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Abstract

We describe below a series of results on the boundary of harmonic
analysis, ergodic and analytic number theory. The central objects of
study are maximal averages taken over integer points of varieties de-
fined by integral polynomials. The mapping properties of such opera-
tors are intimately connected with those of certain exponential sums,
studied in analytic number theory. They can be used to prove point-
wise ergodic results associated to singular averages defined in terms of
polynomials both in the commutative and non-commutative settings.

0. Introduction

We start by reviewing the correspondence between standard maximal
functions and pointwise ergodic theorems in the general settings of amenable
groups, we’ll refer to that as standard theory. Next we discuss the polyno-
mial ergodic results of J. Bourgain [B1], and our results on the uniform
distribution of solutions of certain diophantine equations when mapped to
measure spaces [M]. Finally the main theme of our discussion is to show
pointwise convergence for polynomial averages of non-commuting transfor-
mations which generate discrete nilpotent groups. These are pointwise ana-
logues of the general L2- ergodic theorem of Bergelson and Liebman [BL].
We will discuss the example of the Heisenberg group to avoid the general
theory of discrete subgroups of stratified nilpotent Lie groups [C].

In most cases we will not give full proofs, but rather will try to explain
the main constructs an ideas behind these results. All our results (except
Theorem 2.) are joint work with E.M.Stein and S.Wainger.

1. Standard Theory

A discrete group Γ is called amenable if there exists a sequence of sets:
BN ⊂ BN+1 ⊂ Γ such that Γ =

⋃∞
N=1 BN and

(i) ∀g ∈ Γ :
|g ·BN4BN |

|BN | → 0 as N →∞
1Research supported in part by NSF Grant DMS-0202021
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Amenable groups form a large class including both commutative and non-
commutative groups such as discrete nilpotent groups. We say the sets
BN (g) = g ·BN form a family of balls, if ∃C > 0 such that

(ii) |B2N | ≤ C|BN |

(i3) BN (g) ∩BN (h) 6= 0 ⇒ BN (h) ⊆ BCN (g)

It is well-known that the above properties imply the standard

Maximal Theorem: Let f ∈ l2(Γ) and define:

(1.1) BNf(h) =
1

|BN |
∑

g∈BN

f(hg) and B∗f(h) = sup
N>0

|BNf(h)|

Then

‖B∗f‖l2(Γ) ≤ C‖f‖l2(Γ)

Suppose Γ acts on a probability measure space (X,µ) via measure-preserving
transformations: x → g · x. The one has corresponding

Maximal Ergodic Theorem: Let F ∈ L2(X) and define:

(1.2) BNF (x) =
1

|BN |
∑

g∈BN

F (g · x) and B∗F (x) = sup
N>0

|BNF (x)|

Then

‖B∗F‖L2(X) ≤ C‖F‖L2(X)

The passage between the above theorems is based on a general idea which
implicitly contained in Riesz’ proof of Birkhoff’s ergodic theorem but ex-
plicitly described first by Calderon. We explain it below since we will need
it later when considering more singular averages.

Transfer principle: For K > 0 define the truncated maximal func-
tion B∗

KF = maxN≤K |BNF |. It is enough to show that: ‖B∗
KF‖L2(X) ≤

C‖F‖L2(X) holds with constant C independent of K. For fixed L > 0 and
x ∈ X define:
fL,x(g) = F (g · x) if g ∈ BL and fL,x(g) = 0 otherwise. The one has

BNF (h · x) =
1

|BN |
∑

g∈BN

F (gh · x) =
1

|BN |
∑

g∈BN

fL,x(gh) = BNfL,x(h)
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if BN · h ⊆ BL, that is when h ∈ ∩g∈BN
BL · g−1 = BL,N . Taking the square

of both sides, summing in h and integrating over X we get using the fact
that action of Γ is measure preserving

(1.3) |BL,K |‖B∗
KF‖2

L2 ≤
∫

X
‖B∗

KfL,x‖2
l2 dµ ≤

≤ C

∫

X
‖fL,x‖2

l2 dµ = C|BL|‖F‖2
L2

From property (i) it is easy to see that |DL,K |
|BL| → 1 as L →∞ and K being

fixed.
Now let π(g)F (x) = F (g · x), let

LI(X) = {F ∈ L2(X) : π(g)F = F ∀g ∈ Γ} be the space of Γ invari-
ant functions, and finally let PI : L2(X) → LI(X) be the corresponding
orthogonal projection.

Pointwise Ergodic Theorem: For F ∈ L2(X) one has for a.e. x ∈ X

(1.4) lim
N→∞

BNF (x) = PIF (x)

To see this first we remark that
L0(X) = LI(X)⊥ = {π(g)F − F : F ∈ L2(X) ∩ L∞(X), g ∈ Γ}. Indeed
〈π(g)F − F, H〉 = 0 ∀F is equivalent to π(g)H = H. If

F = π(g)H −H then one has

|BNF (x)| ≤ |g ·BN4BN |
|BN | ‖H‖∞ → 0

as N → ∞ by property (i). Thus the pointwise theorem holds for a dense
subspace of L0(X) and extends to L0(X) by the maximal ergodic theorem.
On the other hand clearly BNF = F ∀N if F ∈ LI(X).

The action of Γ on X is called ergodic if the only invariant functions are
the constants. In this case the right side of inequality (1.4) is the constant:
c =

∫
X F dµ.

2. Commuting transformations

Here we describe singular averages of commuting measure preserving
transformations on a finite measure space defined in terms of polynomials.
As in the Euclidean case these fall into two broadly defined category.

On the one hand averages are taken over finite parts of a fixed surface
which is the graph of a polynomial mapping, this leads to via the trans-
ference principle, to subsequence ergodic theorems associated to arithmetic
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subsets of the integers. On the other hand averages are taken over the
family level surfaces of a homogeneous integral polynomial, which implies
equi-distribution type results for solution of diophantine equations.

2.1 Polynomial averages Let Γ = Zn = Zk×Zd and P = (p1, . . . , pd) :
Zk → Zd be an integral polynomial map, that is pj(m) are polynomials with
integer coefficients. Assume the group Γ acts on a measure space (X, µ) via
measure preserving transformations. Consider the family of surfaces:
SN = {(n, p(n)) : |nj | ≤ N, ∀1 ≤ j ≤ k}. Then one has

Theorem 1 (J. Bourgain) For F ∈ L2(X) there exists a function F∗ ∈
L2(X) such that for a.e. x ∈ X:

(2.1) lim
N→∞

1
SN

∑

g∈SN

F (g · x) = F∗(x)

This result was extended in a series of papers [B1]-[B3] to all Lp spaces
when p > 1 and the case p = 1 remains one of the outstanding open problems
in this subject.

To see explicitly the type of averages appearing in the theorem sup-
pose the generators of the action of Γ are the commuting transformations
T1, . . . , Tk, S1, . . . , Sd then the right side of (2.1) is: SNF (x) = (2N +
1)−k ∑

|nj |≤N F (TnSp(n) x). Note that (2.1) is equivalent to the (seemingly)
special case when T1 = . . . = Tk = I, where I denotes the identity op-
erator. The essential ideas already appear in the simplest settings, when
SNF (x) = 1/N

∑N
n=1 F (Sn2

x). The ergodicity of S does not imply that
SNF (x) → ∫

X F dµ as N → ∞ even in L2 norm. This can be seen in the
following simple example which also indicates the arithmetic nature of the
problem. Suppose SF = e2πia/qF where S is the shift SF (x) = F (Sx).
Then it is a moment to check that

SNF → 1
q

q∑

n=1

e
2πi an2

q F = G(a, q)F

the Gaussian sum |G(a, q)| ≈ q−1/2 thus depends on a and q. Indeed ergod-
icity is equivalent to the fact that 1 is not an eigenvalue of the shift S. It
is called fully ergodic if Sq is ergodic for all q. In this case it cannot have
rational eigenvalues and the averages converge to the mean value of F .

The key role is played again by the corresponding discrete maximal the-
orem, however the passage is much more difficult then in the standard case
as there is no dense set of functions for which the convergence is immediate
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(telescopic sums cannot be used). Our approach will be slightly different
than that in [B1] , so that it could be generalized more easily to the non-
commutative settings.

The continuous maximal function:
We start with the continuous analogue, for f ∈ L2(R) let

S∗f(x) = sup
N
|SNf(x)| where SNf(x) = 1/N

∫

y
f(x− y2)φ(y/N)

where φ is a standard cut-off function. It is enough to take supremum over
only dyadic values N = 2j and let us use the notation Sjf for S2jf . Notice
that Sjf = kj ∗ f is a convolution operator where by stationary phase one
has the estimate for the multiplier k̂j(θ) = k̂(2jθ):

(2.2) |k̂j(θ)| = 2−j |
∫

x
e2πiθx2

φ(2−jx)| ≤ C(1 + 22j |θ|)−1/2

Let ψ be a bump function and decompose the multiplier:
k̂j(θ) = k̂j(θ)ψ(22jθ) + k̂j(θ)(1− ψ(22jθ)) and correspondingly
Mj = Sj + Ej . The contribution of the ”error” terms Ej can be handled by
a square function. Indeed by Plancherels formula one has

(2.3)
∑

j

‖Ejf‖2 =
∫

θ
(
∑

j

|k̂j(θ)(1− ψ(22jθ))|2) |f̂(θ)|2 dθ ≤

≤ C

∫

θ
(

∑

j: 22j |θ|≥1

(22j |θ|)−1)f̂(θ)|2 dθ ≤ C‖f‖2

The main term Mjf = mj ∗f is a convolution operator with kernel mj(x) =
(kj ∗ ψj)(x) = 2−2jm(2−2jx) as it is easy to see by scaling, thus the corre-
sponding maximal function is majorized by the standard Hardy-Littlewood
maximal function.

The discrete maximal function: Let us briefly highlight the proof of
the l2 → l2 boundedness of the discrete maximal function

A∗f(m) = sup
N
|ANf(m)| where ANf(m) =

N∑

n=1

f(m− n2)

We can again consider dyadic averages smoothed by a cut-off

Sjf = kj ∗ f where k̂j(θ) = 2−j
∑
n

e2πiθn2
φ(2−jn)
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However when θ = a/q for q being much smaller than 2j the size of the
multiplier k̂j(θ) ≈ G(a, q) ≈ q−1/2 Thus the main contribution is not coming
from a neighborhood of 0 but from the neighborhood of rational numbers
with small denominators. The role of the stationary phase estimate is played
by the so-called Weyl summation.

Lemma 1 Let θ ∈ [0, 1] and assume that there is a rational a/q such that
|θ − a/q| ≤ q−2. Then one has

(2.4) |k̂j(θ)|2 ≤ Cmax(q−1, q2−2j)

The proof of this is standard, the left side of (2.4) is a double sum and
after a change of variables u = n −m the exponent becomes linear in each
variable and one can estimate the sum, see for example [V].

Accordingly for 1 < α < 2 and ε > 0 we define a neighborhood of
rational - the so-called major arcs - in terms of the cut-off function:

(2.5) ωε
j (θ) =

∑

q≤jα,(a,q)=1

ω(2(2−ε)j(θ − a/q))

and write Aj = Mj + Ej where Mj and Ej) correspond to the multipliers
mj(θ) = k̂j(θ)ωε

j (θ) and ej(θ) = k̂j(θ)(1 − ωε
j (θ). Here ω is a standard

cut-off function and (a, q) denotes the greatest common divisor of a and
q. The summation in (2.5) goes through all reduced rationals a/q whose
denominator is at most jα.

The reason for sucha splitting is that by Dirichlet’s principle for every
θ there is a/q with q ≤ 2(2−ε)j such that: |θ − a/q)| ≤ q−12−(2−ε)j ≤ q−2.
However if θ is in the support of ej(θ) then jα < q. Thus by Lemma 1.
‖Ej‖2

l2→l2 = supθ |ej(θ)|2 ≤ j−α which is summable in j and the error terms
Ej are absorbed again into a square function.

Because of the presence of the parameter ε > 0 the support of the terms
in (2.5) are not small enough in order be majorized by standard maximal
operators as in the continuous case. However by a similar error estimate
one can further reduce the size of the intervals to: |θ − a/q| ≤ cq−12−2j,
that is to the case when ε = 0. According to (2.5) one can write: Mj =
Mj,0 +

∑
a,q Mj,a/q and consider the corresponding maximal operators M∗

0

and M∗
a/q separately. Notice that the multiplier mj,0(θ) = k̂j(θ)ω(22jθ) is

the same as the one appeared in the continuous case, and thus is majorized
by the Hardy-Littlewood maximal operator on l2(Z). Similarly M∗

a/q can be
majorized by (a sum of) standard maximal operators which act on l2(qZ).
To see this one decomposes the integers (mod q) and sum in each residue
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class separately first. This is the point when the arithmetic nature of the
problem appears as the size of Gaussian sums become essential.

To be more precise let θ = β + a/q for some fixed rational a/q, where
|β| ≤ q−12−2j . One writes n := qn + ν, ν = 1, . . . , q and

(2.6) k̂j(β + a/q) =
∑
n,ν

e2πi(qn+ν)2(β+a/q)ψj(qn + ν)

= (
∑
n

e2πiq2n2βψj(qn))(
q∑

ν=1

e2πiν2a/q) + ej(β) = mj,q(β)G(a, q) + ej(β)

Here mj,q can be considered as a multiplier on l2(qZ) and the corresponding
maximal operator is bounded by 1/q (there are just 22j/q elements of qZ in
the support). However the size of the Gaussian sum is about

√
q giving us a

gain about 1/
√

q at each rational. For the error one has |ej(β)| ≤ 2−j/2 say
because of the small size of β and thus it can be handled again by a square
function estimate.

The actual proof is technically more involved as one cannot simply add
the norms of the maximal operators M∗

a/q but one first has to group the
denominators q into classes C and to each class define Q =

∏
q∈C and then

decompose Z modulo Q, and assign to it a maximal operator M∗
Q.

This will be explained together with the passage to the ergodic theorem
later in the non-commutative settings, see also [B1]

2.2 Diophantine equations.

If P (m1, . . . , md) is a positive definite polynomial with integer coeffi-
cients, then a fundamental problem in number theory is to determine asymp-
totically the number of integer solutions of the corresponding diophantine
equation: P (m) = N as N → ∞. A strikingly general result of Birch says
that this is possible if P is also homogeneous of degree k and depends es-
sentially on exponentially many variables w.r.t. its degree [Bi]. The precise
condition is:

(2.7) d− dimVP > k2k−1

where VP = {z ∈ Cd : P ′(z) = 0} is the so-called complex singular variety
of P . We will refer to polynomials satisfying all the above conditions as
non-degenerate forms.

Suppose there is a commuting family of measure preserving transforma-
tions T = (T1, . . . , Td) acting on a finite measure space (X, µ). Then for
each N and x ∈ X the family T maps the solution set SN = {m ∈ Zd :
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P (m) = N} into X. Indeed let:
ΩN,x = {Tmx = Tm1

1 . . . Tmd
d x : m = (m1, . . .md) ∈ SN}. Our next theo-

rem says that the sets ΩN,x become equi-distributed on X as N → ∞ for
almost every x ∈ X if the family T is fully ergodic, [M]. For a family this
means that for each q and F ∈ L2(X): if T q

1 F = . . . = T q
d F = F then F

is a constant. Notice that this means that the family T q = {T q
1 , . . . , T q

d } is
ergodic for each q.

Theorem 2 Let T be a fully ergodic family and let P be an integral non-
degenerate form. Then one has for F ∈ L2(X) and for a.e. x ∈ X

(2.8) lim
N→∞

1
|SN |

∑

m∈SN

F (Tmx) =
∫

X
F dµ

and also the averages on the left side converges in L2 norm:

(2.9) ‖ 1
|SN |

∑

m∈SN

F (Tmx) =
∫

X
F dµ‖L2 → 0

as N →∞.

A special case worth to mention is when X = Πd the torus α1, . . . , αd

are irrational numbers and Tj is the shift by αj in the j-th coordinate. Then
ΩN = (n1α1, . . . njαj) : P (n) = N}.

Note that here the averages are taken over disjoint sets and assuming only
the ergodicity of the family T the averages in (2.8) may not even converge
in L2-norm. As before the crucial point is to prove the l2 boundedness
of the corresponding discrete maximal operator. In the simplest case, when
P (n) = n2

1+. . .+n2
d this is the discrete analogue of Stein’s spherical maximal

function: S∗f = supN |SNf | where SNf(m) = 1/rd(N)
∑
|n|2=N f(m − n),

where rd(N) is the number of ways of writing N as sum of d squares. It
can be proved that for d > 4 the operator S∗ is bounded in lp exactly when
p > d/(d − 2) and this is sharp. For d = 4 one might expect that it is
bounded in lp for p > 2 at least when the supremum is taken over odd
values of N , however this remains an open question.

The asymptotic formula:
One of the key element of the proof is an asymptotic formula for the

Fourier transform of the solution sets, i.e for the exponential sums:

(2.10) σ̂P,N (ξ) =
∑

m∈Zn,P (m)=λ

e2πim·ξ , ξ ∈ Πd
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Here Πd = Rd/Zd is the flat torus. Let us introduce the measure:
dσP (x) = dSP (x)

|P ′(x)| , where dSQ(x) denotes the Euclidean surface area measure
of the level surface P (x) = 1, and |P ′(x)| is the magnitude of the gradient
of the form P , and its Fourier transform:

(2.11) dσ̃P (ξ) =
∫

{x∈Rd : P (x)=1}
e2πix·ξ dσP (x)

Now we can state

Lemma 2 Let P (m) be a positive integral non-degenerate form of degree k,
then there exists δ > 0, s.t.

σ̂P,N (ξ) = CP N
d
k
−1

∞∑

q=1

∑

l∈Zn

K(q, l, N)ψ(qξ − l)dσ̃P (N
1
k (ξ − s/q))+

(2.12) + EN (ξ) , where sup
ξ
|EN (ξ)| ≤ cδN

d
k
−1−δ

Here ψ(ξ) is a smooth cut-off function.

The approximation formula (2.12) means, that the Fourier transform (of
the indicator function) of the solution set P (m) = N is asymptotically a
sum over all rational points, of pieces of the Fourier transform of a surface
measure on the level set P (x) = N , multiplied by arithmetic factors and
shifted by rationals.

We sketch below how to derive formula (2.12) and how to use it to prove
the mean ergodic theorem. Let M = N1/k, and let φ(x) be smooth cut-off
function on Rd s.t. φ(x) = 1 for P (x) ≤ 2. Then

σ̂P,N (ξ) =
∑

m∈Zd

e2πim·ξφ(m/M)
∫ 1

0
e2παi(P (m)−N) dα =

=
∫ 1

0
S(α, ξ)e−2πiNα dα

where S(α, ξ) =
∑

m e2πi(αP (m)+m·ξ)φ(m/M). As is usual in the Hardy-
Littlewood method the main contribution to the integral comes from the
major arcs, that is from the intervals : |α−a/q| ≤ q−1M−d+ε where (a, q) =
1 and q ≤ M ε. Indeed by applying the Weyl-type estimates developed
by Birch one estimates the integral over the complement of |S(α, ξ)| by
C Nd/k−1−δ for some δ > 0 uniformly in ξ.
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Now let a/q be fixed with (a, q) = 1 and q ≤ M ε and write α = a/q + β,
|β| ≤ M−k+ε, m = qm1 + s. We have

S(α, ξ) =
∑

s∈Zd/qZd

e
2πi

aP (s)
q

∑

m1∈Zd

e2πi(βP (qm1+s)+(qm1+s)·ξ)φ(
qm1 + s

P
)

Let H(x, β) = e2πiβP (x)φ(x/M), applying Poisson summation for the inner
sum we get

∑
m1

H(qm1 + s)e2πi(qm1+s)·ξ = q−n
∑

l

e
2πi l·s

q H̃(ξ − l/q, β)

where

(2.13) H̃(η, β) = Md
∫

Rd
e−2πi(MkβP (x)−Mx·ηφ(x) dx

stands for the Fourier transform of H(x, β). This already gives an approxi-
mation resembling (2.12)

σ̂P,N (ξ) =
∑

q≤Mε, (a,q)=1

e−2πiaN/q
∑

l∈Zn

G(a, l, q)JN (ξ − l/q) + Error

where JN (η) =
∫
|β|≤P−k+ε H̃(η, β)e−2πiNβ dβ , and G(a, l, q) is the normal-

ized exponential sum obtained by collecting the terms depending on s.
Notice that the gradient of phase Φ(x) = MkβP (x)−Mx · (ξ − l/q) in

(2.13) is at least M1−ε|qξ − l| for |qξ − l| À 1 on the support of φ(x). Thus
using partial integration one can insert the factors ψ(qξ − l) by making a
small error.

Next one uses a uniform estimate for the integral

(2.14) |H̃(η, β)| ≤ CMd(1 + Mk|β|)−
codim Vp

(k−1)2k

This estimate which is uniform in η is far from obvious even on the non-
singular case when VP = 0. It follows from a Weyl type estimate for ex-
ponential sums and a comparison of the integral to them, and it would be
desirable to obtain such type of estimates directly. It allows one to extend
the integration in β to the whole real line by making an error ≈ Nd/k−1−δ

which is smaller then the main term.
One can evaluate the integral in the sense of distributions, as follows

(2.15) IN (η) =
∫

R
H̃(η, β)e−2πiNβ dβ =

10



=
∫

Rd

∫

R
e−2πiβ(P (x)−N)dβ e2πix·ηφ(x/M) dx =

=
∫

P (x)=N
e2πix·η dσP,N (x) = dσ̃P,N (η) = Nd/k−1 dσ̃P (N1/kη)

Here the third inequality is an oscillatory integral expression for the measure
dσP,N supported on the surface P (x) = N and the last equality follows by
scaling. If we put together these transformations and extend the summation
in q, which is possible by using standard estimates for the exponential sums
G(a, l, q), we get the asymptotic formula (2.9).

The mean ergodic theorem: We illustrate the use of this formula by
proving the L2 convergence of the averages in (2.9). First notice that by
substituting ξ = 0 into (2.12) we get rP (N) = |SN | ≈ Nd/k−1, and one can
easily show

Proposition 1 Let ξ /∈ Qd, that is assume that ξ has at least one irrational
coordinate, then one has

(2.16) lim
N→∞

1
rP (N)

|σ̂P,N (ξ)| = 0

Indeed because of the factors ψ(qξ−l) there is at most one non-zero term
in the l summation for each q. After normalizing with the factor Nd/k−1

each term is bounded by:

K(q, l,N) = q−d
∑

(a,q)=1

e−2πiaN/qG(a, l, q) ¿ q−1−δ

using standard estimates for exponential sums. Thus if we fix an ε > 0
the sum in q for say q ≥ qε is bounded by ε. However for fixed q < qε

the non-zero term can be estimated by: dσ̃(N1/k

q ‖qξ‖) ¿ (N1/2k‖qξ‖)−δ

if N is large enough w.r.t. qε, where ‖qξ‖ = minl∈Zd |qξ − l| > 0 because
ξ /∈ Qd. Here we used the uniform decay of the Fourier transform of the
measure dσP , which can be derived from (2.14). So as N → ∞ each term
in q individually tend to zero an this proves (2.16).

Now let (X,µ) be a probability measure space, T = (T1 . . . Tn) be a
family of commuting, measure preserving and invertible transformations.
By the Spectral theorem there exists a positive Borel measure νf on the
torus Πn, s.t.

(2.17) 〈P (T1, . . . , Tn)f, f〉 =
∫

Πn
p(ξ)dνf (ξ)
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for every polynomial P (z1, . . . , zn), where

p(ξ) = p(ξ1, . . . , ξn) = P (e2πiξ1 , . . . , e2πiξn)

and 〈, 〉 denotes the inner product on L2(X, µ). We recall two basic facts

i) For r ∈ Πn, νf (r) > 0 if and only if r is a joint eigenvalue of the shifts
Tj , (i.e. there exists g ∈ L2(X) s.t. Tjg = e2πirjg for each j.

ii) If the family T = (T1, . . . , Tn) is ergodic, then νf (0) = |〈f,1〉|2 =
| ∫X fdµ|2. We first observe that the full ergodicity is in fact a condition on
the joint spectrum of the shifts Tj .

Proposition 2 Suppose the family T = (T1, . . . , Td) is ergodic. Then it is
fully ergodic if and only if νf (r) = 0 for every r ∈ Qd, r 6= 0.

To see that suppose νf (l/q) > 0 for some l 6= 0, then there exists g ∈
L2(X,µ) s.t. Tjg = e2πilj/qg for all j. But then T q

j g = g for all j but
g 6= constant since l 6= 0. On the other hand suppose that T q

j g = g, for all
j for some g 6= constant. Then the functions gs1...sd

for s ∈ Zd/qZn defined
by

gs1...sn =
∑

m∈Zn/qZn

e
−2πi m·s

q Tm1
1 . . . Tmn

n g

are joint eigenfunctions of with eigenvalues sj/q. They cannot vanish for all
s 6= 0 (mod q), because then one would have Tjg = g for every j, as can
be seen easily by expressing Tjg in terms of the functions gs1...sn this proves
the proposition.

Proof of the Mean Ergodic Theorem. We start rewriting the statement
in the form

‖SNf − 〈f,1〉1‖2
2 = ‖SNf‖2

2 − |〈f,1〉|2 =
∫

Πn/{0}
|σ̂P,N (ξ)|2
rP (N)2

dνf (ξ)

The point is that νf (Qd/{0}) = 0 by the full ergodicity condition, more-
over the integrand pointwise tends to zero on the irrationals by Lemma 2,
and is majorized by 1. It follows from the Lebesgue dominant convergence
theorem, that the integral also tends to 0 as N → ∞. This proves the
theorem.

The proof of the l2 boundedness of the associated discrete maximal func-
tion and that of the pointwise ergodic theorem is much more involved. Both
uses the approximation formula by looking the main term as a weighted sum

12



of averaging operators over the level surfaces P (x) = N . The associated
maximal operators are bounded on Rd and by using a general transference
argument one can pass the estimates to Zd. Another difficulty is that one
cannot seem to use square function arguments and the maximal operators
associated with the error terms has to be bounded by using directly the
structure of the operators. The interested reader can consult [MSW] for the
case of spheres and [M] for the general case.

3 Polynomial averages on the discrete Heisenberg goup.

In this section we sketch the proof of the simplest non-commutative
analogue of Bourgain’s pointwise ergodic theorem. As before they key tool
is to show the l2 boundedness of the associated maximal function. In doing
that one has to reformulate some of the basic estimates, such as the Weyl
summation, into an operator valued settings. As the Fourier transform of
the central variables is used, the method is somewhat limited, at the end we
indicate the type of more general results which seem to be obtainable via
these arguments.

3.1 The discrete maximal function on Hd

Let Γ = Hd
pol = {(m, l) ∈ Z2d×Z : (n, k) ·(m, l) = (n+m, k+ l+n2 ·m1}

where
n = (n1, . . . , nd), m = (m1,m2) and n2 ·m1 denotes the scalar product in
Zd. We remark that Hd

pol is isomorphic to the standard Heisenberg group
Hd with the product law (n, k) · (m, l) = (n + m, k + l + n ◦ m}, where
n◦m = n2 ·m1−n1 ·m2 thus the maximal theorem transfers from one group
to the other.

Let p(n) : Z2d → Z be an integral polynomial of degree at most 2.
Consider the family of surfaces SN = {(n, p(n)) : |ni| ≤ N, ∀1 ≤ i ≤ 2d}.
Then one has

Theorem 3 Let f ∈ l2(Hd) and define the averages and the corresponding
maximal function by

(3.1) SNf(h) =
1

|SN |
∑

g∈SN

f(g · h) , S∗f(h) = sup
N>0

|SNf(h)|

Then one has ‖S∗f‖l2(Hd) ≤ Cp,d‖f‖l2(Hd).

Note that if h = (m, l) then
SNf(m, l) = (2N +1)−2d ∑

|ni|≤N f(n+m, l +n ◦m+ p(n)). As in the com-

13



mutative case it is enough to consider dyadic values N = 2j and smoothed
averages, which after a change of variables n → n−m look like

(3.2) Sjf(m, l) = 2−2jd
∑
n

φ(
n−m

2j
)f(n, l + n ◦m + p(n−m))

(using m ◦m = 0).
Suppose now that Hd

pol acts on a probability measure space (X, µ) via
measure preserving invertible transformations T1, . . . T2d, S as its generators.
This means that they satisfy the commutation relations:

(3.3) [Ti, Ti+d] = S and [Ti, Tj ] = [Ti, S] = I if |j − i| 6= d

where I denotes the identity on X. Indeed from (3.3) it is easy to see that
TnSkTmSl = Tm+nSk+l+n2·m1 . We call the action of Hd

pol on X fully ergodic
if for each q and F ∈ L2(X) one has that T q

1 F = . . . = T q
2dF = SqF = F

implies that F is constant. Now we can formulate

Theorem 4 Let F ∈ L2(X), SN ⊆ Hd
pol defined as above. Assume that the

action of Hd
pol on X is fully ergodic. The one has

(3.4) lim
N→∞

1
|SN |

∑

g∈SN

f(g · x) =
∫

X
F dµ

for a.e. x ∈ X.

Let us remark that similarly as in Theorem 1., the averages on the left
side of (3.4) converge a.e. to some function F∗ ∈ L2(X) without assuming
full ergodicity. However in our approach the essential part is to prove (3.4).

The discrete maximal function on Hd: By taking the Fourier transform
in the central variable one has

(3.5) Sjf(m, l) =
∫ 1

0
e−2πilθ(T θ

j f̂(θ))(m) dθ

where

f̂(θ)(n) = f̂(n, θ) =
∑

k

e2πikθf(n, k)

and

(3.5) T θ
j g(m) =

∑
n

φj(n−m)e−2πiθ(n◦m+p(n−m)) g(n)

here φj(n) = 2−2jdφ(2−jn). It is immediate to see that:
‖T θ

j ‖l2(Z2d)→l2(Z2d) ¿ 1. A crucial point is that ‖T θ
j ‖l2→l2 is small unless

theta is close to a rational a/q with small denominator q. The following is
the analogue of Lemma 1. in section 2.1

14



Lemma 3 Let 0 ≤ θ < 1 and suppose there exists a rational a/q such that
|θ − a/q| ≤ 1/q2. Then

(3.7) ‖T θ
j ‖l2→l2 ≤ C max(q−1, q2−2j)1/2

The proof is based on estimating the kernel Kθ
j (m1,m2) of T θ

j (Tjθ)∗

which is the following exponential sum,

(3.8)
∑
n

φj(n−m1)φj(n−m2)e−2πiθ(n·A(m1−m2)+R(m1,m2)) + O(2−j/2)

Indeed the phase is of the form:
n ◦m1 − n ◦m2 + p(n −m1) − p(n −m2) = n · A(m1 −m2) + R(m1, m2)
where A is a 2d × 2d matrix with rank at least 1, and ”·” denotes the dot
product. This sum is similar to the one appeared in Lemma 1., and can be
estimated analogously.

Major arcs decomposition: Let 1 < α < 2 and ε > 0 be fixed. We
write Sjf = Mjf + EjF where

Mjf(m, l) =
∑

a/q, q≤jα

∫ 1

0
e−2πilθω(2(2−ε)j(θ − a/q)) (T θ

j f̂(θ)) (m) dθ

= Mj,0f(m, l) +
∑

a/q, 1<q≤jα

Mj,a/qf(m, l)

As before it follows from Dirichlet’s principle and Lemma 3. that

(3.9) ‖Ejf‖l2 ¿ j−α/2‖f‖l2

and thus

sup
j
‖Ejf‖l2 ≤ (

∑

j

‖Ejf‖2
l2)

1/2 ¿ 1

so it is enough to prove that

‖M∗f‖l2 = ‖ sup
j
|Mjf | ‖l2 ≤ C‖f‖l2

Comparison to standard averages: First we discuss the maximal
operator M∗

0 f = supj |Mj,0f | and write Mj,0f = Bjf + Ej,0f where

Bjf(m, l) =
∫ 1

0
e−2πilθ(T θ

j f̂(θ)) (m)ω(22jθ) dθ
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The point is that Bjf is a standard average. Indeed

Bjf(m, l) =
∫ 1

0

∑
n

2−2jdφ(
n−m

2j
)e−2πiθ(l+n◦m+p(n−m))f̂(n, θ)ω(22jθ) dθ

= 2−2jd2−2j
∑

n,k

φ(
n−m

2j
)ω̂(

l + n ◦m + p(n−m)
22j

) f(n, k)

which is the smoothed average corresponding to the family of balls:

Bj(m, l) = {(n, k) : |n−m| < 2j , |l + n ◦m + p(n−m)| < 22j}
It is easy to see that they satisfy (i)-(i3) described in the introduction and
hence ‖B∗f‖l2 = ‖ supj |Bjf | ‖l2 ¿ ‖f‖l2 . We still have to deal with the
error term Ej,0f which corresponds to the range 2−2j ¿ |θ| ¿ 2−(2−ε)j .
However on such range a similar argument to that of Lemma 3. shows that:

(3.10) ‖T θ
j ‖l2→l2 ¿ (1 + 22j |θ|)−1/2 + 2−j/4

Indeed the kernel of T θ
j (Tjθ)∗ can be compared to the integral

K̄θ
j (m1,m2) =

∫
φj(x−m1)φj(x−m2)e−2πiθ(x·A(m1−m2)+R(m1,m2))dx

by writing x = n + t with 0 ≤ ti ≤ 1 and making an error of O(2−j/2

because θ is small. From this estimate (3.10) follows by a straightforward
computation and the error terms Ej,0f are handled by the corresponding
square-function.

Reduction mod Q: Essentially the same arguments work on each ma-
jor arc Ia/q = {θ : |θ − a/q| ≤ q−12−2j} after a decomposition mod q. An
extra difficulty arising is that one has to avoid adding up all of these esti-
mates, by handling a large number of major arcs simultaneously, this idea
first appeared in [B1] in the commutative settings.

Let 1/2 < ρ < 1 such that ρα < 1. Group the denominators q ≤ jα into
groups Λ of size 2ρs where for each q ∈ Λ we have 2s ≤ q < 2s+1. Further
put Q =

∏
q∈Λ q. Notice that Q ¿ε 2εj ∀ε > 0. To each group of rationals

Λ there correspond the maximal operator:

M∗
Λf = sup

j
|MΛ,jf | where MΛ,jf(m, l) =

∑

a/q, q∈Λ

Mj,a/qf(m, l)

It is now enough to prove the following estimate

Lemma 4 (3.11) ‖M∗
Λf‖l2(Hd) ≤ C2−s/2‖f‖l2(Hd)

16



Indeed for each s there are at most 2(1−ρ)s groups Λ and adding estimate
(3.11) for each group gives the contribution 2(1/2−ρ)s < 2−εs since ρ > 1/2.
Finally we add up these estimates for each s, using the subadditivity of the
maximal operator. The proof of Lemma 4. is computationally involved,
we restrict ourselves to highlight the main points. For fixed Λ and the
corresponding Q, we decompose each element of the group Hd modulo Q.
That is write m := Qm+r, n := Qn+s, l := Ql+ t where 0 ≤ ri, si, ti < Q.
Next on a major arc write θ = β + a/q with |β| ≤ 2−2j . We have

(3.12) Mj,a/qf(Qm + r,Ql + t) =
∫ 1

0
e−2πiβQ(l+m◦r)ω(22jβ)·

·(
∑
n

φj(Qm−Qn)e−2πiβ(Qn◦Qm+P0(Qn−Qm)))·

·(
∑
s

e−2πi(s◦r+P (s−r)+t)a/qf̂(Qn + s, β + a/q)ω(Qβ)) dβ + Ej,a/qf

What we did here was to separate the terms involving multiples of Q
from those involving only residue classes mod Q. One could do this by
making a small error Ej,a/qf which came from transforming ”cross terms”
like:
βs◦Qm → βs◦Qm, φj(Qn−Qm+s−r) → φj(Qn−Qm), βP (Qn−Qm+s−
r) → P0(Qn−Qm)+βP (s−r). In each case one makes an error of O(2−j/4).
For fixed r, t this allows one to view the operator Mj,Λ =

∑
a/q∈Λ Mj,a/q as

a standard averaging operator corresponding to the balls Bj,Q = Bj ∩Hd
Q =

{(Qm,Ql) : (m, l) ∈ Hd} applied to some function gΛ ∈ l2(Hd
Q). The

boundedness of the maximal function M∗
Λ follows from the standard theory,

while ‖gΛ‖l2 can be estimated by orthogonality arguments. To be more
precise (3.12) can be rewritten in the form (for fixed r, t)

(3.13) Mj,Λf(Qm + r,Ql + t) =
∫ 1

0
e−2πiβQ(l+m◦r)ω(22jβ )·

·(T β
j,QĝΛ(β))(Qm) + EΛ,jf

where

T β
j,Qh (Qm) =

∑
n

∑
n

φj(Qm−Qn)e−2πiβ(Qn◦Qm+P0(Qn−Qm))h(Qn)

and

ĝΛ(Qn, β) =
∑

a/q∈Λ

∑
s

ω(Qβ)e−2πi(s◦r+P (s−r)+t)a/q f̂(Qn + s, β + a/q)
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If we perform the (scaled) inverse Fourier transform

ĝΛ(Qn, β) = Q
∑

k

e2πiQkβg(Qk)

which is valid on |β| < 1/2Q since ĝ is supported on that interval we get
the standard averages on Hd

Q. Finally we remark that the oscillatory phase
and the disjointness of the supports of the the pieces of f̂ in the expression
for ĝ, makes it possible to get a good bound for ‖gΛ(Qn, β)‖l2(Hd

Q) in terms
‖f‖l2(Hd).

3.2 The pointwise ergodic theorem

The proof of Theorem 4. consists of two parts, and was largely motivated
by the arguments in in [B1]. First a refined version of the transfer principle is
used to replace pointwise convergence by L2 estimates for truncated maximal
functions. Then the discrete maximal theorem as well as ideas from its proof
are utilized to reduce matters to estimate a maximal function attached to
a fixed rational a/q, which can be majorized by standard averages on the
subgroup Hd

q .

Transfer principle for Hd. Let us start with some standard observa-
tions. The sets: BN = {(n, k) : |ni| ≤ N, |k−p(n)| ≤ N2} and their shifts:
BN (h) = {(n, k) : |ni| ≤ N, |k − p(n)| ≤ N2} satisfy properties (i) − (i3)
and hence form a family of balls. Let F ∈ L2(X) and let fL,x be the associ-
ated function on Hd defined in the introduction. Let Nk < Nk+1 < . . . be an
increasing sequence of natural numbers and for each k define the truncated
maximal functions: B∗F (x) = maxNk≤N<Nk+1

BNF (x) and
B∗f(h) = maxNk≤N<Nk+1

BNf(h). Here BNF (x) and BNf(h) are the av-
erages defined in (1.1)-1.2). Notice that SN ⊂ BN hence SNF (h · x) =
SNfL,x(h) for all h ∈ DL,N = ∩g∈BN

g−1 · BL. The same is true for the
maximal functions:

(3.14) S∗kF (h · x) = S∗kfL,x(h) for all h ∈ DL,k = g ∈ Sk+1g
−1 ·BL

Thus the maximal ergodic theorem readily follows from Theorem 3. and
one can pass to dense subspace of L2(X), say to L2(X) ∩ L∞(X). Since
the surfaces SN ⊆ SN+1 are nested it is enough to consider lacunary values
N = aj for some a > 1 let us assume for simplicity that a = 2 and use the
notation Sj for S2j . Summarizing the above it is enough to prove that;

If ‖F‖L2(X) ≤ 1, ‖F‖L∞(X) ≤ 1 and
∫
X F dµ = 0 and if the action of

Hd
pol on X is fully ergodic, then one has

(3.15) SjF (x) = 2−2jd
∑

|ni|≤2j

F (TnSp(n)x) → 0
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for a.e. x ∈ X. Following [B1], the indirect assumption:
limsup |SjF (x)| > 0 on a set of positive measure implies that limsup |SjF (x)| >

δ on a set of measure at least δ for some and δ > 0, thus there exists an
increasing sequence jk such that ∀ k: µ{S∗kF > δ} > δ. Then the L2 norm
of S∗kF is at least δ3/2 and the same is true in Cesaro means:

(3.16)
1
K

∑

k≤K

‖S∗kF‖2
L2(X) ≥ δ3

for each K > 0, in fact at crucial point one needs to consider Cesaro means.
By (3.14) this translates to

(3.17)
1
K

∑

k≤K

1
|BL|

∫

X
‖S∗kfL,x‖2

L2(X) dµ ≥ δ3

Thus it is enough to show the opposite inequality to (3.17) for every δ > 0
if k > kδ and L > Lk,δ. Let us remark at this point that if the averages SjF
are replaced by the ball averages BjF then the above can be proved easily:

Lemma 5 Let ‖F‖L2(X) ≤ 1, ‖F‖L∞(X) ≤ 1 and
∫
X F dµ = 0 and assume

that the action of Hd
pol on X ergodic. Then ∀ δ > 0 one has

(3.18)
1
K

∑

k≤K

1
|BL|

∫

X
‖S∗kfL,x‖2

l2 dµ ≥ δ3

for k > kδ and L > Lk,δ.

Indeed using the transfer principle (3.18) can be reduced to the fact that:
‖B∗

kF‖2
L2(X) < δ3 if k > kδ which is easy to see from property (i).

Reduction to a fixed rational a/q. Fix δ > 0 and let f = fL,x. As
before one has the decomposition: Sjf = Mjf + EjF where

Mjf = Mj,0f +
∑

2s≤jα

Mj,sf where Mj,sf =
∑

a/q, 2s≤q<2s+1

Mj,a/qf

By (3.9) and (3.11) one has

‖Ejf‖l2 ¿ j−α/2‖f‖2
l2 and ‖Mj,sf‖2

l2 ≤ C2−εs‖f‖2
l2

thus for some ε > 0 and by Schwarz’ inequality

(3.19) ‖M∗
kf‖2

l2 ≤
∑

s≤sδ

|M∗
s,kf‖2

l2 + cδ3‖f‖2
l2
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if k > kδ and kδ, sδ are chosen large enough. By subadditivity of the
maximal operator the l.s. of (3.19) is majorized by a finite sum of the
L2 norm square of maximal operators: M∗

k,a/qf = maxjk≤j<jk+1
|Mj,a/qf |.

Hence it is enough to show (3.18) for M∗
k,a/qf in place of B∗

kf for a fixed
rational a/q. The idea is to replace the cut-off ω(2(2−ε)j(θ − a/q))
by ω(22j(θ − a/q)) and use the discrete maximal theorem to bound the
maximal function M∗

k,a/qf by a standard type average Bj,a/qf .
To do this define the bump functions: ωk(β) = ω(22jk−1β)− ω(22jk+1β).

Note that the sequence jk can be chosen quickly increasing, say 2jk+2 < jk+1

and the the supports of ωk(β) and ωl(β) are disjoint for |k − l| > 2. Let
β = θ − a/q and write

ω(2(2−ε)jβ) = ω(22jβ) + ωk(β)ω(22jβ)

Accordingly one has the decomposition

(3.20) Mj,a/qf = Bj,a/qf + Mj,a/qfk−1,a/q −Bj,a/qfk−1,a/q

where

f̂k,a/q(n, β) = f̂(n, β)ωk(β)

and

(3.21) Bj,a/qf(m, l) =
∫ 1

0
e−2πilθω(22j(θ − a/q)) (T θ

j f̂(θ)) (m) dθ

We remark that the l2 boundedness of both maximal operators B∗
k,a/q and

M∗
k,a/q has already been proved in section 3.1. By the essential disjointness

of the supports of the functions f̂k,a/q one has

1
K

∑

k≤K

‖M∗
k,a/qf‖2

l2 + ‖B∗
k,a/qf‖2

l2 ≤
Cq

K

∑

k≤K

‖fk,a/q‖2
l2 ≤

5Cq

K
‖f‖2

l2

and note that
1
|BL|

∫

X
‖fL,x‖2

l2 dµ = ‖F‖2
L2 ≤ 1

Now it is to enough to prove (3.18) for the averages: B ∗
k,a/qfL,x. Notice

that the only difference between this operator and B∗
k is only the shift by the

rational: θ → θ−a/q. If one writes out the averages Bj,a/qf explicitly using
the inverse Fourier transform, and takes the summation in fixed residue
classes mod q first, then one gets a finite sum (over r, t mod q) of averages
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of the form Bj,qfr,t, where Bj,q is the standard average on the subgroup Hd
q

corresponding to the balls Bj ∩Hd
q . Finally since f = fL,x corresponds to

F , one gets that fr,t corresponds to Fr,t(x) = F (T rStx). For fixed r, t one
can apply Lemma 5. on the subgroup Hd

q , and that proves Theorem 4.

3.3 General discrete nilpotent groups

As was shown by Bergelson and Liebman [BL], the mean ergodic theorem
holds in an amazingly general setting. Let Γ be a finitely generated discrete
nilpotent Lie group acting on a finite measure space via measure preserving
transformations. In terms of generators this means a finite set of transfor-
mations T1, . . . , Td whose long enough commutators trivialize. A sequence
p : Z → Γ is called polynomial if the operation Dp(n) = p(n)p(n+1)−1 triv-
ialize after finitely many steps, that is there is a M such that DMp (n) = I
for all n where I is the identity element. In terms of the generators this
means that p(n) = T

p1(n)
1 . . . T

pd(n)
d for some integral polynomials pi(n).

Under these settings one has

Theorem 5 (V. Bergelson, A. Liebman) Let F ∈ L2(X) the there exists a
function F∗ ∈ L2(X) such that

(3.22) SNF =
1
N

∑

n≤N

T
p1(n)
1 . . . T

pd(n)
d F → F∗

in L2 norm as N → ∞. Moreover if the action of Γ on X is fully ergodic,
then F∗ =

∫
X F dµ.

Much of our effort has been devoted to see in what generality the corre-
sponding pointwise ergodic theorem and the l2 boundedness of the associ-
ated maximal operator holds. At this point the following case seems to be
within reach;

Assume that Γ is a discrete co-compact subgroup of stratified nilpotent
Lie group. Then by Malcev’s theory one can introduce canonical coordinates
in which Γ is represented by Zd, see [Co]. Consider maximal averages corre-
sponding to hypersurface transversal to the center and can be parameterized
by integral polynomials, we remark that this condition can be expressed in
a coordinate free way. Then roughly one considers the averages:

SNF =
1

(2N + 1)D

∑

|ni|≤N

F ( T
n1)
1 . . . Tnd

d S
p1(n)
1 . . . S

pk(n)
k x )

where Si are in the center and pi(n) are integral polynomials, moreover the
transformations altogether generate a stratified nilpotent group. In this case
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it seems that both the maximal and the pointwise ergodic theorem can be
proved by the methods described here. There are new essential difficulties
arise; in the decomposition mod Q, and also if the polynomials have high
degrees. The first problem can be resolved by a semi-direct type decompo-
sition; the subgroup ΓQ consisting of elements Qm whose each coordinate
is divisible by Q is normal, and one can write every element m′ ∈ Γ in a
unique way of the form: m′ = Qm · r where 0 ≤ ri < Q. The set of r’s
can be identified with the group: Γ/ΓQ. This way one can avoid large cross
terms which makes the reduction possible. A paper containing such results
is under preparation [MSW2]. Of course there is still a huge gap, and finally
let us mention the simplest settings when the above methods break down.
Let T,U be measure preserving transformations on a finite measure space
X, such that S = [T, U ] = TUT−1U−1 commutes with both T and U .

It is plausible to expect that the averages:

SNF =
1
N

∑

n≤N

F (TnUn2
x) → F∗

as N →∞ for a.e. x, and that the l2 associated discrete maximal operator
is bounded from l2(Γ) to itself. This remains however an open problem at
present.
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