
SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND ÁKOS MAGYAR

Abstract. Let ∆ be a non-degenerate simplex on k vertices. We
prove that there exits a threshold sk < k such that any set A ⊆ Rk of
Hausdorff dimension dimA ≥ sk necessarily contains a similar copy
of the simplex ∆.

1. Introduction.

A classical problem of geometric Ramsey theory is to show that a suffi-
ciently large sets contain a given geometric conguration. The underlying
settings can be the Euclidean space, the integer lattice of vector spaces
over finite fields. By a geometric configuration we understand the family
of finite point sets obtained from a given finite set F ⊆ Rk via transla-
tions, rotations and dilations.
If largeness means positive Lebesgue density, then it is known that large
sets in Rk contain a translated and rotated copy of all sufficiently large
dilates of any non-degenerate simplex ∆ with k vertices [2]. However if
by largeness one understands only large Hausdorff dimension s < k, then
this question is less understood, in fact the only affirmative result in this
direction is given by Iosevich-Liu [5].

In the other direction, a construction due to Keleti [6] shows that there
exists set A ⊆ R of full Hausdorff dimension which do not contain any
non-trivial 3-term arithmetic progression. In two dimensions an exam-
ple due to Falconer [3] and Maga [8] shows that there exists set A ⊆ R2

of Hausdorff dimension 2, which do not contain the vertices of an equi-
lateral triangle, or more generally a non-trivial similar copy of a given
non-degenerate triangle. It seems plausible that examples of such sets
exist in all dimensions [4].

The aim of this short note is to show that however measurable sets A ⊆ Rk
of sufficiently large Hausdorff dimension s < k contain a similar copy of
any given non-degenerate k-simplex whose eccentricity is controlled. Our
arguments make use of and show some similarity to those of Lyall-Magyar
[7] and we extend out results to bounded degree distance graphs. For the
special case of a path (or chain) similar but somewhat stronger results
were obtained in [1].
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2. Main results.

Let V = {v1, . . . , vk} ⊆ Rk be a non-degenerate k-simplex, a set of k
vertices which are in general position spanning a k − 1-dimensional affine
subspace. For 1 ≤ j ≤ k let rj(V ) be the distance of one a vertex vj
to the affine subspace spanned by the remaining vertices vi, i 6= j and
define r(V ) := min1≤j≤k rj(V ). Let d(V ) denote the diameter of the
simplex, which is also the maximum distance between two vertices. Then
the quantity δ(V ) := r(V )/d(V ), which is positive if and only if V is
non-degenerate, measures how close the simplex V is to being degenerate.
We say that a simplex V ′ is similar to V , if V ′ = x + λ · U(V ) for some
x ∈ Rk, λ > 0 and U ∈ SO(k), that is if V ′ is obtained from V by a
translation, dilation and rotation.

Theorem 1. Let k ∈ N, δ > 0. There exists s0 = s0(k, δ) < k such that
if E is a compact subset of Rk of Hausdorff dimension dimE ≥ s0, then
E contains vertices of a simplex V ′ similar to V , for any non-degenerate
k-simplex V with δ(V ) ≥ δ.

Note that the dimension condition is sharp for k = 2 as a construction due
to Maga [8] shows the existence of a set E ⊆ R2 with dim(E) = 2 which
does not contain any equilateral triangle or more generally a similar copy
of any given triangle.

A distance graph is a connected finite graph embedded in Euclidean space,
with a set of vertices V = {v0, v1, . . . , vn} ⊆ Rd and a set of edges
E ⊆ {(i, j); 0 ≤ i < j ≤ n}. We say that a graph Γ = (V,E) has degree
at most k if |Vj | ≤ k for all 1 ≤ j ≤ n, where Vj = |{vi : (i, j) ∈ E}|. The
graph Γ is called proper if the sets Vj ∪ {vj} are in general position. Let
r(Γ) be the minimum of the distances from the vertices vj to the corre-
sponding affine subspace spanned by the sets Vj and note that r(Γ) > 0
if Γ is proper. Let d(Γ) denote length of the longest edge of Γ and let
δ(Γ) := r(Γ)/d(Γ).

We say that a distance graph Γ′ = (V ′, E) is isometric to Γ, and write
Γ′ ' Γ if there is a one-one and onto mapping φ : V → V ′ so that
|φ(vi)− φ(vj)| = |vi − vj | for all (i, j) ∈ E. One may picture Γ′ obtained
from Γ by a translation followed by rotating the edges around the vertices,
if possible. By λ ·Γ we mean the dilate of the distance graph Γ by a factor
λ > 0 and we say that Γ′ is similar to Γ if Γ′ is isometric to λ · Γ.

Theorem 2. Let δ > 0, n ≥ 1, 1 ≤ k < d and let E be a compact subset
of Rk of Hausdorff dimension s < d. There exists s0 = s0(n, d, δ) < d such
if s ≥ s0 then E contains a distance graph Γ′ similar to Γ, for any proper
distance graph Γ = (V,E) of degree at most k, with V ⊆ Rd, |V | = n and
δ(Γ) ≥ δ.
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Note that Theorem 2 implies Theorem 1 as a non-degenerate simplex is a
proper distance graph of degree at most k − 1.

3. Proof of Theorem 1.

Let E ⊆ B(0, 1) be a compact subset of the unit ball B(0, 1) in Rk of
Hausdorff dimension s < k. It is well-known that there is a probabil-
ity measure µ supported on E such that µ(B(x, r)) ≤ Cµr

s for all balls
B(x, r). The following observation shows that we may take Cµ = 4 for
our purposes. 1

Lemma 1. There exists a set E′ ⊆ B(0, 1) of the form E′ = ρ−1(F − u)
for some ρ > 0, u ∈ Rk and F ⊆ E, and a probability measure µ′ supported
on E′ which satisfies

µ′(B(x, r) ≤ 4rs, for all x ∈ Rk, r > 0. (3.1)

Proof. Let K := inf(S), where

S := {C ∈ R : µ(B(x, r)) ≤ Crs, ∀ B(x, r)}.
By Frostman’s lemma [9] we have that S 6= ∅, K > 0, moreover

µ(B(x, r)) ≤ 2K rs,

for all balls B(x, r). There exists a ball Q = B(v, ρ) or radius ρ such
that µ(Q) ≥ 1

2Kρ
s. We translate E so Q is centered at the origin, set

F = E ∩Q and denote by µF the induced probability measure on F

µF (A) =
µ(A ∩ F )

µ(F )
.

Note that for all balls B = B(x, r),

µF (B) ≤ 2K rs

1
2Kρ

s
= 4

(
r

ρ

)s
.

Finally we dene the probability measure µ′, by µ′(A) := µF (ρA). It is
supported on E′ = ρ−1F ⊆ B(0, 1) and satisfies

µ′(B(x, r)) = µF (B(ρx, ρr)) ≤ 4rs.

�

Clearly E contains a similar copy of V if the same holds for E′, thus one
can pass from E to E′ and hence assuming that (3.1) holds, in proving
our main results. Given ε > 0 let ψε(x) = ε−kψ(x/ε) ≥ 0, where ψ ≥ 0 is

a Schwarz function whose Fourier transform, ψ̂, is a compactly supported

smooth function, satisfying ψ̂(0) = 1 and 0 ≤ ψ̂ ≤ 1.
We define µε := µ ∗ ψε. Note that µε is a continuous function satisfying
‖µε‖∞ ≤ Cεs−k with an absolute constant C = Cψ > 0, by Lemma 1.

1We’d like to thank Giorgis Petridis for bringing this observation to our attention.
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Let V = {v1, . . . , vk} be a given a non-degenerate simplex and note that
in proving Theorem 1 we may assume that d(V ) = 1 hence δ(V ) = r(V ).
A simplex V ′ = {x1, . . . , xk} is isometric to V if for every 1 ≤ j ≤ k one
has that xj ∈ Sx1,...,xj−1 , where

Sx1,...,xj−1 = {x ∈ Rk : |x− xi| = |vj − vi|, 1 ≤ i < j}
is a sphere of dimension k + 1− j, of radius rj = rj(V ) ≥ r(V ) > 0. Let
σx1,...,xj−1 denote its normalized surface area measure.

Given 0 < λ, ε ≤ 1 define the multi-linear expression,

TλV (µε) := (3.2)∫
µε(x)µε(x− λx1) · · ·µε(x− λxk) dσ(x1) dσx1(x2) . . . dσx1,...,xk−1

(xk) dx.

We have the following crucial upper bound

Lemma 2. There exists a constant Ck > 0, depending only on k, such
that

|TλV (µ2ε)− TλV (µε)| ≤ Ck r(V )−
1
2 λ−

1
2 ε(k− 1

2
)(s−k)+ 1

4 . (3.3)

As an immediate corollary we have that

Lemma 3. Let k − 1
4k ≤ s < k. There exists

TλV (µ) := lim
ε→0

TλV (µε), (3.4)

moreover

|TλV (µ)− TλV (µε)| ≤ Ck r(V )−
1
2 λ−

1
2 ε(k− 1

2
)(s−k)+ 1

4 . (3.5)

Indeed, the left side of (3.4) can be written as telescopic sum:∑
j≥1

TλV (µ2εj )− TλV (µεj ) with εj = 2−jε.

Proof of Lemma 2. Write ∆µε := µ2ε − µε, then

n∏
j=1

µ2ε(x− λxj)−
n∏
j=1

µε(x− λxj) =

k∑
j=1

∆j(µε),

where
∆j(µε) =

∏
i 6=j

µεij (x− λxi) ∆µε(x− λxj), (3.6)

where εij = 2ε for i < j and εij = ε for i > j. Since the arguments below
are the same for all 1 ≤ j ≤ k, assume j = k for simplicity of notations.
Writing f ∗λ g(x) :=

∫
f(x − λy)g(y) dy, and using ‖µε‖∞ ≤ 4εs−k, we

have for ∆T (µε) := TλV (µε)− TλV (µ2ε),

|∆T (µε)| . ε(k−2)(s−d)

∫ ∣∣∣∣∫ µε(x) ∆µε ∗λ σx1,...,xk−1
(x) dx

∣∣∣∣ dω(x1, . . . , xk−1)

(3.7)
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where dω(x1, . . . , xk−1) = dσ(x1) . . . dσx1,...,xk−2
(xk−1). The inner integral

is of the form

|〈µε,∆εµ ∗λ σx1,...,xk−1
〉| . εs−d ‖∆µε ∗λ σx1,...,xk−1

‖2,

thus by Cauchy-Schwarz and Placherel’s identity

|∆kT (µε)|2 . ε2(k−1)(s−d)

∫
|∆̂µε(ξ)|2 Iλ(ξ) dξ,

where

Iλ(ξ) =

∫
|σ̂x1,...,xk−1

(λξ)|2 dω(x1, . . . , xk−1).

Since Sx1,...,xk−1
is a 1-dimensional circle of radius rk ≥ r(V ) > 0, con-

tained in an affine subspace orthogonal toMx1,...,xk−1
= Span{x1, . . . , xk−1},

we have that

|σ̂x1,...,xk−1
(λξ)|2 . (1 + r(V )λ dist(ξ,Mx1,...,xk−1

))−1.

Since the measure ω(x1, . . . , xk−1) is invariant with respect to that change
of variables (x1, . . . , xk−1) → (Ux1, . . . , Uxk−1) for any rotation U ∈
SO(k), one estimates

Iλ(ξ) .
∫ ∫

(1 + r(V )λ dist(ξ,MUx1,...,Uxk−1
))−1 dω(x1, . . . , xk−1) dU

=

∫ ∫
(1 + r(V )λ dist(Uξ,Mx1,...,xk−1

))−1 dω(x1, . . . , xk−1) dU

=

∫ ∫
(1 + r(V )λ |ξ| dist(η,Mx1,...,xk−1

))−1 dω(x1, . . . , xk−1) dσk−1(η)

. (1 + r(V )λ |ξ|)−1,

where we have written η := |ξ|−1Uξ and σk−1 denotes the surface area
measure on the unit sphere Sk−1 ⊆ Rk.

Note that ∆̂µε(ξ) = µ̂(ξ)(ψ̂(2εξ)−ψ̂(εξ)), which is supported on |ξ| . ε−1

and is essentially supported on |ξ| ≈ ε−1. Indeed, writing

J : =

∫
|∆̂µε(ξ)|2 Iλ(ξ) dξ

=

∫
|ξ|≤ε−1/2

|∆̂µε(ξ)|2 Iλ(ξ) dξ +

∫
ε−1/2≤|ξ|.ε−1

|∆̂µε(ξ)|2 Iλ(ξ) dξ =: J1 + J2.

Using |ψ̂(2εξ)− ψ̂(εξ)| . ε1/2 for |ξ| ≤ ε−1/2, we estimate

J1 . ε
1
2

∫
|µ̂(ξ)|2 (ψ̂(2εξ) + ψ̂(εξ)) dξ . ε

1
2

+s−k,

as ∫
|µ̂(ξ)|2ψ̂(εξ) dξ =

∫
µε(x) dµ(x) . εs−k.
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On the other hand, as Iλ(ξ) . ε1/2r(V )−1λ−1 for |ξ| ≥ ε−1/2 we have

J2 . ε1/2r(V )−1λ−1

∫
|µ̂(ξ)|2φ̂(εξ) dξ . r(V )−1λ−1ε

1
2

+s−d,

where we have written φ̂(ξ) = (ψ̂(2ξ) − ψ̂(ξ))2. Plugging this estimates
into (3.9) we obtain

|∆T (µε)|2 . r(V )−1λ−1ε
1
2

+(2k−1)(s−d),

and (3.5) follows. �

The support of µε is not compact, however as it is a rapidly decreasing
function it can be made to be supported in small neighborhood of the sup-
port of µ without changing our main estimates. Let φε(x) := φ(c ε−1/2x)
with some small absolute constant c > 0, where 0 ≤ φ(x) ≤ 1 is a smooth
cut-off, which equals to one for |x| ≤ 1/2 and is zero for |x| ≥ 2. Define

ψ̃ε = ψε φε and µ̃ε = µ∗ ψ̃ε. It is easy to see that µ̃ε ≤ µε and
∫
µ̃ε ≥ 1/2,

if c > 0 is chosen sufficiently small. Using the trivial upper bound, for
k − 1

2k ≤ s < k we have

|Tλ∆(µε)− Tλ∆(µ̃ε)| ≤ Ck ‖µε‖k∞ ‖µε − µ̃ε‖∞ ≤ Ck ε1/2,

it follows that estimate (3.5) remains true with µε replaced with µ̃ε.

Let fε := c εk−sµ̃ε, where c = cψ > 0 is a constant so that 0 ≤ fε ≤ 1 and∫
fε dx = c εk−s. Let α := c εk−s and note that the set Aε := {x : fε(x) ≥

α/2} has measure |Aε| ≥ α/2. We apply Theorem 2 (ii) together with the
more precise lower bound (18) in [7] for the set Aε. This gives that there

exists and interval I of length |I| ≥ exp (−ε−Ck(d−s)) , such that for all

λ ∈ I, one has |TλV (Aε))| ≥ c αk+1 = c ε(k+1)(k−s) , where

TλV (Aε) =

∫
1Aε(x)1Aε(x) . . .1Aε(x) dσ(x1) . . . dσx1,...,xk−1

(xk) dx.

Since

Tλ∆(µ̃ε) ≥ c αk+1Tλv(Aε),

we have that

TλV (µ̃ε) ≥ c > 0, (3.8)

for all λ ∈ I, for a constant c = c(k, ψ, r(V )) > 0.

Now, let

TV (µ̃ε) :=

∫ 1

0
λ1/2 TλV (µ̃ε) dλ.

For k − 1
4k ≤ s < k, by (3.5) we have that

|TλV (µ)− TλV (µ̃ε)| ≤ Ck r(V )−
1
2 λ−

1
2 ε

1
8 ,
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it follows that∫ 1

0
λ1/2 |TλV (µ)− TλV (µ̃ε)| dλ ≤ Ck r(V )−

1
2 ε

1
8 , (3.9)

and in particular
∫ 1

0 λ
1/2 TλV (µ) dλ < ∞. On the other hand by (3.8),

one has ∫ 1

0
λ1/2 TλV (µ̃ε) dλ ≥ exp (−ε−Ck(k−s)). (3.10)

Now fix a small ε = εk,δ > 0 and the choose s = s(ε, δ) < k, noting that
r(V ) ≥ δ, such that

Ck δ
− 1

2 ε
1
8 <

1

2
exp (−ε−Ck(k−s)),

which ensures that ∫ 1

0
λ1/2 TλV (µ) dλ > 0,

thus there exist λ > 0 such that TλV (µ) > 0. Fix such a λ, and assume
indirectly that Ek = E× . . .×E does not contain any simplex isometric to

λV , i.e. any point of the compact configuration space SλV ⊆ Rk2 of such
simplices. By compactness, this implies that there is some η > 0 such that
the η-neighborhood of Ek also does not contain any simplex isometric to
λV . As the support of µ̃ε is contained in the Ckε

1/2-neighborhood of E,
as E = supp µ, it follows that TλV (µ̃ε) = 0 for all ε < ck η

2 and hence
TλV (µ) = 0, contradicting our choice of λ. This proves Theorem 1.

4. The configuration space of isometric distance graphs.

Let Γ0 = (V0, E) be a fixed proper distance graph, with vertex set
V0 = {v0 = 0, v1, . . . , vn} ⊆ Rd of degree k < d. Let tij = |vi − vj |2 for
(i, j) ∈ E. A distance graph Γ = (V,E) with V = {x0 = 0, x1, . . . , xn} is
isometric to Γ0 if and only if x = (x1, . . . , xn) ∈ SΓ0 , where

SΓ0 = {(x1, . . . , xn) ∈ Rdn; |xi − xj |2 = tij , ∀ 0 ≤ i < j ≤ n, (i, j) ∈ E}
We call the algebraic set SΓ0 the configuration space of isometric copies of
the Γ0. Note that SΓ0 is the zero set of the family F = {fij ; (i, j) ∈ E},
fij(x) = |xi − xj |2 − tij , thus it is a special case of the general situation
described in Section 5.

If Γ ' Γ0 with vertex set V = {x0 = 0, x1, . . . , xn} is proper then
x = (x1, . . . , xn) is a non-singular point of SΓ0 . Indeed, for a fixed
1 ≤ j ≤ n let Γj be the distance graph obtained from Γ by removing
the vertex xj together with all edges emanating from it. By induction we
may assume that x′ = (x1, . . . , xj−1, xj+1, . . . , xn) is a non-singular point
i.e the gradient vectors ∇x′fik(x), (i, k) ∈ E, i 6= j, k 6= j are linearly in-
dependent. Since Γ is proper the gradient vectors ∇xjfij(x) = 2(xi− xj),
(i, j) ∈ E are also linearly independent hence x is a non-singular point.
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In fact we have shown that the partition of coordinates x = (y, z) with
y = xj and z = x′ is admissible and hence (6.4) holds.

Let r0 = r(Γ0) > 0. It is clear that if Γ ' Γ0 and |xj − vj | ≤ η0 for all
1 ≤ j ≤ n, for a sufficiently small η = η(r0) > 0, then Γ is proper and
r(Γ) ≥ r0/2. for given 1 ≤ j ≤ n, let Xj := {xi ∈ V ; (i, j) ∈ E} and
define

SXj := {x ∈ Rd; |x− xi|2 = tij , for all xi ∈ Xi}.
As explained in Section 6, SXj is a sphere of dimension d− |Xj | ≥ 1 with
radius r(Xj) ≥ r0/2. Let σXj denote the surface area measure on SXj and
write νXj := φj σXj where φj is a smooth cut-off function supported in an
η-neighborhood of vj with φj(vj) = 1.

Write x = (x1, . . . , xn), φ(x) :=
∏n
j=1 φj(xj), then by (6.4) and (6.5), one

has∫
g(x)φ(x) dωF (x) = cj(Γ0)

∫ ∫
g(x)φ(x′) dνXj (xj) dωFj (x

′), (4.1)

where x′ = (x1, . . . , xj−1, xj+1, . . . , xn) and Fj = {fil; (i, l) ∈ E, I, l 6= j}.
The constant cj(Γ0) > 0 depends only on r0, as the radius of x ∈ SXj is
equal to the distance of vj to the subspace spanned by its neighbors which
is at least r0/2. The constant cj(Γ0) is the reciprocal of volume of the
parallelotope with sides xj − xi, (i, j) ∈ E which is easily shown to be at

least ckr
k
0 .

5. Proof of Theorem 2.

Let d > k and again, without loss of generality, assume that d(Γ) = 1 and
hence δ(Γ) = r(Γ). Given λ, ε > 0 define the multi-linear expression,

TλΓ0(µε) := (5.1)∫
· · ·
∫
µε(x)µε(x− λx1) · · ·µε(x− λxn)φ(x1, . . . , xn)dωF (x1, . . . , xn) dx.

Given a proper distance graph Γ0 = (V,E) on |V | = n vertices of degree
k < n one has the following upper bound;

Lemma 4. There exists a constant C = Cn,d,k(r0) > 0 such that

|TλΓ0(µ)2ε− TλΓ0(µε)| ≤ C λ−1/2 ε(n+ 1
2

)(s−d)+ 1
4 . (5.2)

This implies again that in dimesnions d − 1
4n+2 ≤ s ≤ d, there exists the

limit TλΓ0(µ) := limε→0 TλΓ0(µε). Also, the lower bound (3.8) holds for
distance graphs of degree k, as it was shown for a large class of graphs,
the so-called k-degenerate distance graphs, see [7]. Thus one has

TλΓ0(µ̃ε) ≥ c > 0, (5.3)
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with a constant c = c(n, ψ, r0). Then one may argue exactly as in Section
3, to prove that there exists a λ > 0 for which TλΓ0(µ) > 0 and Theorem
2 follows from the compactness of the configuration space SλΓ0 ⊆ Rdn. It
remains to prove Lemma 4.

Proof of Lemma 4. Write ∆T (µε) := TλΓ0(µε) − TλΓ0(µ2ε). Then we
have ∆T (µε) =

∑
j=1 ∆jT (µε), where ∆jT (µε) is given by (5.1) with

µε(x− λxj) replaced by ∆µε(x− λxj) given in (3.8), and µε(x− λxi) by
µ2ε(x − λxj) for i > j. Then by (4.1) we have the analogue of estimate
(3.9)

|∆T (µε)| . ε(n−1)(s−d)

∫ ∣∣∣∣∫ µε(x) ∆µε ∗λ νXj (x) dx

∣∣∣∣ φ(x′) dωFj (x
′),

(5.4)
where φ(x′) =

∏
i 6=j φ(xj). Thus by Cauchy-Schwarz and Plancherel,

|∆jT
ε(µ)|2 . ε2n(s−d)

∫
|∆̂εµ(ξ)|2 Ijλ(ξ) dξ,

where

Ijλ(ξ) =

∫
|ν̂Xj (λξ)|2 φ(x′) dωFj (x

′).

Recall that on the support of φ(x′) SXj is a sphere of dimension at least
1 and of radius r ≥ r0/2 > 0, contained in an affine subspace orthogonal
to SpanXj . Thus,

|ν̂Xj (λξ)|2 . (1 + r0λ dist(ξ, SpanXj))
−1.

Let U : Rd → Rd be a rotation and for x′ = (xi)i 6=j write Ux′ = (Uxi)i 6=j .
As explained in Section 6, the measure ωFj is invariant under the trans-
formation x′ → Ux′, hence

Iλ(ξ) .
∫ ∫

(1 + r0λ dist(ξ, SpanUXj))
−1 dωFj (x

′) dU

=

∫ ∫
(1 + r0λ |ξ| dist(η, SpanXj))

−1 dσd−1(η) dωFj(x′)

. (1 + r0 λ |ξ|)−1,

where we have written again η := |ξ|−1Uξ ∈ Sd−1.

Then we argue as in Lemma 2, noting that ∆̂µε(ξ) is essentially supported
on |ξ| ≈ ε−1 we have that

|∆T (µε)|2 . r−1
0 λ−1ε2n(s−d)+ 1

2

∫
|µ̂(ξ)|2φ̂(εξ) dξ . r−1

0 λ−1ε(2n+1)(s−d)+ 1
2 ,

with µ̃ε = µε or µ̃ε = µ ∗ φε. This proves Lemma 4. �
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6. Measures on real algebraic sets.

Let F = {f1, . . . , fn} be a family of polynomials fi : Rd → R. We will
describe certain measures supported on the algebraic set

SF := {x ∈ Rd : f1(x) = . . . = fn(x) = 0}. (6.1)

A point x ∈ SF is called non-singular if the gradient vectors∇f1(x), . . . ,∇fn(x)
are linearly independent, and let S0

F denote the set of non-singular points.
It is well-known and is easy to see, that if S0

F 6= ∅ then it is a relative open,
dense subset of SF , and moreover it is an d−n-dimensional sub-manifold
of Rd. If x ∈ S0

F then there exists a set of coordinates, J = {j1, . . . , jn},
with 1 ≤ j1 < . . . < jn ≤ d, such that

jF ,J(x) := det

(
∂fi
∂xj

(x)

)
1≤i≤n,j∈J

6= 0. (6.2)

Accordingly, we will call a set of coordinates J admissible, if (6.2) holds for
at least one point x ∈ S0

F , and will denote by SF ,J the set of such points.
For a given set of coordinates xJ let ∇xJf(x) := (∂xjf(x))j∈J , and note
that J is admissible if and only if the gradient vectors∇xJf1(x), . . . ,∇xJfn(x),
are linearly independent at at least one point x ∈ SF . It is clear that SF ,J
is a relative open and dense subset of SF and is a also d− n-dimensional
sub-manifold, moreover

S0
F =

⋃
J admissible

SF ,J .

We define a measure, near a point x0 ∈ SF ,J as follows. For simplicity of
notation assume that J = {1, . . . , n} and let Φ(x) := (f1, . . . , fn, xn+1, . . . , xd).
Then Φ : U → V is a diffeomorphism on some open set x0 ∈ U ⊆ Rd to
its image V = Φ(U), moreover SF = Φ−1(V ∩Rd−n). Indeed, x ∈ SF ∩U
if and only if Φ(x) = (0, . . . , 0, xn+1, . . . , xd) ∈ V . Let I = {n + 1, . . . , d}
and write xI := (xn+1, . . . , xd). Let Ψ(xI) = Φ−1(0, xI) and in local
coordinates xI define the measure ωF via∫

g dωF :=

∫
g(Ψ(xI)) Jac

−1
Φ (Ψ(xI)) dxI , (6.3)

for a continuous function g supported on U . Note that JacΦ(x) = jF ,J(x),
i.e. the Jacobian of the mapping Φ at x ∈ U is equal to the expression
given in (6.2), and that the measure dωF is supported on SF . Define the
local coordinates yj = fj(x) for 1 ≤ j ≤ n and yj = xj for n < j ≤ d.
Then

dy1∧ . . .∧dyd = df1∧ . . .∧dfn∧dxn+1∧ . . .∧dxd = JacΦ(x) dx1∧ . . .∧dxd,

thus

dx1∧. . .∧dxd = JacΦ(x)−1df1∧. . .∧dfn∧dxn+1∧. . .∧dxd = df1∧. . .∧dfn∧dωF .



SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES 11

This shows that the measure dωF (given as a differential d − n-form on
SF ∩ U) is independent of the choice of local coordinates xI . Then ωF
is defined on S0

F and moreover the set S0
F\SF ,J is of measure zero with

respect to ωF , as it is a proper analytic subset on Rd−n in any other ad-
missible local coordinates.

Let x = (z, y) be a partition of coordinates in Rd, with y = xJ2 , z =
XJ1 , and assume that for i = 1, . . . ,m the functions fi depend only on
the z-variables. We say that the partition of coordinates is admissible,
if there is a point x = (z, y) ∈ SF such that both the gradient vec-
tors ∇zf1(x), . . . ,∇zfm(x) and the vectors ∇yfm+1(x), . . . ,∇yfn(x) for
a linearly independent system. Partition the system F = F1 ∪ F2 with
F1 = {f1, . . . , fm} and F2 = {fm+1, . . . , fn}. Then there is set J ′1 ⊆ J1

for which

jF1,J ′1
(z) := det

(
∂fi
∂xj

(z)

)
1≤i≤m, j∈J ′1

6= 0,

and also a set J ′2 ⊆ J2 such that

jF2,J ′2
(z, y) := det

(
∂fi
∂xj

(z, y)

)
m+1≤i≤n, j∈J ′2

6= 0.

Since ∇yfi ≡ 0 for 1 ≤ i ≤ m, it follows that the set of coordinates
J ′ = J ′1 ∪ J ′2 is admissible, moreover

jF ,J ′(y, z) = jF1,J ′1
(z) jF2,J ′2

(y, z).

For fixed z, let fi,z(y) := fi(z, y) and let F2,z = {fm+1,z, . . . , fn,z}. Then
clearly jF2,J ′2

(y, z) = jF2,z ,J ′2
(y) as it only involves partial derivatives with

respect to the y-variables. Thus we have an analogue of Fubini’s theorem,
namely ∫

g(x) dωF (x) =

∫ ∫
g(z, y) dωF2,z(y) dωF1(z). (6.4)

Consider now algebraic sets given as the intersection of spheres. Let
x1, . . . , xm ∈ Rd, t1, . . . , tm > 0 and F = {f1, . . . , fm} where fi(x) = |x−
xi|2 − ti for i = 1, . . . ,m. Then SF is the intersection of spheres centered

at the points xi of radius ri = t
1/2
i . If the set of points X = {x1, . . . , xm}

is in general position (i.e they span an m−1-dimensional affine subspace),
then a point x ∈ SF is non-singular if x /∈ spanX, i.e if x cannot be writ-
ten as linear combination of x1, . . . , xm. Indeed, since ∇fi(x) = 2(x− xi)
we have that

m∑
i=1

ai∇fi(x) = 0 ⇐⇒
m∑
i=1

ai x =
m∑
i=1

aixi,

which implies
∑m

i=1 ai = 0 and
∑m

i=1 aixi = 0. By replacing the equations
|x − xi|2 = ti with |x − x1|2 − |x − xi|2 = t1 − ti, which is of the form
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x · (x1 − xi) = ci, for i = 2, . . . ,m, it follows that SF is the intersection of
sphere with an n−1-codimensional affine subspace Y , perpendicular to the
affine subspace spanned by the points xi. Thus SF is an m-codimensional
sphere of Rd if SF has one point x /∈ span{x1, . . . , xm} and all of its points
are non-singular. Let x′ be the orthogonal projection of x to spanX. If
y ∈ Y is a point with |y− x′| = |x− x′| then by the Pythagorean theorem
we have that |y − xi| = |x− xi| and hence y ∈ SF . It follows that SF is a
sphere centered at x′ and contained in Y .

Let T = TX be the inner product matrix with entries tij := (x−xi)·(x−xj)
for x ∈ SF . Since (x−xi)·(x−xj) = 1/2(ti+tj−|xi−xj |2) the matrix T is
independent of x. We will show that dωF = cT dσSF where dσSF denotes

the surface area measure on the sphere SF and cT = 2−mdet(T )−1/2 > 0,
i.e for a function g ∈ C0(Rd),∫

SF

g(x) dωF (x) = cT

∫
SF

g(x) dσSF (x). (6.5)

Let x ∈ SF be fixed and let e1, . . . , ed be an orthonormal basis so that the
tangent space TxSF = Span{em+1, . . . , ed} and moreover we have that
Span{∇f1, . . . ,∇fm} = Span{e1, . . . , em} . Let x1, . . . , xn be the corre-

sponding coordinates on Rd and note that in these coordinates the surface
area measure, as a d−m-form at x, is

dσSF (x) = dxm+1 ∧ . . . ∧ dxd.

On the other hand, in local coordinates xI = (xm+1, . . . , xd), it is easy to
see form (6.2)-(6.3) that jF ,J(x) = 2m vol(x− x1, . . . , x− xm) and hence

dωF (x) = 2−mvol(x− x1, . . . , x− xm)−1 dxm+1 ∧ . . . ∧ dxd,

where vol(x−x1, . . . , x−xm) is the volume of the parallelotope with side
vectors x− xj . Finally, it is a well-known fact from linear algebra that

vol(x− x1, . . . , x− xm)2 = det (T ),

i.e. the volume of a parallelotope is the square root of the Gram matrix
formed by the inner products of its side vectors.
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