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Abstract. We establish that if d ≥ 2k + 6 and q is odd and sufficiently large with respect to α ∈ (0, 1),

then every set A ⊆ Fd
q of size |A| ≥ αqd will contain an isometric copy of every spherical (k + 2)-point

configuration that spans k dimensions.

1. Introduction

Geometric Ramsey theory has its origins in series of papers by Erdős et al. [6, 7, 8], where they studied
geometric configurations which cannot be destroyed by partitioning Euclidean space into finitely many
classes. The fundamental problem is to classify those finite sets X which are Ramsey, in the sense that for
every number of colors r ∈ N there is a dimension d = d(r,X) for which every r-coloring of Rd contains a
monochromatic, congruent copy of X.

The simplest example of a Ramsey set is a regular k-simplex; that is, k + 1 equidistant points. Indeed, for
any dimension d ≥ kr, any r-coloring of a regular d-simplex contains k + 1 points of the same color, forming
a monochromatic regular k-simplex. On the other hand, a simple construction using the geometry of the
Euclidean metric shows that any set of three collinear points is not Ramsey. In fact, Erdős et al. [6] showed
that every Ramsey set must be spherical ; that is, contained in some sphere. This has led to the conjecture by
Graham [13] that a finite set X is Ramsey if and only if it is spherical.

This conjecture is far from settled. Examples of sets known to be Ramsey include vertices of “bricks”
(k-dimensional rectangles) [6], non-degenerate simplices [9], trapezoids [18], regular polygons and regular
polyhedra [17]. Common to many of these results was the exploitation of additional symmetries of the
configuration. It was observed by Leader, Russell and Walters [20] that all known examples of Ramsey sets
are subtransitive in the sense that they can be embedded in a higher dimensional set on which the rotation
group acts transitively. They introduced a rival conjecture that a finite set X is Ramsey if and only if it is
subtransitive, and further showed [19] that almost all 4-point subsets of a circle are not subtransitive. This
was later extended by Eberhard [5] to show that almost all (k + 2)-point sets on the (k − 1)-sphere are not
subtransitive. It remains an open question whether or not such configurations are Ramsey.

The aim of this article is to show that an analogue of Graham’s conjecture holds in finite field geometries
for 4-point spherical configurations spanning two dimensions, and more generally for spherical (k + 2)-point
configurations spanning k dimensions. We in fact prove a stronger density version; namely that if d ≥ 2k + 6
and q is taken to be odd and sufficiently large with respect to α ∈ (0, 1), then every set A ⊆ Fdq of size

|A| ≥ αqd contains an isometric copy of every such configuration X. To be clear, here we say that two sets X
and X ′ are isometric if there is a bijection φ : X → X ′ such that |φ(x)− φ(x′)|2 = |x− x′|2 for all x ∈ X
and x′ ∈ X ′, where |x|2 = x · x is the usual dot product of the vector x ∈ Fdq with itself.

Our approach takes the point of view modern arithmetic combinatorics which has been very successful
in the study of linear patterns in subsets of Z of positive density [10, 11]. In fact, one of the main purpose
of this article is to extend these techniques to the setting of geometric Ramsey theory, where one counts
configurations determined by both linear as well as certain non-linear relations, i.e. isometries.

The setting of vector spaces over finite fields provides a useful model to study many problems in arithmetic
combinatorics; see especially the surveys [14, 25, 28]. In the context of geometric Ramsey theory over finite
fields, notable results have been obtained by a number of authors [3, 15, 16, 24]. However, those results
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concern patterns consisting of points in general position, with no linear relations between them, and hence
are fundamentally different.

Analogous results for simplices in Euclidean spaces and the integer lattice have been given in [2, 22], and it
reasonable to expect that our approach here may be successfully adapted to these settings. In the context of
geometric (density) Ramsey theory in Rd, some results using this approach were recently obtained in [4, 21].
We hope to address further adaptation in the near future.

1.1. Outline of paper. The main results of the paper are stated is Section 2 below, and some preliminaries
and reductions are presented in Sections 3 and 4.

A key observation of the paper, see Proposition 6 in Section 5.1, is that the count of isometric copies of a
fixed configuration X along bounded functions is controlled by a certain uniformity norm. This norm, which
we introduce in Section 5.1, measures the uniformity or randomness of a function along geometric rectangles,
and it should be compared with the so-called U2-uniformity norm of Gowers [10] which measures uniformity
along combinatorial rectangles. If a set A is sufficiently uniform with respect to this norm, then it quickly
follows from Proposition 6 that A contains many, in fact the statistically correct number of, isometric copies
of X. The proof of Proposition 6 is presented in Section 6.

In order to handle arbitrary sets A we prove an inverse theorem, see Theorem 10 in Section 7.1, to establish
that functions with large uniformity norm correlate with structured sets. Given such an inverse theorem
there are then various standard iterative procedures that one may hope to adapt to this setting to complete
the argument. We follow an energy increment route which leads a so-called arithmetic regularity lemma,
namely Proposition 7, that allows us to decompose the indicator function of A as 1A = f1 + f2 + f3, where f1

is highly structured, f2 has small L2 norm and f3 has small uniformity norm. The proof of Proposition 7 is
presented in Section 7.

In Sections 5.2 and 5.3 we demonstrate how Proposition 7 leads to a proof of our main results. This
consists of counting the isometric copies of X along the main term f1 and showing the contribution of the
functions f2 and f3 are negligible. The setback of this approach is that it leads to very weak bounds, in fact
the dependence of q on α is tower-exponential. It seems quite possible that one could instead proceed via a
density increment argument and obtain better, exponential type bounds, but we do not pursue this here.

We conclude the paper with an Appendix in which we discuss the necessity of the spherical condition in
the statement of our main result.

2. Main results

We will always work with a finite field Fq of odd characteristic. For vectors v, w ∈ Fdq , we define their dot

product v · w :=
∑d
j=1 vjwj as usual and we will work with the isotropic measurements of length |v|2 := v · v

and distance |v − w|2. For any u ∈ Fdq and λ ∈ Fq, we define the sphere Sλ(u) = {x ∈ Fdq : |x − u|2 = λ},
and we will simply write Sλ when u = 0. For k ∈ N, we will say that X ⊆ Fdq spans k dimensions when

dim(Span(X −X)) = k, and we will call X spherical provided exists a sphere Sλ(u) ⊆ Fdq with X ⊆ Sλ(u).
Note the (k+ 1)-point spherical configurations spanning k dimensions are exactly the k-simplices, which were
shown in [24] to appear as isometric copies in sufficiently dense subsets of Fdq provided d > k.

In Euclidean spaces it is easy to see that if the finite sets X and X ′ are isometric, then X ′ = z +U(X) for
some vector z and orthogonal transformation U ⊆ O(d), i.e. X ′ can be obtained from X by a rigid motion.
The same may not hold in finite field geometries due to the presence of self-orthogonal vectors x for which
|x|2 = 0. However, it follows from Witt’s extension theorem [27] that if the subspace V := Span(X −X) is
non-degenerate in the sense that V ∩ V ⊥ = {0}, then isometric copies of X are indeed obtained by rigid
motions. We use this fact in the appendix to construct dense subsets avoiding isometric copies of non-spherical
sets, establishing the necessity of restricting our attention to spherical configurations X.

The main result of this paper is the following.

Theorem 1. Let d, k ∈ N with d ≥ 2k + 6, α ∈ (0, 1), and q ≥ q(α, k). If A ⊆ Fdq with |A| ≥ αqd, then

A contains at least c(α, k)q(k+1)d−k(k+1)/2 isometric copies of every (k + 2)-point spherical configuration
spanning k dimensions.
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Here we write c(α, k) to stand in for some positive constant depending only on α and k, and q ≥ q(α, k)
to indicate q is taken sufficiently large with respect to α and k. We will use similar notation to indicate the
dependency of constants c, C > 0 that may change between occurrences. It is helpful to think of α and k as
fixed with q allowed to tend toward infinity, and implicit constants in our big-O notation may depend on k.

Note that if A would be a random subset of Fdq of density α then it would contain αk+2q(k+1)d−k(k+1)/2

isometric copies of a (k + 2)-point spherical configuration X up to an error. This is because there are
k(k + 1)/2 quadratic relations, given by the length of the edges, between the points of the configuration X
and each vertex is contained in A with probability α.

It immediately follows from Theorem 1 that for any fixed number of colors r, if we take q sufficiently
large with respect to r, then any r-coloring of F10

q contains monochromatic, isometric copies of all 4-point
spherical sets spanning 2 dimensions; this establishes a finite field version of Graham’s conjecture that all
cyclic quadrilaterals are Ramsey. In fact, we prove a stronger statement relative to spheres; see [12, 23] for
some so-called “sphere Ramsey” results in the Euclidean setting.

Theorem 2. Let d, k ∈ N with d ≥ 2k + 6, α ∈ (0, 1), and q ≥ q(α, k). If λ ∈ F∗q and A ⊆ Sλ with

|A| ≥ αqd−1, then A contains at least c(α, k)q(k+1)d−(k+1)(k+2)/2 isometric copies of every (k + 2)-point
spherical configuration spanning k dimensions.

A straightforward counting argument reveals that Theorem 2 quickly implies Theorem 1, this argument is
presented in Section 4 below.

We remark here that the relationship between d and k in both theorems could be improved if one were
only interested in “high rank” configurations; see the comments following Lemma 3. Our methods are further
able to prove a version of Theorem 2 when λ = 0 provided d > 2k + 6, but we do not pursue this since it
does not impact our proof of Theorem 1.

3. Preliminaries

Here we record notation and ingredients that we will require for the proof of Theorem 2. Given any
function f : Fdq → C and B ⊆ Fdq , we write

Ex∈Bf(x) :=
1

|B|
∑
x∈B

f(x)

for the average of f over B, and we will understand the average Exf(x) is taken over Fdq . We will condense
multiple averages Ey1Ey2 · · ·Eyk as Ey1,...,yk , and to indicate linear independence we will use the notation

E∗y1,...,yk :=
1

qkd

∑
y1,...,yk∈Fdq

linearly independent

Letting χ denote the canonical additive character of Fq, we define the Fourier transform f̂ : Fdq → C by

f̂(ξ) := Exf(x)χ(−ξ · x)

and we recall the Fourier inversion formula f(x) =
∑
ξ∈Fdq

f̂(ξ)χ(ξ · x). Given two functions f, g : Fdq → C,

we recall Plancherel’s identity

Exf(x)g(x) =
∑
ξ∈Fdq

f̂(ξ)ĝ(ξ)

and, defining the convolution f ∗ g(x) = Eyf(y)g(x− y), we also recall f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

We will write σλ = q1Sλ for a normalized indicator function of Sλ, where we have the asymptotic

(1) σ̂λ(ξ) =

{
1 +O(q−1/2) if ξ = 0

O(q−1/2) otherwise

valid for d ≥ 2 and λ ∈ F∗q ; see, for instance, [16, Lemma 2.2] exploiting Weil’s bounds on Kloosterman sums.
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To vectors y1, . . . , yj−1 ∈ Fdq and constants c1, . . . , cj ∈ Fq, we will associate the spherical measure

(2) σc1,...,cjy1,...,yj−1
(yj) =

{
qj if yi · yj = ci for all 1 ≤ i ≤ j
0 otherwise

.

This is essentially an L1-normalized indicator function for the intersection of the sphere Scj with j − 1
hyperplanes, so one should expect Fourier decay in appropriate directions. To import the corresponding
Fourier asymptotics, we set

δy1,...,yj−1
(ξ) :=

{
1 if ξ ∈ Span(y1, . . . , yj−1)

0 otherwise,

and record the simplest case of [24, Lemma 7].

Lemma 3. Let c1, . . . , cj ∈ Fq with cj 6= 0 and y1, . . . , yj−1 ∈ Fdq linearly independent. If d ≥ 2j, then

|σ̂c1,...,cjy1,...,yj−1
(ξ)| = δy1,...,yj−1

(ξ) +O(q−1/2).

It is worth mentioning if one is willing to impose technical conditions on the defining vectors and scalars,
then results within [24] include stronger asymptotics valid in the range d > j. These would allow us to
improve the required relationship of d ≥ 2k + 6 in Theorem 2 for configurations avoiding self-orthogonal
subspaces, but we opt instead for a uniform result valid for all (k+ 2)-point spherical configurations spanning
k dimensions. For clarity of presentation, we will often suppress the scalars c1, . . . , cj in the notation (2)
since we will always restrict ourselves to cj 6= 0 and Lemma 3 does not depend on the other scalars.

We will also require the notion of Bohr sets, which provide a substitute for fine subgroup structure. We
define the Bohr set of spectrum Γ ⊆ Fdq and radius ρ ∈ (0, 1] by

(3) B(Γ, ρ) := {x ∈ Fdq : |χ(ξ · x)− 1| ≤ ρ for all ξ ∈ Γ}.

Setting β = |B(Γ, ρ)|/qd, we record the standard bound

(4) β ≥
( ρ

2π

)|Γ|
which can be found in [26]. Setting B = B(Γ, ρ), we will use the L1 normalized indicator function µB = β−11B
and its repeated convolution νB = µB ∗ µB ∗ µB ∗ µB . The structure provided by repeated convolution will
frequently be useful. For example, provided d ≥ 2, we can apply Fourier inversion, (1) and Plancherel to see

(5) µB ∗ µB ∗ σ(x) =
∑
ξ∈Fdq

µ̂B(ξ)2σ̂(ξ)χ(ξ · x) = 1 +O
(
q−1/2

∑
ξ∈Fdq

|µ̂B(ξ)|2
)

= 1 +O(β−1q−1/2),

from which it immediately follows that

(6) νB ∗ σ(x) = 1 +O(β−1q−1/2).

In other words, provided q sufficiently large with respect to β, repeated convolutions of µB with σ can be
considered essentially constant.

We call the Bohr set B(Γ, ρ) regular if for every ε > 0, we have both

|B(Γ, (1 + ε)ρ)| ≤ (1 + 100ε|Γ|)|B(Γ, ρ)|
|B(Γ, (1− ε)ρ)| ≥ (1− 100ε|Γ|)|B(Γ, ρ)|;

This definition, due to Bourgain [1], ensures that all Bohr sets are only a small dilation away from being
regular (see [26, Lemma 4.25]), and regular Bohr sets are essentially closed under addition by elements of
their interior. Given a regular Bohr set B = B(Γ, ρ), we will write B′ ≺ε B in the case that B′ = B(Γ′, ρ′) is
another regular Bohr set with Γ′ ⊇ Γ and ρ′ ≤ ερ/(200|Γ|). The following standard lemma provides the main
consequence of regularity for our purposes; we include the proof for completeness.

Lemma 4. Let ε ∈ (0, 1), B = B(Γ, ρ) regular with B′ ≺ε B, and f : Fdq → C with |f | ≤ 1. For any y ∈ B′,

|Ex∈Bf(x)−Ex∈Bf(x+ y)| ≤ ε.
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Proof. We have

|Ex∈Bf(x)−Ex∈Bf(x+ y)| = 1

|B|

∣∣∣ ∑
x∈Fdq

f(x)(1B(x)− 1B(x− y))
∣∣∣ ≤ |B4(y +B)|

|B|

Since B′ ≺ε B and y ∈ B′ we have the relationship

B4(y +B) ⊆ B(Γ, ρ+ ρ′) \B(Γ, ρ− ρ′)
and our claim follows from the bound |B(Γ, ρ+ ρ′) \B(Γ, ρ− ρ′)| ≤ ε|B| resulting from regularity. �

4. Reduction to Dense Spherical Sets

In this section we present the straightforward counting argument that estblishes Theorem 1 as a consequence
of Theorem 2. The main observation is that the collection of spheres of a fixed radius λ ∈ F∗q provides a

uniform cover of Fdq . Hence, any subset A ⊆ Fdq with density α has density nearly α on a large number, in
fact a positive proportion, of these spheres. Theorem 2 then implies that within each of these spheres, A
contains many of the sought after configurations. By counting the contribution of each of these spheres, it is
easy to see that A contains a positive proportion of the count of all such configurations within Fdq , as each
fixed configuration is contained in approximately the same number of spheres.

We first record the characterization of spherical configurations that will be most useful as we proceed.
This follows in a straightforward way from Lemma 16 in the Appendix.

Lemma 5. Let X ⊆ Fdq be any (k+2)-point spherical configuration spanning k dimensions. If any (k+1)-point
subset of X that spans k dimensions is contained in a sphere Sλ(u), then X ⊆ Sλ(u) as well.

Let us now see how Theorem 2 implies Theorem 1.

Proof of Theorem 1. Fixing λ ∈ F∗q , we first establish that for many centers u ∈ Fdq , |A ∩ Sλ(u)| is large. For

d ≥ 2 and x ∈ Fdq , (1) implies Euσλ(u− x) = 1 +O(q−1/2), in which case we can ensure q is sufficiently large
for

(α/2)q2d−1 ≤
∑
u∈Fdq

|A ∩ Sλ(u)|

=
∑
u∈Fdq

|A∩Sλ(u)|≥(α/4)qd−1

|A ∩ Sλ(u)|+
∑
u∈Fdq

|A∩Sλ(u)|<(α/4)qd−1

|A ∩ Sλ(u)|

≤ |Sλ||{u ∈ Fdq : |A ∩ Sλ(u)| ≥ (α/4)qd−1}|+ (α/4)q2d.

Again using (1) and ensuring q sufficiently large, we can conclude

|{u ∈ Fdq : |(A− u) ∩ Sλ| ≥ (α/4)qd−1}| ≥ (α/8)qd.

Fixing now some (k + 2)-point spherical configuration X spanning k dimensions, we see that for each of

these good centers u, Theorem 2 guarantees that A ∩ Sλ(u) contains at least c(α, k)q(k+1)d−(k+2
2 ) isometric

copies of X. We need to account for how many spheres we count each isometric copy within. By translating
X if necessary, we can parametrize it as

X = {0, v1, . . . , vk, a1v1 + · · ·+ akvk}
for linearly independent v1, . . . , vk ∈ Fdq and a1, . . . , ak ∈ Fq. Then for a translation x ∈ Fdq and linearly

independent vectors y1, . . . , yk ∈ Fdq with yi · yj = vi · vj for all 1 ≤ i ≤ j ≤ k, we wish to count how many
spheres Sλ(u) contain the configuration

X ′ = {x, x+ y1, . . . , x+ yk, x+ a1y1 + · · ·+ akyk}.
Since y1, . . . , yk are linearly independent, Lemma 3 applies to the spherical measure

σy1,...,yk(u) := σλ(u)

k∏
j=1

σλ(yj − u)
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so that, for d ≥ 2k + 2,

Eu∈Fdqσy1,...,yk(x− u) = 1 +O(q−1/2).

Lemma 5 ensures that {x, x+ y1, . . . , x+ yk} ⊆ Sλ(u) implies X ′ ⊆ Sλ(u) as well, so we have shown

|{u ∈ Fdq : X ′ ⊆ Sλ(u)}| = (1 +O(q−1/2))qd−k−1.

Hence, within each of the (α/8)qd good spheres Sλ(u), A ∩ Sλ(u) contains c(α, k)q(k+1)d−(k+2
2 ) isometric

copies of X, and each of these copies is contained in roughly qd−k−1 spheres. In total this yields that A

contains c(α, k)q(k+1)d−(k+1
2 ) isometric copies of X as claimed. �

5. Proof of Theorem 2

In this section we reduce the task of proving Theorem 2 to that of establishing Propositions 6 and 7 below.

5.1. Counting Configurations, a Uniformity Norm, and two key Propositions. For the remainder,
we fix λ ∈ F∗q and aim to establish Theorem 2; there is no harm in assuming λ = 1. For brevity, we set
S = Sλ and σ = σλ. We will be considering (k + 2)-point spherical configurations spanning k dimensions
typically parameterized as

X := {0, v1, . . . , vk, a1v1 + · · ·+ akvk} ⊆ Fdq ,

with v1, . . . , vk ∈ Fdq linearly independent and coefficients a1, . . . , ak ∈ Fq. We will consider other sets of
k + 2 points of the form

X ′ = {x0, x0 + x1, . . . , x0 + xk, x0 + a1x1 + · · ·+ akxk} ⊆ Fdq

and check whether these are indeed isometric copies of X contained within S by checking whether x1, . . . , xk
are linearly independent and further satisfy the conditions

|x0|2 = |x0 + x1|2 = · · · = |x0 + xk|2 = λ and xi · xj = vi · vj for each 1 ≤ i ≤ j ≤ k;

when all of this is true, we write X ′ ' X. We remark that this notation only explicitly insists that k + 1
points of X ′ lie on S. However, since we are working with the same coefficients a1, . . . , ak, Lemma 16 ensures
X ′ is spherical and Lemma 5 ensures X ′ ⊂ S as well. That is, if X ′ ' X, then it is also the case that X ′ ⊆ S.

To count copies of X parameterized as X ′ above, we define the weight

SX(x0, . . . , xk) :=

{
q(k+1)(k+2)/2 if X ′ ' X
0 otherwise

and a normalized counting operator on functions f0, f1, . . . , fk+1 : Fdq → C by

(7) NX(f0, . . . , fk+1) := Ex0
f0(x0)E∗x1,...,xk

( k∏
j=1

fj(x0 + xj)
)
fk+1(x0 + a1x1 + · · ·+ akxk)SX(x0, . . . , xk).

Note that as long as we restrict our attention to linearly independent x1, . . . , xk, we can write out

SX(x0, . . . , xk) = σ(x0)

k∏
j=1

σx0,...,xj−1
(xj)

for appropriate spherical measures with implicit scalars determined by our sphere S and the dot products
between the defining vectors v1, . . . , vk of X. Moreover, the contribution of linearly dependent x1, . . . , xk is
negligible, in the sense that we trivially have

1

qd

∑
xj∈Span(x1,...,xj−1)

σx1,...,xj−1
(xj) ≤ q−1

whenever d ≥ 2j. Together with Lemma 3, this allows us to freely add in linearly dependent x1, . . . , xk to our
count (7) at the cost of an acceptable O(q−1) error, provided each fj is bounded as will typically be the case.
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The starting point for our argument is to show that the counting operator (7) is controlled by what we
call the U2

⊥(S) norm, defined for f : Fdq → C by

‖f‖U2
⊥(S) :=

(
Ex,h,h′fσ(x)fσ(x+ h)fσ(x+ h′)fσ(x+ h+ h′)

)1/4

,

which is the usual Gowers U2(Fdq) norm of the function fσ. While the U2(Fdq) norm averages over combinatorial

rectangles, the U2
⊥(S) norm averages instead over geometric rectangles contained within our sphere S. Note

that if

|x|2 = |x+ h|2 = |x+ h′|2 = |x+ h+ h′|2 = λ,

then it is also the case that h · h′ = 0.

We will show that the operator (7) is controlled by the U2
⊥(S) norm in the following sense.

Proposition 6. Let f0, . . . , fk+1 : Fdq → C with |fj | ≤ 1. If d ≥ 2k + 6, then

|NX(f0, . . . , fk+1)| ≤ min
0≤j≤k+1

‖fj‖U2
⊥(S) +O(q−1/8)

Results of this type are often called generalized von-Neumann inequalities in the arithmetic combinatorics
literature. The proof of Proposition 6 is presented in Section 6 below.

To see the utility of such a result, consider a set A ⊆ S with |A| ≥ αqd−1 and fA = 1A − α. If A is
sufficiently uniform, in the sense that ‖fA‖U2

⊥(S) is sufficiently small with respect to α and k, then the

decomposition 1A = α+ fA along with Proposition 6 provides

NX(1A, . . . , 1A) & αk+2

provided q is taken sufficiently large with respect to α and k. Of course, not all sets must be uniform in this
sense, and we will require a more sophisticated decomposition. Defining the L2(S) norm by

‖f‖L2(S) :=
(
Ex|f(x)|2σ(x)

)1/2

,

we will use the following decomposition.

Proposition 7. Let η ∈ (0, 1), f : Fdq → [−1, 1] and ϕ : (0, 1]2 → (0, 1) increasing in both coordinates. If
d ≥ 2 and q ≥ q(η, f), then there exists B = B(Γ, ρ) regular with |Γ| ≤ C(η, f) and ρ ≥ c(η, f), and there
exist functions f1, f2, f3 : Fdq → [−2, 2] with

f = f1 + f2 + f3

f1 = νB ∗ (fσ)

‖f2‖U2
⊥(S) ≤ ϕ(|Γ|−1, ρ)

‖f3‖L2(S) ≤ η.

Results of this type are often called arithmetic regularity lemmas in the arithmetic combinatorics literature.
In light of (6), it should at least be clear that ensuring f1 is bounded amounts to ensuring q is sufficiently
large with respect to the other parameters. The proof of Proposition 7 is presented in Section 7 below.

We close this section by demonstrating, as promised, how Propositions 6 and 7 can be applied to give a
proof of Theorem 2. We initially specialize, in Section 5.2 below, to the case of spherical quadrilaterals, that
is when k = 2. The proof of the general case follows along similar lines and is presented in Section 5.3.

5.2. Proof that Propositions 6 and 7 imply the k = 2 case of Theorem 2. It clearly suffices to
establish the following

Theorem 8. Let α ∈ (0, 1) and A ⊆ S with |A| ≥ αqd−1. If d ≥ 10, q ≥ q(α), and X ⊆ Fdq is a spherical
4-point configuration spanning 2 dimensions, then

NX(1A, 1A, 1A, 1A) ≥ c(α).

In other words, A contains c(α)q3d−6 isometric copies of X.
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Proof. To set up, let ε > 0 be a parameter to be determined only in terms of α and let ϕ : (0, 1]2 → (0, 1) be
a function increasing in both coordinates to be determined only in terms of ε. We apply the decomposition
theorem to obtain a regular Bohr set B = B(Γ, ρ) with |Γ| ≤ C(ε, ϕ) and ρ ≥ c(ε, ϕ) and functions
f1, f2, f3 : Fdq → [−2, 2] such that

1A = f1 + f2 + f3

f1 = νB ∗ (1Aσ)

‖f2‖U2
⊥(S) ≤ ϕ(|Γ|−1, ρ)

‖f3‖L2(S) ≤ ε.

We take ρ′ ∈ [ερ/(400|Γ|), ερ/(200|Γ|)] so that B1 := B(Γ, ρ′) ≺ε B. Throughout the argument we will
continue to take q(α) large enough so that, with parameters other than q fixed, we can absorb error terms
that tend to zero as q →∞ into a single O(ε) error. We now fix a spherical 4-point configuration spanning 2
dimensions X, parameterize it as

X = {0, v, w, av + bw}
for v, w linearly independent, and search for isometric copies of the form

{x, x+ y, x+ z, x+ ay + bz} ⊆ S
where |y|2 = |v|2, |z|2 = |w|2, and y · z = v · w. To detect these copies, we define the spherical measures

σx(y) := σ−|v|
2/2,|v|2

x (y), and

σx,y(z) := σ−|w|
2/2,v·w,|w|2

x,y (z)

in which case we can parametrize our counting operator as

NX(g0, g1, g2, g3) = Exg0(x)σ(x)E∗y,zg1(x+ y)g2(x+ z)g3(x+ ay + bz)σ(x)σx(y)σx,y(z).

Setting
B2 := B(Γ ∪ {a · ξ : ξ ∈ Γ} ∪ {b · ξ : ξ ∈ Γ}, ρ′/4),

we note that restricting y, z ∈ B2 + B2 ensures y, z, ay + bz ∈ B1. This is useful to us, since for our main
term function f1, for any x ∈ Fdq and any x′ ∈ B1, Lemma 4 provides

(8) f1(x+ x′) = f1(x) +O(ε).

We will in fact work with the further restricted count

NB
X (g0, g1, g2, g3) := Exg0σ(x)E∗y,zg1(x+ y)g2(x+ z)g3(x+ ay + bz)σx(y)µB2

∗ µB2
(y)σx,y(z)µB2

∗ µB2
(z).

Setting β := |B2|/qd, the size estimate (4) and the dependency of our parameters guarantees

β−1 ≤
(
C|Γ|
ερ

)3|Γ|

≤ C(α).

We should establish that this restricted count is well normalized. That is, we will show

(9) NB
X (1,1,1,1) = 1 +O(ε),

where here 1 stands for the constant 1 function. Applying Parseval and extracting the ξ = 0 term,

EzµB2
∗ µB2

(z)σx,y(z) = 1 +
∑

ξ∈Fdq\{0}

µ̂B2
(ξ)2σ̂x,y(ξ) +O(ε),

so we can apply Lemma 3 for

NB
X (1,1,1,1) = Ex,yσ(x)σx(y)µB2 ∗ µB2(y) +O

β−1
∑

ξ∈Fdq\{0}

|µ̂B2(ξ)|2Ex,yσ(x)σx(y)δx,y(ξ)

+O(ε).

Without trying to be too careful, notice that uniformly in ξ 6= 0,

Ex,yσ(x)σx(y)δx,y(ξ) ≤ q3Ex,yδx,y(ξ) = O(q−1),

so we can apply Plancherel and ensure q is sufficiently large to conclude

NB
X (1,1,1,1) = Ex,yσ(x)σx(y)µB2

∗ µB2
(y) +O(ε).
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Arguing similarly to eliminate the average in y, we conclude (9). This restricted count will be useful for us
since we trivially have the lower bound

(10) NX(1A, 1A, 1A, 1A) ≥ β2NB
X (1A, 1A, 1A, 1A),

and we will spend the rest of the proof establishing the lower bound

NB
X (1A, 1A, 1A, 1A) ≥ α4 +O(ε).

From the decomposition 1A = f1 + f2 + f3,

NB
X (1A, 1A, 1A, 1A) =

∑
1≤i0,i1,i2,i3≤3

NB
X (fi0 , fi1 , fi2 , fi3),

and we handle separately the three cases (i) when each of i0, i1, i2, i3 equals 1, (ii) when one of i0, i1, i2, i3
equals 2, and (iii) when one of i0, i1, i2, i3 equals 3. Case (i) will yield our main term of α4, and we will argue
that cases (ii) and (iii) contribute a negligible O(ε) error.

For the first case, applying (8) and (9) yields

NB
X (f1, f1, f1, f1) = Exf1(x)4σ(x)Ey,zµB2 ∗ µB2(y)σx(y)µB2 ∗ µB2(z)σx,y(z) +O(ε).

Arguing as we did to establish (9),

NB
X (f1, f1, f1, f1) = Exf1(x)4σ(x) +O(ε).

Then from Hölder’s inequality,

NB
X (f1, f1, f1, f1) ≥ (Exf1(x)σ(x))4 +O(ε),

and writing

Exf1(x)σ(x) = ExνB ∗ 1A(x)σ(x)

= Ex1A(x)νB ∗ σ(x),

we can apply (6) to conclude

NB
X (f1, f1, f1, f1) ≥ α4 +O(ε).

For the second case, with one of i0, i1, i2, i3 = 2, we apply Fourier inversion to write

µB2
∗ µB2

(y)µB2
∗ µB2

(z) =
∑

ξ1,ξ2∈Fdq

µ̂B2
(ξ1)2µ̂B2

(ξ2)2χ(−ξ1 · y)χ(−ξ2 · z).

Setting χξ(x) = χ(ξ · x), this allows us to express

NB
X (fi0 , fi1 , fi2 , fi3) =

∑
ξ1,ξ2∈Fdq

µ̂B2
(ξ1)2µ̂B2

(ξ2)2TX,S(fi0χξ1+ξ2 , fi1χ−ξ1 , fi2χ−ξ2 , fi3).

As ‖fχξ‖U2
⊥(S) = ‖f‖U2

⊥(S), we can apply the triangle inequality, Proposition 6 and Plancherel to conclude

|NB
X (fi0 , fi1 , fi2 , fi3)| ≤ β−2‖f2‖U2

⊥(S) +O(ε)

≤
(
C|Γ|
ερ

)6|Γ|

ϕ(|Γ|−1, ρ) +O(ε).

We see that by taking

ϕ(|Γ|−1, ρ) = ε

(
cερ

|Γ|

)6|Γ|

,

we can ensure case (ii) contributes at most O(ε).

For the third case, we will assume i0 = 3, but each case is similar by reindexing in x0. Applying the
triangle inequality and using that fi1 , fi2 , fi3 are each at most 2 in absolute value,

NB
X (f3, fi1 , fi2 , fi3) ≤ 8Ex|f3(x)|σ(x)E∗y,zσx(y)µB2 ∗ µB2(y)σx,y(z)µB2 ∗ µB2(z).

Then arguing as we did to establish (9) we have

NB
X (f3, fi1 , fi2 , fi3) ≤ 8Ex|f3(x)|σ(x) +O(ε).
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Applying Cauchy-Schwarz and the fact that ‖f3‖L2(S) ≤ ε, we conclude case (iii) again contributes at most
an O(ε) error term. In total we have shown

NB
X (1A, 1A, 1A, 1A) ≥ α4 +O(ε)

which we can insist is at least α4/2 by taking ε sufficiently small with respect to α. Then since β ≥ c(α), we
are done by recalling (10). �

5.3. Proof that Propositions 6 and 7 imply Theorem 2 in its full generality. It clearly suffices to
establish the following

Theorem 9. Let α ∈ (0, 1) and A ⊆ S with |A| ≥ αqd−1. If d ≥ 2k + 6, q ≥ q(α, k), and X ⊆ Fdq is a
spherical (k + 2)-point configuration spanning k dimensions, then

NX(1A, . . . , 1A) ≥ c(α, k).

In other words, A contains c(α, k)q(k+1)d−(k+1)(k+2)/2 isometric copies of X.

Proof. The proof is essentially the same as for 4-point configurations spanning 2 dimensions, although the
notation becomes more cumbersome. As before, to set up, let ε > 0 be a parameter to be determined only in
terms of α and k and let ϕ : (0, 1]2 → (0, 1) be a function increasing in both coordinates to be determined
only in terms of ε. We apply the decomposition theorem to obtain a regular Bohr set B = B(Γ, ρ) with
|Γ| ≤ C(ε, ϕ) and ρ ≥ c(ε, ϕ) and functions f1, f2, f3 : Fdq → [−2, 2] such that

1A = f1 + f2 + f3

f1 = νB ∗ (1Aσ)

‖f2‖U2
⊥(S) ≤ ϕ(|Γ|−1, ρ)

‖f3‖L2(S) ≤ ε.

We take ρ′ ∈ [ερ/(400|Γ|), ερ/(200|Γ|)] so that B1 := B(Γ, ρ′) ≺ε B. Throughout the argument we will
continue to take q(α, k) large enough so that, with parameters other than q fixed, we can absorb error terms
that tend to zero as q → ∞ into a single O(ε) error. We now fix a spherical (k + 2)-point configuration
spanning k dimensions X parameterized as

X = {0, v1, . . . , vk+1}

where vk+1 = a1v1 + · · ·+ akvk and search for isometric copies of the form

{x0, x0 + x1, . . . , x0 + xk+1} ⊂ S

where xk+1 = a1x1 + · · ·+ akxk and xi · xj = vi · vj for 1 ≤ i, j ≤ k. To detect these copies, we define the
spherical measures

σx0,...,xj−1
(xj) := (σ)−|vj |

2/2,v1·vj ,...,vj−1·vj ,|vj |2
x0,...,xj−1

(xj)

in which case we can parametrize our count as

NX(g0, . . . , gk+1) = Ex0g0(x0)σ(x0)E∗x1,...,xk
g(x0 + xk+1)

k∏
j=1

g(x0 + xj)σx0,...,xj−1(xj).

Setting

B2 := B

Γ ∪
k⋃
j=1

{aj · ξ : ξ ∈ Γ} , ρ
′

2k

 ,

ensures that if x1, . . . , xk ∈ B2 +B2, then x1, . . . , xk+1 ∈ B1. Again we will use that for x ∈ Fdq and x′ ∈ B1,

(11) f1(x+ x′) = f1(x) +O(ε).

Our restricted count is given by

NB
X (g0, . . . , gk+1) = Ex0

g0(x0)σ(x0)E∗x1,...,xk
g(x0 + xk+1)

k∏
j=1

g(x0 + xj)µB2
∗ µB2

(xj)σ
(j+1)(xj).
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As before, setting β := |B2|/qd, we have β−1 ≤ C(α, k) and a well-normalized restricted count

(12) NB
X (1, . . . ,1) = 1 +O(ε).

Applying the straightforward lower bound

(13) NX(1A, . . . , 1A) ≥ βkNB
X (1A, . . . , 1A),

we will spend the rest of the proof establishing

NB
X (1A, . . . , 1A) ≥ αk+2 +O(ε).

From the decomposition 1A = f1 + f2 + f3,

NB
X (1A, . . . , 1A) =

∑
1≤i0,...,ik+1≤3

NB
X (fi0 , . . . , fik+1

),

and we handle separately the three cases (i) when each of ij equals 1, (ii) when one of ij equals 2, and (iii)
when one of ij equals 3. Case (i) will yield our main term of αk+2, and we will argue that cases (ii) and (iii)
contribute a negligible O(ε) error.

For the first case, applying (11) and (12) yields

NB
X (f1, . . . , f1) = Ex0f1(x0)k+2σ(x)Ex1,...,xk

k∏
j=1

µB2 ∗ µB2(xj)σ
(j+1)(xj) +O(ε).

Arguing as we did to establish (9),

NB
X (f1, f1, f1, f1) = Exf1(x)k+2σ(x) +O(ε).

Then from Hölder’s inequality,

NB
X (f1, f1, f1, f1) ≥ (Exf1(x)σ(x))k+2 +O(ε)

= (Ex1A(x)νB ∗ σ(x))k+2 +O(ε)

= αk+2 +O(ε).

For the second case, we apply Fourier inversion to write

k∏
j=1

µB2 ∗ µB2(xj) =
∑

ξ1,...,ξk∈Fdq

k∏
j=1

µ̂B2(ξj)
2χ(−ξj · xj)

in order to express

NB
X (fi0 , . . . , fik+1

) =
∑

ξ1,...,ξk∈Fdq

k∏
j=1

µ̂B2
(ξj)

2NX(fi0χξ1+···+ξk , fi1χ−ξ1 , . . . fikχ−ξk , fik+1
).

As before, ‖fχξ‖U2
⊥(S) = ‖f‖U2

⊥(S), so we apply the triangle inequality, Proposition 6 and Plancherel to

conclude

|NB
X (fi0 , . . . , fik+1

)| ≤ β−k‖f2‖U2
⊥(S) +O(ε)

≤
(
C|Γ|
ερ

)C|Γ|
ϕ(|Γ|−1, ρ) +O(ε).

We see that by taking

ϕ(|Γ|−1, ρ) = ε

(
cερ

|Γ|

)C|Γ|
,

we can ensure case (ii) contributes at most O(ε).

For the third case, we assume i0 = 3 and apply the triangle inequality for

NB
X (f3, fi1 , . . . , fik+1

) ≤ 2k+1Ex0
|f3(x0)|σ(x0)Ex1,...,xk

k∏
j=1

µB2
∗ µB2

(xj)σ
(j+1)(xj) +O(ε).
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Applying Cauchy-Schwarz and the fact that ‖f3‖L2(S) ≤ ε, we conclude case (iii) again contributes at most
an O(ε) error term. In total we have shown

NB
X (1A, . . . , 1A) ≥ αk+2 +O(ε)

which we can insist is at least αk+2/2 by taking ε sufficiently small with respect to α and k. Then since
β ≥ c(α, k), we are done by recalling (13). �

It remains to prove both Proposition 6 and Proposition 7.

6. Proof of Proposition 6

We establish Proposition 6 through two careful applications of Cauchy-Schwarz. In a sense, each application
of Cauchy-Schwarz replaces our configuration with a more regular configuration, and we are left considering
averages over geometric rectangles rather than more complicated spherical configurations.

We fix a spherical (k + 2)-point configuration X spanning k dimensions parameterized by

X = {v0, v1, . . . , vk+1}
with v1 − v0, . . . , vk − v0 linearly independent and

vk+1 =

k∑
j=0

ajvj

for coefficients aj ∈ Fq. It is enough by symmetry to show

|NX(f0, . . . , fk+1)| ≤ ‖fk‖U2
⊥(S) +O(q−1/8).

For x0, . . . , xk ∈ Fdq , we will understand that

xk+1 =

k∑
j=0

aixi,

and we will detect if {x0, . . . , xk+1} ' X with the spherical measures σ(x0) and, for 1 ≤ j ≤ k,

σ(j)(xj) := σc0,j ,...,cj−1,j ,λ
x0,...,xj−1

(xj)

where we define ci,j = |vi − vj |2/2 − λ, since if |xi|2 = |xj |2 = λ, checking whether |xi − xj |2 = |vi − vj |2
amounts to checking whether xi · xj = |vi − vj |2/2− λ. Then we can express our counting operator

NX(f0, . . . , fk+1) = Ex0,...,xkσ(x0)

k+1∏
j=0

fj(xj)

k∏
j=1

σ(j)(xj) +O(q−1),

where we have included the negligible amount of linearly dependent vectors. Rearranging and applying the
triangle inequality,

|NX(f0, . . . , fk+1)| ≤ Ex0,...,xk−1
σ(x0)

k−1∏
j=1

σ(j)(xj)
∣∣∣Exkfk(xk)fk+1(xk+1)σ(k)(xk)

∣∣∣+O(q−1).

Introducing the differencing notation

∆hf(x) := f(x)f(x+ h),

we square both sides and apply Cauchy-Schwarz for

|NX(f0, . . . , fk+1)|2 ≤ Ex0,...,xk−1
σ(x0)

k−1∏
j=1

σ(j)(xj)Exk,h∆hfk(xk)∆hfk+1(xk+1)∆hσ
(k)(xk) +O(q−1).

We introduce new spherical measures with an additional condition involving h defined by

σh(x0) := σ0
h(x0)

σ
(j)
h (xj) := σ

0,c0,j ,...,cj−1,j ,λ
h,x0,...,xj−1

(xj).
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which allows us to rewrite

σ(x0)

k−1∏
j=1

σ(j)(xj)∆hσ
(k)(xk) = σh(x0)

k−1∏
j=1

σ
(j)
h (xj)σ

(k)(xk)σ(xk + h).

Our bound from above can then be rearranged as

|NX(f0, . . . , fk+1)|2 ≤ Eh,x0,...,xk−1
σh(x0)

k−1∏
j=1

σ
(j)
h (xj)Exk∆hfk(xk)∆hfk+1(xk+1)σ(k)(xk)σ(xk+h)+O(q−1).

We claim that in the average above, the dependence of xk+1 on xk is superficial. That is, while

xk+1 =

k∑
j=0

ajxj ,

it must be the case that at least two coefficients aj are nonzero since we are working with a (k + 2)-point
spherical configuration. In particular, aj 6= 0 for some 0 ≤ j < k, and for this distinguished j, we can reindex
in xj in the average above to replace xk+1 with

x′k+1 :=

k−1∑
j=0

a′jxj ,

allowing us to rearrange our bound above as

|NX(f0, . . . , fk+1)|2 ≤ Eh,x0,...,xk−1
∆hfk+1(x′k+1)σh(x0)

k−1∏
j=1

σ
(j)
h (xj)Exk∆hfk(xk)σ(k)(xk)σ(xk+h)+O(q−1),

where we may have needed to adjust the implicit scalars in our spherical measures. This allows us to proceed
as before by applying the triangle inequality for

|NX(f0, . . . , fk+1)|2 ≤ Eh,x0,...,xk−1
σh(x0)

k−1∏
j=1

σ
(j)
h (xj)

∣∣∣Exk∆hfk(xk)σ(k)(xk)σ(xk + h)
∣∣∣+O(q−1),

and Cauchy-Schwarz once more for

|NX(f0, . . . , fk+1)|4 ≤ Eh,x0,...,xk−1
σh(x0)

k−1∏
j=1

σ
(j)
h (xj)Exk,h′∆h′∆hfk(xk)∆h′σ

(k)(xk)∆h′σ(xk+h)+O(q−1).

We can again reorganize our spherical measures, rewriting

σh(x0)

k−1∏
j=1

σ
(j)
h (xj)∆h′σ

(k)(xk)∆h′σ(xk + h) = ∆h′∆hσ(xk)σxk,h,h′(x0)

k−1∏
j=1

σxk,h,h′,x0,...,xj−1
(xj)

for appropriate implicit scalars. Using this to rearrange our bound above, we have

|NX(f0, . . . , fk+1)|4 ≤ Exk,h,h′∆h′∆hfkσ(xk)Ex0,...,xk−1
σxk,h,h′(x0)

k−1∏
j=1

σxk,h,h′,x0,...,xj−1(xj) +O(q−1).

Applying Lemma 3, we have, uniformly in xk, h, h
′ when d ≥ 2k + 6,

Ex0,...,xk−1
σxk,h,h′(x0)

k−1∏
j=1

σxk,h,h′,x0,...,xj−1
(xj) = 1 +O(q−1/2),

establishing
|NX(f0, . . . , fk+1)|4 ≤ Exk,h,h′∆h′∆hfkσ(xk) +O(q−1/2)

from which we see |NX(f0, . . . , fk+1)| ≤ ‖fk‖U2
⊥(S) +O(q−1/8) as required. �

7. An Inverse Theorem and Proof of Proposition 7

This section is dedicated to establishing Proposition 7. We begin in Section 7.1 by establishing Theorem 10,
an inverse theorem which reveals that functions with large U2

⊥(S) norm must exhibit Fourier bias.
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7.1. An Inverse Theorem. One way to see that functions with large U2
⊥(S) norm exhibit Fourier bias is

to relate the U2
⊥(S) norm to the usual U2(Fdq) norm. In order to do so, define for v, w ∈ Fdq the normalized

indicator function

`v=w =

{
qd if v = w

0 otherwise

Then one can express

‖f‖4U2
⊥(S) = Ex,y,z,wfσ(x)fσ(y)fσ(z)fσ(w)`x+w=y+z

Expanding `x+w=y+z via orthogonality,

`x+w=y+z =
∑
ξ∈Fdq

χ(ξ(x+ w − y − z)),

provides the identity

‖f‖4U2
⊥(S) =

∑
ξ∈Fdq

|f̂σ(ξ)|4.

The right hand side is precisely ‖fσ‖U2(Fdq). It is tempting to here use Plancherel to bound ‖f‖4
U2
⊥(S)

above

by supξ∈Fdq |f̂σ(ξ)|2‖fσ‖2L2 , but this is not generally helpful since the L2 term may grow with q. By being a

bit more careful, we establish the following inverse theorem.

Theorem 10. Let f : Fdq → C with |f | ≤ 1. If d ≥ 8, then

‖f‖U2
⊥(S) ≤ sup

ξ∈Fdq
|f̂σ(ξ)|1/4 +O(q−1/32).

Proof. Instead, we apply absolute values and the triangle inequality for

‖f‖4U2
⊥(S) ≤ Exσ(x)|Ey,z,wfσ(y)fσ(z)fσ(w)`x=y+z−w|

Applying Cauchy-Schwarz,

‖f‖8U2
⊥(S) ≤ (Exσ(x))

(
Exσ(x)|Ey,z,wfσ(y)fσ(z)fσ(w)`x=y+z−w|2

)
.

For any fixed x and y, we have

Ez,wσ(z)σ(w)`x=y+z−w = Ezσx+y(z)

for some measure σx+y. Then since d ≥ 4, we can apply (1) and Lemma 3 for

‖f‖8U2
⊥(S) ≤ Exσ(x)Ey1,z1,w1

y2,z2,w2

fσ(y1)fσ(y2)fσ(z1)fσ(z2)fσ(w1)fσ(w2)`x=y1+z1−w1
`x=y2+z2−w2

+O(q−1/2)

Moving the average in x inside and rearranging a bit, this simplifies to

‖f‖8U2
⊥(S) ≤ Ey1,z1,w1

y2,z2,w2

fσ(y1)fσ(y2)fσ(z1)fσ(z2)fσ(w1)fσ(w2)σ(y1 +z1−w1)`w2−w1=y2−y1+z2−z1 +O(q−1/2)

Setting f1 = f and f2 = f , rearranging a bit more and applying the triangle inequality,

‖f‖8U2
⊥(S) ≤ Ew1,w2σ(w1)σ(w2)|Ey1,y2,z1,z2σ(y1+z1−w1)`w2−w1=y2−y1+z2−z1

∏
j=1,2

fjσ(yj)fjσ(zj)|+O(q−1/2)

Setting f3 = f and f4 = f and again requiring d ≥ 4, we apply Cauchy-Schwarz as before and rearrange for

(14) ‖f‖16
U2
⊥(S) ≤ Ey1,...,y4

z1,...,z4

4∏
j=1

fjσ(yj)fjσ(zj)`y2−y1+z2−z1=y4−y3+z4−z3Wy1,...,y4
z1,...,z4

+O(q−1/2)

where

Wy1,...,y4
z1,...,z4

= Ewσ(w)σ(y2 − y1 + z2 − z1 + w)σ(y1 + z1 − w)σ(y3 + z3 − w)

Since d ≥ 4, we can restrict the sum in (14) to only consider the terms when the vectors y2 − y1 + z2 −
z1, y1 + z1, y3 + z3 are linearly independent at the cost of an error that can be absorbed in our current error
of O(q−1/2). For these vectors, the function

σ′(w) = σ(w)σ(y2 − y1 + z2 − z1 + w)σ(y1 + z1 − w)σ(y3 + z3 − w)
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is a measure for which Lemma 3 applies, allowing us to conclude

Wy1,...,y4
z1,...,z4

= Ewσ
′(w) = 1 +O(q−1/2),

valid for d ≥ 8. We have arrived at the estimate

‖f‖16
U2
⊥(S) ≤ Ey1,...,y4

z1,...,z4

4∏
j=1

fjσ(yj)fjσ(zj)`y2−y1+z2−z1=y4−y3+z4−z3 +O(q−1/2)

Expanding `y2−y1+z2−z1=y4−y3+z4−z3 via orthogonality, we have

`y2−y1+z2−z1=y4−y3+z4−z3 =
∑
ξ∈Fdq

χ(ξ · (y4 − y3 − y2 + y1 + z4 − z3 − z2 + z1)),

from which we have the identity

Ey1,...,y4
z1,...,z4

4∏
j=1

fjσ(yj)fjσ(zj)`y2−y1+z2−z1=y4−y3+z4−z3 =
∑
ξ∈Fdq

|f̂σ(ξ)|8

It follows that we can conclude

‖f‖16
U2
⊥(S) ≤

∑
ξ∈Fdq

|f̂σ(ξ)|8 +O(q−1/2)

≤ sup
ξ∈Fdq

|f̂σ(ξ)|4
∑
ξ∈Fdq

|f̂σ(ξ)|4 +O(q−1/2)

≤ sup
ξ∈Fdq

|f̂σ(ξ)|4 +O(q−1/2),

where we have used both |f̂σ(ξ)| ≤ 1 +O(q−1/2) and
∑
ξ∈Fdq

|f̂σ(ξ)|4 = ‖f‖4
U2
⊥(S)

≤ 1 +O(q−1/2). �

7.2. Proof of Proposition 7. In order to use the Fourier bias from Theorem 10 to prove Proposition 7, we
will construct a sequence of Bohr sets, refining at each stage, until we arrive at B′ ≺ε B for which νB′ ∗ (fσ)
and νB ∗ (fσ) are close in an L2 sense. This will require a number of technical lemmas, the first of which
indicates that these two convolutions are somewhat orthogonal.

Lemma 11. Let ε ∈ (0, 1), B = B(Γ, ρ) a regular Bohr set with B′ ≺ε B, and f : Fdq → C with |f | ≤ 1. If
d ≥ 2 and q ≥ q(|Γ|, ρ, ε), then

‖νB′ ∗ (fσ)‖22 − ‖νB ∗ (fσ)‖22 ≥ ‖νB′ ∗ (fσ)− νB ∗ (fσ)‖22 +O(ε).

Proof. By expanding the square, ‖νB′ ∗ (fσ)− νB ∗ (fσ)‖22 is equal to

‖νB′ ∗ (fσ)‖22 − 2ExνB′ ∗ (fσ)(x)νB ∗ (fσ)(x) + ‖νB ∗ (fσ)‖22,

so it suffices to show that

‖νB ∗ (fσ)‖22 ≤ ExνB′ ∗ (fσ)(x)νB ∗ (fσ)(x) +O(ε)

Using the relationship B′ ≺ε B, we can apply Lemma 4 to see

|µ̂B(ξ)| = |Ex∈Bχ(x · ξ)|
≤ |Ex∈BEy∈B′χ((x+ y) · ξ)|+ ε

= |Ex∈Bχ(x · ξ)Ey∈B′χ(y · ξ)|+ ε

≤ |µ̂B′(ξ)|+ ε.

in which case we apply Plancherel and this observation for

‖νB ∗ (fσ)‖22 =
∑
ξ∈Fdq

|µ̂B(ξ)|8|f̂σ(ξ)|2 ≤
∑
ξ∈Fdq

|µ̂B(ξ)|4 (|µ̂B′(ξ)|+ ε)
4 |f̂σ(ξ)|2



16 NEIL LYALL, ÁKOS MAGYAR, HANS PARSHALL

Writing β = |B|/qd, we can apply Plancherel and (5) for∑
ξ∈Fdq

|µ̂B(ξ)|4|f̂σ(ξ)|2 = ‖µB ∗ µB ∗ fσ(x)‖22 ≤ 1 +O(β−1q−1/2).

Using the bound (4), we see that we can take q sufficiently large and apply Plancherel again to conclude

‖νB ∗ fσ‖22 ≤
∑
ξ∈Fdq

|µ̂B(ξ)|4|µ̂B′(ξ)|4|f̂σ(ξ)|2 +O(ε)

= ExνB′ ∗ (fσ)(x)νB ∗ (fσ)(x) +O(ε). �

With Lemma 11 in hand, we are ready to translate Theorem 10 into an energy increment, showing that
Fourier bias leads to a Bohr set refinement with increased L2 energy.

Proposition 12. Let η ∈ (0, 1), ε ∈ (0, cη8) for c > 0 sufficiently small, B = B(Γ, ρ) a regular Bohr set, and
f : Fdq → C with |f | ≤ 1. If d ≥ 2, q ≥ q(|Γ|, ρ, η, ε), and

‖f − νB ∗ (fσ)‖U2
⊥(S) ≥ η,

then there exists B′ = B(Γ′, ρ′) with B′ ≺ε B, |Γ′| ≤ |Γ|+ 1, ρ′ ≥ c(|Γ|, ε)ρ and

‖νB′ ∗ (fσ)‖2L2(S) ≥ ‖νB ∗ (fσ)‖2L2(S) + cη8.

Proof. From the inverse theorem, ‖f − νB ∗ (fσ)‖U2
⊥(S) ≥ η implies the existence of some γ ∈ Fdq with

|f̂σ(γ)− [(νB ∗ (fσ))σ]∧(γ)| ≥ η4 +O(q−1/32).

Expanding [(νB ∗ (fσ))σ]∧(γ), we can apply (1) for

[(νB ∗ (fσ))σ]∧(γ) =
∑
ξ∈Fdq

σ̂(ξ)µ̂B(γ − ξ)4f̂σ(γ − ξ)

= µ̂B(γ)4f̂σ(γ) +O
(
q−1/2

∑
γ

|µ̂B(ξ)|4|f̂σ(ξ)|
)

Applying the uniform bounds |µ̂B(ξ)| ≤ 1 and |f̂σ(ξ)| ≤ 1 +O(q−1/2) together with Plancherel, we have

(15) [(νB ∗ (fσ))σ]∧(γ) = µ̂B(γ)4f̂σ(γ) +O(β−1q−1/2).

in which case we can ensure q is sufficiently large and refine our inverse statement to

(16) |f̂σ(γ)||1− µ̂B(γ)4| ≥ η4/2.

Set Γ′ = Γ ∪ {γ}. It follows from [26, Lemma 4.25] that for any ε ∈ (0, 1) we can choose a radius
ρ′ ∈ [ερ/(400|Γ|), ερ/(200|Γ|)] such that B′ := B(Γ′, ρ′) is regular, in which case B′ ≺ε B. From Lemma 11,

‖νB′ ∗ (fσ)‖22 − ‖νB ∗ (fσ)‖22 ≥ ‖νB′ ∗ (fσ)− νB ∗ (fσ)‖22 +O(ε),

so we would like to provide a lower bound for

‖νB′ ∗ fσ − νB ∗ fσ‖22 =
∑
ξ∈Fdq

|µ̂B′(ξ)4 − µ̂B(ξ)4|2|f̂σ(ξ)|2 ≥ |µ̂B′(γ)4 − µ̂B(γ)4|2|f̂σ(γ)|2

As γ ∈ Γ′, |µ̂B′(γ)− 1| ≤ ρ′ ≤ ε. Combining this with |f̂σ(γ)| ≤ 1 +O(q−1/2) and (16),

|µ̂B′(γ)4 − µ̂B(γ)4|2|f̂σ(γ)|2 ≥ |1− µ̂B(γ)4|2|f̂σ(γ)|2 +O(ε) ≥ η8/4 +O(ε).

Provided ε ≤ cη8 for a sufficiently small absolute constant c > 0, we have managed to show

‖νB′ ∗ (fσ)‖22 − ‖νB ∗ (fσ)‖22 ≥ cη8.

For the same conclusion with L2(S) norms, we can apply (15) for

‖νB ∗ (fσ)‖2L2(S) =
∑
ξ∈Fdq

[νB ∗ (fσ)σ]∧(ξ)µ̂B(ξ)4f̂σ(ξ)

= ‖νB ∗ (fσ)‖22 +O(β−2q−1/2).

and ensure q is sufficiently large. �
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Next we iterate Proposition 12 in order to find a Bohr set refinement for which νB′ ∗ (fσ) approximates f
well in a U2

⊥(S) sense.

Proposition 13. Let η ∈ (0, 1), ε ∈ (0, cη8) for c > 0 sufficiently small, B = B(Γ, ρ) a regular Bohr set,
and f : Fdq → C with |f | ≤ 1. If d ≥ 2 and q ≥ q(|Γ|, ρ, η, ε), then there exists B′ = B(Γ′, ρ′) with B′ ≺ε B,
|Γ′| ≤ C(|Γ|, η), ρ′ ≥ c(|Γ|, η, ε)ρ, and

‖f − νB′ ∗ (fσ)‖U2
⊥(S) ≤ η.

Proof. We will construct a sequence of Bohr sets

Bj+1 ≺ε Bj ≺ε · · · ≺ε B1 ≺ε B0

where we write Bj = B(Γj , ρj) and start with B0 = B. Our goal is find j ≥ 1 for which

(17) ‖f − νBj ∗ (fσ)‖U2
⊥(S) ≤ η.

We set Γ1 = Γ and choose ρ1 ∈ [ερ/(400|Γ|), ερ/(200|Γ|)] so that B1 ≺ε B0. Starting with j = 1 and iterating,
we are done if (17) is satisfied. If (17) is false for j ≥ 1, then by applying Proposition 12 with q sufficiently
large, we obtain Bj+1 for which Bj+1 ≺ε Bj , |Γj+1| ≤ |Γ|+ j, ρj+1 ≥ c(|Γ|, η, j)ρ, and

‖νBj+1 ∗ (fσ)‖2L2(S) ≥ ‖νBj ∗ (fσ)‖2L2(S) + cη8.

From (6), we can ensure that that for every j ≥ 0, we have

‖νBj+1
∗ (fσ)‖2L2(S) ≤ 2,

in which case it is clear that we can iterate this process at most O(η−8) times before we arrive at some j for
which (17) is satisfied. �

Finally, we iterate Proposition 13 to find a Bohr set B for which νB ∗ (fσ) approximates f arbitrarily well
in the U2

⊥(S) norm, at the cost of an L2-error term. This is necessary since shrinking η in Proposition 13
leads to a loss of control of the size of the approximating Bohr set.

Letting ε > 0, we will construct a sequence of Bohr sets

BJ ≺ε · · · ≺ε B1 ≺ε B0

where we write Bj = B(Γj , ρj). We start with Γ0 = {0}, ρ0 = 1, and η0 = ϕ(1, 1), in which case B0 = Fdq .

For 1 ≤ j ≤ J , we set ηj = ϕ(|Γj−1|−1, ρj−1), ensure ε ∈ (0, cη8
j ), and apply Proposition 13 to obtain Bj with

Bj ≺ε Bj−1, |Γj | ≤ C(|Γj−1|, ηj−1) and ρj ≥ c(|Γj−1|, ηj−1) such that

‖f − νBj ∗ (fσ)‖U2
⊥(S) ≤ ηj

for sufficiently large p. We claim there exists some j for which

(18) ‖νBj+1
∗ (fσ)− νBj ∗ (fσ)‖2L2(S) ≤ η

2.

Using Lemma 11, we can insist ε is sufficiently small with respect to η to guarantee

‖νBj+1
∗ (fσ)− νBj ∗ (fσ)‖2L2(S) ≤ ‖νBj+1

∗ (fσ)‖2L2(S) − ‖νBj ∗ (fσ)‖2L2(S) + η2/2.

If ‖νBj+1 ∗ (fσ)‖2L2(S) ≤ ‖νBj ∗ (fσ)‖2L2(S), then (18) would follow. Suppose instead that

‖νBj+1
∗ (fσ)‖2L2(S) > ‖νBj ∗ (fσ)‖2L2(S)

for all j. From (6), ‖νBj ∗ (fσ)‖2L2(S) ≤ 2 for sufficiently large q, in which case the ‖νBj ∗ (fσ)‖2L2(S) form a

bounded increasing sequence. It follows that we can take J = O(η−2) and conclude (18) for some now fixed
1 ≤ j ≤ J . We are then finished by setting B = Bj and

f1 = νBj ∗ (fσ)

f2 = f − νBj+1 ∗ (fσ)

f3 = νBj+1 ∗ (fσ)− νBj ∗ (fσ).

This completes the proof of Proposition 7. �
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Appendix: Necessity of the Spherical Condition

By an isometry of Fdq we mean a linear map U : Fdq → Fdq so that |U(x)|2 = |x|2 for all x. It is easy

to see that U(x) · U(y) = x · y for all x and y, hence UTU = UUT = I. We call a set X = {x0, . . . , xk}
non-degenerate if V ∩ V ⊥ = {0} for the subspace V = Span(X −X).

Lemma 14. Suppose X is a non-degenerate k + 1-point configuration and Y = {y0, . . . , yk} is isometric to
X. Then there exists a vector z and an isometry U of Fdq so that Y = z + U(X).

Proof. By performing a translation we can assume x0 = y0 = 0. Assume that the vertices are labeled so
that |yi − yj |2 = |xi − xj |2 for all 0 ≤ i ≤ j ≤ k. Let V and W be the subspace spanned by the sets X and
Y respectively. Since X and hence Y are non-degenerate, we have that the map φ : xi → yi, 1 ≤ i ≤ k
extends to an isometry Φ : V →W . By Witt’s extension theorem [27] there is an orthogonal transformation
U : Fdq → Fdq extending the map Φ. Clearly U(X) = Y . �

Let us reformulate the property that a set X is non-degenerate. Assume X = {0, x1, . . . xk} and X ′ =
{x1, . . . , xk} is a linearly independent set such that Span(X ′) = Span(X). Let M be the symmetric l × l
matrix with entries mij = xi · xj for 1 ≤ i, j ≤ l.

Lemma 15. The set X is non-degenerate if and only if the associated inner product matrix M has maximal
rank.

Proof. Clearly X is non-degenerate if and only if X ′ is linearly independent. Let V = Span(X ′) and assume

that 0 6= v ∈ V such that v⊥V . Then v =
∑l
i=1 bixi and v · xj =

∑l
i=1mjibi = Mbj = 0 for all 1 ≤ j ≤ l.

Thus Mb = 0 for a non-zero vector b = (bj) and M has rank less than l. Conversely if rank(M) < l then
Mb = 0 for some b = (bj) 6= 0 and the vector v =

∑
i bixi is orthogonal to V = Span(X ′) = Span(X). �

Note that the inner product matrix drops rank if some non-trivial algebraic relations between the distances
|xi − xj |2 of the points xi, xj of X, hence generic configurations are non-degenerate. Next, we show that the
spherical condition is necessary over finite fields as well, at least for non-degenerate sets. We follow the proof
in [6] with some minor modifications. First we give the following characterization of spherical sets.

Lemma 16. Let X = {x0, x1, . . . , xk} ⊆ Fdq . Then X is spherical if and only if the following holds. For
every c0, c1, . . . , ck ∈ Fq if

(I)

k∑
i=0

ci = 0, and

k∑
i=0

cixi = 0, then also

(II)

k∑
i=0

ci|xi|2 = 0.

Proof. Suppose X is spherical, that is |xi − z|2 = r for 0 ≤ i ≤ k for some z ∈ Fdq and r ∈ Fq. Then

|xi|2 = r − |z|2 + 2xi · z for all i, hence

k∑
i=0

ci|xi|2 =

k∑
i=0

ci(|z|2 + r) + 2

k∑
i=0

cixi · z = 0.

Conversely, assume X is not spherical. We show that there exists c0, . . . , ck satisfying (I) but not (II). One
may assume that X is minimal that is X ′ is spherical for X ′ ⊆ X, X ′ 6= X. Since a simplex is spherical

there is a non-trivial linear combination
∑k
i=1 ai(xi − x0) = 0 and by reindexing the vertices one may assume

ak 6= 0. Taking X ′ = {x0, . . . , xk−1} one has |xi − z|2 = r for 1 ≤ i < k but |xk − z|2 − r = b 6= 0. Then
|xi|2 − |x0|2 = 2(xi − x0) · z for 1 ≤ i < k and |xk|2 − |x0|2 = 2(xk − x0) · z + b. Thus

k∑
i=1

ai(|xi|2 − |x0|2) = 2

k∑
i=1

ak(xi − x0) · z + akb = akb 6= 0.

Taking c0 = −
∑k
i=1 ai and ci = ai for 1 ≤ i ≤ k the claim follows. �
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Lemma 17. Let X ⊆ Fdq be a non-spherical set of k elements. Then there exists a set A ⊆ Fdq of size

|A| ≥ ckqd which does not contain any set Y of the form Y = z+U(X), where ck > 0 is a constant depending
only on k.

Proof. Let t ∈ F∗q such that |χ(t)− 1| ≥ 1/2, χ being a non-trivial character. Such a t exists as
∑
t χ(t) = 0.

If X is not spherical then, by scaling, there exists c0, . . . , ck so that (I) holds and
∑
i=0 ci|xi|2 = t. If

Y = z + U(X) then
∑k
i=0 ciyi = 0 and moreover

k∑
i=0

ci|yi|2 =

k∑
i=0

ci(|z|2 + 2z · U(xi) + |xi|2) = t.

Let B = B(Γ, ρ) be the Bohr set with Γ = {c0, . . . , ck} and ρ = 1
4(k+1) . By the estimate (4), |B| ≥ ckq,

for some constant ck > 0 depending only on k. Define A = {x ∈ Fdq : |x|2 ∈ B}. Since the number of

solutions to |x|2 = b is at least 1
2q
d−1 uniformly for b ∈ Fq for q ≥ q0, we have that |A| ≥ ck

2 q
d. We show

that Y = z + U(x) for some z ∈ Fdq and an orthogonal transformation U then Y ( A. Indeed if Y ⊆ A then

|χ(ci|yi|2)− 1| ≤ 1
4(k+1) for 0 ≤ i ≤ k + 1. It follows

|χ(

k∑
i=0

ci|yi|2)− 1| = |
k∏
i=0

χ(ci|yi|2)− 1| ≤
k∑
i=0

|χ(ci|yi|2)− 1| ≤ 1/4.

This implies |χ(t)− 1| ≤ 1/4 contradicting our choice of t. �
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birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 559–583. Colloq. Math. Soc. János Bolyai, Vol. 10. MR 0382048
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