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Abstract

The irregularities of distribution of lattice points on spheres and on
level surfaces of polynomials are measured in terms of the discrepancy
with respect to caps. It is found that the discrepancy depends on
diophantine properties of the direction of the cap. If the direction of
the cap is diophantine, in case of the spheres, close to optimal upper
bounds are found. The estimates are based on a precise description of
the Fourier transform of the set of lattice points on polynomial surfaces.
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1 Introduction.

The uniformity of the distribution of lattice points on spheres has been
extensively studied and proved in dimension at least 4 , see [P],[GF], and
later in dimension 3 [D] using difficult estimates for the Fourier coefficients
of modular forms.

Here we study the discrepancy on spheres, and more generally on level
surfaces of certain positive homogeneous polynomials, with respect to caps,
which are intersections of the surface with half-spaces.

To describe our results first in case of spheres, let Sn−1 denote the unit
sphere in Rn, and for λ ∈ N let Zλ be the set of lattice points of length λ1/2

projected to the unit sphere: Zλ = {λ−1/2 m : m ∈ Zn, |m|2 = λ}. Here
|m| = (m2

1 + . . . + m2
n)1/2 denotes the Euclidean length. Let Nλ = |Zλ| be

the number of lattice points of length λ1/2.
For given 0 ≤ a < 1 and a unit vector ξ define the spherical cap

Ca,ξ = {x ∈ Sn−1 : x · ξ ≥ a}, and the corresponding discrepancy as the
difference between the actual and the expected number of points of Zλ which
lie on the cap Ca,ξ:

Dn(ξ, λ) = |Zλ ∩ Ca,ξ| −Nλ σ(Ca,ξ) (1)

where σ denotes the normalized surface area measure on Sn−1. Our aim
is to prove upper bounds for the discrepancy when the direction of the cap
ξ satisfies certain diophantine conditions, which we describe below.

A point α ∈ Rn−1 is called diophantine if for every ε > 0 there exists a
constant Cε > 0 such that for all q ∈ N

‖qα‖ = min
m∈Zn−1

|qα−m| ≥ Cε q−
1

n−1
−ε (2)

Correspondingly a point ξ ∈ Sn−1 is called diophantine, if for every
1 ≤ i ≤ n for which ξi 6= 0, the point αi ∈ Rn−1 is diophantine, where the
coordinates of αi are obtained by dividing each coordinate of ξ by ξi and
deleting the i−th coordinate. It is not hard to show, see the next section,
that the complement of diophantine points has measure 0 in Rn−1 and hence
in Sn−1 as well.
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Theorem 1. Let n ≥ 4 and let ξ ∈ Sn−1 be a diophantine point. Then for
every ε > 0, one has

|Dn(ξ, λ)| ≤ Cξ,ε λ
n−1

4
+ε (3)

We note that for n ≥ 4, and if n = 4 assuming that 4 does not divide λ,
one has that Nλ & λ

n
2
−1, thus (1.3) implies

|Dn(ξ, λ)| ≤ Cε N
1
2
+ 1

2(n−2)
+ε

λ (4)

On the other hand it is known that for any set of N points on the unit
sphere Sn−1 the L2 average of the discrepancy is at least: N

1
2
− 1

2(n−1) , see
[Be] and [M2]. Thus our estimates are asymptotically sharp as n →∞.

Also, such estimates are not possible, in high dimensions, without some
restrictions on the direction ξ. Indeed, if ξ = (0, . . . , 0, 1) then the boundary

of the cap Ca,ξ can contain as many as λ
n−3

2 ≈ N
1− 1

n−2

λ lattice points for
certain values of a. Thus the discrepancy must change by this amount at
such values of a.

In low dimension when n = 4, the best previous estimate for the nor-
malized discrepancy D(ξ, λ)/Nλ was given in [GF] of the order of λ−1/5+ε

while we get the improvement λ−1/4+ε. In case n = 4 and λ = 4k there are
only 24 lattice points of length λ1/2, estimates for the discrepancy become
trivial in such degenerate cases.

Next we describe similar estimates in case where spheres are replaced by
level surfaces of positive homogeneous polynomials. Let p(m) = p(m1, . . . ,mn)
be a positive homogeneous integral polynomial of degree d. Let Sp be the
unit level surface of the polynomial p, and let σp = cp

dSp

|∇p| where dSp denote
the surface-area measure on Sp and ∇p stands for the gradient of p. The
constant cp > 0 is chosen to have total measure 1. For a > 0 and a unit
vector ξ, define the cap Ca,ξ = {x ∈ Sp ; a ≤ x · ξ} as before.

For a positive integer λ let Zp,λ = {λ− 1
d m : m ∈ Zn, p(m) = λ},

Np,λ = |Zp,λ|, and define the discrepancy by

Dp(ξ, λ) = |Zp,λ ∩ Ca,ξ| −Np,λ σp(Ca,ξ) (5)

To ensure that there are enough many solutions of the diophantine equa-
tion p(m) = λ, we assume that p(z) is non-singular, that is if ∇p(z) 6= 0 for
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z ∈ Cn, z 6= 0. Indeed this condition excludes polynomials like p(z) = zd
1 or

p(z) = (z1
1+. . .+z2

n)
d
2 . It is implicit in earlier works on the Hardy-Littlewood

method of exponential sums and shown in [M1], that if n > (d− 1)2d and p
is non-singular, then there is an infinite arithmetic progression Λ, such that
for each λ ∈ Λ one has Np,λ & λ

n
d
−1. We’ll refer to such a set Λ as a set of

regular values of p.

Theorem 2. Let n > (d− 1)2d, and let p(m) : Zn → Z be a non-singular,
positive, homogeneous, integral polynomial of degree d. If ξ ∈ Sn−1 is a
diophantine point, then there is a η > 0 depending only on the dimension n
and the degree d, such that

|Dp(ξ, λ)| ≤ Cp,ξ λ
n
d
−1−η (6)

If λ ∈ Λ is a regular value of p, then (1.6) implies

|Dp(ξ, λ)| ≤ Cp,ξ N 1−η
p,λ

again with a constant η > 0 depending only on n and d. Let us remark that
assuming the stronger condition: n > (d− 1)2d+1 one can take
η = 1

(d−1)2d which depends only on the degree d. However we do not pursue
such estimates here, as it would require to rework some of the the error
estimates in [M1] and would greatly increase the length of the paper.

For λ ∈ N let ωp,λ : Zn → {0, 1} be the indicator function of the solu-
tion set p(m) = λ. Then both estimates (1.3) and (1.6) are based on an
asymptotic formula for its Fourier transform

ω̂p,λ(ξ) =
∑

m∈Zn, p(m)=λ

e−2πi m·ξ (7)

In case spheres, when p(m) =
∑n

i=1 m2
i , such a formula was derived

in [MSW] (see Prop. 4.1) for n ≥ 5. Here we’ll introduce the so-called
Kloostermann refinement to include the case n = 4 and to obtain a better
error term.

Lemma 1. Let n ≥ 4. Then one has

ω̂λ(ξ) = γn λ
n
2
−1

∑

q≤λ
1
2

mq,λ(ξ) + Eλ(ξ) where (8)
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|Eλ(ξ)| ≤ Cε λ
n−1

4
+ε (9)

holds uniformly in ξ for every ε > 0. Moreover

mq,λ(ξ) =
∑

l∈Zn

K(q, l, λ) ψ(qξ − l) σ̃(λ
1
2 (ξ − l/q)) (10)

where

K(q, l, λ) = q−n
∑

(a,q)=1

∑

s∈(Z/qZ)n

e
2πi

a(|s|2−λ)+s·l
q (11)

σ̃ denotes the Fourier transform of the measure σ on Sn−1, and ψ is a
smooth cut-off function supported on maxj |ξj | ≤ 1/4 and constant 1 on
maxj |ξj | ≤ 1/8. Moreover one has the bounds

|σ̃(ξ)| ≤ C (1 + |ξ|)−n−1
2 (12)

|K(q, l, λ)| ≤ Cε q−
n−1

2
+ε (λ, q1)

1
2 2

r
2 (13)

where q = q12r with q1 odd, and (λ, q1) denotes the greatest common
divisor of λ and q1.

We remark that (1.12) is a standard stationary phase estimate, and
(1.13) follows from Weil’s estimate and the multiplicative properties of Kloost-
ermann sums, see Section 4 below.

The factor (λ, q1)
1
2 2

r
2 is of size λε on average, in fact one has the estimate

∑

q≤λ
1
2

qβ (λ, q1)
1
2 2

r
2 ≤ Cβ,ε λ

β+1
2

+ε (14)

The organization of the paper is as follows. In Section 2 we establish
some basic properties of diophantine points. Most of these are known but
for the sake of completeness we include their proofs. In Section 3 we prove
estimate (1.3) assuming Lemma 1. This will be shown in Section 4, using
a general form of the Kloostermann refinement proved in [H-B]. Estimate
(1.6) on the upper bound of the discrepancy for polynomial surfaces will be
shown in Section 5. The proof is essentially the same as in case of spheres,
based on asymptotic formula (0.6) proved in [M1], analogues to (1.8).
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2 Some properties of diophantine points

Let us call a points α ∈ Rn of type ε if it satisfies (1.2) with a given ε > 0.

Proposition 1. For every ε > 0 the set of points α ∈ [0, 1]n−1 of type ε has
measure 1.

Proof. If a point α is not of ”type ε” then there are infinitely many q’s
such that: ‖qξ‖ ≥ q−

1
n−1

−ε. This means there exists m ∈ Zn such that:
|ξ − m/q| ≤ q−

n
n−1

−ε. However the sum of the volume of such neighbor-
hoods around the points m/q ∈ [0, 1]n−1 is bounded by q−1−ε. The set of
points which belong to infinitely many of such neighborhoods is therefore
has measure 0.

This shows that the set of points α ∈ Rn−1 which are not diophantine
has measure 0. Indeed α is diophantine if it is of type εk = (1/2)k for
k = 1, 2, . . ., and in that case α + m is also diophantine for every m ∈ Zn.
Next we show that ‖qα‖ ≈ 1 on average if α is diophantine.

Proposition 2. Let α ∈ [0, 1]n−1 be diophantine, Q > 1 and 0 < k < n−1.
Then for every ε > 0 one has

∑

q≤Q

‖qα‖−k ≤ CεQ
1+ε (1)

Proof. Let ε > 0. Consider the set of points {qα} ∈ [−1/2, 1/2]n−1, 1 ≤ q ≤
Q, where {qα} = qα− [qα] and [qα] denotes the closest lattice points to qα.
If q1 6= q2 then

|{q1α} − {q2α}| ≥ ‖(q1 − q2)α‖ ≥ Cε Q− 1
n−1

− ε
n (2)

Thus the number of points in a dyadic annulus 2−j ≤ ‖qα‖ < 2−j+1

is bounded by 2−(n−1)j Q1+ε and the sum in (2.1) is convergent for k <
n− 1.

Proposition 3. Let ξ ∈ Sn−1 be diophantine, and assume that
maxj |ξj | = |ξn|. Let t ≥ 1 , α = (α1, . . . αn−1), αj = ξj/ξn and q = [tξn].
Then one has

‖tξ‖ ≥ 1
n
‖qα‖ (3)
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Proof. Note that

tξj = tξnαj = [tξn]αj ± ‖tξn‖αj

thus

|qαj −mj | ≤ |tξj −mj |+ ‖tξn‖
thus taking mj = [tξj ] one has

‖qαj‖ ≤ ‖tξj‖+ ‖tξn‖
and summing for 1 ≤ j ≤ n− 1 gives (1.3).

Lemma 2. Suppose ξ ∈ Sn−1 is diophantine. For t ≥ 1 and T ≥ 1, one
has for every ε > 0

‖tξ‖ ≥ Cε t−
1

n−1
−ε (4)

∫ T

1
‖tξ‖−k ≤ Cε T 1+ε (5)

for 0 < k < n− 1.

Proof. By permuting the coordinates of ξ (which does not affect the property
of being diophantine), one can assume that maxj |ξj | = |ξn|. Inequality (2.4)
follows immediately from (2.3) and the definition of a diophantine point.
Similarly (2.5) is reduced to (2.1) by observing that for a fixed q, the set of
t’s for which q = [tξn] is an interval of length at most 1/ξn ≤

√
n.

3 Upper bounds for the discrepancy

If χa denote the indicator function of the interval [a, 1 + a], then the dis-
crepancy may be written as

Dn(ξ, λ) =
∑

|m|2=λ

χa(λ−
1
2 m · ξ)−Nλ

∫

Sn−1

χa(x · ξ) dσ(x) (1)
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The function χa can be replaced with a smooth function φa,δ by making a
small error in the discrepancy. Indeed, let 0 ≤ φ(t) ≤ 1 be smooth function
supported in [−1, 1]n, such that

∫
φ = 1. Let φ±a,δ = χa±δ ∗ φδ, where

φδ(t) = δ−1φ(t δ−1) and define the smoothed discrepancy as

Dn(φ±a,δ, ξ, λ) =
∑

|m|2=λ

φ±a,δ(λ
− 1

2 m · ξ)−Nλ

∫

Sn−1

φ±a,δ(x · ξ) dσ(x) (2)

Proposition 4. One has

|Dn(ξ, λ)| ≤ max (|Dn(φ+
a,δ, ξ, λ)|, |Dn(φ−a,δ, ξ, λ)|) + Cn δNλ (3)

Proof. Note that φ−a,δ(t) ≤ χa(t) ≤ φ+
a,δ(t) thus

∑

|m|2=λ

φ−a,δ(λ
− 1

2 m · ξ) ≤
∑

|m|2=λ

χa(λ−
1
2 m · ξ) ≤

∑

|m|2=λ

φ+
a,δ(λ

− 1
2 m · ξ)

and

Nλ

∫

Sn−1

φ+
a,δ(x·ξ) dσ(x) ≥ Nλ

∫

Sn−1

χa(x·ξ) dσ(x) ≥ Nλ

∫

Sn−1

φ−a,δ(x·ξ) dσ(x)

Subtracting the above inequalities, (3.3) follows from

∫

Sn−1

(φ+
a,δ − φ−a,δ) (x · ξ) dσ(x) ≤ Cn δ

In what follows, we take δ = λ−n and write φa,δ for φ±a,δ, as our estimates
work the same way for both choices of the sign. By taking the inverse Fourier
transform of φa,δ(t) one has

∑

|m|2=λ

φa,δ(λ−1/2 m · ξ) =
∫

R
λ

1
2 φ̂a,δ(tλ

1
2 ) ω̂λ(tξ) dt (4)

∫

Sn−1

φa,δ (x · ξ) dσ(x) =
∫

R
φ̂a,δ(t) σ̃(tξ) dt (5)
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We substitute the asymptotic formula (1.8) into (3.4) and study the
contribution of each term separately:

Iq,λ =
∫

R
λ

1
2 φ̂a,δ(tλ

1
2 ) mq.λ(tξ) dt (6)

Eλ =
∫

R
λ

1
2 φ̂a,δ(tλ

1
2 ) Eλ(tξ) dt (7)

To estimate the error term in (3.7) note that

∫

R
λ

1
2 |φ̂a,δ(tλ

1
2 )| dt ≤ C

∫

R
(1 + |t|)−1(1 + δ|t|)−1 ≤ C log λ

Thus by (1.9) one has for every ε > 0

|Eλ| ≤ Cε λ
n−1

4
+ε (8)

Next, decompose the range of integration in (3.6) as

Iq,λ =
∫

|t|<1/ 8q
+

∫

|t|≥1/ 8q
= I1

q,λ + I2
q,λ (9)

A crucial point is that if |t| < 1/ 8q then ψ(qξ − l) = 0 unless l = 0
moreover ψ(tqξ) = 1 since |tqξj | < 1/ 8q for each j, hence

mq,λ(tξ) = K(q, 0, λ) σ̃(λ
1
2 tξ)

Thus by (3.6) and a change of variables: t := tλ1/2

I1
q,λ = K(q, l, λ)

∫

|t|<λ
1
2 / 8q

φ̂a,δ(t) σ̃(tξ) dt (10)

Proposition 5. One has for every ε > 0

| γnλ
n
2
−1

∑

q≤λ
1
2

I1
q,λ − Nλ

∫

Sn−1

φa,δ (x · ξ) dσ(x) | ≤ Cε λ
n−1

4
+ε (11)
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Proof. Using (1.12), one has

∫

|t|≥λ
1
2 / 8q

|φ̂a,δ(t) σ̃(tξ) | dt ≤ Cε λ−
n−1

4
+ε q

n−1
2 (12)

Thus by (3.5) and (3.10)

| I1
q,λ−K(q, 0, λ)

∫

Sn−1

φa,δ (x · ξ) dσ(x) | ≤ Cε λ−
n−1

4
+ε q

n−1
2 |K(q, 0, λ)|

Substituting ξ = 0 in (1.8) one has

|Nλ − γnλ
n
2
−1

∑

q≤λ
1
2

K(q, 0, λ)| ≤ Cε λ
n−1

4
+ε (13)

Using (1.13) and (1.14), the left side of (3.11) is estimated by

Cε


λ

n−1
4

+ε + λ
n−3

4
+ε

∑

q≤λ
1
2

qε (λ, q1)
1
2 2

r
2


 ≤ Cε λ

n−1
4

+ε (14)

Proposition 6. Let ξ ∈ Sn−1 diophantine. Then for every ε > 0

∑

q≤λ
1
2

|I2
q,λ| ≤ Cξ,ε λ−

n−3
4

+ε (15)

Proof. First, note that ψ(qξ−l) = 0 unless l = [qξ], that is the closest lattice
point to the point qξ ∈ Rn. Using the notation {qξ} = qξ − [qξ] one may
write

mq,λ(tξ) = K(q, [qtξ], λ) ψ({qtξ}) σ̃

(
λ

1
2

q
{qtξ}

)
(16)

By making a change of variables t := qt, it follows from estimates (1.12)
and (1.13)
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|I2
q,λ| ≤ Cε (λ

1
2 /q)−

n−3
2 q−

n−1
2

+ε (λ, q1)
1
2 2

r
2 Jλ (17)

where

Jλ =
∫

|t|≥1/8
|φ̂a,δ(t λ

1
2 /q)| ‖tξ‖−n−1

2 dt (18)

and ‖tξ‖ denotes the distance of the point tξ to the nearest lattice point.
For q ≤ λ1/2 one has

|φ̂a,δ(t λ
1
2 /q)| ≤ C (λ

1
2 /q)−1 |t|−1 (1 + δ|t|)−1 (19)

To estimate the integral Jλ one uses (2.5) and integrates over dyadic
intervals 2j ≤ |t| < 2j+1 (j ≥ −3). For a fixed j one obtains

∫ 2j+1

2j

t−1(1 + δt)−1 ‖tξ‖−n−1
2 dt ≤ Cε 2jε (1 + δ2j)−1 (20)

Summing over j this gives: Jλ ≤ Cε (λ
1
2 /q)−1λε. Substituting into (3.18)

|I2
q,λ| ≤ Cε λ−

n−1
4

+ε qε (λ, q1)
1
2 2

r
2 (21)

Summing over q ≤ λ1/2, and using (1.14), the Proposition follows.

Theorem 1 follows immediately from Propositions 4-6, and estimate (3.8)

4 Fourier transform of the set of lattice points on
spheres

In this section we prove the asymptotic formula (1.8). The analysis is very
similar to that of [MSW], except we use a general form of the so-called
Kloostermann refinement ([H-B] Lemma 7), to be described below.

Theorem (Heath-Brown) Let Q(m) be a polynomial with integral co-
efficients, λ, N are natural numbers and w(x) is a non-negative, bounded
function. Then one has
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∑

Q(m)=λ

w(m) =
∑

q≤N

∫ 1
qN

− 1
qN

e−2πiλτS0(q, τ)dτ + E1(λ) (1)

where

|E1(λ)| ≤ C N−2
∑

q≤N

∑

|u|≤q/2

(1 + |u|)−1 max
τ≈ 1

qN

|Su(q, τ)| (2)

Here C > 0 is an absolute constant and

Su(q, τ) =
∑

(a,q)=1

e
2πi āu−aλ

q S(a/q +τ) , S(α) =
∑

m∈Zn

e2πiαQ(m)w(m) (3)

Note that the original formulation of Lemma 7 in [H-B] is for the homo-
geneous equation F (m) = 0, which can be used for the equation Q(m) = λ
by choosing: F (m) = Q(m)− λ.

We’ll apply the above result to the polynomial Q(m) = |m|2 and choose
N = [λ

1
2 ], δ = λ−1 and w(x) = e−2πδ|x|2e2πix·ξ, for given λ ∈ N and ξ ∈ Rn.

Note that

∑

Q(m)=λ

w(m) =
∑

|m|2=λ

e−2πδ|m|2e2πim·ξ = e−2π ω̂λ(ξ)

Substituting into (4.3) with α = a/q + τ one obtains

S(a/q + τ) =
∑

m∈Zn

e
2πi a

q
|m|2

hτ,δ(m) (4)

with hτ,δ(x) = e2πi ((τ+iδ)|x|2+x·ξ). Writing m = qm1 + s where m1 ∈ Zn

and s ∈ (Z/qZ)n and applying Poisson summation in m1 one obtains

S(a/q + τ) =
∑

s∈(Z/qZ)n

e
2πi a

q
|s|2

hτ,δ(qm1 + s)
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=
∑

l∈Zn

G(a, l, q) h̃τ,δ(ξ − l/q) (5)

where G(a, l, q) is a standard normalized Gaussian sum, satisfying the
basic estimate

|G(a, l, q)| = q−n |
∑

s∈(Z/qZ)n

e
2πi

a|s|2−l·s
q | ≤ C q−

n
2 (6)

The function h̃τ,δ denotes the Fourier transform of hτ,δ on Rn, which can
be evaluated explicitly

h̃τ,δ(ξ − l/q) = (2(τ + iδ))−
n
2 e

− π|qξ−l|2
2q2(δ−iτ) (7)

On the range when |τ | ≈ 1/ qN ≈ 1/ qλ1/2, one has Re
(

1
q2(δ−iτ)

)
≥ c

for some absolute constant c > 0. Thus one has

|h̃τ,δ(ξ − l/q)| ≤ C q
n
2 λ

n
4 e−c|qξ−l|2 (8)

Also, from (4.5)

Su(q, τ) =
∑

l∈Zn

K(q, l, λ; u) h̃τ,δ(ξ − l/q) (9)

where

K(q, l, λ;u) =
∑

(a,q)=1

e
2πi āu−aλ

q G(a, l, q) (10)

Next, we derive estimates (1.13) and (1.14). Variants of these estimates
are known in the literature and are going back to the original work of Kloost-
ermann. However as it is hard to quote the exact results needed here, we
include their proofs.
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Proposition 7. Let K(q, l, λ; u) be the exponential sum defined in (4.10).
The for every ε > 0, one has

|K(q, l, λ; u)| ≤ Cε q
n−1

2
+ε (λ, q1)

1
2 2

r
2

where q = q12r with q1 odd, and (λ, q1) denotes the greatest common divisor
of λ and q1.

Proof. It is immediate from (4.6) that

|K(q, l, λ; u)| ≤ c q−n/2+1 (11)

The Gaussian sum given in (1.6) is a product of one dimensional sums.
For q odd, by completing the square in the exponent, it may be written in
the form (see also [S], Ch.4)

G(a, l, q) = q−n εn
q

(q

a

)n
e
−2πi

4̄ā |l|2
q G(1, 0, q)n

where
( q

a

)
denotes the Jacobi symbol, εq is a 4th root of unity, and ā

denotes the multiplicative inverse of a mod q. Substituting this into (4.10)
one obtains

K(q, l, λ; u) = εn
q q−nG(1, 0, q)n

∑

(a,q)=1

(q

a

)n
e
2πi

aλ+4̄ā(u−|l|2)
q (12)

The sum in (4.12) is a Kloostermann sum or Salie sum depending on
whether n is even or odd. Weil’s estimates ([S], Ch.4) imply

|K(q, l, λ; u)| ≤ Cε q−
n−1

2
+ε (λ, q)

1
2 (13)

Estimate (1.13) follows by writing q = q1q2, with q1 odd and q2 = 2r,
applying (4.13) to q1, (4.11) to q2 = 2r and using the multiplicative property

K(q, l, λ; u) = K(q1, l q̄2, λ; u q̄2
2) K(q2, l q̄1, λ; u q̄1

2) (14)

where q1q̄1 ≡ 1 (mod q2), and q2q̄2 ≡ 1 (mod q1). Property (4.14) is well-
known, and is an easy computation using the Chinese Remainder Theorem.
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Proposition 8. Let β ∈ R. Then for every ε > 0, one has

∑

q≤λ
1
2

qβ (λ, q1)
1
2 2

r
2 ≤ Cβ,ε λ

β+1
2

+ε

Proof. Let 1 ≤ µ ≤ λ1/2. First we show that

∑

q≤µ

(λ, q1)
1
2 2

r
2 ≤ Cε λε µ (15)

To see this, write d = (λ, q1) and q1 = dt. Then d divides λ and d2rt ≤ µ,
hence the left side of (4.15) is majorized by

∑

d|λ

∑

r∈N
d

1
2 2

r
2

µ

d2r
≤ Cε λε µ

By partial summation, the left side of (1.14) is estimated

Cε λε (λ
β
2 +

∑

µ≤λ
1
2

µµβ−1 ) ≤ Cε λ
β+1

2
+ε

This proves the Proposition.

Going back to (4.9), estimates (4.8) and (1.13) imply

max
τ≈ 1

qN

|Su(q, τ)| ≤ Cε λ
n
4 q

1
2
+ε (λ, q1)

1
2 2

r
2 (16)

with a constant Cε > 0 independent of u and ξ. Substituting this into (4.2)
and using (1.14) for β = 1/2 one estimates the error term by

|E1(λ)| ≤ Cε λ
n−1

4
+ε (17)

Next, we do a number of transformations on the main term in (4.1) to
arrive to the asymptotic formula (1.8) and estimate the error obtained in
each step. These are similar to those in [MSW] Proposition 4.1, except here

15



we don’t have to deal with maximal functions. The better error term of the
order of λ

n−1
4

+ε comes from inequality (1.13).

The main term in (4.1) takes the form

∑

q≤N

∫ 1
qN

− 1
qN

e−2πiλτS0(q, τ)dτ = (18)

=
∑

q≤N

∑

l∈Zn

K(q, l, λ; 0)
∫ 1

qN

− 1
qN

e−2πiλτ h̃τ,δ(ξ − l/q)

First, one inserts the cut off functions ψ(qξ− l) into the l-sum in (4.18).
Note that |qξ − l| ≥ 1/8 on the support of 1 − ψ(qξ − l) thus by (4.8) one
has

∑

l∈Zn

(1− ψ(qξ − l))|s̃τ,δ(ξ − l/q)| ≤ C (τ2 + δ2)−
n
4 e

cδ
q2(τ2+δ2) (19)

with some absolute constants C, c > 0. Using the fact that e−u ≤ Cu−
n
4

for u = τ2 + δ2 one estimates the left side by C λ
n
4 q

n
2 . Thus the total error

accumulated by inserting the cut-off functions ψ(qξ− l) in (4.19) is bounded
by

|E2(λ)| ≤ Cε λ
n
4
− 1

2

∑

q≤N

q−
1
2
+ε(λ, q)

1
2 ≤ Cε λ

n−1
4

+ε (20)

and the main term takes the form

∑

q≤N

∑

l∈Zn

K(q, l, λ; 0) ψ(qξ − l)
∫ 1

qN

− 1
qN

e−2πiλτ h̃τ,δ(ξ − l/q) (21)

Next, the integration is extended to the whole real line. Note that now
there is at most one nonzero term in the l-sum, and for |τ | ≥ 1

qN ≥ δ one
has |s̃τ,δ(ξ− l/q)| ≤ C τ−

n
2 . The total error obtained in (4.21) by extending

the integration is

16



|E3(λ)| ≤ Cε

∑

q≤N

q−
1
2
+ε(λ, q)

1
2

∫

|τ |≥ 1
qN

τ−
n
2 dτ ≤ Cε λ

n−1
4

+ε (22)

Finally by identifying the integrals (see [MSW] Lemma 6.1)

∫

R
e−2πiλτ h̃τ,δ(ξ) dτ = γ′n λ

n
2
−1 σ̃(λ

1
2 ξ) (23)

one arrives at the asymptotic formula (1.8) with error term Eλ(ξ) = E1(λ)+
E2(λ) + E3(λ). Estimate (1.9) follows from (4.17) (4.20) and (4.22). This
proves Lemma 1.

5 Level surfaces of polynomials.

The aim of this section is to emphasize that estimates for the discrepancy
with respect to caps of diophantine directions generalize to level surfaces of
polynomials of higher degree. The proof proceeds exactly as in Section 3,
using the asymptotic formula (0.6) proved in [M1], to be described below.

Let p(m1, . . . , mn) be a non-singular, positive, homogeneous form of de-
gree d, and assume that n > (d−1)2d. Then there exists an η′ > 0 depending
only on n and d, such that

ω̂λ(ξ) = γp,n λ
n
d
−1

∑

q≤λ
1
2

mq,λ(ξ) + Eλ(ξ) where (1)

|Eλ(ξ)| ≤ Cp λ
n
d
−1−η′ (2)

holds uniformly in ξ. Moreover

mq,λ(ξ) =
∑

l∈Zn

Kp(q, l, λ)ψ(qξ − l) σ̃p(λ
1
d (ξ − l/q)) (3)

Kp(q, l, λ) = q−n
∑

(a,q)=1

∑

s∈(Z/qZ)n

e
2πi

a (p(s)−λ)+s·l
q (4)

and σ̃p denotes the Fourier transform of the measure σp on the unit level
surface Sp, defined in the introduction.
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We invoke the basic estimates ([M1] (1.5) and (1.13))

|σ̃p(ξ)| ≤ C (1 + |ξ|)− κ
d−1

+1+ε (5)

|Kp(q, l, λ)| ≤ Cε q−
κ

d−1
+1+ε (6)

Here κ = n/ 2d−1 as we assume that p is non-singular, that is the singular
variety Vp = {0}. To simplify the computations, let τ = ( κ

d−1 − 2)/2 > 0.
Assuming ε < τ , the exponents − κ

d−1 + 1 + ε in (5.5) and (5.6) can be
replaced by −τ − 1.

We turn to the proof of Theorem 2. Note that the smoothing estimate
(3.3) holds in this case as well. Define Iq,λ and Eλ as in (3.6) and (3.7), with
the only change that λ1/2 is replaced by λ1/d. By (5.2) one has

|Eλ| ≤ Cp λ
n
d
−1−η′ (7)

We decompose the integral Iq,λ as in (3.9), and note that for |t| < 1/ 8q

mq,λ(tξ) = Kp(q, 0, λ) σ̃p(λ1/d tξ)

Using (5.2) and (5.4) and arguing as in Proposition 5, one obtains

| γn,pλ
n
d
−1

∑

q≤λ1/d

I1
q,λ − Nλ

∫

Sp

φa,δ (x · ξ) dσp(x) | ≤ (8)

≤ C λ
n
d
−1 (λ−η′ +

∑

q≤λ1/d

(λ
1
d /q)−τ q−τ−1) ≤ C λ

n
d
−1−η

with say η = min (η′, τ/d)/2.
By making a change of variables t := tq, it follows for (5.5) and (5.6)

|I2
q,λ| ≤ C λ−

τ
d q−1 Jλ (9)

where

Jλ =
∫

|t|≥1/8
|φ̂a,δ(t λ

1
d /q)| ‖tξ‖−τ−1 dt (10)

18



Arguing as in (3.19) and (3.20) gives: |Jλ| ≤ Cε (λ
1
d /q)−1λε (note that

0 < τ + 1 < n− 1). Thus

∑

q≤λ
1
d

|I2
q,λ| ≤ Cελ

− τ
d
+ε (11)

Theorem 2 follows from (5.7) (5.8) and (5.11).
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