K-POINT CONFIGURATIONS IN SETS OF POSITIVE DENSITY OF 7Z"

AKOS MAGYAR

ABSTRACT. It is shown that if n > 2k +4 and if A C Z" is a set of upper density € > 0, then - in a
sense depending on ¢ - all large dilates of any given k-dimensional simplex A = {0,v1,...,vx} CZ"
can be embedded in A. A simplex A can be embedded in the set A, if A contains simplex A’ which
is isometric to A. Moreover, the same is true if only A C R" is assumed, and A satisfies some
immediate necessary conditions.

The proof uses techniques of harmonic analysis developed for the continuous case, as well as a
variant of the circle-method, due to Siegel.

1. INTRODUCTION.

Geometric Ramsey theory deals with problems of finding patterns in dense but otherwise arbitrary
sets. A striking result of this type due to Bourgain [B], states that if E is a subset of the Euclidean
space R™ of positive upper density, and if A is a k—dimensional simplex with k < n, then E contains
a translated and rotated image of all large dilates of A. Here, by a k—dimensional simplex, we
mean its vertex set, that is a set of k + 1 points in general position.

To introduce our terminology, we call two simplices A, A’ C R™ isometric, and write A’ ~ /A if one
is obtained from the other via a translation and a rotation, that is when A’ = x + U(A) for some
x € R" and U € SO(n). It is clear that ” ~ 7 is an equivalence relation, we call the equivalence
classes k + 1 — point configurations. To any k-dimensional simplex A = {vg,v1,..., vk}, there
corresponds a positive definite k x k matrix TA = (t;;), with entries

tij = (vi—wo) - (vj—wo) 1<, j<k (1.1)

where ” -7 denotes the dot product. It is not hard to see that, for k < n, A’ ~ A, if and only
if Tan = Thas. Indeed, if A" = {0,v],...,v;} and A = {0,v1,..., v} then there is a rotation Uy
which takes v; to v{, hence assume that vy = v]. If P stands for the projection to the orthogonal
complement of vy, then it is easy to see that Tx = Tx, where A = P({vg,...,v;}) and A/ =
P({v5,...,v}}). Thus, by induction, there is a rotation U € SO(n) such that U(P(v;)) = U(P(v}))

for i > 2, and U(vy) = U(v}) = v1 = v}, hence U(A) = A’. Thus k + 1—point configurations are
in one to one correspondence with positive definite & x k matrices.

We study below the problem of embedding k-dimensional simplices A C R™ into a given set A C Z"
of positive upper density, and prove a result analogues to that of [B]. Let us recall that a subset A
of Z" has upper density at least ¢, and write 6(A) > ¢, if there exists a sequence of cubes Bpg; of
sizes R; — oo, not necessarily centered at the origin, such that for all j € N
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It is clear that a simplex A can be embedded in A C Z"™ only if the matrix Tx is integral, i.e. when
all its entries are integers. We will call the simplex A integral in that case. If one chooses A = (qZ)"
where ¢ is a positive integer bigger then the diameter of the simplex A, then §(A) = ¢~ > 0 but A
cannot be embedded in A. In light of this, similarly as in the continuous case, it is more reasonable
to consider the problem of embedding all large dilates of a simplex A of the form vAA, where
A € N is a positive integer.

The case A = 7" is purely a problem of number theory. Indeed by equation (1.1), a given simplex
VAA can be embedded in Z" if and only if there are k vectors my,...,mg, m; € Z" (1 < i < k)
such that

mi-mj:)\tij VlSZS]Sk (1.2)

where Ta = (t;;) is the inner product matrix corresponding to the simplex A. This is a system of
k(k 4+ 1)/2 diophantine equations, which can be rewritten as a single matrix equation of the form

M'M = \T (1.3)

where M = (my,...,my) is the n x k with m; being its i—th column vector, M stands for the
transpose of M and T = Ta. Equation (1.3) was studied by Siegel [S] and later by Raghavan [R]
and Kitaoka [K], and an asymptotic formula was derived, in dimensions n > 2k + 2 for the number
of solutions M € Z"** as A\ — oo and T being fixed. In particular it is proved, that for A > Cy the
number of solutions of equation (1.3) is ~ det(AT)®~%=1)/2 where Cy > 0 is a constant depending
only on the dimensions n and k, see p.e. [K|, Theorems A-C. We will use the method developed
there, also known as the generalized circle method of Siegel, only to estimate certain error terms.

In the general case, when A C Z" is a set of positive upper density say € > 0, one has to impose
an additional condition on the dilates of a simplex A which can be embedded in A. Indeed taking
the grid A = (¢Z)" for some ¢ < e~ /™ it is clear that §(A) > ¢ and if A’ C A then each entry of
T is divisible by ¢2. Thus, for most simplices, vAA can be embedded in A only if ¢ divides \.
We can state now our main result.

Theorem 1.1. Let k> 2, n>2k+4,e>0. Let A CZ" such that 6(A) > € and let A CR" be a

k-dimensional integral simplez.

Then there is a positive integer Q@ = Q(e) depending only on the density €, and a positive number
A =A(A,A) depending on the set A and simplex A\, such that for all A > A

3 AN CA AN =VAQA, (1.4)

This means that for a given set A C Z™ of upper density at least ¢ > 0, all large dilates of the form
ﬁQ(s) A of any given k-dimensional integral simplex A, can be embedded in A. By the remarks
preceding Theorem 1, Q(g) must be divisible by all ¢ < e=1/7 thus it follows from elementary
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estimates on primes that Q() > exp (ce~'/"). The number Q(¢) will be constructed explicitly and
will satisfy the upper bound Q(g) < exp (C e~ 4k+1)/n=2k=4)

For k = 1 Theorem 1 translates to the fact that the distance set of A, d(A) = {|m—1|: me€ A, | €
A} contains all large distances of the form \/XQ(E). Indeed, there is only one 2-point configuration,
represented by A = {0,e1}, e; = (1,0), and VAA can be embedded in A means that v\ € d(A).
This was proved earlier in [M] in dimensions n > 4.

We emphasize that the above result is proved only under the assumption that the simplex A =
{0,v1,...,v;} is non-degenerate, that is the vectors vy,...,v; are linearly independent in R™. A
counter-example is shown in [B] in the continuous case when n = k = 2, A = {0,e1,2e;}. In
our settings when A = {0,e1,2ey,...,ke;1}, the existence of an embedding of A in A follows from
Szemerédi’s theorem on arithmetic progressions, however it might not be true that all large dilates
of A can be embedded in A in the sense of Theorem 1.

We will describe below some quantitative results. These will depend on the eccentricity e(T) (with
T = Tx) of the simplex A, defined by

k
T
7L here w(T) = inf Te-z, |T|=( |ty )z (1.5)

)=y jal=1

i,j=1

Note that |T|'/2 is comparable to the diameter of A, and the quantity e(T) may be viewed as a
measure of how close the simplex A is to being degenerate.

Theorem 1.2. Let k > 2, n > 2k +4, ¢ > 0. Let A C Z" N Br such that |A| > eR"™, and let
A CR"™ be a k-dimensional integral simplex and let T = Th. If

R > C |T]% exp (C’g e~z (kD) log (e(T))) (1.6)

for some positive constants C1 and Cy depending only on the dimensions n and k, then there exists
a simplexr ' C A and a A\ € N such that A ~ V- A,

In other words, if A C Br NZ" contains an e-portion of the points in the cube Br and if R is large
enough, then the set A contains a ”copy” of the simplex A, obtained by a translation, a rotation
and a dilation.

Theorem 1.3. Let k > 2, n > 2k +4, ¢ > 0. Let A C Z" N Br such that |A| > eR"™, and let
A CR"™ be a k-dimensional integral simplex and let T = Th.

Then there exists a pair of integers Q = Q(e), J = J(e) such that for any sequence of integers
Co < A1 < A2 <... < Aje), satisfying

1
N1 >2e(T)N;,  and A3 |T|2 <R

there exists a simplex N C A such that A" ~ \/X\;Q A for some 1 < j < J(e).
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Moreover the numbers Q(g), J(e) satisfy the inequalities
4(k+1)
Qe) <exp(Ce™ n—;’;i‘i), J(e) < Ce 2 (k1) (1.7)

for some positive constant C depending only on the dimensions n and k.

We remark that the existence of a dilate AAA which can be embedded in A, follows from Kitaoka’s
theorem [K] together with the so-called multi-dimensional Szemerédi theorem. The latter result,
originally proved by Fiirstenberg and Katznelson [FK], implies that for every finite set S C Z"
there is an m € Z" and A € N such that S’ = m + XS C A, and is one of the most fundamental
result in the area. Thus the emphasis in Theorem 1.1, is in the fact that, in a sense, all large dilates
of A can be embedded in A. Also, at present, the multi-dimensional Szemerédi theorem has no
Fourier analytic proof, neither quantitative versions with reasonable bounds.

2. OUTLINE OF THE PROOFS OF THE MAIN RESULTS.

Let us start by observing that Theorem 1.3 implies both Theorem 1.1 and Theorem 1.2. Indeed
assuming that the conclusion of Theorem 1.1 is not true, it follows that there is a set A C Z"
with upper density §(A) > e, and an infinite lacunary sequence \; such that \/A;Q(e)A cannot
be embedded in A for all j € N. Choosing a cube Bpr of size R > C()\J(€)|T‘)1/2 such that
|AN Br| > ¢R™ contradicts Theorem 1.3. Also, choosing Q(¢) and J(¢) is in Theorem 1.3, and a
lacunary sequence A1 < ... < Aj) such that ;) < exp(J(e) log (e(T))), it follows from (1.7)

that vAA can be embedded in A for some A = \;Q(¢)? as long as A C Z" N Bg with |A] > ¢R"
and R satisfies (1.6), thus Theorem 1.2 follows.

Let us outline now, the proof of Theorem 1.3. We’ll use a variant of the density increment approach
of Roth. In our settings this amounts to showing that the set A contains an isometric copy of vV AA
for some A € N, or the density of A increases on a large cubic grid by a fixed amount ¢(g) > 0,
depending only on €. We'll prove a somewhat stronger statement; namely if for a fixed A the simplex
VAA cannot be embedded in A, then either the density of A increases to (1 4 ¢)e on a large grid
of common difference ¢ = ¢(¢), or the Fourier transform 14, 14 being the indicator function of the
set A, is concentrated on a small set Ty ,. Moreover if X' > A, then the sets Ty , and T) , are
disjoint, thus if A\; < Ay < ... < A; is a lacunary sequence with J > J(¢) is large enough and if A
does not contain an isometric copy of any simplex \/E A, then A must have increased density on
a large grid of difference ¢ = ¢(¢). Iterating this, will prove Theorem 1.3.

To formulate precisely the above statements let us introduce some notations. We’ll denote by ¢ > 0
resp. C' > 0, small resp. large constants depending only on the dimensions n and k, whose value
can change from place to place. If they depend on other parameters like ¢, § and so on, we indicate
those in parenthesis c¢(¢), ¢(g,0). The least common multiple of a set of integers qi,...,q will be
denoted by lem {q1,...,q}. To a given 0 < € < 1 we attach the integer

4(k+1
qle) =lem{l < ¢ < Ce n-2-1} (2.1)

The importance of this number is in the fact that the grid (%Z)” = {%; m € Z"} contains all

4kl ]
rational points a/q € R™ with denominator ¢ < Ce™ »n=2~4. For given s € Z", ¢ € N and L > q we
define the cubic grid of size L and common difference ¢
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Br(g;s) = (s + (¢Z)") N B (2:2)

where By, is a cube of size L. In the Fourier space T" = (R/Z)", a key role will be played by the
sets

\" 1 11" 1 1"
T(LuLQ,q) = (qZ) +Dp, 1, where Dy, ,= [_21?17%] \ [—%,%] (2.3)

where ¢ € N and ¢ < L1 < Ly. Here by S + T we denote the sumset of the sets S and T'. The key
is to obtain the following

Lemma 2.1. Letn > 2k+4,0<e <1, let AC BRNZ" such that |A| > eR"™, and let A\ be an
integral k-dimensional simplex.

If for a given X € N the simplex VXA cannot be embedded in A, then either there exists a cubic
grid Br(q,s) with g = q(¢) defined in (2.1), and L > CV/ ||, such that

@) AN BL09)] = (+ )| Brla.s)] with o= s (2.4)
or
(i) [ Na©Pd = e R (2.5)
’]r)\,s
where Tx e =T (1,0 e),Lo(Me)q(e)) 1S the set defined in (2.3) and
Li(Ae) = C7le(T) 4B TNY2,  Ly(N,e) = Ce= R (N 1)) /2 (2.6)

as long as the parameters A and R satisfy q(e) < L1(\,e) < La(\,e) < R.

We now describe how repeated application of Lemma 2.1 implies our main result.

Proof of Theorem 1.3

For r=0,1,2,... define
B 1
~10(k+1)

moreover let ¢. = ¢(&,) given in (2.1) and Q, = q1g2 - . . ¢», we set Qo = 1. We define the numbers
Jr inductively with Jy = 1 and J, being the smallest positive integer satisfying

er=(1+a)" with « (2.7)

Jr >+ C e, ~4k+1) log (sfl) with = el/? (2.8)
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We will show by induction on r, that Theorem 1.3 holds for ¢,_1 > € > ¢,.. This amounts to
showing that if A C Br NZ" with |[A| > ¢,R", and if C < A\; < ... < Aj, is a given lacunary
sequence with \i;1 > 2e(T));, then A contains an isometric copy of a simplex v X;Q, A for some
1<i< J.. Forr=0,e=¢9p=1thus A = BrpNZ" and Theorem 1.3 follows from Kiatoke’s
theorem (with Qo = Jy = 1), as explained in the introduction.

Now, assume indirectly that there exists an » € N, such that the conclusion of Theorem 1.3 holds
for the triple &,_1,Qr—1, Jr—1, but not for &,,Q,, J.. Then none of the simplices vV \;Q,A can
be embedded in A. Since J, > Ce, **Y log (¢,1), one may choose a subsequence {j1,..., it}
of the sequence {\;; J./v < j < J,} such that ¢t > (ce?**2)~! and for all 1 < i < t one has
L1(pit1,€r) > La(pi, €r), as long as the constant C is chosen large enough with respect to ¢ and C
given in (2.5) and in (2.6).

It follows that the sets Ty, for A = wiQ? are disjoint, and thus inequality (2.5) cannot hold
simultaneously for all 1 < i < ¢ as it would imply that: |A| = [, |14(¢)]?d¢é > R". By Lemma
2.1 there must exist a positive integer A = 1;Q? = \;Q? with J,./v < j < J,, such that

|ANBr(g,s)] = (1+ a)er |Br(g, s)| = er—1[BL(g, 5)] (2.9)

for a grid Br(g,,s) of size L > C(A\T|)"/2. The affine map ®(m) = g-m + s identifies the set
Br(¢r, s) with B NZ" (R' = L/q,) and also AN Br(qy, s) with a set A’ C Bp NZ™.

By (2.9) one has that |A’| > &,_1(R’)" and one may apply the induction hypothesis for the set A’
and the sequence A\ < Ay < ... < Ay _,. Indeed, it is easy to check that the size of the box Bp
satisfies

R =L/g > C(NITN?Qr/ar = C (\j,,ITN'? Qi

as j > J./y > J,_1 It follows that A’ contains a simplex A’ isometric to VA;Q,_1A for some
1 <i < J,_1,hence A contains the simplex ®(A) = s+¢,/\" which is isometric to vV \;Q,_1¢.A =
VAQrA.

To finish the proof one only needs to check that J(e) and Q(¢) satisfy the quantitative bounds (1.7).
If &, < e < g1, then Q(¢) = Q, = [[;_; ¢ where ¢ < exp (C’e[‘l(kﬂ)/(n*%%))
estimates on the primes. Thus, also

by well-known

Q(e) < exp (C g 4k+1)/ (n=2k—4))

for a slightly larger constant C. To estimate J(g) = J,. where ¢, < £ < (1+a)e,, note that dividing
(2.8) by 4" one obtains

Jr o Jo ey ") Jog (e71) + 1

-1 — ,yrfl

(2.10)
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Since

A(k+1) 1 e /10
AR — (1 — < e*"
e ( +10(k+1)) = ¢

it follows that the sum in (2.10) converges in 7 and hence .J, < C'y" = Ce’/2. Also log(1 + a) =
1 1
log (1 + 15541y) 2 110097 » thus

-1 11
Je) = J, <CA" =g, T < g2 D o or =5 )

This proves estimate (1.7). O

It remains to prove Lemma 2.1. To do that, similarly as in case of arithmetic progressions, one
introduces a multilinear form to count the number of embeddings of a given simplex VA into
the set A. For a given k x k integral positive matrix T' = (t;;), let St : Z" — {0,1} denote the
function

Sr(ma, ... (2.11)

m)_ 1 if mi-mj:tij V1§Z§]§k
PRI =0 0 otherwise

where m; € Z" for 1 < i < k. For functions f; : Z" — C, (0 < i < k) of finite support and for a
given A € N define the corresponding form

Nar(fo, fro--- 5 fx) = > folm)filmAma) ... fy(m+my) Syp(ma,. .. my) (2.12)

m,mi,...,myEL™

The point is that if T = Ta, that is the inner product matrix of the simplex A defined in (1.1),
and if fo = fi = ... = fr = 14 the indicator function of the set A, then Nyp(1lg4,...,14) is the
number of simplices A’ C A such that A’ ~ VAA.

Going back to Lemma 1.1, we will assume from now on that that for a given A € N the simplex
VA cannot be embedded in A, that is
Nor(1a,...,14)=0 (2.13)
and moreover that the set A is uniformly distributed on the grids By (g, s) in the sense that
1

< i = 10k L 1)
AN Br(g, )] < (1+)e|Brlg,s)| with o =577y

(2.14)

for all such grids Br(q,s) C Bg, for some parameters for a given ¢ € N and L > C (\|T])/? (later
we will choose ¢ = ¢(¢) given in (2.1)).

In Section 3 we partition Br N Z™ into grids Br(q,s) and define the corresponding conditional
expectation function hz 4 : BR NZ"™ — [0, 1] by

hiq(m) = |AN Br(g,m)l/|Br(q,m)| (2.15)

where Br(q,m) is the grid in the partition containing the point m. Note that the function hr, 4 is
constant and is equal to the average of 14 on each grid By(q, s) of the partition. Using assumption
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(2.14) on the distribution of A, and Kitaoka’s theorem on the number of solutions of the system
(1.2)

n—k—1
ISxrlli =D Sar(ma,...,mg) > co det(AT)" 2 (2.16)
M., M
it will be fairly easy to show that
Nar(La, hig, - hig) > ¢ det(AT)" 2 gktl gn (2.17)

Indeed from (2.14) it is easy to see that hr, ,(m) > ce for all but a small number of m € Bp N Z".

It will be more convenient to work with functions of the form f7, , = 14 * ¢, , which majorize hy 4
and whose Fourier transform is easier to handle. Indeed, if ¢ > 0 is a strictly positive Schwarz
function, and if

nLTn L) if zZ)"
rgtm) = { §ETVRD) e ) (218

then fr4 > chp g, see Proposition 3.2. Thus we get our main estimate from below

Nar(1a, frg,---» fr,q) = c1 det(AT)

for some constant c¢; > 0, see Lemma 3.1 for the precise statement.

n—k—1

gkt gr (2.19)

The advantage of using the functions fr, , is in that their Fourier transform can be described fairly
precisely

Fra(©) = 1a(&)vrqe(&) =1a(6) Y D(L(E —1/q)) (2.20)
lezm

and moreover if 1 is chosen such that

1=9(0)>9(§) >0 V¢ and  suppdp C [-1/2,1/2]" (2:21)

then f1,4(€) is supported on the set (%Z)” + [~ 57, 5] and it essentially equals to 14(£) on a
smaller such set.

In Section 4., we prove our crucial error estimate, namely that if ¢ = ¢(¢) and if one chooses
L1 = Ly(\,e) given in (2.6), with the constant C' large enough with respect to ¢; appearing in
(2.19), then

’N)\T(lA,lA,...,].A) _N)\T(]-A7fL1,q7-~-7fL1,q)’ < — det()\T) k+1Rn (2.22)

see Lemma 4.1. Taking this granted for now, let us sketch the proof of Lemma 2.1. Using estimates
(2.19) for L = C' (A|T|)"/? and (2.22) for Li = Li(\,¢), it follows from our assumption (2.13) that

n—k—1

C
’N)\T(lAale,Q7"'7fL1,q) _N)\T(lAafL,qw"afL,q)‘ Z 51 det()\T) Ek+1Rn (223)



K-POINT CONFIGURATIONS IN SETS OF POSITIVE DENSITY OF Z™ 9

Now, it is easy to show that the left side of (2.23) is bounded by

n—k—1 n
1S3zl Lall2 1f1g = frglla < C det(AT) 27 R2 [|fL,,9 — fLgll2 (2.24)
see Proposition 4.1. It follows
1friq = fral® = /T LA(©)F [V1,,q = Vrgl* d§ > ce® 2 R (2.25)

This implies inequality (2.5) as the function |7,ZL1’q - JL,q\ is uniformly bounded by ¢e**! with a
small constant, say ¢ < c¢/2, outside the set Ty = Tz, (x ) 12()e)q(e)) given in (2.6), and Lemma
2.1 follows. The proof will be given in Section 4.

Finally, the proof the crucial estimate (2.22) will be based on an estimate of the Fourier transform
of the function St at points X = (§1,...,&) which are away from rational points with small de-
nominator. Such estimates are well-known in analytic number theory, and can be viewed as discrete
analogues of stationary phase estimates on the Fourier transforms of surface carried measures. It
is summarized in the following lemma.

Using the matrix notation, let M = (mq,...,my) € Z"* and X = (&1,...,&) € T  be n x k
matrices with column vectors m; € Z" and & € T" (T = R/Z), the Fourier transform of the
function Sy given in (2.11) is defined by the exponential sum

Sr(x)= Y Sp(M) 721 (2.26)
Meznxk

where tr (M'X) = my - €+ ... + my - & stands for the trace of the product matrix M!X. Let
P/q = (pij/q) denote the dilate of a matrix P = (p;;) by the factor of 1/g. The one has

Lemma 2.2. Letn > 2k+ 2,7 >0, and qo > 1 be a positive integer. Let T be a positive definite
integral k X k matriz. Then one has

n—k—1
2

Sr(0) < C det(T) (2.27)

If X = (&,...,&) € Tk such that for all P € Z™* and q < qo

X —P/q| >

Then one has

n—2k—2

8r(x) < C [det(Tf"S‘l (<T2u<T>>—4 . ) 4 |T;(""“é”“‘”] (2.28)
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We remark that if the parameters 7 and qq is chosen such that 7 > C(e)A""/2, ¢ > C(e) and if
is large enough with respect to |T'|, then estimate (2.28) implies that

n—k—1

1S\7(X)] < c(e) det(AT)* 2

for a given small quantity c(e) > 0, as long as C(e) is chosen large enough with respect to c(e).

The proof of Lemma 2.2 is independent of the rest of the paper and will be given in Section 5. It
is uses a form of the circle-method developed by Siegel [S] and later by Kitaoke [K]| adapted to our
settings.

3. LOWER BOUNDS.

From now on we fix k € Ny n € N, e >0and R > 1 and a set A C B NZ" such that |A| > eR".
For simplicity we will adopt the notations f < g (or g 2 f), if f(x) < Cg(x) for all x for some
constant C' = C'(n, k) > 0 depending only on n and k, and write f ~ g if both f < g and g < f.

For given parameters ¢ € N and ¢ < L < R such that R/L € N, we partition the cube Bp into
R™/L™ cubes By, of size L, and them further into congruence classes of the modulus ¢, i.e. into
sets of the form

BL(q, s)=BrN(s+ (qZ)") (31)

where s € (Z/qZ)™ is running through the congruence classes of g. With a slight abuse of notation,
for given m € Br we will denote by Br (g, m) the unique set Br(q, s) containing m.

For given o > 0, we say that the set A is a-uniformly distributed w.r.t. ¢ and L if for each element
Br.(q, s) of the partition

_ ’A N BL(qa 5)|

S(ABL(g,5)) = g 5 < (14 ) (3.2)

Here we used the notation §(A|B) = |AN B|/|B| for the relative density of the set A on the set B.
It is immediate from (3.2) that §(A|Br) < (1 + «)e for every cube By, and that §(A4) = §(A|Bg) <
(1+ a)e. It is also easy to see that 0(A|Br) > (1 — 2a)e holds for many cubes By, such cubes By,
will be called dense. Indeed

L L
e <o(4) =4 > 6(AIByL) < T > I+ a)e+(1-20)e (3.3)
By, Bp, dense

It follows thats there are at least 22~ £~ dense cubes. We define the function hy, , : BRNZ™ — 0,1
(I1+a) L q
by

hiq(m) = 0(A[Br(g, m)) (3.4)
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Note that hr, 4 is constant and is equal to the average of the function 14 on each set By, (g, m), thus
it is the so-called conditional expectation function of 14 with respect to the above partition.

Proposition 3.1. Let ¢ € N, L > 0 be given, and assume that the set A satisfies condition (3.2)

with o = 1/10(k + 1). If ¢ < L, with 8 = ag/4n, then for any my,...,my € Z™ such that
|m;| < BL for each 1 < i <k, then one has

Z 14(m) hL,q(m +mq) hL,q(m +ma)... hL,q(m +myg) > ¢k gkt Rn (3.5)
mezn

Proof. Let By, be a dense cube and define the set G = {m € By : hr 4(m) > ae}. Arguing similarly
as in (3.3)

(1—2a)e <O(A|BL) <L) (1+a)e+oe (3.6)
meG

it follows that |G| > (1 — 4a)L™.

Let B/ denote the cube obtained by dilating By, from its center with a factor of 1 — 3. Then
L' =(1-p)L and |B\By/| < 2nBL". For m € G one has

" 1
S(AIBL 0 Br(g,m) > 14N Br(g,m)| - 2 1Bi\Bul| > as — 208> % (3.7)

For m € Br/, m+m; € By, for each 1 < i < as |m;| < BL, and the functions m — hy, o(m + m;)
are constant on the set By, N Br(q, m). Thus

> 1a(m) hpg(m +ma) hpg(m+mg) .. hyg(m+mg) = (3.8)
meB,

= Y 8(ABy N Br(q,m)) hrg(m+my) hpg(m+ma)... hrg(m+my)
meBy,

Ifme BbnNnGN(G—-—mi)N...N(G— my) then m € G and m +m; € G for each i < k

hence by (3.7) and the definition of G the expression in (3.8) is further estimated from below by:
%]BL/OGQ(G—ml)ﬂ...ﬁ(G—mk)\. Let G/:BLIQG, then

|G'| > |G| — |BL\Br/| > (1 —4a —2nB)L" > (1 — 5a)L™  and
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’BL/ﬂGﬂ(G ml) (G mk)|>\G’ ( ml)ﬂ...ﬂ(G’—mk)\ >

n

L
> (1=5a(k+1)L" > =

Thus, for a dense cube By, the expression in (3.8) is bounded below by ¢ ekt L7 and since there

are at least (ffa) 1];2” dense cubes, (3.5) follows. ]

Next, we show that the functions fr, , = 14 * ¢, 4 defined in (2.18) majorize the functions Ay, 4.

Proposition 3.2. There exist a constant c, > 0 such that all m € Z"

frq(m) > cnhp q(m) (3.9)

Proof. By definition

frg(m)=q"L™" Y 1a(m—ql) (/L) > caq"L™" > la(lm—ql) >
lezn lezZn, |ql|<+v/nL

> cng"L7" Y La(m) > enhig(m)

m/€Br,(q,m)

The second inequality follows from the fact that the diameter of the set Bp(g,m) is at most

VL. O

Let A € N, A € R" be an integral k—dimensional simplex, and let T' = T be its inner product
matrix. We proceed to estimate the expression Nxr(14, fr g, -, f1,4) defined in (2.12), from below
under certain conditions on the parameters ¢, L, R, A. To do so one needs a lower bound for the
number of integral solutions my,...,my € Z™ of the system of equations (1.2). This was done in
[K], indeed, for A = I,, (the n X n identity matrix), B = AT, Theorems A-C in [K] implies for
n > 2k+2 and A > A(n, k), that

n—k—1

> Sarlma,...,mp) = o det(AT) (3.10)

mi,...,mEL™

for some positive constant ¢y depending only on n and k. Note that the left side of (3.10) is the
number of solutions myq, ..., my of (1.2). Now it is easy to show
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Lemma 3.1. Let k > 2, n > 2k+2,¢e >0, R> 0 and let A C BRNZ" be a set such that
|A| > eR™. Let A € N and let A CR"™ be an integral k—simplex with inner product matric T = Th.
Let g € N, L > 0 be parameters satisfying

q<pBL, AT|<BL, with = m (3.11)

If A is a— uniformly distributed w.r.t ¢ and L with o = m and if fr q4(m) is defined as in
(2.18), then

n—k—1

Nxr(La, fLgs -+ fLg) 2 det(NT) 2 "1 RP (3.12)

Proof. If Sxr(myq,...,my) # 0 then |m;|? = My (V1 < i < k), hence |m;| < BL. Tt follows from
(3.5) and (3.9) that

> 1a(m) frglm+m) fro(m+ma)... frglm+my) 2 1R
mezZ"

Summing the above bound for all such my, ..., my, the Lemma follows from inequality (3.12). O

Let us point out that the right side of (3.12) is the expected value of Nyp(14,...,14) if A C BRNZ™
is a random set of density e, obtained by choosing each point of Br N Z™ independently with
probability . Indeed, for given m € Br NZ™ and a solution my, ..., my of the system of equations
(1.2), the probability that all points m,my,...,my are in the set A is e+,

4. ERROR ESTIMATES.

In this section we estimate quantities of the following form

Exr(f; fi, f2) = Nar(f, fi, -, f1) = Noao(f, fas - f2) (4.1)

where the functions f, fi, fo : Z™ — [—1, 1] are of finite support or rapidly decreasing. Note that

k
Exr(f; fi, fo) = ZEE\T(ﬁfl,fz) where

=1
Eir(fi fio fo) = Nar(fy frse ooy o fore oy f2) = Now(Fy fro oo foo f2r ooy f2) (4.2)

Here, the second term in (4.2) is obtained from the first term by replacing the function f; with the
function fo at the i—th place.
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For fixed 1 < i < k, let T; denote the (k—1) x (k—1) matrix obtained from the matrix 7" by deleting
the ¢—th row and column. Note that T; = T, where /\; is the k—1-dimensional face of the simplex
A ={0,v1,...,vx} which does not contain the i—th vertex v;. For given m = (my,...,my) € Z"
let us introduce the notation m’ = (mq,...,m;_1,Mit1,...,My) € Z"%=1) and define the function
Syrmi : Z" — {0,1} by

SxTmi(Mi) = { 0 otherwise
Then, clearly
Sxr(m) = Sxg, (M) Syg mi (m;) (4.3)

where the function Syz, is defined in (2.11). The estimate below follows easily from formula (4.3).

Proposition 4.1. Let k > 2, n > 2k + 2 and let f, f1, fo : Z" — [—1,1] be given functions. Then
one has

|Ext(f; f1, f2)| S det(AT')

n—k—1

1 £1l2 [1f1 = fall2 (4.4)

Proof. For fixed 1 <1i <k, using Syr(m) = S)yr(—m), one may write

Nar(fo, fro - 1) = DD 0D S (mf) f(m) T fi(m —my) fi(m — mi) Sygmi (ma)

m: m m; VB

=373 Sagy(m) f(m) gi(m, m) (f; % Syg ) (m)

m: m

Thus

[ESr (3 fu )l <) Saa (m) [f(m)] [(f1 = fo) * Sxpme) (m)] (4.5)

mém

< [|fll2 ZS)\T YN(f1 = f2) * Sxpmill2

< [Ifll2 lfr = fall2 ZSAT 1Sz mill

where the second line follows from Cauchy-Schwarz and the third line from Minkowski’s integral
inequality. Finally, by inequality (2.27)

n—k—1

ZS/\T NSz mill = ZS,\T < det(AT)
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and (4.4) follows. O

Next, we give a different estimate on the quantity Exp(f; f1, f2)-

Proposition 4.2. Let k > 2, n > 2k + 2 and let f, f1, fa : Z" — [—1,1] be given functions. Then
for fired 1 < i < k, one has

1
2

Bir(fi fu )l S det(NT3) T |1 ( - 3 S o) B >\2d§)

(4.6)

Proof. Using the matrix formulation, the support of the function Syr, consists of those integral
matrices M € Z"*(*=1) which satisfy the equation M* - M = \Tj, hence by (2.27) the size of its

support is bounded by C det()\Ti)%k

Starting with the second line of (4.5) and using Cauchy-Schwarz inequality, one obtains

1

\B5r(f: fr, )l S W fll2 det(AT) T (Z Sz, (m') [[(f1 — f2) * SAT,WH%)

Inequality (4.6) follows by applying Plancherel’s formula to the above expression in parenthesis,
and by interchanging the summation and integration. O

Expanding the sum in formula (4.6), one obtains

Z Z S, (M) Sy i (1) S gy (1) €27 M41°8) (4.7)

méezn(k=1) m;,my 1 EL™

If one defines Gi’T(m,mkH) = S\r, (M") Sy 1i (1) Sy i (Mpg1) Zr++D 5 £0,1}, where m =
(mi,...,my) € Z", then the expression in (3.7) is equal to é\iA,T(O,...,O,f,O,...,O, —£) =
E}\i,\’T(X) with X = (0,...,0,£,0,...,0,—€) € R™*+1) where the entries £ and —¢ appear the the
i-th and k + 1-th place. Note that Gf\’T(ml, ...,mpy1) = 1 if and only the vectors my, ..., mgi1
satisfy the system of equations

mjg-mp = )\tjla Mp1 =M =My - My = )\til (l 75 i), M1 - Mk1 = My -y = )\tii (48)
< j < k. If one writes \t = my1 - m;, and defines the symmetric (k 4+ 1) x (k + 1)
= (

7;1) with entries (1 <1< j <k)

Tig = tjt, The1g = tie (0 # 1), The1 k1 = iy Thp1i =1 (4.9)
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then it is clear that

G)\T m mk+1 ZS)\Tz m7mk+1) (410)

Note that the summation in (4.10) is finite as the function S ATi(+) 1S constant 0 unless there exists

an M € 77*(*+1 such that M*M = XT'(t), in which case we will call the number ¢ admissible.
Thus if ¢ is admissible then, in particular, 2 < t?i and At € Z. To summarize, we have for 1 <i¢ < k
and £ € R"

Y Sam) SyrmiOF = Y S () (4.11)

miezn(k—1) t admissible

with X' = (07'-'a07£>o,'--70a_§)'

We need to collect some geometric facts about the matrices T%(t), to estimate the right side of
(4.11).

Proposition 4.3. Let T > 0 be a fized integral k X k matriz and let 1 < i < k. Then
(i) The number of admissible values of t is bounded by: 2 det(\T')/det(AT;) + 1

(i) For each M = (my, ..., my) such that M*M = XT, there are at most 2 vectors myy1 € Z" such
that det(T*(t)) = 0, where the vectors my,...,mgy1 and the matriz T*(t) satisfy (3.8) and (3.9).

(i3) Let t be admissible, and let M = (my, ..., my, myy1) be such that MM = NT%(t). Let d denote

the distance of the vector my11 to the subspace Span{mi,...,my}, that is to the subspace spanned
by the vectors my,...,mg. Then
: d*u(T)
AT (1)) > 4.12
HOT(0) 2 S (412)

Here (T is defined in (1.5) and |T| = (3, - t2)'/2.

%,J 1]

(i4) Let 0 < § < e(T)~*/64, where e(T) is defined in (1.5). Then

{t admissible : p(T(t)) < |T| 5} < 62 det(AT)/ det(AT") (4.13)

(i5) Let t be admissible, then one has

det(A\T(t)) < det(A\T)?/ det(\T;) (4.14)
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Proof. Let t be admissible, and let M = (my, ..., my, my11) be such that MM = AT (t). If P de-

notes the orthogonal projection to the subspace spanned by the vectors my, ..., m;j—1, M1, ..., Mg
then by (4.8) Pm; = Pmy11. Denote this vector by u, and write m; = v + w, myy1 = v+ w'. If
one considers the vectors myq, ..., my as elements of the k-dimensional subspace Span{m,..., my}
then the quantity |det(mq, ..., my)| is well-defined and is equal to the volume of the parallelepiped
spanned by these vectors. Moreover it is easy to see that det(AT) = |det(my,...,ms)[?, and also
that |w'| = |w| = |det(mi,...,mg)|/|det(m1,...,mi—1,Mit1,...,mg)|. Since A\t = mp4q - my =
|u|? + w - w' it follows that

M — |u?| < |w|* = det(AT)/ det(\T"?) (4.15)

and (i) is proved.

If det(T%(t)) = 0 then my 1 is linearly dependent of the vectors my, ..., my, thus w' is also linearly
dependent of the vectors my,...,m;—1,mit1,...,m; and w, hence w’' = +w. It follows my 1 =
u 4w and (ii) is proved.
Let = (z1,..., 28, 2pyp1) € R¥ 2| = 1 such that

pAT (1)) = MNTH(t)z - 2 = |mixy + ... + Mpp12pg1]?
It is clear that p(AT(t)) > d?|zpy1]?, thus if |2p1|?> > w(T)/4|T| then inequality(4.12) holds.
Otherwise |zx11]? < u(T)/4|T| and one estimates

1(AT)

oo =

pAT (1) > (Imazy + ... + myag| — [mygga|[zega])? >

as |mg1l> = |mi? = My < M| and 23 + ... + 27 > 3/4. Also d* < |my41/* < |AT| thus
d>u(T)/8|T| < u(AT)/8 and (4.12) follows.

Writing v = myyy + ... + Mi—1%i—1 + Mit1Yitr1 + - . . MYk, it follows
wl? = lu—mil* > 1+ 7 +... +yR)p(AT) > |AT|e(T)™

If v denotes the orthogonal projection of the vector myy; to the subspace spanned by the vectors

mi,..., Mg, the it is easy to see that v = u —I—w“‘J'T“‘J,. Thus

a2
(w-w) +d* =|w|* substituting M — |ul* = w - w’

|w]?
wl? > (X = [ul] > [wl? (1 - d?/Jw]?)?

If p(THt)) < |T|§ then by (4.12) and the assumption on &

d2
= < @%e(T)|AT|™! < 85e(T)? < 62

|w]?

Since § < 1, it follows that |w|? > [At — |u|?| > |w|?(1 — §'/?) and this implies (4.13)

Finally, arguing as in (4.15) one has
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det(A\T"(t))/ det(\T) = d* < |w|* = det(\T)/ det(\T})
and (3.14) follows. O

Using Lemma 2.1, in dimensions n and k+ 1 it is now not hard to estimate the right side of (4.11).
We remark that it is here where the stronger condition n > 2k + 4 is needed.

Proposition 4.4. Let k > 2, n > 2k +4, and let T € ZF** be a positive matriz. Let qo € N and
0 <6 <e(T)"*/64 be given parameters. Then for 1 <i <k

A det(\T) k1 nek (n—k)(k—1)

ZS)\Ti(mZ) 1S\rmi (O S % <1+/\ ze(T) 2 ) (4.16)
mi det(\T;) =

holds uniformly for £ € R™.

If |€—1/q] =6 N2 |T|7Y2 for all | € Z" and q < qo, then one has

det(AT)"—F—1

> Syp, (m') Sxrmi () S

det(\T}) "z
(4.17)
Proof. Let us first estimate the sum in (4.7) over those k + 1 tuples (mq, ..., mg, mg41) for which
my41 is linearly dependent on the vectors my, ..., my. By Proposition 4.3 (i), there are at most 2

possible choices for the vector my1. Thus one estimates the contribution of such k£ + 1 tuples to
the sum in (4.7) by

nopt o detAT)"F o (n=k) (k1)

25,7(0) < det(AT) T AT e(T)

(4.18)

n—k
2

The first inequality in (4.17) follows from (2.27), while the second follows from the facts that
det(A\T;) < |AT;|*=1 < |IAT|*=1 and |AT|F = u(\T)*e(T)F < det(AT)e(T)F.

Summing over the k+1-tuples (my, ..., mg, mg11) in formula (4.7) which are linearly independent, is
equal to the sum on the right side of (4.11) over those admissible values of ¢ for which det(7%(t)) > 0,
and one may apply Lemma 1 to the matrix AT%(t), for each such value of t. Thus by (2.27) and
(4.14), one has uniformly in £ € R"

n—k—2 n—k—2

[Sariry(€)] S det(NTH ()2 < det(AT)" * 2 det(AT}) ™" (4.19)
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By Proposition 5.3 (i), the number of admissible values ¢ (for which det(T%(t)) # 0) is bounded by
2det(AT)/ det(AT;) and (4.16) follows from (4.11) and (4.18).

Let us assume now that [ —1/q| > 6~ A=V2|T|71/2 for all | € Z" and 1 < ¢ < ¢, and hence
|X — P/q| > 6 ']A"1/2 for all P € 2"+ and ¢ < g9 (where X = (0,...,0,£,0,...,0,=¢) as
before). Then one may use inequality (3.28) in Lemma 1 with 7 = 6~ *"A71/2|T|=1/2 > 0 to estimate
the left side of (4.17):

Barin (V)] S detOTHE) 52 g0 2 4 deb(WT (1) "5 (5 2|T| (T (1))~ "
(4.20)

(n—k—1)k

+ NTH)]) ™ 2 = Si(t) + Soft) + S3(t)

Summing the fist terms in (4.20) over admissible values of ¢ is estimated exactly as in (4.16) and
one gets

ZSI < det(AT)" K1 det(NT) T ;2

If ¢ is such that p(T%(t)) > 6|T| then (6 2|T| *p(T(t)))~("—2k=D/4 < §1/% asn — 2k —4 > 1
and summing over such #’s gives the second term of the right side of (4.17). By Proposition 4.3,
the number of admissible t’s such that u(7%(t)) < 6 |T| is bounded by 26'/2 det(T)/det(T;) and
one get a gain by a factor of §'/2 over the estimate in (4.16), thus

ZS2(t) = Z Sg(t) + Z Sz(t) S 5% det(/\T)n—k—l det()\Ti)_nT_k

t (T (1) 26 |7 (T (1)) <5 |7

Finally, using the facts [AT%(t)| < |AT| < det(AT)/* e(T) and det(AT}) < det(AT)*—1/k (T)k—1
a straightforward calculation shows, that summing the third terms on the right side of inequality
(4.20), one gets

(n—k—1)k k Dk det()\T)nfkfl  n—2k—2

> S3(t) S det(AT) det(ATy) ™! AT ATz e(T)R Dk

: : det(AT}) T

This proves the proposition.

O

We will apply inequalities (4.6), (4.16) and (4.17) to functions of the form f; = fr,, (i = 1,2)
defined in (2.18), for specific choice of L; > 0. Recall that we defined fr, = 14 * 91 4 Where,
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considering as distribution on R",

Yrg = q”5(qz)n vy,  where ¢p(x) =L "¢Y(xz/L)

and §4z)» denotes the discrete (counting) measure supported on the lattice (¢Z)".

summation, if ¢ € C>°(T") then

<Z5\(qZ)"7¢> = < qZ)”7¢ Z¢ l/q

lezn
Thus
Vrq6) = " (g(qZ)" * 7ZL> = > W(LE-1/q))

lezm

By Poisson

(4.21)

We can now state the main result of this section, given a set A C B NZ" such that |A| > ¢R", an

integral k-dimensional simplex A C R™ with T = T, and a positive integer .

Lemma 4.1. Let k > 2, n > 2k +4, and let ¢ > 0 be a positive constant. Let C > 0 and define

_ 4(k+1)

Li=Cte(T) O D 23 T2, g(e) = Lean. {g < Ce -1}

If C = C(n,k,e) is large enough and if

4k(n—k—1)

A > Cqle)?e 8D ()

then one has

|Ext(14514, fr, )| < €T R™ det(AT)"F1

Proof. Let 1 <i < k be fixed. Applying inequality (4.6) for f = fi = 14, f2 = fL, 4(),

i (n—k) —~
|E5r(La;1a, fry )] < Cl1all3 det(AT;) 3 (Sup 11—, )€ ZSAT ‘S)\Tml(g)|2>

€eTn

Since ||14]]3 = |A| < R", it is enough to show that

o~ —k
sup |1 = 9p, a00) Zwv\%ww%SQW%wmz det(\T) "%

£eTn

(4.22)

(4.23)

(4.24)

one has

1
2
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for some constant ¢; = c¢j(n,k,¢) > 0 small enough. By our assumptions, L; > ¢(¢), hence the
supports of the functions (L1 (§ —1/q(e))) are disjoint for different values of [ € Z". Thus if there
is an Iy such that: [€ —lp/q(e)| < Cy 1P LT where C) is large enough w.r.t. c1, then

1= " G~ 1a(@)] = 11 = L1 (€ —lo/a(e)))] < 1 eFH!

lezm

using the fact that |1 — 12(77)| < gl for n € R™, and (4.24) follows from (4.16) and the assumption
(4.23).

_ 4(k+D)
In the opposite case, for all [ € Z" and 1 < ¢ < Ce™ »-2+=1, one has by (4.22)

€ =1/l = ¢ = I'/q(e)| > CTHEMLTY > (C/Ch) e(T) 3+ A=3 | 7|2 (4.26)

Thus one can apply inequality (4.17) with parameters
_ 4(k+1)

0= (Cl/é) e(T)74€78(k+1) go = C e n—2k-1
2k(n—k—1) _ 4(k+1)

using the fact that A > Ce(T) n-2--2 ¢ n-2k-2 inequality (4.24) follows, if the constant C' =

C(n,k,¢) is chosen large enough.

O

Proof of Lemma 2.1.

We will proceed as in Section 2. Assume that for a given A € N, the simplex v/ AA cannot be
embedded in A, that is

Nar(1a,1a,...,14) =0 (4.27)

The choosing L = C(\|T|)*/? such that R/L € Z and ¢ = ¢(¢) defined in (2.1), Lemma 3.1 implies
that

n—k—1

Nar(La, frgs -+ frg) > co det(\T) 2 ¥F1R" (4.28)

Assuming that the parameters R, and A satisfy R > La(\,e) > L1(A,e) > q(e), where

Li(Ae) = Cle(T) 4 FH T2, Ly(he) = Ce*FD) (AT)Y/2 (4.29)

we have that both (4.22) and (4.23) is satisfied. Thus by Lemma 4.1 and (4.27)

n—

C k—1
NAT(lA,thq,...,le,q)gEDdet(AT) 2 MHIRe (4.30)
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where we wrote L; = L1\, ¢ and ¢ = ¢(e) for simplicity of notations. Using Proposition 4.1 with
[ =14, fi = fr,,q and fo = fq it follows

1Fora — fral? = /T A [Brrg — Drgl?de > e 272 R? (4.31)

for some constant 0 < ¢; < 1. Note that JLM — @ZL,q is supported on (%Z)" + [, 5"

20417 211
Moreover, if £ = é +n with n € [—ﬁ, 2%2]” for a given Ly > Cy e~ *+t1 L then

[$11,4(€) = Pra(©)] = [H(Lin) = $(Ln)| < CL/Ly < T M

as long as C > cl_l. Thus integrating over the complement of the set T = T(r,(xc),L2(\e).q(e))

A -~ ~ cl n
/T o 114 [9r1q = Yrgl*dE < T e R (4.32)
n e

Estimates (4.31)-(4.32) imply estimate (2.5) and Lemma 2.1 is proved.

5. ESTIMATES ON THE FOURIER TRANSFORM OF St.

In this section we prove Lemma 2.2 using the theory of theta functions. All arguments given here
are independent of the rest of the paper, based on the approach in [K] (or in [R]) of estimating
Fourier coefficients of Siegel modular forms vanishing at cusps. The basic difference is that the
above mentioned works dealt with the case X = 0 while we need to consider those values of X
which are "away” from rational points P/q (P € Z***) with small denominator q. The related
theta functions are not modular forms, but behave very similarly, at such points X, and hence
most arguments of [K] can be adopted to our situation. We start by recalling some of the basic
definitions and notions.

Let Hy, = {Z = X +iY : Z! = Z, Y > 0} denote the Siegel upper half-plane of genus k. Following
the definition (1.3.2) in [A], let 6, : Hj x R¥ x R¥ — C be the theta function defined by

0,(Z,&,m) = Z o™i (Z(m—n)-(m=—n)+2m-£— &) (5.1)

mezk

Note that the above sum converges uniformly on the domain {Z : Im Z > eE}}, for every € > 0.
Here Ej is the k& x k identity matrix, and by the notation A > B we mean that A — B > 0, that
is a positive k x k matrix. Next, we define the theta functions 0, ; : Hj X R™*k x R™*k _, C.
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Let X = (&1,...,&,), € = (N1, ...,mn) be n X k matrices with the i-th row being & (resp. n;) for
1 <7 < n. Define

Oni(Z,X,€) =[] 06(Z. & m) (5.2)

i=1
Using (5.1) , and the fact that tr(AB) = tr(BA) for A, B € R™*, one may also write
0, k(Za X,g) _ Z em'tr((MfS)Z(MfS)t+ 2Mtx— StX) (53)
Meznxk

These theta functions will play a crucial role. Indeed, one has

Proposition 5.1. Let T > 0 be an integral k x k matriz, and let X € R"*F. Then

Sr(X)] < /[02]‘“““*” Bk (X + 7Y, —,0)| dX (5.4)

where dX = [];<;<;j<p, dzij.

Proof. For simplicity of notation, let I, = [0, 2] k(k;l). If M € Z"% then

k(k+1)

/ emtr((MtM—T)X)dX:{ 272 Jif MEM =T
Iy,

0 , otherwise

If MM =T then tr(M'MT~1) = tr(MT~1M?") = n, thus

Me7znxk Iy

ZQ—WGM/ o~ mitr(TX) Z it ( M(X+T )M —2M'X) g5
Iy,

Meznxk

Note that the inner sum is: 6, (X + iT~!,—X,0), which converges uniformly for X € I, and
hence the last equality is justified. Taking absolute values in the integral the proposition follows.

O
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We will use the approach of [K], in estimating the integral in formula (5.1), by partitioning the
range of integration [, and estimating the theta function separately on each part by exploiting
its transformation properties. Note that in one dimension, when k£ = 1, this leads to the so-called
Farey arcs decomposition. Let

Iy = {7 = < é g ) . AB!' = BA!, CD! = DC', AD' — BC' = Ek} (5.5)
denote the integral symplectic group. The group I'y acts on Hj as a group of analytic automor-
phisms, the action being defined by: v(Z) = (AZ + B)(CZ + D)~! for v € Ty, Z € Hj,. Let us
recall also the subgroup of integral modular substitutions:

Thoo = {7 = ( 61 g ) . AB' = BA!, AD! = Ek} (5.6)

It is immediate that writing U = A" and S = AB!, that D = U~ and B = SU~!, moreover S
is symmetric, and U € GL(k,Z), that is: det(U) = £1. The action of such v € I';, o on Z € Hy,
takes the form:

WZ) =U'AU + S (5.7)

we will adopt also the notation Z[U] = U'ZU. The general linear group GL(k,Z) acts on the
space Py of positive k x k matrices, via the action: Y — Y[U], Y € Py, and let Ry denote the
corresponding so-called Minkowksi domain, see [KL, Definition 1, p12]. A matrix ¥ = (y;;) € R
is called reduced. We recall that for a reduced matrix ¥

Y~Yp, yn<wye<..<uygw (5.8)

where Yp = diag(y11, - - ., ykk) denotes the diagonal part of Y, and A ~ B means that A—cpB > 0,
B — ¢ A > 0 for some constant ¢, > 0. For a proof of these facts, see [KL,Lemma 2, p.20]. A
fundamental domain Dy, for the action of 'y, on Hy, called the Siegel domain, consists of all matrices
Z =X +1iY, (X = (x;5)), satisfying

Y e Ry, |oyl<1/2. |det(CZ+D)| =1, V’y-(é g>el“k (5.9)

The second rows of the matrices v € I'y are parameterized by the so-called coprime symmetric
pairs of integral matrices (C, D), which means that C'D! is symmetric and the matrices GC and
GD with a matrix G of order k are both integral only if G is integral, see [A, Lemma 2.1.17]. Tt
is clear from definition (5.6) that if y9 = 771 with second rows (C2, D2) and (C, D;) for some
v € Tk oo, then (Co, Do) = (UCy,UDy) for some U € GL(k,Z). On the other hand, if both ~;

and 72 have the same second row (C, D) then 727y, e I'k00- This gives the parametrization of
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the group I'y oo\I'x by equivalence classes of coprime symmetric pairs (C, D) via the equivalence
relation (Cq, D2) ~ (Cy, D) if (Ca, D2) = (UCy,UDs) for some U € GL(k,Z), see also [A, p.54].
We will use the notation [y] = [C, D] € T'y, oo \I'-

It is clear that if one defines the domain: Fj, = User, YDk, then Hy = UMeFk ATk Yy lFL s a
non-overlapping cover of the Siegel upper half-plane. Correspondingly, for a given matrix 7' > 0 of
order k, define the Farey arc dissection of level T', as the cover

L= |J Ihl, I ={Xel: X+iT™" ey 'F} (5.10)
(Y€K, 00\

We will need the following transformation property of the functions |0, x(Z, X, E)| with respect
to v € T'g, which is immediate from Proposition 1.3.2 and Theorem 1.3.6 in [A], see formulas

(1.3.7)-(1.3.10) there. Let &, € R¥, Z € Hy, and v = ( A B ) € I'y.. Then one has

C D
_1
10k(2,&,m)| = [det (CZ + D)[2 |0k((Z), AS — By — ky/2, C§ = D — 0, /2))| (5.11)
for some vectors k,,n, € Z* depending only on the matrix 7. If X = (&1,...,&,) is areal n x k

matrix with the i-th row being &;, for 1 <1 < n, then by (5.2)

Wn,k(Z,?CO)\ = ’det (CZ+D)‘_% |9n,k(7<Z>7 XAt - K’Y/Qa Xct - N’Y/2)‘ (5'12)

for some matrices K., N, € 7Z"** depending only on the matrix v. Let us recall the following
quantity associated to a positive matrix Y € RF**¥,

min(Y) = e%in7é0 Yo o (5.13)

It is clear that u(Y) < min(Y), and it follows from (5.8) that u(Y) =~ min(Y) if Y is reduced.

Proposition 5.2. Let X € R™* T ¢ Z¥**¥ such that T > 0, and 7 > 0 be given. If (C,D) is a
coprime symmetric pair, then for Z € Ip[C, D] one has

10,1(Z,X,0)| < |det (CZ + D)| "2 (5.14)

Let q=det(C), [y] =[C,D] and Y = Imy{(Z). If q# 0, and for every P € Z"**
X — P/2g| > 7 (5.15)
then one has

10,5(Z,X,0)| < |det (CZ + D)3 (e—cminm n e—”WCtYC)) (5.16)
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for some constant ¢ > 0 depending only on the dimension k.

Proof. By formula (5.12) it is enough to show that

60 (1(Z), XA' — K, /2, XC' — N, /2)| £1 (5.17)

Since v(Z) € Fy, there is a U € GL(k,Z) and a symmetric S € ZF** such that v(Z) = U*Z,U + S
with Z; € Dy. Taking absolute values in (5.3) one obtains (using the notation A[B] = B'AB)

|9n,k(’7<Z>7 YAt — K’y/2a XOt — N,y/2)| < Z e—ﬂ”tT(Y[CXt_Mi_NfY/Q])
Meznxk
— Z efﬂtT(Y1[C1Xt7Mf7N1t/2]) (518)
Mleznxk

where M; = MU' runs through Zmk Cy =UC, Ny = N,YUlt and Y7, = ImZ; = U'YU. Since
Zy € Dy, Y1 > ¢, Ey, for some constant ¢ > 0. Let My € Z"** be such that

|XCt— My — Ni/2| = min |XCL— M — Ny /2|
Meznxk

and write My = My — My. Since Z; € Dy, one has that p(Y1) = min(Y1) 2 1 see [A,..], thus the
right side of (5.18) is further estimated by

e—c"XCf—M()—Nl/QlQ + Z e—c’min(Yﬂ\MgP 5 1 (519)
Ma£0
If ¢ = det(C) # 0 and one assumes (5.15), then det(C;) = +q # 0 and (Mo + N1/2)(CY)~! = P/2q
for some P € Z™*. Thus
tr(Y1[C1 X — M — N1/2]) = tr((CiV101) [XF — P /2q]) > 72 u(CiY1Cy)

Thus the expression in formula (5.18) is bounded by
e—CTQ,u(C{YlCl) _|_e—cmin(Y1)

for some constant ¢ > 0 depending only on k. Since ClY1Cy = C'YC and min(Yy) = min(Y),
the proposition is proved.

O
We will estimate below the sum of the integrals
Jrx[C, D] = / 0n.k(Z, X,0)| dX (5.20)
Ir[C,D]
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over all coprime symmetric pairs [C, D], using bounds (5.14) and (5.16). Most of the estimates
needed, were done in [K] in the proofs of Propositions 1.4.10 and 1.4.11, which we recall without
proofs, however we give detailed proofs of similar estimates not discussed in [K].

To be more precise, define the quantities

JYC, D] = / |det(CZ + D)|~2 dX (5.21)
Ir[C,D]
JE[C, D] = / |det(CZ + D)|72 e=c™(Y) gx (5.22)
Ir[C,D]
J3..[C, D] = / |det(CZ + D)| "2 =<7 MCYO) g x (5.23)
I7[C,D]

where Y = Im~(Z) and v € 'y, such that [y] = [C,D] € I'y oo\I'. The following estimates are
proved in [K], (see Proposition 1.4.10 together with Lemma 1.4.4. and estimate (39) there)

Proposition 5.3. Let T be a positive integral matriz, and let [C, D] be a coprime symmetric pair
such that det(C') # 0. Then one has the following estimates

N JC,D+CS] S det(T)* 5 | det(C)| (5.24)
5t=5
3" JHC,D+CS) S det(T)* = |det(C)|F min(T)=*F (5.25)

5t=5

where the summation is taken over all symmetric integral matrices S.

Using the same argument as in the proof of the above statements given in [K], one obtains

Proposition 5.4. Let T' be a positive integral matriz, let T > 0, and let [C,D] be a coprime
symmetric pair such that det(C) # 0. Then

n—k—1 n—2k

> JEC.D+CS] < det(T) 2 |det(C)| "2 (r2u(T))” = (5.26)
St=S8

where the summation is taken over all symmetric integral matrices S.

Proof. Using the fact that

Im~y(Z) = ((CZ+D)ImZ) Y (CZ+ D))~
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it follows for Z = X + ¢T~! that

Y[O] = (T[X +C~'D +iT~)"! = (T[X + C~'D] + T~ 1)~

Thus by (5.23)

> J7,[C,D+CS)
St=S

n

< N [ [det(0)]7F |det(X + CTID 4§ T Y[ 7F e rTXFCTIDESHTTN T gy
st=5" 1k

< |det(C) 3 / iy [deb(X T~ emert WX ) g (5.27)
R™ 2

Let T2 denote the positive square root of T, and let X; = X [T%] Then by a change of variables
dX = det(T)_%Xm, the expression in (5.27) takes the form

n—k—1

1
det(T) 25 | det(C)[ 3 /R sy det(X2 1 B~ emern((XE4E) ) (5.28)
2

Note that the above expression depends just on the conjugacy class of the symmetric matrix Xj.
Thus writing X1 = Vtdiag(ws,...,wg) V for some orthogonal matrix V' € O(k), with |wy| > ... >
|wg| being the eigenvalues of the matrix X7, it follows that

(T2 (X3 + B)7'T2) > (1+wd) ™ w(T) (5.29)

By the Weyl integral formula:

dX; = H lw; —wj| dwy ...dw,dV < H (1+w§)% dws . ..dwdV

1<i<j<k 1<i<k

Since n > 2k, using the above change of variables, one estimates the integral in (5.28) by

n—2k

/ (1+wd) 55 e n W™ gy < (72(T)) "5 (5.30)
Rk
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This proves the proposition.

O

The map [C, D] — C~!D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C, D] € I'y o \I'x and the space of symmetric rational matrices R of
order k, see Lemma 1.4.6 in [K]. Note that the pairs [C, D + CS] correspond to the matrices
R + S with symmetric S € ZF**. Thus using Proposition 9, one needs to estimate the sum
of Y gi_gJrx[C,D + CS| = Jr x[R] over the space of modulo 1 incongruent symmetric rational
matrices, which we will denote by Q(1)***, where Q(1) = Q/Z, Q being the set of rational numbers.

Let us introduce the notation: d(R) = |det(C)| for R = C~1D, and recall the following estimate,
proved in Lemma 1.4.9 in [K]; for v > 0 and s > 1 one has

Y AR Y AR S @ )

1<d(R)<u d(R)>u

(5.31)

where the summation is taken over [R] € Q(1)F**.

Proposition 5.5. Let T be a positive integral matriz, let 7 > 0 and qo € N. Let X € R™* such
that for all 1 < q¢ < qo and P € Z"**

X —P/ql = (5.32)
Then one has
n—k—1 2  n—2k—2 _ n—2k—2
> Jrx[R] < det(T) =2 ((F2u(T)™"%  +q, 2 (5.33)
ReQ(1)k*k, d(R)#0

Proof. By formulas (5.14) and (5.24), one has

n—k—1

Jrx[R] < det(T) = d(R)™> (5.34)

thus by (5.31) applied for s =n/2—k>1and u=1

n—k—1

> JrxlR] < det(T)" 2 (5.35)
d(R)#0

If X satisfies (5.32) then for 1 < d(R) < qo/2 one has by (5.16) and (5.25)-(5.26)

n—2%k n—2%k

(P2(T)) ™" + d(R) *min(T) "7 ) (5.36)

n—k—1
2

B

JrxlR) S det(T)* = (d(R)”
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Clearly |7| < 1, thus 72u(T) < min(T) so the right side of (5.35) is bounded by

n—k—1 n—2k

Jrx[R] < det(T) =2 d(R) ™ *(r2u(T))~ 3 (5.37)

By inequality (5.31) applied for s =n/2 — k, u = qo/2

n—2k _n—2k—2

n—k—1
2

Y JralRl S det(T) = (a0 (Fu(T)™"F +qp 7 )
(R0

which is bounded by the right side of formula (5.33).

O

Next, we estimate the sum Jr x[C, D] over the classes [C, D] of coprime symmetric pairs for which
det(C) = 0. We will use the estimate

Jrx[C,D] < JOC, D] = / | det(CZ + D)% dX (5.38)
Ir[C,D]

which follows from (5.14) and (5.20). First we show that one may assume T is reduced in our
estimates below.

Proposition 5.6. Let T € ZF** such that T > 0 and let Ty = T[V] for some V € GL(k,Z). Let
0 <r <k, and let rank(C) stand for the rank of the matriz C'. Then

>, Jnlepl= >, RCD) (5:39)
[C,D], rank(C)=r [C,D], rank(C)=r

Proof. Let U € GL(k,Z) such that U~! = V*. Then T~ = T, ' [U~!], and writing Z = X + T~
for Z € I7[C, D] a straightforward calculation shows that

| det(CZ + D)| = | det(0121 + D1)|

with Cy = C(UY)™!, Dy = DU, X; = X[U~!] and Z; = X; + iT;"". Notice that Z, = h(Z) with

_(@WHt oo e * % L . N
h = < o0 u )adifr=1_ o p)theny-h=ywithn =, p | Ttfollows
Y(Z) = y(Z1), hence X € I7[C, D] exactly when X; = I7, [C1, D] and one has

/ |det(CZ + D)3 dX — / | det(CZ) + D1)|% dX,
IT[C,D] Ir

1 [C1,D1]
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The map [C, D] — [Cy, D] = [C(UY)7L, DU] is one-one and onto from the classes of coprime
symmetric pairs [C, D] with rank(C) = r to itself, and the proposition is proved. O

Let T' > 0 be integral, and let 71 = T[U] be reduced, with U € GL(k,Z). We recall that T} ~
diag(ti, ..., tgk), where t;; (1 <i < k) denote the diagonal entries of the matrix 77, see (5.8). For
reduced matrices the estimate of the sum in (5.39) goes back to [S], and was done p.e. in Lemma
1.4.11 in [K], which we recall without proofs, see formulas (39) and (43)-(44) there.

Proposition 5.7. Let T} € ZF*F be reduced, and let 0 < r < k. Then

n—r—1
ST RICD S (g theriigeri) T E (5.40)
[C,D], rank(C)=r
where t;; (1 <i < k) denote the diagonal entries of the matriz T'.

It is easy to see that

e(Th) S e(T) (5.41)

Indeed

tin=Te -e1 =T(Uey) -Ues > pu(T) and

~

|z|=1 |z|=1

IT| > sup TA(U tz)- Utz 2 sup tpp (U t2)i > trg

as U~! is integral, where (U~ 'z); denotes the k-th entry of the vector U~ 'z.

Finally, one has r(n—r—1) < (k—1)(n—k) for 0 < r < k — 1, thus Proposition 5.7 and inequality
(5.41) implies

Corollary 5.1. Let T € Z"** such that T > 0. Then

(k=1)(n—k)

> ReD ST (5.42)
[C,D], det(C)=0

Note that a proof of this corollary is also given in [R], see formulas (25)-(26) there.

Lemma 2.2 follows immediately from Proposition 5.5 and Corollary 5.1, and this finishes to proof
of Theorem 1.3.
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