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K-POINT CONFIGURATIONS IN SETS OF POSITIVE DENSITY OF Zn

ÁKOS MAGYAR

Abstract. It is shown that if n > 2k + 4 and if A ⊆ Zn is a set of upper density ε > 0, then - in a
sense depending on ε - all large dilates of any given k-dimensional simplex 4 = {0, v1, . . . , vk} ⊂ Zn

can be embedded in A. A simplex 4 can be embedded in the set A, if A contains simplex 4′ which
is isometric to 4. Moreover, the same is true if only 4 ⊂ Rn is assumed, and 4 satisfies some
immediate necessary conditions.

The proof uses techniques of harmonic analysis developed for the continuous case, as well as a
variant of the circle-method, due to Siegel.

1. Introduction.

Geometric Ramsey theory deals with problems of finding patterns in dense but otherwise arbitrary
sets. A striking result of this type due to Bourgain [B], states that if E is a subset of the Euclidean
space Rn of positive upper density, and if4 is a k−dimensional simplex with k < n, then E contains
a translated and rotated image of all large dilates of 4. Here, by a k−dimensional simplex, we
mean its vertex set, that is a set of k + 1 points in general position.

To introduce our terminology, we call two simplices4, 4′ ⊆ Rn isometric, and write4′ ' 4, if one
is obtained from the other via a translation and a rotation, that is when 4′ = x + U(4) for some
x ∈ Rn and U ∈ SO(n). It is clear that ” ' ” is an equivalence relation, we call the equivalence
classes k + 1 − point configurations. To any k-dimensional simplex 4 = {v0, v1, . . . , vk}, there
corresponds a positive definite k × k matrix T4 = (tij), with entries

tij = (vi − v0) · (vj − v0) 1 ≤ i, j ≤ k (1.1)

where ” · ” denotes the dot product. It is not hard to see that, for k < n, 4′ ' 4, if and only
if T4 = T4′ . Indeed, if 4′ = {0, v′1, . . . , v

′
k} and 4 = {0, v1, . . . , vk} then there is a rotation U0

which takes v1 to v′1, hence assume that v1 = v′1. If P stands for the projection to the orthogonal
complement of v1, then it is easy to see that T4̄ = T4̄′ where 4̄ = P ({v2, . . . , vk}) and 4̄′ =
P ({v′2, . . . , v′k}). Thus, by induction, there is a rotation U ∈ SO(n) such that U(P (vi)) = U(P (v′i))
for i ≥ 2, and U(v1) = U(v′1) = v1 = v′1, hence U(4) = 4′. Thus k + 1−point configurations are
in one to one correspondence with positive definite k × k matrices.

We study below the problem of embedding k-dimensional simplices4 ⊆ Rn into a given set A ⊆ Zn

of positive upper density, and prove a result analogues to that of [B]. Let us recall that a subset A
of Zn has upper density at least ε, and write δ(A) ≥ ε, if there exists a sequence of cubes BRj of
sizes Rj →∞, not necessarily centered at the origin, such that for all j ∈ N
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|A ∩BRj | ≥ ε Rn
j

It is clear that a simplex 4 can be embedded in A ⊆ Zn only if the matrix T4 is integral, i.e. when
all its entries are integers. We will call the simplex4 integral in that case. If one chooses A = (qZ)n

where q is a positive integer bigger then the diameter of the simplex 4, then δ(A) = q−n > 0 but 4
cannot be embedded in A. In light of this, similarly as in the continuous case, it is more reasonable
to consider the problem of embedding all large dilates of a simplex 4 of the form

√
λ4, where

λ ∈ N is a positive integer.

The case A = Zn is purely a problem of number theory. Indeed by equation (1.1), a given simplex√
λ4 can be embedded in Zn if and only if there are k vectors m1, . . . , mk, mi ∈ Zn (1 ≤ i ≤ k)

such that

mi ·mj = λtij ∀ 1 ≤ i ≤ j ≤ k (1.2)

where T4 = (tij) is the inner product matrix corresponding to the simplex 4. This is a system of
k(k + 1)/2 diophantine equations, which can be rewritten as a single matrix equation of the form

M t M = λT (1.3)

where M = (m1, . . . ,mk) is the n × k with mi being its i−th column vector, M t stands for the
transpose of M and T = T4. Equation (1.3) was studied by Siegel [S] and later by Raghavan [R]
and Kitaoka [K], and an asymptotic formula was derived, in dimensions n > 2k + 2 for the number
of solutions M ∈ Zn×k as λ →∞ and T being fixed. In particular it is proved, that for λ ≥ C0 the
number of solutions of equation (1.3) is ≈ det(λT )(n−k−1)/2 , where C0 > 0 is a constant depending
only on the dimensions n and k, see p.e. [K], Theorems A-C. We will use the method developed
there, also known as the generalized circle method of Siegel, only to estimate certain error terms.

In the general case, when A ⊆ Zn is a set of positive upper density say ε > 0, one has to impose
an additional condition on the dilates of a simplex 4 which can be embedded in A. Indeed taking
the grid A = (qZ)n for some q ≤ ε−1/n, it is clear that δ(A) ≥ ε and if 4′ ⊆ A then each entry of
T4′ is divisible by q2. Thus, for most simplices,

√
λ4 can be embedded in A only if q2 divides λ.

We can state now our main result.

Theorem 1.1. Let k ≥ 2, n > 2k + 4, ε > 0. Let A ⊆ Zn such that δ(A) ≥ ε and let 4 ⊂ Rn be a
k-dimensional integral simplex.

Then there is a positive integer Q = Q(ε) depending only on the density ε, and a positive number
Λ = Λ(A,4) depending on the set A and simplex 4, such that for all λ ≥ Λ

∃ 4′ ⊆ A, 4′ '
√

λQ4, (1.4)

This means that for a given set A ⊆ Zn of upper density at least ε > 0, all large dilates of the form√
λQ(ε)4 of any given k-dimensional integral simplex 4, can be embedded in A. By the remarks

preceding Theorem 1, Q(ε) must be divisible by all q ≤ ε−1/n, thus it follows from elementary
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estimates on primes that Q(ε) ≥ exp (c ε−1/n). The number Q(ε) will be constructed explicitly and
will satisfy the upper bound Q(ε) ≤ exp (C ε−4(k+1)/n−2k−4).

For k = 1 Theorem 1 translates to the fact that the distance set of A, d(A) = {|m− l| : m ∈ A, l ∈
A} contains all large distances of the form

√
λQ(ε). Indeed, there is only one 2-point configuration,

represented by 4 = {0, e1}, e1 = (1, 0), and
√

λ4 can be embedded in A means that
√

λ ∈ d(A).
This was proved earlier in [M] in dimensions n > 4.

We emphasize that the above result is proved only under the assumption that the simplex 4 =
{0, v1, . . . , vk} is non-degenerate, that is the vectors v1, . . . , vk are linearly independent in Rn. A
counter-example is shown in [B] in the continuous case when n = k = 2, 4 = {0, e1, 2e1}. In
our settings when 4 = {0, e1, 2e1, . . . , ke1}, the existence of an embedding of 4 in A follows from
Szemerédi’s theorem on arithmetic progressions, however it might not be true that all large dilates
of 4 can be embedded in A in the sense of Theorem 1.

We will describe below some quantitative results. These will depend on the eccentricity e(T ) (with
T = T4) of the simplex 4, defined by

e(T ) =
|T |

µ(T )
, where µ(T ) = inf

|x|=1
Tx · x, |T | = (

k∑

i,j=1

|tij |2 )
1
2 (1.5)

Note that |T |1/2 is comparable to the diameter of 4, and the quantity e(T ) may be viewed as a
measure of how close the simplex 4 is to being degenerate.

Theorem 1.2. Let k ≥ 2, n > 2k + 4, ε > 0. Let A ⊆ Zn ∩ BR such that |A| ≥ εRn, and let
4 ⊂ Rn be a k-dimensional integral simplex and let T = T4. If

R ≥ C1 |T |
1
2 exp

(
C2 ε−

11
2

(k+1) log (e(T ))
)

(1.6)

for some positive constants C1 and C2 depending only on the dimensions n and k, then there exists
a simplex 4′ ⊆ A and a λ ∈ N such that 4′ '

√
λ · 4.

In other words, if A ⊆ BR ∩Zn contains an ε-portion of the points in the cube BR and if R is large
enough, then the set A contains a ”copy” of the simplex 4, obtained by a translation, a rotation
and a dilation.

Theorem 1.3. Let k ≥ 2, n > 2k + 4, ε > 0. Let A ⊆ Zn ∩ BR such that |A| ≥ εRn, and let
4 ⊂ Rn be a k-dimensional integral simplex and let T = T4.

Then there exists a pair of integers Q = Q(ε), J = J(ε) such that for any sequence of integers
C0 ≤ λ1 < λ2 < . . . < λJ(ε), satisfying

λj+1 > 2 e(T ) λj , and λ
1
2

J(ε) |T |
1
2 ≤ R

there exists a simplex 4′ ⊆ A such that 4′ ' √
λjQ4 for some 1 ≤ j ≤ J(ε).
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Moreover the numbers Q(ε), J(ε) satisfy the inequalities

Q(ε) ≤ exp (C ε−
4(k+1)

n−2k−4 ), J(ε) ≤ C ε−
11
2

(k+1) (1.7)

for some positive constant C depending only on the dimensions n and k.

We remark that the existence of a dilate λ4 which can be embedded in A, follows from Kitaoka’s
theorem [K] together with the so-called multi-dimensional Szemerédi theorem. The latter result,
originally proved by Fürstenberg and Katznelson [FK], implies that for every finite set S ⊆ Zn

there is an m ∈ Zn and λ ∈ N such that S′ = m + λ S ⊆ A, and is one of the most fundamental
result in the area. Thus the emphasis in Theorem 1.1, is in the fact that, in a sense, all large dilates
of 4 can be embedded in A. Also, at present, the multi-dimensional Szemerédi theorem has no
Fourier analytic proof, neither quantitative versions with reasonable bounds.

2. Outline of the proofs of the main results.

Let us start by observing that Theorem 1.3 implies both Theorem 1.1 and Theorem 1.2. Indeed
assuming that the conclusion of Theorem 1.1 is not true, it follows that there is a set A ⊆ Zn

with upper density δ(A) ≥ ε, and an infinite lacunary sequence λj such that
√

λjQ(ε)4 cannot
be embedded in A for all j ∈ N. Choosing a cube BR of size R ≥ C (λJ(ε)|T |)1/2 such that
|A ∩ BR| ≥ εRn contradicts Theorem 1.3. Also, choosing Q(ε) and J(ε) is in Theorem 1.3, and a
lacunary sequence λ1 < . . . < λJ(ε) such that λJ(ε) ≤ exp (J(ε) log (e(T ))), it follows from (1.7)
that

√
λ4 can be embedded in A for some λ = λjQ(ε)2 as long as A ⊆ Zn ∩ BR with |A| ≥ εRn

and R satisfies (1.6), thus Theorem 1.2 follows.

Let us outline now, the proof of Theorem 1.3. We’ll use a variant of the density increment approach
of Roth. In our settings this amounts to showing that the set A contains an isometric copy of

√
λ4

for some λ ∈ N, or the density of A increases on a large cubic grid by a fixed amount c(ε) > 0,
depending only on ε. We’ll prove a somewhat stronger statement; namely if for a fixed λ the simplex√

λ4 cannot be embedded in A, then either the density of A increases to (1 + c)ε on a large grid
of common difference q = q(ε), or the Fourier transform 1̂A, 1A being the indicator function of the
set A, is concentrated on a small set Tλ,q. Moreover if λ′ À λ, then the sets Tλ′,q and Tλ,q are
disjoint, thus if λ1 < λ2 < . . . < λJ is a lacunary sequence with J ≥ J(ε) is large enough and if A
does not contain an isometric copy of any simplex

√
λj4, then A must have increased density on

a large grid of difference q = q(ε). Iterating this, will prove Theorem 1.3.

To formulate precisely the above statements let us introduce some notations. We’ll denote by c > 0
resp. C > 0, small resp. large constants depending only on the dimensions n and k, whose value
can change from place to place. If they depend on other parameters like ε, δ and so on, we indicate
those in parenthesis c(ε), c(ε, δ). The least common multiple of a set of integers q1, . . . , ql will be
denoted by lcm {q1, . . . , ql}. To a given 0 < ε ≤ 1 we attach the integer

q(ε) = lcm {1 ≤ q ≤ Cε−
4(k+1

n−2k−4 } (2.1)

The importance of this number is in the fact that the grid ( 1
q(ε)Z)n = { m

q(ε) ; m ∈ Zn} contains all

rational points a/q ∈ Rn with denominator q ≤ Cε−
4(k+1

n−2k−4 . For given s ∈ Zn, q ∈ N and L > q we
define the cubic grid of size L and common difference q
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BL(q, s) = (s + (qZ)n) ∩BL (2.2)

where BL is a cube of size L. In the Fourier space Tn = (R/Z)n, a key role will be played by the
sets

T(L1,L2,q) =
(

1
q
Z

)n

+ DL1,L2 where DL1,L2 =
[
− 1

2L1
,

1
2L1

]n

\
[
− 1

2L2
,

1
2L2

]n

(2.3)

where q ∈ N and q < L1 < L2. Here by S + T we denote the sumset of the sets S and T . The key
is to obtain the following

Lemma 2.1. Let n > 2k + 4, 0 < ε ≤ 1, let A ⊆ BR ∩ Zn such that |A| ≥ εRn, and let 4 be an
integral k-dimensional simplex.

If for a given λ ∈ N the simplex
√

λ4 cannot be embedded in A, then either there exists a cubic
grid BL(q, s) with q = q(ε) defined in (2.1), and L ≥ C

√
λ|4|, such that

(i) |A ∩BL(q, s)| ≥ (1 + α)ε |BL(q, s)| with α =
1

10(k + 1)
(2.4)

or

(ii)
∫

Tλ,ε

|1̂A(ξ)|2 dξ ≥ c ε2k+2Rn (2.5)

where Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε)) is the set defined in (2.3) and

L1(λ, ε) = C−1 e(T )−4ε9(k+1)(λ|T |)1/2, L2(λ, ε) = C ε−(k+1) (λ|T |)1/2 (2.6)

as long as the parameters λ and R satisfy q(ε) < L1(λ, ε) < L2(λ, ε) < R.

We now describe how repeated application of Lemma 2.1 implies our main result.

Proof of Theorem 1.3

For r = 0, 1, 2, . . . define

εr = (1 + α)−r with α =
1

10(k + 1)
(2.7)

moreover let qr = q(εr) given in (2.1) and Qr = q1q2 . . . qr, we set Q0 = 1. We define the numbers
Jr inductively with J0 = 1 and Jr being the smallest positive integer satisfying

Jr ≥ γJr−1 + C̄ εr
−4(k+1) log (εr

−1) with γ = e1/2 (2.8)
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We will show by induction on r, that Theorem 1.3 holds for εr−1 > ε ≥ εr. This amounts to
showing that if A ⊆ BR ∩ Zn with |A| ≥ εrR

n, and if C < λ1 < . . . < λJr is a given lacunary
sequence with λi+1 > 2e(T )λi, then A contains an isometric copy of a simplex

√
λiQr4 for some

1 ≤ i ≤ Jr. For r = 0, ε = ε0 = 1 thus A = BR ∩ Zn and Theorem 1.3 follows from Kiatoke’s
theorem (with Q0 = J0 = 1), as explained in the introduction.

Now, assume indirectly that there exists an r ∈ N, such that the conclusion of Theorem 1.3 holds
for the triple εr−1, Qr−1, Jr−1, but not for εr, Qr, Jr. Then none of the simplices

√
λiQr4 can

be embedded in A. Since Jr ≥ C̄ε
−4(k+1)
r log (ε−1

r ) , one may choose a subsequence {µ1, . . . , µt}
of the sequence {λj ; Jr/γ ≤ j ≤ Jr} such that t > (c ε2k+2)−1 and for all 1 ≤ i ≤ t one has
L1(µi+1, εr) > L2(µi, εr), as long as the constant C̄ is chosen large enough with respect to c and C
given in (2.5) and in (2.6).

It follows that the sets Tλ,ε for λ = µiQ
2
r are disjoint, and thus inequality (2.5) cannot hold

simultaneously for all 1 ≤ i ≤ t as it would imply that: |A| =
∫
Tn |1̂A(ξ)|2 dξ > Rn . By Lemma

2.1 there must exist a positive integer λ = µiQ
2
r = λjQ

2
r with Jr/γ ≤ j ≤ Jr, such that

|A ∩BL(q, s)| ≥ (1 + α)εr |BL(q, s)| = εr−1 |BL(q, s)| (2.9)

for a grid BL(qr, s) of size L > C(λ|T |)1/2. The affine map Φ(m) = qrm + s identifies the set
BL(qr, s) with BR′ ∩ Zn (R′ = L/qr) and also A ∩BL(qr, s) with a set A′ ⊆ BR′ ∩ Zn.

By (2.9) one has that |A′| ≥ εr−1(R′)n and one may apply the induction hypothesis for the set A′
and the sequence λ1 < λ2 < . . . < λJr−1 . Indeed, it is easy to check that the size of the box BR′

satisfies

R′ = L/qr ≥ C (λj |T |)1/2 Qr/qr ≥ C (λJr−1 |T |)1/2 Qr−1

as j ≥ Jr/γ À Jr−1 It follows that A′ contains a simplex 4′ isometric to
√

λiQr−14 for some
1 ≤ i ≤ Jr−1 , hence A contains the simplex Φ(4′) = s+qr4′ which is isometric to

√
λiQr−1qr4 =√

λiQr4.

To finish the proof one only needs to check that J(ε) and Q(ε) satisfy the quantitative bounds (1.7).
If εr ≤ ε < εr−1, then Q(ε) = Qr =

∏r
l=1 ql where ql ≤ exp (C ε

−4(k+1)/ (n−2k−4)
l ) by well-known

estimates on the primes. Thus, also

Q(ε) ≤ exp (C̄ ε−4(k+1)/ (n−2k−4))

for a slightly larger constant C̄. To estimate J(ε) = Jr where εr ≤ ε < (1+α)εr, note that dividing
(2.8) by γr one obtains

Jr

γr
− Jr−1

γr−1
≤ C

ε
−4(k+1)
r log (ε−1

r ) + 1
γr−1

(2.10)
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Since

ε−4(k+1)
r =

(
1 +

1
10(k + 1)

)4(k+1)r

≤ e4r/10

it follows that the sum in (2.10) converges in r and hence Jr ≤ C γr = C er/2. Also log(1 + α) =
log (1 + 1

10(k+1)) ≥ 1
11(k+1) , thus

J(ε) = Jr ≤ C γr = ε
− 1

2 log (1+α)
r ≤ Cε

− 11
2

(k+1)
r ≤ C ′ ε−

11
2

(k+1)

This proves estimate (1.7). ¤

It remains to prove Lemma 2.1. To do that, similarly as in case of arithmetic progressions, one
introduces a multilinear form to count the number of embeddings of a given simplex

√
λ4 into

the set A. For a given k × k integral positive matrix T = (tij), let ST : Znk → {0, 1} denote the
function

ST (m1, . . . , mk) =
{

1 if mi ·mj = tij ∀ 1 ≤ i ≤ j ≤ k
0 otherwise (2.11)

where mi ∈ Zn for 1 ≤ i ≤ k. For functions fi : Zn → C, (0 ≤ i ≤ k) of finite support and for a
given λ ∈ N define the corresponding form

NλT (f0, f1, . . . , fk) =
∑

m,m1,...,mk∈Zn

f0(m)f1(m+m1) . . . fk(m+mk) SλT (m1, . . . ,mk) (2.12)

The point is that if T = T4, that is the inner product matrix of the simplex 4 defined in (1.1),
and if f0 = f1 = . . . = fk = 1A the indicator function of the set A, then NλT (1A, . . . ,1A) is the
number of simplices 4′ ⊆ A such that 4′ '

√
λ4.

Going back to Lemma 1.1, we will assume from now on that that for a given λ ∈ N the simplex√
λ4 cannot be embedded in A, that is

NλT (1A, . . . ,1A) = 0 (2.13)

and moreover that the set A is uniformly distributed on the grids BL(q, s) in the sense that

|A ∩BL(q, s)| ≤ (1 + α)ε |BL(q, s)| with α =
1

10(k + 1)
(2.14)

for all such grids BL(q, s) ⊆ BR, for some parameters for a given q ∈ N and L > C (λ|T |)1/2 (later
we will choose q = q(ε) given in (2.1)).

In Section 3 we partition BR ∩ Zn into grids BL(q, s) and define the corresponding conditional
expectation function hL,q : BR ∩ Zn → [0, 1] by

hL,q(m) = |A ∩BL(q,m)|/|BL(q, m)| (2.15)

where BL(q,m) is the grid in the partition containing the point m. Note that the function hL,q is
constant and is equal to the average of 1A on each grid BL(q, s) of the partition. Using assumption
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(2.14) on the distribution of A, and Kitaoka’s theorem on the number of solutions of the system
(1.2)

‖SλT ‖1 =
∑

m1,...,mk

SλT (m1, . . . , mk) ≥ c0 det(λT )
n−k−1

2 (2.16)

it will be fairly easy to show that

NλT (1A, hL,q, . . . , hL,q) ≥ c det(λT )
n−k−1

2 εk+1 Rn (2.17)

Indeed from (2.14) it is easy to see that hL,q(m) ≥ c ε for all but a small number of m ∈ BR ∩ Zn.

It will be more convenient to work with functions of the form fL,q = 1A ∗ψL,q which majorize hL,q

and whose Fourier transform is easier to handle. Indeed, if ψ > 0 is a strictly positive Schwarz
function, and if

ψL,q(m) =
{

qnL−n ψ(m/L) if m ∈ (qZ)n

0 otherwise (2.18)

then fL,q ≥ c hL,q, see Proposition 3.2. Thus we get our main estimate from below

NλT (1A, fL,q, . . . , fL,q) ≥ c1 det(λT )
n−k−1

2 εk+1 Rn (2.19)

for some constant c1 > 0, see Lemma 3.1 for the precise statement.

The advantage of using the functions fL,q is in that their Fourier transform can be described fairly
precisely

f̂L,q(ξ) = 1̂A(ξ)ψ̂L,q(ξ) = 1̂A(ξ)
∑

l∈Zn

ψ̂(L(ξ − l/q)) (2.20)

and moreover if ψ is chosen such that

1 = ψ̂(0) ≥ ψ̂(ξ) > 0 ∀ ξ and supp ψ̂ ⊆ [−1/2, 1/2]n (2.21)

then f̂L,q(ξ) is supported on the set (1
qZ)n + [− 1

2L , 1
2L ]n and it essentially equals to 1̂A(ξ) on a

smaller such set.

In Section 4., we prove our crucial error estimate, namely that if q = q(ε) and if one chooses
L1 = L1(λ, ε) given in (2.6), with the constant C large enough with respect to c1 appearing in
(2.19), then

|NλT (1A,1A, . . . ,1A)−NλT (1A, fL1,q, . . . , fL1,q)| ≤ c1

2
det(λT )

n−k−1
2 εk+1Rn (2.22)

see Lemma 4.1. Taking this granted for now, let us sketch the proof of Lemma 2.1. Using estimates
(2.19) for L = C (λ|T |)1/2 and (2.22) for L1 = L1(λ, ε), it follows from our assumption (2.13) that

|NλT (1A, fL1,q, . . . , fL1,q)−NλT (1A, fL,q, . . . , fL,q)| ≥ c1

2
det(λT )

n−k−1
2 εk+1Rn (2.23)
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Now, it is easy to show that the left side of (2.23) is bounded by

‖SλT ‖1 ‖1A‖2 ‖fL1,q − fL,q‖2 ≤ C det(λT )
n−k−1

2 R
n
2 ‖fL1,q − fL,q‖2 (2.24)

see Proposition 4.1. It follows

‖fL1,q − fL,q‖2 =
∫

Tn

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≥ c ε2k+2 Rn (2.25)

This implies inequality (2.5) as the function |ψ̂L1,q − ψ̂L,q| is uniformly bounded by c̄ εk+1 with a
small constant, say c̄ < c/2, outside the set Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε)) given in (2.6), and Lemma
2.1 follows. The proof will be given in Section 4.

Finally, the proof the crucial estimate (2.22) will be based on an estimate of the Fourier transform
of the function ST at points X = (ξ1, . . . , ξk) which are away from rational points with small de-
nominator. Such estimates are well-known in analytic number theory, and can be viewed as discrete
analogues of stationary phase estimates on the Fourier transforms of surface carried measures. It
is summarized in the following lemma.

Using the matrix notation, let M = (m1, . . . , mk) ∈ Zn×k and X = (ξ1, . . . , ξk) ∈ Tn×k be n × k
matrices with column vectors mi ∈ Zn and ξi ∈ Tn (T = R/Z), the Fourier transform of the
function ST given in (2.11) is defined by the exponential sum

ŜT (X ) =
∑

M∈Zn×k

ST (M) e−2πi tr (Mt X ) (2.26)

where tr (M tX ) = m1 · ξ + . . . + mk · ξk stands for the trace of the product matrix M tX . Let
P/q = (pij/q) denote the dilate of a matrix P = (pij) by the factor of 1/q. The one has

Lemma 2.2. Let n > 2k + 2, τ > 0, and q0 > 1 be a positive integer. Let T be a positive definite
integral k × k matrix. Then one has

ŜT (0) ≤ C det(T )
n−k−1

2 (2.27)

If X = (ξ1, . . . , ξk) ∈ Tn×k such that for all P ∈ Zn×k and q ≤ q0

|X − P/q| ≥ τ

Then one has

|ŜT (X )| ≤ C

[
det(T )

n−k−1
2

(
(τ2µ(T ))−

n−2k−2
4 + q

−n−2k−2
2

0

)
+ |T | (n−k)(k−1)

2

]
(2.28)
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We remark that if the parameters τ and q0 is chosen such that τ > C(ε)λ−1/2, q0 > C(ε) and if λ
is large enough with respect to |T |, then estimate (2.28) implies that

|ŜλT (X )| ≤ c(ε) det(λT )
n−k−1

2

for a given small quantity c(ε) > 0, as long as C(ε) is chosen large enough with respect to c(ε).

The proof of Lemma 2.2 is independent of the rest of the paper and will be given in Section 5. It
is uses a form of the circle-method developed by Siegel [S] and later by Kitaoke [K] adapted to our
settings.

3. Lower bounds.

From now on we fix k ∈ N, n ∈ N, ε > 0 and R > 1 and a set A ⊆ BR ∩ Zn such that |A| ≥ εRn.
For simplicity we will adopt the notations f . g (or g & f), if f(x) ≤ C g(x) for all x for some
constant C = C(n, k) > 0 depending only on n and k, and write f ≈ g if both f . g and g . f .

For given parameters q ∈ N and q ≤ L < R such that R/L ∈ N, we partition the cube BR into
Rn/Ln cubes BL of size L, and them further into congruence classes of the modulus q, i.e. into
sets of the form

BL(q, s) = BL ∩ (s + (qZ)n) (3.1)

where s ∈ (Z/qZ)n is running through the congruence classes of q. With a slight abuse of notation,
for given m ∈ BR we will denote by BL(q, m) the unique set BL(q, s) containing m.

For given α > 0, we say that the set A is α-uniformly distributed w.r.t. q and L if for each element
BL(q, s) of the partition

δ(A|BL(q, s)) =
|A ∩BL(q, s)|
|BL(q, s)| ≤ (1 + α)ε (3.2)

Here we used the notation δ(A|B) = |A∩B|/|B| for the relative density of the set A on the set B.
It is immediate from (3.2) that δ(A|BL) ≤ (1 + α)ε for every cube BL and that δ(A) = δ(A|BR) ≤
(1 + α)ε. It is also easy to see that δ(A|BL) ≥ (1− 2α)ε holds for many cubes BL, such cubes BL

will be called dense. Indeed

ε ≤ δ(A) =
Ln

Rn

∑

BL

δ(A|BL) ≤ Ln

Rn

∑

BL dense

(1 + α)ε + (1− 2α)ε (3.3)

It follows thats there are at least 2α
(1+α)

Rn

Ln dense cubes. We define the function hL,q : BR∩Zn → [0, 1]
by

hL,q(m) = δ(A|BL(q, m)) (3.4)
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Note that hL,q is constant and is equal to the average of the function 1A on each set BL(q,m), thus
it is the so-called conditional expectation function of 1A with respect to the above partition.

Proposition 3.1. Let q ∈ N, L > 0 be given, and assume that the set A satisfies condition (3.2)
with α = 1/10(k + 1). If q ≤ βL, with β = αε/ 4n, then for any m1, . . . , mk ∈ Zn such that
|mi| ≤ βL for each 1 ≤ i ≤ k, then one has

∑

m∈Zn

1A(m) hL,q(m + m1)hL,q(m + m2) . . . hL,q(m + mk) ≥ ck εk+1Rn (3.5)

Proof. Let BL be a dense cube and define the set G = {m ∈ BL : hL,q(m) ≥ αε}. Arguing similarly
as in (3.3)

(1− 2α)ε ≤ δ(A|BL) ≤ L−n
∑

m∈G

(1 + α)ε + αε (3.6)

it follows that |G| > (1− 4α)Ln.

Let BL′ denote the cube obtained by dilating BL from its center with a factor of 1 − β. Then
L′ = (1− β)L and |BL\BL′ | < 2nβLn. For m ∈ G one has

δ(A|BL′ ∩BL(q, m)) ≥ qn

Ln
|A ∩BL(q, m)| − 1

Ln
|BL\BL′ | ≥ αε− 2nβ ≥ αε

2
(3.7)

For m ∈ BL′ , m + mi ∈ BL for each 1 ≤ i ≤ as |mi| ≤ βL, and the functions m → hL,q(m + mi)
are constant on the set BL′ ∩BL(q, m). Thus

∑

m∈BL′

1A(m) hL,q(m + m1) hL,q(m + m2) . . . hL,q(m + mk) = (3.8)

=
∑

m∈BL′

δ(A|BL′ ∩BL(q,m))hL,q(m + m1) hL,q(m + m2) . . . hL,q(m + mk)

If m ∈ BL′ ∩ G ∩ (G − m1) ∩ . . . ∩ (G − mk) then m ∈ G and m + mi ∈ G for each i ≤ k
hence by (3.7) and the definition of G the expression in (3.8) is further estimated from below by:
(αε)k+1

2 |BL′ ∩G ∩ (G−m1) ∩ . . . ∩ (G−mk)| . Let G′ = BL′ ∩G, then

|G′| ≥ |G| − |BL\BL′ | ≥ (1− 4α− 2nβ)Ln > (1− 5α)Ln and
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|BL′ ∩G ∩ (G−m1) ∩ . . . ∩ (G−mk)| ≥ |G′ ∩ (G′ −m1) ∩ . . . ∩ (G′ −mk)| ≥

≥ (1− 5α(k + 1))Ln ≥ Ln

2

Thus, for a dense cube BL, the expression in (3.8) is bounded below by ck εk+1 Ln, and since there
are at least 2α

(1+α)
Rn

Ln dense cubes, (3.5) follows. ¤

Next, we show that the functions fL,q = 1A ∗ ψL,q defined in (2.18) majorize the functions hL,q.

Proposition 3.2. There exist a constant cn > 0 such that all m ∈ Zn

fL,q(m) ≥ cn hL,q(m) (3.9)

Proof. By definition

fL,q(m) = qnL−n
∑

l∈Zn

1A(m− ql) ψ(ql/L) ≥ cn qnL−n
∑

l∈Zn, |ql|≤√nL

1A(m− ql) ≥

≥ cn qnL−n
∑

m′∈BL(q,m)

1A(m′) ≥ cn hL,q(m)

The second inequality follows from the fact that the diameter of the set BL(q, m) is at most√
nL. ¤

Let λ ∈ N, 4 ∈ Rn be an integral k−dimensional simplex, and let T = T4 be its inner product
matrix. We proceed to estimate the expression NλT (1A, fL,q, . . . , fL,q) defined in (2.12), from below
under certain conditions on the parameters q, L, R, λ. To do so one needs a lower bound for the
number of integral solutions m1, . . . , mk ∈ Zn of the system of equations (1.2). This was done in
[K], indeed, for A = In (the n × n identity matrix), B = λT , Theorems A-C in [K] implies for
n > 2k + 2 and λ > λ(n, k), that

∑

m1,...,mk∈Zn

SλT (m1, . . . ,mk) ≥ c0 det(λT )
n−k−1

2 (3.10)

for some positive constant c0 depending only on n and k. Note that the left side of (3.10) is the
number of solutions m1, . . . , mk of (1.2). Now it is easy to show
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Lemma 3.1. Let k ≥ 2, n > 2k + 2, ε > 0, R > 0 and let A ⊆ BR ∩ Zn be a set such that
|A| ≥ εRn. Let λ ∈ N and let 4 ⊆ Rn be an integral k−simplex with inner product matrix T = T4.
Let q ∈ N, L > 0 be parameters satisfying

q ≤ βL,
√

λ|T | ≤ βL, with β =
ε

40n(k + 1)
(3.11)

If A is α− uniformly distributed w.r.t q and L with α = 1
10(k+1) and if fL,q(m) is defined as in

(2.18), then

NλT (1A, fL,q, . . . , fL,q) & det(λT )
n−k−1

2 εk+1 Rn (3.12)

Proof. If SλT (m1, . . . , mk) 6= 0 then |mi|2 = λtii (∀ 1 ≤ i ≤ k), hence |mi| ≤ βL. It follows from
(3.5) and (3.9) that

∑

m∈Zn

1A(m) fL,q(m + m1) fL,q(m + m2) . . . fL,q(m + mk) & εk+1Rn

Summing the above bound for all such m1, . . . , mk, the Lemma follows from inequality (3.12). ¤

Let us point out that the right side of (3.12) is the expected value of NλT (1A, . . . ,1A) if A ⊆ BR∩Zn

is a random set of density ε, obtained by choosing each point of BR ∩ Zn independently with
probability ε. Indeed, for given m ∈ BR ∩Zn and a solution m1, . . . , mk of the system of equations
(1.2), the probability that all points m, m1, . . . , mk are in the set A is εk+1.

4. Error estimates.

In this section we estimate quantities of the following form

EλT (f ; f1, f2) = NλT (f, f1, . . . , f1)−NλT (f, f2, . . . , f2) (4.1)

where the functions f, f1, f2 : Zn → [−1, 1] are of finite support or rapidly decreasing. Note that

EλT (f ; f1, f2) =
k∑

i=1

Ei
λT (f ; f1, f2) where

Ei
λT (f ; f1, f2) = NλT (f, f1, . . . , f1, f2, . . . , f2)−NλT (f, f1, . . . , f2, f2, . . . , f2) (4.2)

Here, the second term in (4.2) is obtained from the first term by replacing the function f1 with the
function f2 at the i−th place.
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For fixed 1 ≤ i ≤ k, let Ti denote the (k−1)×(k−1) matrix obtained from the matrix T by deleting
the i−th row and column. Note that Ti = T4i , where4i is the k−1-dimensional face of the simplex
4 = {0, v1, . . . , vk} which does not contain the i−th vertex vi. For given m = (m1, . . . , mk) ∈ Znk

let us introduce the notation mi = (m1, . . . , mi−1,mi+1, . . . , mk) ∈ Zn(k−1) and define the function
SλT,mi : Zn → {0, 1} by

SλT,mi(mi) =
{

1 if mi ·mj = λtij ∀ 1 ≤ j ≤ k
0 otherwise

Then, clearly

SλT (m) = SλTi(m
i) SλT,mi(mi) (4.3)

where the function SλTi
is defined in (2.11). The estimate below follows easily from formula (4.3).

Proposition 4.1. Let k ≥ 2, n > 2k + 2 and let f, f1, f2 : Zn → [−1, 1] be given functions. Then
one has

|EλT (f ; f1, f2)| . det(λT )
n−k−1

2 ‖f‖2 ‖f1 − f2‖2 (4.4)

Proof. For fixed 1 ≤ i ≤ k, using SλT (m) = SλT (−m), one may write

NλT (f0, f1, . . . , fk) =
∑

mi

∑
m

∑
mi

SλTi(m
i) f(m)

∏

j 6=i

fj(m−mj) fi(m−mi)SλT,mi(mi)

=
∑

mi

∑
m

SλTi(m
i) f(m) gi(m,mi) (fi ∗ SλT,mi)(m)

Thus

|Ei
λT (f ; f1, f2)| ≤

∑

mi,m

SλTi(m
i) |f(m)| |(f1 − f2) ∗ SλT,mi)(m)| (4.5)

≤ ‖f‖2

∑

mi

SλTi(m
i) ‖(f1 − f2) ∗ SλT,mi‖2

≤ ‖f‖2 ‖f1 − f2‖2

∑

mi

SλTi(m
i) ‖SλT,mi‖1

where the second line follows from Cauchy-Schwarz and the third line from Minkowski’s integral
inequality. Finally, by inequality (2.27)

∑

mi

SλTi(m
i) ‖SλT,mi‖1 =

∑
m

SλT (m) . det(λT )
n−k−1

2
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and (4.4) follows. ¤

Next, we give a different estimate on the quantity EλT (f ; f1, f2).

Proposition 4.2. Let k ≥ 2, n > 2k + 2 and let f, f1, f2 : Zn → [−1, 1] be given functions. Then
for fixed 1 ≤ i ≤ k, one has

|Ei
λT (f ; f1, f2)| . det(λTi)

n−k
4 ‖f‖2

(∫

Tn

|(f̂1 − f̂2)(ξ)|2
∑

mi

SλTi
(mi) |ŜλT,mi(ξ)|2 dξ

) 1
2

(4.6)

Proof. Using the matrix formulation, the support of the function SλTi
consists of those integral

matrices M ∈ Zn×(k−1) which satisfy the equation M t ·M = λTi, hence by (2.27) the size of its
support is bounded by C det(λTi)

n−k
2 .

Starting with the second line of (4.5) and using Cauchy-Schwarz inequality, one obtains

|Ei
λT (f ; f1, f2)| . ‖f‖2 det(λTi)

n−k
4

(∑

mi

SλTi(m
i) ‖(f1 − f2) ∗ SλT,mi‖2

2

) 1
2

Inequality (4.6) follows by applying Plancherel’s formula to the above expression in parenthesis,
and by interchanging the summation and integration. ¤

Expanding the sum in formula (4.6), one obtains

∑

mi∈Zn(k−1)

∑

mi,mk+1∈Zn

SλTi
(mi)Sλ,mi(mi)Sλ,mi(mk+1) e2πi(mi·ξ−mk+1·ξ) (4.7)

If one defines Gi
λ,T (m,mk+1) = SλTi(m

i)Sλ,mi(mi)Sλ,mi(mk+1) : Zn(k+1) → {0, 1}, where m =

(m1, . . . , mk) ∈ Znk, then the expression in (3.7) is equal to Ĝi
λ,T (0, . . . , 0, ξ, 0, . . . , 0,−ξ) =

Ĝi
λ,T (X ) with X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ) ∈ Rn×(k+1), where the entries ξ and −ξ appear the the

i-th and k + 1-th place. Note that Gi
λ,T (m1, . . . ,mk+1) = 1 if and only the vectors m1, . . . , mk+1

satisfy the system of equations

mj ·ml = λtjl, mk+1 ·ml = mi ·ml = λtil (l 6= i), mk+1 ·mk+1 = mi ·mi = λtii (4.8)

for all 1 ≤ l ≤ j ≤ k. If one writes λt = mk+1 ·mi, and defines the symmetric (k + 1) × (k + 1)
matrix T i(t) = (τj,l) with entries (1 ≤ l ≤ j ≤ k)

τj,l = tjl, τk+1,l = til (l 6= i), τk+1,k+1 = tii, τk+1,i = t (4.9)
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then it is clear that

Gi
λ,T (m,mk+1) =

∑
t

SλT i(t)(m,mk+1) (4.10)

Note that the summation in (4.10) is finite as the function SλT i(t) is constant 0 unless there exists
an M̃ ∈ Zn×(k+1) such that M̃ tM̃ = λT i(t), in which case we will call the number t admissible.
Thus if t is admissible then, in particular, t2 ≤ t2ii and λt ∈ Z. To summarize, we have for 1 ≤ i ≤ k
and ξ ∈ Rn

∑

mi∈Zn(k−1)

SλTi(m
i) |ŜλT,mi(ξ)|2 =

∑

t admissible

ŜλT i(t)(X ) (4.11)

with X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ).

We need to collect some geometric facts about the matrices T i(t), to estimate the right side of
(4.11).

Proposition 4.3. Let T > 0 be a fixed integral k × k matrix and let 1 ≤ i ≤ k. Then

(i) The number of admissible values of t is bounded by: 2 det(λT )/det(λTi) + 1.

(ii) For each M = (m1, . . . , mk) such that M tM = λT , there are at most 2 vectors mk+1 ∈ Zn such
that det(T i(t)) = 0, where the vectors m1, . . . , mk+1 and the matrix T i(t) satisfy (3.8) and (3.9).

(i3) Let t be admissible, and let M̃ = (m1, . . . ,mk, mk+1) be such that M̃ tM̃ = λT i(t). Let d denote
the distance of the vector mk+1 to the subspace Span{m1, . . . ,mk}, that is to the subspace spanned
by the vectors m1, . . . , mk. Then

µ(λT i(t)) ≥ d2µ(T )
8|T | (4.12)

Here µ(T ) is defined in (1.5) and |T | = (
∑

i,j t2ij)
1/2.

(i4) Let 0 < δ < e(T )−4/64, where e(T ) is defined in (1.5). Then

|{t admissible : µ(T i(t)) ≤ |T | δ}| . δ
1
2 det(λT )/det(λT i) (4.13)

(i5) Let t be admissible, then one has

det(λT i(t)) ≤ det(λT )2/det(λTi) (4.14)
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Proof. Let t be admissible, and let M̃ = (m1, . . . , mk,mk+1) be such that M̃ tM̃ = λT i(t). If P de-
notes the orthogonal projection to the subspace spanned by the vectors m1, . . . , mi−1,mi+1, . . . , mk

then by (4.8) Pmi = Pmk+1. Denote this vector by u, and write mi = u + w, mk+1 = u + w′. If
one considers the vectors m1, . . . , mk as elements of the k-dimensional subspace Span{m1, . . . , mk}
then the quantity | det(m1, . . . ,mk)| is well-defined and is equal to the volume of the parallelepiped
spanned by these vectors. Moreover it is easy to see that det(λT ) = |det(m1, . . . , mk)|2, and also
that |w′| = |w| = | det(m1, . . . , mk)|/| det(m1, . . . , mi−1,mi+1, . . . , mk)|. Since λt = mk+1 · mk =
|u|2 + w · w′ it follows that

|λt− |u|2| ≤ |w|2 = det(λT )/det(λT i) (4.15)

and (i) is proved.

If det(T i(t)) = 0 then mk+1 is linearly dependent of the vectors m1, . . . ,mk, thus w′ is also linearly
dependent of the vectors m1, . . . , mi−1,mi+1, . . . , mk and w, hence w′ = ±w. It follows mk+1 =
u± w and (ii) is proved.

Let x = (x1, . . . , xk, xk+1) ∈ Rk+1, |x| = 1 such that

µ(λT i(t)) = λT i(t)x · x = |m1x1 + . . . + mk+1xk+1|2

It is clear that µ(λT i(t)) ≥ d2 |xk+1|2, thus if |xk+1|2 ≥ µ(T )/4|T | then inequality(4.12) holds.
Otherwise |xk+1|2 ≤ µ(T )/4|T | and one estimates

µ(λT i(t)) ≥ (|m1x1 + . . . + mkxk| − |mk+1||xk+1|)2 ≥ 1
8
µ(λT )

as |mk+1|2 = |mi|2 = λtii ≤ |λT | and x2
1 + . . . + x2

k ≥ 3/4. Also d2 ≤ |mk+1|2 ≤ |λT | thus
d2µ(T )/8|T | ≤ µ(λT )/8 and (4.12) follows.

Writing u = m1y1 + . . . + mi−1yi−1 + mi+1yi+1 + . . .mkyk, it follows

|w|2 = |u−mi|2 ≥ (1 + y2
1 + . . . + y2

k)µ(λT ) ≥ |λT | e(T )−1

If v denotes the orthogonal projection of the vector mk+1 to the subspace spanned by the vectors
m1, . . . , mk, the it is easy to see that v = u + w w·w′

|w| . Thus

(w · w′)2
|w|2 + d2 = |w|2 substituting λt− |u|2 = w · w′

|w|2 ≥ |λt− |u|2| ≥ |w|2 (1− d2/|w|2) 1
2

If µ(T i(t)) ≤ |T | δ then by (4.12) and the assumption on δ

d2

|w|2 ≤ d2e(T ) |λT |−1 ≤ 8δ e(T )2 ≤ δ
1
2

Since δ < 1, it follows that |w|2 ≥ |λt− |u|2| ≥ |w|2(1− δ1/2) and this implies (4.13)

Finally, arguing as in (4.15) one has
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det(λT i(t))/det(λT ) = d2 ≤ |w|2 = det(λT )/det(λTi)

and (3.14) follows. ¤

Using Lemma 2.1, in dimensions n and k +1 it is now not hard to estimate the right side of (4.11).
We remark that it is here where the stronger condition n > 2k + 4 is needed.

Proposition 4.4. Let k ≥ 2, n > 2k + 4, and let T ∈ Zk×k be a positive matrix. Let q0 ∈ N and
0 < δ < e(T )−4/64 be given parameters. Then for 1 ≤ i ≤ k

∑

mi

SλTi(m
i) |ŜλT,mi(ξ)|2 . det(λT )n−k−1

det(λTi)
n−k

2

(
1 + λ−

n−k
2 e(T )

(n−k)(k−1)
2

)
(4.16)

holds uniformly for ξ ∈ Rn.

If |ξ − l/q| ≥ δ−1λ−1/2 |T |−1/2 for all l ∈ Zn and q ≤ q0 , then one has

∑

mi

SλTi(m
i) |ŜλT,mi(ξ)|2 . det(λT )n−k−1

det(λTi)
n−k

2

(
q
−n−2k−4

2
0 + δ

1
4 + λ−

n−2k−2
2 e(T )(n−k−1)k

)

(4.17)

Proof. Let us first estimate the sum in (4.7) over those k + 1 tuples (m1, . . . , mk,mk+1) for which
mk+1 is linearly dependent on the vectors m1, . . . ,mk. By Proposition 4.3 (i), there are at most 2
possible choices for the vector mk+1. Thus one estimates the contribution of such k + 1 tuples to
the sum in (4.7) by

2ŜλT (0) . det(λT )
n−k−1

2 . det(λT )n−k−1

det(λTi)
n−k

2

λ−
n−2k

2 e(T )
(n−k)(k−1)

2 (4.18)

The first inequality in (4.17) follows from (2.27), while the second follows from the facts that
det(λTi) ≤ |λTi|k−1 ≤ |λT |k−1 and |λT |k = µ(λT )ke(T )k ≤ det(λT )e(T )k.

Summing over the k+1-tuples (m1, . . . , mk,mk+1) in formula (4.7) which are linearly independent, is
equal to the sum on the right side of (4.11) over those admissible values of t for which det(T i(t)) > 0,
and one may apply Lemma 1 to the matrix λT i(t), for each such value of t. Thus by (2.27) and
(4.14), one has uniformly in ξ ∈ Rn

|ŜλT i(t)(ξ)| . det(λT i(t))
n−k−2

2 ≤ det(λT )n−k−2 det(λTi)−
n−k−2

2 (4.19)
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By Proposition 5.3 (i), the number of admissible values t (for which det(T i(t)) 6= 0) is bounded by
2 det(λT )/det(λTi) and (4.16) follows from (4.11) and (4.18).

Let us assume now that |ξ − l/q| ≥ δ−1λ−1/2 |T |−1/2, for all l ∈ Zn and 1 ≤ q ≤ q0 , and hence
|X − P/q| ≥ δ−1λ−1/2 for all P ∈ Zn×(k+1) and q ≤ q0 (where X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ) as
before). Then one may use inequality (3.28) in Lemma 1 with τ = δ−1λ−1/2 |T |−1/2 > 0 to estimate
the left side of (4.17):

|ŜλT i(t)(X )| . det(λT i(t))
n−k−2

2 q
−n−2k−4

2
0 + det(λT i(t))

n−k−2
2 (δ−2|T |−1µ(T i(t)))−

n−2k−4
4

(4.20)

+ (λ|T i(t)|) (n−k−1)k
2 = S1(t) + S2(t) + S3(t)

Summing the fist terms in (4.20) over admissible values of t is estimated exactly as in (4.16) and
one gets

∑
t

S1(t) . det(λT )n−k−1 det(λTi)−
n−k

2 q
−n−2k−4

2
0

If t is such that µ(T i(t)) ≥ δ |T | then (δ−2|T |−1µ(T i(t)))−(n−2k−4)/4 ≤ δ1/4 as n − 2k − 4 ≥ 1
and summing over such t’s gives the second term of the right side of (4.17). By Proposition 4.3,
the number of admissible t’s such that µ(T i(t)) ≤ δ |T | is bounded by 2δ1/2 det(T )/det(Ti) and
one get a gain by a factor of δ1/2 over the estimate in (4.16), thus

∑
t

S2(t) =
∑

t: µ(T i(t))≥δ |T |
S2(t) +

∑

t: µ(T i(t))<δ |T |
S2(t) . δ

1
4 det(λT )n−k−1 det(λTi)−

n−k
2

Finally, using the facts |λT i(t)| . |λT | ≤ det(λT )1/k e(T ) and det(λTi) ≤ det(λT )(k−1)/k e(T )k−1

a straightforward calculation shows, that summing the third terms on the right side of inequality
(4.20), one gets

∑
t

S3(t) . det(λT ) det(λTi)−1 |λT | (n−k−1)k
2 . det(λT )n−k−1

det(λTi)
n−k

2

λ−
n−2k−2

2 e(T )(n−k−1)k

This proves the proposition.

¤

We will apply inequalities (4.6), (4.16) and (4.17) to functions of the form fi = fLi,q (i = 1, 2)
defined in (2.18), for specific choice of Li > 0. Recall that we defined fL,q = 1A ∗ ψL,q where,
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considering as distribution on Rn,

ψL,q = qnδ(qZ)n ψL where ψL(x) = L−nψ(x/L)

and δ(qZ)n denotes the discrete (counting) measure supported on the lattice (qZ)n. By Poisson
summation, if φ ∈ C∞(Tn) then

〈 δ̂(qZ)n , φ 〉 = 〈 δ(qZ)n , φ̂ 〉 = q−n
∑

l∈Zn

φ(l/q)

Thus

ψ̂L,q(ξ) = qn
(
δ̂(qZ)n ∗ ψ̂L

)
(ξ) =

∑

l∈Zn

ψ̂ (L(ξ − l/q)) (4.21)

We can now state the main result of this section, given a set A ⊆ BR ∩Zn such that |A| ≥ εRn, an
integral k-dimensional simplex 4 ⊆ Rn with T = T4, and a positive integer λ.

Lemma 4.1. Let k ≥ 2, n > 2k + 4, and let c̄ > 0 be a positive constant. Let C̄ > 0 and define

L1 = C̄−1 e(T )−4ε9(k+1) λ
1
2 |T | 12 , q(ε) = l.c.m. {q ≤ C̄ε−

4(k+1)
n−2k−4 } (4.22)

If C̄ = C̄(n, k, c̄) is large enough and if

λ ≥ C̄ q(ε)2ε−18(k+1) e(T )
4k(n−k−1)

n−2k−2 (4.23)

then one has

|EλT (1A;1A, fL1,q(ε))| ≤ c̄ εk+1 Rn det(λT )n−k−1 (4.24)

Proof. Let 1 ≤ i ≤ k be fixed. Applying inequality (4.6) for f = f1 = 1A, f2 = fL1,q(ε), one has

|Ei
λT (1A;1A, fL1,q(ε))| ≤ C ‖1A‖2

2 det(λTi)
(n−k)

4

(
sup
ξ∈Tn

|1− ψ̂L1,q(ε)(ξ)|2
∑

mi

SλTi
(mi) |ŜλT,mi(ξ)|2

) 1
2

Since ‖1A‖2
2 = |A| ≤ Rn, it is enough to show that

sup
ξ∈Tn

|1− ψ̂L1,q(ε)(ξ)| (
∑

mi

SλTi(m
i) |ŜλT,mi(ξ)|2) 1

2 ≤ c1 εk+1 det(λT )
n−k−1

2 det(λTi)−
n−k

4

(4.25)
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for some constant c1 = c1(n, k, c̄) > 0 small enough. By our assumptions, L1 > q(ε), hence the
supports of the functions ψ̂(L1(ξ − l/q(ε))) are disjoint for different values of l ∈ Zn. Thus if there
is an l0 such that: |ξ − l0/q(ε)| ≤ C−1

1 εk+1L−1
1 where C1 is large enough w.r.t. c1, then

|1−
∑

l∈Zn

ψ̂(L1(ξ − l/q(ε)))| = |1− ψ̂(L1(ξ − l0/q(ε)))| ≤ c1 εk+1

using the fact that |1− ψ̂(η)| . |η| for η ∈ Rn, and (4.24) follows from (4.16) and the assumption
(4.23).

In the opposite case, for all l ∈ Zn and 1 ≤ q ≤ C̄ε−
4(k+1)

n−2k−4 , one has by (4.22)

|ξ − l/q| = |ξ − l′/q(ε)| > C−1
1 εk+1L−1

1 ≥ (C̄/C1) e(T )4 ε−8(k+1)λ−
1
2 |T |− 1

2 (4.26)

Thus one can apply inequality (4.17) with parameters

δ = (C1/C̄) e(T )−4ε−8(k+1) q0 = C̄ ε−
4(k+1)

n−2k−4

using the fact that λ ≥ C̄ e(T )
2k(n−k−1)

n−2k−2 ε−
4(k+1)

n−2k−2 inequality (4.24) follows, if the constant C̄ =
C̄(n, k, c̄) is chosen large enough.

¤

Proof of Lemma 2.1.

We will proceed as in Section 2. Assume that for a given λ ∈ N, the simplex
√

λ4 cannot be
embedded in A, that is

NλT (1A,1A, . . . ,1A) = 0 (4.27)

The choosing L = C(λ|T |)1/2 such that R/L ∈ Z and q = q(ε) defined in (2.1), Lemma 3.1 implies
that

NλT (1A, fL,q, . . . , fL,q) ≥ c0 det(λT )
n−k−1

2 εk+1Rn (4.28)

Assuming that the parameters R, ε and λ satisfy R > L2(λ, ε) > L1(λ, ε) > q(ε), where

L1(λ, ε) = C̄−1 e(T )−4ε9(k+1)(λT )1/2, L2(λ, ε) = C̄ ε−(k+1) (λT )1/2 (4.29)

we have that both (4.22) and (4.23) is satisfied. Thus by Lemma 4.1 and (4.27)

NλT (1A, fL1,q, . . . , fL1,q) ≤ c0

2
det(λT )

n−k−1
2 εk+1Rn (4.30)
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where we wrote L1 = L1λ, ε and q = q(ε) for simplicity of notations. Using Proposition 4.1 with
f = 1A, f1 = fL1,q and f2 = fL,q it follows

‖fL1,q − fL,q‖2
2 =

∫

Tn

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≥ c1 ε2k+2 Rn (4.31)

for some constant 0 < c1 ≤ 1. Note that ψ̂L1,q − ψ̂L,q is supported on (1
qZ)n + [− 1

2L1
, 1

2L1
]n.

Moreover, if ξ = l
q + η with η ∈ [− 1

2L2
, 1

2L2
]n for a given L2 > C1 ε−(k+1)L, then

|ψ̂L1,q(ξ)− ψ̂L,q(ξ)| = |ψ̂(L1η)− ψ̂(Lη)| ≤ C L/L2 ≤ c1

2
εk+1

as long as C1 À c−1
1 . Thus integrating over the complement of the set Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε))

∫

Tn/Tλ,ε

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≤ c1

4
ε2k+2 Rn (4.32)

Estimates (4.31)-(4.32) imply estimate (2.5) and Lemma 2.1 is proved.

¤

5. Estimates on the Fourier transform of ST .

In this section we prove Lemma 2.2 using the theory of theta functions. All arguments given here
are independent of the rest of the paper, based on the approach in [K] (or in [R]) of estimating
Fourier coefficients of Siegel modular forms vanishing at cusps. The basic difference is that the
above mentioned works dealt with the case X = 0 while we need to consider those values of X
which are ”away” from rational points P/q (P ∈ Zk×k) with small denominator q. The related
theta functions are not modular forms, but behave very similarly, at such points X , and hence
most arguments of [K] can be adopted to our situation. We start by recalling some of the basic
definitions and notions.

Let Hk = {Z = X + iY : Zt = Z, Y > 0} denote the Siegel upper half-plane of genus k. Following
the definition (1.3.2) in [A], let θk : Hk × Rk × Rk → C be the theta function defined by

θk(Z, ξ, η) =
∑

m∈Zk

eπi ( Z(m−η)·(m−η)+ 2m·ξ− ξ·η ) (5.1)

Note that the above sum converges uniformly on the domain {Z : Im Z > εEk}, for every ε > 0.
Here Ek is the k × k identity matrix, and by the notation A ≥ B we mean that A − B > 0, that
is a positive k × k matrix. Next, we define the theta functions θn,k : Hk × Rn×k × Rn×k → C.
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Let X = (ξ1, . . . , ξn), E = (η1, . . . , ηn) be n × k matrices with the i-th row being ξ (resp. ηi) for
1 ≤ i ≤ n. Define

θn,k(Z,X , E) =
n∏

i=1

θk(Z, ξi, ηi) (5.2)

Using (5.1) , and the fact that tr(AB) = tr(BA) for A,B ∈ Rn×k, one may also write

θn,k(Z,X , E) =
∑

M∈Zn×k

eπi tr( (M−E)Z(M−E)t+2MtX−EtX ) (5.3)

These theta functions will play a crucial role. Indeed, one has

Proposition 5.1. Let T > 0 be an integral k × k matrix, and let X ∈ Rn×k. Then

|ŜT (X )| .
∫

[0,2]
k(k+1)

2

|θn,k(X + iT−1,−X , 0)| dX (5.4)

where dX =
∏

1≤i≤j≤k dxij.

Proof. For simplicity of notation, let Ik = [0, 2]
k(k+1)

2 . If M ∈ Zn×k, then

∫

Ik

eπi tr ( (MtM −T )X) dX =

{
2

k(k+1)
2 , if M tM = T

0 , otherwise

If MM t = T then tr(M tMT−1) = tr(MT−1M t) = n, thus

ŜT (X ) = 2−
k(k+1)

2 eπn
∑

M∈Zn×k

e−π tr(MT−1Mt)

∫

Ik

eπi tr( (MtM −T )X−2MtX ) dX

= 2−
k(k+1)

2 eπn

∫

Ik

e−πi tr(TX )
∑

M∈Zn×k

eπi tr( M(X+iT−1)Mt−2MtX ) dX

Note that the inner sum is: θn,k(X + iT−1,−X , 0), which converges uniformly for X ∈ Ik, and
hence the last equality is justified. Taking absolute values in the integral the proposition follows.

¤
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We will use the approach of [K], in estimating the integral in formula (5.1), by partitioning the
range of integration Ik, and estimating the theta function separately on each part by exploiting
its transformation properties. Note that in one dimension, when k = 1, this leads to the so-called
Farey arcs decomposition. Let

Γk =
{

γ =
(

A B
C D

)
; ABt = BAt, CDt = DCt, ADt −BCt = Ek

}
(5.5)

denote the integral symplectic group. The group Γk acts on Hk as a group of analytic automor-
phisms, the action being defined by: γ〈Z〉 = (AZ + B)(CZ + D)−1 for γ ∈ Γk, Z ∈ Hk. Let us
recall also the subgroup of integral modular substitutions:

Γk,∞ =
{

γ =
(

A B
0 D

)
; ABt = BAt, ADt = Ek

}
(5.6)

It is immediate that writing U = At and S = ABt, that D = U−1 and B = SU−1, moreover S
is symmetric, and U ∈ GL(k,Z), that is: det(U) = ±1. The action of such γ ∈ Γk,∞ on Z ∈ Hk

takes the form:

γ〈Z〉 = U tAU + S (5.7)

we will adopt also the notation Z[U ] = U tZU . The general linear group GL(k,Z) acts on the
space Pk of positive k × k matrices, via the action: Y → Y [U ], Y ∈ Pk, and let Rk denote the
corresponding so-called Minkowksi domain, see [KL, Definition 1, p12]. A matrix Y = (yij) ∈ Rk

is called reduced. We recall that for a reduced matrix Y

Y ≈ YD , y11 ≤ y22 ≤ . . . ≤ ykk (5.8)

where YD = diag(y11, . . . , ykk) denotes the diagonal part of Y , and A ≈ B means that A−ckB > 0,
B − ckA > 0 for some constant ck > 0. For a proof of these facts, see [KL,Lemma 2, p.20]. A
fundamental domain Dk for the action of Γk on Hk, called the Siegel domain, consists of all matrices
Z = X + iY , (X = (xij)), satisfying

Y ∈ Rk, |xij | ≤ 1/2, | det (CZ + D)| ≥ 1, ∀ γ =
(

A B
C D

)
∈ Γk (5.9)

The second rows of the matrices γ ∈ Γk are parameterized by the so-called coprime symmetric
pairs of integral matrices (C, D), which means that CDt is symmetric and the matrices GC and
GD with a matrix G of order k are both integral only if G is integral, see [A, Lemma 2.1.17]. It
is clear from definition (5.6) that if γ2 = γγ1 with second rows (C2, D2) and (C1, D1) for some
γ ∈ Γk,∞, then (C2, D2) = (UC1, UD1) for some U ∈ GL(k,Z). On the other hand, if both γ1

and γ2 have the same second row (C, D) then γ2γ
−1
1 ∈ Γk,∞. This gives the parametrization of
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the group Γk,∞\Γk by equivalence classes of coprime symmetric pairs (C, D) via the equivalence
relation (C2, D2) ∼ (C1, D1) if (C2, D2) = (UC1, UD1) for some U ∈ GL(k,Z), see also [A, p.54].
We will use the notation [γ] = [C, D] ∈ Γk,∞\Γk.

It is clear that if one defines the domain: Fk = ∪γ∈Γk,∞γDk, then Hk =
⋃

[γ]∈Γk,∞\Γk
γ−1Fk is a

non-overlapping cover of the Siegel upper half-plane. Correspondingly, for a given matrix T > 0 of
order k, define the Farey arc dissection of level T , as the cover

Ik =
⋃

[γ]∈Γk,∞\Γk

IT [γ], IT [γ] = {X ∈ Ik : X + iT−1 ∈ γ−1Fk} (5.10)

We will need the following transformation property of the functions |θn,k(Z,X , E)| with respect
to γ ∈ Γk, which is immediate from Proposition 1.3.2 and Theorem 1.3.6 in [A], see formulas

(1.3.7)-(1.3.10) there. Let ξ, η ∈ Rk, Z ∈ Hk, and γ =
(

A B
C D

)
∈ Γk. Then one has

|θk(Z, ξ, η)| = | det (CZ + D)|− 1
2 |θk(γ〈Z〉, Aξ −Bη − kγ/2, Cξ −Dη − nγ/2)| (5.11)

for some vectors kγ , nγ ∈ Zk depending only on the matrix γ. If X = (ξ1, . . . , ξn) is a real n × k
matrix with the i-th row being ξi, for 1 ≤ i ≤ n, then by (5.2)

|θn,k(Z,X , 0)| = | det (CZ + D)|−n
2 |θn,k(γ〈Z〉, XAt −Kγ/2, XCt −Nγ/2)| (5.12)

for some matrices Kγ , Nγ ∈ Zn×k depending only on the matrix γ. Let us recall the following
quantity associated to a positive matrix Y ∈ Rk×k.

min(Y ) = min
x∈Zn,x6=0

Y x · x (5.13)

It is clear that µ(Y ) ≤ min(Y ), and it follows from (5.8) that µ(Y ) ≈ min(Y ) if Y is reduced.

Proposition 5.2. Let X ∈ Rn×k, T ∈ Zk×k such that T > 0, and τ > 0 be given. If (C, D) is a
coprime symmetric pair, then for Z ∈ IT [C,D] one has

|θn,k(Z,X , 0)| . | det (CZ + D)|−n
2 (5.14)

Let q = det(C), [γ] = [C,D] and Y = Imγ〈Z〉. If q 6= 0, and for every P ∈ Zn×k

|X − P/2q| ≥ τ (5.15)

then one has

|θn,k(Z,X , 0)| . | det (CZ + D)|−n
2

(
e−c min(Y ) + e−c τ2µ(CtY C)

)
(5.16)
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for some constant c > 0 depending only on the dimension k.

Proof. By formula (5.12) it is enough to show that

|θn,k(γ〈Z〉, XAt −Kγ/2, XCt −Nγ/2)| . 1 (5.17)

Since γ〈Z〉 ∈ Fk, there is a U ∈ GL(k,Z) and a symmetric S ∈ Zk×k, such that γ〈Z〉 = U tZ1U +S
with Z1 ∈ Dk. Taking absolute values in (5.3) one obtains (using the notation A[B] = BtAB)

|θn,k(γ〈Z〉, XAt −Kγ/2, XCt −Nγ/2)| ≤
∑

M∈Zn×k

e−π tr(Y [CX t−Mt−Nt
γ/2])

=
∑

M1∈Zn×k

e−π tr(Y1[C1X t−Mt
1−Nt

1/2]) (5.18)

where M1 = MU t runs through Zn×k, C1 = UC, N1 = NγU t and Y1 = Im Z1 = U tY U . Since
Z1 ∈ Dk, Y1 ≥ ckEk for some constant ck > 0. Let M0 ∈ Zn×k be such that

|XCt
1 −M0 −N1/2| = min

M∈Zn×k
|XCt

1 −M −N1/2|

and write M2 = M1 −M0. Since Z1 ∈ Dk, one has that µ(Y1) ≈ min(Y1) & 1 see [A,..], thus the
right side of (5.18) is further estimated by

e−c′|XCt
1−M0−N1/2|2 +

∑

M2 6=0

e−c′min(Y1) |M2|2 . 1 (5.19)

If q = det(C) 6= 0 and one assumes (5.15), then det(C1) = ±q 6= 0 and (M0 + N1/2)(Ct
1)
−1 = P/2q

for some P ∈ Zn×k. Thus

tr(Y1[C1X t −M t
0 −N t

1/2]) = tr((Ct
1Y1C1) [X t − P t/2q]) ≥ τ2µ(Ct

1Y1C1)

Thus the expression in formula (5.18) is bounded by

e−c τ2µ(Ct
1Y1C1) + e−c min(Y1)

for some constant c > 0 depending only on k. Since Ct
1Y1C1 = CtY C and min(Y1) = min(Y ),

the proposition is proved.

¤

We will estimate below the sum of the integrals

JT,X [C, D] =
∫

IT [C,D]
|θn,k(Z,X , 0)| dX (5.20)
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over all coprime symmetric pairs [C, D], using bounds (5.14) and (5.16). Most of the estimates
needed, were done in [K] in the proofs of Propositions 1.4.10 and 1.4.11, which we recall without
proofs, however we give detailed proofs of similar estimates not discussed in [K].

To be more precise, define the quantities

J0
T [C, D] =

∫

IT [C,D]
| det(CZ + D)|−n

2 dX (5.21)

J1
T [C, D] =

∫

IT [C,D]
| det(CZ + D)|−n

2 e−c min(Y ) dX (5.22)

J2
T,τ [C, D] =

∫

IT [C,D]
| det(CZ + D)|−n

2 e−cτ2 µ(CtY C) dX (5.23)

where Y = Im γ〈Z〉 and γ ∈ Γk such that [γ] = [C,D] ∈ Γk,∞\Γ. The following estimates are
proved in [K], (see Proposition 1.4.10 together with Lemma 1.4.4. and estimate (39) there)

Proposition 5.3. Let T be a positive integral matrix, and let [C, D] be a coprime symmetric pair
such that det(C) 6= 0. Then one has the following estimates

∑

St=S

J0
T [C, D + CS] . det(T )

n−k−1
2 | det(C)|−n

2 (5.24)

∑

St=S

J1
T [C, D + CS] . det(T )

n−k−1
2 | det(C)|−k min(T )−

n−2k
4 (5.25)

where the summation is taken over all symmetric integral matrices S.

Using the same argument as in the proof of the above statements given in [K], one obtains

Proposition 5.4. Let T be a positive integral matrix, let τ > 0, and let [C, D] be a coprime
symmetric pair such that det(C) 6= 0. Then

∑

St=S

J2
T,τ [C, D + CS] . det(T )

n−k−1
2 | det(C)|−n

2 (τ2µ(T ))−
n−2k

4 (5.26)

where the summation is taken over all symmetric integral matrices S.

Proof. Using the fact that

Im γ〈Z〉 = ((CZ + D)(Im Z)−1(CZ̄ + D)t)−1
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it follows for Z = X + iT−1 that

Y [C] = (T [X + C−1D + iT−1])−1 = (T [X + C−1D] + T−1)−1

Thus by (5.23)

∑

St=S

J2
T,τ [C, D + CS]

.
∑

St=S

∫

Ik

| det(C)|−n
2 | det(X + C−1D + S + iT−1)|−n

2 e−cτ2 µ(T [X+C−1D+S]+T−1)−1
dX

. |det(C)|−n
2

∫

R
k(k+1)

2

|det(X + iT−1)|−n
2 e−cτ2 µ((T [X]+iT−1)−1) dX (5.27)

Let T
1
2 denote the positive square root of T , and let X1 = X[T

1
2 ]. Then by a change of variables

dX = det(T )−
k+1
2 dX1, the expression in (5.27) takes the form

det(T )
n−k−1

2 | det(C)|−n
2

∫

R
k(k+1)

2

det(X2
1 + Ek)−

n
4 e−cτ2 µ((X2

1+Ek)−1[T
1
2 ]) (5.28)

Note that the above expression depends just on the conjugacy class of the symmetric matrix X1.
Thus writing X1 = V t diag(w1, . . . , wk) V for some orthogonal matrix V ∈ O(k), with |w1| ≥ . . . ≥
|wk| being the eigenvalues of the matrix X1, it follows that

µ(T
1
2 (X2

1 + Ek)−1T
1
2 ) ≥ (1 + w2

1)
−1 µ(T ) (5.29)

By the Weyl integral formula:

dX1 =
∏

1≤i<j≤k

|wi − wj | dw1 . . . dwk dV ≤
∏

1≤i≤k

(1 + w2
i )

k−1
2 dw1 . . . dwk dV

Since n > 2k, using the above change of variables, one estimates the integral in (5.28) by

∫

Rk

(1 + w2
1)
−n

4
+ k−1

2 e−cτ2µ(T ) (1+w2
1)−1

dw1 . (τ2µ(T ))−
n−2k

4 (5.30)
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This proves the proposition.

¤

The map [C, D] → C−1D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C, D] ∈ Γk,∞\Γk and the space of symmetric rational matrices R of
order k, see Lemma 1.4.6 in [K]. Note that the pairs [C, D + CS] correspond to the matrices
R + S with symmetric S ∈ Zk×k. Thus using Proposition 9, one needs to estimate the sum
of

∑
St=S JT,X [C, D + CS] = JT,X [R] over the space of modulo 1 incongruent symmetric rational

matrices, which we will denote by Q(1)k×k, where Q(1) = Q/Z, Q being the set of rational numbers.

Let us introduce the notation: d(R) = | det(C)| for R = C−1D, and recall the following estimate,
proved in Lemma 1.4.9 in [K]; for u > 0 and s > 1 one has

u−s
∑

1≤d(R)≤u

d(R)−k +
∑

d(R)>u

d(R)−k−s . (2 +
1

s− 1
) u1−s (5.31)

where the summation is taken over [R] ∈ Q(1)k×k.

Proposition 5.5. Let T be a positive integral matrix, let τ > 0 and q0 ∈ N. Let X ∈ Rn×k such
that for all 1 ≤ q ≤ q0 and P ∈ Zn×k

|X − P/q| ≥ τ (5.32)

Then one has

∑

R∈Q(1)k×k, d(R)6=0

JT,X [R] . det(T )
n−k−1

2

(
(τ2µ(T ))−

n−2k−2
4 + q

−n−2k−2
2

0

)
(5.33)

Proof. By formulas (5.14) and (5.24), one has

JT,X [R] . det(T )
n−k−1

2 d(R)−
n
2 (5.34)

thus by (5.31) applied for s = n/2− k > 1 and u = 1

∑

d(R) 6=0

JT,X [R] . det(T )
n−k−1

2 (5.35)

If X satisfies (5.32) then for 1 ≤ d(R) ≤ q0/2 one has by (5.16) and (5.25)-(5.26)

JT,X [R] . det(T )
n−k−1

2

(
d(R)−

n
2 (τ2µ(T ))−

n−2k
4 + d(R)−kmin(T )−

n−2k
4

)
(5.36)
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Clearly |τ | . 1, thus τ2µ(T ) . min(T ) so the right side of (5.35) is bounded by

JT,X [R] . det(T )
n−k−1

2 d(R)−k(τ2µ(T ))−
n−2k

4 (5.37)

By inequality (5.31) applied for s = n/2− k, u = q0/2

∑

d(R) 6=0

JT,X [R] . det(T )
n−k−1

2 (q0 (τ2µ(T ))−
n−2k

4 + q
−n−2k−2

2
0 )

which is bounded by the right side of formula (5.33).

¤

Next, we estimate the sum JT,X [C, D] over the classes [C,D] of coprime symmetric pairs for which
det(C) = 0. We will use the estimate

JT,X [C, D] . J0
T [C, D] =

∫

IT [C,D]
|det(CZ + D)|−n

2 dX (5.38)

which follows from (5.14) and (5.20). First we show that one may assume T is reduced in our
estimates below.

Proposition 5.6. Let T ∈ Zk×k such that T > 0 and let T1 = T [V ] for some V ∈ GL(k,Z). Let
0 ≤ r < k, and let rank(C) stand for the rank of the matrix C. Then

∑

[C,D], rank(C)=r

J0
T1

[C, D] =
∑

[C,D], rank(C)=r

J0
T [C,D] (5.39)

Proof. Let U ∈ GL(k,Z) such that U−1 = V t. Then T−1 = T−1
1 [U−1], and writing Z = X + iT−1

for Z ∈ IT [C,D] a straightforward calculation shows that

| det(CZ + D)| = | det(C1Z1 + D1)|

with C1 = C(U t)−1, D1 = DU, X1 = X[U−1] and Z1 = X1 + iT−1
1 . Notice that Z1 = h〈Z〉 with

h =
(

(U t)−1 0
0 U

)
, and if γ =

( ∗ ∗
C D

)
then γ · h = γ1 with γ1 =

( ∗ ∗
C1 D1

)
. It follows

γ〈Z〉 = γ1〈Z1〉, hence X ∈ IT [C,D] exactly when X1 = IT1 [C1, D1] and one has

∫

IT [C,D]
| det(CZ + D)|−n

2 dX =
∫

IT1
[C1,D1]

|det(CZ1 + D1)|−
n
2 dX1
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The map [C,D] → [C1, D1] = [C(U t)−1, DU ] is one-one and onto from the classes of coprime
symmetric pairs [C, D] with rank(C) = r to itself, and the proposition is proved. ¤

Let T > 0 be integral, and let T1 = T [U ] be reduced, with U ∈ GL(k,Z). We recall that T1 ≈
diag(t1,1, . . . , tk,k), where ti,i (1 ≤ i ≤ k) denote the diagonal entries of the matrix T1, see (5.8). For
reduced matrices the estimate of the sum in (5.39) goes back to [S], and was done p.e. in Lemma
1.4.11 in [K], which we recall without proofs, see formulas (39) and (43)-(44) there.

Proposition 5.7. Let T1 ∈ Zk×k be reduced, and let 0 ≤ r < k. Then

∑

[C,D], rank(C)=r

J0
T1

[C, D] . (tk,k · . . . · tk−r+1,k−r+1)
n−r−1

2 (5.40)

where ti,i (1 ≤ i ≤ k) denote the diagonal entries of the matrix T1.

It is easy to see that

e(T1) . e(T ) (5.41)

Indeed

t1,1 = Te1 · e1 = T (Ue1) · Ue1 ≥ µ(T ) and

|T | ≥ sup
|x|=1

T1(U−1x) · U−1x & sup
|x|=1

tk,k (U−1x)2k ≥ tk,k

as U−1 is integral, where (U−1x)k denotes the k-th entry of the vector U−1x.

Finally, one has r(n− r− 1) ≤ (k− 1)(n− k) for 0 ≤ r ≤ k− 1, thus Proposition 5.7 and inequality
(5.41) implies

Corollary 5.1. Let T ∈ Zk×k such that T > 0. Then

∑

[C,D], det(C)=0

J0
T [C,D] . |T | (k−1)(n−k)

2 (5.42)

Note that a proof of this corollary is also given in [R], see formulas (25)-(26) there.

Lemma 2.2 follows immediately from Proposition 5.5 and Corollary 5.1, and this finishes to proof
of Theorem 1.3.
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