SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND AKOS MAGYAR

ABSTRACT. Let A be a non-degenerate simplex on k vertices. We
prove that there exits a threshold s, < k such that any set A C R of
Hausdorff dimension dim A > s necessarily contains a similar copy
of the simplex A.

1. INTRODUCTION.

A classical problem of geometric Ramsey theory is to show that a suffi-
ciently large sets contain a given geometric conguration. The underlying
settings can be the Euclidean space, the integer lattice of vector spaces
over finite fields. By a geometric configuration we understand the family
of finite point sets obtained from a given finite set ' C R¥ via transla-
tions, rotations and dilations.

If largeness means positive Lebesgue density, then it is known that large
sets in R¥ contain a translated and rotated copy of all sufficiently large
dilates of any non-degenerate simplex A with k vertices [2]. However if
by largeness one understands only large Hausdorff dimension s < k, then
this question is less understood, in fact the only affirmative result in this
direction is given by Iosevich-Liu [5].

In the other direction, a construction due to Keleti [6] shows that there
exists set A C R of full Hausdorff dimension which do not contain any
non-trivial 3-term arithmetic progression. In two dimensions an exam-
ple due to Falconer [3] and Maga [8] shows that there exists set A C R?
of Hausdorff dimension 2, which do not contain the vertices of an equi-
lateral triangle, or more generally a non-trivial similar copy of a given
non-degenerate triangle. It seems plausible that examples of such sets
exist in all dimensions [4].

The aim of this short note is to show that however measurable sets A C RF
of sufficiently large Hausdorff dimension s < k contain a similar copy of
any given non-degenerate k-simplex whose eccentricity is controlled. Our
arguments make use of and show some similarity to those of Lyall-Magyar
[7] and we extend out results to bounded degree distance graphs. For the
special case of a path (or chain) similar but somewhat stronger results
were obtained in [1].
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2. MAIN RESULTS.

Let V = {v,...,v.} € R¥ be a non-degenerate k-simplex, a set of k
vertices which are in general position spanning a k — 1-dimensional affine
subspace. For 1 < j < k let 7;(V) be the distance of one a vertex v,
to the affine subspace spanned by the remaining vertices v;, ¢ # j and
define (V) := minj<j<k (V). Let d(V) denote the diameter of the
simplex, which is also the maximum distance between two vertices. Then
the quantity 6(V') := r(V)/d(V), which is positive if and only if V is
non-degenerate, measures how close the simplex V' is to being degenerate.
We say that a simplex V' is similar to V| if V! = x4+ X - U(V) for some
r € R¥, X\ > 0and U € SO(k), that is if V' is obtained from V by a
translation, dilation and rotation.

Theorem 1. Let k € N, § > 0. There exists so = so(k,9) < k such that
if E is a compact subset of RF of Hausdorff dimension dim E > sq, then
E contains vertices of a simplex V' similar to V, for any non-degenerate

k-simplex V' with §(V) > 0.

Note that the dimension condition is sharp for £ = 2 as a construction due
to Maga [8] shows the existence of a set E C R? with dim(E) = 2 which
does not contain any equilateral triangle or more generally a similar copy
of any given triangle.

A distance graph is a connected finite graph embedded in Euclidean space,
with a set of vertices V' = {vo,v1,...,v,} € R? and a set of edges
E C{(i,j); 0 <i<j<n}. Wesay that a graph T' = (V, E) has degree
at most k if |V}| < k for all 1 < j <n, where V; = |{v; : (i,j) € E}|. The
graph I is called proper if the sets V; U {v;} are in general position. Let
r(I") be the minimum of the distances from the vertices v; to the corre-
sponding affine subspace spanned by the sets V; and note that (I') > 0
if T is proper. Let d(T') denote length of the longest edge of I' and let

§(T) := r(T)/d(T).

We say that a distance graph IV = (V'  E) is isometric to T', and write
I ~ T if there is a one-one and onto mapping ¢ : V — V' so that
|p(vi) — @(vj)| = |vi — vy] for all (i,7) € E. One may picture I' obtained
from I' by a translation followed by rotating the edges around the vertices,
if possible. By A-T" we mean the dilate of the distance graph I' by a factor
A > 0 and we say that IV is similar to T if T is isometric to X - T,

Theorem 2. Let 6 >0, n> 1,1 <k <d and let E be a compact subset
of R* of Hausdorff dimension s < d. There exists so = so(n,d,d) < d such
if s > s then E contains a distance graph I similar to T, for any proper
distance graph T' = (V, E) of degree at most k, with V. C R, |V| =n and
() > 9.
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Note that Theorem 2 implies Theorem 1 as a non-degenerate simplex is a
proper distance graph of degree at most k — 1.

3. PROOF OF THEOREM 1.

Let E C B(0,1) be a compact subset of the unit ball B(0,1) in R* of
Hausdorff dimension s < k. It is well-known that there is a probabil-
ity measure p supported on E such that p(B(zx,r)) < C,r® for all balls
B(x,r). The following observation shows that we may take C,, = 4 for
our purposes. '

Lemma 1. There exists a set E' C B(0,1) of the form E' = p~'(F — u)
for some p >0, u € R¥ and F C E, and a probability measure pi' supported
on E" which satisfies

W (B(z,r) < 4r%, for all xeRF r>0. (3.1)
Proof. Let K := inf(S), where
S:={CeR: u(B(z,r)) <Cr® V B(z,r)}.
By Frostman’s lemma [9] we have that S # (), K > 0, moreover
w(B(z,r)) <2K7°,

for all balls B(x,r). There exists a ball @ = B(v,p) or radius p such
that u(Q) > %K p°. We translate F so @) is centered at the origin, set
F = FENQ and denote by ur the induced probability measure on F

B w(ANF)
weld) ==

Note that for all balls B = B(z,r),
2K r® r\°
pr(B) < 5 =4 (> .
3 Kp? p

Finally we dene the probability measure p/, by p'(A) := pp(pA). It is
supported on E' = p~'F C B(0,1) and satisfies

1 (B(z,r)) = pr(B(px, pr)) < 4r°.

g

Clearly E contains a similar copy of V if the same holds for E’, thus one
can pass from F to E’ and hence assuming that (3.1) holds, in proving
our main results. Given e > 0 let ¢.(z) = e *y(z/e) > 0, where ¢ > 0 is
a Schwarz function whose Fourier transform, QZ, is a compactly supported
smooth function, satisfying 12)\(0) =land0< @/Z; <1.

We define p. := p * .. Note that u. is a continuous function satisfying
| ttelloo < Ce*~* with an absolute constant C' = Cy, > 0, by Lemma 1.

lWe'd like to thank Giorgis Petridis for bringing this observation to our attention.
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Let V.= {v1,...,vx} be a given a non-degenerate simplex and note that
in proving Theorem 1 we may assume that d(V) = 1 hence §(V) = (V).
A simplex V' = {x1,...,x} is isometric to V if for every 1 < j < k one

has that z; € Sz, .+, ,, where
Sey,zy_ = {T € RF: |z — x| = lv; —wv|, 1<i<j}

is a sphere of dimension k + 1 — j, of radius r; = (V) > r(V) > 0. Let
Oxy,.aj denote its normalized surface area measure.

Given 0 < A\, e < 1 define the multi-linear expression,

Thv(pe) = (3:2)

/,ue(:c),us(m —Ax1) - pe(z — Axg) do(xy) dog, (x2) . .. dog, .. a4y, (zk) d.
We have the following crucial upper bound

Lemma 2. There exists a constant Cy > 0, depending only on k, such
that ) . . X
T (p2e) = Tav ()| < Cipr(V) 72 A zelbma)lenbia o (3.3)
As an immediate corollary we have that
Lemma 3. Let k — ﬁ < s < k. There exists
Towv () == lim Ty (pe), (3.4)
e—0
moreover
[Tav (1) — Tav ()] < Crr(V) ™2 A7zebm2)(emh+g, (3.5)
Indeed, the left side of (3.4) can be written as telescopic sum:
ZTAv(Mzaj) —Thv(pe;) with €5 = 27 ¢,
Jj=1

Proof of Lemma 2. Write Ape 1= poe — e, then

n n k
HNQ& T — A\rj) — H (z — Azy) :ZAJ'(,UE)7
j=1 j=1 j=1
where
HM% — ;) Ape(x — Azj), (3.6)

i#]
where ¢;; = 2¢ for i < j and ¢;; = ¢ for i > j. Since the arguments below
are the same for all 1 < j <k, assume j = k for simplicity of notations.
Writing f *) g(z) :== [ f(z — )\y g(y) dy, and using ||pc]|oo < 457F, we
b o A () 1o T ) = T

AT ()] < Do) /

(3.7)

pe(T) Apie %) Opy. g o (@) dx| dw(z1,. .., 28_1)
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where dw(z1,...,x5-1) =do(x1)...doy, . 2. ,(xk—1). The inner integral
is of the form

|(ptes Acp 3x Oy )| S gsd | Apte *x Oy gy |25

thus by Cauchy-Schwarz and Placherel’s identity

AT ()2 S €20 Dls=a) / Aie(€)[2 1,(6) de,
where
NG / Gorae O dw(@r, ..,k 1).

Since Sy,.. . , is a 1-dimensional circle of radius r, > r(V) > 0, con-
tained in an affine subspace orthogonal to My, . ., , = Span{zi,...,Tk_1},
we have that

160wt AP S (L 4+ (V)X dist(€, My, .z )"

Since the measure w(zy,...,xE_1) is invariant with respect to that change
of variables (z1,...,2x-1) — (Uz1,...,Uxi_1) for any rotation U €
SO(k), one estimates

INGES //(1+7~(V)A dist(&, Muz, .. Un,_,)) tdw(zy, ... 25_1)dU
_ //(1+T(V))\ dist(UE, My, 0 ) des(ar, ... ap 1) dU
= //(1 +r(V)NE| dist(n, My, vy ,)) tdw(wy, ... 25 1) dog_1(n)

S @ +r(V)xEN™,

where we have written 7 := [£|71U¢ and o1 denotes the surface area
measure on the unit sphere S¥~1 C R,

Note that S\ug(f) = (&) (1h(2e€) —)(e€)), which is supported on |¢] < e !
and is essentially supported on |¢| ~ ¢~1. Indeed, writing

J:= / A ()2 Ta(€) de
- / Ae()2 1n(€) de + / Ae() 2 1n(€) dE =: Ty + .
‘£|§6—1/2

em1/2<lg| et

Using [4(2e€) — ih(e€)| < eV/2 for €] < e1/2, we estimate

5 S el / RO ($(266) + () de < 3k,

AN

as

/ AO)20(eE) de = / e (&) dp() S 5°F.
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On the other hand, as I, (§) < e¥/2r(V)~IA~! for |¢] > e~/2 we have
B 5 M)A [P de S r(v) I

where we have written ¢(&) = (¥(26) — ¢(£))2. Plugging this estimates
into (3.9) we obtain

AT ()P S (V) IAT 2 TG,
and (3.5) follows. O
The support of u. is not compact, however as it is a rapidly decreasing
function it can be made to be supported in small neighborhood of the sup-
port of y without changing our main estimates. Let ¢.(x) := ¢(ce1/2z)
with some small absolute constant ¢ > 0, where 0 < ¢(x) < 1 is a smooth
cut-off, which equals to one for |z| < 1/2 and is zero for |z| > 2. Define
Ve = e ¢ and fic = px1.. It is easy to see that fi. < pe and [ 1. > 1/2,
if ¢ > 0 is chosen sufficiently small. Using the trivial upper bound, for
k—i§5<kwehave
Toa(pe) — Taa(fie)| < C llellf e = ficllso < Cre/?,

it follows that estimate (3.5) remains true with p. replaced with fi..

Let f. := ce*¥ *fi., where ¢ = cy > 0 1is a constant so that 0 < f. <1 and
[ fedx = ce=5. Let a := ce*~* and note that the set A. == {z: f.(x) >
a/2} has measure |A;| > a/2. We apply Theorem 2 (ii) together with the
more precise lower bound (18) in [7] for the set A.. This gives that there
exists and interval I of length |I| > exp (—e~¥(4=9))  such that for all
A€ I, one has |Thy(A))| > cabtl = ce =) where

Thw(Ae) = / 1a.(z)1a(z)... 14 (z)do(z1)...dog,, .. 4p_, (Tk) d.

Since
Toa(fic) > e Ty, (A,

we have that
Ty (fic) > ¢ >0, (3.8)

for all A € I, for a constant ¢ = c(k, ¢, r(V)) > 0.
Now, let

Ty (i) = | R T () o
For k — & < s <k, by (3.5) we have that

~ 1 1 1
Tov (p) — Tav(fie)| < Cer(V) 2 A" 2 e5,
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it follows that
1
/ AY2 Ty (1) = Tay (jie) | dA < Crr(V) "2 5, (3.9)
0

and in particular fol M2 Ty (1) d\ < co. On the other hand by (3.8),
one has .
/ A2 Ty (fie) dX > exp (—e ™ CR(F—9)), (3.10)
0

Now fix a small € = €55 > 0 and the choose s = s(¢,0) < k, noting that
r(V) > 6, such that

1
C §7res < 3 exp (—Efck(kfs))v
which ensures that .
/ N2 T34 () dA > 0,
0

thus there exist A > 0 such that Thy(p) > 0. Fix such a A, and assume
indirectly that E¥ = E x...x E does not contain any simplex isometric to
AV, i.e. any point of the compact configuration space Syy C R¥* of such
simplices. By compactness, this implies that there is some 1 > 0 such that
the n-neighborhood of E* also does not contain any simplex isometric to
AV. As the support of fi. is contained in the C’kal/Q—neighborhood of F,
as E = suppp, it follows that Thy (jic) = 0 for all € < ¢;n? and hence
Thv (@) = 0, contradicting our choice of A\. This proves Theorem 1.

4. THE CONFIGURATION SPACE OF ISOMETRIC DISTANCE GRAPHS.

Let Ty = (Vp, E) be a fixed proper distance graph, with vertex set

Vo = {vo = 0,v1,...,v,} C R? of degree k < d. Let t;; = |v; — v;|? for
(i,j) € E. A distance graph I' = (V) E) with V = {zg = 0,21,...,2,} is
isometric to I'g if and only if x = (z1,...,2,) € St,, where

Sty = {(x1,...,2n) ER™; |z; — 2> =t;5, V 0<i<j<n, (i,j) € B}

We call the algebraic set Sr, the configuration space of isometric copies of
the I'g. Note that Sr, is the zero set of the family F = {f;;; (4,7) € E},
fij(x) = |z; — x;|* — t;j, thus it is a special case of the general situation
described in Section 5.

If ' ~ I'y with vertex set V. = {x9g = 0,21,...,2,} is proper then
x = (x1,...,%y) is a non-singular point of Sp,. Indeed, for a fixed
1 < j < nletI; be the distance graph obtained from I' by removing
the vertex x; together with all edges emanating from it. By induction we
may assume that X' = (z1,...,2j-1,%41,...,%,) is a non-singular point
i.e the gradient vectors Vy fir(x), (i,k) € E, i # j, k # j are linearly in-
dependent. Since I is proper the gradient vectors V., fi;(x) = 2(z; — x;),
(i,j) € E are also linearly independent hence x is a non-singular point.



8 ALEX IOSEVICH AND AKOS MAGYAR

In fact we have shown that the partition of coordinates x = (y, z) with
y = ; and z = x is admissible and hence (6.4) holds.

Let 7o = r(I'g) > 0. It is clear that if I' ~ I'g and |z; — vj| < 7o for all
1 < j < n, for a sufficiently small n = n(rg) > 0, then I" is proper and
r(I') > ro/2. for given 1 < j < n, let X; := {z; € V; (i,5) € E} and
define
Sx,={zr € R% |z — :ci\Q = t;j, for all x; € X;}.

As explained in Section 6, Sy, is a sphere of dimension d — | X;| > 1 with
radius 7(X;) > ro/2. Let ox; denote the surface area measure on Sx; and
write vx; := ¢; ox; where (b] is a smooth cut-off function supported in an
- nelghborhood of vj with ¢;(v;) = 1.

Write x = (21,...,2n), ¢(x) := [[}_; ¢;(x;), then by (6.4) and (6.5), one
has

[ 560609 dir() = 5T0) [ [ g 60 do, ) s, (), (2.1

where x' = (21,...,2j-1,%j41,...,2y) and F; = {fu; (i,1) € E,I,1 # j}.
The constant c;(I'g) > 0 depends only on ro, as the radius of x € Sy, is
equal to the distance of v; to the subspace spanned by its neighbors which
is at least 79/2. The constant ¢;(I'g) is the reciprocal of volume of the

parallelotope with sides z; — z;, (4,j) € £ which is easily shown to be at
k

least ciry.
5. PROOF OF THEOREM 2.

Let d > k and again, without loss of generality, assume that d(I") = 1 and
hence §(I") = r(I"). Given A, & > 0 define the multi-linear expression,

Thr, (pe) = (5.1)
/ /ug ) pe(r — Axq) -+ pe(x — Axy) d(21, . -+, 2p)dwr (21, ..., xp) d.

Given a proper distance graph I'g = (V, E) on |V| = n vertices of degree
k < n one has the following upper bound;

Lemma 4. There exists a constant C = C,, 4(ro) > 0 such that
Targ ()26 — Tary (1) € CA-V2e6—Dek (5.9

This implies again that in dimesnions d — = +2 < s < d, there exists the
limit Thr,(p) := lim._0 Thr, (pte). Also, the lower bound (3.8) holds for
distance graphs of degree k, as it was shown for a large class of graphs,
the so-called k-degenerate distance graphs, see [7]. Thus one has

Tary(fie) > ¢ > 0, (5.3)
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with a constant ¢ = ¢(n, 1, 79). Then one may argue exactly as in Section
3, to prove that there exists a A > 0 for which Thr,(x) > 0 and Theorem
2 follows from the compactness of the configuration space Syr, C R™. Tt
remains to prove Lemma 4.

Proof of Lemma 4. Write AT (ue) = Tar,(ite) — Thr,(p2:). Then we
have AT (ue) = >4 AjT(pe), where A;T(pe) is given by (5.1) with
pe(z — Az;) replaced by Apc(x — Az;) given in (3.8), and p.(x — Az;) by
p2e(x — Azj) for @ > j. Then by (4.1) we have the analogue of estimate
(3.9)

AT(u)] £ e [ | [ @) e o) d| 6 dr, (),

(5.4)
where ¢(x') = [],,; ¢(x;). Thus by Cauchy-Schwarz and Plancherel,

AT ()2 S 20— / Aop(©) 1 (€) de,
where
B©) = [ 1o, 00 6(x) e, (x).

Recall that on the support of ¢(x’) Sx; is a sphere of dimension at least
1 and of radius r > r9/2 > 0, contained in an affine subspace orthogonal
to Span X;. Thus,

|05, (AP S (14 roAdist(€, Span X))~

Let U : R — R? be a rotation and for x' = (;),2; write Ux' = (Ux;);;.
As explained in Section 6, the measure wy; is invariant under the trans-
formation x’ — Ux’, hence

(¢ < //(1 + roX dist(¢, Span U X)) dwr,(x') dU
= //(1 + roA|¢] dist(n,Spcij))_1 dog—1(n) dwF;(x")

5 (1 + 70 A |£|)_1>

where we have written again 1 := |¢|71U¢ € S9-1.
Then we argue as in Lemma 2, noting that Ap. (&) is essentially supported
on |¢| ~ 7! we have that

—1y— n(s— 1 ~ 7 —1y— n s— 1
AT (o) P S g 'AT1 T / 0(E)h(e€) de S gt AT Dy,

with fie = pe or fi. = p* ¢-. This proves Lemma 4. [
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6. MEASURES ON REAL ALGEBRAIC SETS.

Let F = {fi,..., fo} be a family of polynomials f; : R — R. We will
describe certain measures supported on the algebraic set

Sri={zecR?: fi(z)=...= fulz) =0} (6.1)

A point x € Sr is called non-singular if the gradient vectors V fi (), ..., V fn(x)
are linearly independent, and let 59: denote the set of non-singular points.

It is well-known and is easy to see, that if S% # () then it is a relative open,
dense subset of Sr, and moreover it is an d — n-dimensional sub-manifold

of RY. If z € 5’% then there exists a set of coordinates, J = {j1,...,7n},
with 1 < j; < ... < j, <d, such that

Jr.(x) = det <gfz (x)) # 0. (6.2)
Lj 1<i<n,jeJ

Accordingly, we will call a set of coordinates J admissible, if (6.2) holds for

at least one point x € S%, and will denote by Sr ; the set of such points.
For a given set of coordinates z; let V,, f(z) := (0x, f(7));es, and note
that J is admissible if and only if the gradient vectors V,, fi(z),. .., Va, fu(x),
are linearly independent at at least one point x € Sx. It is clear that Sx ;

is a relative open and dense subset of Sr and is a also d — n-dimensional
sub-manifold, moreover

st = J S

J admissible
We define a measure, near a point g € Sr s as follows. For simplicity of
notation assume that J = {1,...,n} andlet ®(x) := (f1,..., fn, Tnt1, .-, Tq)-
Then ® : U — V is a diffeomorphism on some open set zg € U C R? to
its image V = ®(U), moreover Sr = ®~1(V NRI™"). Indeed, z € SFrNU
if and only if ®(z) = (0,...,0,zp41,...,29) €V. Let I = {n+1,...,d}
and write x; = (Tpt1,...,24). Let ¥(x;) = ®1(0,27) and in local
coordinates x; define the measure wr via

/gdw]: ::/g(‘li(aq)) Jacg' (¥(zy))dzy, (6.3)

for a continuous function g supported on U. Note that Jace(x) = jr (),
i.e. the Jacobian of the mapping ® at = € U is equal to the expression
given in (6.2), and that the measure dwr is supported on Sr. Define the
local coordinates y; = fj(z) for 1 < j < n and y; = z; for n < j < d.
Then

dyy A.. . Ndyg =dfi \.. .Ndfp Ndxp 1 A Ndxg = Jace(z) dzi A. .. Adzg,
thus
dziA. . Ndxg = Jace(x) LdfiA. . AdfpAdTp 1 A. . Ndxg = dfiA. . AdfpAdw.
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This shows that the measure dwr (given as a differential d — n-form on
Sz NU) is independent of the choice of local coordinates ;. Then wr
is defined on S% and moreover the set S%\S 7.7 is of measure zero with
respect to wr, as it is a proper analytic subset on R~ in any other ad-
missible local coordinates.

Let z = (z,y) be a partition of coordinates in RY, with y = x4,, 2z =
X, and assume that for 7 = 1,...,m the functions f; depend only on
the z-variables. We say that the partition of coordinates is admissible,
if there is a point x = (z,y) € Sy such that both the gradient vec-
tors V. fi(x),..., V. fm(z) and the vectors Vy fmii1(z),..., Vyfu(z) for
a linearly independent system. Partition the system F = F; U F» with
Fir={f1,.--, fm} and Fo = {fim+1,..., fn}. Then there is set J| C .J;
for which
ofi

7,01 (2) = det < (Z)> #0,
b Ox; 1<i<m, jeJ;

and also a set Jj C .J such that

. Ofi
JF0(2,y) == det (8f

£ 0.

)
J m+1<i<n, jeJ}
Since Vyf; = 0 for 1 < ¢ < m, it follows that the set of coordinates
J' = Jj U Jj is admissible, moreover
JF0 (Y, 2) = J7,0(2) 37,0 (Y, 7).
For fixed z, let f;.(y) := fi(z,y) and let Fao, = {fm+1,2s- -, fnz}. Then
clearly jr, i (y,2) = jr,..;(y) as it only involves partial derivatives with

respect to the y-variables. Thus we have an analogue of Fubini’s theorem,
namely

[o@ o) = [ [otzpdon, don). ©)

Consider now algebraic sets given as the intersection of spheres. Let
L1, T €ERY ty, Lty > 0and F = {f1,..., fm} where f;(z) = |z —
z;|> —t; for i =1,...,m. Then S is the intersection of spheres centered
at the points x; of radius r; = t3/2. If the set of points X = {x1,..., 2}
is in general position (i.e they span an m — 1-dimensional affine subspace),
then a point x € Sr is non-singular if x ¢ span X, i.e if x cannot be writ-
ten as linear combination of x1, ..., x,,. Indeed, since V f;(x) = 2(z — ;)
we have that

m m m
Zanfz(x) =0 < Zail' = Zai-ria
=1 =1 =1

which implies > ", a; = 0 and )", a;x; = 0. By replacing the equations
|z — ;]? = t; with |z — 21]? — |z — 24/> = t; — t;, which is of the form
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x-(r1 —x;) = ¢, for i = 2,...,m, it follows that Sr is the intersection of
sphere with an n—1-codimensional affine subspace Y, perpendicular to the
affine subspace spanned by the points x;. Thus Sr is an m-codimensional
sphere of R? if SF has one point z ¢ span{z1,...,,} and all of its points
are non-singular. Let 2’ be the orthogonal projection of z to spanX. If
y € Y is a point with |y — 2’| = |z — 2’| then by the Pythagorean theorem
we have that |y — z;| = |z — z;| and hence y € Sr. It follows that Sz is a
sphere centered at 2’ and contained in Y.

Let T' = T'x be the inner product matrix with entries t;; := (z—z;)-(r—x;)
for z € Sr. Since (x—x;)-(x—x;) = 1/2(t;+t; — |z;—2;|*) the matrix T is
independent of x. We will show that dwr = ¢ dog, where dog, denotes
the surface area measure on the sphere S and c¢p = 2" det(T) /2 > 0,
i.e for a function g € Cp(RY),

/ g(z) dwr(z) = CT/ g(x)dog,(z). (6.5)
SF

SF
Let x € S¥ be fixed and let e, ..., eqs be an orthonormal basis so that the
tangent space T,.Sr = Span{emi1,.-.,eq} and moreover we have that

Span{V f1,...,Vfm} = Span{ey,...,en}. Let z1,...,z, be the corre-
sponding coordinates on R? and note that in these coordinates the surface
area measure, as a d — m-form at z, is

dos,(x) = dxmyr A ... Adzg.

On the other hand, in local coordinates x; = (41, - - -, Tq), it is easy to
see form (6.2)-(6.3) that jr j(x) = 2™ vol(z — z1,...,2 — 2,) and hence

dwr(z) = 27™vol(x — 1, ..., — Tp) L dTmyp1 A ... Adzg,

where vol(x — 1, ...,z — x,,) is the volume of the parallelotope with side
vectors x — x;. Finally, it is a well-known fact from linear algebra that

vol(x — x1,...,x — xp)? = det (T),

i.e. the volume of a parallelotope is the square root of the Gram matrix
formed by the inner products of its side vectors.
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