DISCRETE RADON TRANSFORMS AND APPLICATIONS TO

ERGODIC THEORY
A. D. IONESCU, A. MAGYAR, E. M. STEIN, AND S. WAINGER

ABSTRACT. We prove LP boundedness of certain non-translation-invariant dis-
crete maximal Radon transforms and discrete singular Radon transforms. We
also prove maximal, pointwise, and L? ergodic theorems for certain families of
non-commuting operators.
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1. INTRODUCTION

In this paper we are concerned with LP estimates for discrete operators in
certain non-translation-invariant settings, and the applications of such estimates
to ergodic theorems for certain families of non-commuting operators. We describe
first the type of operators we consider in the translation-invariant setting. Assume
P :Z% — 7Z% is a polynomial mapping and K : R \ B(1) — C is a Calderén—
Zygmund kernel (see (1.3) and (1.4) for precise definitions). For (compactly
supported) functions f : Z4 — C we define the maximal operator

M(f)(m) —f}ig‘m Z f(m — P(n))|,

and the singular integral operator

T(f)m)= Y  K(n)f(m—P(n)).

nezd1\{0}

The maximal operator M (f) was considered by Bourgain 3], [4], [5], who showed
that

||]\7(f)||LP(Zd2) < Cp||f||LP(Zd2)v D€ (L OO] ifdy=dy=1 (1~1)

Maximal inequalities such as (1.1) have applications to pointwise and L?, p €
(1,00), ergodic theorems, see [3], [4], and [5]. A typical theorem is the following:
assume P : Z — Z is a polynomial mapping, (X, u) is a finite measure space, and
T : X — X is a measure-preserving invertible transformation. For F' € LP(X),
p € (1,00), let

A (F)(x) =

ZFTP(”) ) for any r € Z..

[n|<r

27’—1—1

Then there is a function F, € LP(X) with the property that

lim A,(F) = F, almost everywhere and in L.

r—00

In addition, F, = fX x)dp if TY is ergodic for ¢ = 1,2,. . ..

The related smgular integral operator T( f) was considered first by Stein and
Wainger [15]. Following earlier work of [1], [15], and [17], Ionescu and Wainger
[8] proved that

||T(f)||LP(Zd2) < Cp||f||LP(Zdz)> p € (1,00). (1.2)

A more complete description of the results leading to the bound (1.2) can be
found in the introduction of [§].
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In this paper we start the systematic study of the suitable analogues of the
operators M and T in discrete settings which are not translation-invariant.! As
before, the maximal function estimate has applications to ergodic theorems in-
volving families of non-commuting operators.

Motivated by models involving actions of nilpotent groups, we consider a
special class of non-translation-invariant Radon transforms, called the “quasi-
translation” invariant Radon transforms. Assume d,d’ > 1 and P : Z¢x Z¢ — 7%
is a polynomial mapping, For any r > 0 let B(r) denote the ball {z € R?: |z| <
r}. Let K : R4\ B(1) — C denote a Calderén—Zygmund kernel, i.e.

|| K ()| + || VK ()] < 1, Ja| > 1, (1.3)
and
‘/ )dx‘ <1 for any N > 1. (1.4)
|z|€[1,N]

For (compactly supported) functions f : Z¢ x Z%¥ — C we define the discrete
maximal Radon transform

M(f)(my, mg) = sup

r>0

Z f(my —n,mg — P(my,n))|, (1.5)

n€B(r)NZ*

|1B(r) N7z Zd|
and the discrete singular Radon transform
T(f)(my, ms) Z K(n)f(my —n,ms — P(mq,n)). (1.6)
neZ4\{0}
The operator T' was considered by Stein and Wainger [16], who proved that
HTHLQ(ZdXZd/)HLQ(ZdXZd/) <C. (1-7)

In this paper we prove estimates like (1.7) in the full range of exponents p for
both the singular integral operator 7" and the maximal operator M, in the special
case in which

the polynomial P has degree at most 2. (1.8)

Theorem 1.1. Assuming (1.8), the discrete maximal Radon transform M ex-
tends to a bounded (subadditive) operator on LP(Z x 7%, p € (1, 0o, with
”MHLP(ZdXZd/)HLP(ZdXZd') < Op~
The constant C, depends only on the exponent p and the dimension d.
Theorem 1.2. Assuming (1.8), the discrete singular Radon transform T extends
to a bounded operator on LP(Z4 x Z¥), p € (1, 00), with
HTHLP(ZdXZd')HLP(ZdXZd') < Cp'

The constant C, depends only on the exponent p and the dimension d.

1Such operators, called Radon transforms, have been studied extensively in the continuous
setting, see [6] and the references therein.
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See also Theorems 2.1, 2.2, 2.3, 2.4, and 5.2 for equivalent versions of Theorems
1.1 and 1.2 in the setting of nilpotent groups. In the special case d = d' = 1,
P(my,n) = n? Theorem 1.1 gives

Sup’B ﬁZ\ZUml n,my — n’ |‘

r>0

<C p(72), 1.9
iy < Collf Iy, (19)

(r)
for any p € (1, oo] and f € LP(Z?). We consider functions f of the form
f(my,ma) = g(ma) - 1_pr,a(ma); by letting M — oo it follows from (1.9) that

o ok S o

r>0

<,
iy < Collgllve

which is Bourgain’s theorem [5] in the case P(n) = n?.
We state now our main ergodic theorem. Let (X, ) denote a finite measure

space, and let T, ..., Ty, Sy, ..., Sy denote a family of measure-preserving invert-
ible transformations on X satisfying the commutator relations
[T;, S;] =[5, 8] =1, |[[1;,T;], 1) = I for all i,j,k. (1.10)

Here I denotes the identity transformation, and [T, S] = T-'S~!T'S the commu-
tator of T" and S. For a polynomial mapping

Q=(Q1,...,Qu) : Z* — Z% of degree at most 2, (1.11)
and F € LP(X), p € (1,00), we define the averages
_ 1 n mag@in) Q)
AT(F)(.T)—W Z F<T1 Tddsl Sd/d Z’)

n=(n1,...,nq)EB(r)NZ3

(1.12)

Theorem 1.3. Assume Ty, ..., Ty, S1,...,Se satisfy (1.10) and Q is as in (1.11).
Then for every F' € LP(X), p € (1,00), there exists F, € LP(X) such that

lim A, (F) = F. almost everywhere and in L”. (1.13)

Moreover, if the family of transformations {T7, S} : 1 <i<d, 1 <k <d'} is
ergodic for every integer ¢ > 1, then

1
F, = m/Xqu. (1.14)

See also Theorem 5.1 for an equivalent version formulated in terms of the action
of a discrete nilpotent group of step 2.

It would be desirable to remove the restrictions on the degrees of the polynomi-
als P and @ in (1.8) and (1.11), and allow more general commutator relations in
(1.10).% These two issues are related. In this paper we exploit the restriction (1.8)

2A possible setting for the pointwise ergodic theorem would be that of polynomial sequences
in nilpotent groups, compare with [2] and [9].
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to connect the Radon transforms M and 7' to certain group translation-invariant
Radon transforms on discrete nilpotent groups of step 2. We then analyze the
resulting Radon transforms using Fourier analysis techniques. The analogue of
this construction for higher degree polynomials P leads to nilpotent Lie groups of
higher step, for which it is not clear whether the Fourier transform method can
be applied. We hope to return to this in the future.

We describe now some of the ingredients in the proofs of Theorems 1.1, 1.2,
and 1.3. In section 2 we use a transference principle and reduce Theorems 1.1
and 1.2 to Lemmas 2.3 and 2.4 on the discrete nilpotent group G# .

In section 3 we prove four technical lemmas concerning oscillatory integrals
on L?(Z%) and L*(Z%). These bounds correspond to estimates for fixed 6 af-

ter using the Fourier transform in the central variable of the group G# . We
remark that natural scalar-valued objects, such as the Gauss sums, become
operator-valued objects in our non-commutative setting. For example, the bound
HSa/qHL2(Zg)_>L2(Zg) < ¢~'? in Lemma 3.1 is the natural analogue of the standard
scalar bound on Gauss sums |S%7| < Cq~'/2,

In section 4 we prove Lemma 2.3 (which implies Theorem 1.1). In subsection 4.1
we prove certain strong L? bounds (see Lemma 4.1); the proof of these L? bounds
is based on a variant of the “circle method”, adapted to our non-translation-
invariant setting. In subsection 4.2 we prove a restricted L? bound, p > 1, with a
logarithmic loss. The idea of using such restricted LP estimates as an ingredient
for proving the full LP estimates originates in Bourgain’s paper [5]. Finally,
in subsection 4.3 we prove Lemma 2.3, by combining the strong L? bounds in
subsection 4.1, and the restricted L? bounds in subsection 4.2.

In section 5 we prove Theorem 1.3. First we restate Theorem 1.3 in terms of
actions of discrete nilpotent groups of step 2, see Theorem 5.1. Then we use a
maximal ergodic theorem, which follows by transference from Theorem 1.1, to
reduce matters to proving almost everywhere convergence for functions F' in a
dense subset of LP(X). For this we adapt a limiting argument of Bourgain [5].

In section 6 we prove Lemma 2.4 (which implies Theorem 1.2). In subsection
6.1 we prove strong L? bounds, using only Plancherel theorem and the fixed 6
estimates in section 3. In subsection 6.2 we recall (without proofs) a partition
of the integers and a square function estimate used by Ionescu and Wainger [8].
In subsection 6.3 we complete the proof of Lemma 2.4. First we reduce matters
to proving a suitable square function estimate for a more standard oscillatory
singular integral operator (see Lemma 6.6). Then we use the equivalence between
square function estimates and weighted inequalities (cf. [7, Chapter V]) to further
reduce to proving a weighted inequality for an (essentially standard) oscillatory
singular integral operator. This weighted inequality is proved in section 7.
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In section 7, which is self-contained, we collect several estimates related to the
real-variable theory on the group Ggﬁ . We prove weighted LP estimates for max-
imal averages and oscillatory singular integrals, in which the relevant underlying
balls have eccentricity NV > 1. The main issue is to prove these LP bounds with
only logarithmic losses of the type (In N)¢. These logarithmic losses can then be
combined with the gains of N~¢ in the L? estimates in Lemmas 4.1 and 6.1 to
obtain the theorems in the full range of exponents p. The proofs in this section
are essentially standard real-variable proofs (compare with [14]); we provide all
the details for the sake of completeness.

2. PRELIMINARY REDUCTIONS: A TRANSFERENCE PRINCIPLE

In this section we reduce Theorems 1.1 and 1.2 to Lemmas 2.3 and 2.4 on
the discrete free group GO# defined below. This is based on the “method of
transference”. Since the polynomial mapping P in Theorems 1.1 and 1.2 has
degree at most 2 (see (1.8)), we can write

P(my,n) = R(n,m; —n) + A(my —n) + B(my), (2.1)

for some polynomial mappings A, B : Z¢ — Z% , and a bilinear mapping R : Z% x
7% — 7% . The representation (2.1) follows simply by setting B(m) = P(m,m),
A(m) = P(m,0)— P(m,m), and R(m,m’') = P(m+m/,m)+ P(m’,m') — P(m+
m/,m + m’) — P(m’,0). Since R(m,0) = R(0,m’) = 0 for any m,m’ € Z%, it
follows from (1.8) that R is bilinear.

The definitions (1.5) and (1.6) show that

{ M(f)(my,ma) :A{\Aj(fA)(ml,mz — B(m1));
T(f)(mi,m2) = T(fa)(m1, my — B(my)),

where fa(my, ms) = f(mi, ms— A(my)) and M, T are defined in the same way as
M, T by replacing P(my,n) with R(n,m; —n). Therefore, in proving Theorems
1.1 and 1.2 we may assume P(mj,n) = R(n,m; — n), where R is a bilinear
mapping. In this case, the operators M and T can be viewed as group translation-
invariant operators on certain nilpotent Lie groups, which we define below.

Assume d,d > 1 are integers and R : R? x R* — R? is a bilinear map. We
define the nilpotent Lie group

G ={(r,5) eR xR : (,8) - (y.t) = (x+yos +t+ Rx,y))},  (22)
with the standard unimodular Haar measure dz ds. In addition, if
R(z* x 7% Cc 74, (2.3)

then the set
G*=2'x2¥ CG (2.4)

is a discrete subgroup of G, equipped with the counting Haar measure.
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For any (bounded compactly supported) function F' : G — C we define the
discrete maximal Radon transform

M(F)(z,s) = sup

r>0

Zd‘ > F((n,0)7" - (x,9))], (2.5)

n€B(r)NZ3
and the discrete singular Radon transform
T(F)ws) = 3 KmF(n,0)" (). 2.
nezZa\{0}
Assuming (2.3), for (compactly supported) functions f : G — C, we define

Bonz L o maw) e

neB(r)Nzd

M*(f)(m, u) = sup

r>0

and

TH(f)(mu) = > Kn)f((n,0)7" - (m,u)). (2.8)

neZ4\{0}

In view of (2.1), Theorems 1.1 and 1.2 follow from Theorems 2.1 and 2.2 below.

Theorem 2.1. Assume that R : Z¢ x Z¢ — Z% is a bilinear map satisfying
(2.3). Then the discrete mazimal Radon transform M¥ extends to a bounded
(subadditive) operator on LP(G#), p € (1,00], with

IM* ()| zoery < Coll flloc)-
The constant C, depends only on the exponent p and the dimension d.

Theorem 2.2. Assume that R : 7Z¢ x Z¢ — 7% is a bilinear map satisfying (2.3).
Then the discrete singular Radon transform T# extends to a bounded operator on
LP(G*), p € (1,00), with

IT# ()l o) < Coll flloes)-
The constant C, depends only on the exponent p and the dimension d.
Theorems 2.1 and 2.2 can be restated as theorems on the Lie group G.

Theorem 2.3. Assume that R : Z% x Z% — Z% is a bilinear map. Then the
discrete mazimal Radon transform M extends to a bounded (subadditive) operator
on LP(G), p € (1, 00], with

IME) @) < Cpl|Fl|re)

The constant C, may depend only on the exponent p and the dimension d.
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Theorem 2.4. Assume that R : Z% x Z¢ — Z% is a bilinear map. Then the
discrete singular Radon transform T extends to a bounded operator on LP(G),
p € (1,00), with

T (F)llzr@) < Col|[FllLr (o)

The constant C, may depend only on the exponent p and the dimension d.
Assuming (2.3), we justify now the equivalence of Theorems 2.3 and 2.1 and
Theorems 2.4 and 2.2. We notice that the map ® : G# x [0,1)¢ x [0,1)¢ — G,
O((m,u), (1, @) = (m,u) - (p, @) = (m + p,u+ a+ R(m, p))

establishes a measure preserving bijection between G# x [0,1)¢ x [0,1)* and G.
For any (compactly supported) function f : G# — C we define

F:G—C, F(2((m,u), (1, @) = f(m, u).
The definitions show that for any (u, ) € [0,1)? x [0,1)
M (f)(m,u) = M(F)(@((m, u), (1, @)));
TH(f)(m,u) = T(F)(@((m,u), (1, a))).
Thus Theorem 2.3 implies Theorem 2.1 and Theorem 2.4 implies Theorem 2.2.
For the converse, assume F : G — C is given. For any (u, ) € [0,1)% x [0, 1)¥
we define
f(u,a) : G# - (C, f(u,a)(ma u) = F<(I)((m7u)a (/Lv a)))
The definitions show that
M(F)(@((m,w), (1, @))) = MF(fa) (m, 0);
T(F)(@((m,u), (1, @) = T (fua) (m,u),
so Theorem 2.1 implies Theorem 2.3 and Theorem 2.2 implies Theorem 2.4.

We further reduce Theorems 2.3 and 2.4 to a special “universal” case. We
define the bilinear map Ry : R x R? — R%,

d
Ro(%y) = Z T, Yi5€l4105 (29)

I1,la=1

where {e,;, : l1,ls = 1...d} denotes the standard orthonormal basis of R*.
Using the bilinear map Ry we define the nilpotent Lie group Gy as in (2.2). For
any (bounded compactly supported) function F' : Gy — C we define Mg(F') and
To(F) as in (2.5) and (2.6).

Lemma 2.1. The discrete mazximal Radon transform M, extends to a bounded
operator on LP(Gy), p € (1, 00].

Lemma 2.2. The discrete singular Radon transform 1y extends to a bounded
operator on LP(Gy), p € (1,00).
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We show now that Lemmas 2.1 and 2.2 imply Theorems 2.3 and 2.4 respectively.
Assume that the bilinear map R in the definition of the group G is

d
y) - § L1, Y15 V14105

l1,la=1

for some vectors v;,;, € R?. We define the linear map L : R® — R? by L(e;,;,) =
vy, (50 L(Ro(,y)) = R(x,y) for any x,y € R?) and the group morphism

L:Gy— G, L(z,s) = (z, L(s)).
We define the isometric representation m of G on LP(G), p € [1, o], by
(90)(F)(9) = F(L(gs") - 9), 90 € Go, F € LP(G), g € G.

For r > 0 we define the generalized measures yu, and v, on C.(Gg) by

F) = ———— 3" Fyn,0)

| B(r) NZ4|
neB(r)NZd

v(Fo)= Y. K(n)F(n0).

neB(r)NZ\{0}
Clearly, for any (bounded compactly supported) function Fy : Go — C,

Mo(Fo)(g0) = sup | Fo * 1 (g0) |3

r>
Zo(Fo)(g0) = lim Fo x 1(go).

Also, the definitions show that for any (bounded compactly supported) function
F:G—-C

M(F)(g) = sup

r>0

/G 7 (00) (F))(9) s (90):

T(F)(g) = lim [ [x(g0)(F)](g) dvy(go)-

r—o0 Jao

By [12, Proposition 5.1], Theorems 2.3 and 2.4 follow from Lemmas 2.1 and 2.2
respectively.

Finally, we define the discrete subgroup G# — 7% x Z¥ C Gy. Then we define
the operators M and Tj" as in (2. 7) and (2.8),

M#(f)(mw)zsup BN > f((m,0)7h - (myu))

0
r> neB(r)Nzd

and

76#<f)(m7 u) = Z K(n)f((n70)_1 ) (m7u))7

n€Z4\{0}
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for (compactly supported) functions f : G# — C. In view of the equivalence
discussed earlier (since Ry clearly satisfies (2.3)), it suffices to prove the following
two lemmas.

Lemma 2.3. The discrete mazimal Radon transform M} extends to a bounded
operator on LP(G}), p € (1,2].

Lemma 2.4. The discrete singular Radon transform ’Z[)# extends to a bounded
operator on LP(GY), p € [2,00).

We remark that in Lemma 2.4 it suffices to prove the estimate for p € [2, 00).
Indeed, assume p € (1,2], p' = p/(p—1) € [2,00), and let K (n,v) = K(n)1p(v),
K : G — C. Then 7" (f) = f * K and, by duality,

f(h-g)K (h) b

||T ||Lp GH)—Lr(GH) = sup (2.10)

74 G#
A1, 6t

iy

We define now the “dual” group G r,
Gf ={(mu) € Z* xR : (m,u) - (n,v) = (m+n,u+v+ Ry(m,n))},
where Rj(m,n) = Ro(n,m) = Zldl,b:l my, i€, - The right-hand side of (2.10)

is equal to

flg-h)K(h)

#
G'{

sup
”f”Lpl (G/#)

& sup Hf *G’# KHLP/(G/#y

=1 Ly G'5) £l

Lp G’#)

(2.11)
We use now the bijection G « G'#, (m, > s u11126l112> — (m, > s ulllz,ebll).
Since p’ € [2,00), it follows from Lemma 2.4 that

I/ *eg Kllivogy < CrlF @y

Using (2.10) and (2.11), it follows that ||75#||LP(G#)_>LP(G#) < (), as desired.

3. OSCILLATORY INTEGRALS ON L?*(Z¢) AND L*(Z%)

In this section we prove four lemmas concerning oscillatory integrals on L2.
The bounds in these lemmas depend on a fixed parameter 6 in the Fourier space
corresponding to taking the Fourier transform in the central variable of the group
GY¥. In Lemma 3.1, 6 = a/q (the Gauss sum operator). In Lemma 3.2, 6 is close
to a/q, q large. In Lemma 3.3, € is close to a/q, ¢ small. Finally, Lemma 3.4 is
an estimate for a singular integral. The main issue in all these lemmas is to have
a quantitative gain over the trivial L? — L? estimates with bound 1. Lemmas of
this type have been used in [10] and [16].
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We assume throughout this section that d° = d?, and GZ)# is the discrete
nilpotent group defined in section 2. For any p > 1let Z, = Z N [1,p]. If
a = (Qy)iy 1o=1,..d € Z% is vector and ¢ > 1 is an integer, then we denote by
(a,q) the greatest common divisor of a and ¢, i.e. the largest integer ¢’ > 1
that divides ¢ and all the components a;,;,. Any number in Q% can be written
uniquely in the form

alq,qe{1,2,..}, acZ¥, (a,q) = 1. (3.1)

A number as in (3.1) will be called an irreducible d’-fraction. For any irreducible
d'-fraction a/q and g : Z;l — C we consider the (Gauss sum) operator

Sa/q =q —d Z —2miRp(m—n,n)- a/q (32)

nezg
Lemma 3.1 (Gauss sum estimate). With the notation above,
1842z < a9l 2zg). (3.3)

Proof of Lemma 3.1. We consider the operator S¥9(S%%)*; the kernel of this
operator is

L(m,n) =q¢* Z —2mifo(m—n.w)-afq _ (—2d H ) <Z my, — ng,) 'al1l2)7

wEZd la=1 =1

(3.4)
where 6, : Z — {0, ¢},

0if m/q ¢ Z.

We have to show that > _ . |L(m,n)| and > _,4|L(m,n)| are bounded uni-

formly by ¢~!. In view of (3.4), it suffices to prove that the number of solutions
(my,...,mq) € ZJ of the system

5, (m) — { qif m/q € Z; (3.5)

Z my,ar, = 0(mod q) for any I, =1,....,d, (3.6)

=1

is at most ¢?~!
Assume ¢ = p* - ... - pp* is the unique decomposition of ¢ as a product of
powers of distinct primes. Any integer m can be written uniquely in the form

m = Zm (q/pS) (mod q), m" € Zyi. (3.7)
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We write a;,;, and my, as in (3.7). Since the primes p; are distinct, the system
(3.6) is equivalent to the system

melafll2 =0 (mod pj*) for any ly =1,...,dand i = 1,..., k. (3.8)

h=1
We use now the fact that a/q is an irreducible d’-fraction. Thus for any i =
1,...,k there are some [1(7),l5(7) € 1,...,d with the property that (a;, (i@, pi) =
1. For any ¢ = 1,...,k we consider only the equation in the system (3.8) corre-
sponding to Iy = l5(¢). Since a;,(;),(;) is invertible in the ring Z/pfZ, for any i
fixed the system (3.8) can have at most [p{?]¢~! solutions (mt,...,m}) € Z;lgi.
The lemma follows. l

Assume now that j > 0 is an integer and ®; : R? — C is a function supported
in the set {z : |z| < 27t} such that

2U1®, ()| + 2“HVI|V O, (2)| < 1, x € RY (3.9)
For € R and (compactly supported) functions g : Z¢ — C we define
m) = &;(m—n)g(n)e > foln=mm?, (3.10)
nezd

We prove two L? bounds for the operators L{f (9).

Lemma 3.2 (Minor arcs). Assume that a/q is an irreducible d'-fraction, 6 > 0,
and 0§ € RY. Assume also that there are some indices ki, ks € {1,...,d} with the
property that

Clk;le/q = akﬂfz/@klky (akle’qklkg) =1 (3 11)
207 < qkl < 270 and |0k1k‘2 ak1k2/6k1k2| < 272 .
Then
14 (9] 2@y < €277 gl L2z, 6 > O, (3.12)

Proof of Lemma 3.2. Clearly, we may assume that j > C. The kernel of the
operator U (UY)* is

L‘9 (m,n) Z D;(m — w)®;(n — w)e 2rtholm=nw)-d, (3.13)

Notice that the kernel LY is supported in the set {(m,n) : |m —n| < 2/*?} and
the sum in (3.13) is taken over |w —m| < 27+ Let Aj,(m) = 327 _ my, 01,1, We
write w = (wg,,w’). It follows from (3.13) that

L) < D7 | D0 @yl — (g, ) — (g, w2 A,
wEZd 1 kaGZ

(3.14)
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By summation by parts, it is easy to see that
> )| < Cp©) Il
vEZ

for any h € C1(R), where p(¢) denotes the distance from the real number ¢ to Z.
Using (3.9), it follows that

]L?(m, n)| < C'2_dj1[o,2j+2}(|m —n\)[1+ 2 p(As,(m —n))] . (3.15)

We estimate Y ;. [LI(m,n)| and Y, . [LI(m,n)|. We write m = (my,,m’)
and n = (ng,,n’). Using (3.15),

27+2
S 1L mn)] + 3 L mm)| < 2 sup 30 (14 2p(Bgar 0]
nczd meZd HER v=—27+2

(3.16)
Thus, for (3.12), it suffices to prove that for some constants C' > 1 and ¢’ > 0,
#{v € [~ 2N L p(Og, v + p) < C7127 0700 < 02029 (3.17)

for any g € R and j > C. Since |0k, 5, — Thyy /o1y | < 272 (see (3.11)), we may
replace Ok, With Qg g, /qp,p, 0 (3.17). We have two cases: if gy, > 2714,
then the set of points {Gkk,v/qpp, @ v € [—2/72,2772) N Z} is a subset of
the set {b/qpp, : b € Z} and @i/ Qpypy — Chiko¥' /Ty, & Z if v # V' €
[—29+2 272 N Z. Using (3.11), @y, < 277, Thus the number of points in
(/i : b € Z/ (G, Z)} that lie in an interval of length C~127(=97 is at most
T, C12717907 11 < 0207903 a5 desired.

Assume now that g, ,, < 2/t*. We divide the interval [—27%2 272] into at
most C27/q,, ,, intervals J of length <, , /2. By the same argument as before,

#{v e JNZ: p(ar, k0 Gy + 1) < Ol (=901 < qk1k20—12—(1—5’)j +1,
for any of these intervals J and any g € R. The bound (3.17) follows since

207 < Gy py» Se€ (3.11). O
Lemma 3.3 (Major arcs). Assume that a/q is an irreducible d'-fraction, 6 € RY
q <2 and |0 —a/q| < 277/, (3.18)

Then
1647 () 2 zey < Cq™ (1 + 2210 — a/ql) ]| g]| 2 za)- (3.19)

Proof of Lemma 3.3. We may assume j > C and let § = a/q + £. Since Ry is
bilinear, we may assume that the functions g and L{J?" (g) are supported in the ball
{Im| < C27}. We write

m=gqm' +p and n =qn’ + v,
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with p,v € [Z,]¢ and |n/|, |n’| < C27/q, and identify Z? with Z¢ x [Z,]? using
these maps. Since Ry is bilinear, it follows from (3.9) and (3.18) that

q)j (m . n)e—QwiRo(m—n,n)-Q

_ [qdéj(q(m' _ n/))e—Qm'Ro(m/_n/ﬂ/).q%] ] [q—de—%riRo(u—u,y).a/q] + E(m, n)’
where |E(m,n)| < C279/22741 ;05 (Jm — n|). The operator defined by this
error term is bounded on L? with bound C277/2, which suffices. Let L{f denote
the operator defined by the first term in (3.20), i.e.

U (g)(m', )

= 3 ST o ) — )R g2l

n/ €2 ve[Zg)d

= 3 8g) (', 1) - "Dy (g(m’ — n))e OO e

n/€zZ4

(3.20)

(3.21)

In view of Lemma 3.1, for (3.19) it suffices to prove that

H D g ) - g D(g(m! — n'))emiftolm ) 0%

n/ €z

12(z4)
<C(1+ 22j|€|)_1/4||9/||L2(Zd),

for any (compactly supported) function ¢’ : Z¢ — C. Using the restriction (3.18),
it suffices to prove that

1245 (9] 2zay < C(L+2%(€) 74| g] |2 qzay 1 [€] < 27°97%, (3.22)

In proving (3.22) we may assume [§| > C27% (and j large). Fix ki, ky €
{1,...,d} with the property that || > C71€]. We repeat the Z/lf(l/lf)* argu-
ment from Lemma 3.2. In view of (3.16), it suffices to prove that

27+2
2sup 3, (1 2 (G + )T S CRYIED T (3.23)
HER e _oj+2

provided that |&g,x,| € [27%,2759/4] (see (3.22)). The points {&p v + 1 @ v €
[—271229%2] N Z} lie in an interval of length 1/2. We partition this interval
into C'27 subintervals of length 277. Each of these subintervals contains at most
C(27|&ka])t of the points in the set {{gpv +p v € [-2072,2772 N Z}. An
easy rearrangement argument then shows that the sum in the left-hand side of
(3.23) is dominated by

C2779(2|&pana) ! Z kT

ke[1,0227 (€1 12|INZ
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which proves (3.23). 0

Our last lemma in this section concerns Calderén—Zygmund kernels. Assume

K; : R" — C, j > 1, are kernels as in (6.1) and (6.2). For any finite set

I C{1,...} we define
K'=Y K. (3.24)
jel
For § € RY and (compactly supported) functions g : Z¢ — C we define
Vi(g)(m) =Y K'(m—n)g(n)e ?rfolm=rm?, (3.25)
nezd
Lemma 3.4. Assume that a/q is an irreducible d'-fraction, § € R, and
IC{j:q®<2Y <|0—a/q™'}. (3.26)
Then
V] ()l 2@y < Ca||gll r2za- (3.27)

Proof of Lemma 3.4. Let 0 = a/q+ . Since Ry is bilinear, we may assume that
the functions g and VY(g) are supported in the ball {m : |m| < C|¢|~'/2}. As in
Lemma 3.3, we write

m=qm' +pu and n = qgn’ + v,

with u, v € [Z,]% and ||, |n/| < C|€]7Y/2/q, and identify Z¢ with Z¢ x [Z,]¢ using
these maps. Since Ry is bilinear, it follows from (3.26) that

Kl(m . n)e—27riRo(m—n,n)~9

_ [quI(q<m/ . n/))6727riR0(m/,n/’n/).q25] ) [qfdef27riR0(y7u,z/)-a/q] + El(m, n)7
(3.28)

where |E'(m,n)| < Cqlm — n|=4721 4 9 y¢j-1/21(Jlm — n|). The operator defined

by this error term in bounded on L? with bound C¢*, which suffices. Let V¢
denote the operator defined by the first term in (3.28), i.e.

Vi(g)(m', p)
_ Z Z g(n/’ V) [quI(q(m/ o n/))efZﬂiRo(m’fn’,n’)-qu . [qfd€727riR0(,ufu,z/)-a/q]

n' €2 vE[Z4)?

= 3" SUa(g) (', ) - g K (g’ — )P0 v

In view of Lemma 3.1, for (3.27) it suffices to prove that

‘ ‘ Z g/(n/) . quI(q(m/ . n/))e—27rz'RO(m/_n,m,)_qQf

< Cllgllz2@e, (3.29)

L2(Z%)
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for any (compactly supported) function ¢’ : Z¢ — C.
Since Ry is bilinear, if |m’|,|n’| < C|¢|7Y/2/q then

2

lq" K (q(m' —n'))e 2ol =y — gk (g(m! — )|
< C(2E1M*) (27 /q) A= jg i1 s (Im = n']).
Thus
¢* K (q(m — n))e 2rifolm'=n'n) s _ qd )l (g(m! — )| < B (m' — '),

where ||E"||f1zey < C. The estimate (3.29) follows from the boundedness of
standard singular integrals on Z<. O

4. THE MAXIMAL RADON TRANSFORM

In this section we prove Lemma 2.3. The proof is based on three main in-
gredients: a strong L? bound, a restricted (weak) L? bound, p € (1,2], and an
interpolation argument. We assume throughout this section that d’ = d?, and
G# is the discrete nilpotent group defined in section 2.

4.1. L? estimates. The main result in this subsection is Lemma 4.1, which is a
quantitative L? estimate. The proof of Lemma 4.1 is based on a non-commutative
variant of the circle method, in which we divide the Fourier space into major
arcs and minor arcs. This partition is achieved using cutoff functions like \Ifj.V’R
defined in (4.6). The minor arcs estimate (4.12) is based on Plancherel theorem
and Lemmas 3.2 and 3.3. The major arcs estimate (4.13) is based on the change
of variables (4.28), the L? boundedness of the standard maximal function on the
group G# , and Lemma 3.1.

In this section we assume € : R? — [0, 1] is a function supported in the set
{z:|z| <4}, and

{|Q(a;)\ + |VQ(x)| <10 for any z € RY; (4.1)

Q(z) =2749Q(x/27), j=0,1,....
Clearly, if Q(x) =1 in the set {z : |z| < 1},

M (f)(myu) < Csup Y Q(n) f((n,0)7" - (m,u)),

>0
T2 nezad

for any (compactly supported) function f : G# — [0, 00). For integers j > 0 and
(compactly supported) functions f : G# — C let

M;(f)(mu) =Y Q) f(n,0)7" - (m,u)). (4.2)

n€zad
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For Lemma 2.3, it suffices to prove that for any (compactly supported) function
f:G¥ -,

wp My (D], ) S Collf gy € (1,2 (4.3

For any (compactly supported) function f : G# — C let fdenote its Fourier
transform in the central variable, i.e.,

]?(m, 0) = Z fm,u)e 20 m e 7i 6 eR?. (4.4)
uezd’
Then -
M;(f)(m,0) = > Qi(m —n) f(n,0)e2mHolm=rm, (4.5)
nezd

We use the formula (4.5) and multipliers in the Fourier variable 6 to decompose
the operators M.

Let 1 : RY — [0, 1] denote a smooth function supported in the set {|¢] < 2}
and equal to 1 in the set {|¢| < 1}. Assume N € [1/4,0), 7 € [0,00) N Z and
R C Q7 is a discrete periodic set (i.e. if r € R then 7 4+ a € R for any a € Z
and RN [0,1)% is finite). We define

TIRO) =Y w¥NTH(O 1)), (4.6)

reR

The function \I/jVR is periodic in € (i.e. \I/;VR(H +a) = \I/;VR(H) if a € Z%), and
supported in the union of the 2N2~%/-neighborhoods of the points in R. We will
always assume that j is sufficiently large (depending on N and R) such that these
neighborhoods are disjoint, so \Iljvn : R? — [0,1]. By convention, \If;v’@ = 0. For
(compactly supported) functions f : G — C we define M;VR( f) by

MYR(f)(m, 0) = My (F)(m,0) - ¥VR(0). (4.7)

J J
Our main lemma in this subsection is the following L? estimate:

Lemma 4.1 (Strong L? bound). Assume that N € [1/2,00), Ry C Q¥ is a
discrete periodic set, and Jyr, € [0,00) is a real number with the properties

{a/q:q€[1,N] and (a,q) =1} C Ry,
28RN > 1100 max ql*. (4.8)
a/qeRN and (a,q)=1
Then
su M(f) = MRy ‘ < C(N+1)°°¢ 2 , 4.9
szNiN! i(f) i ra) = ( )N 2ty (4.9)

where © = ¢(d) > 0.
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Remark: In section 5, Lemma 5.5, we need to allow slightly more general
kernels €, that is Q : R? — [0, 1], supported in the set {x : |x| < 4}, equal to 1
in the set {x : x| < 2}, and satisfying

IVQ(z)| < A for any 2 € R?,
where A > 1. In this case the bound (4.9) becomes

< A-C(N + D)7l 2 oy-

sup | M;(f) = MY ()|

. J
J2INRN

L2(GY)

The rest of this subsection is concerned With the proof of Lemma 4.1. The
bound (4.3) for p = 2 corresponds to the case N = 1/2, Ry = 0, Jyry =0
in Lemma 4.1. The condition (4.8) guarantees that \IJNRN RY — [0,1] if
J > JNry- We decompose the operator M, M;V RN into the main contribution
coming from the “major arcs” (in §) and an error-type contribution coming from
the complement of these major arcs. For integers j,s > 0 let v(j,s) = 1 if
25 < 532 and 7(j,s) = 0 if 2° > 532, For (compactly supported) functions
f: G — C we define NV (f) by

—

N (£)(m,0) = 10, ) [V (), 0) = MI= (7)(m. )]
> w20 - afg))].

25§q<2s+1

(4.10)

where the sum in the second line of (4.10) is taken over irreducible d’-fractions
a/q with 25 < ¢ < 2571, Then we write

M(f) = MRV () = NN (F) + E57N (). (4.11)
s>0

This is our basic decomposition. It follows from (4.8) that ./\f]]\iRN (f) =0 if
25T < N. Thus, for Lemma 4.1, it suffices to prove that

N, Rn 2 1/2 .
1| X 1870 || L, SOV 0 WM llpaepy (412)
JZINRN L2(Gf)
and
su NN)RN ‘ 02—08 413
jZJN,IizN | a | LQ(G#) ||f||L2 G# ( )
if 2571 > N,

Proof of (4.12) (Minor arcs estimate). Let s(j) denote the largest integer > 0
with the property that 250) < j3/2. Notice that
g@f)(m 9 NRN Z Q TZ 0) —QWiRo(m—n,n)ﬁ’

J
n€za
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with
M) = (1= ey @1 > w0 -a/g)],  (414)
q<2s(@)+11

where the sum in (4.14) is taken over irreducible d'-fractions a/q with ¢ < 25()+1
1. For 0 € R and (compactly supported) functions g : Z% — C, we define

= Z Q;(m —n)g(n)e 2rifolm=n.mn)-0. (4.15)
nezd
By Plancherel theorem
1/2112
ENRN 2:|
|| DDl I |
JZINRN
— [ ORI e 0
[0.1)¢ J>JN Ry

Using Plancherel theorem again, for (4.12) it suffices to prove that
NR —%
S I )P o < CN 7% (416

JZINRN
for any 0 € R? fixed.

By Diriclet’s principle, for any A > 1 and £ € R there are g € Zy = Z N [1, A]
and a € Z, (a,q) = 1, with the property that |¢ —a/q| < 1/(Aq). For § € R
we apply this to each component 6;,;,; thus there are ¢, € Z5 and a;,, € Z,
(@115, Qiy1,) = 1, with the property that

|91112 - al112/QZ112’ < C/(Aqhb)' (417)

Assume that § € R? is fixed. For any j > Jnr, We use the approximation

(4.17) with A = 22797 where § = §(d) > 0 is sufficiently small (6 = 1/(10d")
would work). Thus there are irreducible 1-fractions a{l L/ qul 1, such that

1 S qullz S 2(2_6)J and ’0l112 alllz/ql112| < C/(2(2 6 JQZJ ) (4]‘8)

1l2

We fix these irreducible 1-fractions al1 I /q ql1 1, and partition the set ZN [IN Ry O)
into two subsets:
L={j€ZN[Iyry,00): max g, > 276
1,l2=1,...,
and

L={j€Zn[Iyvry ) : , max g, <2/6

For j € I, we use Lemma 3.2:

S I O) I )y < D27 S CN 1)

j€h Jjel
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as desired.
For j € I, let a;j/q; denote the irreducible d'-fraction with the property that
a;j/q; = (alllz/qhb)l1 ly=1...d- In view of (4.18) and the definition of Iy,

1<q <275 and |0 —a;/q| < C/237%9, (4.19)
An easy argument, using (4.19) shows that if 7, 7' € I, and j, 7' > C then

either a;/q; = ay /q; or |q;/q| ¢ [1/2,2]. (4.20)
We further partition the set Is,

Iy = Ug)ely 49 where 19" = {j € I : aj/q; = a/q}. (4.21)
For j € I5/% we use Lemma 3.3:

o Amy O PN 2y g2y < C Y a7 (1427 10—a/ql) 2 |m3 Y (0) .
jelg/q Jelg/q

(4.22)
To estimate the right-hand side of (4.22) we consider two cases: ¢ < N and ¢ > N.
If ¢ < N, then, using (4.8), (4.6), and (4.14), |mNRN( NP < 1poo)(2Y NG —
a/q|). Thus the right-hand side of (4.22) is dominated by Cq~*N~Y2. If ¢ > N,
then, using (4.14) and the fact that j > 22°0)/3 the right-hand side of (4.22) is
dominated by

¢ >, dq

FEISN[0,Cq2/3]

o 2900 — afgl) 1 (2210 — a/gl) < Cq Y
jelg/qﬂ[0q2/3,oo)

The bound (4.16) follows since the possible denominators ¢ form a lacunary se-
quence (see (4.20)). This completes the proof of (4.12).

Proof of (4.13) (Major arcs estimate). Clearly, if j > max(Jy.r,,2%/3,O)
then

> v —a/a)] (1 - W) = D w0 - 1)),

25 <g<2stl rer’

where R' = {a/q € @d,\RN i (a,q) =1 and g € [2%,2571)}. We define M;/&R/(f)
by

M () 0) = MG m,0)| 3 w0 -] (423)

reR’!
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(compare with (4.7)). Thus, for (4.13), it suffices to prove that if s > 0 and
R C{a/q: (a,q) =1 and q € [2%,2°T)} then

sup_ [ M (1)

j2225/3

<027 .
LQ(G#) = ||f||L2(G#)

We partition the set R’ C {a/q : (a,q) = 1 and ¢ € [2°,2°T1)} into at most
C2%/% subsets with the property that each of these subsets contains irreducible
d'-fractions with at most 23/5 denominators ¢. Thus, it suffices to prove that if
s > 0 and

R CH{a/q:(a,q)=1and g € S}, S C [2°,2°"1)NZ, |S| <2%/5  (4.24)

then

sup_ [ MY ()|

j2225/3

< (02752 . 4.25
et = ||f||L2(G;;¢) (4.25)

In view of the definitions (4.5) and (4.23), and the Fourier inversion formula,

M () (m, )

J

= Y foom-n [

0,1)'
(n,v)GG# 0.1) reR!

- Z f(n,v)Q(m —n)

(n,v)EG#

w(22j+2(9 - 7’))] eQwi(u—v—Ro(m—n,n))-G do

Nyzi+2(u — v — Ro(m — n,n)) Z e2rilu—v=Ro(m=n.n))-r
reR/N[0,1)¢

(4.26)

where 7)(s) = [pu ¥(§)e*™5¢ d¢ is the Euclidean inverse Fourier transform of 1,
and 1y2;42(s) = 274 +2)p(5/2%+2) We recognize that the formula (4.26) is the
convolution on GY of the function f and the kernel

(m, u) — Q;(m)m2i+2(u) Z e,
rerR/N[0,1)4’
Let @ = [T cs ¢ see (4.24). Since |S| < 2%/,
Q < 2+027 (4.27)

To continue, we introduce new coordinates on Gg& adapted to the factor (). For
integers () > 1 we define
Oq : G x [28 x Z3,] — G, (4.28)
(I)Q((ml7 u/)7 (//H a)) = (Qm/ + i, QZUI +a+ QRO(PH m/)) .



22 A. D. IONESCU, A. MAGYAR, E. M. STEIN, AND S. WAINGER

Notice that ®g((m/,u), (u,)) = (p, @) - (Qm/,Q*u') if we regard (u, ) and
(Qm/, Q?u’) as elements of (GE’)%. Clearly, the map ®¢ establishes a bijection
between G x [Z§ x Zgg] and G¥. Let F((n',v'), (v, 8)) = f(®o((n',0"), (v, 3)))
and G,((m/,v), (p, ) = MR (F)(@o((m/,u'), (1, @))). Since Qr € Z for any

J
r € R/, the formula (4.26) is equivalent to

Gj((mlvul)a(:u’a)) = Z Z F((nljvl)v(’/’ 6))QJ<Q(m,_n/) +E1)
(' ') eGH (y,ﬁ)ezgzngz
No2it2 (Q*(u' — v — Ro(m' —n/,n')) + Ey) Z gZrila=B=Rolu—vw))r
rerR’n[o,1)’
where E) = 1 — v and
Ey, = (a - ﬂ - Ro(,u - V)) + Q(RO(M7m/ - n/> - RO(m/ - n’, V))
In view of (4.25) and (4.27), 20 > 22" and Q < 26TV2*° thus €2 > Q.
Clearly, |E1| < CQ and |Ey| < C27Q if |m/ —n/| < C27/Q. Let

Gyl(m' ) (o) = Y Y. (), (v, 5)(Q(m' —n')

(' v)eGY (v,B)€2d, ng;

No2i+2 (Q2 (Ul —J = Ro(m/ _ TL/, n/))) Z 627‘(’i(a—ﬁ—Ro(,u,—V7V))~7“‘
reR'N[0,1)4’

(4.29)

In view of the estimates above on |E;| and |Es| and the fact that the sum over
r€ R N[0,1)% in (4.29) has at most C2%* terms, we have

G5(m', ), (.0) = (' 20), (p, )
<C29(Q/Y) ) Yo IE( ), (v e)Q QT
(' w")eGY (vB)eZE, ng;
(2/Q) "L cai gy (I — [} oz e (u — v = Ro(m — ', ),
where, as in (7.7)
o(s) = (14 |s[>)~@*+44D/2 and ¢,.(s) = r L o(s/r), r > 1.
Thus,

e _9s/2
j>22?;/3 15 - Gj||L2(G#X[Zg?XZg2” s 02 HF”L?(G#x[zéxzé'z])'

For (4.25) it suffices to prove that

sup \éjl (4.30)

2i>Q

< C27*%||F ’
L2GY < (24 285) I HLQ(G?X[Z%XZ&D’
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where G, is defined in (4.29). For this we notice that the function G; is obtained
as the composition of the operator

Af)(0) =Q7Q™ N fw,p) Y ermieritRolumrar (g 31

(u,ﬁ)ezg)ng; reR/N[0,1)?’

acting on functions f : Z§ x Zgz — C, followed by an average over a standard

ball of radius ~ 2//Q in G¥ (with the terminology of section 7). In view (7.11)
with N = 1, for (4.30) it suffices to prove that

MU 2z < €2 sz (4.32)

For functions f : Zg2 X Zgg — C we define the Fourier transform in the second
variable

Flna/@) = Y fua)e =% aez’.

ané
It is easy to see that
- - 1/2
sy = Q7 (X2 D0 1w /@)
MGZ% aEZdQIQ
for any f : Z@ x ZSQ — C (Plancherel’s identity). Since R’ C {a/Q? : a € Z*}
(see (4.24) and the definition of @), it follows from (4.31) that
A1,/ Q%) = 1 (@/Q)Q™ Y Flv, a/Q?)e 2miRoluv)el @,
VEZd

By Plancherel’s identity, for (4.32) it suffices to prove that for any r € R’ and
any g : 2§ — C,

HQ_d Z g(v)e~Frifiolu=vv)r

d
VEZQ

< 02732 .
La(zd) = HQHLg(Zg)

This follows from Lemma 3.1 and the fact that r = a/q, (a,q) =1, q € [25,2°T1)
(see (4.24)). This completes the proof of Lemma 4.1.

4.2. A restricted L? estimate. Recall that the operators M; were defined in
(4.2). In the rest of this section, in addition to (4.1) we assume that Q(z) =1 if
|z| < 2. In this subsection we prove the following restricted LP estimate.

Lemma 4.2 (Restricted L? estimate). Assume J > 2 is an integer. Then

sup M|, o < Gl D fllepy pE (12 (439)

JE[T+1,2J]
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The idea of using restricted L estimates like (4.33) together with L? bounds
to prove the full L? estimates (4.3) originates in Bourgain’s paper [5]. In proving
Lemma 4.2 we exploit the positivity of the operators M;. Let Q G# — [0, 00)
denote the kernel 2, i(m,u) = Q;(m) - Ly (u), so M;(f) = f*Q], and let Q(h) =

ﬁj(h_l). To be able to use the same notation as in the previous section, it is
more convenient to prove the maximal inequality

|

The bounds (4.33) and (4.34) are equivalent, in view of the duality argument
following the statement of Lemma 2.4. By interpolation, we may assume that
P =p/(p—1) is an integer > 2 and it suffices to prove the LP — LP> estimate

sup |f
jE[J+1,2J]

< Con D ll ey » € (1,2, (4.34)

)LP(GO#)

sup | f ]

JE[J+1,2J]

< Gy I)||fl] oy P € [2,00) N L. (4.35)

LP=(GY)

By duality, the bound (4.35) is equivalent to the inequality

| 3 508

where k = p/(p—1) is an integer > 2 and f; are characteristic functions of disjoint,
bounded sets. We may assume J > C} and partition the set [J + 1,2J] N Z into
at most C(In J) subsets S with the separation property

SClJ+1,2J]NZ and if j # j' € S then |j — j'| > Ax(In J), (4.36)

< Cy(in J) H Z f;

Lk (GY) LGE)

where Ay is a large constant to be fixed later. It suffices to prove that if S is as
above and k£ > 2 is an integer then

H;fj ~j LK (GY) = CkHJZe;fj

where f; are characteristic functions of disjoint, bounded sets. Let p denote the
smallest constant C}, > 1 for which (4.37) holds. By expanding the left-hand side
of (4.37),

DI

4.37
Lty (4.37)

L G#) g1 ;]k/ fh*QJl cooo (fi = ) dg

(4.38)

k—1

+Ck/ <Zf]*(~2) dg,

Go JjES

since f; are characteristic functions. The second term in the right-hand side of
(4.38) is dominated by Cip*'[| 30, fill

LE(GY)”
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To deal with the first term we will prove the bound

(G S8 B B (0, = )|,y < CT M+ il

(4.39)
provided that fj,,..., f;, are characteristic functions of disjoint, bounded sets,
J1 < ...<jr €8, and the constant A in (4.36) is sufficiently large. Assuming

(4.39), we would have

‘/ (f, * Q) -...-(fjk*?zjk)dg—/ﬁ#(fﬁ*QJ)-...-(fjk*ﬁjk)dg]

2 k
—k Z _ —k Z
< G/ H 1 12(GH) =G/ H 1
jes 0 jes

21(co)
since f; are characteristic functions of disjoint, bounded sets. Thus the first term
in the right-hand side of (4.38) can be estimated by

S e+ 2 [ I
jes

J2<...<Jk
Since f; are characteristic functions of disjoint, bounded sets, Z s fi* Q g <C.
Thus the expression in (4.40) can be estimated by Cy(1+ p*~1)|| E]es f]HLk )

It follows from (4.38) that p* < Ci(1 + p* 1), so p < Cy as desired.

It remains to prove the bound (4.39). Clearly, we may assume J > Cy. We
start with a sequence of appropriate constants By < ... < By, which depend only
on the constant ¢ > 0 in Lemma 4.1, and define N; = JP and Ry, = {a/q: q €
[1, V] and (a,q) =1}, 1=2,...,k. By Lemma 4.1,

||sz(sz)_ NlRNl(sz)Hm G# <OJ_CB||sz||L2 G#)7 l:27-"7k3~ (4‘41)

A computation similar to (4.26) shows that

N R N R
l Ny (f]l) f]l l Ny, :
N R TIU-T
L, (m,u) = Q (m )7722”/Nz(“) ZreRNm[o,l)d' erm,

Since Ry, has at most C'J{@*+DB: elements, HL;-ZV’HU(G#) < CJ@HVB . Thus

L2(GY)

(4.42)

MY ey < CT@HIB 1 =2,k (4.43)

since f;, are characteristic functions of sets. We now estimate the left-hand side
of (4.39) by

Hsz(sz)_
+HMN2RN2<fj2>>HL»o~. MG (Fi) = MG () e (4.44)
MG () s MG (0] 5 (9 —Qf,)HLz.

N2 RNQ (

Filllez o [IMG (F) e +

Nk Ry,



26 A. D. IONESCU, A. MAGYAR, E. M. STEIN, AND S. WAINGER

By choosing the constants B; in geometric progression and using (4.41) and (4.43),
for (4.39) it remains to control the last term in (4.44). We examine now the

formula (4.42) and notice that each kernel L;\l]l’RNl

C.JC kernels. For any irreducible d’-fraction a;/q; let

is the sum over r of at most

L5 () = Q5 (m) g, (w)e?™ /. (4.45)
To control the last term in (4.44) it suffices to prove the following:

Lemma 4.3. With the notation above, for any constant Ek

[Fix L) o (f o L ™)) (), = )22 < Cod P fi 4+ Fiell 2,

(4.46)
provided that f;,,..., f;, are characteristic functions of disjoint, bounded sets,
Ny < JBx a;/q are irreducible d'-fractions with q < JB, 1 =2,... k, J < j <
Jo < ... < i < 2J, and jo — j1 > Ap(InJ), Ay sufficiently large depending on
B;..

Proof of Lemma 4.3. From the definitions,

[(fro % LAZY e (f % LR 5 () — ) (g)

J2 Jk

4.47
= [ ) BB g
0
where
H(ga,- - 06) = Y (2 (n) = Qy(n))
nez (4.48)
L3 ((n,0) - ga) - ...+ L)% ((n,0) - gy).

Let gy = (my,w), L =2,..., k. With ¢ as in (7.7), we show that

[H(ga, - g)| < Crd P[22 - 27 T | Qs (mi) bz, (). (4.49)
=2

Assuming (4.49), the bound (4.46) follows easily from (4.47) and the fact that f;,
are characteristic functions.
To prove (4.49) let

Q=g ... qe, Q< JE VP, (4.50)
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Writing n = Qn' + v, n' € Z%, v € Zgg, the formula (4.48) becomes
Hg 00l = | 33 (Q0(Q + ) y(@n' + )
n'€z4 VEZ%

k

LT € (mu+ Qu' + v)mai i, (wr + Ro(Qn' + v, my) e Fotvmue/ar,
1=2
(4.51)

We use the bound (4.50) on @ and the observation that [n/| < 10027 /Q in (4.51).
It follows that

1€, (my + Qn' + V)n22jl/Nl (u + Ro(@Qn' +v,my))
- sz(ml)%?fz/m (u)] < Clejl_jl sz+2(ml)¢22h /N, ().
Thus, using (4.51)

k
[H(ga, - gl < Ci || Qra(mi) bz v, (w)

=2
k
|:JBk2j1—j2 + ‘ Z Z (le(Qn’ + V) . QJ(QTZ, + V)) H€27riRo(u,mz)'az/Qz ]
n/€Zd uezg2 =2

(4.52)

We make the simple observations |Q;, (Qn'+v) —Q;, (Qn')| < CQ271Q, 4 2(Qn'),
1Q,(Qn’ + v) — Q;(Qn')| < CQ27/Q;(Qn'), since |v| < Q. In addition, since
Jzal€, (") — Q(27)] da’ = 0, we have

Q' Y 19 (@n) — (@) < 02,

n/€Z4

The bound (4.49) follows from (4.52). O

4.3. Proof of Lemma 2.3. In this subsection we prove the bound (4.3) for any
p > 1, thus completing the proof of Lemma 2.3. Our main ingredients are the
bound (7.11) in section 7, Lemma 4.1, and Lemma 4.2. The bound (4.3) follows
by interpolation (see [8, Section 7]) from the following more quantitative estimate.

Lemma 4.4. Assume p € (1,2] is an exponent and € = (p — 1)/2. Then, for
any A € (0,00), there are linear operators A} = A;-\’E and B} = B;’E with M; =
A} + B3,

A
Sup A (f)|HL2(G#) < Ce/ Al o), (4.53)
and
i‘ggwﬁ U”HLP(G#) = CX Mty .
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The rest of this subsection is concerned with the proof of Lemma 4.4. In view
of Lemma 4.1 with N = 1/2,Ry/, = 0, in proving Lemma 4.4 we may assume
A > (.. With ¢ as in Lemma 4.1, we define

N() = /\1/6;
Ry, = {a/Ny!: a € Z¥Y; (4.55)
‘]NO,RNO = N02

The property (4.8) is clearly satisfied if A is sufficiently large. For j < J. No,Rng
let .A;‘ =0, B;‘ = M;. By Lemma 4.2,

s ABYDI||, e, < CORNI oy
0

je[O’JNOvRNO NZ

No, Ry
J

which is better than (4.54). For j > Jy, ry, . let Ay = M; — M , B} =

M;VO’RNO. By Lemma 4.1 and the definition (4.55),
sup  |ANf ‘ S O/l p2 oty

which gives (4.53). To complete the proof of Lemma 4.4 it suffices to show that

No, Ry

sup M ()|

J2JNg Ry,

ey S OISl (456)

To prove (4.56) we use (7.11) and the change of coordinates (4.28). By the
Fourier inversion formula, as in (4.26),

No,R
MG () mau) = Y f(n,0)Q(m —n)
(n,v)EG# (4 57)
(=0 = Ro(m—nw) Y reo-telmonnr
reR N, N[0,1)¢
Let @ = Ny!. The definition (4.55) shows that
Z eritumv=folm=nm) — 50 (u — v — Ro(m — n,n)),
TERNOH[O,I)d,
where
’ Qd, lf U/Q GZd/'
6g 2% — 7, dp(u) = ) 4.58
Q2" =2 %) {0 it u/Q ¢ 7. (4.58)

We use the change of coordinates ®g : G x [Z¢ x Zgg] — G¥ described in
(4.28). Let F((n,v'), (v, 9)) = f(@e((n',v'), (v,9))) and G;((m', ), (n, @) =



DISCRETE RADON TRANSFORMS AND ERGODIC THEORY 29

M) (@g((m ), (1)) The formula. (457) is equivalent to

j
Gi((m', ), (o)) = > Y. F(( ), (v, 8)9(Q(m —n') + Ey)
(n/}v/)e((}# (y,ﬂ)engZg/Q

Moz /g (Q* (0 — v — Ro(m' —n/,n')) + E») - g(a — B — Ro( — v,v)),

where £y = u — v and
E2 = (Oé - ﬁ - RO(:u -V I/)) + Q(Ro(% m/ - n/> - RO(m/ - nla V))

Clearly, 20 > 2V and Q < 2M0™* | thus 20 > Q'°. Also, |Ey| < CQ and |Ey| <
C27Q if [m' —n/| < C27/Q. Let

Gi((m' ), () = > Y. (), (n,8)(Q(m' - n'))
(' v)eGY (v,B)€2g, ng’z

Moz /vy (@ (0 = ' = Ro(m/ — 0/, ))) - dg(a = B = Ro(p — v, v)).

In view of the estimates above on |F1| and |E;|, we have

G5((m ), () = Gi((m ), (1, @)

SCMNQ/2) Y, Y. IR ), (BT
(n' W) eGH (v,B)€Zx Zg’Q
(27/Q)""Lo,coiq(Im’ — '[) 2 yang) (W — v — Ro(m' —n',n')).

where ¢ is as in (7.7). Thus,
S 1G5 = Colliegrizgnztyy < Ol izt

]>N2

For (4.56) it remains to prove that

< Cp(In No)lIFIILP(Gg#X[zgng’QD' (4.59)

!
j>NE Lr (G x[2§xZ235))

For this we notice that the function éj is obtained as the composition of the
operator

f=QQ> > f(w,B)dqla— B~ Ro(u—v,v))

(v.B)eZE, ng;

acting on functions f : Zg X Z%; — C, which is clearly bounded on Lp(Zg2 X Zé;),

followed by an average dominated by the maximal operator M of Lemma 7.1.
The bound (4.59) follows from (7.11).
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5. THE ERGODIC THEOREM

In this section we prove Theorem 1.3. We first reduce matters to proving
Theorem 5.1 below (in fact, we only need this theorem for a special group G# and
a special polynomial mapping P). Then we use a maximal ergodic theorem (which
follows from Theorem 1.1 and a transference argument) and adapt a limiting
argument of Bourgain [5].

5.1. Preliminary reductions and a maximal ergodic theorem. Assume
(X, ) is a finite measure space. A result equivalent to Theorem 1.3 can be
formulated in terms of the action of the step 2 discrete nilpotent group G# defined
in (2.2) and (2.4), corresponding to a bilinear mapping R : Z? x Z¢ — 7.
Suppose G* acts on X via measure preserving transformations, and denote the
action G* x X — X by (g,2) — g - x. For a polynomial map

P:7¢ = 7% of degree at most 2

and F' € LP(X), p € (1, 00], define the averages
1
M, (F)(x) = BNz Y Fln,Pn)-). (5.1)

n€B,NZ4

Theorem 5.1. For every F' € LP(X), p € (1,00), there exists F, € LP(X) such
that

lim M, (F) = F, almost everywhere and in LP. (5.2)

Moreover, if the action of the subgroup (qZ)* x (¢Z)¥ is ergodic on X for every
integer ¢ > 1, then
1
Fo= /X Fdp. (5.3)
We prove now the equivalence of Theorems 1.1 and 5.1, and reduce matters
to proving Theorem 5.1 on a special discrete group G with special polynomial
map Fy. We show first that Theorem 1.3 implies Theorem 5.1. Assume that
G* is as in Theorem 5.1 and acts on X via measure-preserving transformations.
For g € G* define the transformation 7, : X — X by T,(z) = g -z. Let
{gi,hji=1,...,d,j=1,...,d} denote the standard basis of Z¢ x Z%, and let
T, =Ty, S; =T, Forn=(ny,...,ng) €Z*, m = (my,...,ma) € Z% it follows
from the definitions that

H rr H S = Tin,m+Qo(m) (5.4)

1<i<d 1<i<d’

where Qy : Z¢ — Z% is a polynomial mapping of degree 2. Thus the aver-
ages in (5.1) reduce to those in (1.12) associated to the polynomial map Q(n) =
P(n) — Qo(n). Also it is clear from (5.4) that the family of transformations
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T! 1<i<a), S} a<i<ay generate the subgroup G¥ = (¢Z)* x (¢Z)?, hence the er-
godicity of the action of the subgroup implies that of the family T, S}.

We start now the proof of Theorem 1.3. Notice that the coefficients of the
polynomials Q; : Z% — Z of degree at most 2 must be integers or half integers.
Writing n; = 2n; + ¢; for some fixed residue classes €; (1<i<q) modulo 2, it follows
that the average in (1.12) can be written as a linear combination of 2¢ averages,
where the exponents are polynomials with integer coefficients. Thus one can

assume that the polynomial mapping () in (1.11) has integer coefficients. Also,

one may write
[T s =5 T s 1 85" (55

1<i<d! 1<i<d 1<i<j<d

by expanding SlQl(n) into a product of factors with monomial exponents n; and
n;n;, and collecting all the resulting factors with a given exponent. If one puts
T, =1T,S; (1<i<d), then the transformations T, (1<i<d) Sy (1<i<j<a) satisfy (1.10).
Moreover, the ergodicity of the family Tiq (1<i<d)s STijq (1<i<j<q) implies that of
the family 77, S/ (1<i<q, 1<i<ar)- Thus it is enough to prove Theorem 1.3 for the
special polynomial map

d(d+1)

Qo:Z'—7Z =2  with QF(ni,...,na)=nm; (1<i<j<d). (56)

We identify the group generated by the transformations T} (1<i<a), Sij (1<i<j<d)
as a isomorphic image of a step 2 nilpotent group G* on Z¢ x Z* . More precisely
it follows from (1.10) that

[Im I o= 107 11 momes (5.7

1<i<d 1<j<d 1<i<d 1<j<i<d

This implies that the group G} defined by the bilinear form R, : Z¢ x Z¢ — Z%
with components

. noifl1<i<ci<
jo(n,n’):{ ning i1 <j<i<d

0 ifl<i<j<d (5.8)

acts on X via

(nom)-w= 1T 7 [[ @1 1] S5() (5.9)

1<i<d 1<j<i<d 1<i<j<d

where n = (n; (1<i<q)), m = (M4 (1<ij<a))- In terms of this action the averages
in (1.12) take the form

AAF)@) = ez 2 F((n.0.R(w) ) (510

n€B,NZ4
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Thus Theorem 1.3 reduces to Theorem 5.1 in the special case d’ = d?,

P(n) =31 cicjcaminy - €iss (5.11)
R(n,n') = Zl§j<i§d ning - €,

where {e;; :i,j = 1,...,d} denotes a standard orthonormal basis of RY.
We conclude this subsection with a maximal ergodic theorem, which follows
from Theorem 1.1 and a general transference argument.

Theorem 5.2 (Maximal ergodic theorem). With the notation in Theorem 5.1,
let M(F)(z) = sup |M,F(x)|. Then
r>0

IME) vy < Gy [[Ellzeex)- (5.12)

Using Theorem 5.2 and the Lebesgue dominated convergence theorem, it suf-

fices to prove the almost everywhere convergence in (5.2). We can also assume in
Theorem 5.1 that F' is in a suitable dense subspace of LP(X), such as L>(X).

5.2. Pointwise convergence. Assume F' € L*(X) and, for given 1 < § < 2,
define the averages

1 .
M(F)(x) = 8 o > Q(n/¥) F((n, P(n)) - z) (5.13)
nezd
where ° : R? — [0, 1] is a smooth function, such that Q°(y) =1 for |y| < 1 and
Q°(y) = 0 for |y| > §. For a given r > 1 let j be such, that & < r < §*! and
compare the averages M, (F) and M}(F). Since F € L*, it follows easily that
for any x € X

M, (F)(z) = MG(F)(2)] < Ca(67 46" = 1) || F| .

Thus it suffices to show that for each 1 < § < 2 the averages M?(F ) converge
almost everywhere as j — oo. For simplicity of notation, we drop the superscript
6 and write M;(F) = M3(F).

Next, we identify subspaces of L?(X) on which the convergence of M;(F) is
immediate. For integers ¢ > 1 let G¥ = (¢Z)? x (qZ)* i.e. the subgroup of
points whose each coordinate is divisible by ¢. Define the corresponding space of
invariant functions by

LAX) = {FeL’X): T,F=F VgeGl} L, (X)=JL2(X), (514)
q>1
where TyF(z) = F(g - x). Notice that L2 (X) C L2 (X) if ¢, divides go, hence
L? (X) is a closed subspace of L*(X).

inv
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Lemma 5.3. Assume ¢ > 1 and let F € LZ(X). Then, for every xz € X,
lim M;(F)(z)=¢™ Y F(,Pv)- ) (5.15)
j—00

VvE(Z/qZ)?
Proof of Lemma 5.8. If n = v (mod q) then (n, P(n)) = (v, P(v)) (mod q) (see
(5.11)), hence there is a g € G¥ such that (n,P(n)) = g - (v, P(v)). Thus
F((n,P(n))-z) = F((v, P(v))-x) since F € L2(X). In view of the definitions, it
is enough to show that for every v € (Z/qZ)?

- 1 5 iy —d
jlg{)lom 72 (n/d’) = ¢,
n=v (mod q)
which is an elementary observation. U
If for each ¢ the action of G¥ on X is ergodic, then L7 (X) contains only
constant functions. Thus, for (5.2) and (5.3), it suffices to prove that for F' €
(L (X))*

mv lim M;(F)(z) =0 forae zeX (5.16)

J—00

We identify now a dense subspace of the orthogonal complement of Lg (X).
Lemma 5.4. Assume q > 1. Then

(LA(X))* = Span{T,H - H: g€ G}, H e L=(X)}, (5.17)
where Span S denotes the subspace spanned by the set S.

Proof of Lemma 5.4. Let F € L*(X) and assume that for all H € L>°(X) and
geG¥

(F,\T,H—-H)=0
That is for every g € ij
(IyF —F,H)y=0 VHeL*X)

which means T,-+ F' = F for all g € G¥, so F € L2(X). This proves the lemma.
]

Following an idea described in [3], we will show (5.16) by proving L? bounds for
a family of truncated maximal functions. We will use the following construction:
let £; (j € N) be a family of bounded linear operators on L*(X), and let ji, be an
increasing sequence of natural numbers. Then we define the maximal operators
Li(F)(x) = max [L;(F)(z)]
JeSI<Jk+1
Let FF € (L2 ,(X))*, and assume indirectly that for a set of positive measure
lim; o M;(F)(z) # 0. Then there exists ¢ > 0 such that
p{z € X :limsup [M;(F)(z)] > e} > e

J—00
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Then, it is easy to see that there is an increasing sequence j, (k € Z. ) such that
| ME(F) |[72x) = €°/2 (5.18)

for all k£ € Z,. Moreover the sequence j;, can be chosen to be rapidly increasing,
SO We may assume Jii11 > 3Jk-

Let X : R — [0, 1] denote a smooth function supported in [—2,2] and equal to
lin [-1,1]. For z € X and L > 1 we define

fra(g) = F(g-)-xz(9), (5.19)

where y, : R x R¥ — [0,1] is given by xz(m,u) = X(|m|/L) - X(Ju|/L?) (recall
that G#* = Z% x Z% as sets). Cleatly, ||xz|l11(g#) ~ L. For f : G* — C,
j >0, and § € (1,2], we define as in (5.13)

Mi(F)lg) = i 3 Dw/5) f(n, P(n) - g).  (5:20)
[T

Using the definitions, for any & € Z, and L > L; large enough

* C N*
IMUP iy < Faszs | Vi) o dno)

We assume from now on the the sequence j; < jo < ... is fixed. To summarize,
for (5.16) it suffices to prove Lemma 5.5 below.

Lemma 5.5. Assume F € (L2, (X))* and define fr. as in (5.19). Then for

inv

everye > 0 and § € (1,2] (see (5.13) ) there exist k = k(F,e,6) and L(ji1, F €, )

such that .
] d+2d2 /X

for any L > L(jis1, F.e,6).

2
d < 5.21
o, () < (521)

sup | M (fr.0)]|

Jk<J<Jjk+1

We show now how to reduce Lemma 5.5 to Lemma 5.6 below. We may assume
that || F||r2x) = 1, so

1
T /X ||fL,x||%2(G#) dp(x) < C||F||p2(x) < C for any L > 1. (5.22)
Also, for f € L*(G*), we may redefine
M;(f)g) =279 Y Q' (n/2)) f((n. P(n) - 9), (5.23)
nezd

where ° : R — [0, 1] is a smooth function, Q°(y) = 1 for |y| < ¢o and Q°(y) =0
for |y| > co-0,1 < ¢y <2

We wil use the notation and results of subsection 4.1, especially the remark
following Lemma 4.1. Assume ¢ > 0 and n € (1,2] are fixed. We relate now

the averages M, (f) in (5.23) and M,(f) in (4.2). We identify G# and G} with
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74 x 7% . By taking the Fourier transform in the central variable, for 6 in R? we
have

/\7](7) (mv 9) = ZnEZd Q?(m — n)f(n, 9)672WiR0(m7”7n)"9;
Mj(f)(m, 0) = ez U(m — n)f(n, §) e 2mi(—P(n=m)=R(n—m.m))0
where Q)(x) = 279Q°(—2/27). For N = N(e,6) sufficiently large let

Ry ={a/qgeQ” : ¢ <N and (a,q) = 1}.
For j > N, define as in (4.6) and (4.7)
YO) = > vE@¥NTHO-1)
reERN

and

—

MY (f)(m,0) = M;(f)(m,0) - T (6).

Simple changes of variables, using (5.11), and the remark following Lemma 4.1
show that

5/C)WHL2 G#)

o 15600 - S|,

j>N

for any f € L*(G#), provided that N = N(e, 5) is fixed sufficiently large. Thus,
using (5.22),

sup IM (fra) = MY (f1, x)l dp(z) < e/2. (5.24)

L2(G#)

Ld+2d2

Assume from now on that N is fixed. We examine the operator Mvjv , and, for
a/q € Ry, j > N and f € L?(G#), we define

/\/-\

MY () (m,0) = M;(f)(m,0) - > @ N0 —a/g—b).  (5.25)

bezd?

Thus, for Lemma 5.5 it suffices to prove Lemma 5.6 below.

Lemma 5.6. Assume F' € (L} (X))t, N> 1,a/q € Ry, § € (1,2], and define

muv

frz as in (5.19), and Mfa/q as in (5.25) and (5.23). Then, for every ¢ > 0,
there exist k = k:(F, N,e,0) and L(jgi1, F, N, e, 5) such that
sup ]a/q(fLac)|

d+2d2 / ‘
L J<J <]k+1

fOT any L > L(jk-l-laF) N7€7(5)'

L) du(x) <e, (5.26)
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The rest of this section is concerned with the proof of Lemma 5.6. As in (4.26),
by the Fourier inversion formula,

MDDy = > f(n,0)2(m —n)
(n,w)eZd x 74>
271'2‘(uvarP(nfm)+R(nfm,m))-a/q7

(5.27)
where € S(R™) is defined as in (4.26), and n,(s) = r¥n(s/r), r > 1. As

”
in section 7, we define ¢ : R” — [0,1], ¢(s) = (14 |s|2)"@+4+D and ¢,.(s) =
r~%¢(s/r). Then

’Mfa/q(f)<muu)| <Cy Z \f(n,v)]~Qg(m—n)gbgzj(u—v—l—R(n—m,m)),

(n,w)eZd x 74>

X Mo2i yn(u — v + P(n —m) + R(n —m,m))e

(5.28)
so the maximal function f — sup; <;<; \/\/lj.\fa/q(f)] is bounded on L?(G#)
(compare with Lemma 7.1). Thus, using Lemma 5.4 and (5.22), in proving
Lemma 5.6 we may assume that

F(z) = H(go - x) — H(x) for some go € G¥ and H € L*(X) with ||H||p~ = 1.
(5.29)
We may also replace the function n with a smooth function 77 compactly supported
in the set {s € R? : |s| < N’(e, N)}; this is due to the fact that the bound (5.28)
gains an additional small factor the right-hand side for the part of the operator
corresponding to n — 7).
Using (5.19) and (5.29),

fra(g) = x1(9) - [H(gog - x) — H(g - x)]. (5.30)
It suffices to prove that for k, L as in Lemma 5.6 and [, as in (5.30),
1 2
—_— su M fr
Ld+2d? /X‘ ijj<IJ?k+1| ](fL7 )| L2(G#)
where M;(f) is defined as in (5.27) with 7 replacing 7.
We define the kernels K; : G* — C,

K;i(n,v) = Q?<—n)ﬁ22j/N(—U + P(n))e2m(_”+P(”))'“/q (5.32)

du(zr) < e/2, (5.31)

so, using (5.27),
Mi(H)mu) =Y fn,0) - Ki((n,0) - (myu) ™).

Using (5.30) and simple changes of variables, it follows that

M(fra)(g) = > H(hg-x)- [xr(9o ' hg) Ki(go'h) — xr(hg)K;(h)]  (5.33)
heG#
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for any g € G*. We use now (5.29), i.e. [|[H|r~ = 1. Since gy € G¥, the

oscillatory parts of K;(h) and K;(g;'h) agree. Simple estimates then show that
(with h = (n,v))

x2(90 " hg) Kj(g 1) — x1.(hg) K (h)] < C(go, N, €, 8) it xar(9) - Q4 a(1) 6a2i (v),
if k is sufficiently large, and then L is sufficiently larger than ji.;. Thus

(7(go,fV,5,5)

IMi(fr.)(9)] < : xaL(9),
Jk

and (5.31) follows.

6. THE SINGULAR RADON TRANSFORM

In this section we prove Lemma 2.4. The main ingredients are the L? bounds
in Lemma 6.1, a super-orthogonality argument of Ionescu and Wainger [8] which
reduces matters to square function estimates, and the weighted inequality in
Lemma 7.4. We assume throughout this section that d’ = d2, and G is the
discrete nilpotent group defined in section 2.

6.1. L? estimates. Our main result in this subsection is Lemma 6.1, which is
a quantitative L? estimate. The proof of Lemma 6.1 is based on Plancherel
theorem, Lemma 3.2, Lemma 3.3, and Lemma 3.4.

Let K denote the Calderén—Zygmund kernel defined in section 1. Without loss
of generality (cf. [14, p. 624]), we may assume that K = 7% K, where Kj is

supported in the set {z : |z| € [277,2771]}, and satisfies the bound
|| ()| + |2 ™V E(2) < 1, 2 € R j > 1, (6.1)

and the cancellation condition

Ki(z)dr=0,j5> 1. (6.2)
Rd
As in section 4,
— Z T_]( Where T Z K 9)6727riR0(m7n,n)-9.
j nezd
(6.3)

As in section 4, let 1 : RY — [0,1] denote a smooth function supported in the
set {|¢] < 2} and equal to 1 in the set {|¢| < 1}, N € [1/2,00) a real number,
j € ]0,00) N Z a nonnegative integer, and R C Q% a discrete periodic set. As in

(4.6), let
= >IN0 1),

reR
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and, by convention, \Ifév’@ = 0. For (compactly supported) functions f : G# —C
we define ’Z;NR( f) by

TR () (m,0) = T;(f)(m, 0) - 0;"%(6). (6.4)
Our main lemma in this section is the following L? estimate:

Lemma 6.1 (Strong L? bound). As in Lemma 4.1, assume that N € [1/2,00),
Ry C Q% is a discrete periodic set, and INry € [0,00) is a real number with the
properties

2NN > (100 max gl (6.5)
a/qeERN and (a,q)=1

{ {a/q:q € [1,N] and (a,q) =1} C Ry,

Then

| X G-10)||, . <

JZINRN

for any N > 0, where ¢ =¢(d) > 0.

LQ(G#) < O<N + 1>7 HfHLQ(G#)a (66)

The rest of this section is concerned with the proof of Lemma 6.1. Notice that
the case N = 1/2, Ry = 0, Jyr, = 0, corresponds to L? boundedness of the

operator 77" . For § € RY and (compactly supported) functions g : Z¢ — C, let
U (g)(m) = 3 K (m — m)g(n)e=2riRet=, (6.7
nezd

By Plancherel theorem

| > G-,

L2(GY)

JZ2INRN
~ 2

:/[Ol)d’ 2. ‘ Y =IO (f(,0)(m)| db.

meZ? j2INRy
Using Plancherel theorem again, for (6.6) it suffices to prove that

| > a-wenu

JZ2INRN

for any 6 € R? fixed.

Assume that § € R? is fixed. As in section 4, for any j > Jy g, we use the
approximation (4.17) with A = 22797 § = §(d) > 0 sufficiently small. Thus
there are irreducible 1-fractions a{l L/ qul ;, such that

< O(N+1)° (6.8)

L2(Z4)—L2(Z4)

1< (Iljle < 2= and 01,0, — agllg/%]lﬂ < C/(2(2_6)qu]112)' (6.9)
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We fix these irreducible 1-fractions a{l L/ qul ,, and partition the set ZN[Jy r,,00)
into two subsets:

L ={jeZn[Jyry,00): max qll > 2j/(6d’)}

l1,l2=1,...,

and | |
L={j€ZN[Jyry,00): max g, <2/}

For j € I, we use Lemma 3.2:

[0 -s=ron

Jjeh

<Y 279 <C(N+1
LZ(Zd)—>L2 Zd) Z ( + )
as desired.

For j € I, let a;j/q; denote the irreducible d'-fraction with the property that
a;j/q; = (alll?/qlllz))l1 l=1,.4- In view of (6.9) and the definition of I,

77777

1<q; <25 and |0 —aj/q| < C/227%, (6.10)
We recall (see (4.20) that if j,j" € I and 7, j" > C then
cither a;/q; = ag /ay or la;/ar] ¢ [1/2.2] (6.11)
As in section 4, we further partition the set I,
Iy = Ugely /% where Iy a/e — ={jely:a;/q; =a/q}. (6.12)
For j € I3'% we show that
H > @ = v O)u Lo < C(N +¢)° " (6.13)

jGIa a

This would suffice to prove (6.8) since the possible denominators g form a lacunary
sequence (see (6.11)). To prove (6.13) we have two cases: ¢ < N and ¢ > N. If
q < N, we use Lemma 3.3 together with the definitions (4.8) and (4.6). It follows
that the left-hand side of (6.13) is dominated by

CZ 1[1700)(223‘]\[71‘0 i a/q’)qil/z(l + 22j|@ _ a/q|)71/4 < Cq—l/ZN—l/zL’
jez
as desired. If ¢ > N, then the left-hand side of (6.13) is dominated by
H > (1 — YR (gl

jely’® 29€(¢8,0—a/q|~1/?]
0
+ Z ||uj |‘L2(Zd)—>L2(Zd)'
FEIS 1,21 >0—a/q|~1/2

For the first term in (6.14) we use Lemma 3.4 for the kernels (1—\If§y’RN(¢9))KJ~(m).
To control the second term in (6.14) we use Lemma 3.3. It follows that the

L2(24)—L2(Z4)

(6.14)
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expression in (6.14) is dominated by Cq~'/2, which suffices to prove (6.13). This
completes the proof of Lemma 6.1.

6.2. An orthogonality lemma. In this subsection we review a partition of
integers and a square function estimate from [8]. The point of this construction
is to find a suitable decomposition of the singular integral operator and exploit
the super-orthogonality (i.e. orthogonality in L?", r € Z,) of the components.

Recall that for any integer p > 1, Z, = {1,...,p}. Assume 6 € (0,1/10] is
given and D denotes the smallest integer > 2/§. Assume N > 10 is an integer.
Let N’ denote the smallest integer > N%2 and V = {p1,ps,...,p,} the set of
prime numbers between N’ + 1 and N. For any k € Zp let

WHE(N) = {p;* ... p,* :p;, €V distinct, oy, € Zp,l=1,...,k},
and let W(N) = Upez, W¥(N) denote the set of products of up to D factors in
V', at powers between 1 and D.

We say that a set W/ C W(N) has the orthogonality property O if there is
k€ Zp and ksets S1,52, ...,k S; = {¢1,---,486)}, 7 € Zk, with the following
properties:

(i) gj.s = ;7 for some p;, € V, a; € Zp;

(H) (qj,57QJ",S/) =1if (]7 S) 7é (jla S/);

(iii) for any w’ € W' there are (unique) numbers ¢ 5, € Si, ..., ks, € Sk With
U)/ = QI,sl Tt Qk,sk-

For simplicity of notation, we say that the set W’ = {1} has the orthogonality
property O with £ = 0. The orthogonality property O is connected to Lemma 6.3
below. Notice that if a set has the orthogonality property O then all its elements
have the same number of prime factors. The main result in [8, Section 3] is the
following decomposition.

Lemma 6.2 (Partition of integers). With the notation above, the set W(N) U
{1} can be written as a disjoint union of at most Cp(In N)P~1 subsets with the
orthogonality property O.

Let Qo = [N"!]” and define
Yy ={w-Q :weW(N)U{l} and Q'|Qo}. (6.15)
Notice that for any m € Zy there is a unique decomposition m = w - @), with

w e W(N)U{1} and Q'|Qo. In addition, w- Q' < NP*[NI|? < &N’ if N > Cj.
Thus, for N > Cj,

Zny C Yy C ZeNa. (6.16)
Let
W<N) U {1} = USESWs/
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denote the decomposition (guaranteed by Lemma 6.2) of W (N)U{1} as a disjoint
union of subsets W/ with the orthogonality property O, where |S| < Cp(In N)?/%.
Using this decomposition, we write Yy = UgegY (disjoint union), where

Yi={w-Q :weW.and Q'Qo}. (6.17)
This is the partition of integers we will use in section 6.3.
For any integer g > 1 let
P,={acZ:(a,q) =1}, P,=P,n[0,9)".
Let Sq,S5,,. .. ,§k denote sets of integers S; = {q;1,...,¢84)}s J € Zk. Assume
that for some @)

4js € [2,Q) for any j € Zi, s € Zg(, (6.18)
and
(@5, qyr.s) = 1 if (4, s) # (7', 8'). (6.19)
For any j € Zj let
Ty = {ajs/tis : 5 € Zpy) a6 € Py} S Q7
denote the set of irreducible fractions with denominators in \S;. Furthermore, for
any set A ={j1,...,jw} C Z let

Ta={rj +...+rj, i € Ty for l € Zy} € Q7.

Finally, for A = {j1,...,jw} C Zy and any (s;,,...,s;,) € Zsgy) X .- X Zs(,,)
let

UA’sjl""’sjk’ - {ajl’sjl /qjl’sjl +ot ajk/,Sjk,/ij/,Sjk, : ajlysjz = P‘]jz,sjl for [ € Zk’}u

that is the subset of elements of T4 with fixed denominators g, s, , .-, B s, If
A = () then, by definition, Ty = Uy = 7% . Notice that the sets T4 and UA,SJ.P,,,7S].M
are discrete periodic subsets of Q%. Let T4 = T4 N [0,1)% and (7,4,81.17“,75%, =
Uisjy sy, N [0,1)%.
Assume that () > 1 is an integer with the property that
(Q,qjs) =1, for any j € Zy, s € Zg(). (6.20)
Assume p > 1 is an integer and fix
v = (8pQ7 Q™) (6.21)

where Q is as in (6.18).
For any r € Ty, let f. € L?*(Z%) denote a function whose Fourier transform is
supported in an y-neighborhood of the set {r + a/Q : a € Z¥}, i.e. in the set

Ur+a/Q+ By,

a€Z
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where B(7y) = {|¢] < v}. We assume that f. = f.,, for any a € Z?. Let (Z%,dn)
denote the set of integers with the counting measure. The main estimate in this
subsection is the following lemma.

Lemma 6.3 (Square function estimate). With the notation above we have

2p
/ Z fr(w)| du
zd P
relz
’ a,  (6.22)
<G ¥ X [ (] X geew])
A:{]l ----- ]k/} Sgpaeee Sjk/ z T’GTGA /JJE(?A’Sjl ,,,,, Sjkl

where the sum in the right-hand side is taken over all sets A = {j1,...,jw} C Z,
and all (sj,,...,585,) € Zpgy) X ... X Zg(,,)- The constant Cy, may depend only
on k and p.

See [8, Section 2] for the proof.

6.3. Proof of Lemma 2.4. In this subsection we complete the proof of Lemma
2.4. The main ingredients are the L? estimate in Lemma 6.1, the partition of
the integers in Lemma 6.2, the square function estimate in Lemma 6.3, and the
weighted estimate in Lemma 7.4. The kernels K are as in (6.1) and (6.2), and the
operators 7; are as in (6.3). Lemma 2.4 follows by interpolation (see [8, Section
7]) from the following more quantitative lemma.

Lemma 6.4. Assume 2p > 4 is an even integer and e = 1/(2p — 2). Then, for
any A € (0,00), there are two linear operators Aj)-‘ = A?’E and B])-‘ = B;’E with

T, = A+ B},

H ;Aj\(f)‘ LZ(G#) < CE/AHfHLQ(G#)y (623)
and
>\ €
H ;BJ (f>) L2 (GY) < Ce HfHsz,l(th)- (6.24)

In (6.24), L*»(G{) denotes the standard Lorentz space on G¥. The rest of
this section is concerned with the proof of Lemma 6.4. In view of Lemma 6.1, we
may assume that A\ > C.. With ¢ as in Lemma 6.1, let

§ = 2e/100. (6.25)

Let
Ny denote the smallest integer > AY/¢;
Ry, ={a/q: (a,q) =1 and q € Yy, }; (6.26)

JNO,RNO = )\67
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where Yy, denotes the set defined in (6.15) with § = @/100 as in (6.25). The
property (6.5) is verified for A\ > C., using (6.16). For j < INo Ry, 166 .Ag\ =0,

B} = T;. Clearly,
> BY)

je[laJNo,RNU)mZ

< C/\EHf”[ﬁp(G#)?

L (G¥)

which gives (6.24). For j > Jyory, let A} =T, — T,/ g) = 7.\

j
7Y™ defined as in (6.4). By Lemma 6.1,

> aw)

J2JNg, Ry,

, with

< Ce//\||f||L2(G#)a

L2(GY)

which gives (6.23). To complete the proof of Lemma 6.4 it suffices to show that
TNoR .
H o (f)’ < O f 1] oo ety (6.27)

J2JINg, Ry,

L2 (GY)

for any characteristic function of a bounded set f.
For simplicity of notation, let

Jo = JIng Ry, = A
We use the notation in section 6.2, with 6 = ¢e/100, D the smallest integer > 2/,
N = Ny, N' = N{, and
Qo = [N}]P < ™. (6.28)

Then Yy, = UsesYy, and Ry, = USESR% (disjoint unions), where Yy is defined
n (6.17) and

R% ={d'/w +b/Qy:d,beZ, (d,w') =1, and w' € W'}. (6.29)
Clearly, for j > Jy,

No RNO Z TNO RNO

ses
Since |S] < C.(In M) (see Lemma 6.2), for (6.27) it suffices to prove that for any
set W/ C W (Ny) U {1} with the orthogonality property O

st

Jj=Jo

< CXP| fll vty (6.30)

L2P(GY)

for any characteristic function of a bounded set f.

We fix the set W’ in (6.30) and assume W’ # {1} (the case W' = {1} is
significantly easier). Let Si,..., Sk, S; = {q;1,---,js0)}, denote the sets in the
definition of the orthogonality property O. Clearly k < C, and

G € [2,77]. (6.31)
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For any sy € Zgq), ..., sk € Zgw) let

1 lf q1,s1 * -+ " Ak,sy, < W/,

Vs ) = { 0 if quoy - Qrs, W

Any irreducible d'-fraction a'/w’, w' € W’  can be written in a uniquely in
the form ay s, /q1s, + - .- + Qk.s,. /.5, (mOd Zd/), with ¢, € Sy and a;4, € qu’Sl,
[ =1,...,k Conversely, if v(q1s; - -+ Qrs.) = 1, then any sum of the form
A1, /sy T F Qb /Qhsy, With @15, € Spand ar, € By, 1= 1,...k, belongs

to the set {a’'/w’: (¢/,w') =1 and w’ € W'}. Thus

No,RY'
U0 = Y s sy

51,01,57 -5k :0hk,s), bGZd’ (632)
w(22j(9 — Q1,5 /q1,51 e T a'k'ysk/qusk - b/QO)/N0)7

where the sum is taken over all s; € Zg(y and a; 4, € ﬁqlﬂ. For any r = a5, /q1.s, +
T sy /sy $1 € Zpy and ags, € Py | (so 1 € Tz, with the notation in section
6.2), we define G, € L*(G}") by the formula

Cr(m.0) = Y@y @) S T 0) Y (2% (0—r—b/Qo)/Ny). (6.33)

Jj=Jo bezd

In view of (6.32),

No,RW'
> ¥,
jZJO TETZk

with Tzk defined as in section 6.2. Clearly, é\r(m, .) is supported in a 2Ny2~27

neighborhood of the set {r +b/Qy : b € Z}. The condition (6.21) with Q = Qo
and Q = A\ is verified if A > C. (see (6.26), (6.28) and (6.31)). We apply Lemma
6.3 to the functions G,(m,u), for any m € Z%. With the notation in Lemma 6.3,
it follows that

2p
H Z G L20(G¥) < Ce Z

TETZk A={j1, . Jpr }
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The sum over the sets A C Z, above has 2¥ = C. terms. To summarize, for
(6.30), it suffices to prove that for any set A = {j1,...,Jxw} C Z,

> [(Z Z Grreplm)|'), dmau < CNAZ,

Sj15mShps r’'€Tecy uEUA iy s;

(6.34)
for any characteristic function of a bounded set f.

For (Sju . ’Sjk’) € Zﬁ(j1) X ... X Zﬁ(jk') and 1’ € fCA7 let

Gr’,sh.“,sjk, - Z GT’—HL-

We also define the function f’“’ysjy-»sjk/ € LZ(GZfE ) by the formula

Flfrapyoss, ), 0) = Fm,0) S ST w2200 — 0 — o~ b/Qo) /No).

bezd ) .
€ .U‘GUA,SJI,...,SJIC/

(6.35)
For the bound (6.34) it suffices to prove that
2
2 / (X s, o)) dmdu < CIFIE, 0 (636)
Sy resShp Go r'eTey
and
2\p
/ ( Z ’GT Sy (m u)‘ ) dmdu
7 €Ten ) (637)
p
< O\ / (3 [#es m’sj/(m7u)‘ ) dmdu,
G# T’ETCA 1 '

for any (s;,,...,5;,,) € Zgi) X .- X Zg(,,) fixed. The bound (6.36) follows from
Lemma 6.5 below. The bound (6.37) follows from Lemma 6.6 below and the
identity

NOerl, ’
Gr’,sj-l...,sj-k, = 7<Q(r/) ) (:Zjl,Sjl et ij/,Sjk,) Z 7; ¢ (f?”’,sj-l...,sj-k, )a (638)

j=Jo

where Q' = Qo qj,;, + - - By 55, and ¢(r'") is the denominator of the irreducible
d'-fraction r’ (see the notation in Lemma 6.6). The identity (6.38) follows from
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the definitions and the observation

SX YO - bQu/N = Y w20~ ¥ /Q)/Ny]

o b ezd

X Z Z P[2277HO — 1" — p = b/Qo)/No.
Lemma 6.5. With the notation above,

> (X

Sg1o oS 7' €Teq

2
Frrosss, (m,u)’ ) dmdu < C.||f|[?

L2r(GY)

for any characteristic function of a bounded set f.

Proof of Lemma 6.5. This is similar to the proof of [8, Lemma 4.3], and is inspired
by the Littlewood Paley inequality in [13]. Clearly, since f : Gf — {0,1},
HfHsz ) = HfHL2 oty In addition, by Plancherel theorem,

> LY

SEARRRLLW Go r'€Tey

Py ()| i < I

since the function }"[fw’sh,,,,sjk,](m, .) is supported in a 4Ny2~2% neighborhood

of the set

r'+ Z Z b/Qo + .

bEZd/ MefjA,sjl ,,,,, Sjk/
These neighborhoods are disjoint, as r’ € Tey and (8j10---285) € ZgGy) X - X
Z33j,), see (6.26), (6.28), and (6.31). Therefore it sufﬁce§ to prove that for any
(Sj1s---285.) € Za(y) X .. X Zg(j,,) and (m,u) € Z* x Z¥,
2
Z fr’,Sjl...,Sjk, (m,u)‘ S OE'
T,GTCA

Thus, it suffices to prove that for (s;,,...,s;,) € Zggy) X ... X Zg(,,) fixed
D ) e, ()| < C
T ETCA

for any (m,u) € Z* x Z , and any complex numbers v(r’) with

S )P =1. (6.39)

T,GTCA
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Since || ]|z~ < 1, it suffices to prove that for (sj,,...,s;,) € Zggy) X ... X Zg(,,)
fixed

[l IRZID DD
7 ETes beZ pela,s,

g1 (640)
PRI =1 = p—b/Q)/N)|| <

L@z —

As before, let n(z) = [pu ¥(£)e*™ ¢ d¢ denote the Euclidean inverse Fourier
transform of the function ¢). An easy calculation shows that

FU o S w) Y Y e — i b/Q0)/N]) ()

r'€Teq bezd uEﬁA,sjl ,,,,, S
_ N 2miu-r’ 2miu-(b/Qo+n)
= (> v(r)eE™ ) gy (w) - () d e ).
TIGTCA ,U»G(FJA‘SJ.I ’’’’’ Sjkl bGZSO

(6.41)

We consider first the sum over b and p in (6.41). For any integer Q' > 1 define
the function g : Z¥ — Z as in (4.58). Clearly, Y-, 0 €*™"*@" = 55 (u). Recall
Ql

from section 6.2 that g;,, = p?j;j, for some primes p;,, € V and o € [1,C] N Z.
In addition, it is easy to see that if ¢ = p® and (@, p) = 1 then

{a/q+b/Q:beZ¥ ac P} ={V/(Qp*):V e Z¥ I\ {V//(Qp*") : ¥ € Z¥}.
Thus, for (sj,,...,5;,) € Za) X ... X Zg,, fixed,

2. 2 mlutbfQ)= Y, (DT Y mb/Q),

rr ! . . U
MEUA75j1 77777 sj, bEZ%O Ejpa Ejk/ 6{071} bEZdQ,
(6.42)
. . . U i, —E4 a5 ,—E&5
for any periodic function m : RY — C, where Q' = Qopy, - ~pjkj/’“;j ¥ The
I 1 ) 1%
. —1
possible values of ) are products of )y and p?llsj or p?‘llsj ,I=1,...,K. and
(el (el

the sum over £j,,...,¢;, € {0,1} contains 2¥" = C, terms. Thus, for (6.40), it
suffices to prove that

10D v sty (w)de (Wl ey < Ce,

T'/E%CA

for any @’ with (see (6.28) and (6.31))

Q €[1,*”°1NZ and (@ qj,s) = 1 for any j € A, s € Zg(j). (6.43)
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This is equivalent to proving that
[I( Z v ()X Y2 ooy (W] 1 2y < Co, (6.44)
r’ech

provided that (6.39) and (6.43) hold.
Let 9 = 272002N,Q’" < 1. The function 1 is a Schwartz function on R; by
Holder’s inequality, for (6.44) it suffices to prove that

d' /2 TiQ u-r’ —d’
Yo PO v ) (1 g ) ey < Ce (6.45)
TIETCA
The left-hand side of (6.45) is equal to
4 I— ! . 1] / 1/2
WS e [ e a] L (o)
ri,réETcA z

It remains to estimate the integrals over Z¢ in (6.46). If v/ = 7/, then

‘ / (1+ ,yg‘u|2)—2d’€27riulQ’(r'1—r/2) du‘ < C’Yo_d,- (6.47)
zd

.....

fractional part of @'(r} — r}). Since the denominators of 7} and r} are bounded
by A%, there are l1,ly € {1,...,d'} with the property that ¢;,;, € [\"%,1—\"%%].
By summation by parts in the variable u;,;, corresponding to this ¢,

| / (14 BJuf?) 20 e2m ri=rd) gy < O X (6.48)
z¥

if 7 # ry,. We substitute (6.47) and (6.48) in (6.46). It follows that the left-hand
side of (6.45) is dominated by

O ()P +70A%( Y ()2

T’IETCA T’IETCA
Since |Tu| < A% and 7y < e*7?, the bound (6.45) follows from (6.39) and
Holder’s inequality. This completes the proof of Lemma 6.5. U

Lemma 6.6. Assume, as before, that () € [1,€>‘€/5] NZ, Jy =\, Ny < \C. For
any irreducible d'-fraction r = a/q with ¢ € [1,A\°]NZ and (Q,q) =1 let

Reg=1{r+b/Q:beczZ},
and, as in (6.4),
FITTR(D)m.0) = T() Y 0(22(0 = 7 = b/Q)/No).

bezd
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Then,

[ZIZ 7

rjzJo

e[

21/2

} ‘ Lr(Gf) Lo (ey)
(6.49)

for any (compactly supported) functions f, G# — C, where the sums are taken

over irreducible d'-fractions r = a/q with ¢ € [1,\°|NZ and (Q,q) = 1.

Proof of Lemma 6.6. As in (4.26), in view of the definitions and the Fourier in-
version formula,

7}NOR’“Q (fr)(m,u) Z fr(n,v)K;(m —n)
(n, v)GG#
Mo2i g (W — v — Ro(m — n,n))e?mumv=Rolm=nm)rs, (4 — v — Ry(m — n,n)),

(6.50)

where dg is defined in (4.58). We use the change of variable ®g : Gif x [Z§ x

Z%;] — GO# defined in (4.28). Let F,.((n',v"), (v, B)) = f-(Po((n/,v), (v, 5))) and
1o No,Rr, 1o

GT((m » U )’ (:u’ Oé)) = ijjo ,Z; Q(fr)(CDQ((m U )7 (:ua Oé))) Then7 by (650)7

Gr(<m/aul)7(:u70‘)) = Z Z FT((nluv/)v(%ﬁ))
(n'v)€GY (nP)EZE <2,

D K Q' —n') 4 Bz vy (Q* (' — o' = Ro(m' —n',n')) + Ey)

j=Jo
X 0g(a— B — Ro(p — v, V))@QWiE3'T,

where By = ji— v,
Ey = (a =B = Ro(p — v,v)) + Q(Ro(p,m" — n') = Ro(m' —n’,v)),
and
=Q*(u — v — Ry(m/ —n',n)) + Es.
Clearly, |Ey| < CQ and |Es| < C20Q if [m/ — n'| < C21/Q. Let
Go((m' ) () = > Y. B0 ),(n0)

(n/,v’)eﬁ{?E (lz,ﬁ)eZZl?xZg'2
ST K Q' = 1)) mpei g (Q2( — o = Ro(m! —n/,w)))  (651)
Jj=Jo
2miks-r
X 0g(ae — B — Ro(p —v,v))e )
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In view of the estimates above on |E;| and |Es| and the relative sizes of @, Jy
and Ny (see the statement of Lemma 6.6),

|G, (), (1, ) = Go(m ), (1, @)

<Cc > R ), (. 8)|QTQ* sg(a — B — Ro(p — v,v))
(n' W)eGY (v,B)€ZE %22,

D (NoQ/2)(2/Q) Lo, i (|m = 1)) oz ey (0 — V' = Ro(m! — /),

3>Jo

where ¢ is as in (7.7). The kernel in the formula defining |G, ((m/, u'), (1, @) —
G, ((m/,u), (g, «))| has L' norm dominated by CNyQ/2” < C. In view of the
Marcinkiewicz—Zygmund theorem,

16, -G
Thus, for (6.49), it remains to prove that

> 1c < CmA|[ IR

T

< || 1R P

L22(GY x (24 % Z85) L2(GY < (24 % 285))

L22(GY x (24 % Z85) L2 (G# x[zg,ng’z])’

(6.52)

where G, is defined in (6.51).
Assume r = a/q, (a,q) = 1, and for any (v, 3) fixed define

H,((m',u'), (v, 8)) = sup ‘ Y. B ), (v,8) ) Ki(Qm —n))

7.4 7.d’ X
a1€2%a2€ (n’,v’)EGo# Jj=Jo

X an22]'/(Q2NO)(ul o UI o Ro(ml . n/’ n,))62m[a1'(m'—n')+a2'(u'—U'—Ro(m’—n’,n’))]/q '

Clearly,
|G (), (1, )|
S Z Hr((mlvul>7(Vvﬁ))Qiinml(sQ(a_ﬁ_RO(:u_Vv V)),

(v.8)€Zd xZg'Q

so, using the Marcinkiewicz—Zygmund theorem again,

G, 212 < OH JARILE
IS IGPT gy < €l 1P
Thus, for (6.52), it suffices to prove that

[IDEERES < G\ |[Y |F )2

(6.53)

L2 (GH x (28 ng;])'

L22(GY x (24 % Z85) L%(Gfx[zgng’z})'

(6.54)
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To prove (6.54) we use Lemma 7.4. The connection between weighted estimates
and vector-valued inequalities is well-known (see, for example, [7, Chapter V,
Theorem 6.1]). In our case, let p’ € (1,00] denote the exponent dual of p. The
left-hand side of (6.54) is dominated by

1/2
sup [/ Z |H,|? - w} : (6.55)
wiGY (28 x28,]-[0,00), [[wll =1 G x[24x235)
We examine the definition of the functions H, above and notice that for fixed
(V7ﬁ) S ZQ X ng
H,(h, (v, 8)) < T(F (., (v, B))(h), h € GF,

with the notation in Lemma 7.3. The operators iﬁo,q are as in the statement of
Lemma 7.3, using the kernels K;(z) = QK. ;,(Qz), j > \°/2, where j; is the
smallest integer with 21 > @, and Ny = Q*Ny/2%'. These kernels K; clearly
satisfy the basic properties (6.1), (6.2), and (7.23). For fixed (v, ) € Z& X Zd

we define the function w’ °(.,(v,8)) as in (7.21) and use the bounds (7.22) and
Lemma 7.4 with p = C. In(Ny + 1). The expression in (6.55) is dominated by

sup C’E(ln)\)c[/ Z|F - NO}
wiGH X (28 28,1—[0,00), [[wl] =1 G x[24x 28,

which easily leads to (6.54) (using again the bounds (7.22)). O

7. REAL-VARIABLE THEORY ON THE GROUP G

In this section, which is self-contained, we discuss some features of the real-
variable theory on the group G# . Our basic reference is [14, Chapters I, II, and
V]. The main results in this section are the bound (7.11), which is used in section
4.3, and Lemma 7.4 which is used in section 6.3. We assume throughout this
section that d’ = d?, and GO# is the discrete nilpotent group defined in section 2.

7.1. Weighted maximal functions. We define the "distance” function d :
G x G — [0, 00),
d(0, (m,u)) = max(|m/|, [u|"/?), d(h, ') = d(0,n' - h™Y) if h,h' € GF.  (7.1)
It is easy to see that d(h,h') ~ d(h',h) and d(h,h") < C(d(h,h") + d(h',h")) for
any h, b/, h" € Gff. We define the family of nonisotropic balls on G
B = {B(h,r)={g-h:d0,9) <7}, he G, r>1/2}, (7.2)
and notice that we have the basic properties

if B(h,r)N B(I,r)# 0 then B(h',r) C B(h,Cyr) (7.3)
|B(h, Cyr)| < Cy|B(h, 1), '
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for any h,h’ € GO# and r > 1/2. As a consequence, we have the Whitney
decomposition (see [14, p. 15]): if O C G is a finite set then there are balls
By eB, k=1,..., K, with the properties
By N By = 0 for any k # K/
O = U,B;; (7.4)
Bi*N<0 # 0,
where, if B = B(h,r) then B* = B(h,c*r) and B* = B(h,(c*)*r) for a suffi-
ciently large constant c¢*. In addition, there are pairwise disjoint Whitney ”cubes”
Q) with the properties UpQ; = O and By, C Q) C Bj.
For any set E C G and any function w : Gff — [0, 00) let w(E) = [ w(h)dh.
If w: G — [0,00) is a nonnegative function we define LP(w), p € [1,00], and

L' (w) the corresponding weighted spaces on G{f. It follows from (7.3) that the
standard non-centered maximal function

M0 = swp — [ 1£(g)ldg, (7.5)
extends to a bounded operator from L'(w) to L“(M(w)):
a-w({h: M(f)(h) > a}) <C / @) M(w)(h) dh, (7.6)

for any f: G¥ — C and a € (0,00) (see [14, p. 53]).
Let Q, Q; be defined as in (4.1). In this section we assume, in addition, that
Q(z) = 1if |z] < 2. Let ¢, ¢, : RY — [0, 1] denote the functions
6(s) = (1+ [s[) @D/ and 6, (s) =+~ o(s/r), 7= 1. (T7)
Assume N > 1 is a real number. For integers 7 > log, N we define the kernels

AN A G — [0, 00),

A (myu) = Q(m) gy (u) and AT (9) = A (97"), g € Gf.

J

For N > 1and f: G} — C let
MY (f)(h) = sup |f# (A) + AT)(R)| +sup|f o+ (A] + AG)(R)]. (78)

j2logy N 7>0
We start with a weighted maximal inequality.

Lemma 7.1. Assume N,p € [1,00), and w : G — (0, 00) is a function with the
property that

MY (w)(h) < p-w(h) for any h € G (7.9)
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Then, for any compactly supported function f : G# — C,

M)y < O - I(N 4 1)1l 710,
IMI(Ollzew) < Cpp® - (N + D[ f[| Loy, p € (1, 00].

In particular, if w =1,
||M>{y<f)||1;1,oo(((;#) < Cln(N + 1)||f||L1(G§t)§ (7.11)
MY Dl ety < Coln(N + DLl ey p € (100,

Proof of Lemma 7.1. The main issue is to prove that there is only a logarithmic
loss in N in (7.10) and (7.11). Since the non-centered maximal operator M in

(7.5) is dominated by C M., it follows from (7.9) that
w(B)/|B| < Cp- rhnig w(h) for any ball B € B. (7.12)
€
We recall the Calderén-Zygmund decomposition of functions on G# cif f €

LY(G¥) and o € (0,00) is a given "height”, let E, = {h : M(f)(h) > a} and
E, = UpB; = U@y, the Whitney decomposition of the set E, (see (7.4)). Let

folh) = 1CEa<h>f<h>+Zle<h>@ [ roa
(1) = 10,0 1) ~ o [ sy

Clearly, f = fo + Z,ﬁil by; in addition, directly from the definitions,

|fo(h)| < Ca for any h € GY; 13
by, is supported in Q, fG# bp(h) dh = 0. (7.13)

Also, using (7.12) for the balls B and the definition of by,
[ Il dn < Colf 1o, Lo (7.14)

0

By interpolation, we only need to prove the L' (w) — L'*(w) bound in (7.10).
Assume f : G# — C is a compactly supported function and fix a € (0,00). It
suffices to prove that

- w({h: MI(f)(h) > a}) < Cp* - In(N + )] f]]110)-

We use the Calderon—Zygmund decomposition f = fy + szzl b, = fo+ b at
height «/C', C sufficiently large. It suffices to prove that

a-w({h: MYB)() > a/2}) < Cp* (N + D)[|flly. (7.15)
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For (7.15) it suffices to prove that

K
@Y w(By) < CpPl|fllw) (7.16)
k=1

and

/ MY (b)) (R)w(h) dh < Cp® - In(N + )| ] 11 w) (7.17)

where B}* are sufficiently large dilates of the balls By, that appear in the Whitney
decomposition of the set E,/c.
To prove (7.16) we use (7.12) and (7.6):

0 w(By) < Cpa Y |B| min w(h) < Cpa-w({h: M(F)(h) > a/CY)

<Cp / LR ) () dh < €2 1

0

as desired.

To prove (7.17) we use (7.14) and the fact that the cubes Q) are pairwise
disjoint. By translation invariance, it suffices to prove that if B = B(0,r) is a
ball centered at 0 and f G# — C is a function supported in the ball B with the
property that fG# g)dg = 0, then

S / [ (A 4 AN )(B)[w(h) dh
j>logy N 7B

(7.18)
+ Z/ s (A} + A (W) w(h)dh < Cp - In(N + 1)||f]] 11w,

3>0

where, as before, B* = B(0,c¢*r), ¢* sufficiently large. To prove (7.18) it suffices
to control the first sum in the left-hand side (the second sum corresponds to
the particular case N = 1). Since r > 1/2, fix kg € Z N [—1,00) such that
2k < p < 2kotl We divide the sum in j in (7.18) into three parts: j < ko,
J € ko, ko +2In(N + 1)], and j > ko + 2In(N + 1).

For log, N < 5 < kg, ignoring the condition fG# f(g)dg = 0, we notice that if
h € °B*, g € B, and ¢* is sufficiently large, then min(d(0,n-¢g~1),d(0,g-h™1)) >
(c*/2)2%. From the definitions,

(AN + A/N)(hg_l) < C2™ kO(A;c\ngz + A/ko+2)(9h h.
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Thus, using (7.9),
/ o (A 4 AN ) (B[ (h) dh

<Cr [ (@)l lws (Ao + AN 2)0)]dy < Co2 )l
(7.19)
which suffices to prove (7.18) for this part of the sum.
For j > log, N and j € [ko, ko +2In(N 4 1)], we use (7.9) as before and notice

that the sum contains at most C'In(N + 1) terms.
For j > ko + 2In(N + 1) we use the condition fG# g) dg = 0 and write

[Fo(AY + AT ()] < /|f A+ AN (g — (AY + AN ) () dg.

Assume h = (n,v) € °B* and g = (m,u) € B. Then hg™' = (n — m,v —u —
Ro(n —m,m)) and
[AF (hg™") = AT ()] < 1Q(n —m) — Q;(n) | o2 (v)
+ Qj(n — m)|¢o2i /v (v — u — Ro(n — m,m)) — do2iyn(v)]|
< O(N + 1)2577[27 Y1 g g5y (n)] do2s v (v)
< C(N + 1)2" AN o(hg™").

(7.20)

Similar estimates show that
AT (hg™") = A} (h)] < C(N + 1)2R 9 A}y (hg™)

The estimate (7.18) for this part of the sum follows using (7.9), as in (7.19). This
completes the proof of Lemma 7.1. O

We explain now how to construct weights with the property (7.9). Assume
p e (1,00], w: G# — [0,00), and w € LP(Gf). For N > 1 let
= [CyIn(N + 1] F MY (w), (7.21)
k=0

where C,, is a sufficiently large constant. Then, using (7.11),

{w<h> < wy(b) for any h € GF and ||wllzep) < Cllwllimagy (799

MY (wN)(h) < CyIn(N + 1w (h) for any h € G

In particular, (7.9) holds for the function wY with p = C, In(N +1). We use this
construction in the proof of Lemma 6.6 in section 6.3.
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7.2. Maximal oscillatory singular integrals. We consider now singular inte-
grals on the group Ggﬁ . The main result in this subsection is Lemma 7.4. Let
K;:R*—C, j=0,1,..., denote a family of kernels on R? with the properties
(6.1) and (6.2). In this section it is convenient to make a slightly less restrictive
assumption on the supports of K, namely

K; is supported in the set {z : |z| € [cg2/ ™", o2/ ™|} for some ¢y € [1/2,2].
(7.23)
Assume 1 € S(R?) is a fixed Schwartz function and let

n-(s) = r_d,n(s/r), s € Rd/, r>1.

Assume N > 1 is a real number. For integers 7 > log, N we define the kernels
LY . G§ —C,

L§V (m,u) = Kj(m)moei /v (w).

For (compactly supported) functions f : G — C let TN(f) = f* LY and
TH(f) =225, TN ().

Lemma 7.2 (Maximal singular integrals). Assume N € [1,00). The mazimal
singular integral operator

TN (f)(h) = sup [T(f)(R)|

j>In N
extends to a bounded (subadditive) operator on LP(GY), p € (1,00), with
TN || 2r—1r < CplIn(N + 1)]% (7.24)

Proof of Lemma 7.2. As in Lemma 7.1, the main issue is to prove that there is
only a logarithmic loss in N in (7.24). We show first that

[DIEA

j>In N

< CIn(N +1). 2
L SCm(N ) (7.25)

In the proof of (7.25) we assume that the kernels K satisfy the slightly different
cancellation condition ) .4 K;(m) = 0 instead of (6.2). The two cancellation
conditions are equivalent (at least in the proof of (7.25)) by replacing K; with
K; — C;27¢p; for suitable constants |C;| < C, where ¢ : RY — [0, 1] is a smooth
function supported in {|z| € [1/2,2]} and ¢;(z) = (co2?) %p(x/(co27)). By abuse
of notation, in the proof of (7.25) we continue to denote by T¥, LY etc the
operators and the kernels corresponding to these modified kernels K;. Clearly,
|TY|| 22 < C for any j > log, N. By the Cotlar-Stein lemma, it suffices to
prove that

7

TN ez + 1 [TV TV |lpemre < C(N + 1)271) (7.26)
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for any 4,7 > logy N with |i — j| > 2In(/NV + 1). Assume that ¢ > j. The kernel
of the operator T,N[TN]* is

=N
L) = [ T 0L ah dn
0

Using the cancellation condition (6.2), with h = (n,v),

LY (9)] < /

o] <2i+3
= Ii(9) + Ix(9).

An estimate similar to (7.20) shows that

[1 (m, u) S C(N + 1)27”7]"[27di1[0’2i+3](m)](bQQi/N(U).

L5 (W] - | L3 (gh) —Lfv(g)ldh+/ L7 (R)] - L3 (gh)| dh

|v]>2i+7

Also, by integrating the variable g first, it is easy to see that ||_[2||L1(G0#) < C(N+

1)271=3l. The bound for the first term in (7.26) follows. The bound for the second
term in (7.26) is similar, which completes the proof of (7.25).
The proof of (7.20) shows that

> / LY (hg™") — LY (k)| dh < C'In(N + 1),
N ¥ B(0,c*r)

j=>logy

for any r > 0 and g € B(0,7). Let TN(f) = > .o, n T, It follows from (7.25)
and standard Calderén-Zygmund theory that

TN —pree < CIn(N+1) and ||[TV]|pr—rr < CpIn(N+1), p € (1,00). (7.27)

We turn now to the proof of (7.24). In view of (7.11) and (7.27), it suffices to
prove the pointwise bound

TN(f)(h) < Cln(N + D)IMMY () (h) + MTN(f)]) (R)] (7.28)

for any h € G, where M is the non-centered maximal operator defined in (7.5).
By translation invariance, it suffices to prove this bound for A = 0. Thus, it
suffices to prove that for any ky > log, NV,

S THN0)] < Cl(N + DIMAMEF)O) + MATY (D). (7.29)
Jj=ko
Assume ko fixed and let f1 = f - 1gor-2y and fo = f — f1. It follows from the

definitions that Y., TN (f)(0) = 3o, T, (f2)(0).
We show first that for any h € B(0, c2%0), ¢ sufficiently small,

ST )0) = T (B < OV + DIMY(F1)(0) + MY (F)(B)]. (7.30)

Jj>ko
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To prove (7.30) we notice first that

> Two - Y T

jE[ko,ko+21n(N+1)) jE[ko,kQ—l-an(N—i-l))

is clearly controlled by the right-hand side of (7.30). In addition,

Y Two- Y T

§>ko+2In(N+1) §>ko+2In(N+1)

< ¥ |t 12 0) = L (Rl d

§>ko+2In(N+1

<c S (VD20 IMY(f)0)

§>ko+21In(N+1)

using an estimate on the difference |LY (g) — LY (hg)| similar to (7.20). Finally,

Y )< /G#|fz(g‘1>|~( S 1L () ) do

Jj€llogy N,ko) Jj€llogy N,ko]

<C [ 1ol A (g dg < CME (£ (1)
GO
The bound (7.30) follows. Thus, for any h € B(0, c2%0),

DIEAGIO!

Jj=ko

< Cn(N + DIMI( D) + MIASDR)] + [TV )R]+ T (f) (R)-

The proof of (7.29) now follows easily as in [14, Chapter I, Section 7.3|, using
(7.11) and (7.27). This completes the proof of the lemma. O

In the proof of Lemma 6.6 we need bounds on more general oscillatory singular
integral operators. Assume ¢ > 1 is an integer, N > 1 is a real number as before,
a; € Z%, and ay € Z%. For integers j > log,(2N¢q) and K as in (6.1), (6.2), and
(7.23), we define the kernels L7 - G¥ — C,

J,a1,a2

N.
L'7q

j,a1,a2 (m7 u) = Kj (m)nZQJ/N (u)€27ri(a1~m+a2~u)/q_

For (compactly supported) functions f : Go# — C let

o

T (F) = F L3t and T2V (F) =D T (f).

i —

Jj'=J
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Lemma 7.3 (Maximal oscillatory singular integrals). Assume N € [1,00). The
mazximal oscillatory singular integral operator

TM(f)(h) = sup sup T2y, 4, () (1))

a1€2%,ay €27 j>10g5(2Nq)
extends to a bounded (subadditive) operator on LP(GY), p € (1,00), with
TN 1o e < Cy[ln(N + 1)]%. (7.31)

Proof of Lemma 7.3. Notice first that the case ¢ = 1 follows from Lemma 7.2

since L%im = L}. To deal with the case ¢ > 2, we use the coordinates (4.28)

on G# adapted to the factor ¢,
O, : G x [Z¢ x 24] — G,
Dy((m o), (, @) = (qm’ + p, ¢’ + o+ qRo(p, m')).
Let F((n',v"), (v, 8)) = f(®,((n',0"), (v, 3))) and
Garan (M 1)), (1, 0)) = T8 (F)(@g((m/ ), (1, @)
The definitions show that

Gjanas ('), (o)) = ) Y. F(),(vn,0)

(n' ) eGY (v.B)€Z¢x 2%

3" Kp(a(m' = ') + By (62w — o' = Ro(m = ,n')) + Ez)
i'=j
x e2rilan(u—v)+az-(a—f—Ro(u—v))/a,

where £y = pu — v and
By = (a— B — Rl — v,v)) + q(Ro(,m’ — ) = Ro(m/ — n',v)).

Clearly, |Ey| < Cq and |Fy| < C2q if jm' — n'| < C27"/q. Let
Gj,al,@((mlvu/% (LL,O()) = Z Z F((n,7v/)’ (Va 5))
(n' )G (u,g)ezgxz;i;
- . 7.32
S @K’ — 1)) - i (P — 0! — Rofd =)y )
Jj'=J

% q—dq—Qd’GQM‘[al~(,u—V)+a2-(a—B—RO(M—VyV))]/’I'
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In view of the estimates above on |F1| and |F5| we have

|Gj,ll1,a2 ((mlv ul)v (M? Oé)) - Gj,a1,a2 ((m/7 u/)a (,ua Oé))|
<C > > R, (v, B))la g
(n’,v’)e(f}(’fﬁ (V,,@)GngZsé

oo

Z(QN/QjI)(2j//Q)_d1[o,czj’/q}(|m/ - n,|)¢22j’/(Nq2)(ul —v' = Ry(m' —n',n)),

J'=j

where ¢ is as in (7.7). Thus,

sup | Gj — Gj |
a1,a2,j>logy(2Nq)

< C||F e
LP(GO#X[Z;jXZZ;]) - || ||LP(G#X[Z5XZ52])

For (7.31) it suffices to prove that

sup |G
a1,a2,j>logy(2Nq)

2
g ispeay S OO DUl gy (739

where G, is defined in (7.32). We examine the definition (7.32) and notice first
that q2d/1722j//N(q2(u' — ' = Ro(m' —n',n'))) = g 2 v (W — 0" = Ro(m' —n/, n)).
Fix jo the smallest integer with the property that ¢2°/q = ¢ € [1/2,2]. The

kernels K;(z) = ¢°Kj+j,(qx), j > logy N, have the properties (6.1), (6.2), and
(7.23). Let N = ¢°N/2%°, and define LY and T} as before, using the kernels K.
Then, from the definition (7.32),

Garas ('), (el < 3" ¢ TN (F(( ), (v, ) ().

(v.B)eZ¢x 2%
The bound (7.33) follows from Lemma 7.2. O

Finally, we prove a weighted version of Lemma 7.3.

Lemma 7.4 (Weighted maximal oscillatory singular integrals). Assume that w €
L=(GH), w: G — (0,00), satisfies (7.9), i.e.

MY (w)(h) < p-w(h) for any h € G¥.
Then, for any compactly supported function f: Gy — C,
17| zrw) < Cop® (N + DPIf o), p € (1, 00), (7.34)

where TN is the maximal operator defined in Lemma 7.3.
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Proof of Lemma 7.4. We use the method of distributional inequalities, as in [14,
Chapter V]. Fix p; = (p+1)/2 € (1,p) and assume we could prove the distribu-
tional inequality

w({h: TX0) >a and MM 0) < 7 -a})
< (1= ) wl{hs TR > (- ) -a})

for any o € (0, 00), for some small constants 7, 72,73 > 0 depending on p, p and
In(N + 1) with the property

(7.35)

1—73/2 < (1 =) (7.36)

By integrating and using the assumptions that f is compactly supported and
w e L®(GY) (so TN(f) € LP(w), p € (1,c]), it would follow that

N,q 1
T ) < Y[l = (1 = 3)(1 — 75)—P]L/p

< Cp(ms) 7 P (N + )| fll oy

MM (FDP TP oy

(7.37)

using Lemma 7.1. Thus, for (7.34), it suffices to prove the distributional inequality
(7.35) with (7.36) satisfied and control over (y;7y3)~".
The bound (7.12) shows easily that if @) is a “cube” (i.e. B C Q) C B* for some
ball B € B) and F' C @) then
w(F)/w(@) <1 - (Cp)~ (1 —|F|/IQ)). (7.38)

Indeed, the bound (7.38) is equivalent to |G|/|Q| < (Cp)w(G)/w(Q) for any G C
@, which follows from (7.12). To prove (7.35) we fix 73 = (Cp)™*, 72 = (Cpp) ™1,
such that (7.36) holds. Let £ denote the bounded set

E = {h:TX(f)(h) > (1 - 72) - o},
and F = UE_ Q; its Whitney decomposition in disjoint cubes (see (7.4)). For
(7.35) it suffices to prove that
w({h € Qe TYUPA) > 0 and MMI(F)"]/ () < 7 -a})
< (1= 73)w(Q),
for k=1,..., K. In view of (7.38), it suffices to prove that
{0 € Qi : T(f)(R) > @ and MM (|f)P]V7(h) < - a}| < (1/2)|Qk!=)
(7.39

for k =1,..., K and some constant v; > 0.
Since Q. is a Whitney cube,

TN(f)(ho) < (1 —72) -  for some hy € B}*. (7.40)
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In addition, either the inequality (7.39) is trivial or
M(|fIP)/P1(hy) < 1 - a for some hy € Bj, (7.41)

since | f(R)| < MY(|f])(h) for any h € GFf. Let f; = f - 1 and fo = f - lep:s,
f = fi+ f2. The left-hand side of (7.39) is dominated by

{h: TE(f1)(h) > (12/2) - o}

* N N (742)
+l{h € By : TN (f2)(h) > (1 —72/2) - a and MY (|fa])(h) < - a}l.
However, using Lemma 7.3, the definition 7o = (Cpp)~', and (7.41),
C
05 T () > (/2) - o)) € TSR
< Coa ™ 7 In(N + 1)]2 / Fmpan (743)
Bpx

< Cylyipln(N + D] | Qxl.

We fix now v = (Cpp(In(N + 1))*)7!, C, sufficiently large, and show that the
set in the second line of (7.42) is empty. Assuming this, the bound (7.39) follows
and Lemma 7.4 follows from (7.37).

It remains to show that the set in the second line of (7.42) is empty. We will
use the property (7.40) and the definition of the operators 7.V4. Assume that the
ball B; has radius r € [2% 2ty Ly € [—1,00) N Z. We notice that if h € B;
and g € °B;* then d(0,hg™') > (c¢*/2)2%. If, in addition, log, N < j < ko then

Lt a(hg™DI < C- A (hg™") < CP TR AR L (hg™),

J,a1,a2

thus, for any j € [log, N, k| N Z, a; € Z%, ay € Z¥,

[T, (f2) ()] < C2 M (| ] (R).

J,a1,a2

Since |7}i;‘{a2(f2)(h)| < CMY(|fo])(R) for any j > log, N and j € [ko, ko +1n N +
(1], for any h € B we have

sup 3 TN () (W) < Cn(N + MY (| fo)(h). (7.44)

U
a1€24,a2€Z% ;e 10g, N ko+In N+C]

Assume now that j > min(logy(2Nq), ko +In N + C), a; € Z¢, ay € Z%, and
h = (n,v) € Bf. With hg = (ng,vo) as in (7.40), let a; ¢ € Z¢ be such that

aio-m=aj-m+ay - Ry(n —ng,m) for any m € Z%.
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Then, from the definitions,

\i T () (1) - &T " (F2) (o)

Jj'=J
< ‘ fQ(m,u)6—27Ti(a1-m+a2~u+a2-R0(n—m7m))/q
B**
> LY ((n,0) - (myu)™h) = LY ((no, vo) - (m, u)™")] dmdu
Jj'=3
<[ IR@ X LG - L ey o
B §>ko+In N+C

(7.45)
An estimate similar to (7.20) shows that
LY (hg™) — LY (hog™))| < C(N + 1209 AN, (hg ™),
since h, hy € Bi* and j > ko +In N + C. In addition, for j' > j > kg +In N + C,

T g (F)(h) = T, (F)(ho) = Tyt o, (F1)(ho) = Tyt o, (£)(Ro).
Thus, from (7.44) and (7.45), for any h € By,
TN f2)(h) < TXU(f2)(ho) + CIn(N + DM (| f]) (h),

so the set in the second line of (7.42) is empty, as desired. This completes the
proof of Lemma 7.4. U
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