit ball B(0,1) in \mathbb{R}^k of Hausdorff dimension s < k. It is well-known that there is a probability measure μ supported on E such that $\mu(B(x,r)) \leq C_{\mu}r^s$ for all balls B(x,r). The following observation shows that we may take $C_{\mu} = 4$ for our purposes.¹

Lemma 1. There exists a set $E' \subseteq B(0,1)$ of the form $E' = \rho^{-1}(F-u)$ for some $\rho > 0$, $u \in \mathbb{R}^k$ and $F \subseteq E$, and a probability measure μ' supported on E' which satisfies

$$\mu'(B(x,r) \le 4r^s, \quad for \ all \quad x \in \mathbb{R}^k, \ r > 0.$$
(3.1)

Proof. Let $K := \inf(S)$, where

$$S := \{ C \in \mathbb{R} : \ \mu(B(x,r)) \le Cr^s, \ \forall \ B(x,r) \}.$$

By Frostman's lemma [9] we have that $S \neq \emptyset$, K > 0, moreover

$$\mu(B(x,r)) \le 2K r^s,$$

for all balls B(x, r). There exists a ball $Q = B(v, \rho)$ or radius ρ such that $\mu(Q) \geq \frac{1}{2}K\rho^s$. We translate E so Q is centered at the origin, set $F = E \cap Q$ and denote by μ_F the induced probability measure on F

$$\mu_F(A) = \frac{\mu(A \cap F)}{\mu(F)}.$$

Note that for all balls B = B(x, r),

$$\mu_F(B) \le \frac{2Kr^s}{\frac{1}{2}K\rho^s} = 4\left(\frac{r}{\rho}\right)^s.$$

Finally we denot the probability measure μ' , by $\mu'(A) := \mu_F(\rho A)$. It is supported on $E' = \rho^{-1}F \subseteq B(0, 1)$ and satisfies

$$\mu'(B(x,r)) = \mu_F(B(\rho x, \rho r)) \le 4r^s.$$

Clearly E contains a similar copy of V if the same holds for E', thus one can pass from E to E' and hence assuming that (3.1) holds, in proving our main results. Given $\varepsilon > 0$ let $\psi_{\varepsilon}(x) = \varepsilon^{-k}\psi(x/\varepsilon) \ge 0$, where $\psi \ge 0$ is a Schwarz function whose Fourier transform, $\hat{\psi}$, is a compactly supported smooth function, satisfying $\hat{\psi}(0) = 1$ and $0 \le \hat{\psi} \le 1$.

We define $\mu_{\varepsilon} := \mu * \psi_{\varepsilon}$. Note that μ_{ε} is a continuous function satisfying $\|\mu_{\varepsilon}\|_{\infty} \leq C\varepsilon^{s-k}$ with an absolute constant $C = C_{\psi} > 0$, by Lemma 1.

¹We'd like to thank Giorgis Petridis for bringing this observation to our attention.

Let $V = \{v_1, \ldots, v_k\}$ be a given a non-degenerate simplex and note that in proving Theorem 1 we may assume that d(V) = 1 hence $\delta(V) = r(V)$. A simplex $V' = \{x_1, \ldots, x_k\}$ is isometric to V if for every $1 \le j \le k$ one has that $x_j \in S_{x_1,\ldots,x_{j-1}}$, where

$$S_{x_1,\dots,x_{j-1}} = \{ x \in \mathbb{R}^k : |x - x_i| = |v_j - v_i|, \ 1 \le i < j \}$$

is a sphere of dimension k + 1 - j, of radius $r_j = r_j(V) \ge r(V) > 0$. Let $\sigma_{x_1,\dots,x_{j-1}}$ denote its normalized surface area measure.

Given $0 < \lambda, \varepsilon \leq 1$ define the multi-linear expression,

$$T_{\lambda V}(\mu_{\varepsilon}) := (3.2)$$

$$\int \mu_{\varepsilon}(x)\mu_{\varepsilon}(x-\lambda x_{1})\cdots\mu_{\varepsilon}(x-\lambda x_{k})\,d\sigma(x_{1})\,d\sigma_{x_{1}}(x_{2})\dots d\sigma_{x_{1},\dots,x_{k-1}}(x_{k})\,dx.$$

We have the following crucial upper bound

Lemma 2. There exists a constant $C_k > 0$, depending only on k, such that

$$|T_{\lambda V}(\mu_{2\varepsilon}) - T_{\lambda V}(\mu_{\varepsilon})| \le C_k r(V)^{-\frac{1}{2}} \lambda^{-\frac{1}{2}} \varepsilon^{(k-\frac{1}{2})(s-k)+\frac{1}{4}}.$$
 (3.3)

As an immediate corollary we have that

Lemma 3. Let $k - \frac{1}{4k} \le s < k$. There exists

$$T_{\lambda V}(\mu) := \lim_{\varepsilon \to 0} T_{\lambda V}(\mu_{\varepsilon}), \qquad (3.4)$$

moreover

$$|T_{\lambda V}(\mu) - T_{\lambda V}(\mu_{\varepsilon})| \le C_k r(V)^{-\frac{1}{2}} \lambda^{-\frac{1}{2}} \varepsilon^{(k-\frac{1}{2})(s-k)+\frac{1}{4}}.$$
 (3.5)

Indeed, the left side of (3.4) can be written as telescopic sum:

$$\sum_{j\geq 1} T_{\lambda V}(\mu_{2\varepsilon_j}) - T_{\lambda V}(\mu_{\varepsilon_j}) \quad with \quad \varepsilon_j = 2^{-j}\varepsilon.$$

Proof of Lemma 2. Write $\Delta \mu_{\varepsilon} := \mu_{2\varepsilon} - \mu_{\varepsilon}$, then

$$\prod_{j=1}^{n} \mu_{2\varepsilon}(x - \lambda x_j) - \prod_{j=1}^{n} \mu_{\varepsilon}(x - \lambda x_j) = \sum_{j=1}^{k} \Delta_j(\mu_{\varepsilon}),$$

where

$$\Delta_j(\mu_{\varepsilon}) = \prod_{i \neq j} \mu_{\varepsilon_{ij}}(x - \lambda x_i) \,\Delta\mu_{\varepsilon}(x - \lambda x_j), \tag{3.6}$$

where $\varepsilon_{ij} = 2\varepsilon$ for i < j and $\varepsilon_{ij} = \varepsilon$ for i > j. Since the arguments below are the same for all $1 \leq j \leq k$, assume j = k for simplicity of notations. Writing $f *_{\lambda} g(x) := \int f(x - \lambda y)g(y) \, dy$, and using $\|\mu_{\varepsilon}\|_{\infty} \leq 4\varepsilon^{s-k}$, we have for $\Delta T(\mu_{\varepsilon}) := T_{\lambda V}(\mu_{\varepsilon}) - T_{\lambda V}(\mu_{2\varepsilon})$,

$$|\Delta T(\mu_{\varepsilon})| \lesssim \varepsilon^{(k-2)(s-d)} \int \left| \int \mu_{\varepsilon}(x) \ \Delta \mu_{\varepsilon} *_{\lambda} \sigma_{x_1,\dots,x_{k-1}}(x) \ dx \right| \ d\omega(x_1,\dots,x_{k-1})$$

$$(3.7)$$

where $d\omega(x_1, \ldots, x_{k-1}) = d\sigma(x_1) \ldots d\sigma_{x_1, \ldots, x_{k-2}}(x_{k-1})$. The inner integral is of the form

$$|\langle \mu_{\varepsilon}, \Delta_{\varepsilon}\mu *_{\lambda} \sigma_{x_1, \dots, x_{k-1}}\rangle| \lesssim \varepsilon^{s-d} \, \|\Delta\mu_{\varepsilon} *_{\lambda} \sigma_{x_1, \dots, x_{k-1}}\|_2,$$

thus by Cauchy-Schwarz and Placherel's identity

$$|\Delta_k T(\mu_{\varepsilon})|^2 \lesssim \varepsilon^{2(k-1)(s-d)} \int |\widehat{\Delta\mu_{\varepsilon}}(\xi)|^2 I_{\lambda}(\xi) d\xi,$$

where

$$I_{\lambda}(\xi) = \int |\hat{\sigma}_{x_1,\dots,x_{k-1}}(\lambda\xi)|^2 d\omega(x_1,\dots,x_{k-1}).$$

Since $S_{x_1,\ldots,x_{k-1}}$ is a 1-dimensional circle of radius $r_k \ge r(V) > 0$, contained in an affine subspace orthogonal to $M_{x_1,\ldots,x_{k-1}} = Span\{x_1,\ldots,x_{k-1}\}$, we have that

$$|\hat{\sigma}_{x_1,\dots,x_{k-1}}(\lambda\xi)|^2 \lesssim (1+r(V)\lambda \ dist(\xi, M_{x_1,\dots,x_{k-1}}))^{-1}.$$

Since the measure $\omega(x_1, \ldots, x_{k-1})$ is invariant with respect to that change of variables $(x_1, \ldots, x_{k-1}) \to (Ux_1, \ldots, Ux_{k-1})$ for any rotation $U \in SO(k)$, one estimates

$$\begin{split} I_{\lambda}(\xi) &\lesssim \int \int (1+r(V)\lambda \; dist(\xi, M_{Ux_{1},...,Ux_{k-1}}))^{-1} \, d\omega(x_{1},...,x_{k-1}) \, dU \\ &= \int \int (1+r(V)\lambda \; dist(U\xi, M_{x_{1},...,x_{k-1}}))^{-1} \, d\omega(x_{1},...,x_{k-1}) \, dU \\ &= \int \int (1+r(V)\lambda \, |\xi| \; dist(\eta, M_{x_{1},...,x_{k-1}}))^{-1} \, d\omega(x_{1},...,x_{k-1}) \, d\sigma_{k-1}(\eta) \\ &\lesssim (1+r(V)\lambda \, |\xi|)^{-1}, \end{split}$$

where we have written $\eta := |\xi|^{-1}U\xi$ and σ_{k-1} denotes the surface area measure on the unit sphere $S^{k-1} \subseteq \mathbb{R}^k$.

Note that $\widehat{\Delta\mu_{\varepsilon}}(\xi) = \hat{\mu}(\xi)(\hat{\psi}(2\varepsilon\xi) - \hat{\psi}(\varepsilon\xi))$, which is supported on $|\xi| \lesssim \varepsilon^{-1}$ and is essentially supported on $|\xi| \approx \varepsilon^{-1}$. Indeed, writing

$$J := \int |\widehat{\Delta\mu_{\varepsilon}}(\xi)|^2 I_{\lambda}(\xi) d\xi$$
$$= \int_{|\xi| \le \varepsilon^{-1/2}} |\widehat{\Delta\mu_{\varepsilon}}(\xi)|^2 I_{\lambda}(\xi) d\xi + \int_{\varepsilon^{-1/2} \le |\xi| \le \varepsilon^{-1}} |\widehat{\Delta\mu_{\varepsilon}}(\xi)|^2 I_{\lambda}(\xi) d\xi =: J_1 + J_2$$

Using $|\hat{\psi}(2\varepsilon\xi) - \hat{\psi}(\varepsilon\xi)| \lesssim \varepsilon^{1/2}$ for $|\xi| \le \varepsilon^{-1/2}$, we estimate

$$J_1 \lesssim \varepsilon^{\frac{1}{2}} \int |\widehat{\mu}(\xi)|^2 \left(\widehat{\psi}(2\varepsilon\xi) + \widehat{\psi}(\varepsilon\xi)\right) d\xi \lesssim \varepsilon^{\frac{1}{2}+s-k},$$

as

$$\int |\hat{\mu}(\xi)|^2 \hat{\psi}(\varepsilon\xi) \, d\xi \, = \, \int \mu_{\varepsilon}(x) \, d\mu(x) \lesssim \varepsilon^{s-k}$$

On the other hand, as $I_{\lambda}(\xi) \lesssim \varepsilon^{1/2} r(V)^{-1} \lambda^{-1}$ for $|\xi| \ge \varepsilon^{-1/2}$ we have

$$J_2 \lesssim \varepsilon^{1/2} r(V)^{-1} \lambda^{-1} \int |\hat{\mu}(\xi)|^2 \hat{\phi}(\varepsilon\xi) d\xi \lesssim r(V)^{-1} \lambda^{-1} \varepsilon^{\frac{1}{2}+s-d},$$

where we have written $\hat{\phi}(\xi) = (\hat{\psi}(2\xi) - \hat{\psi}(\xi))^2$. Plugging this estimates into (3.9) we obtain

$$|\Delta T(\mu_{\varepsilon})|^2 \lesssim r(V)^{-1} \lambda^{-1} \varepsilon^{\frac{1}{2} + (2k-1)(s-d)},$$

and (3.5) follows.

The support of μ_{ε} is not compact, however as it is a rapidly decreasing function it can be made to be supported in small neighborhood of the support of μ without changing our main estimates. Let $\phi_{\varepsilon}(x) := \phi(c \varepsilon^{-1/2} x)$ with some small absolute constant c > 0, where $0 \le \phi(x) \le 1$ is a smooth cut-off, which equals to one for $|x| \le 1/2$ and is zero for $|x| \ge 2$. Define $\tilde{\psi}_{\varepsilon} = \psi_{\varepsilon} \phi_{\varepsilon}$ and $\tilde{\mu}_{\varepsilon} = \mu * \tilde{\psi}_{\varepsilon}$. It is easy to see that $\tilde{\mu}_{\varepsilon} \le \mu_{\varepsilon}$ and $\int \tilde{\mu}_{\varepsilon} \ge 1/2$, if c > 0 is chosen sufficiently small. Using the trivial upper bound, for $k - \frac{1}{2k} \le s < k$ we have

$$T_{\lambda\Delta}(\mu_{\varepsilon}) - T_{\lambda\Delta}(\tilde{\mu}_{\varepsilon})| \le C_k \, \|\mu_{\varepsilon}\|_{\infty}^k \, \|\mu_{\varepsilon} - \tilde{\mu}_{\varepsilon}\|_{\infty} \le C_k \, \varepsilon^{1/2},$$

it follows that estimate (3.5) remains true with μ_{ε} replaced with $\tilde{\mu}_{\varepsilon}$.

Let $f_{\varepsilon} := c \, \varepsilon^{k-s} \tilde{\mu}_{\varepsilon}$, where $c = c_{\psi} > 0$ is a constant so that $0 \leq f_{\varepsilon} \leq 1$ and $\int f_{\varepsilon} \, dx = c \, \varepsilon^{k-s}$. Let $\alpha := c \, \varepsilon^{k-s}$ and note that the set $A_{\varepsilon} := \{x : f_{\varepsilon}(x) \geq \alpha/2\}$ has measure $|A_{\varepsilon}| \geq \alpha/2$. We apply Theorem 2 (ii) together with the more precise lower bound (18) in [7] for the set A_{ε} . This gives that there exists and interval I of length $|I| \geq \exp\left(-\varepsilon^{-C_k(d-s)}\right)$, such that for all $\lambda \in I$, one has $|T_{\lambda V}(A_{\varepsilon})| \geq c \, \alpha^{k+1} = c \, \varepsilon^{(k+1)(k-s)}$, where

$$T_{\lambda V}(A_{\varepsilon}) = \int \mathbf{1}_{A_{\varepsilon}}(x) \mathbf{1}_{A_{\varepsilon}}(x) \dots \mathbf{1}_{A_{\varepsilon}}(x) \, d\sigma(x_1) \dots d\sigma_{x_1,\dots,x_{k-1}}(x_k) \, dx.$$

Since

$$T_{\lambda\Delta}(\tilde{\mu}_{\varepsilon}) \ge c \, \alpha^{k+1} T_{\lambda v}(A_{\varepsilon}),$$

we have that

$$T_{\lambda V}(\tilde{\mu}_{\varepsilon}) \ge c > 0, \tag{3.8}$$

for all $\lambda \in I$, for a constant $c = c(k, \psi, r(V)) > 0$.

Now, let

$$T_V(\tilde{\mu}_{\varepsilon}) := \int_0^1 \lambda^{1/2} T_{\lambda V}(\tilde{\mu}_{\varepsilon}) \, d\lambda.$$

For $k - \frac{1}{4k} \le s < k$, by (3.5) we have that

$$|T_{\lambda V}(\mu) - T_{\lambda V}(\tilde{\mu}_{\varepsilon})| \le C_k r(V)^{-\frac{1}{2}} \lambda^{-\frac{1}{2}} \varepsilon^{\frac{1}{8}},$$

it follows that

$$\int_0^1 \lambda^{1/2} |T_{\lambda V}(\mu) - T_{\lambda V}(\tilde{\mu}_{\varepsilon})| \, d\lambda \le C_k \, r(V)^{-\frac{1}{2}} \, \varepsilon^{\frac{1}{8}}, \tag{3.9}$$

and in particular $\int_0^1 \lambda^{1/2} T_{\lambda V}(\mu) d\lambda < \infty$. On the other hand by (3.8), one has

$$\int_0^1 \lambda^{1/2} T_{\lambda V}(\tilde{\mu}_{\varepsilon}) \, d\lambda \ge \exp\left(-\varepsilon^{-C_k(k-s)}\right). \tag{3.10}$$

Now fix a small $\varepsilon = \varepsilon_{k,\delta} > 0$ and the choose $s = s(\varepsilon, \delta) < k$, noting that $r(V) \ge \delta$, such that

$$C_k \,\delta^{-\frac{1}{2}} \,\varepsilon^{\frac{1}{8}} < \frac{1}{2} \,\exp\left(-\varepsilon^{-C_k(k-s)}\right),$$

which ensures that

$$\int_0^1 \lambda^{1/2} T_{\lambda V}(\mu) \, d\lambda > 0,$$

thus there exist $\lambda > 0$ such that $T_{\lambda V}(\mu) > 0$. Fix such a λ , and assume indirectly that $E^k = E \times \ldots \times E$ does not contain any simplex isometric to λV , i.e. any point of the compact configuration space $S_{\lambda V} \subseteq \mathbb{R}^{k^2}$ of such simplices. By compactness, this implies that there is some $\eta > 0$ such that the η -neighborhood of E^k also does not contain any simplex isometric to λV . As the support of $\tilde{\mu}_{\varepsilon}$ is contained in the $C_k \varepsilon^{1/2}$ -neighborhood of E, as $E = supp \mu$, it follows that $T_{\lambda V}(\tilde{\mu}_{\varepsilon}) = 0$ for all $\varepsilon < c_k \eta^2$ and hence $T_{\lambda V}(\mu) = 0$, contradicting our choice of λ . This proves Theorem 1.

4. The configuration space of isometric distance graphs.

Let $\Gamma_0 = (V_0, E)$ be a fixed proper distance graph, with vertex set $V_0 = \{v_0 = 0, v_1, \dots, v_n\} \subseteq \mathbb{R}^d$ of degree k < d. Let $t_{ij} = |v_i - v_j|^2$ for $(i, j) \in E$. A distance graph $\Gamma = (V, E)$ with $V = \{x_0 = 0, x_1, \dots, x_n\}$ is isometric to Γ_0 if and only if $\mathbf{x} = (x_1, \dots, x_n) \in S_{\Gamma_0}$, where

$$S_{\Gamma_0} = \{ (x_1, \dots, x_n) \in \mathbb{R}^{dn}; \ |x_i - x_j|^2 = t_{ij}, \ \forall \ 0 \le i < j \le n, \ (i, j) \in E \}$$

We call the algebraic set S_{Γ_0} the *configuration space* of isometric copies of the Γ_0 . Note that S_{Γ_0} is the zero set of the family $\mathcal{F} = \{f_{ij}; (i, j) \in E\}, f_{ij}(\mathbf{x}) = |x_i - x_j|^2 - t_{ij}$, thus it is a special case of the general situation described in Section 5.

If $\Gamma \simeq \Gamma_0$ with vertex set $V = \{x_0 = 0, x_1, \ldots, x_n\}$ is proper then $\mathbf{x} = (x_1, \ldots, x_n)$ is a non-singular point of S_{Γ_0} . Indeed, for a fixed $1 \leq j \leq n$ let Γ_j be the distance graph obtained from Γ by removing the vertex x_j together with all edges emanating from it. By induction we may assume that $\mathbf{x}' = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)$ is a non-singular point i.e the gradient vectors $\nabla_{\mathbf{x}'} f_{ik}(\mathbf{x}), (i, k) \in E, i \neq j, k \neq j$ are linearly independent. Since Γ is proper the gradient vectors $\nabla_{x_j} f_{ij}(\mathbf{x}) = 2(x_i - x_j), (i, j) \in E$ are also linearly independent hence \mathbf{x} is a non-singular point.

In fact we have shown that the partition of coordinates $\mathbf{x} = (y, z)$ with $y = x_j$ and $z = \mathbf{x}'$ is admissible and hence (6.4) holds.

Let $r_0 = r(\Gamma_0) > 0$. It is clear that if $\Gamma \simeq \Gamma_0$ and $|x_j - v_j| \le \eta_0$ for all $1 \le j \le n$, for a sufficiently small $\eta = \eta(r_0) > 0$, then Γ is proper and $r(\Gamma) \ge r_0/2$. for given $1 \le j \le n$, let $X_j := \{x_i \in V; (i, j) \in E\}$ and define

$$S_{X_i} := \{ x \in \mathbb{R}^d; |x - x_i|^2 = t_{ij}, \text{ for all } x_i \in X_i \}.$$

As explained in Section 6, S_{X_j} is a sphere of dimension $d - |X_j| \ge 1$ with radius $r(X_j) \ge r_0/2$. Let σ_{X_j} denote the surface area measure on S_{X_j} and write $\nu_{X_j} := \phi_j \sigma_{X_j}$ where ϕ_j is a smooth cut-off function supported in an η -neighborhood of v_j with $\phi_j(v_j) = 1$.

Write $\mathbf{x} = (x_1, \dots, x_n), \, \phi(\mathbf{x}) := \prod_{j=1}^n \phi_j(x_j)$, then by (6.4) and (6.5), one has

$$\int g(\mathbf{x}) \,\phi(\mathbf{x}) \,d\omega_{\mathcal{F}}(\mathbf{x}) = c_j(\Gamma_0) \int \int g(\mathbf{x}) \,\phi(\mathbf{x}') \,d\nu_{X_j}(x_j) \,d\omega_{\mathcal{F}_j}(\mathbf{x}'), \quad (4.1)$$

where $\mathbf{x}' = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)$ and $\mathcal{F}_j = \{f_{il}; (i, l) \in E, I, l \neq j\}$. The constant $c_j(\Gamma_0) > 0$ depends only on r_0 , as the radius of $x \in S_{X_j}$ is equal to the distance of v_j to the subspace spanned by its neighbors which is at least $r_0/2$. The constant $c_j(\Gamma_0)$ is the reciprocal of volume of the parallelotope with sides $x_j - x_i$, $(i, j) \in E$ which is easily shown to be at least $c_k r_0^k$.

5. Proof of Theorem 2.

Let d > k and again, without loss of generality, assume that $d(\Gamma) = 1$ and hence $\delta(\Gamma) = r(\Gamma)$. Given $\lambda, \varepsilon > 0$ define the multi-linear expression,

$$T_{\lambda\Gamma_0}(\mu_{\varepsilon}) := (5.1)$$
$$\int \cdots \int \mu_{\varepsilon}(x)\mu_{\varepsilon}(x-\lambda x_1)\cdots\mu_{\varepsilon}(x-\lambda x_n)\,\phi(x_1,\ldots,x_n)d\omega_{\mathcal{F}}(x_1,\ldots,x_n)\,dx$$

Given a proper distance graph $\Gamma_0 = (V, E)$ on |V| = n vertices of degree k < n one has the following upper bound;

Lemma 4. There exists a constant $C = C_{n,d,k}(r_0) > 0$ such that

$$|T_{\lambda\Gamma_0}(\mu)2\varepsilon - T_{\lambda\Gamma_0}(\mu_{\varepsilon})| \le C \,\lambda^{-1/2} \,\varepsilon^{(n+\frac{1}{2})(s-d)+\frac{1}{4}}.$$
(5.2)

This implies again that in dimensions $d - \frac{1}{4n+2} \leq s \leq d$, there exists the limit $T_{\lambda\Gamma_0}(\mu) := \lim_{\varepsilon \to 0} T_{\lambda\Gamma_0}(\mu_{\varepsilon})$. Also, the lower bound (3.8) holds for distance graphs of degree k, as it was shown for a large class of graphs, the so-called k-degenerate distance graphs, see [7]. Thus one has

$$T_{\lambda\Gamma_0}(\tilde{\mu}_{\varepsilon}) \ge c > 0, \tag{5.3}$$

with a constant $c = c(n, \psi, r_0)$. Then one may argue exactly as in Section 3, to prove that there exists a $\lambda > 0$ for which $T_{\lambda \Gamma_0}(\mu) > 0$ and Theorem 2 follows from the compactness of the configuration space $S_{\lambda \Gamma_0} \subseteq \mathbb{R}^{dn}$. It remains to prove Lemma 4.

Proof of Lemma 4. Write $\Delta T(\mu_{\varepsilon}) := T_{\lambda\Gamma_0}(\mu_{\varepsilon}) - T_{\lambda\Gamma_0}(\mu_{2\varepsilon})$. Then we have $\Delta T(\mu_{\varepsilon}) = \sum_{j=1} \Delta_j T(\mu_{\varepsilon})$, where $\Delta_j T(\mu_{\varepsilon})$ is given by (5.1) with $\mu_{\varepsilon}(x - \lambda x_j)$ replaced by $\Delta \mu_{\varepsilon}(x - \lambda x_j)$ given in (3.8), and $\mu_{\varepsilon}(x - \lambda x_i)$ by $\mu_{2\varepsilon}(x - \lambda x_j)$ for i > j. Then by (4.1) we have the analogue of estimate (3.9)

$$|\Delta T(\mu_{\varepsilon})| \lesssim \varepsilon^{(n-1)(s-d)} \int \left| \int \mu_{\varepsilon}(x) \ \Delta \mu_{\varepsilon} *_{\lambda} \nu_{X_{j}}(x) \ dx \right| \phi(\mathbf{x}') \ d\omega_{\mathcal{F}_{j}}(\mathbf{x}'),$$
(5.4)

where $\phi(\mathbf{x}') = \prod_{i \neq j} \phi(x_j)$. Thus by Cauchy-Schwarz and Plancherel,

$$|\Delta_j T^{\varepsilon}(\mu)|^2 \lesssim \varepsilon^{2n(s-d)} \int |\widehat{\Delta_{\varepsilon}\mu}(\xi)|^2 I_{\lambda}^j(\xi) d\xi,$$

where

$$I_{\lambda}^{j}(\xi) = \int |\hat{\nu}_{X_{j}}(\lambda\xi)|^{2} \phi(\mathbf{x}') \, d\omega_{\mathcal{F}_{j}}(\mathbf{x}').$$

Recall that on the support of $\phi(\mathbf{x}') S_{X_j}$ is a sphere of dimension at least 1 and of radius $r \ge r_0/2 > 0$, contained in an affine subspace orthogonal to $Span X_j$. Thus,

$$|\hat{\nu}_{X_j}(\lambda\xi)|^2 \lesssim (1 + r_0 \lambda \operatorname{dist}(\xi, \operatorname{Span} X_j))^{-1}.$$

Let $U : \mathbb{R}^d \to \mathbb{R}^d$ be a rotation and for $\mathbf{x}' = (x_i)_{i \neq j}$ write $U\mathbf{x}' = (Ux_i)_{i \neq j}$. As explained in Section 6, the measure $\omega_{\mathcal{F}_j}$ is invariant under the transformation $\mathbf{x}' \to U\mathbf{x}'$, hence

$$I_{\lambda}(\xi) \lesssim \int \int (1 + r_0 \lambda \, dist(\xi, Span \, UX_j))^{-1} \, d\omega_{\mathcal{F}_j}(\mathbf{x}') \, dU$$

=
$$\int \int (1 + r_0 \lambda \, |\xi| \, dist(\eta, Span \, X_j))^{-1} \, d\sigma_{d-1}(\eta) \, d\omega \mathcal{F}_j(\mathbf{x}')$$

$$\lesssim (1 + r_0 \lambda \, |\xi|)^{-1},$$

where we have written again $\eta := |\xi|^{-1}U\xi \in S^{d-1}$. Then we argue as in Lemma 2, noting that $\widehat{\Delta \mu_{\varepsilon}}(\xi)$ is essentially supported on $|\xi| \approx \varepsilon^{-1}$ we have that

$$|\Delta T(\mu_{\varepsilon})|^2 \lesssim r_0^{-1} \lambda^{-1} \varepsilon^{2n(s-d)+\frac{1}{2}} \int |\hat{\mu}(\xi)|^2 \hat{\phi}(\varepsilon\xi) d\xi \lesssim r_0^{-1} \lambda^{-1} \varepsilon^{(2n+1)(s-d)+\frac{1}{2}},$$

with $\tilde{\mu}_{\varepsilon} = \mu_{\varepsilon}$ or $\tilde{\mu}_{\varepsilon} = \mu * \phi_{\varepsilon}$. This proves Lemma 4. \Box

ALEX IOSEVICH AND ÁKOS MAGYAR

6. Measures on real algebraic sets.

Let $\mathcal{F} = \{f_1, \ldots, f_n\}$ be a family of polynomials $f_i : \mathbb{R}^d \to \mathbb{R}$. We will describe certain measures supported on the algebraic set

$$S_{\mathcal{F}} := \{ x \in \mathbb{R}^d : f_1(x) = \ldots = f_n(x) = 0 \}.$$
(6.1)

A point $x \in S_{\mathcal{F}}$ is called *non-singular* if the gradient vectors $\nabla f_1(x), \ldots, \nabla f_n(x)$ are linearly independent, and let $S^0_{\mathcal{F}}$ denote the set of non-singular points. It is well-known and is easy to see, that if $S^0_{\mathcal{F}} \neq \emptyset$ then it is a relative open, dense subset of $S_{\mathcal{F}}$, and moreover it is an d-n-dimensional sub-manifold of \mathbb{R}^d . If $x \in S^0_{\mathcal{F}}$ then there exists a set of coordinates, $J = \{j_1, \ldots, j_n\}$, with $1 \leq j_1 < \ldots < j_n \leq d$, such that

$$j_{\mathcal{F},J}(x) := \det \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \le i \le n, j \in J} \neq 0.$$
(6.2)

Accordingly, we will call a set of coordinates J admissible, if (6.2) holds for at least one point $x \in S_{\mathcal{F}}^0$, and will denote by $S_{\mathcal{F},J}$ the set of such points. For a given set of coordinates x_J let $\nabla_{x_J} f(x) := (\partial_{x_j} f(x))_{j \in J}$, and note that J is admissible if and only if the gradient vectors $\nabla_{x_J} f_1(x), \ldots, \nabla_{x_J} f_n(x)$, are linearly independent at at least one point $x \in S_{\mathcal{F}}$. It is clear that $S_{\mathcal{F},J}$ is a relative open and dense subset of $S_{\mathcal{F}}$ and is a also d - n-dimensional sub-manifold, moreover

$$S^0_{\mathcal{F}} = \bigcup_{J \ admissible} S_{\mathcal{F},J}.$$

We define a measure, near a point $x_0 \in S_{\mathcal{F},J}$ as follows. For simplicity of notation assume that $J = \{1, \ldots, n\}$ and let $\Phi(x) := (f_1, \ldots, f_n, x_{n+1}, \ldots, x_d)$. Then $\Phi: U \to V$ is a diffeomorphism on some open set $x_0 \in U \subseteq \mathbb{R}^d$ to its image $V = \Phi(U)$, moreover $S_{\mathcal{F}} = \Phi^{-1}(V \cap \mathbb{R}^{d-n})$. Indeed, $x \in S_{\mathcal{F}} \cap U$ if and only if $\Phi(x) = (0, \ldots, 0, x_{n+1}, \ldots, x_d) \in V$. Let $I = \{n+1, \ldots, d\}$ and write $x_I := (x_{n+1}, \ldots, x_d)$. Let $\Psi(x_I) = \Phi^{-1}(0, x_I)$ and in local coordinates x_I define the measure $\omega_{\mathcal{F}}$ via

$$\int g \, d\omega_{\mathcal{F}} := \int g(\Psi(x_I)) \, Jac_{\Phi}^{-1}(\Psi(x_I)) \, dx_I, \tag{6.3}$$

for a continuous function g supported on U. Note that $Jac_{\Phi}(x) = j_{\mathcal{F},J}(x)$, i.e. the Jacobian of the mapping Φ at $x \in U$ is equal to the expression given in (6.2), and that the measure $d\omega_{\mathcal{F}}$ is supported on $S_{\mathcal{F}}$. Define the local coordinates $y_j = f_j(x)$ for $1 \leq j \leq n$ and $y_j = x_j$ for $n < j \leq d$. Then

$$dy_1 \wedge \ldots \wedge dy_d = df_1 \wedge \ldots \wedge df_n \wedge dx_{n+1} \wedge \ldots \wedge dx_d = Jac_{\Phi}(x) dx_1 \wedge \ldots \wedge dx_d,$$

thus

$$dx_1 \wedge \ldots \wedge dx_d = Jac_{\Phi}(x)^{-1} df_1 \wedge \ldots \wedge df_n \wedge dx_{n+1} \wedge \ldots \wedge dx_d = df_1 \wedge \ldots \wedge df_n \wedge d\omega_{\mathcal{F}}$$

This shows that the measure $d\omega_{\mathcal{F}}$ (given as a differential d-n-form on $S_{\mathcal{F}} \cap U$) is independent of the choice of local coordinates x_I . Then $\omega_{\mathcal{F}}$ is defined on $S^0_{\mathcal{F}}$ and moreover the set $S^0_{\mathcal{F}} \setminus S_{\mathcal{F},J}$ is of measure zero with respect to ω_F , as it is a proper analytic subset on \mathbb{R}^{d-n} in any other admissible local coordinates.

Let x = (z, y) be a partition of coordinates in \mathbb{R}^d , with $y = x_{J_2}$, $z = X_{J_1}$, and assume that for $i = 1, \ldots, m$ the functions f_i depend only on the z-variables. We say that the partition of coordinates is *admissible*, if there is a point $x = (z, y) \in S_{\mathcal{F}}$ such that both the gradient vectors $\nabla_z f_1(x), \ldots, \nabla_z f_m(x)$ and the vectors $\nabla_y f_{m+1}(x), \ldots, \nabla_y f_n(x)$ for a linearly independent system. Partition the system $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ with $\mathcal{F}_1 = \{f_1, \ldots, f_m\}$ and $\mathcal{F}_2 = \{f_{m+1}, \ldots, f_n\}$. Then there is set $J'_1 \subseteq J_1$ for which

$$j_{\mathcal{F}_1,J_1'}(z) := \det\left(\frac{\partial f_i}{\partial x_j}(z)\right)_{1 \le i \le m, \, j \in J_1'} \neq 0,$$

and also a set $J'_2 \subseteq J_2$ such that

$$j_{\mathcal{F}_2,J'_2}(z,y) := \det\left(\frac{\partial f_i}{\partial x_j}(z,y)\right)_{m+1 \le i \le n, j \in J'_2} \neq 0.$$

Since $\nabla_y f_i \equiv 0$ for $1 \leq i \leq m$, it follows that the set of coordinates $J' = J'_1 \cup J'_2$ is admissible, moreover

$$j_{\mathcal{F},J'}(y,z) = j_{\mathcal{F}_1,J'_1}(z) \, j_{\mathcal{F}_2,J'_2}(y,z).$$

For fixed z, let $f_{i,z}(y) := f_i(z, y)$ and let $\mathcal{F}_{2,z} = \{f_{m+1,z}, \ldots, f_{n,z}\}$. Then clearly $j_{\mathcal{F}_2, J'_2}(y, z) = j_{\mathcal{F}_{2,z}, J'_2}(y)$ as it only involves partial derivatives with respect to the y-variables. Thus we have an analogue of Fubini's theorem, namely

$$\int g(x) \, d\omega_{\mathcal{F}}(x) = \int \int g(z, y) \, d\omega_{\mathcal{F}_{2,z}}(y) \, d\omega_{\mathcal{F}_1}(z). \tag{6.4}$$

Consider now algebraic sets given as the intersection of spheres. Let $x_1, \ldots, x_m \in \mathbb{R}^d$, $t_1, \ldots, t_m > 0$ and $\mathcal{F} = \{f_1, \ldots, f_m\}$ where $f_i(x) = |x - x_i|^2 - t_i$ for $i = 1, \ldots, m$. Then $S_{\mathcal{F}}$ is the intersection of spheres centered at the points x_i of radius $r_i = t_i^{1/2}$. If the set of points $X = \{x_1, \ldots, x_m\}$ is in general position (i.e they span an m-1-dimensional affine subspace), then a point $x \in S_{\mathcal{F}}$ is non-singular if $x \notin span X$, i.e if x cannot be written as linear combination of x_1, \ldots, x_m . Indeed, since $\nabla f_i(x) = 2(x - x_i)$ we have that

$$\sum_{i=1}^{m} a_i \nabla f_i(x) = 0 \iff \sum_{i=1}^{m} a_i x = \sum_{i=1}^{m} a_i x_i,$$

which implies $\sum_{i=1}^{m} a_i = 0$ and $\sum_{i=1}^{m} a_i x_i = 0$. By replacing the equations $|x - x_i|^2 = t_i$ with $|x - x_1|^2 - |x - x_i|^2 = t_1 - t_i$, which is of the form

 $x \cdot (x_1 - x_i) = c_i$, for i = 2, ..., m, it follows that $S_{\mathcal{F}}$ is the intersection of sphere with an n-1-codimensional affine subspace Y, perpendicular to the affine subspace spanned by the points x_i . Thus $S_{\mathcal{F}}$ is an m-codimensional sphere of \mathbb{R}^d if $S_{\mathcal{F}}$ has one point $x \notin span\{x_1, \ldots, x_m\}$ and all of its points are non-singular. Let x' be the orthogonal projection of x to spanX. If $y \in Y$ is a point with |y - x'| = |x - x'| then by the Pythagorean theorem we have that $|y - x_i| = |x - x_i|$ and hence $y \in S_{\mathcal{F}}$. It follows that $S_{\mathcal{F}}$ is a sphere centered at x' and contained in Y.

Let $T = T_X$ be the inner product matrix with entries $t_{ij} := (x - x_i) \cdot (x - x_j)$ for $x \in S_{\mathcal{F}}$. Since $(x - x_i) \cdot (x - x_j) = 1/2(t_i + t_j - |x_i - x_j|^2)$ the matrix T is independent of x. We will show that $d\omega_{\mathcal{F}} = c_T d\sigma_{S_{\mathcal{F}}}$ where $d\sigma_{S_{\mathcal{F}}}$ denotes the surface area measure on the sphere $S_{\mathcal{F}}$ and $c_T = 2^{-m} det(T)^{-1/2} > 0$, i.e for a function $g \in C_0(\mathbb{R}^d)$,

$$\int_{S_{\mathcal{F}}} g(x) \, d\omega_{\mathcal{F}}(x) = c_T \int_{S_{\mathcal{F}}} g(x) \, d\sigma_{S_{\mathcal{F}}}(x). \tag{6.5}$$

Let $x \in S_{\mathcal{F}}$ be fixed and let e_1, \ldots, e_d be an orthonormal basis so that the tangent space $T_x S_{\mathcal{F}} = Span\{e_{m+1}, \ldots, e_d\}$ and moreover we have that $Span\{\nabla f_1, \ldots, \nabla f_m\} = Span\{e_1, \ldots, e_m\}$. Let x_1, \ldots, x_n be the corresponding coordinates on \mathbb{R}^d and note that in these coordinates the surface area measure, as a d - m-form at x, is

$$d\sigma_{S_{\mathcal{F}}}(x) = dx_{m+1} \wedge \ldots \wedge dx_d.$$

On the other hand, in local coordinates $x_I = (x_{m+1}, \ldots, x_d)$, it is easy to see form (6.2)-(6.3) that $j_{\mathcal{F},J}(x) = 2^m \operatorname{vol}(x - x_1, \ldots, x - x_m)$ and hence

$$d\omega_{\mathcal{F}}(x) = 2^{-m} vol(x - x_1, \dots, x - x_m)^{-1} dx_{m+1} \wedge \dots \wedge dx_d,$$

where $vol(x - x_1, ..., x - x_m)$ is the volume of the parallelotope with side vectors $x - x_j$. Finally, it is a well-known fact from linear algebra that

$$vol(x - x_1, \dots, x - x_m)^2 = det(T),$$

i.e. the volume of a parallelotope is the square root of the Gram matrix formed by the inner products of its side vectors.

References

[1] M. BENNETT, A. IOSEVICH, K. TAYLOR, Finite chains inside thin subsets of \mathbb{R}^d . Analysis PDE, 9(3), (2016) pp.597-614.

 [2] J. BOURGAIN, A Szemerédi type theorem for sets of positive density in Rk. Israel J. Math., 54(3), (1986), 307-316.

- [3] K.J. FALCONER, Some problems in measure combinatorial geometry associated with Paul Erdős, http://www.renyi.hu/conferences/erdos100/slides/falconer.pdf
- [4] R. FRASER, ROBERT, M. PRAMANIK *Large sets avoiding patterns*. Analysis and PDE 11, no. 5 (2018): 1083-1111.
- [5] A. IOSEVICH, B. LIU Equilateral triangles in subsets of \mathbb{R}^d of large Hausdorff dimension. Israel J. Math. 231, no. 1 (2019): 123-137.
- [6] T. KELETI Construction of 1-dimensional subsets of the reals not containing similar copies of given patterns. Anal. PDE 1 (2008), no. 1, 29-33.
- [7] N. LYALL, Á. MAGYAR Distance Graphs and sets of positive upper density in \mathbb{R}^d ANALYSIS AND PDE (TO APPEAR)
- [8] P. MAGA Full dimensional sets without given patterns. REAL ANALYSIS EXCHANGE 36, NO. 1 (2011): 79-90.
- [9] P. MATTILA Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. VOL. 44. CAMBRIDGE UNIVERSITY PRESS, (1999)
- [10] T. ZIEGLER, Nilfactors of R m and configurations in sets of positive upper density in \mathbb{R}^m ., JOURNAL D'ANALYSE MATHEMATIQUE 99.1 (2006): 249-266