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Abstract. Let 1 < p < ∞, p 6= 2. We prove that if d ≥ dp is sufficiently large, and A ⊆ Rd
is a measurable set of positive upper density then there exists a λ0 = λ0(A) such for all λ ≥ λ0

there are x, y ∈ Rd such that {x, x + y, x + 2y} ⊆ A and |y|p = λ, where ||y||p = (
∑
i |yi|

p)1/p is

the lp(Rd)-norm of a point y = (y1, . . . , yd) ∈ Rd. This means that dense subsets of Rd contain
3-term progressions of all sufficiently large gaps when the gap size is measured in the lp-metric.
This statement is known to be false in the Euclidean l2-metric as well as in the l1 and `∞-metrics,
and one of the goals of this note is to understand this phenomenon.

1. Introduction.

A main objective of Euclidean Ramsey theory is the study of geometric configurations in large but
otherwise arbitrary measurable sets. A fundamental and representative result in the field states
that for any d ≥ 2, a set A ⊆ Rd of positive upper Banach density contains all large distances. i.e.,
for every sufficiently large λ ≥ λ0(A) there are points x, x+ y ∈ A such that ||y||2 = λ. Recall that
A has positive upper Banach density if

δ̄(A) := lim sup
N→∞

sup
x∈Rd

|A ∩ (x+ [0, N ]d)|
Nd

> 0.

The result was obtained independently, along with various generalizatons, by a number of authors,
for example Furstenberg, Katznelson and Weiss [5], Falconer and Marstrand [4], and Bourgain [1].

A natural question to ask is whether similar statements exist that involve a larger point configura-
tion. Indeed such results are well-known in the discrete regime of the integer lattice, under suitable
assumptions of largeness on the underlying set. Such results can often be translated to existence
of configurations in the Euclidean setting as well. For instance, Roth’s theorem [9] in the integers
states that a subset of Z of positive upper density contains a three-term arithmetic progression
{x, x + y, x + 2y} and it easily implies that a measurable set A ⊆ R of positive upper density
contains a three-term progression whose gap size can be arbitrarily large. On the other hand, a
simple example given in [1] shows that there is a set A ⊆ Rd in any dimension d ≥ 1, such that the
gap lengths of all 3-progressions in A do not contain all sufficiently large numbers. More precisely,
the counterexample provided in [1] is the set A of points x ∈ Rd such that |||x||22 − m| ≤ 1

10 for

some m ∈ N. The parallelogram identity 2||y||22 = ||x||22 + ||x+ 2y||22− 2||x+ y||22 then dictates that∣∣||y||22 − `
2

∣∣ ≤ 4
10 (for some ` ∈ N) for any progression {x, x+ y, x+ 2y} ⊆ A.

This example however does not exclude the validity of such a result when the gaps are measured
using some other metric on Rd that does not obey the parallelogram law. The aim of this note is

to show that this is indeed the case for the lp metric ||y||p := (
∑d

i=1 ||yi||p)1/p for all 1 < p < ∞,
p 6= 2, and in this sense, a counterexample as described above is more an exception rather than the
rule. A more general result of this type in the finite field setting was given by the first two authors
in [2]. Variations of our arguments also work for other metrics given by positive homogeneous
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polynomials of degree at least 4 and certain nondegenerate point configurations. We hope to
pursue these extensions elsewhere.

2. Main results.

Theorem 2.1. Let 1 < p <∞, p 6= 2. Then there exists a constant dp ≥ 2 such that for d ≥ dp the

following holds. Any measurable set A ⊆ Rd of positive upper Banach density contains a three-term
arithmetic progression {x, x+ y, x+ 2y} ⊆ A with gap ||y||p = λ for all sufficiently large λ ≥ λ(A).

Remarks:

(a) The result is sharp in the range of p. Easy variants of the example in [1] show that Theorem
2.1 and in fact even the two-point results of [5, 1, 4] cannot be true for p = 1 and p = ∞.
Indeed, if A = Zd + ε0[−1, 1]d for some small ε0 > 0, then on one hand A is of positive upper
Banach density. On the other, if x, x + y ∈ A for some y 6= 0, then both ||y||∞ and ||y||1 are
restricted to lie within distance O(ε0) from some positive integer.

(b) We believe that the p-dependence of the dimensional threshold dp stated in the theorem is an
artifact of our proof. In our analysis, dp grows without bound as p↗∞, while other implicit
constants involved in the proof blow up near p = 1 and p = 2. See in particular Proposition 2.2
and Lemma 4.3. It would be of interest to determine whether Theorem 2.1 holds for all d ≥ 2
for the specified values of p.

2.1. Overview of proof. We describe below the main elements of the proof. Details will be
provided in subsequent sections.

Our main observation is a stronger finitary version of Theorem 2.1 for bounded measurable sets.

Theorem 2.2. Let 1 < p < ∞, p 6= 2. Let d ≥ dp, δ > 0 and let N ≥ N(δ) be sufficiently large.

Then for any measurable set A ⊆ [0, N ]d of measure |A| ≥ δ Nd the following holds.
For any lacunary sequence 1 < λ1 < . . . < λJ � N with λj+1 ≥ 2λj and J ≥ J(δ), there exists a
three term arithmetic progression {x, x+ y, x+ 2y} ⊆ A such that ||y||p = λj for some 1 ≤ j ≤ J ,

Proof of Theorem 2.1. Theorem 2.2 implies Theorem 2.1. Indeed, assume that Theorem 2.1 does
not hold. Then there exists an infinite sequence {λj}∞j=1 ⊆ N such that λj 6= |y| for any j and
any y which is the gap of a 3-progression contained in A. Without loss of generality the sequence
may be assumed to be lacunary, i.e. λj+1 ≥ 2λj for all j. Setting δ = δ(A)/2, fix any sufficiently
large J = J(δ) and any sufficiently large box BN of size N = N(δ, λJ) on which the density of
A is |A|/Nd ≥ δ. By translation invariance we may assume BN = [0, N ]d, contradicting Theorem
2.2. �

2.1.1. A counting function and its variants. For the rest of the paper we will fix a finite exponent
p > 1, p 6= 2, and for simplicity of notation write |y| = ||y||p. We start by counting three term
arithmetic progressions P = {x, x+y, x+2y} contained in A via a positive measure σλ supported on
the lp-sphere Sλ = {y ∈ Rd+; |y| = λ}. We have restricted the y variables to the positive quadrant

Rd+ as in this case |y|p =
∑
ypi which is easier to work with. Let f := 1A be the indicator function

of a measurable set A ⊆ [0, N ]d. As is standard in enumerating configurations, we introduce the
counting function

Nλ(f) :=

∫
Rd

∫
Sλ

f(x)f(x+ y)f(x+ 2y) dσλ(y) dx. (2.1)
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Clearly if Nλ(f) > 0 then A must contain a 3-progression x, x + y, x + 2y with |y| = λ. We will
define the measure σλ via the oscillatory integral

σλ(y) := λ−d+pχ+(y)

∫
R
ei (|y|

p−λp)t dt, (2.2)

where χ+(y) is the indicator function of the positive quadrant Rd+. It is well-known (see [7], Ch.2)
that the above oscillatory integral defines an absolutely continuous measure with respect to the
surface area measure on Sλ whose density function is |∇Q(y)|−1 with Q(y) = |y|p. The normalizing
factor λ−d+p is inserted to ensure that σλ(Sλ) = σ1(S1) > 0, which is independent of λ.

Let ψ be a Schwarz function such that 0 ≤ ψ ≤ 1, ψ(0) = 1 and ψ̂ ≥ 0 is compactly supported.
Define the quantity

ωλ(y) := λ−d+pχ+(y)

∫
R
eit (|y|p−λp)ψ(λpt) dt. (2.3)

Note that by scaling

ωλ(y) = λ−dω(y/λ) = λ−d ψ̂ ( |y/λ|p − 1 ), (2.4)

hence ωλ is compactly supported on B(0;Cλ) with∫
ωλ(y) dy =

∫
ω(y) dy = Cω > 0.

Also define

Mλ(f) :=

∫
Rd

∫
Rd+
f(x)f(x+ y)f(x+ 2y)ωλ(y) dy dx. (2.5)

The first step is to show that this quantity is large.

Proposition 2.1. Let 0 < δ ≤ 1 and let A ⊆ [0, N ]d be such that |A| ≥ δNd. Then there exists a
constant c(δ) > 0 depending only on δ such that for 0 < λ� N ,

Mλ(1A) ≥ c(δ)Nd. (2.6)

As we will see in Section 3, the proof of this proposition is in essence Roth’s theorem adapted to
the Euclidean setting (see [1], Appendix A, Theorem 3) combined with a “symmetrization trick”,
executed in Lemma 3.1, to ensure that A can be replaced by a similar set of large density that is
symmetric about the coordinate hyperplanes.

Next, we define a variant ofMλ indexed by a small ε > 0 which is a good approximation to Nλ(f).
Let

ωελ(y) := λ−d+p

∫
R
eit (|y|p−λp)ψ(ελpt) dt. (2.7)

It is easy to see that

ωελ(y) = λ−dε−1ψ̂

(
|y/λ|p − 1

ε

)
= λ−dωε1(y/λ). (2.8)

Define

Mε
λ(f) :=

∫
Rd

∫
Rd+
f(x)f(x+ y)f(x+ 2y)ωελ(y) dx dy. (2.9)

We will establish the error estimate
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Proposition 2.2. Let f : [0, N ]d → [−1, 1] and let 0 < ε < 1. Then there exist constants
γ = γp > 0 and Cp,d > 0 both independent of λ such that for 0 < λ� N ,

|Nλ(f)−Mε
λ(f)| ≤ Cp,dεγd−1Nd. (2.10)

In particular, γp is independent of d. The constant Cp,d ↗ ∞ as p → 1 or 2, while γp → 0 as
p↗∞.

The proof of Proposition 2.2 is based on two facts that may be of independent interest. The first is
an inequality showing that the so-called U3-uniformity norm of Gowers [6] controls expressions like
Nλ(f). Let us recall the definition of the U3 norm for a compactly supported bounded measurable
function g:

‖g‖8U3(Rd) =

∫
(x,y)∈Rd×R3d

( ∏
ν∈{0,1}3

ḡν(x+ ν1y1 + ν2y2 + ν3y3)
)
dxdy, (2.11)

where ν1, ν2, ν3 can take the values 0 or 1, ḡν = ḡ if ν1 + ν2 + ν3 is odd and ḡν = g otherwise.

Lemma 2.1. Let f : [0, N ]d → [−1, 1] and let 0 < ε < 1. Then for 0 < λ� N one has

|Nλ(f)−Mε
λ(f)| . Nd ‖χ+(σ − ωε1)‖U3 . (2.12)

While it is not apriori clear how to define the U3-norm of the measure σ defined in (2.2), we note
that ωε1 → σ weakly as ε → 0. To prove (2.12), we will first establish that {ωη1} is a Cauchy
sequence with respect to the U3-norm and then define ‖σ− ωε1‖U3 := limη→0 ‖ωη1 − ωε1‖U3 . We will
also show that

Lemma 2.2. Let 0 < ε < 1, p > 1, p 6= 2. If d > 8rp with rp = max(p+ 1, 2p− 1), then one has

‖χ+(σ − ωε1)‖U3 ≤ Cp,dε
d

8rp
−1
. (2.13)

where the constant Cp,d has the same behaviour as described in Proposition 2.2.

Let us note in passing that (2.12) and (2.13) yield (2.11) with γ = 1/(8rp). The proof of Lemma

2.2 uses in an essential way that on Rd+ the norm is defined by the expression |y|p =
∑

i y
p
i for some

p > 1, p 6= 2. In particular, the fact that xpi + (xi + 2yi)
p − 2(xi + yi)

p does not vanish identically
for p 6= 1, 2 plays a pivotal role. Estimate (2.13) does not hold for the Euclidean l2-metric or the
l1-metric.

2.1.2. Multilinear Calderón-Zygmund singular integral operators. The final ingredient in the proof
of Theorem 2.2 is an estimate given in [8] for certain multilinear operators similar to the bilinear
Hilbert transform. In order to describe the form in which we need this estimate, let us fix 0 < ε� 1
and define the constant c1(ε) as follows,

c1(ε)

∫
ω(y) dy =

∫
ωε1(y) dy. (2.14)

We will see in Lemma 4.1 that c1(ε) ≈ 1, i.e. is bounded by two positive constants depending only
on the dimension d. Write kε(y) := ωελ(y)− c1(ε)ωλj (y), and

Eλ(f) :=Mε
λ(f)− c1(ε)Mλ(f) =

∫ ∫
f(x)f(x+ y)f(x+ 2y) kε(y) dy dx, (2.15)

so that by (2.14) one has the cancellation property∫
kε(y) dy =

∫
(ωελ(y)− c1(ε)ωλ(y)) dy =

∫
(ωε1(y)− c1(ε)ω(y)) dy = 0. (2.16)

The key estimate concerning the operator Eλ is the following:
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Proposition 2.3. Suppose that {λj : 1 ≤ j ≤ J} is a lacunary sequence (finite or infinite) with

λj+1 ≥ 2λj for all j. Then for any f : [0, N ]d → [−1, 1],

J∑
j=1

|Eλj (f)|2 ≤ CεNd||f ||44 ≤ CεN2d,

where the constant Cε depends only on the quantity ε used to define Eλ and is in particular, inde-
pendent of f and the number J of elements in the lacunary sequence.

We provide details of this result in Section 5.

Proof of Theorem 2.2. Assuming Propositions 2.1, 2.2 and 2.3 for now, the proof proceeds by
contradiction. Assume that there exist arbitrarily large N , a measurable set A ⊆ [0, N ]d with
|A| ≥ δNd, and a sequence of non-admissible progression gaps λ1 < λ2 < · · · < λJ � N for some
J ≥ J(δ), such that Nλj (f) = 0 for f = 1A. The sequence may be chosen to be lacunary, and J
may be assumed to be arbitrarily large as well, by choosing N large enough. Thus, for 1 ≤ j ≤ J ,

0 = Nλj (f) = c1(ε)Mλj (f) +
[
Nλj (f)−Mε

λj
(f)
]

+ Eλj (f)

In view of Propositions 2.1 and 2.2, and recalling that c1(ε) ≈ 1, we find that for some sufficiently
small ε depending on p, d and δ, the inequality

c(δ)

2
Nd ≤

(
c(δ)− Cp,dεγd−1

)
Nd ≤

∣∣c1(ε)Mλj (f) +
[
Nλj (f)−Mε

λj
(f)
]∣∣ =

∣∣Eλj (f)
∣∣

holds for every 1 ≤ j ≤ J . Squaring both sides and summing over all j ≤ J yields, after an
application of Proposition 2.3 with f = 1A,

c(δ)JN2d ≤
J∑
j=1

|Eλj (f)|2 ≤ CεN2d.

This implies that J ≤ Cp,d,δ, contradicting the hypothesis that J can be chosen arbitrarily large. �

3. The main term

We now set about proving the main propositions leading up to the theorem. In this section we
prove Proposition 2.1, via an application of Roth’s theorem on compact abelian groups (see [1],
Appendix A, Theorem 3). The compact group of interest is of course the d-dimensional torus Πd.

Our first task is to justify that without loss of generality, the set A can be chosen to be symmetric
about the coordinate hyperplanes, that is A = τ i(A) where τ i(xi) = −xi, τ i(xj) = xj (j 6= i), for
all 1 ≤ i ≤ d. For a given t ∈ R let τ it denote the reflection τ it (xi) = 2t− xi, τ it (xj) = xj for j 6= i.

Lemma 3.1. Let 0 < δ < 1, N > 1 and let A ⊆ [0, N ]d such that |A| ≥ δNd. Then there exists a

point α = (αi)1≤i≤d such that |A′| ≥ δ′Nd, where A′ =
[⋂

1≤i≤d τ
i
αi(A)

]
∩A and δ′ ≥ 2−2d+1δ2d > 0.

Proof. By scaling one may assume A ⊆ [0, 1]d, |A| ≥ δ. We will inductively define a family of sets
A ⊃ A1 ⊃ . . . ⊃ Ad and finally set A′ = Ad. Write f = 1A, and estimate, using the Cauchy-Schwarz
inequality∫∫

(x1,t)∈[0,1]2

∫
x′∈[0,1]d−1

f(x1, x
′)f(2t− x1, x

′) dt dx1 dx
′

=
1

2

∫
Rd−1

(∫
R
f(x1, x

′) dx1

)2

dx′ ≥ δ2

2
.
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Since for a fixed t,

|A ∩ τ1
t (A)| =

∫
[0,1]

∫
[0,1]d−1

f(x1, x
′)f(2t− x1, x

′) dx′ dx1,

and is vanishing unless 0 ≤ t ≤ 1, there must exist some t = α1 such that |A ∩ τ1
α1

(A)| ≥ δ2/2.

Set A1 := A∩ τ1
α1

(A) and δ1 := δ2/2. Now repeat the procedure inductively in each coordinate for
i = 2, . . . , d to generate the points α2, . . . , αd and the sets A2 ⊃ . . . ⊃ Ad. It is immediate from
the construction that |Ai| ≥ δi where δ1 = δ2/2 and δi+1 = δ2

i /2 and that the set Ai is invariant

under the reflections τj(αj) for all 1 ≤ j ≤ i. An easy calculation shows that |Ad| ≥ 2−2d+1δ2d and
satisfies the conclusion of the lemma with α = (α1, . . . , αd). �

Proof of Proposition 2.1. If we define A′′ := A′−α with A′ and α constructed in the above lemma,
then A′′ ⊆ [−N,N ]d will be symmetric with respect to all the coordinate hyperplanes and will have

density δ′′ ≥ 2−3d+1δ2d > 0. Since Mλ(1A) ≥ Mλ(1A′) = Mλ(1A′′), we will assume without loss
of generality for the remainder of this section that A ⊆ [−N,N ]d is invariant under all reflections
xi → −xi. Then it is easy to see that for such f = 1A,

2dMλ(f) =M′λ(f) :=

∫
Rd

∫
Rd
f(x)f(x+ y)f(x+ 2y)ω̃λ(y) dx dy,

where ω̃λ is defined the same way as ωλ in (2.3), except without the factor χ+(y). Thus in proving
Proposition 2.1 we may omit the restriction y ∈ Rd+.

Fix δ ∈ (0, 1] and λ� N for a sufficiently large N . Consider a real-valued function f : [−N,N ]d →
[0, 1] with

∫
f ≥ δNd. Equipartition the cube [−N,N ]d in the natural way into disjoint boxes with

sides parallel to the coordinate axes and length ` = cλ by choosing a sufficiently small number
c > 0 so that N/l is a positive integer. Enumerate the boxes by {Bi : 1 ≤ i ≤ L}. Each box Bi
may then be identified with its leftmost endpoint xi, so that Bi = [0, `]n + xi.

We split f into pieces restricted to each box. More precisely, define gi(x) : [0, `]d → [0, 1] by

gi(x) = 1[0,l]n(x+ xi)f(x+ xi), so that f =
∑L

i=1 gi on [−N,N ]d. The non-negativity of f implies
the bound

M′λ(f) ≥
L∑
i=1

∫∫
x,y∈Rd

gi(x)gi(x+ y)gi(x+ 2y)ωλ(y) dy dx. (3.1)

Recall from (2.4) that ωλ(y) = λ−d ψ̂ ( |y/λ|p−1 ); hence we may choose ψ such that ψ̂ ( |y/λ|p−1 ) ≥
1/10 for y ∈ [−`, `]d. Then (3.1) yields

M′λ(f) ≥ λ−d

10

L∑
i=1

∫∫
x,y∈Rd

gi(x)gi(x+ y)gi(x+ 2y) dy dx. (3.2)

Now identify Πd with the cube [−1
2 ,

1
2 ]d. After a change of variable (x, y) 7→ 10`(x, y), each summand

on the right hand side of (3.2) may be written as

(10`)2d

∫∫
x,y∈Rd

gi(10`x)gi(10`(x+ y))gi(10`(x+ 2y)) dy dx

=(10`)2d

∫∫
x,y∈Πd

gi(10`x)gi(10`(x+ y))gi(10`(x+ 2y)) dy dx.
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Note that the support assumptions on gi dictate that the integrand is supported on [− 1
10 ,

1
10 ]2d ⊂ Πd,

as indicated in the last step. If we also have that∫
Πd
gi(10`x) dx ≥ η > 0 for some index i, (3.3)

then Roth’s theorem on compact abelian groups would imply that for such an index∫∫
Πd×Πd

gi(10`x)gi(10`(x+ y))gi(10`(x+ 2y)) dx dy ≥ c0(d, η),

where c0(d, η) > 0 is a constant depending only on d and η. We will prove in Lemma 3.2 below
that (3.3) holds with η = δ(10)−d/2 for at least δL/2 indices i. Summing over all these indices in
(3.2) then leads to the bound

M′λ(f) ≥ c0(d, η)λ−d
δ

2
L(10`)2d = c(d, δ),

as claimed. �

Lemma 3.2. The relation (3.3) holds with η = δ(10)−d

2 for at least δL/2 indices i.

Proof. This is a simple pigeonholing argument. Let I denote the number of indices i for which the
integral inequality in (3.3) holds. After a scaling change of variable, this is the same set of indices
i for which

∫
[0,`]d gi(x) dx ≥ (δ/2)`d. By our hypothesis on f ,∫

f(x) dx =
L∑
i=1

∫
gi(x) dx ≥ δNd. (3.4)

On the other hand, 0 ≤ gi ≤ 1 is supported on [0, `]d, so ||gi||1 ≤ `d for trivial reasons. This leads
to the estimate

L∑
i=1

∫
gi(x) ≤ (δ/2)Nd + I`d. (3.5)

for each 1 ≤ i ≤ L. Combining the lower bound in (3.4) with the upper bound in (3.5) and recalling
that L = Nd/`d leads to the claimed statement. �

4. Error estimates.

As indicated in the introduction, our main objective here is to prove Proposition 2.2, which is a
direct consequence of Lemma 2.1 and 2.2. Before turning our attention to the proof of these lemmas,
let us first make the simple but important observation that

∫
ωε1(y) dy ≈ 1 uniformly for sufficiently

small ε > 0. Let νp :=
∣∣{y; |y|p ≤ 1}

∣∣, then by homogeneity
∣∣{y; |y|p ≤ η}

∣∣ = νp η
d. This fact was

used in the proof of Theorem 2.2 in order to bound from below the main term c1(ε)Mλj (f).

Lemma 4.1. There exist constants 0 < c1 < c2 depending only on the function ψ and the parameter
d and p such that

c1 ≤
∫
Rd
ωε1(y) dy ≤ c2, (4.1)

uniformly for 0 < ε < 1
10d .

Proof. By the definition of the function ψ we have |ψ̂(t)| ≥ c for |t| ≤ τ for some constants c > 0
and 0 < τ ≤ 1. Then by (2.7) one has∫

ωε1(y) dy ≥ c

ε

∣∣{y; 1− τε ≤ |y|p ≤ 1 + τε}
∣∣ =

cνp
ε

(
(1 + τε)d/p − (1− τε)d/p

)
≥ c1,
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uniformly for 0 < ε ≤ 1/10d as p > 1. Similarly, as 0 ≤ ψ̂ ≤ 1 and ψ̂ is supported on (−2, 2),∫
ωε1(y) dy ≤ 1

ε

∣∣{y; 1− 2ε ≤ |y|p ≤ 1 + 2ε}
∣∣ =

νp
ε

(
(1 + 2ε)d/p − (1− 2ε)d/p

)
≤ c2.

�

Since ωε1(y) is invariant under reflections to the coordinate hyperplanes we have that∫
χ+(y)ωε1(y) dy = 2−d

∫
ωε1(y) dy,

and the above lemma holds for χ+(y)ωε1(y) as well.

To prove Lemma 2.1 we need the following result.

Lemma 4.2. Let f : [−N,N ]d → [−1, 1] and g : [0, λ]d → [−1, 1] be given functions. Then∫
x,y∈Rd

f(x)f(x+ y)f(x+ 2y)g(y) dx dy . Nd λd/2 ‖g‖U3 , (4.2)

where the implicit constant depends only on d.

Proof. The proof involves several changes of variables and successive applications of the Cauchy-
Schwarz inequality. Set

T =

∫
x,y∈Rd

f(x)f(x+ y)f(x+ 2y)g(y) dx dy.

Applying the Cauchy-Schwarz inequality in the x integration to get

T 2 ≤ Nd

∫
x

∫
y

∫
y′
f(x+ y)f(x+ 2y)f(x+ y′)f(x+ 2y′)g(y)g(y′) dx dy dy′

Use the substitution y′ = y + h followed by the substitution x→ x− y, and define

∆hF (x) = F (x+ h)F (x)

for a generic complex valued function F . Then one may write

T 2 ≤ Nd

∫
x

∫
y

∫
h

∆hf(x)∆2hf(x+ y)∆hg(y) dx dy dh.

The integrals in y, h may be restricted to a region with |y|, |h| . λ due to the support of g. Then
another application of Cauchy-Schwarz in the x and h integration gives

T 4 . N3dλd
∫
x,h,y,y′

∆2hf(x+ y)∆2hf(x+ y′)∆hg(y)∆hg(y′) dx dy dh dy′

Again use the substitutions y′ = y + k and x→ x− y in turn to get

T 4 . N3dλd
∫
x,y,k,h

∆2hf(x)∆2hf(x+ k)∆hg(y)∆hg(y + k)dx dy dh dk.

One final application of the Cauchy-Schwarz inequality in x and h and k integration gives

T 8 . N7dλ4d

∫
x,y,h,k,y′

1[0,N ]d(x)∆hg(y)∆hg(y′)∆g(y + k)∆hg(y′ + k)dx dy dy′ dh dk.

The x integration may be carried out, and the applying the substitution y′ → y + l gives the final
form

T 8 . N8dλ4d

∫
y,h,k,l

∆h,k,lf(y) dy dh dk dl (4.3)
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where ∆h,k,l is well defined as the composition of the operators ∆h, ∆k, and ∆l. The integral is
easily verified to be ‖g‖8U3 , which completes the proof. �

Proof of Lemma 2.1. As indicated in the introduction, the right hand side of (2.12) is to be inter-
preted as

||χ+(σ − ωε1)||U3 := lim
η→0
||χ+(ωη1 − ω

ε
1)||U3 .

Since the integral representation of

Nλ(f)−Mε
λ(f) = lim

η→0
Mη

λ(f)−Mε
λ(f)

is of the form (4.2), we may apply Lemma 4.2 with g(y) = χ+(y)
(
ωηλ(y)− ωελ(y)

)
to get∣∣Nλ(f)−Mε

λ(f)
∣∣ . Ndλd/2 lim

η→0
||χ+

(
ωηλ − ω

ε
λ

)
||U3 .

Since ωελ is a rescaled version of ωε1, scaling properties of the U3 norm imply that

||χ+

(
ωηλ − ω

ε
λ

)
||U3 = λ−dλd/2||χ+

(
ωη1 − ω

ε
λ

)
||U3 ,

which leads to the claimed upper bound. �

Next we turn to the proof of Lemma 2.2. In what follows we assume that λ and N � λ are fixed,
and f is the characteristic function of a set A ⊂ [−N,N ]d with measure δNd. First we need an
estimate for one-dimensional scalar oscillatory integrals of the following type.

Lemma 4.3. Let 1 < p < ∞, p 6= 2. For a smooth cut-off function φ, let φ+ be its restriction to
the positive real numbers and define the integral

I(t) :=

∫
y,h,k,l∈R

4h,k,l

(
φ+(y)eit|y|

p
)
dy dh dk dl. (4.4)

Then there exists a constant r = r(p) > 0 such that

|I(t)| ≤ Cp|t|−
1
r , for |t| ≥ 1. (4.5)

One may take r(p) = p + 1 for 1 < p < 2, and r(p) = 2p − 1 for p > 2. The constant Cp is finite
in the indicated range of p, and tends to infinity as p→ 1 or 2.

Proof. Replacing y + h by a new variable y′, the integral I(t) may be rewritten as

I(t) =

∫
|Ik,l(t)|2 dk dl,

where

Ik,l(t) =

∫
4k,lφ+(y) eitψk,l(y) dy,

with

4k,lφ+(y) = φ+(y)φ+(y + k)φ+(y + l)φ+(y + k + l),

ψk,l(y) = yp + (y + k + l)p − (y + k)p − (y + l)p.

The reason we can write ψk,l(y) in this form is that y, y+ k, y+ l, y+ k+ l are all positive on the
support of 4k,lφ+.
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It is clear that Ik,l(η) is uniformly bounded, hence I(t) receives small contribution from regions
where at least one of the integration variables k, l is small. For a small parameter 0 < η < 1 to be
chosen later, we may therefore write

I(t) =

∫
|k|,|l|≥η

|Ik,l(t)|2 dk dl +O(η).

We now estimate the integral Ik,l(t) for fixed k, l assuming |k|, |l| ≥ η. Introducing a smooth
partition of unity, we have Ik,l(t) = I ′k,l(t) + Jk,l(t), where the domain of integration of I ′k,l(t)

ranges over those y for which at least one of the quantities y, y + k, y + l, y + k+ l is O(η). Thus
I ′k,l(t) = O(η).

For Jk,l(t) one may write, using Taylor’s remainder formula

ψk,l(y) = klp(p− 1)

∫
[0,1]2

(y + uk + sl)p−2 du ds.

Therefore its derivative is given by

ψ′k,l(y) = klp(p− 1)(p− 2)

∫
[0,1]2

(y + uk + sl)p−3 du ds.

By our assumptions, we have that

η . y + uk + sl . 1,

uniformly for 0 ≤ u, s ≤ 1, and also that |k|, |l| & η. Thus for p > 1, p 6= 2,

|ψ′k,l(y)| & ηp−1,

with an implicit constant independent of k and l. Then, writing ψ = ψk,l and χ for the amplitude,
integration by parts yields

Jk,l(t) =

∫
d

dy

(
eitψ(y)

) χ(y)

itψ′(y)
dy = − 1

it

∫
eitψ(y) d

dy

(
χ(y)

ψ′(y)

)
dy

=
1

it

∫
eitψ(y)

(
χ′

ψ′
+
χψ′′

ψ′2

)
dy.

Here we have used the support properties of χ in the form ||χ||∞ =)(1) and ||χ′||∞ =)(η−1).
Therefore

|Jk,l(t)| . |t|−1 (η−p + η−2p+2) ≤ |t|−1η−r
′(p),

with r′(p) = max(p, 2p − 2) > 0. This implies that |Ik,l(t) = O(η) + O(|t|−1η−r
′
p), choosing

η := |t|−
1

rp+1 yields

|I(t)| . |t|−
1
rp , (4.6)

with r(p) = r′(p) + 1 = max(p+ 1, 2p− 1) and the lemma follows. �

Proof of Lemma 2.2. Since ωη1 − ωε1 is compactly supported, say on [−C,C]d, let us fix a smooth
cutoff function Φ(y) = φ⊗d(y) where φ is a smooth bump function supported on an interval of the
form [−2C, 2C] and identically 1 on the middle half of it. Then,

‖χ+(ωη − ωε)‖U3 = ‖Φ+(y)

∫
t
(ψ(ηt))− ψ(εt))ei(|y|

p−1)tdt||U3(dy), (4.7)

with Phi+(y) = χ+(y)Φ(y)
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Applying Minkowski’s inequality to the right hand side of the last equation (4.7) this is further
estimated by∫

t
|ψ(ηt))− ψ(εt)| ||Φ+(y)eit |y|

p ||U3(Rd)dt. (4.8)

Note that as Φ+(y)eit |y|
p

=
∏d
i=1 φ+(yi)e

it ypi , we have

||Φ+(y)eit |y|
p ||U3(Rd) = ||φ+(y)eit y

p ||dU3(R),

where the one-dimensional integrals

||φ+(y)eit y
p ||8U3(R) =

∫
y,h,k,l∈R

(
φ+(y)eit|y|

p
)
dy dh dk dl

are estimated in Lemma 4.3. Thus, we have for |t| ≥ 1

||Φ+(y)eit |y|
p ||U3(y) . |t|−

d
8r ,

with r = r(p) given in (4.5). Inserting this bound into (4.8), we complete the estimation as follows,∫
t
|ψ(ηt))− ψ(εt)| |t|−

d
8r dt ≤

∫ [
|ψ(ηt)|+ |ψ(εt)|

]
t−d/8r dt

. η
d
8r
−1 + ε

d
8r
−1 . ε

d
8r
−1

which is bounded uniformly in η provided that η � ε andd > 8r. �

5. A result from time-frequency analysis.

Here we will prove Proposition 2.3 by using the main result of [8]. The necessary verifications of
the hypotheses of [8] will be done subsequently.

Proof of Proposition 2.3. By the Cauchy-Schwarz inequality and support restrictions on f ,

|Eλj (f)|2 . Nd

∫∫∫
f(x+ y)f(x+ z)f(x+ 2y)f(x+ 2z) kεj (y)kεj (z) dydzdx

= Nd

∫∫∫
f(x)f(x+ z − y)f(x+ y)f(x+ 2z − y) kεj (y)kεj (z) dydzdx. (5.1)

Summing (5.1) for 1 ≤ j ≤ J one has

J∑
j=1

|Eλj (f)|2 . Nd

∫
f(x)KεJ(f, f, f)(x) dx, (5.2)

where the trilinear operator KεJ on the right side is given by

KεJ(f1, f2, f3)(x) :=

∫ ∫
f1(x+ z − y)f2(x+ y)f3(x+ 2z − y)Kε

J(y, z) dy dz, (5.3)

with integration kernel

Kε
J(y, z) =

J∑
j=1

kεj (y)kεj (z), where kεj(y) = ωλj (y)− c1(ε)ωλj (y). (5.4)

We will justify in Lemma 5.1 below that this is a Calderón-Zygmund kernel, Lp mapping properties
of associated operators of the type given in (5.3) are studied by Muscalu, Tao and Thiele [8].
Indeed, by Theorem 1.1 in [8] one has the estimate

‖KεJ(f, f, f)‖L4/3(Rd) ≤ Cε ‖f‖3L4(Rd), (5.5)
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with a constant Cε > 0 independent of J and the sequence λ1 < . . . < λJ . Then

J∑
j=1

|Eλj (f)|2 . Nd

∫
f(x)KεJ(f, f, f)(x) dx

≤ CεN
d ‖KεJ(f, f, f)‖L4/3(Rd) ‖f‖L4(Rd) ≤ CεNd||f ||44, (5.6)

as claimed. �

Begin by rewriting (5.6) as

KεJ(f1, f2, f3)(x) :=

∫∫∫
(Rd)3

eix·(ξ1+ξ2+ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)m(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3, (5.7)

where

m(ξ1, ξ2, ξ3) =

∫∫
(Rd)2

Kε
J(y, z)e−iy·(ξ1−ξ2+ξ3)eix·(ξ1+2ξ3)dy dz

= K̂ε
J(−ξ1 + ξ2 − ξ3, ξ1 + 2ξ3) (5.8)

Set

Γ = {(ξ1, ξ2, ξ3, ξ4) ∈ (Rd)4 : ξ1 + ξ2 + ξ3 + ξ4 = 0}, and (5.9)

Γ′ = {(ξ1, ξ2, ξ3, ξ4) ⊂ Γ : ξ1 − ξ2 + ξ3 = 0, ξ1 + 2ξ3 = 0, (5.10)

so that dim(Γ) = 3d and dim(Γ′) = d. By taking the Fourier transform one may re-express KεJ as
a multiplier, namely,

K̂εJ(f1, f2, f3)(−ξ4) :=

∫
Γ
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)m(ξ1, ξ2, ξ3, ξ4) dξ1 dξ2 dξ3, (5.11)

identifying the operator KεJ with the ones studied in [8]. The only difference is that the functions

fi are now defined on Rd instead of on R; however this does not affect the arguments given there.
To clarify, Γ′ is a graph over d of the canonical variables, and KεJ generates a 4-linear form, so
in the notation of [3], k = d and n = 4. Thus the rank of the operator as described in this
paper is m = k/d = 1, an integer < 2 = n/2. As has been pointed out in page 295 of [3], the
higher-dimensional adaptation of the main result of [8] in this setting of integral rank is fairly
straightforward, provided certain requirements on the multiplier is met. Thus, in order to apply
the main result of [8] one needs to establish certain growth and differentiability properties of the
multiplier m(ξ). This is the goal of the following lemma.

Lemma 5.1. Given an integration kernel KJ as in (5.4), with the summands obeying the cancella-
tion condition (2.16), let m(ξ) be the associated multiplier defined in (5.8), where ξ = (ξ1, . . . , ξ3) ∈
R3d is a coordinate system identifying the subspace Γ. Then for any multi-index α ∈ Z3d

≥0 one has
the estimate

|∂αξm(ξ)| ≤ Cα,ε (dist(ξ,Γ′))−|α|. (5.12)

Here Γ and Γ′ are as in (5.9) and (5.10).

Remark: The crucial point here is that the constant Cα,ε is independent of J and the lacunary
sequence λ1 < . . . < λJ . Also the above estimate is needed just up to some fixed finite order. Once
this is established our main result Theorem 2.2 follows as explained at the end of Section 2.

Proof. Since m is essentially K̂ε
J composed with a linear transformation, we study the latter function

in detail. The relation (5.4) implies that

K̂ε
J(η, ζ) =

J∑
j=1

k̂εj (η)k̂εj (ζ)
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and

k̂εj (η) =

∫
y∈Rd

eiy·η
(
ωελj (y)− c1(ε)ωλj (y)

)
dy = ω̂ε1(λjη)− c1(ε)ω̂(λjη).

Let us recall the definitions ωε1(y) = ε−1ψ̂((|y|p − 1)/ε), where ω(y) = ω1
1(y) with ψ̂ is a compactly

supported smooth function. Therefore for all multi-indices α

|∂αη ω̂ε1(η)| ≤ Cα. (5.13)

Integrating by parts k times in the integral expression for ∂αη ω
ε
1 we also obtain

|∂αη ω̂ε1(η)| ≤ Cα,k ε−|α| (1 + |η|)−k. (5.14)

Thus for any k ∈ N

|∂αη k̂εj (η)| ≤ Cα,k ε
−|α| (1 + |λjη|)−k. (5.15)

The cancellation property (2.16) gives that k̂εj (0) = 0, which leads to the additional pointwise
estimate

|k̂εj (η)| ≤ C λj |η|. (5.16)

This implies that K̂ε
J(0, ζ) = K̂ε

J(η, 0) = 0 and

|K̂ε
J(η, ζ)| .

∑
j≤J

min

(
λj |η|,

1

λj |η|

)
. 1 (5.17)

as the sequence µj := λj |η| is lacunary and ‖k̂εj‖∞ . 1. This shows that the multiplier m(ξ) defined

in (5.11) is bounded. To estimate its partial derivatives we apply (5.15) with k = |α| + |β| + 1 to
write

|∂αη ∂
β
ζ K̂

ε
J(η, ζ)| ≤ Cα,β,ε

∑
j≤J

λ
|α|+|β|
j min

(
(1 + |λjη|)−|α|−|β|−1, (1 + |λjζ|)−|α|−|β|−1

)
≤ Cα,β,ε min (|η|−|α|−|β|, |ζ|−|α|−|β|) ≤ Cα,β,ε (|η|+ |ζ|)−|α|−|β|.

Here we have used the fact that∑
j≤J

µkj (1 + µj)
−k−1 ≤

∑
j:µj≤1

µj +
∑

j:µj≥1

µ−1
j ≤ C,

for the lacunary sequences µj := λj |η| and µj := λj |ζ| with k = |α| + |β| ≥ 1. By (5.8) this leads
to the estimate

|∂αξ m(ξ)| ≤ Cα,ε (| − ξ1 + ξ2 − ξ3|−|α| + |ξ1 + 2ξ3|−|α|) ≤ C ′α,ε dist(ξ,Γ
′)−|α|.

for ξ = (ξ1, ξ2, ξ3) ∈ R3d ' Γ and any multi-index α ∈ (Z+)3d. This proves Lemma 5.1. �
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